|                                                                                                                             |                                                            | F                                                | REEWAY                                          | WEAV                     | ING WOF                                                                                                                   | RKSHEE                                                                                                            | Г                         |               |                   |  |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------|---------------|-------------------|--|
| Genera                                                                                                                      | Informatio                                                 | on                                               |                                                 | Site Information         |                                                                                                                           |                                                                                                                   |                           |               |                   |  |
| Analyst<br>Agency/Con<br>Date Perforr<br>Analysis Tin                                                                       | npany<br>ned<br>ne Period                                  | AECON<br>AM                                      | Λ                                               |                          | Freeway/Dir<br>Weaving Seg<br>Analysis Yea                                                                                | Freeway/Dir of Travel I-95 NB<br>Weaving Segment Location Seg 1-Bet Copans & Sample<br>Analysis Year 2020 Build 2 |                           |               |                   |  |
| Project Dese                                                                                                                | cription SW 10th                                           | n Street SIMR                                    |                                                 |                          |                                                                                                                           |                                                                                                                   |                           |               |                   |  |
| Inputs                                                                                                                      |                                                            |                                                  |                                                 |                          |                                                                                                                           |                                                                                                                   |                           |               |                   |  |
| Weaving configurationOne-SidedWeaving number of lanes, N4Weaving segment length, Ls2380ftFreeway free-flow speed, FFS70 mph |                                                            |                                                  |                                                 |                          | Segment type Fre<br>Freeway minimum speed, S <sub>MIN</sub><br>Freeway maximum capacity, C <sub>IFL</sub><br>Terrain type |                                                                                                                   |                           |               |                   |  |
| Convers                                                                                                                     | sions to po                                                | /h Unde                                          | r Base Co                                       | ondition                 | s                                                                                                                         |                                                                                                                   | 1                         | Ĩ             | -                 |  |
|                                                                                                                             | V (veh/h)                                                  | PHF                                              | Truck (%)                                       | RV (%)                   | Ε <sub>Τ</sub>                                                                                                            | E <sub>R</sub>                                                                                                    | f <sub>HV</sub>           | fp            | v (pc/h)          |  |
| V <sub>FF</sub>                                                                                                             | 4565                                                       | 0.95                                             | 3                                               | 0                        | 1.5                                                                                                                       | 1.2                                                                                                               | 0.985                     | 1.00          | 4877              |  |
| V <sub>RF</sub>                                                                                                             | 355                                                        | 0.92                                             | 2                                               | 0                        | 1.5                                                                                                                       | 1.2                                                                                                               | 0.990                     | 1.00          | 390               |  |
| V <sub>FR</sub>                                                                                                             | 800                                                        | 0.92                                             | 2                                               | 0                        | 1.5                                                                                                                       | 1.2                                                                                                               | 0.990                     | 1.00          | 878               |  |
| V <sub>RR</sub>                                                                                                             | 0                                                          | 0.95                                             | 0                                               | 0                        | 1.5                                                                                                                       | 1.2                                                                                                               | 1.000                     | 1.00          | 0                 |  |
| V <sub>NW</sub>                                                                                                             | 4877                                                       |                                                  | •                                               | •                        | -                                                                                                                         |                                                                                                                   | -                         | V =           | 6145              |  |
| V <sub>W</sub>                                                                                                              | 1268                                                       |                                                  |                                                 |                          |                                                                                                                           |                                                                                                                   |                           | -             |                   |  |
| VR                                                                                                                          | 0.206                                                      |                                                  |                                                 |                          |                                                                                                                           |                                                                                                                   |                           |               |                   |  |
| Configu                                                                                                                     | ration Cha                                                 | racterist                                        | ics                                             |                          | •                                                                                                                         |                                                                                                                   |                           |               |                   |  |
| Minimum m                                                                                                                   | aneuver lanes, N                                           | N <sub>WL</sub>                                  |                                                 | 2 lc                     | Minimum we                                                                                                                | aving lane cl                                                                                                     | nanges, LC <sub>MIN</sub> | I             | 1268 lc/h         |  |
| Interchange                                                                                                                 | density, ID                                                |                                                  |                                                 | 0.7 int/mi               | Weaving lane changes, LC <sub>w</sub> 1703 lc                                                                             |                                                                                                                   |                           |               |                   |  |
| Minimum R                                                                                                                   | F lane changes,                                            | LC <sub>RF</sub>                                 |                                                 | 1 lc/pc                  | Non-weaving lane changes, LC <sub>NW</sub> 1                                                                              |                                                                                                                   |                           |               |                   |  |
| Minimum Fl                                                                                                                  | R lane changes,                                            | LC <sub>FR</sub>                                 |                                                 | 1 lc/pc                  | Total lane ch                                                                                                             | nanges, LC <sub>ALI</sub>                                                                                         | L                         |               | 3227 lc/h         |  |
| Minimum R                                                                                                                   | R lane changes,                                            | LC <sub>RR</sub>                                 |                                                 | lc/pc                    | Non-weaving                                                                                                               | g vehicle inde                                                                                                    | ex, I <sub>NW</sub>       |               | 813               |  |
| Weavin                                                                                                                      | g Segment                                                  | Speed,                                           | Density, I                                      | _evel of                 | Service,                                                                                                                  | and Cap                                                                                                           | oacity                    |               |                   |  |
| Weaving se<br>Weaving se                                                                                                    | gment flow rate,<br>gment capacity,                        | v<br>c <sub>w</sub>                              |                                                 | 6061 veh/h<br>8788 veh/h | Weaving inte<br>Weaving seg                                                                                               | ensity factor,<br>gment speed                                                                                     | W<br>, S                  |               | 0.287<br>54.3 mph |  |
| Weaving se                                                                                                                  | gment v/c ratio                                            |                                                  |                                                 | 0.690                    | Average wea                                                                                                               | aving speed,                                                                                                      | Sw                        |               | 57.7 mph          |  |
| Weaving se                                                                                                                  | gment density, [                                           | )                                                | 28                                              | 3.3 pc/mi/ln             | Average nor                                                                                                               | n-weaving spo                                                                                                     | eed, S <sub>NW</sub>      |               | 53.5 mph          |  |
| Level of Sei                                                                                                                | VICE, LOS                                                  |                                                  |                                                 | D                        | Maximum weaving length, L <sub>MAX</sub> 4601 ft                                                                          |                                                                                                                   |                           |               |                   |  |
| <b>Notes</b><br>a. Weaving s<br>Chapter 13, "<br>b. For volume                                                              | egments longer th<br>Freeway Merge a<br>es that exceed the | nan the calcula<br>nd Diverge Se<br>weaving segr | ted maximum le<br>gments".<br>nent capacity, th | ength should l           | be treated as is rvice is "F".                                                                                            | solated merge                                                                                                     | and diverge ar            | eas using the | procedures of     |  |

HCS 2010<sup>TM</sup> Version 6.90 Generated: 6/18/2020 12:37 AM

|                                                   | BASIC F             | REEWAY SE        | GMENTS WORKSHEET                               |                                     |                                |
|---------------------------------------------------|---------------------|------------------|------------------------------------------------|-------------------------------------|--------------------------------|
|                                                   |                     |                  |                                                |                                     |                                |
| General Information                               |                     |                  | Site Information                               |                                     |                                |
| Analyst                                           |                     |                  | Highway/Direction of Travel                    | I-95 NB<br>Sea 2-Bi                 | et Off & On from               |
| Agency or Company                                 | AECOM               |                  | From/To                                        | Sample                              |                                |
| Date Performed<br>Analysis Time Period            | AM                  |                  | Jurisdiction<br>Analysis Year                  | 2020 Bu                             | ild 2                          |
| Project Description SW 10                         | th Street SIMR      |                  |                                                |                                     |                                |
| ✓ Oper.(LOS                                       | 5)                  |                  | Des.(N)                                        | Pla                                 | nning Data                     |
| Flow Inputs                                       |                     |                  |                                                |                                     |                                |
| Volume, V<br>AADT                                 | 4920                | veh/h<br>veh/dav | Peak-Hour Factor, PHF<br>%Trucks and Buses, P- | 0.95<br>.3                          |                                |
| Peak-Hr Prop. of AADT K                           |                     | Voli/day         | %RVs P_                                        | 0                                   |                                |
| Peak-Hr Direction Prop, D                         |                     |                  | General Terrain:                               | Level                               |                                |
| DDHV = AADT x K x D                               |                     | veh/h            | Grade % Length                                 | mi                                  |                                |
|                                                   |                     |                  | Up/Down %                                      |                                     |                                |
| Calculate Flow Adjust                             | ments               |                  |                                                |                                     |                                |
| f <sub>p</sub>                                    | 1.00                |                  | E <sub>R</sub>                                 | 1.2                                 |                                |
| Ε <sub>T</sub>                                    | 1.5                 |                  | $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$   | 0.985                               |                                |
| Speed Inputs                                      |                     |                  | Calc Speed Adj and FF                          | S                                   |                                |
| Lane Width                                        |                     | ft               |                                                |                                     |                                |
| Rt-Side Lat. Clearance                            |                     | ft               | f <sub>LW</sub>                                |                                     | mph                            |
| Number of Lanes, N                                | 3                   |                  | f <sub>LC</sub>                                |                                     | mph                            |
| Total Ramp Density, TRD                           |                     | ramps/mi         | TRD Adjustment                                 |                                     | mph                            |
| FFS (measured)                                    | 70.0                | mph              | FFS                                            | 70.0                                | mph                            |
| Base free-flow Speed, BFFS                        | 3                   | mph              |                                                |                                     | ·                              |
| LOS and Performance                               | Measures            |                  | Design (N)                                     |                                     |                                |
| Operational (LOS)                                 |                     |                  | Design (N)                                     |                                     |                                |
|                                                   | 1 x f x f \ 4750    | n e /h /lin      | Design LOS                                     |                                     |                                |
| $v_p = (v \text{ or } D D \Pi v) / (P \Pi F X N)$ | $(X_{HV} X_p) 7752$ | pc/n/in          | v <sub>p</sub> = (V or DDHV) / (PHF x N x      | (f <sub>HV</sub> x f <sub>p</sub> ) | pc/h/ln                        |
| S<br>D=v / C                                      | 66.5                | mpn              | S                                              |                                     | mph                            |
| $D = V_p / S$                                     | 26.4                | pc/mi/ln         | $D = v_p / S$                                  |                                     | pc/mi/ln                       |
| LUS                                               | D                   |                  | Required Number of Lanes, N                    |                                     |                                |
| Glossary                                          |                     |                  | Factor Location                                |                                     |                                |
| N - Number of lanes                               | S - Speed           |                  |                                                |                                     |                                |
| V - Hourly volume                                 | D - Density         |                  | $E_{R}$ - Exhibits 11-10, 11-12                | 10                                  | T <sub>LW</sub> - Exhibit 11-8 |
| v <sub>p</sub> - Flow rate                        | FFS - Free-flow     | speed            | $E_{T}$ - Exhibits 11-10, 11-11, 11            | -13                                 | T <sub>LC</sub> - Exhibit 11-9 |
| LOS - Level of service                            | BFFS - Base fre     | e-flow speed     | r <sub>p</sub> - Page 11-18                    |                                     | I'RD - Page 11-11              |
| DDHV - Directional design h                       | our volume          |                  | LOS, S, FFS, v <sub>p</sub> - Exhibits 11-     | 2, 11-3                             |                                |
|                                                   |                     |                  |                                                |                                     |                                |

Copyright  $\ensuremath{\textcircled{O}}$  2016 University of Florida, All Rights Reserved

HCS 2010<sup>TM</sup> Version 6.90

Generated: 6/18/2020 12:42 AM





| apacity Check (see Exhibits 25-3 and 25-7):                 | Maximum                                                                                                                                                                                                             | Actual                                                                                                                                                                                                                        | V/c                                                                                                                                                                                                                                                | LOS F?                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| y downstream of ramp (assume 70 mph free-flow speed) =      | 9,600                                                                                                                                                                                                               | 6,560                                                                                                                                                                                                                         | 0.68                                                                                                                                                                                                                                               | No                                                                                                                                                                                                                                                                |
| <i>y</i> upstream of ramp (assume 70 mph free-flow speed) = | 7,200                                                                                                                                                                                                               | 5,257                                                                                                                                                                                                                         | 0.73                                                                                                                                                                                                                                               | No                                                                                                                                                                                                                                                                |
| pacity on On-Ramp (assume 45 mph free-flow speed) =         | 2,100                                                                                                                                                                                                               | 1,297                                                                                                                                                                                                                         | 0.62                                                                                                                                                                                                                                               | No                                                                                                                                                                                                                                                                |
|                                                             | pacity Check (see Exhibits 25-3 and 25-7):<br>y downstream of ramp (assume 70 mph free-flow speed) =<br>y upstream of ramp (assume 70 mph free-flow speed) =<br>pacity on On-Ramp (assume 45 mph free-flow speed) = | pacity Check (see Exhibits 25-3 and 25-7):Maximumy downstream of ramp (assume 70 mph free-flow speed) =9,600y upstream of ramp (assume 70 mph free-flow speed) =7,200pacity on On-Ramp (assume 45 mph free-flow speed) =2,100 | pacity Check (see Exhibits 25-3 and 25-7):MaximumActualy downstream of ramp (assume 70 mph free-flow speed) =9,6006,560y upstream of ramp (assume 70 mph free-flow speed) =7,2005,257pacity on On-Ramp (assume 45 mph free-flow speed) =2,1001,297 | pacity Check (see Exhibits 25-3 and 25-7):MaximumActualV/cy downstream of ramp (assume 70 mph free-flow speed) =9,6006,5600.68y upstream of ramp (assume 70 mph free-flow speed) =7,2005,2570.73pacity on On-Ramp (assume 45 mph free-flow speed) =2,1001,2970.62 |

