FREEWAY WEAVING WORKSHEET			
General Information		Site Information	
Analyst Agency/Company Date Performed Analysis Time Period AECOM AM		Freeway/Dir of Travel Weaving Segment Location Analysis Year	I-95 NB Seg 1-Bet Copans \& Sample 2040 Build 2A
Project Description SW 10th Street SIMR			
Inputs			
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS	$\begin{array}{r} \text { One-Sided } \\ 4 \\ 2380 \mathrm{ft} \\ 70 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type	Freeway 15 2400 Leve

Conversions to pc/h Under Base Conditions

	V (veh/h)	PHF	Truck (\%)	RV (\%)	$\mathrm{E}_{\text {T }}$	E_{R}	f_{HV}	f_{p}	v (pc/h)
$V_{\text {FF }}$	4420	0.95	3	0	1.5	1.2	0.985	1.00	4722
$\mathrm{V}_{\text {RF }}$	420	0.92	2	0	1.5	1.2	0.990	1.00	461
$\mathrm{V}_{\text {FR }}$	980	0.92	2	0	1.5	1.2	0.990	1.00	1076
$V_{\text {RR }}$	0	0.95	0	0	1.5	1.2	1.000	1.00	0
V_{NW}	4722							V =	6259
$\mathrm{V}_{\text {w }}$	1537								
VR	0.246								

Configuration Characteristics

Minimum maneuver lanes, $\mathrm{N}_{\text {WL }}$	2 lc	Minimum weaving lane changes, $\mathrm{LC}_{\text {MI }}$	$1537 \mathrm{lc} / \mathrm{h}$
Interchange density, ID	$0.7 \mathrm{int} / \mathrm{mi}$	Weaving lane changes, LC_{w}	$1972 \mathrm{lc} / \mathrm{h}$
Minimum RF lane changes, $\mathrm{LC}_{\text {RF }}$	$1 \mathrm{lc} / \mathrm{pc}$	Non-weaving lane changes, $\mathrm{LC}_{\mathrm{Nw}}$	$1492 \mathrm{lc} / \mathrm{h}$
Minimum FR lane changes, $\mathrm{LC}_{\text {FR }}$	$1 \mathrm{lc} / \mathrm{pc}$	Total lane changes, $\mathrm{LC}_{\text {ALL }}$	$3464 \mathrm{lc/h}$
Minimum RR lane changes, $\mathrm{LC}_{\text {RR }}$	Ic/pc	Non-weaving vehicle index, I_{NW}	787

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment flow rate, v	$6175 \mathrm{veh} / \mathrm{h}$	Weaving intensity factor, W	0.304
Weaving segment capacity, C_{w}	8666 veh/h	Weaving segment speed, S	52.7 mph
Weaving segment v / c ratio	0.712	Average weaving speed, S_{w}	57.2 mph
Weaving segment density, D	29.7 pc/mi/l	Average non-weaving speed, S_{NW}	51.4 mph
Level of Service, LOS	D	Maximum weaving length, $\mathrm{L}_{\mathrm{MAX}}$	5007 ft

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
b. For volumes that exceed the weaving segment capacity, the level of service is "F".

Job: SW 10th Street SIMR
Analyst: AECOM

Location:
Seg 3: I-95 Northbound On-Ramp from WB Sample Road
AM Peak Hour
2040 Build 2A
Analysis Year:

Driver Population adj. $\mathbf{f}_{\mathrm{P}}=1.000$

$\begin{aligned} & V_{\mathrm{fr}}= \\ & V_{\mathrm{r}}= \end{aligned}$	$\begin{aligned} & =v_{\mathrm{t}} /(\mathrm{PHF})\left(\mathrm{f}_{\mathrm{HV}}\right)\left(\mathrm{f}_{\mathrm{P}}\right)= \\ & =\mathrm{v}_{\mathrm{l}} /(\mathrm{PHF})\left(\mathrm{f}_{\mathrm{HV}}\right)\left(\mathrm{f}_{\mathrm{P}}\right)= \end{aligned}$	6,742	pc/h
		1,563	pc/h
$\mathrm{V}_{\mathrm{f}}=$	$=v_{f} f($ PHF $)\left(\mathrm{f}_{\mathrm{Hv}}\right)\left(\mathrm{f}_{\mathrm{P}}\right)=$	5,171	pc/h

No. lanes upstream of ramp $\mathbf{N}=$
3

No. Ln	Capacity Check (see Exhibits 25-3 and 25-7):	Maximum	Actual	V/c	LOS F?
4	Fwy downstream of ramp (assume 70 mph free-flow speed) :	9,600	6,742	0.70	No
3	Fwy upstream of ramp (assume 70 mph free-flow speed) =	7,200	5,171	0.72	No
1	Capacity on On-Ramp (assume 45 mph free-flow speed) =	2,100	1,563	0.74	No

RAMPS AND RAMP JUNCTIONS WORKSHEET										
General Information				Site Information						
				Freeway/Dir of Travel Junction		95 NB				
Agency or Company	AECOM					Seg 5-Off to Exp from GPL				
Date Performed				Junction Jurisdiction						
Analysis Time Period AM				JurisdictionAnalysis Year		2040 Build 2A				
Project Description SW 10th Street SIMR										
Inputs										
Upstream Adj Ramp		reeway Number of Lanes, N		4				Downstream Adj Ramp		
		Ramp Number of Lanes, N		1						
∇ Yes \quad On		Acceleration Lane Length, L_{A}						$\square \mathrm{Yes} \square$ On		
\square No $\quad \square$	Off	Deceleration Lane Length L_{D}		200						
		Freeway Volume, V_{F}						\square No \square Off		
$\mathrm{L}_{\text {up }}=\quad 29$	50	Ramp Volume, V_{R}		310				$\mathrm{L}_{\text {down }}=\mathrm{ft}$		
$\mathrm{V}_{\mathrm{u}}=860 \mathrm{veh} / \mathrm{h}$		reeway Free-Flow Speed, S_{F}		70.0						
		45.0			$\mathrm{V}_{\mathrm{D}}=\quad \mathrm{veh} / \mathrm{h}$					
Conversion to pc/h Under Base Conditions										
(pc/h)	V			PHF	Terrain	\%Truc	\%Rv	f_{HV}	f_{p}	$\mathrm{xf}_{\mathrm{HVV}} \times \mathrm{f}_{\mathrm{p}}$
(pch)	(Veh/hr)									
Freeway	7170	0.95	Level	3	0	0.985	1.00	7661		
Ramp	310	0.92	Level	2	0	0.990	1.00	340		
UpStream	860	0.92	Level	2	0	0.990	1.00	944		
DownStream										
Merge Areas					Diverge Areas					
Estimation of \boldsymbol{v}_{12}					Estimation of \mathbf{v}_{12}					
$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{F}}\left(\mathrm{P}_{\mathrm{FM}}\right)$					$V_{12}=V_{R}+\left(V_{F}-V_{R}\right) P_{F D}$					
$\mathrm{LEQ}_{\text {Eq }}=$	(Equation 13-6 or 13-7)				$\begin{aligned} & L_{E Q}= \\ & \mathrm{P}_{\mathrm{ED}}= \end{aligned}$	(Equation 13-12 or 13-13)				
$\mathrm{P}_{\mathrm{FM}}=$	using Equation (Exhibit 13-6)					0.436 using Equation (Exhibit 13-7)				
$\mathrm{V}_{12}=$	pc/h				$\left\lvert\, \begin{aligned} & \mathrm{P}_{\mathrm{FD}}= \\ & \mathrm{V}_{12}= \end{aligned}\right.$	pc/h				
V_{3} or $\mathrm{V}_{\text {av34 }}$	pc / h (Equation 13-14 or 13-17)				V_{3} or $\mathrm{V}_{\text {ar34 }}$			uation 13-14 or 13-17)		
Is V_{3} or $\mathrm{V}_{\text {av3 }}>2,700$	pc / h ? \square	¢ \square No			Is V_{3} or $\mathrm{V}_{\text {av34 }}>2,700 \mathrm{pc} / \mathrm{h}$? $\square \mathrm{Yes} \square \mathrm{No}$					
Is V_{3} or $\mathrm{V}_{\text {av34 }}>1.5 *$	$2 \square \mathrm{Yes} \square$ No				Is V_{3} or $\mathrm{V}_{\text {av3 }}>1.5 * \mathrm{~V}_{12} / 2$		Yes			
$\text { If } Y e s, V_{12 a}=$	pc/h (Equation 13-16, 13-18, or 13-19)				$\mid f \mathrm{Yes}, \mathrm{~V}_{12 \mathrm{a}}=$			$13-16,13-18$, or 13-		

Capacity Checks

Flow Entering Merge Influence Area
Flow Entering Diverge Influence Area

BASIC FREEWAY SEGMENTS WORKSHEET	
General Information	Site Information
Analyst Agency or Company AECOM Date Performed Analysis Time Period AM	Highway/Direction of Travel I-95 NB From/To Surisdiction 6-South of Off to 10th Analysis Year 2040 Build 2A
Project Description SW 10th Street SIMR	
\square Oper.(LOS)	es.(N) $\quad \square$ Planning Data
Flow Inputs	
Volume, V 6860 $\mathrm{veh} / \mathrm{h}$ AADT $\mathrm{veh} / \mathrm{day}$ Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D $\mathrm{veh} / \mathrm{h}$ DDHV = AADT x K x D	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 3 \%RVs, P_{R} 0 General Terrain: Level Grade \% Length mi Up/Down \%
Calculate Flow Adjustments	
f_{p} 1.00 E_{T} 1.5	$\begin{array}{ll} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] & 0.985 \end{array}$
Speed Inputs	Calc Speed Adj and FFS
Lane Width ft Rt-Side Lat. Clearance ft Number of Lanes, N 4 Total Ramp Density, TRD $\mathrm{ramps} / \mathrm{mi}$ FFS (measured) 70.0 mph Base free-flow Speed, BFFS mph	$\mathrm{f}_{\text {Lw }}$ mph $\mathrm{f}_{\text {LC }}$ mph TRD Adjustment mph FFS 70.0 mph
LOS and Performance Measures	Design (N)
$\begin{array}{lll} \hline \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or } \mathrm{DDHV}) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}\right) 1832 & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & 65.4 & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 28.0 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \mathrm{LOS} & \mathrm{D} & \end{array}$	Design LOS $\left\lvert\, \begin{array}{ll} v_{p}=(V \text { or } D D H V) /\left(P H F \times N \times f_{H V} \times f_{p}\right) & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ S & \mathrm{mph} \\ D=v_{\mathrm{p}} / \mathrm{S} & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \end{array}\right.$ Required Number of Lanes, N
Glossary	Factor Location
N - Number of lanes S - Speed $\mathrm{V}-$ - Hourly volume D - Density $\mathrm{v}_{\mathrm{p}}-$ Flow rate FFS - Free-flow speed LOS - Level of service BFFS - Base free-flow speed DDHV - Directional design hour volume	E_{R} - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, 11-3

Seg 7: 2040AM_Build 2A_NB

Job: SW 10th Street SIMR
Analyst: AECOM

Location:
Analysis Period:
Analysis Year:

Seg 7: I-95 NB Off-Ramp to SW 10th St EB \& WB
AM Peak Hour
2040 Build 2A

PHF =	0.95
$\mathrm{V}_{\mathrm{fr}}=$	6,860
$\mathrm{v}_{\mathrm{r}}=$	1,240
$v_{f}=$	5,620

Upstream Freeway $\operatorname{Tr} \%=\quad 3 \%$
Ramp Tr \% = 2%
Downstream Freeway $\operatorname{Tr} \%=\quad 3 \%$
$\begin{array}{rll}\text { Freeway } \mathrm{f}_{\mathrm{HV}}= & 1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)= & \underline{\mathbf{0 . 9 8 5}} \\ \text { Ramp } \mathrm{f}_{\mathrm{HV}}= & 1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)= & \underline{\mathbf{0 . 9 9 0 1}}\end{array}$
flat terrain $E_{T}=\quad 1.5$
RV \% = $\quad 0$
Driver Population adj. $\mathbf{f}_{\mathrm{P}}=1.000$

$\mathbf{V}_{\mathrm{fr}}=$	$=\mathrm{V}_{\mathrm{fr}} /(\mathrm{PHF})\left(\mathrm{f}_{\mathrm{HV}}\right)\left(\mathrm{f}_{\mathrm{P}}\right)=$			
$\mathbf{V}_{\mathrm{r}}=$	$=\mathrm{v}_{\mathrm{r}} /(\mathrm{PHF})\left(\mathrm{f}_{\mathrm{HV}}\right)\left(\mathrm{f}_{\mathrm{P}}\right)=$			
$\mathbf{V}_{\mathrm{f}}=$	$=\mathrm{V}_{\mathrm{f}} /(\mathrm{PHF})\left(\mathrm{f}_{\mathrm{HV}}\right)\left(\mathrm{f}_{\mathrm{P}}\right)=$	\quad	7,329	pc / h
:---	:---			
1,318	pc / h			
6,005	pc / h			

No. lanes upstream of ramp $\mathbf{N}=$

Average Freeway Density Upstream of Diverge (see Equation 13-26):

$D=0.0175\left(\mathrm{~V}_{\mathrm{fr}} / \mathrm{N}\right)=32.1 \mathrm{pc} / \mathrm{ln}$

LOS in the Diverge Area (from Density and Exhibit 13-2) =

 DNo. Ln Capacity Check (see Exhibits 13-2, 13-8 and 13.10) Maximum
4 Fwy upstream of ramp (assume 70 mph free-flow speed) $=$ 9,600

Actual LOS F?

