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Executive Summary 

Autonomous vehicle studies typically focus on development of technologies and polices for 

operating vehicles that transport people and commodities on roadways. However, the use of 

autonomous vehicles for pavement and roadside management services, called autonomous 

service vehicles, have the potential to improve safety of these operations, provide financial 

benefit, and ensure they are completed reliably and efficiently. For instance, consider that the 

state of Florida spends over $33.5 million annually on roadside management and that the state of 

Florida already has the second highest number of road construction and maintenance worker 

fatalities. This study primarily focuses on two of the most common service tasks, roadside 

mowing and pavement inspection. While the benefits of autonomous service vehicles are clear, 

current research fails to present acceptable sensing requirements for fielding systems to complete 

these tasks. This study addresses these shortcomings.  

The study began by selecting representative sensors from each of the primary sensing modalities 

expected on autonomous service vehicles (multi-beam LIDAR, automotive RADAR, GPS/INS 

system, and visible light camera) and mounted them on a Ford Escape hybrid that was capable of 

autonomous operation (but would not be used autonomously in this study). Once mounted on the 

vehicle, data was collected in a variety of environments where autonomous service vehicles 

would operate, such as urban areas, construction zones, and interstates. These collections also 

took place over a range of weather conditions, including dusk, night, and rainy weather.  

The data is synchronized and post-processed through a playback environment the team built 

using National Instruments LabVIEW, Google Earth and VeloView software packages. Using 

the playback environment, the team found data anomalies and characterized performance of 

these sensors in the environments under consideration. The research team also wrote automated 

search algorithms to search for GPS inaccuracies, the ability to detect line reflectivity and 

distinguish cut and uncut grass. In addition to the data analysis, a risk assessment was conducted 

in order to determine how standards should be set for communication with these autonomous 

systems.  

The research team presents recommendations to ensure proper operation of autonomous service 

vehicles conducting roadside mowing or pavement inspection based on twelve use cases. These 

recommendations include to avoid the use of radar when passing under bridges, to avoid 

conducting pavement inspections in the rain and to use sensor fusion to mitigate GPS error. Each 

of the recommendations are supported with empirical evidence recorded using the sensor 

payload. Simple autonomy algorithms also found that LIDAR sensors may be effective at 

inspecting line reflectivity and determining areas with cut and uncut grass. This study also 

recommends bandwidth specifications for radio links based on modes of operation for pavement 

inspection and roadside mowing operations.  
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Chapter 1: Introduction 

Effective July 1, 2012, the Florida Legislature authorized the testing of autonomous vehicles in 

Florida [1]. Since the inception of this law, the state of Florida has established a leadership 

position in the development of autonomous vehicles and related technologies.  The primary focus 

of autonomous vehicle studies has been related to the development of technologies and polices 

for operating vehicles that transport people and commodities on roadways. However, the use of 

autonomous vehicles for pavement and roadside management services, herein referred to as 

autonomous service vehicles, have the potential to improve safety of these operations, ensure 

they are completed reliably, completed efficiently, and provide financial benefit. Candidate 

services to be conducted by autonomous service vehicles include roadside mowing and pavement 

inspection.   

 

The state of Florida spends over $33.5 million annually on roadside management, with over 25 

percent of that being mowing costs [2]. Furthermore, Governor Rick Scott has proposed the use 

of over $242 million for maintenance and repair of Florida roadways as part of his ‘Keep Florida 

Working’ budget. This initiative has the potential to improve local economies by employing 

more workers, but these workers are at risk of being struck by a construction or motor vehicle. In 

fact, the state of Florida already has the second highest number of road construction and 

maintenance worker fatalities [3]. The use of autonomous service vehicles can significantly 

improve occupational safety by moving workers farther from moving vehicles.  

 

In addition to public roadways, airports must complete a substantial number of service tasks.  

The state of Florida has 129 public, private and military airports [2]. Mowing at airports, which 

is required by Federal Aviation Regulations Part 139, attracts birds due to uncovered seeds and 

insects. An estimated 11,000 bird strikes occur each year resulting in a $1.2 billion loss. While 

human operators must mow during the day, an autonomous service vehicle may be able to 

operate at night when fewer flight operations occur, reducing the likelihood of bird strikes. These 

autonomous vehicles may also be able to operate in extreme weather conditions, which may 

further reduce the risk of personal injury. 

 

While the benefits of autonomous service vehicles are clear, current research fails to present 

acceptable sensing requirements for fielding systems to complete these tasks. The lack of 

requirements is largely due to the development of algorithms and the collection of data in 

laboratory or highly-controlled environments instead of the operating environment of such 

platforms. This project develops sensing requirements for autonomous service vehicles by data 

collection from the operating environments and subsequent data analysis. Generating these 

requirements is a precursor to the use of autonomous service vehicles on and in proximity to 

public roadways.   
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Chapter 2: Vehicle Mounted Payload 

The first step in determining sensing requirements was to identify the primary sensing modalities 

needed to field autonomous service vehicles. For this purpose, the research team focused on the 

two primary service tasks of roadside mowing and pavement inspection (line striping and 

pavement integrity). Completing these tasks require sensors for both autonomous navigation and 

identification of vehicle surroundings (terrain, obstacles, grass status and pavement integrity).  

 

The primary sensors used in autonomous ground vehicle navigation are GPS, Inertial 

Measurement Units, and a Magnetic Compass. These sensors enable an autonomous vehicle to 

determine the vehicle state of linear and angular position and velocity. For perception purposes, 

visible light cameras, LIDAR and radar are the most common sensors used by autonomous 

ground vehicles. For both navigation and perception sensors, the team sought to select off-the-

shelf products with high data fidelity (accuracy and resolution). Through the use of high-end 

equipment, the data can be degraded in post-processing to find the lower limit of sensor 

specifications suitable to perform the service vehicle tasks autonomously.  

 

Sensor Selection and Integration  

The research team first selected a research platform to conduct the study. The Plan B vehicle, 

shown in Figure 1, was selected for this purpose. Plan B is an autonomous Ford Escape on loan 

to Embry-Riddle Aeronautical University (ERAU) from its developers at GrayMatter Inc. and 

originally developed to compete in the DARPA Grand Challenge. This platform has an Ethernet 

communication backbone for communication with the vehicle sensors and the autonomous 

software system. While this project did not utilize the autonomous software systems, the team 

chose to utilize Ethernet communications, where possible, due to the reliability and high 

throughput of this protocol. As an electric hybrid, this vehicle is capable of producing 

significantly more electrical power than a typical gasoline powered vehicle, which typically have 

low power 12V direct current electrical power onboard. Plan B is also moldified with 120V 

alternating current power through a high power inverter. This enabled the research team to select 

sensors with a wide array of power options, with minimal changes to the vehicle. Thus the built-

in communication infrastructure and power systems made the Plan B vehicle a logical and 

effective choice for this project. 