| RAMPS AND RAMP JUNCTIONS WORKSHEET                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                              |                 |                                      |                    |                                         |                                                   |                     |                                    |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------|-----------------|--------------------------------------|--------------------|-----------------------------------------|---------------------------------------------------|---------------------|------------------------------------|
| General Info                                                                                      | rmation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                              | Site Infor      | mation                               |                    |                                         |                                                   |                     |                                    |
| Analyst                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Fr                           | eeway/Dir of Tr | ravel I-95 NB                        |                    |                                         |                                                   |                     |                                    |
| Agency or Compan                                                                                  | y AEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ОМ                  | Ju                           | inction         |                                      | Seg 4              | -On from Ex                             | (p                                                |                     |                                    |
| Date Performed                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | Ju                           | irisdiction     |                                      | Ū                  |                                         |                                                   |                     |                                    |
| Analysis Time Peri                                                                                | od AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | Ar                           | nalysis Year    |                                      | 2020               | Build 2                                 |                                                   |                     |                                    |
| Project Description                                                                               | SW 10th Stree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t SIMR              |                              |                 |                                      |                    |                                         |                                                   |                     |                                    |
| Inputs                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                              |                 |                                      |                    |                                         |                                                   |                     |                                    |
| LInstream Adi Ram                                                                                 | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Freeway Num         | ber of Lanes, N              | 4               |                                      |                    |                                         |                                                   | Downstre            | am Adi                             |
|                                                                                                   | ٢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ramp Numbe          | r of Lanes, N                | 1               |                                      |                    |                                         |                                                   | Ramp                |                                    |
| Yes C                                                                                             | Dn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Acceleration I      | ane Length L                 | 1500            |                                      |                    |                                         |                                                   |                     |                                    |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Deceloration        | ano Longth L                 | 1000            |                                      |                    |                                         |                                                   | I Yes               | □ On                               |
| 🗹 No 🛛 🗆 C                                                                                        | Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                              |                 |                                      |                    |                                         |                                                   | 🗌 No                | ✓ Off                              |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Freeway Volu        | me, V <sub>F</sub>           | 6140            |                                      |                    |                                         |                                                   | <b>.</b> _          | 2050 <del>G</del>                  |
| $L_{up} = ft$                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ramp Volume         | e, V <sub>R</sub>            | 690             |                                      |                    |                                         |                                                   | └down <sup>—</sup>  | 2950 11                            |
|                                                                                                   | //_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Freeway Free        | -Flow Speed, S <sub>FF</sub> | 70.0            |                                      |                    |                                         |                                                   | V_ =                | 140 veb/b                          |
| v <sub>u</sub> – ven/                                                                             | 'n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ramp Free-Fl        | ow Speed, S <sub>FR</sub>    | 50.0            |                                      |                    |                                         |                                                   | *D                  | 140 Ven/11                         |
| Conversion                                                                                        | to pc/h Un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | der Base            | Conditions                   |                 |                                      |                    |                                         |                                                   | <b>I</b>            |                                    |
| (pc/h)                                                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PHF                 | Terrain                      | %Truck          | %Rv                                  |                    | f <sub>LN/</sub>                        | f                                                 | v = V/PHF           | x f <sub>uv</sub> x f <sub>n</sub> |
|                                                                                                   | (Veh/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.05                |                              |                 |                                      |                    |                                         | р<br>1 00                                         |                     | ΠV μ                               |
| Freeway                                                                                           | 6140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.95                | Level                        | 3               | 0                                    |                    | ).985                                   | 1.00                                              | 6                   | 560                                |
| Ramp                                                                                              | 690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.92                | Level                        | 2               | 0                                    | (                  | ).990                                   | 1.00                                              | · · · · · ·         | '57                                |
| OpStream<br>Down Stream                                                                           | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00                | 1                            |                 | 0                                    |                    | 000                                     | 4.00                                              | <u> </u>            | <b>F A</b>                         |
| DownStream                                                                                        | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.92<br>Marga Araga | Level                        | Ζ               | 0                                    |                    | J.990                                   |                                                   |                     | 104                                |
| Estimation                                                                                        | of v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | werge Areas         |                              |                 | Estimation of v                      |                    |                                         |                                                   |                     |                                    |
|                                                                                                   | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                              |                 | LStimat                              |                    | 12                                      |                                                   |                     |                                    |
|                                                                                                   | $V_{12} = V_{F}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (P <sub>FM</sub> )  |                              |                 |                                      |                    | $V_{12} = 1$                            | V <sub>P</sub> + (V <sub>F</sub> - V <sub>P</sub> | )P <sub>ED</sub>    |                                    |
| L <sub>EQ</sub> =                                                                                 | (Equ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ation 13-6 o        | r 13-7)                      |                 | L=0 =                                |                    | 12                                      | (Equation 13-                                     | 12 or 13-1          | 3)                                 |
| P <sub>FM</sub> =                                                                                 | 0.123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | using Equat         | tion (Exhibit 13-6)          |                 | EQ<br>P =                            |                    |                                         | using Equatio                                     | n (Exhibit 1?       | -7)                                |
| V <sub>12</sub> =                                                                                 | 808 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c/h                 |                              |                 | · FD<br>V -                          |                    |                                         | no/h                                              |                     | , , ,                              |
|                                                                                                   | 2876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pc/h (Equati        | on 13-14 or 13-              |                 | v <sub>12</sub> –                    |                    |                                         | pc/m                                              | 0.4.4.40.4          | -                                  |
| v 3 01 v av34                                                                                     | 17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                              |                 | v <sub>3</sub> 01 v <sub>av34</sub>  |                    | 700 "0 "                                | pc/n (Equation 1                                  | 3-14 Of 13-1        | ()                                 |
| Is $V_3$ or $V_{av34} > 2,7$                                                                      | 700 pc/h? 🗹 Ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s 🗌 No              |                              |                 | is v <sub>3</sub> or v <sub>av</sub> | <sub>34</sub> > 2, | /00 pc/n?                               | ∐Yes ∐No                                          |                     |                                    |
| Is $V_3$ or $V_{av34} > 1.5$                                                                      | 5*V <sub>12</sub> /2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s 🗌 No              |                              |                 | Is V <sub>3</sub> or V <sub>av</sub> | <sub>34</sub> > 1. | 5*V <sub>12</sub> /2                    | Yes No                                            |                     |                                    |
| If Yes V., =                                                                                      | 2624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pc/h (Equati        | on 13-16, 13-                |                 | If Yes,V <sub>12a</sub> =            | =                  | 1                                       | pc/h (Equation                                    | ∩ 13-16, 13         | 3-18, or                           |
| 11 1 00, 1 12a                                                                                    | 18, or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13-19)              |                              |                 |                                      |                    | 1.                                      | 3-19)                                             |                     |                                    |
| Capacity Ch                                                                                       | ecks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                              | <b>v</b>        | Capacit                              | y Ch               | iecks                                   |                                                   |                     |                                    |
|                                                                                                   | Actual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                   | Capacity                     | LOS F?          |                                      |                    | Actual                                  | Car                                               | oacity              | LOS F?                             |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                              |                 | V <sub>F</sub>                       |                    |                                         | Exhibit 13-8                                      | 3                   |                                    |
| Vro                                                                                               | 7317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Exhibit 13-8        |                              | No              | $V_{FO} = V_{F}$                     | - V <sub>R</sub>   |                                         | Exhibit 13-8                                      | 8                   |                                    |
| FU                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                              |                 | V                                    |                    |                                         | Exhibit 13                                        | -                   |                                    |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                              |                 | <sup>™</sup> R                       |                    |                                         | 10                                                |                     |                                    |
| Flow Enterir                                                                                      | ng Merge In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | fluence A           | lrea                         |                 | Flow En                              | teri               | ng Dive                                 | rge Influen                                       | ce Area             |                                    |
|                                                                                                   | Actual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Max                 | Desirable                    | Violation?      |                                      | _                  | Actual                                  | Max Desi                                          | rable               | Violation?                         |
| V <sub>R12</sub>                                                                                  | 3695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Exhibit 13-8        | 4600:All                     | No              | V <sub>12</sub>                      |                    |                                         | Exhibit 13-8                                      |                     |                                    |
| Level of Ser                                                                                      | vice Detern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nination (          | if not F)                    |                 | Level of                             | f Ser              | vice De                                 | terminatio                                        | <u>n (if not</u>    | F)                                 |
| D <sub>R</sub> = 5.475 + 0.00734 v <sub>R</sub> + 0.0078 V <sub>12</sub> - 0.00627 L <sub>A</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                              |                 |                                      | D <sub>R</sub> =   | 4.252 + 0                               | .0086 V <sub>12</sub> - 0                         | .009 L <sub>D</sub> |                                    |
| D <sub>R</sub> = 26.2 (pc/                                                                        | /mi/ln)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                              |                 | D <sub>R</sub> = (p                  | oc/mi/             | ′ln)                                    |                                                   |                     |                                    |
| LOS = C (Exhib                                                                                    | it 13-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                              |                 | LOS = (E                             | Exhibi             | it 13-2)                                |                                                   |                     |                                    |
| Speed Deter                                                                                       | mination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                              |                 | Speed L                              | Dete               | rminatio                                | on                                                |                     |                                    |
| M <sub>0</sub> = 0.328 /⊑                                                                         | vihit 13-11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                              |                 | D,= (E                               | xhibit             | 13-12)                                  | · <del>-</del>                                    |                     |                                    |
| S - 60.0 - 1                                                                                      | $(\Box_{V} \cup \Box_{V} \cup U} \cup \Box_{V} \cup U} \cup \Box_{V} \cup \Box_{V} \cup \Box_{V} \cup U} \cup \Box_{V} \cup \Box_{V} \cup \Box_{V} \cup U} \cup \Box_{V} \cup \Box_{V} \cup U} \cup U \cup$ |                     |                              |                 | S_= m                                | nh (⊑v             | (hibit 13-12)                           |                                                   |                     |                                    |
| 9 <sub>R</sub> - 60.8 mpr                                                                         | i (Exnidit 13-11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                              |                 | S =                                  | P'' (∟^<br>nh (⊏   | (hibit 12, 10)                          |                                                   |                     |                                    |
| 5 <sub>0</sub> = 65.7 mpł                                                                         | n (Exhibit 13-11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                              |                 | C₀− m                                | hu (⊏x             | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) |                                                   |                     |                                    |
| S = 63.0 mpł                                                                                      | n (Exhibit 13-13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                              |                 | S= m                                 | ph (Ex             | (hibit 13-13)                           |                                                   |                     |                                    |

|                                     |                                                                                                   | RAMP               | S AND RAM                     | P JUNCTI        | ONS WO                               | RKS                 | HEET                   |                                      |                      |                            |
|-------------------------------------|---------------------------------------------------------------------------------------------------|--------------------|-------------------------------|-----------------|--------------------------------------|---------------------|------------------------|--------------------------------------|----------------------|----------------------------|
| General Infor                       | rmation                                                                                           |                    |                               | Site Infor      | mation                               |                     |                        |                                      |                      |                            |
| Analyst                             |                                                                                                   |                    | Fre                           | eeway/Dir of Tr | avel                                 | I-95 NE             | 3                      |                                      |                      |                            |
| Agency or Company                   | AECO                                                                                              | MC                 | Ju                            | nction          |                                      | Seg 5-              | Off to Exp f           | rom GPL                              |                      |                            |
| Date Performed                      |                                                                                                   |                    | Ju                            | risdiction      |                                      | -                   |                        |                                      |                      |                            |
| Analysis Time Perio                 | d AM                                                                                              |                    | An                            | alysis Year     |                                      | 2020 B              | uild 2                 |                                      |                      |                            |
| Project Description                 | SW 10th Stree                                                                                     | t SIMR             |                               |                 |                                      |                     |                        |                                      |                      |                            |
| Inputs                              |                                                                                                   |                    |                               |                 |                                      |                     |                        |                                      | -                    |                            |
| Upstream Adj F                      | Ramp                                                                                              | Freeway Nun        | nber of Lanes, N              | 4               |                                      |                     |                        |                                      | Downstrea            | am Adj                     |
|                                     |                                                                                                   | Ramp Numbe         | er of Lanes, N                | 1               |                                      |                     |                        |                                      | Ramp                 | ,                          |
| Yes 🖸                               | ✓ On                                                                                              | Acceleration       | Lane Length, L                |                 |                                      |                     |                        |                                      |                      |                            |
|                                     |                                                                                                   | Deceleration       | lane Length L_                | 200             |                                      |                     |                        |                                      |                      |                            |
|                                     |                                                                                                   |                    |                               |                 |                                      |                     |                        |                                      | 🗹 No                 | Off                        |
|                                     | NEO #                                                                                             | Fieeway voit       | ine, v <sub>F</sub>           | 0030            |                                      |                     |                        |                                      | I. =                 | ft                         |
| L <sup>up</sup> 28                  | 100 IL                                                                                            | Ramp Volum         | e, V <sub>R</sub>             | 140             |                                      |                     |                        |                                      | down                 |                            |
| V = 60                              | 0 veh/h                                                                                           | Freeway Free       | e-Flow Speed, S <sub>FF</sub> | 70.0            |                                      |                     |                        |                                      | V <sub>D</sub> =     | veh/h                      |
|                                     | o ven/n                                                                                           | Ramp Free-F        | low Speed, S <sub>FR</sub>    | 45.0            |                                      |                     |                        |                                      |                      |                            |
| Conversion t                        | o pc/h Und                                                                                        | der Base           | Conditions                    |                 |                                      |                     |                        |                                      |                      |                            |
| (no/h)                              | V                                                                                                 | DUE                | Torrain                       | % Truck         | 0/ Dv                                |                     | f                      | f                                    |                      | vfvf                       |
| (рслі)                              | (Veh/hr)                                                                                          | ГШ                 | Terrain                       | /011UCK         | /0INV                                |                     | 'HV                    | 'p                                   | v – v/i i ii         | <b>^ '</b> HV <b>^ '</b> p |
| Freeway                             | 6830                                                                                              | 0.95               | Level                         | 3               | 0                                    | 0.                  | 985                    | 1.00                                 | 72                   | 97                         |
| Ramp                                | 140                                                                                               | 0.92               | Level                         | 2               | 0                                    | 0.                  | 990                    | 1.00                                 | 1:                   | 54                         |
| UpStream                            | 690                                                                                               | 0.92               | Level                         | 2               | 0                                    | 0.                  | 990                    | 1.00                                 | 75                   | 57                         |
| DownStream                          |                                                                                                   |                    |                               |                 |                                      |                     |                        |                                      |                      |                            |
|                                     | _                                                                                                 | Merge Areas        |                               |                 |                                      | _                   |                        | iverge Areas                         |                      |                            |
| Estimation of                       | f v <sub>12</sub>                                                                                 |                    |                               |                 | Estimat                              | ion o               | of v <sub>12</sub>     |                                      |                      |                            |
|                                     | $V_{12} = V_{E}$                                                                                  | (P <sub>EM</sub> ) |                               |                 |                                      |                     | V <sub>12</sub> =      | V <sub>P</sub> + (V <sub>F</sub> - ) |                      |                            |
| L <sub>FO</sub> =                   | (Equa                                                                                             | tion 13-6 or       | 13-7)                         |                 | Leo =                                |                     | 12                     | Equation 13                          | -12 or 13-13         | )                          |
| -EQ<br>P =                          |                                                                                                   | Equation (         | Evhibit $13_6$                |                 | -EQ<br>P =                           |                     | 0.                     | 136 Using E                          | nuation (Evhi        | /<br>hit 13 7)             |
| 'FM                                 | using                                                                                             |                    |                               |                 | 'FD                                  |                     | 0.0                    | +50 using L                          |                      | bit 13-7)                  |
| v <sub>12</sub> -                   | pc/n                                                                                              |                    |                               |                 | v <sub>12</sub> -                    |                     | 32                     | 68 pc/n                              |                      |                            |
| v <sub>3</sub> or v <sub>av34</sub> | pc/h (                                                                                            | Equation 13        | 3-14 or 13-17)                |                 | v <sub>3</sub> or v <sub>av34</sub>  |                     | 20                     | 14 pc/h (Eq                          | uation 13-14         | l or 13-17)                |
| Is $V_3$ or $V_{av34} > 2,70$       | 00 pc/h? 🗌 Ye                                                                                     | s 🗌 No             |                               |                 | Is V <sub>3</sub> or V <sub>av</sub> | <sub>34</sub> > 2,7 | '00 pc/h?              | Yes 🗹 No                             | )                    |                            |
| Is $V_3$ or $V_{av34} > 1.5$        | * V <sub>12</sub> /2  Yes                                                                         | s 🗌 No             |                               |                 | Is V <sub>3</sub> or V <sub>av</sub> | <sub>34</sub> > 1.5 | •*V <sub>12</sub> /2 [ | Yes 🗹 No                             | )                    |                            |
| If Yes,V <sub>122</sub> =           | pc/h (                                                                                            | Equation 13        | 8-16, 13-18, or               |                 | If Yes,V <sub>120</sub> =            | =                   | р                      | c/h (Equatio                         | n 13-16, 13-         | 18, or 13-                 |
|                                     | 13-19)                                                                                            |                    |                               |                 | <sup>7</sup> 12a                     | - 01                | 19                     | 9)                                   |                      |                            |
| Capacity Che                        | ecks                                                                                              | 1                  |                               |                 | Capacity Checks                      |                     |                        |                                      |                      |                            |
|                                     | Actual                                                                                            | (                  | Capacity                      | LOS F?          |                                      |                     | Actual                 | (                                    | Capacity             | LOS F?                     |
|                                     |                                                                                                   |                    |                               |                 | V <sub>F</sub>                       |                     | 7297                   | Exhibit 13                           | -8 9600              | No                         |
| V <sub>FO</sub>                     |                                                                                                   | Exhibit 13-8       |                               |                 | $V_{FO} = V_{F}$                     | - V <sub>R</sub>    | 7143                   | Exhibit 13                           | -8 9600              | No                         |
|                                     |                                                                                                   |                    |                               |                 | V <sub>R</sub>                       |                     | 154                    | Exhibit 13-                          | 10 2100              | No                         |
| Flow Enterin                        | a Merae In                                                                                        | fluence /          | Irea                          | I               |                                      | nterin              | a Dive                 | rae Influe                           | nce Area             |                            |
|                                     | Actual                                                                                            | Max                | Desirable                     | Violation?      |                                      |                     | Actual                 | Max Desira                           | able                 | Violation?                 |
| V=                                  | , lotadi                                                                                          | Exhibit 13-8       | Doolinabio                    | violation.      | V.                                   |                     | 3268                   | Evhibit 13-8                         | 4400·AII             | No                         |
|                                     | l<br>vice Detern                                                                                  | ninotion           | (if not E)                    |                 |                                      |                     |                        | torminoti                            | n /if not            |                            |
| Level of Serv                       | nce Detern                                                                                        |                    |                               |                 | Leveror                              | Ser                 |                        |                                      |                      | <b>_</b> )                 |
| $D_{R} = 5.475 + 0$                 | D <sub>R</sub> = 5.475 + 0.00734 v <sub>R</sub> + 0.0078 V <sub>12</sub> - 0.00627 L <sub>A</sub> |                    |                               |                 |                                      | $D_R = 2$           | 1.252 + 0              | .0086 V <sub>12</sub> - (            | 0.009 L <sub>D</sub> |                            |
| D <sub>R</sub> = (pc/mi/lr          | <sub>R</sub> = (pc/mi/ln)                                                                         |                    |                               |                 |                                      |                     | /mi/ln)                |                                      |                      |                            |
| LOS = (Exhibit                      | 13-2)                                                                                             |                    |                               |                 | LOS = D                              | (Exhil              | bit 13-2)              |                                      |                      |                            |
| Speed Deterr                        | mination                                                                                          |                    |                               |                 | Speed L                              | Deter               | minatic                | n                                    |                      |                            |
| Ma = (Evibit 1                      | - (Evibit 12 11)                                                                                  |                    |                               |                 |                                      | 312 (F              | xhibit 13-             | 12)                                  |                      |                            |
|                                     | $\sim$ 11/                                                                                        |                    |                               |                 | S_= 6'                               | ,<br>13 mnh         | (Exhibit               | ,<br>13-12)                          |                      |                            |
| $C_R$ - mpn (Exr                    | IIDIL 13-11)                                                                                      |                    |                               |                 | $S_R^-$ 61.3 mph (Exhibit 13-12)     |                     |                        |                                      |                      |                            |
| $S_0 = mph(Exh$                     | 13-11)                                                                                            |                    |                               |                 | $0^{-}$ 12                           | ∠.o mpn             |                        | 13-12)                               |                      |                            |
| S = mpn (Exr                        | 13-13) iti 13-13                                                                                  |                    |                               |                 | 5 = 67                               | (.2 mph             | (Exhibit               | 13-13)                               |                      |                            |
| yright © 2016 Universi              | ty of Florida, All R                                                                              | ights Reserved     |                               |                 | HCS2010 <sup>™</sup>                 | <sup>M</sup> Versi  | on 6.90                |                                      | Generated: 6         | 6/18/2020 1:08             |