3 Fwy downstream of ramp (assume 70 mph free-flow speed) $=\quad 7,200$
7,329 No

2 Capacity on Off-Ramp (assume 45 mph free-flow speed) =
4,200
6,005 No
1,318 No

BASIC FREEWAY SEGMENTS WORKSHEET	
General Information	Site Information
Analyst Agency or Company AECOM Date Performed Analysis Time Period $A M$	Highway/Direction of Travel I-95 NB From/To Seg 8-Bet Off \& Off Ramps Jurisdiction 2040 Build 2A Analysis Year
Project Description SW 10th Street SIMR	
\square Oper.(LOS)	es.(N) $\quad \square$ Planning Data
Flow Inputs	
Volume, V 5620 $\mathrm{veh} / \mathrm{h}$ AADT veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 3
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	\%RVs, P_{R} 0 General Terrain: Level GradeLength \quadUp/Down \%
Calculate Flow Adjustments	
f_{p} 1.00 E_{T} 1.5	E_{R} 1.2 $f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right]$ 0.985
Speed Inputs	Calc Speed Adj and FFS
Lane Width ft Rt-Side Lat. Clearance ft Number of Lanes, N 3 Total Ramp Density, TRD $\mathrm{ramps} / \mathrm{mi}$ FFS (measured) 70.0 mph Base free-flow Speed, BFFS mph	$\mathrm{f}_{\text {Lw }}$ mph f_{LC} mph TRD Adjustment mph FFS 70.0 mph
LOS and Performance Measures	Design (N)
Operational (LOS)	Design (N) Design LOS Required Number of Lanes, N
Glossary	Factor Location
N - Number of lanes S - Speed $\mathrm{V}-$ Hourly volume D - Density $\mathrm{v}_{\mathrm{p}}-$ Flow rate FFS - Free-flow speed LOS - Level of service BFFS - Base free-flow speed DDHV - Directional design hour volume	E_{R} - Exhibits 11-10, 11-12 $f_{L W}-$ Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, 11-3

RAMPS AND RAMP JUNCTIONS WORKSHEET					
General Information		Site Information			
Analyst		Freeway/Dir of Travel	I-95 NB		
Agency or Company Date Performed	AECOM	Junction	Seg 9-Off to Hillsboro EB\&WB		
		Jurisdiction			
Analysis Time Period	AM	Analysis Year	2040 Build 2A		
Project Description SW 10th Street SIMR					
Inputs					
Upstream Adj Ramp	Freeway Number of Lanes, N	3		Downstream Adj Ramp	
	Ramp Number of Lanes, N	1			
\square Yes \square On				\checkmark Yes	\checkmark On
\square No \square Off	Deceleration Lane Length $L_{\text {D }}$	200		\square No	\square Off
	Freeway Volume, V_{F}	5620			
$L_{\text {up }}=\quad \mathrm{ft}$	Ramp Volume, V_{R}	1370		$\mathrm{L}_{\text {down }}=$	2100 ft
$\mathrm{V}_{\mathrm{u}}=\quad \mathrm{veh} / \mathrm{h}$	Freeway Free-Flow Speed, $\mathrm{S}_{\text {FF }}$	70.0		$\mathrm{V}_{\mathrm{D}}=$	1640 veh/h
	Ramp Free-Flow Speed, $\mathrm{S}_{\text {FR }}$	45.0			

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} V \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$v=$ V/PHF $\times f_{\text {HV }} \times f_{p}$	
Freeway	5620	0.95	Level	3	0	0.985	1.00	6005	
Ramp	1370	0.92	Level	2	0	0.990	1.00	1504	
UpStream									
DownStream	1640	0.92	Level	2	0	0.990	1.00	1800	
Merge Areas					Diverge Areas				
Estimation of v_{12}					Estimation of \boldsymbol{v}_{12}				
$\overline{V_{12}}=V_{F}\left(P_{F M}\right)$ (Equation 13-6 or 13-7)					$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{R}}+\left(\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}\right) \mathrm{P}_{\mathrm{FD}}$				
					$L_{\text {EQ }}=\quad$ (Equation 13-12 or 13-13)				
$\mathrm{P}_{\mathrm{FM}}=$	using Equation (Exhibit 13-6)				$\mathrm{P}_{\mathrm{FD}}=0.541$ using Equation (Exhibit 13-7)				
$\mathrm{V}_{12}=$	pc / h				$\mathrm{V}_{12}=\quad 3938 \mathrm{pc} / \mathrm{h}$				
V_{3} or $\mathrm{V}_{\text {ar34 }}$	pc / h (Equation 13-14 or 13-17)				V_{3} or $\mathrm{V}_{\text {av34 }} \quad 2067 \mathrm{pc} / \mathrm{h}$ (Equation 13-14 or 13-17)				
Is V_{3} or $\mathrm{V}_{\text {a }}{ }^{\text {3 }}$	h ? \square Yes \square No				Is V_{3} or $\mathrm{V}_{\text {a334 }}>2,700 \mathrm{pc} / \mathrm{h}$? $\square \mathrm{Yes} \square \mathrm{No}$				
Is V_{3} or $V_{\text {a }}^{\text {a }}$ 3 4	$/ 2 \square \text { Yes } \square \text { No }$				Is V_{3} or $\mathrm{V}_{\text {a334 }}>1.5 * \mathrm{~V}_{12} / 2 \square \mathrm{Yes}$				
$\\| \text { If Yes, } V_{12 a}=$	$\begin{aligned} & \mathrm{pc} / \mathrm{h} \text { (Equation 13-16, 13-18, or } \\ & 13-19 \text {) } \end{aligned}$				$\text { \|f Yes, } V_{12 \mathrm{a}}=$		pc / h (Equation 13-16, 13-18, or 1319)		

Capacity Checks

Capacity Checks

Flow Entering Merge Influence Area
Flow Entering Diverge Influence Area

BASIC FREEWAY SEGMENTS WORKSHEET	
General Information	Site Information
Analyst Agency or Company AECOM Date Performed Analysis Time Period AM	Highway/Direction of Travel I-95 NB From/To Seg 10-Bet Off \& On Ramps Jurisdiction Analysis Year 2040 Build 2A
Project Description SW 10th Street SIMR	
\square Oper.(LOS)	es.(N) $\quad \square$ Planning Data
Flow Inputs	
Volume, V 4250 $\mathrm{veh} / \mathrm{h}$ AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D $\mathrm{veh} / \mathrm{h}$	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 3 \%RVs, P_{R} 0 General Terrain: Level Grade \% Length mi Up/Down \%
Calculate Flow Adjustments	
f_{p} 1.00 E_{T} 1.5	$\begin{array}{ll} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] & 0.985 \end{array}$
Speed Inputs	Calc Speed Adj and FFS
Lane Width ft Rt-Side Lat. Clearance ft Number of Lanes, N 3 Total Ramp Density, TRD $\mathrm{ramps} / \mathrm{mi}$ FFS (measured) 70.0 mph Base free-flow Speed, BFFS mph	$\mathrm{f}_{\text {Lw }}$ mph $\mathrm{f}_{\text {LC }}$ mph TRD Adjustment mph FFS 70.0 mph
LOS and Performance Measures	Design (N)
$\begin{array}{lll} \hline \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or DDHV }) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}\right) 1514 & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & 68.9 & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 22.0 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \text { LOS } & \mathrm{C} & \end{array}$	Design LOS $\left\lvert\, \begin{array}{ll} v_{p}=(V \text { or } D D H V) /\left(P H F \times N \times f_{H V} \times f_{p}\right) & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ S & \mathrm{mph} \\ D=v_{\mathrm{p}} / \mathrm{S} & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \end{array}\right.$ Required Number of Lanes, N
Glossary	Factor Location
N - Number of lanes S - Speed $\mathrm{V}-$ - Hourly volume D - Density $\mathrm{v}_{\mathrm{p}}-$ Flow rate FFS - Free-flow speed LOS - Level of service BFFS - Base free-flow speed DDHV - Directional design hour volume	E_{R} - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, 11-3

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		AECOMAM			Freeway/Dir of Travel Weaving Segment Location Analysis Year			I-95 NB Seg 11-Bet On \& Off to Exp 2040 Build 2A	
Project Description SW 10th Street SIMR									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{S} Freeway free-flow speed, FFS				Two-Sided 4 2970ft 70 mph	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\text {IFL }}$ Terrain type				$\begin{array}{r} \text { Freeway } \\ 15 \\ 2400 \\ \text { Leve } \end{array}$
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	E_{T}	E_{R}	f_{HV}	$\mathrm{fp}^{\text {p }}$	v (pc/h)
V_{FF}	3639	0.95	3	0	1.5	1.2	0.985	1.00	3888
$\mathrm{V}_{\text {RF }}$	2551	0.92	2	0	1.5	1.2	0.990	1.00	2801
$\mathrm{V}_{\text {FR }}$	611	0.92	2	0	1.5	1.2	0.990	1.00	671
V_{RR}	429	0.92	2	0	1.5	1.2	0.990	1.00	471
V_{NW}	7360							$\mathrm{V}=$	7831
v_{w}	471								
VR	0.060								
Configuration Characteristics									
Minimum maneuver lanes, $\mathrm{N}_{\text {WL }}$ Interchange density, ID Minimum RF lane changes, $\mathrm{LC}_{\mathrm{RF}}$ Minimum FR lane changes, $\mathrm{LC}_{\mathrm{FR}}$ Minimum RR lane changes, $L_{\text {RR }}$				$01 c$ $0.7 \mathrm{int} / \mathrm{mi}$ $01 \mathrm{lc} / \mathrm{pc}$ $0 \mathrm{lc} / \mathrm{pc}$ $3 \mathrm{lc} / \mathrm{pc}$	Minimum weaving lane changes, $\mathrm{LC}_{\text {MIN }}$ Weaving lane changes, LC_{w} Non-weaving lane changes, $\mathrm{LC}_{\mathrm{Nw}}$ Total lane changes, $\mathrm{LC}_{\mathrm{ALL}}$ Non-weaving vehicle index, I_{Iw}				$1413 \mathrm{lc} / \mathrm{h}$ $1906 \mathrm{lc} / \mathrm{h}$ 2701 Ic/h 4607 Ic/h 1530
Weaving Segment Speed, Density, Level of Service, and Capacity									
Weaving segment flow rate, v Weaving segment capacity, c_{w} Weaving segment v/c ratio Weaving segment density, D Level of Service, LOS				7734 veh/h 8457 veh/h 0.914 3.6 pc/milln E	Weaving intensity factor, W Weaving segment speed, S Average weaving speed, S_{w} Average non-weaving speed, S_{Nw} Maximum weaving length, $L_{\text {max }}$				$\begin{array}{r} \hline 0.320 \\ 50.8 \mathrm{mph} \\ 56.7 \mathrm{mph} \\ 50.4 \mathrm{mph} \\ 6289 \mathrm{ft} \end{array}$
Notes									
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments". b. For volumes that exceed the weaving segment capacity, the level of service is "F".									