 

After vehicle selection, the team proceeded to select and acquire the sensing and computing 

systems for the vehicle mounted payload. As part of the loan agreement with GrayMatter Inc., 

the research team had access to a Velodyne HDL-64E LIDAR and OXTS RT3000 Series 

GPS/Inertial Measurement system, which were selected for use in this study. The OXTS RT3000 

Series GPS (Figure 1) has a variety of high end features that include inertial corrections to GPS, 

dual antennas and a 100Hz update rate. Measurements from this system are highly accurate with 

reported accuracies up to 2cm for position, 0.1 km/h for velocity, 0.1° for heading and 0.05° for 

pitch and roll accuracy.  
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Figure 1: Plan B vehicle used for data collection. Mounting locations of the Velodyne LIDAR, 

Continental Radar, GPS antennas, and camera are as indicated. 

The Velodyne HDL-64E (Figure 2) is a 64 laser beam ranging sensor that provides up to 2.2 

million data points per second at update rates of 5-15Hz, with a 26.8° degree vertical FOV and 

360° horizontal field of view. Range estimates can be provided by this sensor at distances up to 

50m for low reflectivity objects (less than 0.1 reflectivity) and up to 120m for high reflectivity 

objects (greater than 0.8 reflectivity). This sensor provides one of the highest point densities 

currently available in commercial LIDAR systems, making it a prefect simulator for lower 

capability sensors by ignoring specific lasers and subsampling for lower angular resolutions.  

 

The Velodyne and GPS sensors were mounted on the Plan B vehicle as indicated in Figure 1. 

These mounting locations are typical of an autonomous service vehicle, which would mount GPS 

antennas at the highest point of the vehicle and LIDAR sensors in locations that maximize 

visibility.  

 

Figure 2: Velodyne HDL-64E LIDAR (left) and OXTS RT3000 Series GPS and Inertial System 

(right) selected as part of the vehicle mounted payload. 
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As part of the vehicle mounted payload, the team sought to incorporate a commercial radar 

solution for object detection and velocity estimation, which are needed to detect possible 

collisions. While important for roadside mowing and pavement inspection, the team expects 

FDOT attenuator trucks are more likely to benefit from this capability. The research team did not 

own any compatible radar solutions and therefore investigated off-the-shelf solutions. The team 

found that there are two primary automotive radar manufacturers, Continental and Delphi. Upon 

reviewing the available products, the Continental ARS 308-2C automotive radar (see Figure 3) 

was selected over the Delphi systems because it provided access to additional low-level data, 

such as radar cross section and error estimates. While automotive radar are traditionally mounted 

on the front bumper, for this project the radar was mounted  above the hood and directly below 

the alternative mounting location for the Velodyne HDL64E, as shown in Figure 4. This 

mounting location did not require modifying any of the structural components of the vehicle, 

which was on loan to the University. The team did not find any negative effects from mounting 

the radar in close proximity to the reflective hood. This is likely due to the limited vertical field 

of view of this sensor or the shallow angle reflections would make with the hood, preventing 

them from returning to the radar to be interpreted.   

   

Figure 3: The Continental ARS 308-2C automotive radar (left) and Samsung SNO-7084R camera 

system (right) selected as part of the vehicle mounted payload. 

 

 

Figure 4: Samsung Camera and Continental Radar as mounted on the Plan B vehicle. 
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A visible light camera was also included in the vehicle payload for verifying the presence of 

objects from the LIDAR and radar and to investigate the appearance of faded road lines during 

pavement inspection. While ERAU owns many vision solutions, the research team determined 

the camera solution needed to have a horizontal field of view wider than the radar (56 degrees) 

and must withstand a variety of environmental factors, including rain, heat and fog. As none of 

the ERAU owned assets met these requirements, designing enclosures, purchasing a new lens for 

a currently owned system, and the possible acquisition of a new camera system were considered.  

 

Due to its rain and dust resistant rating and Ethernet communication protocol, the team selected 

the SNO-7084R Samsung Security Camera, as seen in Figure 4, which provides a maximum 

resolution of 3 megapixels and framerates up to 60 fps (the team recorded video at 1080p and 60 

fps). The camera also has a motorized variable focal length, resulting in a field of view from 

100.2° to 35.38°. Additional functionality includes audio recording, motion detection, and 

programmable control of the camera functions. The camera was mounted on the Plan B vehicle 

above the windshield using the existing railings that support mounting of the GPS and LIDAR 

(see Figure 4).  

 

The team also investigated the use of a spectrum analyzer for inclusion in the vehicle mounted 

payload. The team found the most pertinent part of the spectrum to be the 400 MHz to 6 GHz 

range, as this includes the standard 434 MHz, 900MHz, 2.4GHz and 5.8GHz communication 

bands used in most autonomous systems, and covers the L1 1.6 GHz and L2 1.2GHz frequency 

bands of GPS signals. While software defined radio solutions are commercially available for 

lease or purchase that would enable measurement of these parts of the spectrum, the team looked 

at existing RF standards in the automotive industry before pursuing this option. This 

investigation found that there are three commonly referenced standards, ISO 11452, CISPR 25, 

and SAE J1113 [5], [6], [7]. Since rigorous standards already exist, data collected from a 

spectrum analyzer would be unlikely to contradict these standards. Thus, instead of collecting RF 

data as part of the vehicle payload, FDOT approved the team conducting a risk assessment to 

determine the appropriate level of compliance needed for autonomous service vehicle 

communications. 

Data Logging Software 

As part of the vehicle mounted payload, the researchers created software using the National 

Instruments LabVIEW environment to communicate with the payload devices and log the data 

coming from these devices. The GPS, LIDAR and camera systems all communicate via Ethernet 

protocols which are simultaneously routed to a logging computer via an Ethernet switch in the 

Plan B vehicle. The radar communicates via CAN protocols which are converted to Serial Data 

using a CAN to USB converter plugged directly into the data logging computer.  

 

Within the software, there is a sensor module dedicated to communication with each device 

running in a parallel configuration for reduced lag and improved data synchronization. The radar 

and GPS modules take the raw data messages and extract the measurements based on the 

message format provided in the sensor datasheets. A snapshot of the extracted data from the 

radar is shown in Figure 5. The camera gave a JPEG compressed video stream which is saved 

directly to the data logging computer, as no further processing is required. The research team 
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originally wrote a module to extract raw LIDAR data, but the nearly 2.2 million data points each 

second this sensor can produce created lag in the system when viewing within LabVIEW. Thus, 

the LIDAR data is saved directly in its raw form to prevent delay and data synchronization 

errors.  

 

Figure 5: A snapshot of the first 20 targets reported by the ARS 308-2C radar. These 

measurements are extracted from the raw data bytes transmitted via CAN protocols. 

In addition to each sensor having its own communication module, a primary control module was 

written in LabVIEW to monitor the status of each sensor, select sensor data to log, and control 

recording functionality. A snapshot of this interface is shown in Figure 7. The interface also 

allows the team to add comments and notes to the data logs such as location and weather 

condition. The camera, GPS, and radar data can be viewed under adjoining tabs across the top of 

the interface. As the LIDAR data is saved and not extracted within LabVIEW, real-time viewing 

of this data must be done through the VeloView software provided by Velodyne. The data 

collection software was field tested on the ERAU campus to ensure data was being logged 

properly and the data was extracted from the raw messages accurately, as seen for the radar in 

Figure 6.  