|                                                                                                                                       | BASIC F                                                                       | REEWAY SE                          | GMENTS WORKSHEET                                                                                                                                                    |                                    |                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------|
| General Information                                                                                                                   |                                                                               |                                    | Site Information                                                                                                                                                    |                                    |                                                                                      |
| Analyst<br>Agency or Company<br>Date Performed<br>Analysis Time Period                                                                | AECOM                                                                         |                                    | Highway/Direction of Travel<br>From/To<br>Jurisdiction                                                                                                              | I-95 NB<br>Seg 6-So<br>2020 Bu     | outh of Off to 10th                                                                  |
| Project Description SW 10t                                                                                                            | h Street SIMR                                                                 |                                    |                                                                                                                                                                     | 2020 Du                            |                                                                                      |
| ✓ Oper.(LOS)                                                                                                                          | )                                                                             |                                    | Des.(N)                                                                                                                                                             | Pla                                | nning Data                                                                           |
| Flow Inputs                                                                                                                           |                                                                               |                                    |                                                                                                                                                                     |                                    | <u> </u>                                                                             |
| Volume, V<br>AADT<br>Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D                                                            | 6690                                                                          | veh/h<br>veh/day                   | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub><br>%RVs, P <sub>R</sub><br>General Terrain:<br>Grade % Length                                            | 0.95<br>3<br>0<br>Level<br>mi      |                                                                                      |
|                                                                                                                                       |                                                                               | ven/n                              | Up/Down %                                                                                                                                                           | 1111                               |                                                                                      |
| Calculate Flow Adjustr                                                                                                                | nents                                                                         |                                    |                                                                                                                                                                     |                                    |                                                                                      |
| f <sub>p</sub>                                                                                                                        | 1.00                                                                          |                                    | E <sub>R</sub>                                                                                                                                                      | 1.2                                |                                                                                      |
| Ε <sub>T</sub>                                                                                                                        | 1.5                                                                           |                                    | $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$                                                                                                                        | 0.985                              |                                                                                      |
| Speed Inputs                                                                                                                          |                                                                               |                                    | Calc Speed Adj and FFS                                                                                                                                              | 6                                  |                                                                                      |
| Lane Width<br>Rt-Side Lat. Clearance<br>Number of Lanes, N<br>Total Ramp Density, TRD<br>FFS (measured)<br>Base free-flow Speed, BFFS | 4<br>70.0                                                                     | ft<br>ft<br>ramps/mi<br>mph<br>mph | f <sub>⊥w</sub><br>f <sub>LC</sub><br>TRD Adjustment<br>FFS                                                                                                         | 70.0                               | mph<br>mph<br>mph<br>mph                                                             |
| LOS and Performance                                                                                                                   | Measures                                                                      |                                    | Design (N)                                                                                                                                                          |                                    |                                                                                      |
| <u>Operational (LOS)</u><br>v <sub>p</sub> = (V or DDHV) / (PHF x N<br>S<br>D = v <sub>p</sub> / S<br>LOS                             | x f <sub>HV</sub> x f <sub>p</sub> ) 1787<br>66.0<br>27.1<br>D                | pc/h/ln<br>mph<br>pc/mi/ln         | Design (N)<br>Design LOS<br>$v_p = (V \text{ or DDHV}) / (PHF x N x)$<br>S<br>D = $v_p / S$<br>Required Number of Lanes, N                                          | f <sub>HV</sub> x f <sub>p</sub> ) | pc/h/ln<br>mph<br>pc/mi/ln                                                           |
| Glossary                                                                                                                              |                                                                               |                                    | Factor Location                                                                                                                                                     |                                    |                                                                                      |
| N - Number of lanes<br>V - Hourly volume<br>v <sub>p</sub> - Flow rate<br>LOS - Level of service<br>DDHV - Directional design ho      | S - Speed<br>D - Density<br>FFS - Free-flow<br>BFFS - Base free<br>our volume | speed<br>ee-flow speed             | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11, 11-<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits 11-2 | 13<br>2, 11-3                      | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-11 |

HCS 2010<sup>TM</sup> Version 6.90

Generated: 6/18/2020 1:11 AM



|                                                                                                                                       | BASIC F                                                                       | REEWAY SE                          | GMENTS WORKSHEET                                                                                                                                                    |                                    |                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------|
| General Information                                                                                                                   |                                                                               |                                    | Site Information                                                                                                                                                    |                                    |                                                                                      |
| Analyst<br>Agency or Company<br>Date Performed                                                                                        | AECOM                                                                         |                                    | Highway/Direction of Travel<br>From/To<br>Jurisdiction                                                                                                              | I-95 NB<br>Seg 8-B                 | et Off & Off Ramps                                                                   |
| Analysis Time Period                                                                                                                  |                                                                               |                                    | Analysis rear                                                                                                                                                       | 2020 Bu                            |                                                                                      |
| Oper (LOS)                                                                                                                            |                                                                               |                                    | Des (N)                                                                                                                                                             | Pla                                | nning Data                                                                           |
| Flow Inputs                                                                                                                           | ,<br>                                                                         |                                    |                                                                                                                                                                     |                                    | innig Data                                                                           |
| Volume, V<br>AADT                                                                                                                     | 5670                                                                          | veh/h<br>veh/day                   | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>                                                                                                          | 0.95<br>3                          |                                                                                      |
| Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D                                                          |                                                                               | veh/h                              | %RVs, P <sub>R</sub><br>General Terrain:<br>Grade % Length<br>Up/Down %                                                                                             | 0<br>Level<br>mi                   |                                                                                      |
| Calculate Flow Adjustr                                                                                                                | nents                                                                         |                                    |                                                                                                                                                                     |                                    |                                                                                      |
| f <sub>ρ</sub><br>Ε <sub>Τ</sub>                                                                                                      | 1.00<br>1.5                                                                   |                                    | E <sub>R</sub><br>f <sub>HV</sub> = 1/[1+P <sub>T</sub> (E <sub>T</sub> - 1) + P <sub>R</sub> (E <sub>R</sub> - 1)]                                                 | 1.2<br>0.985                       |                                                                                      |
| Speed Inputs                                                                                                                          |                                                                               |                                    | Calc Speed Adj and FFS                                                                                                                                              | 6                                  |                                                                                      |
| Lane Width<br>Rt-Side Lat. Clearance<br>Number of Lanes, N<br>Total Ramp Density, TRD<br>FFS (measured)<br>Base free-flow Speed, BFFS | 3<br>70.0                                                                     | ft<br>ft<br>ramps/mi<br>mph<br>mph | f <sub>⊥w</sub><br>f <sub>LC</sub><br>TRD Adjustment<br>FFS                                                                                                         | 70.0                               | mph<br>mph<br>mph<br>mph                                                             |
| LOS and Performance                                                                                                                   | Measures                                                                      |                                    | Design (N)                                                                                                                                                          |                                    |                                                                                      |
| <u>Operational (LOS)</u><br>v <sub>p</sub> = (V or DDHV) / (PHF x N<br>S<br>D = v <sub>p</sub> / S<br>LOS                             | x f <sub>HV</sub> x f <sub>p</sub> )2019<br>62.2<br>32.4<br>D                 | pc/h/ln<br>mph<br>pc/mi/ln         | Design (N)<br>Design LOS<br>$v_p = (V \text{ or DDHV}) / (PHF x N x)$<br>S<br>D = $v_p / S$<br>Required Number of Lanes, N                                          | f <sub>HV</sub> x f <sub>p</sub> ) | pc/h/ln<br>mph<br>pc/mi/ln                                                           |
| Glossary                                                                                                                              |                                                                               |                                    | Factor Location                                                                                                                                                     |                                    |                                                                                      |
| N - Number of lanes<br>V - Hourly volume<br>v <sub>p</sub> - Flow rate<br>LOS - Level of service<br>DDHV - Directional design ho      | S - Speed<br>D - Density<br>FFS - Free-flow<br>BFFS - Base free<br>our volume | speed<br>ee-flow speed             | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11, 11-<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits 11-2 | 13<br>2, 11-3                      | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-11 |

HCS 2010<sup>TM</sup> Version 6.90

Generated: 6/18/2020 1:22 AM

|                                     |                                                           | RAMP                | S AND RAM                     | P JUNCTI        | ONS WO                               | RKS                 | HEET                 |                                      |                                 |                                    |
|-------------------------------------|-----------------------------------------------------------|---------------------|-------------------------------|-----------------|--------------------------------------|---------------------|----------------------|--------------------------------------|---------------------------------|------------------------------------|
| General Infor                       | rmation                                                   |                     |                               | Site Infor      | mation                               |                     |                      |                                      |                                 |                                    |
| Analyst                             |                                                           |                     | Fr                            | eeway/Dir of Tr | avel                                 | I-95 NE             | }                    |                                      |                                 |                                    |
| Agency or Company                   | AEC                                                       | OM                  | Ju                            | nction          |                                      | Seg 9-0             | Off to Hillsb        | oro EB&WB                            |                                 |                                    |
| Date Performed                      | J 0.14                                                    |                     | Ju                            | risdiction      |                                      | 0000 0              |                      |                                      |                                 |                                    |
| Project Description                 | SW/ 10th Stree                                            |                     | AI                            | lalysis real    |                                      | 2020 B              |                      |                                      |                                 |                                    |
| Inputs                              |                                                           |                     |                               |                 |                                      |                     |                      |                                      |                                 |                                    |
|                                     |                                                           | Freeway Num         | her of Lanes N                | 3               |                                      |                     |                      |                                      |                                 |                                    |
| Upstream Adj R                      | lamp                                                      | Ramp Numbe          | ar of Lanes N                 | 1               |                                      |                     |                      |                                      | Downstrea                       | am Adj                             |
| Yes                                 | On                                                        |                     | and Longth                    | I               |                                      |                     |                      |                                      |                                 |                                    |
|                                     |                                                           |                     |                               | 000             |                                      |                     |                      |                                      | Ves 🗹                           | 🖌 On                               |
| I No □                              | Off                                                       |                     |                               | 200             |                                      |                     |                      |                                      | 🗌 No                            | Off                                |
|                                     | 4                                                         | Freeway Volu        | ime, v <sub>F</sub>           | 5670            |                                      |                     |                      |                                      | . =                             | 2100 ft                            |
|                                     | L                                                         | Ramp Volume         | e, V <sub>R</sub>             | 1250            |                                      |                     |                      |                                      | ⁻down                           | 2100 11                            |
| V = v                               | eh/h                                                      | Freeway Free        | e-Flow Speed, S <sub>FF</sub> | 70.0            |                                      |                     |                      |                                      | V <sub>D</sub> =                | 1060 veh/h                         |
|                                     |                                                           | Ramp Free-F         | low Speed, S <sub>FR</sub>    | 45.0            |                                      |                     |                      |                                      |                                 |                                    |
| Conversion t                        | o pc/h Un                                                 | der Base            | Conditions                    |                 |                                      |                     |                      |                                      |                                 |                                    |
| (pc/h)                              | V<br>(Veh/hr)                                             | PHF                 | Terrain                       | %Truck          | %Rv                                  |                     | f <sub>HV</sub>      | f <sub>p</sub>                       | v = V/PHF                       | x f <sub>HV</sub> x f <sub>p</sub> |
| Freeway                             | 5670                                                      | 0.95                | Level                         | 3               | 0                                    | 0.                  | 985                  | 1.00                                 | 60                              | 58                                 |
| Ramp                                | 1250                                                      | 0.92                | Level                         | 2               | 0                                    | 0.                  | 990                  | 1.00                                 | 13                              | 72                                 |
| UpStream                            |                                                           |                     |                               |                 |                                      |                     |                      |                                      |                                 |                                    |
| DownStream                          | 1060                                                      | 0.92                | Level                         | 2               | 0                                    | 0.                  | 990                  | 1.00                                 | 11                              | 64                                 |
| <b>F</b> ationation of              | <b>f</b>                                                  | Merge Areas         |                               |                 | <b>F</b> ation of                    |                     | <u> </u>             | viverge Areas                        |                                 |                                    |
| Estimation of                       | <sup>r v</sup> 12                                         |                     |                               |                 | Estimat                              |                     | <sup>r v</sup> 12    |                                      |                                 |                                    |
|                                     | V <sub>12</sub> = V <sub>F</sub>                          | ( P <sub>FM</sub> ) |                               |                 |                                      |                     | V <sub>12</sub> =    | V <sub>R</sub> + (V <sub>F</sub> - V | ′ <sub>R</sub> )P <sub>FD</sub> |                                    |
| L <sub>EQ</sub> =                   | (Equa                                                     | ation 13-6 or       | 13-7)                         |                 | L <sub>EQ</sub> =                    |                     | (                    | Equation 13-                         | 12 or 13-13                     | )                                  |
| P <sub>FM</sub> =                   | using                                                     | Equation (          | Exhibit 13-6)                 |                 | P <sub>FD</sub> =                    |                     | 0.                   | 545 using Ec                         | uation (Exhi                    | bit 13-7)                          |
| V <sub>12</sub> =                   | pc/h                                                      |                     |                               |                 | V <sub>12</sub> =                    |                     | 39                   | 28 pc/h                              |                                 |                                    |
| V <sub>3</sub> or V <sub>av34</sub> | pc/h (                                                    | Equation 13         | -14 or 13-17)                 |                 | $V_3^{}$ or $V_{av34}^{}$            |                     | 21                   | 30 pc/h (Equ                         | uation 13-14                    | 1 or 13-17)                        |
| Is $V_3$ or $V_{av34} > 2,70$       | )0 pc/h? 🗌 Ye                                             | s 🗌 No              |                               |                 | Is V <sub>3</sub> or V <sub>av</sub> | <sub>34</sub> > 2,7 | 00 pc/h? [           | Yes 🗹 No                             |                                 |                                    |
| Is $V_3$ or $V_{av34} > 1.5$        | *V <sub>12</sub> /2 □Ye                                   | s 🗌 No              |                               |                 | Is V <sub>3</sub> or V <sub>av</sub> | <sub>34</sub> > 1.5 | * V <sub>12</sub> /2 | Yes 🗹 No                             |                                 |                                    |
| If Yes,V <sub>12a</sub> =           | pc/h (<br>13 10)                                          | Equation 13         | -16, 13-18, or                |                 | If Yes,V <sub>12a</sub> =            | =                   | p                    | c/h (Equatio                         | n 13-16, 13-                    | -18, or 13-                        |
| Capacity Che                        | rks                                                       | )                   |                               |                 | Canacit                              | v Ch                | ecks                 | )                                    |                                 |                                    |
|                                     | Actual                                                    |                     | Capacity                      | LOS F?          |                                      | <u>, en</u>         | Actual               | С                                    | apacity                         | LOS F?                             |
|                                     |                                                           |                     |                               |                 | V                                    |                     | 6058                 | Exhibit 13-                          | 8 7200                          | No                                 |
| Vro                                 |                                                           | Exhibit 13-8        |                               |                 | $V_{ro} = V_r$                       | - V_                | 4686                 | Exhibit 13                           | 8 7200                          | No                                 |
| - FO                                |                                                           |                     |                               |                 | V                                    | · · R               | 1270                 | Exhibit 13                           | 10 2100                         | No                                 |
| Elever Enterin                      |                                                           | <u></u>             |                               |                 |                                      |                     | 1372                 |                                      | 10 2100                         | INU                                |
| Flow Entering                       | g werge m                                                 | Max                 | Nrea<br>Dosirablo             | Violation?      | FIOW En                              | iterin              | g Divel              | Max Dosira                           | nce Area                        | Violation?                         |
| V                                   | Actual                                                    | Evhibit 13.8        | Desilable                     | VIOIALION       | V                                    |                     | 2028                 | Evhibit 13.8                         |                                 | No                                 |
|                                     | l<br>vico Dotorr                                          | nination (          | (if not E)                    |                 |                                      | <u> </u>            |                      | torminatic                           | <i>h</i> ( <i>if not</i>        |                                    |
| $D = 5.475 \pm 0$                   |                                                           |                     | 0.00627.1                     |                 | Leveror                              |                     | 252 + 0              |                                      |                                 | )                                  |
| $D_R = 0.470 + 0.1$                 | $D_R = 5.473 + 0.00734 V_R + 0.0078 V_{12} - 0.00027 L_A$ |                     |                               |                 |                                      | $D_R = 7$           | /mi/lm)              | 12 - 0                               | .003 L <sub>D</sub>             |                                    |
| P <sub>R</sub> – (pc/mi/m           | l)<br>40.0\                                               |                     |                               |                 | $D_{\rm R} = 30$                     | o.z (pc/            | /mi/in)              |                                      |                                 |                                    |
|                                     | 13-2)                                                     |                     |                               |                 | LUS = E                              |                     | oit 13-2)            |                                      |                                 |                                    |
| Speed Deterr                        | nination                                                  |                     |                               |                 | Speed L                              | Jeter               | minatio              | on<br>                               |                                 |                                    |
| M <sub>S</sub> = (Exibit 1          | 3-11)                                                     |                     |                               |                 | $D_{s} = 0.0$                        | 421 (E              | xhibit 13-           | 12)                                  |                                 |                                    |
| S <sub>R</sub> = mph (Exh           | nibit 13-11)                                              |                     |                               |                 | $S_R = 58$                           | 3.2 mph             | (Exhibit             | 13-12)                               |                                 |                                    |
| S <sub>0</sub> = mph (Exh           | nibit 13-11)                                              |                     |                               |                 | $S_0 = 72$                           | 2.4 mph             | (Exhibit             | 13-12)                               |                                 |                                    |
| S = mph (Exh                        | nibit 13-13)                                              |                     |                               |                 | S = 62                               | 2.5 mph             | (Exhibit             | 13-13)                               |                                 |                                    |
| yright © 2016 Universit             | y of Florida, All F                                       | Rights Reserved     |                               |                 | HCS2010 <sup>TN</sup>                | <sup>A</sup> Versi  | on 6.90              |                                      | Generated:                      | 6/18/2020 1:25                     |