FREEWAY WEAVING WORKSHEET			
General Information		Site Information	
Analyst Agency/Company AECOM Date Performed Analysis Time Period PM		Freeway/Dir of Travel Weaving Segment Location Analysis Year	I-95 NB Seg 1-Bet Copans \& Sample 2040 Build 2A
Project Description SW 10th Street SIMR			
Inputs			
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS	$\begin{array}{r} \text { One-Sided } \\ 4 \\ 2380 \mathrm{ft} \\ 70 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type	Freeway 15 2400 Leve

Conversions to pc/h Under Base Conditions

	V (veh/h)	PHF	Truck (\%)	RV (\%)	E_{T}	E_{R}	f_{HV}	f_{p}	v (pc/h)
$\mathrm{V}_{\text {FF }}$	4145	0.95	3	0	1.5	1.2	0.985	1.00	4429
V_{RF}	495	0.92	2	0	1.5	1.2	0.990	1.00	543
F_{FR}	1820	0.92	2	0	1.5	1.2	0.990	1.00	1998
V_{RR}	0	0.95	0	0	1.5	1.2	1.000	1.00	0
V_{NW}	4429							V =	6970
V_{w}	2541								
VR	0.365								

Configuration Characteristics

Minimum maneuver lanes, $\mathrm{N}_{\text {WL }}$	2 lc	Minimum weaving lane changes, $\mathrm{LC}_{\text {MI }}$	Ic/h
Interchange density, ID	$0.7 \mathrm{int} / \mathrm{mi}$	Weaving lane changes, LC_{w}	Ic/h
Minimum RF lane changes, $\mathrm{LC}_{\text {RF }}$	$1 \mathrm{lc} / \mathrm{pc}$	Non-weaving lane changes, $\mathrm{LC}_{\mathrm{Nw}}$	Ic/h
Minimum FR lane changes, $\mathrm{LC}_{\text {FR }}$	$1 \mathrm{lc} / \mathrm{pc}$	Total lane changes, $\mathrm{LC}_{\mathrm{ALL}}$	1c/h
Minimum RR lane changes, $\mathrm{LC}_{\text {RR }}$	Ic/pc	Non-weaving vehicle index, I_{Nw}	787

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment flow rate, v
Weaving segment capacity, c_{w}
Weaving segment v / c ratio
Weaving segment density, D
Level of Service, LOS

6880 veh/h	Weaving intensity factor, W	mph
6486 veh/h	Weaving segment speed, S	mph
1.061	Average weaving speed, S_{W}	mph
pc/mi/h	Average non-weaving speed, S_{NW}	6287 ft
F	Maximum weaving length, $\mathrm{L}_{\mathrm{MAX}}$	

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
b. For volumes that exceed the weaving segment capacity, the level of service is " F ".

Job: SW 10th Street SIMR
Analyst: AECOM

Location:
Seg 3: I-95 Northbound On-Ramp from WB Sample Road
PM Peak Hour
2040 Build 2A
Analysis Year:

Driver Population adj. $\mathbf{f}_{\mathrm{P}}=1.000$

$\mathrm{Vfr}_{\text {fr }}=$	$=\mathrm{v}_{\mathrm{tr}} /(\mathrm{PHF})\left(\mathrm{f}_{\mathrm{HV}}\right)\left(\mathrm{f}_{\mathrm{P}}\right)=$	6,197	pc/h
$\mathrm{V}_{\mathrm{r}}=$	$=v_{r} /($ PHF $)\left(\mathrm{f}_{\mathrm{HV}}\right)\left(\mathrm{f}_{\mathrm{P}}\right)=$	1,233	pc/h
$\mathrm{V}_{\mathrm{f}}=$	$=\mathrm{v}_{\mathrm{f}} /(\mathrm{PHF})\left(\mathrm{f}_{\mathrm{HV}}\right)\left(\mathrm{f}_{\mathrm{P}}\right)=$	4,957	pc/h

No. lanes upstream of ramp $\mathbf{N}=$
3

No. Ln	Capacity Check (see Exhibits 25-3 and 25-7):	Maximum	Actual	V/c	LOS F?
4	Fwy downstream of ramp (assume 70 mph free-flow speed) :	9,600	6,197	0.65	No
3	Fwy upstream of ramp (assume 70 mph free-flow speed) =	7,200	4,957	0.69	No
1	Capacity on On-Ramp (assume 45 mph free-flow speed) =	2,100	1,233	0.59	No

Capacity Checks

Flow Entering Merge Influence Area
Flow Entering Diverge Influence Area

BASIC FREEWAY SEGMENTS WORKSHEET	
General Information	Site Information
Analyst Agency or Company AECOM Date Performed Analysis Time Period PM	Highway/Direction of Travel I-95 NB Feg 6-South of Off to 10th From/To Jurisdiction Analysis Year 2040 Build 2A
Project Description SW 10th Street SIMR	
\square Oper.(LOS)	es.(N) $\quad \square$ Planning Data
Flow Inputs	
Volume, V 6110 $\mathrm{veh} / \mathrm{h}$ AADT veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 3
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	\%RVs, P_{R} 0 General Terrain: Level GradeLength \quadUp/Down \%
Calculate Flow Adjustments	
f_{p} 1.00 E_{T} 1.5	E_{R} 1.2 $f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right]$ 0.985
Speed Inputs	Calc Speed Adj and FFS
Lane Width ft Rt-Side Lat. Clearance ft Number of Lanes, N 4 Total Ramp Density, TRD $\mathrm{ramps} / \mathrm{mi}$ FFS (measured) 70.0 mph Base free-flow Speed, BFFS mph	$\mathrm{f}_{\text {Lw }}$ mph f_{LC} mph TRD Adjustment mph FFS 70.0 mph
LOS and Performance Measures	Design (N)
Operational (LOS)	Design (N) Design LOS Required Number of Lanes, N
Glossary	Factor Location
N - Number of lanes S - Speed $\mathrm{V}-$ Hourly volume D - Density $\mathrm{v}_{\mathrm{p}}-$ Flow rate FFS - Free-flow speed LOS - Level of service BFFS - Base free-flow speed DDHV - Directional design hour volume	E_{R} - Exhibits 11-10, 11-12 $f_{L W}-$ Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, 11-3

Seg 7: 2040PM_Build 2A_NB

Job: SW 10th Street SIMR
Analyst: AECOM

Location:
Analysis Period:
Analysis Year:

Seg 7: I-95 NB Off-Ramp to SW 10th St EB \& WB
PM Peak Hour 2040 Build 2A

PHF $=$	$\mathbf{0 . 9 5}$
$\mathbf{v}_{\mathrm{fr}}=$	$\mathbf{6 , 1 1 0}$
vph	
$\mathbf{v}_{\mathrm{r}}=$	1,200
vph	
$\mathbf{v}_{\mathbf{f}}=$	$\mathbf{4 , 9 1 0}$

Upstream Freeway $\operatorname{Tr} \%=\quad 3 \%$
Ramp Tr \% = 2%
Downstream Freeway $\operatorname{Tr} \%=\quad 3 \%$
$\begin{array}{rll}\text { Freeway } \mathbf{f}_{\mathrm{HV}}= & 1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)= & \underline{\mathbf{0 . 9 8 5}} \\ \text { Ramp } \mathrm{f}_{\mathrm{HV}}= & 1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)= & \underline{\mathbf{0 . 9 9 0 1}}\end{array}$
flat terrain $E_{T}=\quad 1.5$
RV \% = $\quad 0$
Driver Population adj. $\mathbf{f}_{\mathrm{P}}=1.000$

$\mathbf{V}_{\mathrm{fr}}=$	$=\mathrm{V}_{\mathrm{fr}} /(\mathrm{PHF})\left(\mathrm{f}_{\mathrm{HV}}\right)\left(\mathrm{f}_{\mathrm{P}}\right)=$			
$\mathbf{V}_{\mathrm{r}}=$	$=\mathrm{v}_{\mathrm{r}} /(\mathrm{PHF})\left(\mathrm{f}_{\mathrm{HV}}\right)\left(\mathrm{f}_{\mathrm{P}}\right)=$			
$\mathbf{V}_{\mathrm{f}}=$	$=\mathrm{v}_{\mathrm{f}} /(\mathrm{PHF})\left(\mathrm{f}_{\mathrm{HV}}\right)\left(\mathrm{f}_{\mathrm{P}}\right)=$	\quad	$\mathbf{6 , 5 2 8}$	pc / h
:---	:---			
1,276	pc / h			
5,246	pc / h			

No. lanes upstream of ramp $\mathbf{N}=$

Average Freeway Density Upstream of Diverge (see Equation 13-26):

$D=0.0175\left(\mathrm{~V}_{\mathrm{fr}} / \mathrm{N}\right)=28.6 \mathrm{pc} / \mathrm{ln}$

LOS in the Diverge Area (from Density and Exhibit 13-2) =

 DNo. Ln Capacity Check (see Exhibits 13-2, 13-8 and 13.10) Maximum
4 Fwy upstream of ramp (assume 70 mph free-flow speed) $=$ 9,600

Actual LOS F?

3 Fwy downstream of ramp (assume 70 mph free-flow speed) $=\quad$ 7,200
6,528 No

2 Capacity on Off-Ramp (assume 45 mph free-flow speed) $=$
4,200
5,246 No
1,276 No

BASIC FREEWAY SEGMENTS WORKSHEET	
General Information	Site Information
Analyst Agency or Company AECOM Date Performed Analysis Time Period $P M$	Highway/Direction of Travel I-95 NB From/To Seg 8-Bet Off \& Off Ramps Jurisdiction 2040 Build 2A Analysis Year
Project Description SW 10th Street SIMR	
\square Oper.(LOS)	es.(N) $\quad \square$ Planning Data
Flow Inputs	
Volume, V 4910 $\mathrm{veh} / \mathrm{h}$ AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D veh/h DDHV = AADT x K x D	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 3 \%RVs, P_{R} 0 General Terrain: Level Grade \% Length mi Up/Down \%
Calculate Flow Adjustments	
f_{p} 1.00 E_{T} 1.5	E_{R} 1.2 $f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right]$ 0.985
Speed Inputs	Calc Speed Adj and FFS
Lane Width ft Rt-Side Lat. Clearance ft Number of Lanes, N 3 Total Ramp Density, TRD $\mathrm{ramps} / \mathrm{mi}$ FFS (measured) 70.0 mph Base free-flow Speed, BFFS mph	f_{Lw} mph f_{LC} mph TRD Adjustment mph FFS 70.0 mph
LOS and Performance Measures	Design (N)
$\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV$) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}\right) 1749$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ S 66.5 mph $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ 26.3 $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ LOS D	Design LOS $\begin{array}{ll} v_{p}=(V \text { or } D D H V) /\left(P H F \times N \times f_{H V} \times f_{p}\right) & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ S & \mathrm{mph} \\ D=v_{\mathrm{p}} / \mathrm{S} & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \end{array}$ Required Number of Lanes, N
Glossary	Factor Location
$N-$ Number of lanes $S-$ Speed $V-$ Hourly volume D - Density $v_{p}-$ Flow rate FFS - Free-flow speed LOS - Level of service BFFS - Base free-flow speed DDHV - Directional design hour volume	E_{R} - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, 11-3

RAMPS AND RAMP JUNCTIONS WORKSHEET					
General Information		Site Information			
Analyst		Freeway/Dir of Travel	I-95 NB		
Agency or Company Date Performed	ECOM	Junction	Seg 9-Off to Hillsboro EB\&WB		
		Jurisdiction			
Analysis Time Period	PM	Analysis Year	2040 Build 2A		
Project Description SW 10th Street SIMR					
Inputs					
Upstream Adj Ramp	Freeway Number of Lanes, N	3		Downstream Adj Ramp	
	Ramp Number of Lanes, N	1			
\square Yes \square On				\checkmark Yes	\checkmark On
\square No \square Off	Deceleration Lane Length $L_{\text {D }}$	200		\square No	\square Off
	Freeway Volume, V_{F}	4910			
$L_{\text {up }}=\quad \mathrm{ft}$	Ramp Volume, V_{R}	1360		$\mathrm{L}_{\text {down }}=$	2100 ft
$\mathrm{V}_{\mathrm{u}}=\quad \mathrm{veh} / \mathrm{h}$	Freeway Free-Flow Speed, $\mathrm{S}_{\text {FF }}$	70.0		$\mathrm{V}_{\mathrm{D}}=$	1800 veh/h
	Ramp Free-Flow Speed, $\mathrm{S}_{\text {FR }}$	45.0			

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} V \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$v=$ V/PHF $\times f_{\text {HV }} \times f_{p}$
Freeway	4910	0.95	Level	3	0	0.985	1.00	5246
Ramp	1360	0.92	Level	2	0	0.990	1.00	1493
UpStream								
DownStream	1800	0.92	Level	2	0	0.990	1.00	1976
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of \boldsymbol{v}_{12}			
$\begin{array}{ll} \\ L_{\text {EQ }}= & V_{12}=V_{F}\left(P_{\text {FM }}\right) \\ \text { (Equation 13-6 or 13-7) }\end{array}$					$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{R}}+\left(\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}\right) \mathrm{P}_{\mathrm{FD}}$			
					$L_{E Q}=\quad$ (Equation 13-12 or 13-13)			
$\mathrm{P}_{\mathrm{FM}}=$	using Equation (Exhibit 13-6)				$\mathrm{P}_{\mathrm{FD}}=0.560$ using Equation (Exhibit 13-7)			
$\mathrm{v}_{12}=$	pc / h				$\mathrm{V}_{12}=\quad 3595 \mathrm{pc} / \mathrm{h}$			
V_{3} or $\mathrm{V}_{\text {ar34 }}$	pc / h (Equation 13-14 or 13-17)				V_{3} or $\mathrm{V}_{\text {av34 }} \quad 1651 \mathrm{pc} / \mathrm{h}$ (Equation 13-14 or 13-17)			
Is V_{3} or $\mathrm{V}_{\text {a }}{ }^{\text {3 }}$	h ? \square Yes \square No				Is V_{3} or $\mathrm{V}_{\text {a334 }}>2,700 \mathrm{pc} / \mathrm{h}$? \square Yes \square No			
Is V_{3} or $V_{\text {a }}^{\text {a }}$ 3 4	/2 \square Yes \square No				Is V_{3} or $\mathrm{V}_{\text {av34 }}>1.5 * \mathrm{~V}_{12} / 2 \square \mathrm{Yes}$			
$\text { If Yes, } \mathrm{V}_{12 \mathrm{a}}=$	$\begin{aligned} & \mathrm{pc} / \mathrm{h} \text { (Equation 13-16, 13-18, or } \\ & 13-19 \text {) } \end{aligned}$				$\text { If Yes, } \mathrm{V}_{12 \mathrm{a}}=$		pc / h (Equation 13-16, 13-18, or 1319)	