 

The use of GPS time stamps for data synchronization was considered, but only the LIDAR 

natively supported this functionality. Instead, all data is synchronized by referencing the internal 

clock on the data logging computer based on time of arrival of the data to the computer. This 

provides synchronization to within 10 msec, which is the fastest sampling rate of any of the 

payload sensors. The data logging computer uses a solid stated drive to store the data locally, 

which increases the speed at which data is written to the drive and prevents data corruption that 
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can occur when using hard drives in moving vehicles. The data is logged in the native LabVIEW 

format to further improve logging speed, but can be extracted in a post-processing step as 

discussed in Chapter 4.  

 

 

Figure 6: Verification plot of objects identified by the radar system (top). The highlighted green 

box contains the object location of the green Honda Accord less than 5 meters from the radar, the 

red box shows the location of the red Ford Explorer 20 meters from the radar, and the Blue box 

shows the object points corresponding to the fence line at over 100 meters from the radar. The 

lower image is a camera image taken when placed in the mounting location of the radar on the Plan 

B vehicle. 
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Figure 7: Snapshot view of the primary control module for data recording and monitoring sensor 

status during data collections. 
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Chapter 3: Data Collection 

The project required collecting data from the vehicle mounted payload in a variety of 

environments and scenarios where an autonomous service vehicle will operate. The team began 

the data collection process by identifying a set of operating environments and weather conditions 

in which data should be collected. These cases ranged from normal operating conditions of 

service vehicles to the more severe environments 

that can occur due to weather, traffic and other 

hazards that may affect sensor performance.  While 

compiling this list, the team primarily focused on 

the tasks of pavement inspection (e.g. striping) and 

roadside mowing, which were identified in the 

proposed scope of work as the primary service tasks 

of interest. The list was reviewed and approved by 

FDOT program managers through a teleconference 

and are shown in Table 1. The research team then 

sought to collect 5 or more data sets and 20 minutes 

of total data in each operating environment and 

weather condition. The team monitored the status of 

each sensor through the LabVIEW interface.  

 

Data Collection Results 

Based on the previously approved list, the research team identified roadways within 150 miles of 

the ERAU campus that contained the desired operating environments. The research team also 

monitored the weather to ensure data collection across the desired set of weather conditions. The 

completed list of collected data is given below in Table 2 and organized by test location.  

Table 2: Summary of Collected Data 

Test Location Condition(s) Collected Collection Time File Size 

A1A (Bike Week) Pedestrians, Bike Congestion 75 Minutes 31 GB 

Daytona Beach 
International Airport 

High RF, Air Traffic 45 Minutes 18 GB 

Daytona International 
Speedway 

High RF 25 Minutes 11.6 GB 

Downtown Orlando Tall Buildings, Traffic Congestion 20 Minutes 8.9 GB 

I-4 
Traffic Congestion, Construction, 
Sunny, Dusk, Night 

140 Minutes 55.6 GB 

I-95 Road Construction, Overpasses, Rain 130 Minutes 53.2 GB 

Local Private Roadways  Day, Dirt/Gravel, Rough Terrain 45 Minutes 18 GB 

Local Public Roadways 
Sunny, Overcast, Night, Dusk, Rain, 
Cut & Uncut Grass 

120 Minutes 49.5 GB 

Stationary Testing Day/Night, Sensor Testing 40 Minutes 15.8 GB 

Total 640 Minutes 262 GB 

Table 1: The approved list of test 

conditions which include operating 

environments and weather conditions. 

Operating 
Environments 

Weather Conditions 

Traffic Congestion Rain 

Tall Buildings Night 

High RF Dusk or Dawn 

Construction and 
Striping Areas 

Sunny 

Cut & Uncut Grass Overcast 

Heavy Vibrations  
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In total, over ten hours and 262 GBs of data were collected by the research team. This complies 

with the stated goal of 20 minutes of data collected from each test condition. However, it should 

be noted that some test locations provided an opportunity to collect data under multiple test 

conditions at once. For instance, the research team was able to collect data at dusk, night and 

during heavy traffic on I-4 between Daytona Beach and Orlando. It should also be noted that the 

file sizes of these data collections were significantly less than the research team originally 

projected. This is because the camera did not natively provide uncompressed images, but instead 

had a compressed output. This compression was found to give an indistinguishable difference in 

image quality. 

 

Examples of Collected Data 

Figure 8 through Figure 11 show samples of the collected data in four different test locations. 

These figures display the location of radar returns in front of the vehicle (green dots in the upper 

polar plot), an image from the onboard camera (upper right), the LIDAR returns (lower left), and 

the location of the vehicle as reported on Google maps (lower right).  



23 

 

 

 

Figure 8: Snapshot of data recorded on I-95 during rainy weather. Radar returns are plotted in the upper left position, camera image in 

the top right position, LIDAR returns plotted in the bottom left position, and GPS location show in the bottom right position. 
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Figure 9: Snapshot of data recorded on dirt and gravel roadways in Volusia County. 
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Figure 10: Snapshot of data recorded on local roadways the evening after roadside mowing has been completed. 
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Figure 11: Snapshot of data recorded in downtown Orlando, FL around tall buildings. 
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Chapter 4: Analysis Methods 

To analyze the collected data, the team pursued both manual and automated methods of data 

inspection. For manual inspection the team created a playback environment using LabVIEW, 

Google Earth and VeloView that plots and synchronously plays back the data recorded from the 

GPS, Radar, LIDAR, and camera. For the operating environments and weather conditions under 

consideration, viewing the data through this playback environment provided a qualitative 

measure of sensor performance, which was necessary to make recommendations for 

requirements. However, some aspects of autonomous vehicles conducting roadside mowing and 

pavement inspection were expected to require more accurate quantitative measures of 

performance. These key measures were determining GPS accuracy and dropout, the reflectivity 

of the road lines, and needs for distinguishing cut grass from other terrains. In each of these 

cases, the team wrote algorithms to conduct a basic analysis of the data and quantify required 

sensor performance. As previously discussed, the team also conducted a risk analysis to 

determine an appropriate level of compliance for radio frequency (RF) communications.  The 

following subsections describe the playback environment, algorithm designs and background of 

the risk analysis.  

 

Playback Environment 

For the playback environment the team sought to display data from all the payload sensors in a 

time synchronized manner on a single display. To accomplish this, the team initially created 

separate plots for each sensor within LabVIEW. However, the result had significant lag due to 

plotting a high number of three dimensional points through the LabVIEW 3D plot tools. To 

address this, the team used LabVIEW to simulate the raw data coming from the Velodyne 

LIDAR, which was then streamed to the VeloView software provided by Velodyne LIDAR for 

visualization. Similarly, the team used LabVIEW to write GPS data to a file format that could be 

continuously read by Google Earth. This enabled the team to display a satellite view of the GPS 

location provided by Plan B. The radar and camera data were displayed in a LabVIEW window 

that could be viewed simultaneously with VeloView and Google Earth. The screenshots in 

Figure 8 through Figure 11 are sample results from this playback environment.  