|                                                                                                                                  | BASIC F                                                                      | REEWAY SE                  | GMENTS WORKSHEET                                                                                                                                                    |                                    |                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------|
| General Information                                                                                                              |                                                                              |                            | Site Information                                                                                                                                                    |                                    |                                                                                      |
| Analyst<br>Agency or Company<br>Date Performed                                                                                   | AECOM                                                                        |                            | Highway/Direction of Travel<br>From/To<br>Jurisdiction                                                                                                              | l-95 NB<br>Seg 10-l                | Bet Off & On Ramps                                                                   |
| Analysis Time Period                                                                                                             | AM                                                                           |                            | Analysis Year                                                                                                                                                       | 2020 Bu                            | ild 2                                                                                |
| Project Description SW 10t                                                                                                       | th Street SIMR                                                               |                            |                                                                                                                                                                     |                                    |                                                                                      |
| ✓ Oper.(LOS)                                                                                                                     | )                                                                            |                            | Des.(N)                                                                                                                                                             | Pla                                | inning Data                                                                          |
| Flow inputs                                                                                                                      |                                                                              |                            |                                                                                                                                                                     |                                    |                                                                                      |
| Volume, V<br>AADT                                                                                                                | 4420                                                                         | veh/h<br>veh/day           | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>                                                                                                          | 0.95<br>3                          |                                                                                      |
| Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D                                                     |                                                                              | veh/h                      | %RVs, P <sub>R</sub><br>General Terrain:<br>Grade % Length<br>Up/Down %                                                                                             | 0<br>Level<br>mi                   |                                                                                      |
| Calculate Flow Adjusti                                                                                                           | ments                                                                        |                            |                                                                                                                                                                     |                                    |                                                                                      |
| f <sub>p</sub>                                                                                                                   | 1.00                                                                         |                            | E <sub>R</sub>                                                                                                                                                      | 1.2                                |                                                                                      |
| E <sub>T</sub>                                                                                                                   | 1.5                                                                          |                            | $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$                                                                                                                        | 0.985                              |                                                                                      |
| Speed Inputs                                                                                                                     |                                                                              |                            | Calc Speed Adj and FFS                                                                                                                                              | 3                                  |                                                                                      |
| Lane Width                                                                                                                       |                                                                              | ft                         |                                                                                                                                                                     |                                    | _                                                                                    |
| Rt-Side Lat. Clearance                                                                                                           |                                                                              | ft                         | f <sub>LW</sub>                                                                                                                                                     |                                    | mph                                                                                  |
| Number of Lanes, N                                                                                                               | 3                                                                            |                            |                                                                                                                                                                     |                                    | mph                                                                                  |
| EES (mossured)                                                                                                                   | 70.0                                                                         | ramps/mi                   |                                                                                                                                                                     | 70.0                               | mpn                                                                                  |
| Rase free flow Speed BEES                                                                                                        | 70.0                                                                         | mph                        | FFS                                                                                                                                                                 | 70.0                               | mpn                                                                                  |
|                                                                                                                                  |                                                                              | прп                        | <b>–</b>                                                                                                                                                            |                                    |                                                                                      |
| LOS and Performance                                                                                                              | Measures                                                                     |                            | Design (N)                                                                                                                                                          |                                    |                                                                                      |
| <u>Operational (LOS)</u><br>v <sub>p</sub> = (V or DDHV) / (PHF x N<br>S<br>D = v <sub>p</sub> / S<br>LOS                        | x f <sub>HV</sub> x f <sub>p</sub> ) 1574<br>68.4<br>23.0<br>C               | pc/h/ln<br>mph<br>pc/mi/ln | <u>Design (N)</u><br>Design LOS<br>v <sub>p</sub> = (V or DDHV) / (PHF x N x<br>S<br>D = v <sub>p</sub> / S<br>Required Number of Lanes, N                          | f <sub>HV</sub> x f <sub>p</sub> ) | pc/h/ln<br>mph<br>pc/mi/ln                                                           |
| Glossary                                                                                                                         |                                                                              |                            | Factor Location                                                                                                                                                     |                                    |                                                                                      |
| N - Number of lanes<br>V - Hourly volume<br>v <sub>p</sub> - Flow rate<br>LOS - Level of service<br>DDHV - Directional design ho | S - Speed<br>D - Density<br>FFS - Free-flow<br>BFFS - Base fre<br>pur volume | speed<br>ee-flow speed     | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11, 11-<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits 11-2 | 13<br>2, 11-3                      | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-11 |

HCS 2010<sup>TM</sup> Version 6.90

Generated: 6/18/2020 1:27 AM

|                                                                                                                                                                                         |                              |                                 | FREEWAY                        | WEAV                   | ING WOF                                                                                                                        | RKSHEE                        | Т                         |               |                   |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------|--------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------|---------------|-------------------|--|
| Genera                                                                                                                                                                                  | al Informati                 | on                              |                                |                        | Site Info                                                                                                                      | rmation                       |                           |               |                   |  |
| Analyst<br>Agency/Co<br>Date Perfo<br>Analysis T                                                                                                                                        | ompany<br>rmed<br>ime Period | AECO<br>AM                      | М                              |                        | Freeway/Dir of TravelI-95 NBWeaving Segment LocationSeg 11-Bet On & Off to ExpAnalysis Year2020 Build 2                        |                               |                           |               |                   |  |
| Project De                                                                                                                                                                              | scription SW 10t             | h Street SIM                    | 2                              |                        |                                                                                                                                |                               |                           |               |                   |  |
| Inputs                                                                                                                                                                                  |                              |                                 |                                |                        | 1                                                                                                                              |                               |                           |               |                   |  |
| Weaving configuration       Two-Sided         Weaving number of lanes, N       4         Weaving segment length, L <sub>s</sub> 2970f         Freeway free-flow speed, FFS       70 mph |                              |                                 |                                |                        | Segment type Free<br>Freeway minimum speed, S <sub>MIN</sub><br>Freeway maximum capacity, C <sub>IFL</sub> 2<br>Terrain type L |                               |                           |               |                   |  |
| Conve                                                                                                                                                                                   | rsions to p                  | <u>c/h Unde</u>                 | r Base Co                      | ondition               | S                                                                                                                              |                               |                           | <del></del>   |                   |  |
|                                                                                                                                                                                         | V (veh/h)                    | PHF                             | Truck (%)                      | RV (%)                 | Ε <sub>Τ</sub>                                                                                                                 | E <sub>R</sub>                | f <sub>HV</sub>           | fp            | v (pc/h)          |  |
| V <sub>FF</sub>                                                                                                                                                                         | 3770                         | 0.95                            | 3                              | 0                      | 1.5                                                                                                                            | 1.2                           | 0.985                     | 1.00          | 4028              |  |
| V <sub>RF</sub>                                                                                                                                                                         | 1970                         | 0.92                            | 2                              | 0                      | 1.5                                                                                                                            | 1.2                           | 0.990                     | 1.00          | 2163              |  |
| V <sub>FR</sub>                                                                                                                                                                         | 650                          | 0.92                            | 2                              | 0                      | 1.5                                                                                                                            | 1.2                           | 0.990                     | 1.00          | 714               |  |
| V <sub>RR</sub>                                                                                                                                                                         | 340                          | 0.92                            | 2                              | 0                      | 1.5                                                                                                                            | 1.2                           | 0.990                     | 1.00          | 373               |  |
| V <sub>NW</sub>                                                                                                                                                                         | 6905                         |                                 |                                |                        |                                                                                                                                |                               |                           | V =           | 7278              |  |
| V <sub>W</sub>                                                                                                                                                                          | 373                          |                                 |                                |                        |                                                                                                                                |                               |                           |               |                   |  |
| VR                                                                                                                                                                                      | 0.051                        |                                 |                                |                        |                                                                                                                                |                               |                           |               |                   |  |
| Config                                                                                                                                                                                  | uration Cha                  | aracteris                       | tics                           |                        | 1                                                                                                                              |                               |                           |               |                   |  |
| Minimum ı                                                                                                                                                                               | maneuver lanes,              | N <sub>WL</sub>                 |                                | 0 lc                   | Minimum we                                                                                                                     | eaving lane cl                | hanges, LC <sub>MIN</sub> | 1             | 1119 lc/h         |  |
| Interchang                                                                                                                                                                              | je density, ID               |                                 |                                | 0.7 int/mi             | Weaving lan                                                                                                                    | e changes, L                  | .C <sub>w</sub>           |               | 1612 lc/h         |  |
| Minimum                                                                                                                                                                                 | RF lane changes              | LC <sub>RF</sub>                |                                | 0 lc/pc                | Non-weaving lane changes, LC <sub>NW</sub> 2                                                                                   |                               |                           |               |                   |  |
| Minimum                                                                                                                                                                                 | FR lane changes              | LC <sub>FR</sub>                |                                | 0 lc/pc                | Total lane ch                                                                                                                  | nanges, LC <sub>AL</sub>      | L                         |               | 4075 lc/h         |  |
| Minimum I                                                                                                                                                                               | RR lane changes              | , LC <sub>RR</sub>              |                                | 3 lc/pc                | Non-weaving                                                                                                                    | g vehicle inde                | ex, I <sub>NW</sub>       |               | 1436              |  |
| Weavir                                                                                                                                                                                  | ng Segmen <sup>-</sup>       | t Speed,                        | Density, I                     | _evel of               | Service,                                                                                                                       | and Cap                       | oacity                    |               |                   |  |
| Weaving segment flow rate, v7186 veh/Weaving segment capacity, c8485 veh/                                                                                                               |                              |                                 |                                |                        | Weaving inte<br>Weaving sec                                                                                                    | ensity factor,<br>gment speed | W<br>, S                  |               | 0.290<br>53.4 mph |  |
| Weaving s                                                                                                                                                                               | segment v/c ratio            |                                 |                                | 0.847                  | Average wea                                                                                                                    | aving speed,                  | S <sub>W</sub>            |               | 57.6 mph          |  |
| Weaving s                                                                                                                                                                               | segment density,             | D                               | 34                             | 4.1 pc/mi/ln           | In Average non-weaving speed, $S_{NW}$ 53.2                                                                                    |                               |                           |               | 53.2 mph          |  |
| Level of S                                                                                                                                                                              | ervice, LUS                  |                                 |                                | D                      | Maximum weaving length, L <sub>MAX</sub> 6205 ft                                                                               |                               |                           |               |                   |  |
| Notes                                                                                                                                                                                   | segmente longer t            | han the colour                  | ated maximum -                 | nath should            | a tractod as is                                                                                                                | colated moras                 | and divorce               | and uning the | procedures of     |  |
| Chapter 13,<br>b. For volur                                                                                                                                                             | , "Freeway Merge a           | and Diverge Se<br>e weaving seg | egments".<br>ment capacity, th | <u>ne level of sei</u> | vice is <u>"F".</u>                                                                                                            |                               |                           |               |                   |  |

HCS 2010<sup>TM</sup> Version 6.90

Generated: 8/14/2021 2:50 PM

|                                                | BASIC FRE                  | EWAY SE          | GMENTS WORKSHEE                                            | Г                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------|----------------------------|------------------|------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                |                            |                  | 1                                                          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| General Information                            |                            |                  | Site Information                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Analyst<br>Agency or Company<br>Date Performed | AECOM                      |                  | Highway/Direction of Travel<br>From/To                     | l I-95 NB<br>Seg 12-No | orth of Hillsboro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Analysis Time Period                           | AM                         |                  | Analysis Year                                              | 2020 Build             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Project Description SW 1                       | 0th Street SIM             | 7                |                                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ✓ Oper.(LOS)                                   |                            |                  | es.(N)                                                     | 🗌 Planni               | ng Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Flow Inputs                                    |                            |                  |                                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Volume, V<br>AADT                              | 5740                       | veh/h<br>veh/day | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub> | 0.95<br>3              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Peak-Hr Prop. of AADT, K                       |                            |                  | %RVs, P <sub>R</sub>                                       | 0                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DDHV = AADT x K x D                            |                            | veh/h            | General Terrain:<br>Grade % Length<br>Up/Down %            | Levei<br>mi            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Calculate Flow Adjus                           | tments                     |                  |                                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| f <sub>p</sub>                                 | 1.00                       |                  | E <sub>R</sub>                                             | 1.2                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ε <sub>T</sub>                                 | 1.5                        |                  | $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$               | )] <i>0.985</i>        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Speed Inputs                                   |                            |                  | Calc Speed Adj and F                                       | FS                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Lane Width                                     |                            | ft               |                                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Rt-Side Lat. Clearance                         |                            | ft               | f <sub>LW</sub>                                            |                        | mph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Number of Lanes, N                             | 4                          |                  | f <sub>LC</sub>                                            |                        | mph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total Ramp Density, TRD                        |                            | ramps/mi         | TRD Adjustment                                             |                        | mph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FFS (measured)                                 | 70.0                       | mph              | FFS                                                        | 70.0                   | mph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Base free-flow Speed,<br>BFFS                  |                            | mph              |                                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LOS and Performance                            | e Measures                 |                  | Design (N)                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Operational (LOS)                              |                            |                  | <u>Design (N)</u>                                          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $v_{x} = (V \text{ or } DDHV) / (PHF x)$       | N x fuy                    |                  | Design LOS                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $x f_{p}$ )                                    | <sup>nv</sup> <i>15</i> 33 | pc/h/ln          | $v_p = (V \text{ or DDHV}) / (PHF x I)$                    | N x f <sub>HV</sub>    | pc/h/ln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| S                                              | 68.7                       | mph              | x f <sub>p</sub> )                                         |                        | man h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $D = v_p / S$                                  | 22.3                       | pc/mi/ln         | 5<br>D - v / S                                             |                        | mpn<br>na/mi/ln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LOS                                            | С                          |                  | Required Number of Lanes                                   | , N                    | рслпілп                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Glossary                                       |                            |                  | Factor Location                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| N - Number of lanes                            | S - Spee                   | t                | E Exhibits 11 10 11 12                                     | f                      | Exhibit 11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| V - Hourly volume                              | D - Densi                  | ty               | $E_{\rm R}^{-1}$ Exhibits 11-10, 11-12                     | ין<br>11-13 f          | _W - Exhibit 11_0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| v <sub>p</sub> - Flow rate                     | FFS - Free                 | -flow speed      | f - Page 11-18                                             | ןי סי-יי<br>ד          | $\frac{1}{2} = \frac{1}{2} = \frac{1}$ |
| LOS - Level of service speed                   | BFFS - Ba                  | se free-flow     | LOS, S, FFS, $v_p$ - Exhibits 7                            | 11-2,                  | Taye 11-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DDHV - Directional design                      | hour volume                |                  | 11-3                                                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