Capacity Checks

Capacity Checks

Flow Entering Merge Influence Area
Flow Entering Diverge Influence Area

BASIC FREEWAY SEGMENTS WORKSHEET	
General Information	Site Information
Analyst Agency or Company AECOM Date Performed Analysis Time Period PM	Highway/Direction of Travel I-95 NB From/To Seg 10-Bet Off \& On Ramps Jurisdiction Analysis Year 2040 Build 2A
Project Description SW 10th Street SIMR	
\square Oper.(LOS)	Des.(N) \square Planning Data
Flow Inputs	
Volume, V 3550 veh/h en/day AADT Peak-Hr Prop. of AADT, K veh/h Peak-Hr Direction Prop, D DDHV = AADT x K x D	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 3 \%RVs, P_{R} 0 General Terrain: Level Grade \% Length mi Up/Down \%
Calculate Flow Adjustments	
f_{p} 1.00 E_{T} 1.5	$\begin{array}{ll} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] & 0.985 \end{array}$
Speed Inputs	Calc Speed Adj and FFS
Lane Width ft Rt-Side Lat. Clearance ft Number of Lanes, N 3 Total Ramp Density, TRD $\mathrm{ramps} / \mathrm{mi}$ FFS (measured) 70.0 mph Base free-flow Speed, BFFS mph	$\mathrm{f}_{\text {Lw }}$ mph $\mathrm{f}_{\text {LC }}$ mph TRD Adjustment mph FFS 70.0 mph
LOS and Performance Measures	Design (N)
Operational (LOS)	Design (N) Design LOS $\begin{array}{ll} v_{p}=(V \text { or } D D H V) /\left(P H F \times N \times f_{H V} \times f_{p}\right) & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ S & \mathrm{mph} \\ D=v_{\mathrm{p}} / \mathrm{S} & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \end{array}$ Required Number of Lanes, N
Glossary	Factor Location
$N-$ Number of lanes $S-$ Speed $V-$ Hourly volume D - Density $v_{p}-$ Flow rate FFS - Free-flow speed LOS - Level of service BFFS - Base free-flow speed DDHV - Directional design hour volume	E_{R} - Exhibits 11-10, 11-12 $f_{L W}-$ Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, 11-3

FREEWAY WEAVING WORKSHEET			
General Information		Site Information	
Analyst Agency/Company Date Performed Analysis Time Period	AECOM PM	Freeway/Dir of Travel Weaving Segment Location Analysis Year	I-95 NB Seg 11-Bet On \& Off to Exp 2040 Build 2A
Project Description SW 10th Street SIMR			
Inputs			
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS	Two-Sided 2970ft 70 mph	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type	Freeway 15 2400 Leve

Conversions to pc/h Under Base Conditions

	V (veh/h)	PHF	Truck (\%)	RV (\%)	E_{T}	E_{R}	f_{HV}	fp_{p}	v (pc/h)
V_{FF}	2955	0.95	3	0	1.5	1.2	0.985	1.00	3157
$\mathrm{V}_{\text {RF }}$	2655	0.92	2	0	1.5	1.2	0.990	1.00	2915
$\mathrm{V}_{\text {FR }}$	595	0.92	2	0	1.5	1.2	0.990	1.00	653
$\mathrm{V}_{\text {RR }}$	535	0.92	2	0	1.5	1.2	0.990	1.00	587
V_{NW}	6725							V =	7312
v_{w}	587								
VR	0.080								

Configuration Characteristics

Minimum maneuver lanes, N_{WL}	0 lc	Minimum weaving lane changes, $\mathrm{LC}_{\text {MIN }}$	1761 lc/h
Interchange density, ID	$0.7 \mathrm{int} / \mathrm{mi}$	Weaving lane changes, LC_{w}	$2254 \mathrm{lc/h}$
Minimum RF lane changes, $\mathrm{LC}_{\mathrm{RF}}$	$0 \mathrm{lc} / \mathrm{pc}$	Non-weaving lane changes, $\mathrm{LC}_{\mathrm{Nw}}$	$2370 \mathrm{lc} / \mathrm{h}$
Minimum FR lane changes, $\mathrm{LC}_{\mathrm{FR}}$	$01 \mathrm{c} / \mathrm{pc}$	Total lane changes, $\mathrm{LC}_{\text {aLL }}$	$4624 \mathrm{lc/h}$
Minimum RR lane changes, $\mathrm{LC}_{\text {RR }}$	$3 \mathrm{lc} / \mathrm{pc}$	Non-weaving vehicle index, $\mathrm{I}_{\text {Nw }}$	1398
Weaving Segment Speed, Density, Level of Service, and Capacity			
aving segment flow rate, v	7225 veh/h	Weaving intensity factor, W	0.320
Weaving segment capacity, c_{w}	8398 veh/h	Weaving segment speed, S	49.1 mph
Weaving segment v/c ratio	0.860	Average weaving speed, S_{w}	56.7 mph
Weaving segment density, D	$37.2 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	Average non-weaving speed, S_{Nw}	48.5 mph
Level of Service, LOS	E	Maximum weaving length, $L_{\text {MAX }}$	6481 ft

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
b. For volumes that exceed the weaving segment capacity, the level of service is "F".

BASIC FREEWAY SEGMENTS WORKSHEET	
General Information	Site Information
Analyst Agency or Company AECOM Date Performed Analysis Time Period AM	Highway/Direction of Travel l-95 SB From/To Seg 1-Bet Hillsboro \& Palmetto Jurisdiction Analysis Year 2040 Build 2A
Project Description SW 10th Street SIMR	
\square Oper.(LOS) \square	Des.(N) \square Planning Data
Flow Inputs	
Volume, V 4810 $\mathrm{veh} / \mathrm{h}$ AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D $\mathrm{veh} / \mathrm{h}$	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 3 \%RVs, P_{R} 0 General Terrain: Level Grade \% Length mi Up/Down \%
Calculate Flow Adjustments	
f_{p} 1.00 E_{T} 1.5	$\begin{array}{ll} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] & 0.985 \end{array}$
Speed Inputs	Calc Speed Adj and FFS
Lane Width ft Rt-Side Lat. Clearance ft Number of Lanes, N 4 Total Ramp Density, TRD $\mathrm{ramps} / \mathrm{mi}$ FFS (measured) 70.0 mph Base free-flow Speed, BFFS mph	$\mathrm{f}_{\text {Lw }}$ mph $\mathrm{f}_{\text {LC }}$ mph TRD Adjustment mph FFS 70.0 mph
LOS and Performance Measures	Design (N)
Operational (LOS)	Design (N) Design LOS $\begin{array}{ll} v_{p}=(V \text { or } D D H V) /\left(P H F \times N \times f_{H V} \times f_{p}\right) & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ S & \mathrm{mph} \\ D=v_{p} / \mathrm{S} & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \end{array}$ Required Number of Lanes, N
Glossary	Factor Location
$N-$ Number of lanes $S-$ Speed $V-$ Hourly volume $D-$ Density $v_{p}-$ Flow rate FFS - Free-flow speed LOS - Level of service BFFS - Base free-flow speed DDHV - Directional design hour volume	E_{R} - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, 11-3

FREEWAY WEAVING WORKSHEET			
General Information		Site Information	
Analyst Agency/Company AECOM Date Performed Analysis Time Period AM		Freeway/Dir of Travel Weaving Segment Location Analysis Year	195/SB Seg 2-Bet On from Exp \& Off 2040 Build 2A
Project Description SW 10th Street SIMR			
Inputs			
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS	Two-Sided 3900ft 70 mph	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type	Freeway 15 2400 Leve

Conversions to pc/h Under Base Conditions

	V (veh/h)	PHF	Truck (\%)	RV (\%)	E_{T}	E_{R}	f_{HV}	$\mathrm{fp}^{\text {p }}$	V (pc/h)
V_{FF}	3520	0.95	3	0	1.5	1.2	0.985	1.00	3761
$\mathrm{V}_{\text {RF }}$	1140	0.92	2	0	1.5	1.2	0.990	1.00	1252
V_{FR}	1290	0.92	2	0	1.5	1.2	0.990	1.00	1416
V_{RR}	130	0.92	2	0	1.5	1.2	0.990	1.00	143
V_{NW}	6429							$\mathrm{V}=$	6572
V_{w}	143								
VR	0.022								

Configuration Characteristics

Minimum maneuver lanes, N_{WL}	0 lc	Minimum weaving lane changes, $\mathrm{LC}_{\text {MIN }}$	$429 \mathrm{lc/h}$
Interchange density, ID	$0.7 \mathrm{int} / \mathrm{mi}$	Weaving lane changes, LC_{w}	$1001 \mathrm{lc} / \mathrm{h}$
Minimum RF lane changes, $\mathrm{LC}_{\text {RF }}$	$0 \mathrm{lc} / \mathrm{pc}$	Non-weaving lane changes, $\mathrm{LC}_{\mathrm{Nw}}$	$2986 \mathrm{lc} / \mathrm{h}$
Minimum FR lane changes, $\mathrm{LC}_{\text {FR }}$	$0 \mathrm{lc} / \mathrm{pc}$	Total lane changes, $\mathrm{LC}_{\mathrm{ALL}}$	3987 lc/h
Minimum RR lane changes, $\mathrm{LC}_{\text {RR }}$	$3 \mathrm{lc} / \mathrm{pc}$	Non-weaving vehicle index, $I_{\text {Nw }}$	1755
Weaving Segment Speed, Density, Level of Service, and Capacity			
Weaving segment flow rate, v	6488 veh/h	Weaving intensity factor, W	0.230
Weaving segment capacity, c_{w}	8847 veh/h	Weaving segment speed, S	59.0 mph
Weaving segment v/c ratio	0.733	Average weaving speed, S_{w}	59.7 mph
Weaving segment density, D	27.8 pc/mi/ln	Average non-weaving speed, S_{Nw}	59.0 mph
Level of Service, LOS	C	Maximum weaving length, $L_{\text {max }}$	5929 ft

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
b. For volumes that exceed the weaving segment capacity, the level of service is "F".