 

GPS Precision Algorithm 

By default, many GPS systems will report estimated error. This error is typically computed by 

finding the error in location of a receiver in a known location or by computing the RMS error 

coming from each independent set of satellites the GPS is currently using. While this gives some 

measure of reliability, situations still occur where GPS sensors can output unusually large jumps 

in position without reporting a similarly high error estimate. Thus, GPS sensors natively estimate 

accuracy, but individual readings or readings over a short time period can exceed the reported 

accuracy. To address this, the team sought a mechanism to characterize the accuracy and 

precision of the GPS readings. The Oxford system used in this study uses sensor fusion to 

combine estimates from the inertial measurement unit and GPS for the purpose of providing a 

more accurate measurement of GPS location and velocity (which are part of the vehicle state). 
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Thus, the accuracy of the system used in this study is analogous to that of other high-end 

GPS/INS systems that perform sensor fusion. By comparison, a 2013 survey of sensing 

technologies for construction applications stated that basic and differential GPS units can be 

expected to provide an accuracy of 1-10m, while a GPS/INS system can obtain accuracy levels 

of less than 5cm [8].   

 

To estimate GPS error, the research team used the reported vehicle velocity 𝑣𝑘, from the Oxford 

system to estimate the future location 𝑝̂𝑘+1 of the vehicle over a short time step 𝑡. This is done 

using the reported position of the vehicle  𝑝𝑘 and current velocity 𝑣𝑘 through the equation 

𝑝̂𝑘+1 = 𝑝𝑘 + 𝑣𝑘𝑡. By comparing 𝑝̂𝑘+1 and to the actual recorded position 𝑝𝑘+1, the estimated 

GPS error could be determined. However, it should be noted that the measured velocity is in fact 

a fused estimate from the Oxford unit, which fuses inertial velocity (from the inertial 

measurement unit) and Doppler velocity, which is reported by the GPS. This approach has a risk 

of characterizing velocity errors instead of position errors, however the reported velocity is the 

result of sensor fusion from the inertial sensors and Doppler velocity from the GPS and is 

therefore expected to be significantly more accurate than the position estimate. The results of this 

approach are discussed in the recommendations of Chapter 5.    

 

Line Detection Algorithm 

To evaluate the use of cameras to inspect road line reflectivity, an algorithm was written to 

detect the color of road lines using the camera. This algorithm started by extracting the row of 

pixels directly above the hood of the car in the camera image. This row, due to mounting of the 

camera, is always pointed on the roadway and the roadway alone when driving on-road. The 

algorithm then looks across this line of pixels for large deviations in light intensity between 

neighboring pixels. Large deviations are flagged as potential edges of the road lines. Once the 

sweep has been completed, the flags are searched for bands of the estimated length of a road line 

and the color of the original pixels are returned.  

 

Looking for road lines in the LIDAR data proceeds in a similar manner as the camera. However, 

the row of pixels is replaced by the laser ring that passes just above the hood of the vehicle. This 

laser ring is then trimmed to 60 degrees to the left and right of directly in front of the vehicle. 

Then, instead of looking for deviations in light intensity the algorithm looks for large deviations 

in the intensity of neighboring LIDAR returns. Results of this approach are discussed in 

Pavement Inspection: Case 1 of Chapter 5. 

 

Cut Grass Analysis 

The grass detection algorithm takes a sample of the road in front of the vehicle and uses the 

height deviation of the LIDAR returns to determine the appearance of a smooth surface. By 

taking a sliding window of data along a single LIDAR ring, the algorithm classifies the samples 

as either road or grass based on standard deviation within the window. The length of grass can 

also be estimated by the maximum difference in vertical height in the grassy areas.  

 

Figure 12 shows a sample image of a data collection location where the grass was recently cut, 

while Figure 13 shows the same location as viewed by the 64-beam LIDAR. 
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Figure 12: Camera view of grass detection environment 

 

Figure 13: Unprocessed LIDAR returns of grass environment 

In order to reduce computational power, a single ring of the unprocessed LIDAR data shown in 

Figure 13 is used for the line extraction algorithm. The resulting single ring of LIDAR data is 

shown in Figure 14. However, as seen in Figure 13 the entire set of LIDAR returns from a single 

laser ring are not on-road and looking at the roadside mowing area. Thus, the algorithm first 

extracts 50° of the laser ring to either side of directly in front of the vehicle.  
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Figure 14: Unprocessed single-laser LIDAR returns 

The detection algorithm then takes a 4 consecutive LIDAR returns and computes the standard 

deviation of the vertical height. If the standard deviation is measured to be below 3 times the a 

user specified threshold, the LIDAR returns are classified as asphalt. Similarly, if the standard 

deviation is between 3 and 8 times this threshold the LIDAR returns are classified as cut grass 

and classified as uncut grass when exceeding 8 times this threshold. The algorithm then moves to 

the next four samples and classifies these samples in the same manner. The resulting output and 

the sample windows can be seen in Figure 15. 

 

 

Figure 15: A sample of the LASER ring in the previous figure LIDAR points classified as road 

(blue) and grass (green) 

     

Communication System Risk Analysis 

There are three major organizations that define the standards for automotive electromagnetic 

compatibility. There are two international organizations called CISPR and ISO and a North 

American focused organization called SAE. It is common for SAE to develop standards for the 

North American market, which are then passed to CISPR and ISO for international 

consideration. When a SAE standard becomes an international standard under CISPR or ISO, the 

original SAE standard is deprecated.  
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Since most automotive manufacturers sell vehicles worldwide, they use CISPR and ISO 

standards to set their internal corporate standards. The major standards that are applicable are 

shown in the table below.  

Table 3: CISPR and ISO Standards applicable to Autonomous Service Vehicles 

ISO- 11451 

 

Road vehicles — Vehicle test methods for electrical disturbances from 

narrowband radiated electromagnetic energy 

ISO-11452 Road vehicles — Component test methods for electrical 

disturbances from narrowband radiated electromagnetic energy  

ISO-7637 Road vehicles — Electrical disturbances from conduction 

and coupling  

ISO-10605 Road vehicles — Test methods for electrical disturbances from 

electrostatic discharge 

CISPR 12 Vehicles, boats and internal combustion engines – Radio disturbance 

characteristics – Limits and methods of measurement for the 

protection of off-board receivers 

CISPR 25 Vehicles, boats and internal combustion engines – Radio 

disturbance characteristics – Limits and methods of measurement for 

the protection of on-board receivers 

ISO-11451 applies to emissions radiated from the vehicle and is similar to CISPR 12. ISO-11452 

applies to external radio signal impinging upon the vehicle and is similar to CISPR25. ISO 7637 

is a test standard relating to the possibility of interference being introduced through the vehicle 

wiring. ISO-10605 covers the concerns of static discharge from humans damaging the electrical 

components.  

The ISO and CISPR standards substantially overlap, differing predominantly in measurement 

limits and measurement techniques. To simplify the discussion, the following sections focus on 

the CISPR standards. 