HCS 2010<sup>TM</sup> Version 6.90

Generated: 4/24/2021 3:01 PM

|                                                                                                                                                                                         |                                                   | F                  | REEWA           | Y WEAV         | ING WOF                                                                                                                         | RKSHEE                                                                                                           | Т                         |               |               |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------|-----------------|----------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------|---------------|---------------|--|--|
| Genera                                                                                                                                                                                  | al Informati                                      | on                 |                 |                | Site Information                                                                                                                |                                                                                                                  |                           |               |               |  |  |
| Analyst<br>Agency/Co<br>Date Perfo<br>Analysis T                                                                                                                                        | ompany<br>ormed<br>ime Period                     | AECOI<br>PM        | И               |                | Freeway/Dir<br>Weaving Seg<br>Analysis Yea                                                                                      | Freeway/Dir of Travel I-95 NB<br>Neaving Segment Location Seg 1-Bet Copans & Sampl<br>Analysis Year 2020 Build 2 |                           |               |               |  |  |
| Project De                                                                                                                                                                              | scription SW 10t                                  | h Street SIMF      | 2               |                |                                                                                                                                 |                                                                                                                  |                           |               |               |  |  |
| Inputs                                                                                                                                                                                  |                                                   |                    |                 |                | 1                                                                                                                               |                                                                                                                  |                           |               |               |  |  |
| Weaving configuration       One-Sided         Weaving number of lanes, N       2         Weaving segment length, L <sub>s</sub> 2380f         Freeway free-flow speed, FFS       70 mpt |                                                   |                    |                 |                | Segment type Free<br>Freeway minimum speed, S <sub>MIN</sub><br>Freeway maximum capacity, C <sub>IFL</sub> 2<br>Terrain type Lu |                                                                                                                  |                           |               |               |  |  |
| Conve                                                                                                                                                                                   | rsions to p                                       | <u>c/h Unde</u>    | r Base Co       | ondition       | S                                                                                                                               |                                                                                                                  |                           |               |               |  |  |
|                                                                                                                                                                                         | V (veh/h)                                         | PHF                | Truck (%)       | RV (%)         | Ε <sub>Τ</sub>                                                                                                                  | E <sub>R</sub>                                                                                                   | f <sub>HV</sub>           | fp            | v (pc/h)      |  |  |
| V <sub>FF</sub>                                                                                                                                                                         | 4265                                              | 0.95               | 3               | 0              | 1.5                                                                                                                             | 1.2                                                                                                              | 0.985                     | 1.00          | 4557          |  |  |
| V <sub>RF</sub>                                                                                                                                                                         | 415                                               | 0.92               | 2               | 0              | 1.5                                                                                                                             | 1.2                                                                                                              | 0.990                     | 1.00          | 456           |  |  |
| V <sub>FR</sub>                                                                                                                                                                         | 1560                                              | 0.92               | 2               | 0              | 1.5                                                                                                                             | 1.2                                                                                                              | 0.990                     | 1.00          | 1713          |  |  |
| V <sub>RR</sub>                                                                                                                                                                         | 0                                                 | 0.95               | 0               | 0              | 1.5                                                                                                                             | 1.2                                                                                                              | 1.000                     | 1.00          | 0             |  |  |
| V <sub>NW</sub>                                                                                                                                                                         | 4557                                              |                    | -               | -              |                                                                                                                                 |                                                                                                                  | -                         | V =           | 6726          |  |  |
| V <sub>w</sub>                                                                                                                                                                          | 2169                                              |                    |                 |                |                                                                                                                                 |                                                                                                                  |                           | -             |               |  |  |
| VR                                                                                                                                                                                      | 0.322                                             |                    |                 |                |                                                                                                                                 |                                                                                                                  |                           |               |               |  |  |
| Config                                                                                                                                                                                  | uration Cha                                       | aracteris          | tics            |                |                                                                                                                                 |                                                                                                                  |                           |               |               |  |  |
| Minimum                                                                                                                                                                                 | maneuver lanes,                                   | N <sub>WL</sub>    |                 | 2 lc           | Minimum we                                                                                                                      | aving lane c                                                                                                     | hanges, LC <sub>MIN</sub> |               | 2169 lc/h     |  |  |
| Interchang                                                                                                                                                                              | ge density, ID                                    |                    |                 | 0.7 int/mi     | Weaving lan                                                                                                                     | e changes, L                                                                                                     | .C <sub>w</sub>           |               | 2604 lc/h     |  |  |
| Minimum                                                                                                                                                                                 | RF lane changes                                   | , LC <sub>RF</sub> |                 | 1 lc/pc        | Non-weaving                                                                                                                     | g lane chang                                                                                                     | es, LC <sub>NW</sub>      |               | 1458 lc/h     |  |  |
| Minimum                                                                                                                                                                                 | FR lane changes                                   | , LC <sub>FR</sub> |                 | 1 lc/pc        | Total lane ch                                                                                                                   | nanges, LC <sub>AL</sub>                                                                                         | L                         |               | 4062 lc/h     |  |  |
| Minimum                                                                                                                                                                                 | RR lane changes                                   | , LC <sub>RR</sub> |                 | lc/pc          | Non-weaving                                                                                                                     | g vehicle inde                                                                                                   | ex, I <sub>NW</sub>       |               | 759           |  |  |
| Weavir                                                                                                                                                                                  | ng Segmen                                         | t Speed,           | Density,        | Level of       | Service,                                                                                                                        | and Cap                                                                                                          | oacity                    |               |               |  |  |
| Weaving s                                                                                                                                                                               | segment flow rate                                 | , V                |                 | 6637 veh/h     | Weaving inte                                                                                                                    | ensity factor,                                                                                                   | W                         |               | 0.345         |  |  |
| Weaving s                                                                                                                                                                               | Neaving segment capacity, c <sub>w</sub> 7332 veh |                    |                 |                |                                                                                                                                 | gment speed                                                                                                      | , S                       |               | 49.0 mph      |  |  |
| Weaving s                                                                                                                                                                               | Veaving segment v/c ratio 0.90                    |                    |                 |                |                                                                                                                                 | aving speed,                                                                                                     | S <sub>w</sub>            |               | 55.9 mph      |  |  |
| Weaving s                                                                                                                                                                               | segment density,                                  | D                  | 3               | 4.3 pc/mi/ln   | Average non-weaving speed, $S_{NW}$                                                                                             |                                                                                                                  |                           |               | 46.3 mph      |  |  |
| Level of S                                                                                                                                                                              | Level of Service, LOS D                           |                    |                 |                |                                                                                                                                 | Maximum weaving length, L <sub>MAX</sub> 5826 ft                                                                 |                           |               |               |  |  |
| Notes                                                                                                                                                                                   |                                                   |                    |                 |                |                                                                                                                                 |                                                                                                                  |                           |               |               |  |  |
| a. Weaving                                                                                                                                                                              | segments longer t                                 | han the calcula    | ited maximum le | ength should I | pe treated as is                                                                                                                | solated merge                                                                                                    | and diverge are           | eas using the | procedures of |  |  |

Chapter 13, "Freeway Merge and Diverge Segments". b. For volumes that exceed the weaving segment capacity, the level of service is "F".

Copyright © 2016 University of Florida, All Rights Reserved

HCS 2010<sup>TM</sup> Version 6.90

Generated: 6/18/2020 12:40 AM

|                                          | BASIC F                                     | REEWAY SE     | GMENTS WORKSHEET                             |                                     |                                |
|------------------------------------------|---------------------------------------------|---------------|----------------------------------------------|-------------------------------------|--------------------------------|
| Conorol Information                      |                                             |               | Site Information                             |                                     |                                |
|                                          |                                             |               | Highway/Direction of Travel                  |                                     |                                |
| Analysi<br>Agapay ar Campany             | 45004                                       |               |                                              | Seg 2-B                             | et Off & On from               |
| Agency or Company                        | AECOM                                       |               | From/To                                      | Sample                              |                                |
| Date Performed<br>Analysis Time Period   | РМ                                          |               | Jurisdiction<br>Analysis Year                | 2020 Bu                             | uild 2                         |
| Project Description SW 10                | 0th Street SIMR                             |               |                                              |                                     |                                |
| Oper.(LOS                                | S)                                          |               | Des.(N)                                      | Pla                                 | anning Data                    |
| Flow Inputs                              |                                             |               |                                              |                                     |                                |
| Volume, V                                | 4680                                        | veh/h         | Peak-Hour Factor, PHF                        | 0.95                                |                                |
| AADT                                     |                                             | veh/day       | %Trucks and Buses, P <sub>T</sub>            | 3                                   |                                |
| Peak-Hr Prop. of AADT, K                 |                                             |               | %RVs, P <sub>R</sub>                         | 0                                   |                                |
| Peak-Hr Direction Prop, D                |                                             | vob/b         | General Terrain:                             | Level                               |                                |
|                                          |                                             | ven/n         | Grade % Length                               | mi                                  |                                |
| Coloulate Flow Adius                     | 4                                           |               |                                              |                                     |                                |
| Calculate Flow Adjus                     | tments                                      |               |                                              |                                     |                                |
| f <sub>p</sub>                           | 1.00                                        |               | E <sub>R</sub>                               | 1.2                                 |                                |
| Ε <sub>T</sub>                           | 1.5                                         |               | $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$ | 0.985                               |                                |
| Speed Inputs                             |                                             |               | Calc Speed Adj and FF                        | S                                   |                                |
| Lane Width                               |                                             | ft            |                                              |                                     |                                |
| Rt-Side Lat. Clearance                   |                                             | ft            | f <sub>LW</sub>                              |                                     | mph                            |
| Number of Lanes, N                       | 3                                           |               | f <sub>LC</sub>                              |                                     | mph                            |
| Total Ramp Density, TRD                  |                                             | ramps/mi      | TRD Adjustment                               |                                     | mph                            |
| FFS (measured)                           | 70.0                                        | mph           | FFS                                          | 70.0                                | mph                            |
| Base free-flow Speed, BFF                | S                                           | mph           |                                              |                                     | ·                              |
| LOS and Performance                      | e Measures                                  |               | Design (N)                                   |                                     |                                |
|                                          |                                             |               | Design (N)                                   |                                     |                                |
| Operational (LOS)                        |                                             |               | Design LOS                                   |                                     |                                |
| $v_p = (V \text{ or } DDHV) / (PHF x N)$ | N x f <sub>HV</sub> x f <sub>p</sub> ) 1667 | pc/h/ln       | $v_{p} = (V \text{ or DDHV}) / (PHF x N x)$  | (f <sub>HV</sub> x f <sub>n</sub> ) | pc/h/ln                        |
| S                                        | 67.5                                        | mph           | S                                            | nv p                                | mph                            |
| $D = v_p / S$                            | 24.7                                        | pc/mi/ln      | $D = v_p / S$                                |                                     | pc/mi/ln                       |
| LOS                                      | С                                           |               | Required Number of Lanes, N                  |                                     | ·                              |
| Glossary                                 |                                             |               | Factor Location                              |                                     |                                |
| N - Number of lanes                      | S - Speed                                   |               |                                              |                                     |                                |
| V - Hourly volume                        | D - Densitv                                 |               | E <sub>R</sub> - Exhibits 11-10, 11-12       |                                     | t <sub>LW</sub> - Exhibit 11-8 |
| v <sub>n</sub> - Flow rate               | FFS - Free-flow                             | speed         | E <sub>T</sub> - Exhibits 11-10, 11-11, 11   | -13                                 | t <sub>LC</sub> - Exhibit 11-9 |
| LOS - Level of service                   | BFFS - Base fre                             | ee-flow speed | f <sub>p</sub> - Page 11-18                  |                                     | TRD - Page 11-11               |
| DDHV - Directional design I              | hour volume                                 | F             | LOS, S, FFS, v <sub>p</sub> - Exhibits 11-   | 2, 11-3                             |                                |
|                                          |                                             |               |                                              |                                     |                                |

Copyright  $\ensuremath{\mathbb{C}}$  2016 University of Florida, All Rights Reserved

HCS 2010<sup>TM</sup> Version 6.90

Generated: 6/18/2020 3:19 PM





| <u>No. Ln</u> | Capacity Check (see Exhibits 25-3 and 25-7):             | Maximum | Actual | V/c  | LOS F? |
|---------------|----------------------------------------------------------|---------|--------|------|--------|
| 4             | Fwy downstream of ramp (assume 70 mph free-flow speed) = | 9,600   | 6,005  | 0.63 | No     |
| 3             | Fwy upstream of ramp (assume 70 mph free-flow speed) =   | 7,200   | 5,000  | 0.69 | No     |
| 1             | Capacity on On-Ramp (assume 45 mph free-flow speed) =    | 2,100   | 999    | 0.48 | No     |
|               |                                                          |         |        |      |        |