BASIC FREEWAY SEGMENTS WORKSHEET	
General Information	Site Information
Analyst Agency or Company AECOM Date Performed Analysis Time Period AM	Highway/Direction of Travel From/To Jurisdiction SB Seg 3-Bet Off \& On Ramp Analysis Year 2040 Build 2A
Project Description SW 10th Street SIMR	
\square Oper.(LOS) \square	es.(N) \square Planning Data
Flow Inputs	
Volume, V 4660 veh/h veh/day AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D veh/h	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 3 \%RVs, P_{R} 0 General Terrain: Level Grade \% Length mi Up/Down \%
Calculate Flow Adjustments	
$\begin{array}{ll} \mathrm{f}_{\mathrm{p}} & 1.00 \\ \mathrm{E}_{\mathrm{T}} & 1.5 \end{array}$	$\begin{array}{ll} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] & 0.985 \end{array}$
Speed Inputs	Calc Speed Adj and FFS
Lane Width ft Rt-Side Lat. Clearance ft Number of Lanes, N 3 Total Ramp Density, TRD $\mathrm{ramps} / \mathrm{mi}$ FFS (measured) 70.0 mph Base free-flow Speed, BFFS mph	f_{Lw} mph f_{LC} mph TRD Adjustment mph FFS 70.0 mph
LOS and Performance Measures	Design (N)
$\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV$) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}\right) 1660$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ S 67.5 mph $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ 24.6 $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ LOS C	Design LOS $\begin{array}{ll} \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or } \mathrm{DDHV}) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}\right) & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \end{array}$ Required Number of Lanes, N
Glossary	Factor Location
N - Number of lanes S - Speed V - Hourly volume D - Density $\mathrm{v}_{\mathrm{p}}-$ Flow rate FFS - Free-flow speed LOS - Level of service BFFS - Base free-flow speed DDHV - Directional design hour volume	E_{R} - Exhibits 11-10, 11-12 $f_{L W}-$ Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, 11-3

RAMPS AND RAMP JUNCTIONS WORKSHEET					
General Information		Site Information			
Analyst		Freeway/Dir of Travel	I-95 SB		
Agency or Company Date Performed	AECOM	Junction	Seg 4-Diverge to SW 10th St		
		Jurisdiction			
Analysis Time Period	AM	Analysis Year	2040 Build 2A		
Project Description SW 10th Street SIMR					
Inputs					
Upstream Adj Ramp	Freeway Number of Lanes, N	3		Downstream Adj Ramp	
	Ramp Number of Lanes, NAcceleration Lane Length, L_{A}	1			
\square Yes \square On				\checkmark Yes	VOn
\square No \square Off	Deceleration Lane Length L_{D}	200		\square No	\square Off
	Freeway Volume, V_{F}	4660			
$L_{\text {up }}=\quad \mathrm{ft}$	Ramp Volume, V_{R}	1890		$\mathrm{L}_{\text {down }}=$	2400 ft
$\mathrm{V}_{\mathrm{u}}=\quad \mathrm{veh} / \mathrm{h}$	Freeway Free-Flow Speed, S_{FF}	70.0		$\mathrm{V}_{\mathrm{D}}=$	1660 veh/h
	Ramp Free-Flow Speed, $\mathrm{S}_{\text {FR }}$	45.0			

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} V \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$\mathrm{v}=\mathrm{V} / \mathrm{PHF} \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$
Freeway	4660	0.95	Level	3	0	0.985	1.00	4979
Ramp	1890	0.92	Level	2	0	0.990	1.00	2075
UpStream								
DownStream	1660	0.92	Level	2	0	0.990	1.00	1822
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of \mathbf{v}_{12}			
$V_{12}=V_{F}\left(P_{F M}\right)$					$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{R}}+\left(\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}\right) \mathrm{P}_{\mathrm{FD}}$			
					$\mathrm{L}_{\text {EQ }}=\quad$ (Equation 13-12 or 13-13)			
$\mathrm{P}_{\mathrm{FM}}=$	using Equation (Exhibit 13-6)				$\mathrm{P}_{\mathrm{FD}}=\quad 0.540$ using Equation (Exhibit 13-7)			
$\mathrm{V}_{12}=$	pc / h				$\mathrm{V}_{12}=$		$3643 \mathrm{pc} / \mathrm{h}$	
V_{3} or $\mathrm{V}_{\text {av3 }}$	pc / h (Equation 13-14 or 13-17)				V_{3} or $V_{\text {ar34 }}$		$1336 \mathrm{pc} / \mathrm{h}$ (Equation 13-14 or 13-17)	
Is V_{3} or $\mathrm{V}_{\text {ar3 }}>$	/h? \square Yes \square No				Is V_{3} or $V_{\text {ar34 }}>2,700 \mathrm{pc/h}$? \square Yes \square No			
Is V_{3} or $\mathrm{V}_{\text {ar3 }}>$	/2 \square Yes \square No				Is V_{3} or $\mathrm{V}_{\text {av34 }}>1.5 * \mathrm{~V}_{12} / 2 \square \mathrm{Yes}$			
$\text { If Yes, } \mathrm{V}_{12 \mathrm{a}}=$	$\begin{aligned} & \text { pc/h (Equation 13-16, 13-18, or } \\ & 13-19) \end{aligned}$				$\text { \|fYes, } \mathrm{V}_{12 \mathrm{a}}=$			

Capacity Checks

Capacity Checks

Flow Entering Merge Influence Area
Flow Entering Diverge Influence Area

BASIC FREEWAY SEGMENTS WORKSHEET	
General Information	Site Information
Analyst Agency or Company AECOM Date Performed Analysis Time Period AM	Highway/Direction of Travel I-95 SB From/To Seg 5-Bet Off \& On Ramps Jurisdiction 2040 Build 2A Analysis Year
Project Description SW 10th Street SIMR	
\square Oper.(LOS)	Des.(N) \square Planning Data
Flow Inputs	
Volume, V 2770 $\mathrm{veh} / \mathrm{h}$ AADT veh/day Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D $\mathrm{veh} / \mathrm{h}$	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 3 \%RVs, P_{R} 0 General Terrain: Level Grade \% Length mi Up/Down \%
Calculate Flow Adjustments	
f_{p} 1.00 E_{T} 1.5	$\begin{array}{ll} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] & 0.985 \end{array}$
Speed Inputs	Calc Speed Adj and FFS
Lane Width ft Rt-Side Lat. Clearance ft Number of Lanes, N 3 Total Ramp Density, TRD $\mathrm{ramps} / \mathrm{mi}$ FFS (measured) 70.0 mph Base free-flow Speed, BFFS mph	$\mathrm{f}_{\text {Lw }}$ mph $\mathrm{f}_{\text {LC }}$ mph TRD Adjustment mph FFS 70.0 mph
LOS and Performance Measures	Design (N)
Operational (LOS)	Design (N) Design LOS $\begin{array}{ll} v_{p}=(V \text { or } D D H V) /\left(P H F \times N \times f_{H V} \times f_{p}\right) & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ S & \mathrm{mph} \\ D=v_{\mathrm{p}} / \mathrm{S} & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \end{array}$ Required Number of Lanes, N
Glossary	Factor Location
N - Number of lanes S - Speed $V-$ Hourly volume D - Density $v_{p}-$ Flow rate FFS - Free-flow speed LOS - Level of service BFFS - Base free-flow speed DDHV - Directional design hour volume	E_{R} - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, 11-3

BASIC FREEWAY SEGMENTS WORKSHEET	
General Information	Site Information
Analyst Agency or Company AECOM Date Performed Analysis Time Period AM	Highway/Direction of Travel I-95 SB From/To Seg 7-Bet On Ramps Jurisdiction Analysis Year 2040 Build 2A
Project Description SW 10th Street SIMR	
\square Oper.(LOS)	Des.(N) \square Planning Data
Flow Inputs	
Volume, V 4430 $\mathrm{veh} / \mathrm{h}$ AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D $\mathrm{veh} / \mathrm{h}$	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 3 \%RVs, P_{R} 0 General Terrain: Level Grade \% Length mi Up/Down \%
Calculate Flow Adjustments	
f_{p} 1.00 E_{T} 1.5	$\begin{array}{ll} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] & 0.985 \end{array}$
Speed Inputs	Calc Speed Adj and FFS
Lane Width ft Rt-Side Lat. Clearance ft Number of Lanes, N 3 Total Ramp Density, TRD $\mathrm{ramps} / \mathrm{mi}$ FFS (measured) 70.0 mph Base free-flow Speed, BFFS mph	$\mathrm{f}_{\text {Lw }}$ mph $\mathrm{f}_{\text {LC }}$ mph TRD Adjustment mph FFS 70.0 mph
LOS and Performance Measures	Design (N)
Operational (LOS)	Design (N) Design LOS $\begin{array}{ll} v_{p}=(V \text { or } D D H V) /\left(P H F \times N \times f_{H V} \times f_{p}\right) & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ S & \mathrm{mph} \\ D=v_{\mathrm{p}} / \mathrm{S} & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \end{array}$ Required Number of Lanes, N
Glossary	Factor Location
$N-$ Number of lanes $S-$ Speed $V-$ Hourly volume $D-$ Density $v_{p}-$ Flow rate FFS - Free-flow speed LOS - Level of service BFFS - Base free-flow speed DDHV - Directional design hour volume	E_{R} - Exhibits 11-10, 11-12 $f_{L W}-$ Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, 11-3

Job: SW 10th Street SIMR
Analyst: AECOM

Location:
Analysis Period:
Analysis Year:
Seg 8: I-95 Southbound On-Ramp from SW 10th Street EB \& WB
AM Peak Hour
2040 Build 2A

No. Ln	Capacity Check (see Exhibits 25-3 and 25-7):	Maximum	Actual	V/c	LOS F?
4	Fwy downstream of ramp (assume 70 mph free-flow speed) =	9,600	6,143	0.64	No
3	Fwy upstream of ramp (assume 70 mph free-flow speed) =	7,200	4,733	0.66	No
1	Capacity on On-Ramp (assume 45 mph free-flow speed) =	2,100	1,403	0.67	No

BASIC FREEWAY SEGMENTS WORKSHEET	
General Information	Site Information
Analyst Agency or Company AECOM Date Performed Analysis Time Period AM	Highway/Direction of Travel I-95 SB From/To Seg 9-Bet 10th \& Exit to Exp Jurisdiction Analysis Year 2040 Build 2A
Project Description SW 10th Street SIMR	
\square Oper.(LOS)	Des.(N) \square Planning Data
Flow Inputs	
Volume, V 5750 $\mathrm{veh} / \mathrm{h}$ AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D $\mathrm{veh} / \mathrm{h}$	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 3 \%RVs, P_{R} 0 General Terrain: Level Grade \% Length mi Up/Down \%
Calculate Flow Adjustments	
f_{p} 1.00 E_{T} 1.5	$\begin{array}{ll} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] & 0.985 \end{array}$
Speed Inputs	Calc Speed Adj and FFS
Lane Width ft Rt-Side Lat. Clearance ft Number of Lanes, N 4 Total Ramp Density, TRD $\mathrm{ramps} / \mathrm{mi}$ FFS (measured) 70.0 mph Base free-flow Speed, BFFS mph	$\mathrm{f}_{\text {Lw }}$ mph $\mathrm{f}_{\text {LC }}$ mph TRD Adjustment mph FFS 70.0 mph
LOS and Performance Measures	Design (N)
Operational (LOS)	Design (N) Design LOS $\begin{array}{ll} v_{p}=(V \text { or } D D H V) /\left(P H F \times N \times f_{H V} \times f_{p}\right) & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ S & \mathrm{mph} \\ D=v_{\mathrm{p}} / \mathrm{S} & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \end{array}$ Required Number of Lanes, N
Glossary	Factor Location
N - Number of lanes S - Speed $V-$ Hourly volume D - Density $v_{p}-$ Flow rate FFS - Free-flow speed LOS - Level of service BFFS - Base free-flow speed DDHV - Directional design hour volume	E_{R} - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, 11-3

RAMPS AND RAMP JUNCTIONS WORKSHEET										
General Information				Site Information						
				Freeway/Dir of Travel Junction		-95 SB				
Agency or Company	AECOM					Seg 11- Diverge to Express				
Date Performed				Junction		2040 Build 2A				
Analysis Time Period	AM			sis Yea						
Project Description SW 10th Street SIMR										
Inputs										
Upstream Adj Ramp		reeway Number of Lanes, N		4				Downstream Adj Ramp		
		Ramp Number of Lanes, N Acceleration Lane Length, L_{A}		1						
\square Yes \quad On								$\square \mathrm{Yes} \square$ On		
\square No $\quad \square$	Off	Deceleration Lane Length L_{D}		2006150						
$\mathrm{L}_{\text {up }}=11$		Freeway	$V_{\text {F }}$					No		
	50 ft	Ramp Volume, V_{R}		760				$\mathrm{L}_{\text {down }}=\mathrm{ft}$		
$\mathrm{V}_{\mathrm{u}}=400 \mathrm{veh} / \mathrm{h}$		reeway Free-Flow Speed, S_{FF} Ramp Free-Flow Speed, S_{FR}		70.0						
		45.0			ven					
Conversion to pc/h Under Base Conditions										
(pc/h)	$\begin{gathered} \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr} \end{gathered}$			PHF	Terrain	\%Truc	\%Rv	f_{HV}	f_{p}	$v=$ V/PHF $\times f_{H V} \times f_{p}$
Freeway	6150	0.95	Level	3	0	0.985	1.00	6571		
Ramp	760	0.92	Level	2	0	0.990	1.00	834		
UpStream	400	0.92	Level	2	0	0.990	1.00	439		
DownStream										
Merge Areas					Diverge Areas					
Estimation of \boldsymbol{v}_{12}					Estimation of \mathbf{v}_{12}					
$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{F}}\left(\mathrm{P}_{\mathrm{FM}}\right)$					$V_{12}=V_{R}+\left(V_{F}-V_{R}\right) P_{F D}$					
$\mathrm{LEQ}_{\text {Eq }}=$	(Equation 13-6 or 13-7)				$\left\lvert\, \begin{aligned} & L_{E Q}= \\ & \mathrm{P}_{\mathrm{FD}}= \end{aligned}\right.$	(Equation 13-12 or 13-13)				
$\mathrm{P}_{\mathrm{FM}}=$	using Equation (Exhibit 13-6)					0.436 using Equation (Exhibit 13-7)				
$\mathrm{V}_{12}=$	/h				$\left\lvert\, \begin{aligned} & \mathrm{P}_{\mathrm{FD}}= \\ & \mathrm{V}_{12}= \end{aligned}\right.$	$3335 \mathrm{pc} / \mathrm{h}$				
V_{3} or $\mathrm{V}_{\text {av34 }}$	pc / h (Equation 13-14 or 13-17)				$V_{12}=$		pc / h	ation 13-14 or 13-17)		
Is V_{3} or $\mathrm{V}_{\text {a } 34}>2,700$	pc / h ? $\square \mathrm{Y}$	s \square No			Is V_{3} or $\mathrm{V}_{\text {av34 }}>2,700 \mathrm{pc} / \mathrm{h}$? \square Yes \square No					
Is V_{3} or $V_{\text {ar34 }}>1.5$ *	/2 $\square \mathrm{Yes} \square \mathrm{No}$				Is V_{3} or $\mathrm{V}_{\text {av3 }}>1.5 * \mathrm{~V}_{12} / 2$		(Equ			
$\text { If } Y e s, V_{12 a}=$	pc/h (Equation 13-16, 13-18, or 13-19)				$\text { If } Y e s, V_{12 a}=$			$13-16,13-18$, or 13-		