CISPR 25 and CISPR 12 

The CISPR standards can be divided into two major standards. CISPR 12 focuses on the 

emissions produced by a vehicle and its sensors. CISPR 12 is geared to prevent the vehicle from 

interfering with the operation of electronic systems outside of the vehicle. Since this standard 

focuses on the vehicle’s impact on others this standard is often used in government regulations 

for vehicle emissions. Governments use CISPR 12 to mandate emission level limits and 

frequency ranges.  

CISPR 25 deals with the effects that external radio disturbances have on the vehicle’s 

electronics. In general, standards like CISPR 25 are not used in a regulatory manner, rather the 

vehicle manufacturers work with the component suppliers to determine which standards and 

which severity levels to apply. The idea is that if the vehicle/component does not perform as 
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required then the vehicle will be unreliable resulting in unhappy customers and reduced sales.  

Electromagnetic compatibility tests are difficult to define. Small differences in the test setup can 

produce significant variations in the results. In order to assure the measurements are repeatable 

and verifiable, tests performed in a laboratory under controlled conditions are preferred. But test 

facilities large enough to accommodate an entire vehicle are expensive and rare. The CISPR 12 

standard allows measurements to be performed either at an outdoor test site or in an absorber 

lined shielded enclosure. The current specifications do not provide a method to correlate the 

results of the laboratory test to outdoor test measurements. Having the possibility that a vehicle 

can pass one set of test conditions but not the other may indicate the tests are not accurately 

measuring the parameters that they are designed to measure.  

Standards and Safety 

CISPR 25 currently is not subject to governmental regulation. However, with the advent of 

autonomous vehicles, electromagnetic interference can have a direct impact on safety. 

Attempting to regulate autonomous vehicle electromagnetic compatibility safety is a difficult 

task. The ISO11452 and CISPR 25 standards document numerous tests with varying severity 

levels.  

The ISO1145 document describes a Functional Performance Status Classification (FPSC).  No 

specific values for the test signal severity level are defined in the standard. They are to be 

determined by combined knowledge of the vehicle manufacturer and component supplier. The 

FPSC begins by defining classes of operation from A to E.  

 Class A The device must operate within specifications throughout the entire interference 

event.   

 Class B The device must operate through the transient but it can violate some of its 

specifications during the interference event and then return to normal operation 

afterwards. 

 Class C One or more of the device functions do not operate during the interference event 

but normal operation returns afterwards.  

 Class D One or more of the device functions do not operate during the interference event 

but normal operation requires a reset to occur. 

 Class E One or more of the device functions do not operate during the interference event 

but normal operation does not return. 

The classes are assigned by an estimate of how safety critical the component is and how well the 

vehicle can handle failure of this component. For instance, if there are vision, radar, and LIDAR 

systems performing a similar function, the loss of any one of these systems may not have a 

significant effect on system safety and may be class C or D. On the other hand, a system that is 

solely responsible for vehicle throttle or steering would be a class A system.  

The vehicle manufacturers then define the test severity levels and the appropriate frequency 

bands. A chart of the test frequencies and severity for each class is then constructed. 
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Examples of what these charts might look like are shown below: 

Table 4: Example of Test Severity Levels for Incident Field 

Test Severity Level Incident Field V/m 

I 10 

II 25 

III 50 

IV 100 

Table 5: Example of Frequency Bands 

Test Levels Frequency Range, F 

F1 <100kHz 

F2 100kHz < F < 10MHz 

F3 10MHz < F< 500MHz 

F4 500MHz< F <2GHz 

Table 6: Example of Field of View Severity Levels Matched to Frequency Bands 

Test Class A Class B Class C Class D Class E 

F1 II II I   

F2 II II I   

F3 III II II I  

F4 II I    

 

While allowing the vehicle and component manufacturers set the standards that their products 

must meet may not seem like appropriate oversight, it is unlikely that any government 

organization has more knowledge of the products and their weaknesses than the manufacturers. 

Electromagnetic compatibility test severity levels and frequency bands should be determined by 

leveraging the expertise of the component and vehicle manufacturers. Safety of the vehicle after 

sale can be assured through existing mechanisms that document vehicle safety failures such as 

the Safercar program run by the National Highway Traffic Safety Administration.   
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Chapter 5: Recommendations 

The recommendations made by the research team focus on two autonomous service vehicle 

tasks: roadside mowing and pavement inspection. For each task, a set of risk cases were 

identified based on the completed analysis. These risk cases are shown below, along with 

evidence of the risk associated with the case and a recommendation for mitigating the risk 

associated with the individual case. The research team also considered modes of operation when 

making communication recommendations for each service task.  

 

Mowing Risk Cases 

Case 1: GPS accuracy in open areas 

Evidence: As found in the literature, a standalone GPS system has an expected accuracy of 1 

meter or more. Using an INS in conjunction with GPS, the precision and repeatability can be 

greatly increased, but the absolute accuracy can remain the same when moving at slow speeds. 

This investigation found that when operating in clear line of sight to the sky the GPS precision 

algorithm presented in Chapter 4 showed an average GPS error of 0.54cm, median error of 

0.13cm and a maximum reported error of 9.5cm.  

Recommendation: In an area without ground coverings, such as an open field, a GPS/INS 

system or GPS with correction services can give sufficient accuracy to ensure the system does 

not enter onto a roadway. To ensure proper coverage for mowing, it is recommended that the 

system plan for overlap in mowing swath of at least 10cm. Furthermore the path the mower takes 

should remain at least 10 cm from the road’s edge to prevent road incursion. In the event of GPS 

dropout or loss of corrections, the vehicle must come to an immediate stop or have a human 

operator take control of the platform to prevent road incursion.  

Case 2: Areas with heavy tree cover and tall buildings degrade even corrected GPS quality 

Evidence: Unlike open areas, tree cover and tall buildings can cause significant errors in the 

position estimate of a GPS/INS system. This was shown in the data collected on Old Dixie 

Highway in Ormond Beach, Florida where the tree canopy extends to cover much of the 

roadway, as shown in Figure 16, and when collecting data in close proximity to tall buildings in 

downtown Orlando, FL. While operating under tree cover the team found a relatively low mean 

error of 1.09 cm, and a median error of 1.1mm. However, the errors from the fused GPS/INS 

position estimate were observed as high as 4.8 m, with 0.2% of cases exceeding 0.5m of error 

and 0.06% of cases exceeding 1m of error. Operating in proximity to tall buildings showed errors 

as high as 2.92m, with 0.2% of cases exceeding 0.5m of error and 0.11% of cases exceeding 1m 

of error. This error is not just predicted by the algorithm used here, but can also be seen in the 

GPS/INS data, as illustrated in Figure 17. While rare, these instances of reduced accuracy were 

observed to last for up to a 2 second period. It should also be noted that the project vehicle had to 

operate on paved surfaces or in closer proximity to the roadway for safety reasons. Thus, an all-
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terrain mower may get close to trees or buildings and experience more significant errors than 

reported here.    

 

Figure 16: Tree Cover on Old Dixie Highway in Ormond Beach, FL. 

 

Figure 17: A snapshot of the GPS path during traversal on Old Dixie Highway in Ormond Beach, 

FL. 