| Site Information         Site Information         Sequence 1 for any is the performed point of Lanes, N       Analysis Year       2020 Build 2         Market Sine Period       PM       Analysis Year       2020 Build 2         Preserve Number of Lanes, N       4       Downstream Adj Ramp         Preserve Number of Lanes, N       4       Downstream Adj Ramp         Preserve Number of Lanes, N       1       Downstream Adj Ramp         Preserve Number of Lanes, N       1       Downstream Adj         No       Of the perform Adj         Preserve Number of Lanes, N       1       Downstream Adj         No       Of the perform Adj         Preserve Number of Lanes, N       1       Downstream Adj         Preserve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RAMPS AND RAMP JUNCTIONS WORKSHEET             |                                                                                                                  |                     |                              |                                         |                                         |                    |                        |                  |                     |                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------|-----------------------------------------|-----------------------------------------|--------------------|------------------------|------------------|---------------------|-----------------------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | General Infor                                  | mation                                                                                                           |                     |                              | Site Infor                              | mation                                  |                    |                        |                  |                     |                       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Analyst                                        |                                                                                                                  |                     | Fr                           | eeway/Dir of Tr                         | ravel I-95 NB                           |                    |                        |                  |                     |                       |
| Date Performed Unstation Analysis Tear Provide Pit Analysis Year 2020 Build 2 Protect Description SW 10th Street SIMR Protect Description STR 100 Prote Protect Description STR 100 Protect                                                                                                                                                                                                                                                                                                                                       | Agency or Company                              | AECO                                                                                                             | MC                  | Ju                           | Inction                                 |                                         | Seg 4              | -On from Ex            | (p               |                     |                       |
| Analysis Year       2020 Build 2         Indept Stand Add Ramp       Freeway Number of Lanes, N       4         Protein Description       Ramp Number of Lanes, N       1         Pres       On       Acceleration Lane Length, L,       1500         Protein Description       Preeway Number of Lanes, N       1       Ramp         Pres       On       Acceleration Lane Length, L,       1500       Presway State         Prote       Ramp Notice, Value       610       Presway State       Presway State         Va =       veh/m       Freeway State       610       Value       200 veh/h         Presway State       State       610       Value       200 veh/h       Value       200 veh/h         Conversion to pc/t Under Base Conditions       Value       3       0       0.985       10.0       6005         Ramp       5500       0.96       Level       2       0       0.990       1.00       252         UpStream       230       0.92       Level       2       0       0.990       1.00       252         UpStream       230       0.92       Level       2       0       0.990       1.00       252         DownStream       230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date Performed                                 |                                                                                                                  |                     | Ju                           | irisdiction                             |                                         | Ū                  |                        |                  |                     |                       |
| Project Description       SW 10th Street SMR         Inputs       Freeway Number of Lanes, N       4       Downstream Adj         If Yes       On       Accordination Lane Length L <sub>0</sub> Street Street       Image Street Street         If No       Orff       Deceleration Lane Length L <sub>0</sub> Street S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analysis Time Period                           | I PM                                                                                                             |                     | Ar                           | nalysis Year                            |                                         | 2020               | Build 2                |                  |                     |                       |
| $\begin{split} \hline previses & \\ \hline previses & Adj Ranp & Freeway Number of Lanes, N & 4 & Downstream Adj Ranp & Ramp Number of Lanes, N & 1 & Ramp & $                                                                                                                                                                                                                                                                                                             | Project Description                            | SW 10th Stree                                                                                                    | t SIMR              |                              |                                         |                                         |                    |                        |                  |                     |                       |
| upper beam Adj Ramp       Freeway Number of Lanes. N       4       Downstream Adj       Premay       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Inputs                                         |                                                                                                                  |                     |                              |                                         |                                         |                    |                        |                  |                     |                       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Upstream Adi Ramp                              |                                                                                                                  | Freeway Num         | ber of Lanes, N              | 4                                       |                                         |                    |                        |                  | Downstre            | am Adi                |
| $ \begin{array}{ c c c c }   Yes \ \ \ On \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | opoliouninaj rump                              |                                                                                                                  | Ramp Numbe          | r of Lanes, N                | 1                                       |                                         |                    |                        |                  | Ramp                |                       |
| NoO offPreserve Volume, Vp5620NoNoOffVu =remeway Volume, Vp5620Vp =OffNoOffVu =remeway Free-Row Speed, Spr50.0Vp =230veh/hConversion to pc/h Under Base Conditions(poh)Vm / vFreeway Free-Row Speed, Spr50.0Conversion to pc/h Under Base Conditions(poh)Vm / vPHFTerrain 3% Truck%Rwfnvfp vV/v200.9851.006005Ramp Free-Row Speed, Spr50.0Conversion to pc/h Under Base Conditions(poh)Vm / vvVize Vr / fp vVize Vr / fp / vViz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Yes On                                         | 1                                                                                                                | Acceleration I      | ane Length, L.               | 1500                                    |                                         |                    |                        |                  |                     |                       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |                                                                                                                  | Deceleration I      | ane Length I                 |                                         |                                         |                    |                        |                  | i ves               | L On                  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No □ Of                                        | f                                                                                                                |                     |                              | 5600                                    |                                         |                    |                        |                  | 🗌 No                | ✓ Off                 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - #                                            |                                                                                                                  |                     | ine, v <sub>F</sub>          | 5620                                    |                                         |                    |                        |                  | I. =                | 2950 ft               |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L <sub>up</sub> – I                            |                                                                                                                  | Ramp Volume         | e, V <sub>R</sub>            | 610                                     |                                         |                    |                        |                  | down                | 2000 11               |
| Conversion to pc/h Under Base Conditions         Conversion to pc/h Under Base Conditions         (pch) $V_{(Ve)hn}$ PHF       Terrain       %Truck       %Rv $f_{HV}$ $f_p$ $v = V/PHF x f_{stv} x f_p$ (pch) $V_{(Ve)hn}$ PHF       Terrain       %Truck       %Rv $f_{HV}$ $f_p$ $v = V/PHF x f_{stv} x f_p$ Ramp       610       0.92       Level       2       0       0.990       1.00       6005         Ramp       610       0.92       Level       2       0       0.990       1.00       670         DownStream       20       0.92       Level       2       0       0.990       1.00       670         Merge Areas       Diverge Areas         Estimation of $v_{12}$ V12 = V_R + (V_R - V_R)P_{FD}         V12 = V_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V = veh/h                                      |                                                                                                                  | Freeway Free        | -Flow Speed, S <sub>FF</sub> | 70.0                                    |                                         |                    |                        |                  | V_ =                | 230 veh/h             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | u von,n                                        |                                                                                                                  | Ramp Free-Fl        | ow Speed, S <sub>FR</sub>    | 50.0                                    |                                         |                    |                        |                  | D                   |                       |
| $ \begin{array}{ c c c c } (pch) & V \\ (Veh)^{h}/r \\ PHF & Terrain & % Truck & % Rv & f_{FV} & f_p & v = V/PHF x f_{HV} x f_p \\ \hline Freeway & 5620 & 0.95 & Level & 3 & 0 & 0.985 & 1.00 & 6005 \\ \hline Ramp & 610 & 0.92 & Level & 2 & 0 & 0.990 & 1.00 & 670 \\ \hline UDSIteam & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Conversion to                                  | o pc/h Und                                                                                                       | der Base            | Conditions                   |                                         |                                         |                    |                        |                  |                     |                       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (pc/h)                                         | V                                                                                                                | PHF                 | Terrain                      | %Truck                                  | %Rv                                     |                    | funz                   | f.               | v = V/PHF           | x funz x fu           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (p 0,)                                         | (Veh/hr)                                                                                                         |                     |                              | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                    | HV                     | ·p               |                     | нутр                  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Freeway                                        | 5620                                                                                                             | 0.95                | Level                        | 3                                       | 0                                       | (                  | ).985                  | 1.00             | 6                   | 005                   |
| Upstream         20         0.92         Level         2         0         0.990         1.00         252           Diverge Areas           Diverge Areas           Estimation of $v_{12}$ Estimation of $v_{12}$ Vi2 = V <sub>R</sub> (P <sub>FM</sub> )           Estimation of $v_{12}$ Use of $v_{12} = V_R + (V_F - V_R) P_{FD}$ Lex =         Caquation 13-6 or 13-7)           Vi2 = V <sub>R</sub> (P <sub>FM</sub> )           Vi2 = V <sub>R</sub> + (V <sub>F</sub> - V <sub>R</sub> ) P <sub>FD</sub> Use of $v_{12} = V_R + (V_F - V_R) P_{FD}$ Use of $v_{12} = V_R + (V_F - V_R) P_{FD}$ Use of $v_{12} = V_R + (V_F - V_R) P_{FD}$ Use of $v_{12} = V_R + (V_F - V_R) P_{FD}$ Use of $v_{12} = V_R + (V_F - V_R) P_{FD}$ Use of $v_{12} = V_R + (V_F - V_R) P_{FD}$ Use of $v_{12} = V_R + (V_F - V_R) P_{FD}$ Use of $v_{12} = V_R + (V_F - V_R) P_{FD}$ Use of $v_{12} = V_R + (V_F - V_R) P_{FD}$ Use of $v_{12} = V_R + (V_F - V_R) P_{FD}$ Use of $v_{12} = V_R + (V_F - V_R) P_{FD}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ramp                                           | 610                                                                                                              | 0.92                | Level                        | 2                                       | 0                                       | (                  | ).990                  | 1.00             | (                   | 570                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UpStream                                       |                                                                                                                  | 0.00                |                              |                                         |                                         |                    |                        |                  |                     |                       |
| Inverge Areas         Diverge Areas           Estimation of $v_{12}$ Estimation of $v_{12}$ $v_{12} = v_{12} + (P_{FM})$ $v_{12} = v_{R} + (V_F - V_R)P_{FD}$ $v_{12} = 0$ (Equation 13-6 or 13-7) $P_{FM} =$ 0.134         using Equation (Exhibit 13-6) $v_{12} =$ 805         pc/h $v_{12} =$ 2600         pc/h $v_{12} =$ 2600         pc/h $v_{12} =$ pc/h $v_{12} =$ $v_{12} =$ 2600         pc/h $v_{3}$ or $v_{avd4} > 2.700$ pc/h         (Equation 13-14 or 13-7)           Is $v_3$ or $v_{avd4} > 2.700$ pc/h?         Yes         No           Is $v_3$ or $v_{avd4} > 1.5 * v_{12}/2$ Yes         No           If Yes, $V_{12a} =$ 2.000 pc/h         (Equation 13-16, 13-18, or 13-19)           Capacity Checks         Capacity Checks         Capacity         LOS F? $v_{FO}$ 6675         Exhibit 13-8         No $V_F$ Exhibit 13-8 $v_{FO}$ 6675         Exhibit 13-8         V_R         Exhibit 13-8         V_R $v_{F12}$ 3360         Exhibit 13-8         VoR         Exh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DownStream                                     | 230                                                                                                              | 0.92                | Level                        | 2                                       | 0                                       | (                  | ).990                  | 1.00             |                     | 252                   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Estimation of                                  | 5.7                                                                                                              | werge Areas         |                              |                                         | Ectimot                                 | ion                |                        | Diverge Areas    |                     |                       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |                                                                                                                  |                     |                              |                                         |                                         |                    |                        |                  |                     |                       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                | V <sub>12</sub> = V <sub>F</sub>                                                                                 | ( P <sub>FM</sub> ) |                              |                                         |                                         |                    | $V_{10} = 1$           | Vp + (Vr - Vp    | )P <sub>ED</sub>    |                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L <sub>EQ</sub> =                              | (Equa                                                                                                            | ation 13-6 o        | r 13-7)                      |                                         | =                                       |                    | - 12                   | (Equation 13-    | /* FD<br>12 or 13_1 | 3)                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P <sub>FM</sub> =                              | 0.134                                                                                                            | using Equat         | tion (Exhibit 13-6)          |                                         | EQ<br>P =                               |                    |                        |                  | n /Evhibit 13       | 2 7)                  |
| $\begin{array}{c c c c c c c } & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $V_{12} =$                                     | 805 p                                                                                                            | c/h                 |                              |                                         | FD                                      |                    |                        |                  |                     | <i>j</i> - <i>i</i> ) |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                | 2600                                                                                                             | oc/h (Equati        | on 13-14 or 13-              |                                         | v <sub>12</sub> -                       |                    |                        | pc/n             |                     |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | v <sub>3</sub> or v <sub>av34</sub>            | 17)                                                                                                              |                     |                              |                                         | v <sub>3</sub> or v <sub>av34</sub>     |                    |                        | pc/h (Equation 1 | 3-14 or 13-1        | ()                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Is V <sub>3</sub> or V <sub>av34</sub> > 2,70  | 0 pc/h? 🗌 Ye                                                                                                     | s 🗹 No              |                              |                                         | Is V <sub>3</sub> or V <sub>av</sub>    | <sub>34</sub> > 2, | 700 pc/h? [            | ∐Yes ∐No         |                     |                       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Is V <sub>3</sub> or V <sub>av34</sub> > 1.5 * | <sup>•</sup> V <sub>12</sub> /2                                                                                  | s 🗌 No              |                              |                                         | Is V <sub>3</sub> or V <sub>av</sub>    | <sub>34</sub> > 1. | 5 * V <sub>12</sub> /2 | Yes 🗌 No         |                     |                       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                | 2402                                                                                                             | oc/h (Equati        | on 13-16, 13-                |                                         | If Yes,V <sub>12a</sub> =               | =                  | 1                      | pc/h (Equation   | n 13-16, 13         | 3-18, or              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11 1 00, V <sub>12a</sub> -                    | 18, or                                                                                                           | 13-19)              |                              |                                         | 120                                     |                    | 1.                     | 3-19)            |                     |                       |
| $ \begin{array}{ c c c c } \hline Actual & \hline Capacity & LOS F? & Actual & \hline Capacity & LOS F? \\ \hline V_{FO} & Actual & \hline V_F & Exhibit 13-8 & \hline V_F & V_F & V_F & V_F & \hline V_F & V_F & V_F & V_F & \hline V_F & V_F & V_F & V_F & \hline V_F & V_F & V_F & V_F & \hline V_F & V_F & V_F & V_F & V_F & \hline V_F & V_F & V_F & V_F & V_F & \hline V_F & V_F & V_F & V_F & \hline V_F & V_F & V_F & V_F & \hline V_F & V_F & V_F & V_F & V_F & \hline V_F & V_F & V_F & V_F & \hline V_F & V_F & V_F & V_F & \hline V_F & V_F & V_F & V_F & V_F & \hline V_F & V_F & V_F & V_F & V_F & V_F & \hline V_F & V_F & V_F & V_F & V_F & V_F & \hline V_F & \hline V_F & $ | Capacity Che                                   | cks                                                                                                              |                     |                              |                                         | Capacit                                 | y Ch               | necks                  |                  |                     |                       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                | Actual                                                                                                           | 0                   | Capacity                     | LOS F?                                  |                                         |                    | Actual                 | Cap              | pacity              | LOS F?                |
| $ \begin{array}{ c c c c c } \hline V_{FO} & 6675 & Exhibit 13-8 & No & V_{FO} = V_F - V_R & Exhibit 13-8 & Interview is the exhibit 13-8 & Interview is the exhibit 13-8 & V_R & Interview is the exhibit 13-8 & Interview is the exhibit 13-8 & V_R & Interview is the exhibit 13-8 & Interview is the exhibit 13-8 & V_R & Interview is the exhibit 13-8 & V_R & Interview is the exhibit 13-8 & Volation? \\ \hline Flow Entering Merge Influence Area & Flow Entering Diverge Influence Area & Volation? & Actual & Max Desirable & Volation? & V_R & Interview is the exhibit 13-8 & Volation? & V_R & Interview is the exhibit 13-8 & Volation? & V_R & Volation? & V_R & Volation? & V_R & Volation? & V_R & Volation? & Volatio$                                                                                                                                                                                                                                                                                                             |                                                |                                                                                                                  |                     |                              |                                         | V <sub>F</sub>                          |                    |                        | Exhibit 13-8     | 8                   |                       |
| FlowExhibit 100InteringExhibit 13-<br>10Exhibit 13-<br>10Flow Entering Diverge Influence AreaActualMax DesirableViolation?ActualMax DesirableViolation?VR123360Exhibit 13-84600:AllNoV12Exhibit 13-8Violation?VR123360Exhibit 13-84600:AllNoV12Exhibit 13-8Violation?DR5.475 + 0.00734 vR + 0.0078 V12 - 0.00627 LADR4.252 + 0.0086 V12 - 0.009 LDDRDR23.5 (pc/mi/ln)DR(pc/mi/ln)DS = (Exhibit 13-2)DS = (Exhibit 13-2)Speed DeterminationMS =0.283 (Exibit 13-11)DR =(Exhibit 13-12)SR =mph (Exhibit 13-11)So =66.2 mph (Exhibit 13-11)SR =mph (Exhibit 13-12)SR =mph (Exhibit 13-12)S =64.0 mph (Exhibit 13-13)S =mph (Exhibit 13-13)S =mph (Exhibit 13-13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Vro                                            | 6675                                                                                                             | Exhibit 13-8        |                              | No                                      | $V_{FO} = V_{F}$                        | - V <sub>R</sub>   |                        | Exhibit 13-8     | 8                   |                       |
| VR10Flow Entering Diverge Influence AreaActualMax DesirableViolation?ActualMax DesirableViolation?VR123360Exhibit 13-84600:AllNoV12Exhibit 13-8Violation?Level of Service Determination (if not F)Level of Service Determination (if not F)DR = 4.252 + 0.0086 V12 - 0.009 LDDRDR = 23.5 (pc/mi/ln)DR = (pc/mi/ln)DS = (Exhibit 13-2)DS = (Exhibit 13-2)DRVIOLATIONSpeed DeterminationMs =0.283 (Exibit 13-11)Speed DeterminationDs = (Exhibit 13-12)Sg = mph (Exhibit 13-11)Sg = mph (Exhibit 13-12)Sg = mph (Exhibit 13-12)Sp =66.2 mph (Exhibit 13-11)Sg = mph (Exhibit 13-12)Sg = mph (Exhibit 13-13)Sg = mph (Exhibit 13-13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - FO                                           | 0010                                                                                                             |                     |                              |                                         | V N                                     |                    |                        | Exhibit 13       | -                   |                       |
| Flow Entering Diverge Influence AreaActualMax DesirableViolation?ActualMax DesirableViolation? $V_{R12}$ 3360Exhibit 13-84600:AllNo $V_{12}$ Exhibit 13-8Violation?Level of Service Determination (if not F)Level of Service Determination (if not F)D_R = 4.252 + 0.0086 V_{12} - 0.009 L_DD_R = 4.252 + 0.0086 V_{12} - 0.009 L_D $D_R = 23.5 (pc/mi/ln)$ $C$ (Exhibit 13-2) $C$ (Exhibit 13-2) $C$ (Exhibit 13-2) $C$ (Exhibit 13-2) $C$ (Exhibit 13-2)Speed Determination $M_S = 0.283 (Exibit 13-11)$ $S_R = 62.1 mph (Exhibit 13-11)$ $S_R = mph (Exhibit 13-12)$ $S_p = 66.2 mph (Exhibit 13-11)$ $S_p = mph (Exhibit 13-12)$ $S_p = mph (Exhibit 13-12)$ $S = 64.0 mph (Exhibit 13-13)$ $S = mph (Exhibit 13-13)$ $S = mph (Exhibit 13-13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                                                                                                                  |                     |                              |                                         | ۷R                                      |                    |                        | 10               |                     |                       |
| $\begin{tabular}{ c c c c c c c c c c } \hline Actual & Max Desirable & Violation? & Actual & Max Desirable & Violation? & V_{R12} & 3360 & Exhibit 13-8 & 4600:All & No & V_{12} & Exhibit 13-8 & & & & & & & \\ \hline V_{R12} & 3360 & Exhibit 13-8 & 4600:All & No & V_{12} & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Flow Entering                                  | g Merge In                                                                                                       | fluence A           | lrea                         |                                         | Flow En                                 | iterii             | ng Dive                | rge Influen      | ce Area             |                       |
| $V_{R12}$ 3360       Exhibit 13-8       4600:All       No $V_{12}$ Exhibit 13-8       Image: Constraint of the cons                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                | Actual                                                                                                           | Max                 | Desirable                    | Violation?                              |                                         |                    | Actual                 | Max Desi         | irable              | Violation?            |
| Level of Service Determination (if not F)         Level of Service Determination (if not F) $D_R = 5.475 + 0.00734 v_R + 0.0078 v_{12} - 0.00627 L_A$ $D_R = 4.252 + 0.0086 V_{12} - 0.009 L_D$ $D_R = 23.5 (pc/mi/ln)$ $D_R = (pc/mi/ln)$ $LOS = C (Exhibit 13-2)$ $LOS = (Exhibit 13-2)$ Speed Determination         Speed Determination $M_S = 0.283 (Exibit 13-11)$ $D_S = (Exhibit 13-12)$ $S_R = 62.1 mph (Exhibit 13-11)$ $S_R = mph (Exhibit 13-12)$ $S_0 = 66.2 mph (Exhibit 13-11)$ $S_0 = mph (Exhibit 13-12)$ $S = 64.0 mph (Exhibit 13-13)$ $S = mph (Exhibit 13-13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V <sub>R12</sub>                               | 3360                                                                                                             | Exhibit 13-8        | 4600:All                     | No                                      | V <sub>12</sub>                         |                    |                        | Exhibit 13-8     |                     |                       |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Level of Serv                                  | ice Detern                                                                                                       | nination (          | if not F)                    |                                         | Level of                                | f Ser              | vice De                | terminatio       | n (if not           | F)                    |
| $D_R = 23.5 (pc/mi/ln)$ $D_R = (pc/mi/ln)$ $LOS = C (Exhibit 13-2)$ $LOS = (Exhibit 13-2)$ Speed Determination       Speed Determination $M_S = 0.283 (Exibit 13-11)$ $D_s = (Exhibit 13-12)$ $S_R = 62.1 mph (Exhibit 13-11)$ $S_R = mph (Exhibit 13-12)$ $S_0 = 66.2 mph (Exhibit 13-11)$ $S_0 = mph (Exhibit 13-12)$ $S = 64.0 mph (Exhibit 13-13)$ $S = mph (Exhibit 13-13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D <sub>R</sub> = 5.475 +                       | $D_{p} = 5.475 + 0.00734 v_{p} + 0.0078 V_{12} - 0.00627 L_{A}$<br>$D_{p} = 4.252 + 0.0086 V_{12} - 0.009 L_{p}$ |                     |                              |                                         |                                         |                    |                        |                  |                     |                       |
| $LOS = C$ (Exhibit 13-2) $LOS = (Exhibit 13-2)$ Speed DeterminationSpeed Determination $M_S = 0.283$ (Exibit 13-11) $D_s = (Exhibit 13-12)$ $S_R = 62.1$ mph (Exhibit 13-11) $S_R = mph$ (Exhibit 13-12) $S_0 = 66.2$ mph (Exhibit 13-11) $S_0 = mph$ (Exhibit 13-12) $S = 64.0$ mph (Exhibit 13-13) $S = mph$ (Exhibit 13-13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $D_{\rm p} = 23.5 ({\rm pc/m})$                | i/ln)                                                                                                            | 12                  | ~                            |                                         | D <sub>p</sub> = (r                     | )c/mi/             | ′ln)                   | 12               | U                   |                       |
| Los =       CLXHIBIT 13-27         Speed Determination       Speed Determination $M_s =$ 0.283 (Exibit 13-11) $S_R =$ 62.1 mph (Exhibit 13-11) $S_0 =$ 66.2 mph (Exhibit 13-11) $S =$ 64.0 mph (Exhibit 13-13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R = C (Fxhibit)                                | 13_2)                                                                                                            |                     |                              |                                         | -R (P                                   | zvhihi             | it 13_2)               |                  |                     |                       |
| Speed Determination         Speed Determination $M_{\rm S}$ = 0.283 (Exibit 13-11) $D_{\rm s}$ = (Exhibit 13-12) $S_{\rm R}$ = 62.1 mph (Exhibit 13-11) $S_{\rm R}$ = mph (Exhibit 13-12) $S_{\rm 0}$ = 66.2 mph (Exhibit 13-11) $S_{\rm 0}$ = mph (Exhibit 13-12) $S = 64.0$ mph (Exhibit 13-13) $S = mph$ (Exhibit 13-13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |                                                                                                                  |                     |                              |                                         |                                         |                    |                        |                  |                     |                       |
| $M_S =$ 0.283 (Exibit 13-11) $D_s =$ (Exhibit 13-12) $S_R^=$ 62.1 mph (Exhibit 13-11) $S_R^=$ mph (Exhibit 13-12) $S_0^=$ 66.2 mph (Exhibit 13-11) $S_0^=$ mph (Exhibit 13-12) $S =$ 64.0 mph (Exhibit 13-13) $S =$ mph (Exhibit 13-13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Speed Detern                                   | nination                                                                                                         |                     |                              |                                         | speea L                                 | Jete               | rminatio               | ก                |                     |                       |
| $S_R^{=}$ 62.1 mph (Exhibit 13-11) $S_R^{=}$ mph (Exhibit 13-12) $S_0^{=}$ 66.2 mph (Exhibit 13-11) $S_0^{=}$ mph (Exhibit 13-12) $S =$ 64.0 mph (Exhibit 13-13) $S =$ mph (Exhibit 13-13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M <sub>S</sub> = 0.283 (Exil                   | bit 13-11)                                                                                                       |                     |                              |                                         | D <sub>s</sub> = (E                     | xhibit             | 13-12)                 |                  |                     |                       |
| $S_0$ = 66.2 mph (Exhibit 13-11) $S_0$ = mph (Exhibit 13-12)<br>S = 64.0 mph (Exhibit 13-13) S = mph (Exhibit 13-13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S <sub>R</sub> = 62.1 mph (                    | (Exhibit 13-11)                                                                                                  |                     |                              |                                         | S <sub>R</sub> = m                      | ph (Ex             | (hibit 13-12)          |                  |                     |                       |
| S = 64.0 mph (Exhibit 13-13) S = mph (Exhibit 13-13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S <sub>0</sub> = 66.2 mph (                    | (Exhibit 13-11)                                                                                                  |                     |                              |                                         | S <sub>0</sub> = m                      | ph (Ex             | (hibit 13-12)          |                  |                     |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S = 64.0 mph (                                 | (Exhibit 13-13)                                                                                                  |                     |                              |                                         | S= m                                    | ph (Ex             | (hibit 13-13)          |                  |                     |                       |