Capacity Checks

Flow Entering Merge Influence Area
Flow Entering Diverge Influence Area

Job: SW 10th Street SIMR
Analyst: AECOM
Location: \quad Seg 12: I-95 SB Off-Ramp to Sample Road EB \& WB
Analysis Period:
Analysis Year:
AM Peak Hour
2040 Build 2A

Upstream Freeway $\operatorname{Tr} \%=\quad 3 \%$
Ramp Tr \% = 2%
Downstream Freeway $\operatorname{Tr} \%=\quad 3 \%$
$\begin{array}{rll}\text { Freeway } \mathrm{f}_{\mathrm{HV}}= & 1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)= & \underline{0.985} \\ \text { Ramp } \mathrm{f}_{\mathrm{HV}}= & 1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)= & \underline{\mathbf{0 . 9 9 0 1}}\end{array}$
flat terrain $E_{T}=\quad 1.5$
RV \% = $\quad 0$
Driver Population adj. $\mathbf{f}_{\mathrm{P}}=1.000$

$\mathbf{V}_{\mathrm{fr}}=$	$=\mathrm{v}_{\mathrm{fr}} /(\mathrm{PHF})\left(\mathrm{f}_{\mathrm{HV}}\right)\left(\mathrm{f}_{\mathrm{P}}\right)=$			
$\mathbf{V}_{\mathrm{r}}=$	$=\mathrm{v}_{\mathrm{r}} /(\mathrm{PHF})\left(\mathrm{f}_{\mathrm{HV}}\right)\left(\mathrm{f}_{\mathrm{P}}\right)=$			
$\mathbf{V}_{\mathrm{f}}=$	$=\mathrm{v}_{\mathrm{f}} /(\mathrm{PHF})\left(\mathrm{f}_{\mathrm{HV}}\right)\left(\mathrm{f}_{\mathrm{P}}\right)=$	\quad	5,759	pc / h
:---	:---			
1,095	pc / h			
4,658	pc / h			

No. lanes upstream of ramp $\mathbf{N}=$

Average Freeway Density Upstream of Diverge (see Equation 13-26):

$D=0.0175\left(\mathrm{~V}_{\mathrm{fr}} / \mathrm{N}\right)=25.2 \mathrm{pc} / \mathrm{ln}$

LOS in the Diverge Area (from Density and Exhibit 13-2) =

 CNo. Ln Capacity Check (see Exhibits 13-2, 13-8 and 13.10) Maximum
4 Fwy upstream of ramp (assume 70 mph free-flow speed) $=$ 9,600
Actual LOS F?
3 Fwy downstream of ramp (assume 70 mph free-flow speed) $=\quad 7,200$
5,759 No
1 Capacity on Off-Ramp (assume 45 mph free-flow speed) =
2,100
4,658 No
1,095 No

BASIC FREEWAY SEGMENTS WORKSHEET	
General Information	Site Information
Analyst Agency or Company AECOM Date Performed Analysis Time Period AM	Highway/Direction of Travel I-95 SB From/To Jurisdiction Seg 13-Bet Off \& On Ramps Analysis Year 2040 Build 2A
Project Description SW 10th Street SIMR	
\square Oper.(LOS) \square	es.(N) \square Planning Data
Flow Inputs	
Volume, V 4360 veh/h veh/day AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D veh/h DDHV = AADT x K x D	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 3 \%RVs, P_{R} 0 General Terrain: Level Grade \% Length mi Up/Down \%
Calculate Flow Adjustments	
f_{p} 1.00 E_{T} 1.5	E_{R} 1.2 $f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right]$ 0.985
Speed Inputs	Calc Speed Adj and FFS
Lane Width ft Rt-Side Lat. Clearance ft Number of Lanes, N 3 Total Ramp Density, TRD $\mathrm{ramps} / \mathrm{mi}$ FFS (measured) 70.0 mph Base free-flow Speed, BFFS mph l	f_{Lw} mph f_{LC} mph TRD Adjustment mph FFS 70.0 mph
LOS and Performance Measures	Design (N)
$\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV$) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}\right) 1553$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ S 68.6 mph $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ 22.7 $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ LOS C	Design LOS $\begin{array}{ll} v_{\mathrm{p}}=(\mathrm{V} \text { or } \mathrm{DDHV}) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}\right) & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \end{array}$ Required Number of Lanes, N
Glossary	Factor Location
N - Number of lanes S - Speed $V-$ Hourly volume D - Density $\mathrm{v}_{\mathrm{p}}-$ Flow rate FFS - Free-flow speed LOS - Level of service BFFS - Base free-flow speed DDHV - Directional design hour volume	E_{R} - Exhibits 11-10, 11-12 $f_{L W}-$ Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, 11-3

FREEWAY WEAVING WORKSHEET			
General Information		Site Information	
Analyst Agency/Company AECOM Date Performed Analysis Time Period AM		Freeway/Dir of Travel Weaving Segment Location Analysis Year	I-95 SB Seg 14- Bet Sample \& Copans 2040 Build 2A
Project Description SW 10th Street SIMR			
Inputs			
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS	$\begin{array}{r} \text { One-Sided } \\ 4 \\ 2520 \mathrm{ft} \\ 70 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {мI }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type	Freeway 15 2400 Leve

Conversions to pc/h Under Base Conditions

	V (veh/h)	PHF	Truck (\%)	RV (\%)	$\mathrm{E}_{\text {T }}$	E_{R}	f_{HV}	f_{p}	v (pc/h)
$\mathrm{V}_{\text {FF }}$	3630	0.95	3	0	1.5	1.2	0.985	1.00	3878
$\mathrm{V}_{\text {RF }}$	1960	0.92	2	0	1.5	1.2	0.990	1.00	2152
F_{FR}	730	0.92	2	0	1.5	1.2	0.990	1.00	801
V_{RR}	0	0.95	0	0	1.5	1.2	1.000	1.00	0
N_{NW}	3878							$\mathrm{V}=$	6831
V_{w}	2953								
VR	0.432								

Configuration Characteristics

Minimum maneuver lanes, $\mathrm{N}_{\text {WL }}$	2 lc	Minimum weaving lane changes, $\mathrm{LC}_{\text {MI }}$
Interchange density, ID	$0.7 \mathrm{int} / \mathrm{mi}$	Weaving lane changes, LC_{w}
Minimum RF lane changes, $\mathrm{LC}_{\text {RF }}$	$1 \mathrm{lc} / \mathrm{pc}$	Non-weaving lane changes, $\mathrm{LC}_{\mathrm{Nw}}$
Minimum FR lane changes, $\mathrm{LC}_{\text {FR }}$	$1 \mathrm{lc} / \mathrm{pc}$	Total lane changes, $\mathrm{LC}_{\text {ALL }}$
Minimum RR lane changes, $\mathrm{LC}_{\text {RR }}$	lc/pc	Non-weaving vehicle index, I_{NW}

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment flow rate, v
Weaving segment capacity, c_{w}
Weaving segment v / c ratio
Weaving segment density, D
Level of Service, LOS

6745 veh $/ \mathrm{h}$	Weaving intensity factor, W	mph
5470 veh/h	Weaving segment speed, S	mph
1.233	Average weaving speed, S_{w}	mph
$\mathrm{pc} / \mathrm{mi} / \mathrm{h}$	Average non-weaving speed, S_{NW}	7046 ft
F	Maximum weaving length, $\mathrm{L}_{\text {MAX }}$	

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
b. For volumes that exceed the weaving segment capacity, the level of service is "F".

BASIC FREEWAY SEGMENTS WORKSHEET	
General Information	Site Information
Analyst Agency or Company AECOM Date Performed Analysis Time Period $P M$	Highway/Direction of Travel I-95 SB Seg 1-Bet Hillsboro \& Palmetto From/To Jurisdiction 2040 Build 2A Analysis Year
Project Description SW 10th Street SIMR	
\square Oper.(LOS) \square	Des.(N) \square Planning Data
Flow Inputs	
Volume, V 4960 $\mathrm{veh} / \mathrm{h}$ AADT Peh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 3 \%RVs, P_{R} 0 General Terrain: Level Grade \% Length mi Up/Down \%
Calculate Flow Adjustments	
 f_{p} 1.00 E_{T} 1.5	E_{R} 1.2 $f_{H V}=1\left[\left\{1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right]\right.$ 0.985
Speed Inputs	Calc Speed Adj and FFS
Lane Width ft Rt-Side Lat. Clearance ft Number of Lanes, N 4 Total Ramp Density, TRD $\mathrm{ramps} / \mathrm{mi}$ FFS (measured) 70.0 mph Base free-flow Speed, BFFS mph	f_{Lw} mph f_{LC} mph TRD Adjustment mph FFS 70.0 mph
LOS and Performance Measures	Design (N)
$\begin{array}{lll} \hline \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or } \mathrm{DDHV}) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}\right) 1325 & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & 69.8 & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 19.0 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \text { LOS } & C & \end{array}$	$\left\lvert\, \begin{array}{ll} \text { Design LOS } \\ v_{\mathrm{p}}=(\mathrm{V} \text { or DDHV }) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}\right) & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \end{array}\right.$ Required Number of Lanes, N
Glossary	Factor Location
$N-$ Number of lanes $S-$ Speed $V-$ Hourly volume D - Density $v_{p}-$ Flow rate FFS - Free-flow speed LOS - Level of service BFFS - Base free-flow speed DDHV - Directional design hour volume	$\|$$E_{R}$ - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, 11-3

FREEWAY WEAVING WORKSHEET			
General Information		Site Information	
Analyst Agency/Company AECOM Date Performed Analysis Time Period PM		Freeway/Dir of Travel Weaving Segment Location Analysis Year	195/SB Seg 2-Bet On from Exp \& Off 2040 Build 2A
Project Description SW 10th Street SIMR			
Inputs			
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS	Two-Sided 4 3900ft 70 mph	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type	Freeway 15 2400 Level

Conversions to pc/h Under Base Conditions

	V (veh/h)	PHF	Truck (\%)	RV (\%)	$\mathrm{E}_{\text {T }}$	E_{R}	f_{HV}	$\mathrm{fp}^{\text {p }}$	v (pc/h)
V_{FF}	3825	0.95	3	0	1.5	1.2	0.985	1.00	4087
V_{RF}	1125	0.92	2	0	1.5	1.2	0.990	1.00	1235
$V_{\text {FR }}$	1135	0.92	2	0	1.5	1.2	0.990	1.00	1246
V_{RR}	125	0.92	2	0	1.5	1.2	0.990	1.00	137
V_{NW}	6568							$\mathrm{V}=$	6705
V_{W}	137								
VR	0.020								

Configuration Characteristics

Minimum maneuver lanes, N_{WL}
Interchange density, ID
Minimum RF lane changes, $\mathrm{LC}_{\mathrm{RF}}$
Minimum FR lane changes, $\mathrm{LC}_{\mathrm{FR}}$
Min
Minimum RR lane changes, $\mathrm{LC}_{\mathrm{RR}}$

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
b. For volumes that exceed the weaving segment capacity, the level of service is "F".