Recommendation: For mowing operations using purely GPS in heavy tree cover, a large 

overlap in the swaths or multiple mowing passes would be needed to compensate for the short 

duration inaccuracy of the GPS. This could make the operation highly inefficient. However, road 

incursion is a bigger concern and could occur even with the short durations of GPS error 

observed in this study. Thus, it is recommended that for all mowing operations, but especially 
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under heavy tree cover, a sensor is used to detect the grass that needs to be mowed rather than 

relying solely on the GPS to follow a pre-planned route. This adds redundancy to ensure the 

platform is operating in the desired area. 

Case 3: Resolution of LIDAR measurement needed to detect grass quality 

Evidence: Figure 18 shows a sample result of the previously discussed algorithm for detecting 

cut grass using the LIDAR. This figure plots the ground surface, and colorizes the LIDAR 

returns based on whether the terrain is classified as asphalt (blue), cut grass (Green), or uncut 

grass (yellow). This approach was applied over the course of a five minute data collection, with a 

consistent ability to distinguish asphalt from grass, with cut grass from uncut grass still under 

evaluation. In this area, the roadway extents from roughly 𝑦 = 0𝑚 to 𝑦 = 1.5𝑚, the cut grass 

region then extents to 𝑦 = 4𝑚, and the rest of the grounds are uncut. While the algorithm used 

here is fairly basic in nature, and does sometimes confuse asphalt and cut grass, it clearly 

illustrates the ability of a LIDAR to detect areas where grass is yet to be cut. Knowing where 

grass needs to be cut can improve mowing quality and be used as a supplement for preventing 

road incursion.  

 

Figure 18: Sample result of Asphalt (blue), Cut Grass (green) and Uncut Grass (yellow) detection.  
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Recommendation: Based on findings from the cut grass identification algorithm, a single laser 

ring at a 0.46° resolution or finer and a 5Hz spin rate is able to distinguish cut grass from uncut 

grass and road surfaces when the LIDAR is mounted 2m above ground. This corresponds to a 

minimum resolution of approximately 5cm between LIDAR returns on the ground. 

Case 4: Rough ground will cause high vibrations and potentially cause data dropouts 

Evidence: While collecting data on gravel and dirt roads, the vehicle experienced abnormally 

high vibrations. This is shown in Figure 19, where vertical acceleration is shown to be 

consistently below 2 𝑚 𝑠2⁄  or roadways, and frequently above this threshold on dirt roads. These 

vibrations were found to create a loss of data during playback (see Figure 20). While the team 

used a computer with a solid state drive during most of the data collections, this particular run 

was conducted using a back-up computer that used a traditional hard-disk drive to see if the 

platform observed this data loss. Data loss could potentially occur on autonomous systems due to 

communication dropouts as well, which unlike data storage, can affect real-time processing.  

 

Figure 19: Samples of measured vertical acceleration of the vehicle on a dirt road (left) and on a 

paved roadway (right). 
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Figure 20: Data loss shown in the LIDAR playback 

 

Recommendations: There are two simple solutions to solving the vibration problem. The first 

solution would be to utilize a solid-state disk for recording data, as it is much more resistant to 

vibration than a traditional hard-disk drive. The second solution would be to add a software 

buffer on the data, so that incoming data can be stored in a queue in case the hard drive loses 

performance over a bump. However, the software solution begins to break down in more 

consistent vibration environments, and is not as resilient as a solid-state hardware replacement 

solution. To avoid problems associated with communication dropouts, autonomous service 

vehicles should use high sampling rates (5 Hz or greater) and have their connectors routinely 

inspected for failures. 

Case 5: Effectiveness of LIDAR at recognizing construction objects 

Evidence: The images displayed in Figure 21 and Figure 22 show that the LIDAR has no trouble 

detecting construction barrels due to the reflective striping. The high intensity returns and density 

of returns seen here allows for classification of these objects, which indicate a construction zone. 

Missing 

Data 
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The autonomous vehicle can then adjust course or speed based on the location of the barricades. 

However, while smaller LIDAR sensors can still detect the barricades as an obstacle, a multi-

beam LIDAR would be required to consistently and accurately classify the barrels using the 

reflective striping and shape of the object. Similarly if a mower is operating while these barrels 

are in the grass, treating them as objects enables the platform to maneuver around them off-road.  

 

Figure 21: Camera view of construction zone, including concrete barriers and construction barrels. 

 

Figure 22: LIDAR returns in a construction zone. High reflectivity objects make more apparent 

markers of construction areas. 
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Recommendation: To consistently recognize reflective construction barrels and cones, it is 

necessary to use a LIDAR with at least 5 laser beams intersecting the object at the desired 

recognition distance. If recognition is not needed and only avoidance, a single-beam LIDAR can 

be used to detect the presence of construction barrels and cones.  

Case 6: Operating near cliffs or areas with large drop-offs 

Evidence: Cliffs and drop-offs appear as empty areas in data recordings.   

 

Figure 23: Camera Image when crossing over a bridge. 

 

Figure 24: LIDAR data recorded when crossing over a bridge. 

Recommendation: As with manned operations, mowing near a cliff or drop-off should be 

considered an unsafe condition for an autonomous mower. A geofence can be used to keep the 
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mower sufficiently far from these areas (but this is subject to GPS accuracy as in Roadside 

Mowing Case 1 and Case 2). Additionally, areas with few LIDAR returns can be flagged as not 

traversable and avoided by the vehicle. It is recommended that grass close to such drop-offs be 

cut in the same manner as they are currently cut with manned operations.   

Case 7: Detection of obstructions and obstacles 

Evidence: Figure 25 shows a large vehicle off of the side of the road and how it is seen by both 

the LIDAR and radar sensors. Looking closely at the LIDAR image shows that the man fixing 

the vehicle is still visible. However, the radar is only able to see the outline of the large truck as 

an obstacle. This is due to the human body being a poor reflector of radar frequencies. Other 

materials are similarly difficult to detect by the radar, as seen in Figure 26 where the plastic tarp 

barricade is detected by the LIDAR and not the radar.  

Recommendation: The LIDAR is less sensitive to material type than a radar, and is more 

accurate at gauging distance than camera solutions. However, radar provides velocity estimates 

and is effective at detecting large vehicles. Similarly a camera is useful at providing information 

such as color and shape that can be useful for identification of perceived objects. Thus, it is 

recommended to use LIDAR for general obstacle avoidance, and to supplement this information 

with a radar when velocity information is needed and a camera when object identification is 

required for platform decision making.  
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Figure 25: Vehicle obstruction as viewed by the camera and LIDAR. The man working on the truck 

is highlighted with a red circle in the camera image and LIDAR plot. The area where the man is 

working is highlighted with a red circle on the radar plot. The two green dots above the red circle 

in the radar plot are from the truck and trailer.  
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Figure 26: Plastic mowing obstruction as viewed by the camera, LIDAR and radar. 
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Case 8: Mowing at night and in low-light scenarios 

Evidence: At night, the use of cameras to determine areas that have been mowed is subject to the 

quality and strength of local area lights or onboard lighting. Most areas will not have local 

lighting and bright lights on the mower itself could create a safety hazard for nearby drivers. 