|                                                                                            |                                                             | RAMP               | S AND RAM                     | P JUNCTI        | ONS WO                               | RKS                 | HEET                 |                                      |                                 |                |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------|-------------------------------|-----------------|--------------------------------------|---------------------|----------------------|--------------------------------------|---------------------------------|----------------|
| General Info                                                                               | rmation                                                     |                    |                               | Site Infor      | mation                               |                     |                      |                                      |                                 |                |
| Analyst                                                                                    |                                                             |                    | Fre                           | eeway/Dir of Tr | avel                                 | I-95 NE             | 3                    |                                      |                                 |                |
| Agency or Company                                                                          | AECO                                                        | MC                 | Ju                            | nction          |                                      | Seg 5-              | Off to Exp f         | rom GPL                              |                                 |                |
| Date Performed                                                                             |                                                             |                    | Ju                            | risdiction      |                                      | -                   |                      |                                      |                                 |                |
| Analysis Time Perio                                                                        | d PM                                                        |                    | An                            | alysis Year     |                                      | 2020 B              | uild 2               |                                      |                                 |                |
| Project Description                                                                        | SW 10th Stree                                               | t SIMR             |                               |                 |                                      |                     |                      |                                      |                                 |                |
| Inputs                                                                                     |                                                             |                    |                               |                 |                                      |                     |                      |                                      | i                               |                |
| Upstream Adj F                                                                             | Ramp                                                        | Freeway Nun        | nber of Lanes, N              | 4               |                                      |                     |                      |                                      | Downstrea                       | am Adj         |
|                                                                                            | ·                                                           | Ramp Numbe         | er of Lanes, N                | 1               |                                      |                     |                      |                                      | Ramp                            | ,              |
| Yes 🖸                                                                                      | 🗸 On                                                        | Acceleration       | Lane Length, L                |                 |                                      |                     |                      |                                      | Vac                             |                |
|                                                                                            |                                                             |                    |                               |                 |                                      |                     |                      |                                      |                                 |                |
|                                                                                            | _] Off                                                      | Eroowov Volu       |                               | 6020            |                                      |                     |                      |                                      | 🗹 No                            | Off            |
|                                                                                            | 250 <del>ft</del>                                           |                    | ine, v <sub>F</sub>           | 0230            |                                      |                     |                      |                                      | I. =                            | ft             |
|                                                                                            | 950 H                                                       | Ramp Volum         | e, v <sub>R</sub>             | 230             |                                      |                     |                      |                                      | down                            |                |
| V = 6'                                                                                     | 10 veh/h                                                    | Freeway Free       | e-Flow Speed, S <sub>FF</sub> | 70.0            |                                      |                     |                      |                                      | V <sub>D</sub> =                | veh/h          |
|                                                                                            |                                                             | Ramp Free-F        | low Speed, S <sub>FR</sub>    | 45.0            |                                      |                     |                      |                                      |                                 |                |
| Conversion t                                                                               | to pc/h Und                                                 | der Base           | Conditions                    |                 |                                      |                     |                      |                                      | н.<br>-                         |                |
| (nc/h)                                                                                     | V                                                           | DHE                | Terrain                       | %Truck          | %Pv                                  |                     | f                    | f                                    | v = V/PHF                       | xf xf          |
| (pc/ii)                                                                                    | (Veh/hr)                                                    |                    | Tenain                        | 70 TTUCK        | /0111                                |                     | 'HV                  | 'p                                   | V V/I I II                      | Λ'HV Λ'p       |
| Freeway                                                                                    | 6230                                                        | 0.95               | Level                         | 3               | 0                                    | 0.                  | 985                  | 1.00                                 | 66                              | 56             |
| Ramp                                                                                       | 230                                                         | 0.92               | Level                         | 2               | 0                                    | 0.                  | 990                  | 1.00                                 | 25                              | 52             |
| UpStream                                                                                   | 610                                                         | 0.92               | Level                         | 2               | 0                                    | 0.                  | 990                  | 1.00                                 | 67                              | 70             |
| DownStream                                                                                 |                                                             |                    |                               |                 |                                      |                     |                      |                                      |                                 |                |
|                                                                                            |                                                             | Merge Areas        |                               |                 |                                      | -                   |                      | liverge Areas                        |                                 |                |
| Estimation o                                                                               | t v <sub>12</sub>                                           |                    |                               |                 | Estimat                              | ion o               | of V <sub>12</sub>   |                                      |                                 |                |
|                                                                                            | V <sub>12</sub> = V <sub>F</sub>                            | (P <sub>FM</sub> ) |                               |                 |                                      |                     | V <sub>12</sub> =    | V <sub>R</sub> + (V <sub>F</sub> - \ | / <sub>R</sub> )P <sub>FD</sub> |                |
| L <sub>E0</sub> =                                                                          | (Equa                                                       | ition 13-6 or      | 13-7)                         |                 | L <sub>E0</sub> =                    |                     | (I                   | Equation 13-                         | 12 or 13-13                     | )              |
| P=                                                                                         | usina                                                       | Equation (         | Fxhibit 13-6)                 |                 |                                      |                     | 0,                   | 436 Usina Fa                         | nuation (Exhi                   | ,<br>hit 13-7) |
|                                                                                            | nc/h                                                        |                    |                               |                 |                                      |                     | 0.<br>20             | W/ no/h                              |                                 |                |
| 12                                                                                         | po/h                                                        | Faultion 10        | ) 11 ar 10 17)                |                 | $\sqrt{12}$                          |                     | 10                   | 144 pc/m                             |                                 |                |
| $v_3 \text{ or } v_{av34}$                                                                 | рс/п (1<br>00 /h 0                                          |                    | -14 01 13-17)                 |                 | v <sub>3</sub> 01 v <sub>av34</sub>  |                     | ۲۵<br>۲۰۰۲ میں ۱۳۵۰  | 006 pc/n (Eq                         | uation 13-14                    | FOF 13-17)     |
| IS $V_3$ or $V_{av34} > 2,70$                                                              |                                                             | s 🗌 No             |                               |                 | IS V <sub>3</sub> OF V <sub>av</sub> | <sub>34</sub> > 2,7 |                      | Yes ⊻No                              |                                 |                |
| Is $V_3$ or $V_{av34} > 1.5$                                                               | * V <sub>12</sub> /2 Yes                                    | s 🗌 No             |                               |                 | Is V <sub>3</sub> or V <sub>av</sub> | <sub>34</sub> > 1.5 | * V <sub>12</sub> /2 | Yes 🗹 No                             |                                 |                |
| lf Yes,V <sub>12a</sub> =                                                                  | pc/h (<br>13 10)                                            | Equation 13        | 3-16, 13-18, or               |                 | If Yes,V <sub>12a</sub> =            | =                   | p                    | c/h (Equatio                         | n 13-16, 13-                    | 18, or 13-     |
| Canacity Ch                                                                                | 10-19)                                                      |                    |                               |                 | Canacit                              | v Ch                | ocks                 | 9)                                   |                                 |                |
|                                                                                            | Actual                                                      |                    | Panaoit <i>u</i>              |                 |                                      | y cn                | Actual               |                                      | 'anaaitu                        |                |
|                                                                                            | Actual                                                      |                    |                               | LUGF?           | V                                    |                     | Actual               |                                      |                                 |                |
|                                                                                            |                                                             |                    |                               |                 | V <sub>F</sub>                       |                     | 0000                 |                                      | -0 9000                         | INO            |
| V <sub>FO</sub>                                                                            |                                                             | Exhibit 13-8       |                               |                 | $V_{FO} = V_{F}$                     | - V <sub>R</sub>    | 6404                 | Exhibit 13                           | -8 9600                         | No             |
|                                                                                            |                                                             |                    |                               |                 | V <sub>R</sub>                       |                     | 252                  | Exhibit 13-                          | 10 2100                         | No             |
| Flow Enterin                                                                               | a Merae In                                                  | fluence A          | Area                          |                 | Flow En                              | nterin              | g Diver              | rge Influei                          | nce Area                        |                |
|                                                                                            | Actual                                                      | Max                | Desirable                     | Violation?      |                                      |                     | Actual               | Max Desira                           | able                            | Violation?     |
| V <sub>P12</sub>                                                                           |                                                             | Exhibit 13-8       |                               |                 | V <sub>12</sub>                      |                     | 3044                 | Exhibit 13-8                         | 4400:All                        | No             |
| Level of Service Determination (if not E)                                                  |                                                             |                    |                               |                 | l evel of                            | f Ser               | vice De              | terminatio                           | n (if not                       | F)             |
| $D_{-} = 5.475 \pm 0.00734 \text{ y}_{-} \pm 0.0078 \text{ y}_{-} = 0.00627 \text{ J}_{-}$ |                                                             |                    |                               |                 |                                      |                     |                      |                                      |                                 |                |
| $D_R = 3.475 \pm 0.00734 \text{ v}_R \pm 0.0076 \text{ v}_{12} \pm 0.00027 \text{ L}_A$    |                                                             |                    |                               |                 |                                      | $D_R = -$           | , ., .               | .0000 v <sub>12</sub> - 0            |                                 |                |
| $D_R = (pc/mi/ir)$                                                                         | $D_R = (pc/m/m)$                                            |                    |                               |                 |                                      |                     |                      |                                      |                                 |                |
| LOS = (Exhibit                                                                             | $LOS = (Exhibit 13-2) \qquad \qquad LOS = D (Exhibit 13-2)$ |                    |                               |                 |                                      |                     |                      |                                      |                                 |                |
| Speed Deter                                                                                | Speed L                                                     | Deter              | minatio                       | n               |                                      |                     |                      |                                      |                                 |                |
| M <sub>o</sub> = (Exibit 13-11)                                                            |                                                             |                    |                               |                 | D <sub>s</sub> = 0.                  | 321 (E              | xhibit 13-           | 12)                                  |                                 |                |
| $S_{n} = mnh (Evi$                                                                         | hihit 13_11)                                                |                    |                               |                 | S <sub>R</sub> = 6 <sup>4</sup>      | 1.0 mph             | (Exhibit             | 13-12)                               |                                 |                |
|                                                                                            | hibit $12 \cdot 11$                                         |                    |                               |                 | S_= 7                                | 3 6 mnh             | (Exhibit             | ,<br>13-12)                          |                                 |                |
| S = mnh (Exi                                                                               | $\frac{101110-11}{10110}$                                   |                    |                               |                 | S - 6                                | 7.2 mrk             |                      | 12 12                                |                                 |                |
|                                                                                            |                                                             |                    |                               |                 |                                      | r.ompr              |                      | 13-13)                               | <u> </u>                        |                |
| yrignt © 2016 Universi                                                                     | ty ot ⊢iorida, All R                                        | ignts Reserved     |                               |                 | HCS2010                              | " Versi             | on 6.90              |                                      | Generated: 6                    | o/18/2020 1:10 |