BASIC FREEWAY SEGMENTS WORKSHEET	
General Information	Site Information
Analyst Agency or Company AECOM Date Performed Analysis Time Period $P M$	Highway/Direction of Travel From/To Jurisdiction SB Seg 3-Bet Off \& On Ramp Analysis Year 2040 Build 2A
Project Description SW 10th Street SIMR	
\square Oper.(LOS) \square	es.(N) \square Planning Data
Flow Inputs	
Volume, V 4950 veh/h veh/day AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D veh/h	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 3 \%RVs, P_{R} 0 General Terrain: Level Grade \% Length mi Up/Down \%
Calculate Flow Adjustments	
$\begin{array}{ll} \mathrm{f}_{\mathrm{p}} & 1.00 \\ \mathrm{E}_{\mathrm{T}} & 1.5 \end{array}$	$\begin{array}{ll} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] & 0.985 \end{array}$
Speed Inputs	Calc Speed Adj and FFS
Lane Width ft Rt-Side Lat. Clearance ft Number of Lanes, N 3 Total Ramp Density, TRD $\mathrm{ramps} / \mathrm{mi}$ FFS (measured) 70.0 mph Base free-flow Speed, BFFS mph	f_{Lw} mph f_{LC} mph TRD Adjustment mph FFS 70.0 mph
LOS and Performance Measures	Design (N)
$\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV$) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}\right) 1763$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ S 66.3 mph $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ 26.6 $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ LOS D	Design LOS $\begin{array}{ll} \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or } \mathrm{DDHV}) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}\right) & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \end{array}$ Required Number of Lanes, N
Glossary	Factor Location
N - Number of lanes S - Speed V - Hourly volume D - Density $\mathrm{v}_{\mathrm{p}}-$ Flow rate FFS - Free-flow speed LOS - Level of service BFFS - Base free-flow speed DDHV - Directional design hour volume	E_{R} - Exhibits 11-10, 11-12 $f_{L W}-$ Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, 11-3

RAMPS AND RAMP JUNCTIONS WORKSHEET					
General Information		Site Information			
Analyst		Freeway/Dir of Travel	I-95 SB		
Agency or Company Date Performed	AECOM	Junction	Seg 4-Diverge to SW 10th St		
		Jurisdiction			
Analysis Time Period	PM	Analysis Year	2040 Build 2A		
Project Description SW 10th Street SIMR					
Inputs					
Upstream Adj Ramp	Freeway Number of Lanes, N	3		Downstream Adj Ramp	
	Ramp Number of Lanes, N	1			
\square Yes \square On				\checkmark Yes	VOn
\square No \square Off	Deceleration Lane Length $L_{\text {D }}$	200		\square No	\square Off
	Freeway Volume, V_{F}	4950			
$L_{\text {up }}=\quad \mathrm{ft}$	Ramp Volume, V_{R}	1710		$\mathrm{L}_{\text {down }}=$	2400 ft
$\mathrm{V}_{\mathrm{u}}=\quad \mathrm{veh} / \mathrm{h}$	Freeway Free-Flow Speed, $\mathrm{S}_{\text {FF }}$	70.0		$\mathrm{V}_{\mathrm{D}}=$	1740 veh/h
	Ramp Free-Flow Speed, $\mathrm{S}_{\text {FR }}$	45.0			

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} V \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$v=$ V/PHF $\times f_{\text {HV }} \times f_{p}$
Freeway	4950	0.95	Level	3	0	0.985	1.00	5289
Ramp	1710	0.92	Level	2	0	0.990	1.00	1877
UpStream								
DownStream	1740	0.92	Level	2	0	0.990	1.00	1910
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of \boldsymbol{v}_{12}			
$\begin{array}{ll} \\ L_{\text {EQ }}= & V_{12}=V_{F}\left(P_{\text {FM }}\right) \\ \text { (Equation 13-6 or 13-7) }\end{array}$					$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{R}}+\left(\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}\right) \mathrm{P}_{\mathrm{FD}}$			
					$L_{E Q}=\quad$ (Equation 13-12 or 13-13)			
$\mathrm{P}_{\mathrm{FM}}=$	using Equation (Exhibit 13-6)				$\mathrm{P}_{\mathrm{FD}}=0.541$ using Equation (Exhibit 13-7)			
$\mathrm{v}_{12}=$	pc / h				$\mathrm{V}_{12}=\quad 3724 \mathrm{pc} / \mathrm{h}$			
V_{3} or $\mathrm{V}_{\text {ar34 }}$	pc / h (Equation 13-14 or 13-17)				V_{3} or $\mathrm{V}_{\text {av34 }} \quad 1565 \mathrm{pc} / \mathrm{h}$ (Equation 13-14 or 13-17)			
Is V_{3} or $\mathrm{V}_{\text {a }}{ }^{\text {3 }}$	h ? \square Yes \square No				Is V_{3} or $\mathrm{V}_{\text {a334 }}>2,700 \mathrm{pc} / \mathrm{h}$? $\square \mathrm{Yes} \square \mathrm{No}$			
Is V_{3} or $V_{\text {a }}^{\text {a }}$ 3 4	/2 \square Yes \square No				Is V_{3} or $\mathrm{V}_{\text {av3 }}>1.5 * \mathrm{~V}_{12} / 2 \square \mathrm{Yes}$			
$\text { If Yes, } \mathrm{V}_{12 \mathrm{a}}=$	$\begin{aligned} & \mathrm{pc} / \mathrm{h} \text { (Equation 13-16, 13-18, or } \\ & 13-19 \text {) } \end{aligned}$				$\text { If Yes, } \mathrm{V}_{12 \mathrm{a}}=$		pc / h (Equation 13-16, 13-18, or 1319)	

Capacity Checks

Capacity Checks

Flow Entering Merge Influence Area
Flow Entering Diverge Influence Area

	Actual	Max	Violation?			Actual	Max Desirable		Violation?
$\mathrm{V}_{\text {R12 }}$		Exhibit 13-8		V_{12}		3724	Exhibit 13-8	4400:All	No
Level of Service Determination (if not F)				Level of Service Determination (if not F)					
$\mathrm{D}_{\mathrm{R}}=5.475+0.00734 \mathrm{v}_{\mathrm{R}}+0.0078 \mathrm{~V}_{12}-0.00627 \mathrm{~L}_{\mathrm{A}}$				$\mathrm{D}_{\mathrm{R}}=4.252+0.0086 \mathrm{~V}_{12}-0.009 \mathrm{~L}_{\mathrm{D}}$					
$\mathrm{D}_{\mathrm{R}}=$ (p	($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)			$\mathrm{D}_{\mathrm{R}}=34.5$ (pc/mi/ln)					
LOS = (E	(Exhibit 13-2)			LOS = D (Exhibit 13-2)					
Speed Determination				Speed Determination					
$M_{s}=$				$\mathrm{D}_{\mathrm{s}}=0.467$ (Exhibit 13-12)					
$\mathrm{S}_{\mathrm{R}}=\quad \mathrm{mp}$	mph (Exhibit 13-11)			$\mathrm{S}_{\mathrm{R}}=\quad 56.9 \mathrm{mph}$ (Exhibit 13-12)					
mph (Exhibit 13-11)mph (Exhibit 13-13)				$\left\lvert\, \begin{aligned} & S_{0}= \\ & S_{S}= \end{aligned}\right.$		74.6 mph (Exhibit 13-12)			
				61.2 mph (Exhibit 13-13)					

BASIC FREEWAY SEGMENTS WORKSHEET	
General Information	Site Information
Analyst Agency or Company AECOM Date Performed Analysis Time Period PM	Highway/Direction of Travel I-95 SB From/To Seg 5-Bet Off \& On Ramps Jurisdiction 2040 Build 2A Analysis Year
Project Description SW 10th Street SIMR	
\checkmark Oper.(LOS)	es.(N) \square Planning Data
Flow Inputs	
Volume, V 3240 veh/h AADT veh/day Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D veh/h	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 3 \%RVs, P_{R} 0 General Terrain: Level Grade \% Length mi Up/Down \%
Calculate Flow Adjustments	
f_{p} 1.00 E_{T} 1.5	E_{R} 1.2 $f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right]$ 0.985
Speed Inputs	Calc Speed Adj and FFS
Lane Width ft Rt-Side Lat. Clearance ft Number of Lanes, N 3 Total Ramp Density, TRD $\mathrm{ramps} / \mathrm{mi}$ FFS (measured) 70.0 mph Base free-flow Speed, BFFS mph	$\mathrm{f}_{\text {Lw }}$ mph $\mathrm{f}_{\text {LC }}$ mph TRD Adjustment mph FFS 70.0 mph
LOS and Performance Measures	Design (N)
$\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV$) /\left(\mathrm{PHF} \times \mathrm{N} \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}\right) 1154$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ S 70.0 mph $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ 16.5 $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ LOS B	Design LOS $\begin{array}{ll} v_{p}=(V \text { or } D D H V) /\left(P H F \times N \times f_{H V} \times f_{p}\right) & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ S & \mathrm{mph} \\ D=v_{\mathrm{p}} / \mathrm{S} & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \end{array}$ Required Number of Lanes, N
Glossary	Factor Location
N - Number of lanes S - Speed $\mathrm{V}-$ Hourly volume D - Density $\mathrm{v}_{\mathrm{p}}-$ Flow rate FFS - Free-flow speed LOS - Level of service BFFS - Base free-flow speed DDHV - Directional design hour volume	E_{R} - Exhibits 11-10, 11-12 $f_{L W}-$ Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, 11-3

BASIC FREEWAY SEGMENTS WORKSHEET	
General Information	Site Information
Analyst Agency or Company AECOM Date Performed Analysis Time Period $P M$	Highway/Direction of Travel I-95 SB From/To Seg 7 -Bet On Ramps Jurisdiction 2040 Build 2A Analysis Year
Project Description SW 10th Street SIMR	
\square Oper.(LOS) \square	es.(N) $\quad \square$ Planning Data
Flow Inputs	
Volume, V 4980 $\mathrm{veh} / \mathrm{h}$ AADT Peh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 3 \%RVs, P_{R} 0 General Terrain: Level Grade \% Length mi Up/Down \%
Calculate Flow Adjustments	
f_{p} 1.00 E_{T} 1.5	$\begin{array}{ll} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] & 0.985 \end{array}$
Speed Inputs	Calc Speed Adj and FFS
Lane Width ft Rt-Side Lat. Clearance ft Number of Lanes, N 3 Total Ramp Density, TRD $\mathrm{ramps} / \mathrm{mi}$ FFS (measured) 70.0 mph Base free-flow Speed, BFFS mph	f_{Lw} mph f_{LC} mph TRD Adjustment mph FFS 70.0 mph
LOS and Performance Measures	Design (N)
$\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV$) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}\right) 1774$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ S 66.2 mph $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ 26.8 $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ LOS D	Design LOS $\begin{array}{ll} \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or } \mathrm{DDHV}) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}\right) & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \end{array}$ Required Number of Lanes, N
Glossary	Factor Location
N - Number of lanes S - Speed $V-$ Hourly volume D - Density $v_{p}-$ Flow rate FFS - Free-flow speed LOS - Level of service BFFS - Base free-flow speed DDHV - Directional design hour volume	E_{R} - Exhibits 11-10, 11-12 $f_{L W}-$ Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}-$ Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, 11-3

Job: SW 10th Street SIMR
Analyst: AECOM

Location:
Analysis Period:
Analysis Year:
Seg 8: I-95 Southbound On-Ramp from SW 10th Street EB \& WB
PM Peak Hour
2040 Build 2A

No. Ln	Capacity Check (see Exhibits 25-3 and 25-7):	Maximum	Actual	V/c	LOS F?
4	Fwy downstream of ramp (assume 70 mph free-flow speed) =	9,600	6,902	0.72	No
3	Fwy upstream of ramp (assume 70 mph free-flow speed) =	7,200	5,321	0.74	No
1	Capacity on On-Ramp (assume 45 mph free-flow speed) =	2,100	1,573	0.75	No

BASIC FREEWAY SEGMENTS WORKSHEET	
General Information	Site Information
Analyst Agency or Company AECOM Date Performed Analysis Time Period $P M$	Highway/Direction of Travel I-95 SB From/To Jurisdiction Seg 9-Bet 10th \& Exit to Exp Analysis Year 2040 Build 2A
Project Description SW 10th Street SIMR	
\square Oper.(LOS) \square	es.(N) \square Planning Data
Flow Inputs	
Volume, V 6460 veh/h veh/day AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D veh/h	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 3 \%RVs, P_{R} 0 General Terrain: Level Grade \% Length mi Up/Down \%
Calculate Flow Adjustments	
$\begin{array}{ll} \mathrm{f}_{\mathrm{p}} & 1.00 \\ \mathrm{E}_{\mathrm{T}} & 1.5 \end{array}$	$\begin{array}{ll} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] & 0.985 \end{array}$
Speed Inputs	Calc Speed Adj and FFS
Lane Width ft Rt-Side Lat. Clearance ft Number of Lanes, N 4 Total Ramp Density, TRD $\mathrm{ramps} / \mathrm{mi}$ FFS (measured) 70.0 mph Base free-flow Speed, BFFS mph	f_{Lw} mph f_{LC} mph TRD Adjustment mph FFS 70.0 mph
LOS and Performance Measures	Design (N)
$\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV$) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}\right) 1726$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ S 66.8 mph $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ 25.8 $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ LOS C	Design LOS $\begin{array}{ll} v_{p}=(V \text { or } D D H V) /\left(P H F \times N \times f_{H V} \times f_{p}\right) & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ S & \mathrm{mph} \\ D=v_{\mathrm{p}} / \mathrm{S} & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \end{array}$ Required Number of Lanes, N
Glossary	Factor Location
N - Number of lanes S - Speed V - Hourly volume D - Density $\mathrm{v}_{\mathrm{p}}-$ Flow rate FFS - Free-flow speed LOS - Level of service BFFS - Base free-flow speed DDHV - Directional design hour volume	E_{R} - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, 11-3