However, as shown in Figure 27, LIDAR returns are nearly identical in both daytime and 

nighttime conditions. Thus a camera will have difficulty perceiving areas as being cut grass or 

uncut grass without significant onboard lighting, while this is not when using LIDAR to detect 

the terrain.  

 

 

Figure 27: LIDAR data collected during daytime (top) and at night (bottom) on the roadway.  

Recommendation: As LIDAR is not affected by ambient lighting conditions, it is recommended 

to use LIDAR to detect areas of cut and uncut grass. Furthermore, this means that mowing 

operations can occur at night. However, mowing operations at night have potential safety risks to 

unaware manned vehicles operating on adjacent roadways. Thus the mower needs to be clearly 

visible while not impeding the visibility of these drivers. Further studies should look into 

standard operating procedures for nighttime mowing since these operations are not currently 

conducted at night. 
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Mowing Operation Scenarios 

Scenario: Line of Sight Operation 

Scenario Description: In this scenario the service vehicle is accompanied by a remote operator 

who maintains line of sight proximity with the vehicle.  The operator has the ability to directly 

control the vehicle through a remote command and control link. The operator can also command 

the vehicle to begin, pause, stop, and modify its autonomous behavior. 

 

Communication Recommendation:  In this operating scenario no long distance radio data links 

are required. Monitoring, command, and control data can be sent over short, and mid-range data 

links in the ISM bands. The command and control links can be low data rate (< 115200 baud) 

robust links (spread spectrum, frequency hopping) to mitigate any potential interference and 

increase range. The control link must be properly secured to prevent unwanted intrusion or loss 

of control. Monitoring links should be higher data rate links capable of streaming video and/or 

sensor data (1MB/s). This can be achieved with one radio link or using multiple radio links. 

 

Scenario: Command Center Operation 

Scenario Description: In this scenario the service vehicle is left on site with no operator within 

line of sight. Monitoring, command, and control are performed at a remote "Command Center". 

The command center operator has the ability to directly control the vehicle through tele-

operation. Tele-operation would require a minimum of 360 degree field of view camera video 

transmitted to the operator. The operator can also command the vehicle to begin, pause, stop, and 

modify its autonomous behavior. 

 

Communication Recommendation: This operating scenario requires one or more long distance 

data links. The command and control links can be low data rate links (<115200 baud) to increase 

range. The control link must be properly secured to prevent unwanted intrusion or loss of 

control. The link used for monitoring should be high data rate (1-2MB/s) and for this low speed 

operation, have an inherent latency of 100msecs or less. The control link should also have a 

heartbeat signal that causes the vehicle to enter a safe mode if the link drops or becomes 

intermittent. 

 

Command Center Monitoring 

Scenario Description: In this scenario the service vehicle is left on site with no operator within 

line of sight. Monitoring, command, and control are performed at a remote "Command Center". 

In this scenario there operator does not have the ability to directly drive the vehicle remotely. 

The command center operator does have the ability to monitor the vehicle systems. The operator 

can also command the vehicle to begin, pause, stop, and modify its autonomous behavior.  

 

Communication Recommendation: This operating scenario requires one or more long distance 

data links. The command and control links are again only required to be low data rate links 

(<115200 baud), with a latency of 100 msecs. The control link must be properly secured to 
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prevent unwanted intrusion or loss of control. The monitoring links can either be a high data rate 

link that allows viewing of live video and sensor data (1-2 MB/s) for diagnostic purposes (e.g. 

verifying reported task completion and obstructions) or it can be a low data rate link (<115200 

baud) that enables the operator to view only vital system states (fuel levels, faults, progress). The 

data link could tolerate latency delays of up to 500msecs as the vehicle should be able to operate 

safely without any low-level platform control. The control link should also have a heartbeat 

signal that causes the vehicle to enter a safe mode if the link drops or becomes intermittent. The 

data links may also be short range links to an internet access point and then be routed anywhere 

in the world.   

 

Pavement Inspection Risk Cases 

Case 1: Detection of road lines and characterizing line reflectivity 

Evidence: Although lines can be reliably detected due to a consistent contrast between the 

pavement and roadways, the observed color from camera imagery varies significantly with 

shadows, weather conditions, and time of day. This is shown in Figure 28, where the color of the 

detect line is clearly changing as more camera frames are acquired. It should be noted that there 

were gaps in the road lines in frames 80-85 and frames 115-120. Tests also showed that concrete 

curbs can give similar camera intensities to road lines, which could confuse line identification. 

 

 

Figure 28: Line Detection results for Tomoka Farms Rd, in Port Orange, FL. The lines here show 

the detected color of the road line as viewed by the onboard camera and the horizontal position 

within the camera frame. 
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LIDAR samples were examined to determine if intensity of LIDAR returns could be used to 

determine line reflectivity. A summary of this investigation is given in Table 7. Note that, 

LIDAR intensities are reported as a value from 0-255, with 255 being the maximum reflectivity. 

Table 7: Summary of LIDAR intensity analysis for line reflectivity 

Test Location Intensity Values Sample Size 

Mean Median Std Dev 

I-95 (Lines) 136.38 32.72 121.50 221 

I-95 (Roadway) 59.38 12.83 55.00 3976.00 

Williamson (Lines) 175.74 35.40 188 182 

Williamson (Roadway) 43.51 8.73 43 3195 

Willow run (Lines) 150.00 139.00 42.03 6 

Willow run (Roadway) 69.36 65.00 18.61 1916 

 

This inspection showed that the mean LIDAR intensity of road lines in these environments are 

consistently in the range of 135-180, while the roadway gives a mean intensity in the range of 

40-70. Similarly, the median intensity of the road lines is consistently higher than that of the 

pavement. This means using the LIDAR should be effective at distinguishing the lines from the 

paved surface. The LIDAR may also be able to distinguish line quality, as it is seen here that the 

road lines that have were striped only a few days before data collect (the Willow run Road trial) 

yielded consistently higher LIDAR intensities.  

 

It should be noted, that the high standard deviation in road lines for I-95 and Williamson roads 

are due to the use of retro reflectors on these roadways. When excluding these samples, which 

are a small number of the total line samples, the LIDAR intensities are fairly consistent (as 

evidenced by the median intensity), and have less deviation than the lines seen in camera 

imagery. This is due to the fact that the LIDAR intensity is referenced to a known lighting source 

while the camera uses the uncontrolled lighting of the sun and sporadic man-made lighting.   

 

Recommendation: Cameras can be used to detect the existence and type of road markings, but 

are unreliable in determining road marking quality. It is recommended that a single or multi-

beam LIDAR be used to detect the quality of road lines for potential striping. It should be noted 

however, that a LIDAR will measure reflectivity in a different band (typically 905nm) than 

visible light. Thus, LIDAR inspection is only practical if the paint is known to have a similar 

reflectivity in both bands.  

 

Case 2:  Detection of potholes 

Evidence: The image below shows a stretch of roadway with several potholes in the dirt road. 