RAMPS AND RAMP JUNCTIONS WORKSHEET														
General Information				Site Information										
				Freeway/Dir of Travel		SB								
Agency or Company	AECOM					eg 11- Diverge to Express								
Date Performed				Jurisdiction										
Analysis Time Period PM				Analysis Year		O Build 2A								
Project Description SW 10th Street SIMR														
Inputs														
Upstream Adj Ramp		Freeway Number of Lanes, N		4				Downstream Adj Ramp						
		Ramp Number of Lanes, N		1										
∇ Yes \quad On		Acceleration Lane Length, L_{A}						$\square \mathrm{Yes} \quad \square \mathrm{On}$						
\square No $\quad \square$		Deceleration Lane Length L_{D}												
		Freeway Volume, V_{F}		200				\square No \square Off						
$\mathrm{L}_{\text {up }}=11$	50 ft	Ramp Volume, V_{R}		750				$\mathrm{L}_{\text {down }}=\mathrm{ft}$						
$\mathrm{V}_{\mathrm{u}}=390 \mathrm{veh} / \mathrm{h}$		Freeway Free-Flow Speed, $\mathrm{S}_{\text {FF }}$		70.0										
		45.0			$\mathrm{V}_{\mathrm{D}}=\quad \mathrm{veh} / \mathrm{h}$									
Conversion to pc/h Under Base Conditions														
(pc/h)	(Veh/hr)	PHF	Terrain	\%Truc	\%Rv	f_{HV}	f_{p}	$\mathrm{v}=\mathrm{V} / \mathrm{PHF} \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$						
Freeway	6850	0.95	Level	3	0	0.985	1.00	7319						
Ramp	750	0.92	Level	2	0	0.990	1.00	823						
UpStream	390	0.92	Level	2	0	0.990	1.00	428						
DownStream														
Merge Areas					Diverge Areas									
Estimation of v_{12}					Estimation of \mathbf{v}_{12}									
$\begin{array}{ll} \\ L_{\text {FO }} & \mathrm{V}_{12}=\mathrm{V}_{\mathrm{F}}\left(\mathrm{P}_{\mathrm{FM}}\right) \\ \text { (Equation 13-6 or 13-7) }\end{array}$					$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{R}}+\left(\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}\right) \mathrm{P}_{\mathrm{FD}}$									
					$\begin{aligned} & L_{E Q}= \\ & P_{F D}= \end{aligned}$	(Equation 13-12 or 13-13)								
$\mathrm{P}_{\mathrm{FM}}=$	using Equation (Exhibit 13-6)					0.436 using Equation (Exhibit 13-7)								
$\mathrm{V}_{12}=$	pc / h				$\left\lvert\, \begin{aligned} & \mathrm{P}_{\mathrm{FD}}= \\ & \mathrm{V}_{12}= \end{aligned}\right.$	$3655 \mathrm{pc} / \mathrm{h}$								
V_{3} or $\mathrm{V}_{\text {av34 }}$	pc / h (Equation 13-14 or 13-17)				$V_{12}=$	V_{3} or $\mathrm{V}_{\text {ar34 }} \quad 1832 \mathrm{pc} / \mathrm{h}$ (Equation 13-14 or 13-17)								
Is V_{3} or $V_{\text {av3 }}>2,700$	h ? \square Yes \square No				Is V_{3} or $\mathrm{V}_{\text {av34 }}>2,700 \mathrm{pc} / \mathrm{h}$? $\square \mathrm{Yes} \square \mathrm{No}$									
Is V_{3} or $\mathrm{V}_{\text {av34 }}>1.5 *$	$\begin{aligned} & { }^{2} 2 \begin{array}{l} \square \mathrm{Yes} \square \mathrm{No} \\ \text { pc/h (Equation 13-16, 13-18, or } \\ 13-19 \text {) } \end{array} \\ & \hline \end{aligned}$				$\begin{aligned} & \text { Is } V_{3} \text { or } V_{\text {av }} \\ & \text { if } Y e s, V_{12 \mathrm{a}}= \end{aligned}$	$1.5{ }^{*} \mathrm{~V}_{12} / 2 \square \mathrm{Yes} \square$								
$\text { If Yes, } \mathrm{V}_{12 \mathrm{a}}=$						$\text { If Yes, } V_{12 \mathrm{a}}=$	pc/h (Equation 13-16, 13-18, or 13- 19)							

Capacity Checks

Flow Entering Merge Influence Area
Flow Entering Diverge Influence Area

Job: SW 10th Street SIMR
Analyst: AECOM
Location: \quad Seg 12: I-95 SB Off-Ramp to Sample Road EB \& WB
Analysis Period:
Analysis Year:

PM Peak Hour 2040 Build 2A

PHF $=$	$\mathbf{0 . 9 5}$
$\mathbf{v}_{\mathrm{fr}}=$	$\mathbf{6 , 1 0 0}$
vph	
$\mathbf{v}_{\mathrm{r}}=$	$\mathbf{1 , 3 0 0}$
	vph
$\mathbf{v}_{\mathrm{f}}=$	$\mathbf{4 , 8 0 0}$

Upstream Freeway $\operatorname{Tr} \%=\quad 3 \%$ Ramp $\mathrm{Tr} \%=\quad 2 \%$
Downstream Freeway $\operatorname{Tr} \%=\quad 3 \%$
$\begin{array}{rll}\text { Freeway } \mathrm{f}_{\mathrm{HV}}= & 1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)= & \underline{\mathbf{0 . 9 8 5}} \\ \text { Ramp } \mathrm{f}_{\mathrm{HV}} & = & 1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)=\end{array}$
flat terrain $E_{T}=\quad 1.5$
RV \% = $\quad 0$
Driver Population adj. $\mathbf{f}_{\mathrm{P}}=1.000$

$\mathbf{V}_{\mathrm{fr}}=$	$=\mathrm{V}_{\mathrm{fr}} /(\mathrm{PHF})\left(\mathrm{f}_{\mathrm{HV}}\right)\left(\mathrm{f}_{\mathrm{P}}\right)=$			
$\mathbf{V}_{\mathrm{r}}=$	$=\mathrm{V}_{\mathrm{r}} /(\mathrm{PHF})\left(\mathrm{f}_{\mathrm{HV}}\right)\left(\mathrm{f}_{\mathrm{P}}\right)=$			
$\mathbf{V}_{\mathrm{f}}=$	$=\mathrm{V}_{\mathrm{f}} /(\mathrm{PHF})\left(\mathrm{f}_{\mathrm{HV}}\right)\left(\mathrm{f}_{\mathrm{P}}\right)=$	\quad	6,517	pc / h
:---	:---			
1,382	pc / h			
5,128	pc / h			

No. lanes upstream of ramp $\mathbf{N}=$

Average Freeway Density Upstream of Diverge (see Equation 13-26):

$D=0.0175\left(V_{\mathrm{fr}} / \mathrm{N}\right)=28.5 \mathrm{pc} / \mathrm{ln}$

LOS in the Diverge Area (from Density and Exhibit 13-2) =

D

No. Ln Capacity Check (see Exhibits 13-2, 13-8 and 13.10) Maximum
4 Fwy upstream of ramp (assume 70 mph free-flow speed) = 9,600
Actual LOS F?
3 Fwy downstream of ramp (assume 70 mph free-flow speed) $=\quad 7,200$
6,517 No
1 Capacity on Off-Ramp (assume 45 mph free-flow speed) =
2,100
5,128 No
1,382 No

BASIC FREEWAY SEGMENTS WORKSHEET	
General Information	Site Information
Analyst Agency or Company AECOM Date Performed Analysis Time Period $P M$	Highway/Direction of Travel I-95 SB From/To Seg 13-Bet Off \& On Ramps Jurisdiction 2040 Build 2A Analysis Year
Project Description SW 10th Street SIMR	
\square Oper.(LOS)	es.(N) $\quad \square$ Planning Data
Flow Inputs	
Volume, V 4800 $\mathrm{veh} / \mathrm{h}$ AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D veh/h DDHV = AADT x K x D	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 3 \%RVs, P_{R} 0 General Terrain: Level Grade \% Length mi Up/Down \%
Calculate Flow Adjustments	
f_{p} 1.00 E_{T} 1.5	E_{R} 1.2 $f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right]$ 0.985
Speed Inputs	Calc Speed Adj and FFS
Lane Width ft Rt-Side Lat. Clearance ft Number of Lanes, N 3 Total Ramp Density, TRD $\mathrm{ramps} / \mathrm{mi}$ FFS (measured) 70.0 mph Base free-flow Speed, BFFS mph	f_{Lw} mph f_{LC} mph TRD Adjustment mph FFS 70.0 mph
LOS and Performance Measures	Design (N)
$\mathrm{v}=(\mathrm{V}$ or DDHV $) /\left(\right.$ PHF $\left.\times N \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}\right) 1709$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ S 67.0 mph $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ 25.5 $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ LOS C	Design LOS $\begin{array}{ll}v_{p}=(V \text { or } D D H V) /\left(P H F \times N \times f_{H V} \times f_{p}\right) & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ S & \mathrm{mph} \\ D=v_{\mathrm{p}} / \mathrm{S} & \mathrm{pc} / \mathrm{mi} / \mathrm{ln}\end{array}$ Required Number of Lanes, N
Glossary	Factor Location
$N-$ Number of lanes $S-$ Speed $V-$ Hourly volume D - Density $v_{p}-$ Flow rate FFS - Free-flow speed LOS - Level of service BFFS - Base free-flow speed DDHV - Directional design hour volume	E_{R} - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, 11-3

FREEWAY WEAVING WORKSHEET			
General Information		Site Information	
Analyst Agency/Company AECOM Date Performed Analysis Time Period PM		Freeway/Dir of Travel Weaving Segment Location Analysis Year	I-95 SB Seg 14- Bet Sample \& Copans 2040 Build 2A
Project Description SW 10th Street SIMR			
Inputs			
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS	$\begin{array}{r} \text { One-Sided } \\ 4 \\ 2520 \mathrm{ft} \\ 70 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type	Freeway $\begin{array}{r} 15 \\ 2400 \end{array}$ Level

Conversions to pc/h Under Base Conditions

	V (veh/h)	PHF	Truck (\%)	RV (\%)	$\mathrm{E}_{\text {T }}$	E_{R}	f_{HV}	fp_{p}	v (pc/h)
$V_{\text {FF }}$	4035	0.95	3	0	1.5	1.2	0.985	1.00	4311
$\mathrm{V}_{\text {RF }}$	1560	0.92	2	0	1.5	1.2	0.990	1.00	1713
$V_{\text {FR }}$	765	0.92	2	0	1.5	1.2	0.990	1.00	840
$V_{\text {RR }}$	0	0.95	0	0	1.5	1.2	1.000	1.00	0
V_{NW}	4311							V =	6864
$\mathrm{V}_{\text {w }}$	2553								
VR	0.372								

Configuration Characteristics

Minimum maneuver lanes, N_{WL}	2 lc	Minimum weaving lane changes, $\mathrm{LC}_{\mathrm{MIN}}$	Ic / h
Interchange density, ID	$0.7 \mathrm{int} / \mathrm{mi}$	Weaving lane changes, LC_{w}	Ic / h
Minimum RF lane changes, $\mathrm{LC}_{\mathrm{RF}}$	$1 \mathrm{lc} / \mathrm{pC}$	Non-weaving lane changes, $\mathrm{LC}_{\mathrm{NW}}$	Ic / h
Minimum FR lane changes, $\mathrm{LC}_{\mathrm{FR}}$	$1 \mathrm{lc} / \mathrm{pc}$	Total lane changes, $\mathrm{LC}_{\mathrm{ALL}}$	Ic / h
Minimum RR lane changes, $\mathrm{LC}_{\mathrm{RR}}$	$\mathrm{IC} / \mathrm{pC}$	Non-weaving venicle index, I_{NW}	

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment flow rate, v
Weaving segment capacity, c_{w}
Weaving segment v / c ratio
Weaving segment density, D
Level of Service, LOS

$6775 \mathrm{veh} / \mathrm{h}$
$6357 \mathrm{veh} / \mathrm{h}$
1.066
$\mathrm{pc} / \mathrm{milln}$
F

Weaving intensity factor, W	mph
Weaving segment speed, S	mph
Average weaving speed, S_{W}	mph
Average non-weaving speed, S_{NW}	6368 ft
Maximum weaving length, $\mathrm{L}_{\mathrm{MAX}}$	

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
b. For volumes that exceed the weaving segment capacity, the level of service is "F".