The LIDAR returns clearly show these deviations. However, this is significantly harder to see in 

the camera imagery. 
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Figure 29: Sample pothole data on local roadways in Volusia County 

Recommendation: Based on collected data, detecting potholes of a specific depth requires a 

LIDAR with distance accuracy less than half the depth of the pothole to be detected. Angular 

resolutions of 0.46 degrees and finer on the LIDAR sweep were found to effectively find potholes 

with a roof-mounted LIDAR. Lower angular resolution systems can potentially be used if the 

LIDAR is mounted closer to the ground. Also, the speed at which the vehicle moves can result in 

significant gaps in ground coverage for single beam LIDAR systems. Thus, a multi-beam LIDAR 

system is recommended and the speed of the vehicle must be slowed based on the angle between 

laser rings and the scan rate to ensure potholes are seen. A small vertical angular resolution is 

highly recommended to enable data collection at higher vehicle speeds. It is further recommended 

that mapping techniques be pursued to intelligently combine date from multiple laser scans into a 

more accurate pothole representation. 
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Case 3: The effect of wet roads on pavement inspection and autonomous operation 

Evidence: Testing indicated that road lines are difficult to detect reliably in wet weather 

conditions. Camera imagery degrades due to lens obstruction, reflections, and specular 

reflections. It was also found that the total number of LIDAR returns is reduced by 40-60%, with 

a majority of the lost returns coming from the pavement surface. Furthermore, the difference 

between LIDAR intensity on road lines and pavement noted in Pavement Inspection: Case 1, is 

virtually non-existent. This can be seen in Figure 31 where water on the roads has reduced all 

road intensities to a low intensity level (indicated by blue coloration), and few returns are even 

observed beyond a car length in front of the vehicle. These issues were less severe when raised 

pavement markers are used on the roadway, as the markers were highly visible to the LIDAR 

and camera. However, infrastructure changes were outside the scope of this investigation. 

 

Figure 30: Camera and LIDAR view of road lines in rainy conditions. There is no standing water 

on the roadway. 
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Figure 31: LIDAR view of a road covered in a thin layer of water (less than 1 cm) due to heavy rain 

Recommendation: On a moderately wet roadway, a camera can still detect the road lines as long 

as there is no precipitation, although splash from other vehicles can obscure the camera feed. 

Alternatively, the camera can be placed inside the vehicle if it is a passenger vehicle with wipers. 

In light precipitation, the LIDAR can still be used to see obstacles and potholes (without standing 

water), but it is not able to detect lines reliably. In moderate to heavy rain, it is recommended to 

avoid service operations altogether. For inspection of lines and roadways, it is recommended to 

only operate in dry conditions.  

 

Case 4: Operating under bridges 

Evidence: Figure 32 shows radar data collected when traversing under a walkway. This figure 

shows that the radar identifies multiple objects from 15-20m in front of the vehicle, which are 

actually returns from the pedestrian walkway. The false objects would make the vehicle think 

there is an obstruction in the road. Overpasses, bridges, and metal poles with traffic lights over 

the roadway can also give false positive radar returns of this nature. Figure 33 shows that the 

LIDAR has sufficient vertical resolution to differentiate between points above the roadway and 

see there is not an obstruction ahead.   
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Figure 32: Pedestrian walkway as viewed by the camera and RADAR 
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Figure 33: LIDAR view of the pedestrian walkway scene. The walkway is not visible since the 

LIDAR beams point up at a maximum of 2 degrees with respect to the horizontal plane. 

Recommendation: While a small vertical field of view could mitigate this issue, this strategy 

will likely be insufficient when traversing slopes, which can be particularly severe for off-road 

vehicles. Thus, it is recommended that service vehicles use a multi-beam LIDAR and inertial 

system in coordination with a radar sensor to estimate the ground plane in the operating area and 

the current attitude of the vehicle. The vehicle can then determine if the objects detected by the 

radar will cause a collision in three dimensional space instead of using two dimensional collision 

detection strategies. 

 

Pavement Inspection Operation Scenarios 

Scenario: Manned Data Recording 

Scenario Description:  In this scenario the service vehicle is driven exclusively by an operator. 

The sensor suite used for inspection can either be automated or controlled by the operator. The 

operator has the ability to start, pause, and stop data recording and processing by the sensor suite. 

 

Communication Recommendation: This scenario requires no communications with the 

vehicle. The operator(s) may have a radio handset. 

 

Scenario: Automated Data Recording 

Scenario Description: In this scenario the service vehicle is an autonomous vehicle that has the 

necessary sensor suite for inspection mounted to the vehicle.  Data collection occurs onboard the 

vehicle and processing can optionally be conducted onboard. The platform is manned by an 
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operator who has the ability to take control of the vehicle, and has minimal interaction with the 

sensor platform. The sensor platform will notify the operator of routes it is traveling. 

 

Communication Recommendation:  This scenario requires no communications with the 

vehicle. The operator may have a radio handset. 

 

Scenario: Control Center Monitoring 

Scenario Description: In this scenario the service vehicle is an autonomous vehicle that has the 

necessary sensor suite for inspection mounted to the vehicle. Data collection occurs onboard the 

vehicle and processing can optionally be conducted onboard. In this case, the platform is 

unmanned. Remote monitoring is performed at a "Command Center". The command center 

operator has the ability to monitor vehicle health (fuel, faults, progress, etc.) and possibly live 

sensor data. The command center operator can instruct the vehicle to stop operations safely, stop 

operations immediately, return to a home location, or modify its route. 

 

Communication Recommendation: This scenario can be achieved using a low data rate 

(<115200 baud) communication link if only health monitoring and commands are required. If 

live sensor data is required, a higher data rate link (1-2MB/s) is required. The communication 

link must be properly secured to prevent unwanted intrusion or loss of control. There should also 

be a heartbeat on the data link that instructs the service vehicle to safely stop (such as on the 

shoulder), or return to the command center for diagnostics if communications are lost or 

intermittent. 
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Chapter 6: Conclusions 

The research team presents recommendations for sensor selection and use to ensure safe and 

efficient operation of autonomous service vehicles conducting roadside mowing and pavement 

inspection. Such recommendations include avoiding the use of radar when passing under bridges, 

avoiding pavement inspections in the rain and the use of sensor fusion to mitigate GPS error. 

Each of the recommendations are supported with empirical evidence recorded using a sensor 

payload representative of autonomous service vehicles. Automated data inspection also indicates 

that LIDAR sensors are effective at inspecting line reflectivity and determining areas with cut 

and uncut grass. This study also recommends bandwidth specifications for radio links based on 

modes of operation for pavement inspection and roadside mowing operations. 

 

The presented list of recommendations is meant as a starting point for generating a sensing 

payload and autonomy algorithms to conduct these operations. The research team believes pilot 

studies are needed to determine additional requirements for operation and to generate standard 

operating procedures for autonomous service vehicles. It may also be possible to make minor 

changes to the transportation infrastructure in order to increase sensing reliability. Such changes 

could include the use of construction markers that are highly reflective to near-IR LIDAR 

systems and the increased use of raised pavement markers.    
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