|                                                                                                                                       | BASIC F                                                                       | REEWAY SE                          | GMENTS WORKSHEET                                                                                                                                                    |                                    |                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------|
| General Information                                                                                                                   |                                                                               |                                    | Site Information                                                                                                                                                    |                                    |                                                                                      |
| Analyst<br>Agency or Company<br>Date Performed                                                                                        | AECOM                                                                         |                                    | Highway/Direction of Travel<br>From/To<br>Jurisdiction                                                                                                              | I-95 NB<br>Seg 6-Se                | outh of Off to 10th                                                                  |
| Analysis Time Period                                                                                                                  | PM<br>h Street SIMP                                                           |                                    | Analysis Year                                                                                                                                                       | 2020 Bu                            | 110 2                                                                                |
|                                                                                                                                       | IT SLIEEL SIMIK                                                               |                                    |                                                                                                                                                                     |                                    | unning Data                                                                          |
| Flow Inputs                                                                                                                           |                                                                               |                                    | Jes.(III)                                                                                                                                                           |                                    |                                                                                      |
| Volume, V                                                                                                                             | 6000                                                                          | veh/h<br>veh/dav                   | Peak-Hour Factor, PHF<br>%Trucks and Buses, P+                                                                                                                      | 0.95<br>3                          |                                                                                      |
| Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D                                                          |                                                                               | veh/h                              | %RVs, P <sub>R</sub><br>General Terrain:<br>Grade % Length<br>Up/Down %                                                                                             | 0<br>Level<br>mi                   |                                                                                      |
| Calculate Flow Adjustr                                                                                                                | nents                                                                         |                                    |                                                                                                                                                                     |                                    |                                                                                      |
| f <sub>p</sub><br>E <sub>T</sub>                                                                                                      | 1.00<br>1.5                                                                   |                                    | E <sub>R</sub><br>f <sub>LV/</sub> = 1/[1+P <sub>T</sub> (E <sub>T</sub> - 1) + P <sub>P</sub> (E <sub>P</sub> - 1)]                                                | 1.2<br>0.985                       |                                                                                      |
| Speed Inputs                                                                                                                          |                                                                               |                                    | Calc Speed Adi and FFS                                                                                                                                              | 3                                  |                                                                                      |
| Lane Width<br>Rt-Side Lat. Clearance<br>Number of Lanes, N<br>Total Ramp Density, TRD<br>FFS (measured)<br>Base free-flow Speed, BFFS | 4<br>70.0                                                                     | ft<br>ft<br>ramps/mi<br>mph<br>mph | f <sub>LW</sub><br>f <sub>LC</sub><br>TRD Adjustment<br>FFS                                                                                                         | 70.0                               | mph<br>mph<br>mph<br>mph                                                             |
| LOS and Performance                                                                                                                   | Measures                                                                      |                                    | Design (N)                                                                                                                                                          |                                    |                                                                                      |
| <u>Operational (LOS)</u><br>v <sub>p</sub> = (V or DDHV) / (PHF x N :<br>S<br>D = v <sub>p</sub> / S<br>LOS                           | x f <sub>HV</sub> x f <sub>p</sub> ) 1603<br>68.1<br>23.5<br>C                | pc/h/ln<br>mph<br>pc/mi/ln         | $\frac{\text{Design (N)}}{\text{Design LOS}}$ $v_p = (V \text{ or DDHV}) / (PHF x N x)$ $S$ $D = v_p / S$ Required Number of Lanes, N                               | f <sub>HV</sub> x f <sub>p</sub> ) | pc/h/ln<br>mph<br>pc/mi/ln                                                           |
| Glossary                                                                                                                              |                                                                               |                                    | Factor Location                                                                                                                                                     |                                    |                                                                                      |
| N - Number of lanes<br>V - Hourly volume<br>v <sub>p</sub> - Flow rate<br>LOS - Level of service<br>DDHV - Directional design ho      | S - Speed<br>D - Density<br>FFS - Free-flow<br>BFFS - Base free<br>our volume | speed<br>ee-flow speed             | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11, 11-<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits 11-2 | 13<br>2, 11-3                      | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-11 |

HCS 2010<sup>TM</sup> Version 6.90

Generated: 6/18/2020 1:13 AM



|                                                                                                                                       | BASIC F                                                                       | REEWAY SE                          | GMENTS WORKSHEET                                                                                                                                                    |                                    |                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------|
| General Information                                                                                                                   |                                                                               |                                    | Site Information                                                                                                                                                    |                                    |                                                                                      |
| Analyst<br>Agency or Company<br>Date Performed                                                                                        | AECOM                                                                         |                                    | Highway/Direction of Travel<br>From/To<br>Jurisdiction                                                                                                              | I-95 NB<br>Seg 8-B                 | et Off & Off Ramps                                                                   |
| Analysis Time Period                                                                                                                  | PM<br>h Street SIMP                                                           |                                    | Analysis Year                                                                                                                                                       | 2020 Bu                            | 110 2                                                                                |
|                                                                                                                                       | IT SLIEEL SIMIK                                                               |                                    |                                                                                                                                                                     |                                    | unning Data                                                                          |
| Flow Inputs                                                                                                                           |                                                                               |                                    | Jes.(III)                                                                                                                                                           |                                    |                                                                                      |
| Volume, V<br>AADT                                                                                                                     | 4940                                                                          | veh/h<br>veh/dav                   | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>                                                                                                          | 0.95<br>3                          |                                                                                      |
| Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D                                                          |                                                                               | veh/h                              | %RVs, P <sub>R</sub><br>General Terrain:<br>Grade % Length<br>Up/Down %                                                                                             | 0<br>Level<br>mi                   |                                                                                      |
| Calculate Flow Adjustr                                                                                                                | nents                                                                         |                                    |                                                                                                                                                                     |                                    |                                                                                      |
| f <sub>p</sub><br>Ε <sub>T</sub>                                                                                                      | 1.00<br>1.5                                                                   |                                    | E <sub>R</sub><br>f <sub>HV</sub> = 1/[1+P <sub>T</sub> (E <sub>T</sub> - 1) + P <sub>R</sub> (E <sub>R</sub> - 1)]                                                 | 1.2<br>0.985                       |                                                                                      |
| Speed Inputs                                                                                                                          |                                                                               |                                    | Calc Speed Adj and FFS                                                                                                                                              | 6                                  |                                                                                      |
| Lane Width<br>Rt-Side Lat. Clearance<br>Number of Lanes, N<br>Total Ramp Density, TRD<br>FFS (measured)<br>Base free-flow Speed, BFFS | 3<br>70.0                                                                     | ft<br>ft<br>ramps/mi<br>mph<br>mph | f <sub>LW</sub><br>f <sub>LC</sub><br>TRD Adjustment<br>FFS                                                                                                         | 70.0                               | mph<br>mph<br>mph<br>mph                                                             |
| LOS and Performance                                                                                                                   | Measures                                                                      |                                    | Design (N)                                                                                                                                                          |                                    |                                                                                      |
| <u>Operational (LOS)</u><br>v <sub>p</sub> = (V or DDHV) / (PHF x N )<br>S<br>D = v <sub>p</sub> / S<br>LOS                           | x f <sub>HV</sub> x f <sub>p</sub> ) 1759<br>66.4<br>26.5<br>D                | pc/h/ln<br>mph<br>pc/mi/ln         | $\frac{\text{Design (N)}}{\text{Design LOS}}$ $v_p = (V \text{ or DDHV}) / (PHF x N x)$ $S$ $D = v_p / S$ Required Number of Lanes, N                               | f <sub>HV</sub> x f <sub>p</sub> ) | pc/h/ln<br>mph<br>pc/mi/ln                                                           |
| Glossary                                                                                                                              |                                                                               |                                    | Factor Location                                                                                                                                                     |                                    |                                                                                      |
| N - Number of lanes<br>V - Hourly volume<br>v <sub>p</sub> - Flow rate<br>LOS - Level of service<br>DDHV - Directional design ho      | S - Speed<br>D - Density<br>FFS - Free-flow<br>BFFS - Base free<br>our volume | speed<br>ee-flow speed             | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11, 11-<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits 11-2 | 13<br>2, 11-3                      | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-11 |

HCS 2010<sup>TM</sup> Version 6.90

Generated: 6/18/2020 1:23 AM

|                                                                            | RAMPS AND RAMP JUNCTIONS WORKSHEET |                     |                               |                 |                           |                       |                      |                                      |                                 |                                    |
|----------------------------------------------------------------------------|------------------------------------|---------------------|-------------------------------|-----------------|---------------------------|-----------------------|----------------------|--------------------------------------|---------------------------------|------------------------------------|
| General Infor                                                              | rmation                            |                     |                               | Site Infor      | mation                    |                       |                      |                                      |                                 |                                    |
| Analyst                                                                    |                                    |                     | Fr                            | eeway/Dir of Tr | Fravel I-95 NB            |                       |                      |                                      |                                 |                                    |
| Agency or Company                                                          | AEC                                | OM                  | Ju                            | inction         |                           | Seg 9-                | Off to Hillsb        | oro EB&WB                            |                                 |                                    |
| Date Performed                                                             | d DM                               |                     | Ju                            | risdiction      |                           | 2020 0                |                      |                                      |                                 |                                    |
| Project Description                                                        | SW 10th Stree                      |                     | AI                            | alysis teal     |                           | 2020 B                |                      |                                      |                                 |                                    |
| Inputs                                                                     |                                    |                     |                               |                 |                           |                       |                      |                                      |                                 |                                    |
|                                                                            |                                    | Freeway Num         | ber of Lanes N                | 3               |                           |                       |                      |                                      |                                 | • "                                |
| Upstream Adj H                                                             | lamp                               | Ramn Numbe          | er of Lanes N                 | 1               |                           |                       |                      |                                      | Downstre                        | am Adj                             |
| Yes                                                                        | On                                 |                     | and Longth                    | I               |                           |                       |                      |                                      |                                 | _                                  |
|                                                                            |                                    | Deceleration        | Lane Length, L <sub>A</sub>   | 200             |                           |                       |                      |                                      | I ✓ Yes                         | l On                               |
| I No □                                                                     | Off                                |                     |                               | 200             |                           |                       |                      |                                      | 🗌 No                            | Off                                |
|                                                                            | <del>1</del>                       | Freeway volu        | ime, v <sub>F</sub>           | 4940            |                           |                       |                      |                                      | 1. =                            | 2100 ft                            |
| L Lup                                                                      | L                                  | Ramp Volume         | e, V <sub>R</sub>             | 1250            |                           |                       |                      |                                      | -down                           | 2100 10                            |
| V = v                                                                      | eh/h                               | Freeway Free        | e-Flow Speed, S <sub>FF</sub> | 70.0            |                           |                       |                      |                                      | V <sub>D</sub> =                | 1200 veh/h                         |
| u                                                                          |                                    | Ramp Free-F         | low Speed, S <sub>FR</sub>    | 45.0            |                           |                       |                      |                                      | _                               |                                    |
| Conversion t                                                               | o pc/h Un                          | <u>der Base</u>     | Conditions                    |                 |                           |                       |                      |                                      |                                 |                                    |
| (pc/h)                                                                     | V<br>(Veh/hr)                      | PHF                 | Terrain                       | %Truck          | %Rv                       |                       | f <sub>HV</sub>      | f <sub>p</sub>                       | v = V/PHF                       | x f <sub>HV</sub> x f <sub>p</sub> |
| Freeway                                                                    | 4940                               | 0.95                | Level                         | 3               | 0                         | 0.                    | 985                  | 1.00                                 | 52                              | 278                                |
| Ramp                                                                       | 1250                               | 0.92                | Level                         | 2               | 0                         | 0.                    | 990                  | 1.00                                 | 1                               | 372                                |
| UpStream                                                                   |                                    |                     |                               |                 |                           |                       |                      |                                      |                                 |                                    |
| DownStream                                                                 | 1200                               | 0.92                | Level                         | 2               | 0                         | 0.                    | 990                  | 1.00                                 | 1                               | 317                                |
| Estimation of                                                              | <b>F</b> 1, <i>f</i>               | Merge Areas         |                               |                 | Ectimot                   | lion o                | <u> </u>             | liverge Areas                        |                                 |                                    |
| Estimation of                                                              | <b>v</b> 12                        |                     |                               |                 | Estimat                   |                       | <b>12</b>            |                                      |                                 |                                    |
|                                                                            | V <sub>12</sub> = V <sub>F</sub>   | ( P <sub>FM</sub> ) |                               |                 |                           |                       | V <sub>12</sub> =    | ۷ <sub>R</sub> + (۷ <sub>F</sub> - ۱ | / <sub>R</sub> )P <sub>FD</sub> |                                    |
| L <sub>EQ</sub> =                                                          | (Equa                              | ation 13-6 or       | 13-7)                         |                 | L <sub>EQ</sub> =         |                       | (1                   | Equation 13-                         | 12 or 13-13                     | 3)                                 |
| P <sub>FM</sub> =                                                          | using                              | Equation (          | Exhibit 13-6)                 |                 | P <sub>FD</sub> =         |                       | 0.                   | 565 using E                          | quation (Exh                    | iibit 13-7)                        |
| V <sub>12</sub> =                                                          | pc/h                               |                     |                               |                 | V <sub>12</sub> =         |                       | 35                   | 579 pc/h                             |                                 |                                    |
| V <sub>3</sub> or V <sub>av34</sub>                                        | pc/h (                             | Equation 13         | -14 or 13-17)                 |                 | $V_3^{}$ or $V_{av34}^{}$ |                       | 16                   | 699 pc/h (Eq                         | uation 13-1                     | 4 or 13-17)                        |
| Is $V_3$ or $V_{av34} > 2,70$                                              | 00 pc/h? 🗌 Ye                      | s 🗌 No              |                               |                 | Is $V_3$ or $V_{av}$      | <sub>/34</sub> > 2,7  | 00 pc/h?             | Yes 🗹 No                             | )                               |                                    |
| Is $V_3$ or $V_{av34} > 1.5$                                               | * V <sub>12</sub> /2 🗌 Ye          | s 🗌 No              |                               |                 | Is $V_3$ or $V_{av}$      | , <sub>34</sub> > 1.5 | * V <sub>12</sub> /2 | Yes 🗹 No                             | )                               |                                    |
| If Yes,V <sub>12a</sub> =                                                  | pc/h (                             | Equation 13         | -16, 13-18, or                |                 | If Yes,V <sub>12a</sub> = | =                     | p                    | c/h (Equatio                         | n 13-16, 13                     | -18, or 13-                        |
| Canacity Che                                                               |                                    | )                   |                               |                 | Canacit                   | v Ch                  | ocks                 | 9)                                   |                                 |                                    |
|                                                                            | Actual                             |                     | anacity                       | LOS F2          |                           | <u>y Ch</u>           | Actual               |                                      | anacity                         | LOS F2                             |
|                                                                            | / total                            | † – †               | Jupuolity                     | 2001.           | V_                        |                       | 5278                 | Exhibit 13                           | -8 7200                         | No                                 |
| V                                                                          |                                    | Evhibit 13.8        |                               |                 | V = V                     | - V                   | 3006                 | Exhibit 13                           | 8 7200                          | No                                 |
| * FO                                                                       |                                    |                     |                               |                 | FO F                      | R T                   | 1070                 |                                      | -0 7200                         | NU                                 |
|                                                                            |                                    |                     | •                             |                 |                           |                       | 1372                 | Exhibit 13-                          | 10 2100                         | INO                                |
| Flow Entering                                                              | g merge in                         | Tiuence A           | Area<br>Desirable             | Violation?      | Flow Er                   | nterin                | of up l              | Max Dasir                            | nce Area                        | Violation?                         |
| V                                                                          | Actual                             | IVIAX               | Desirable                     | violation?      | V                         |                       |                      | Evhibit 12.9                         |                                 | VIOIALION?                         |
|                                                                            | l<br>vico Dotorr                   | nination (          | (if not E)                    |                 |                           | f Sor                 |                      | torminatio                           | 4400.All                        |                                    |
| $D = 5.475 \pm 0.00734 \text{ y} \pm 0.0078 \text{ y} = 0.00627 \text{ y}$ |                                    |                     |                               |                 | Levero                    |                       | 1252 + 0             |                                      |                                 | <i>r)</i>                          |
| $D_R = 0.470 + 0.1$                                                        | .00704 V R '                       | 0.0070 12           | 0.00027 L <sub>A</sub>        |                 | D - 2'                    | 20 (ma                | /mai/lm)             | .0000 • 12 - 0                       |                                 |                                    |
| $D_R = (pc/m/m)$                                                           | 1)<br>42.0\                        |                     |                               |                 | $D_R = 3$                 | o.z (pc               | /mi/in)              |                                      |                                 |                                    |
| LUS - (EXTINUL IS-2)                                                       |                                    |                     |                               |                 |                           |                       |                      |                                      |                                 |                                    |
| Speed Determination                                                        |                                    |                     |                               |                 | Speed L                   | Jeter                 |                      | <u>on</u>                            |                                 |                                    |
| ™ <sub>S</sub> = (Exibit 1                                                 | 3-11)                              |                     |                               |                 | $D_{s} = 0.$              | .4∠1 (E               |                      | ·12)                                 |                                 |                                    |
| S <sub>R</sub> = mph (Exh                                                  | nibit 13-11)                       |                     |                               |                 | $S_{R}^{-}$ 50            | o.2 mph               | (Exhibit             | 13-12)                               |                                 |                                    |
| S <sub>0</sub> = mph (Exh                                                  | nibit 13-11)                       |                     |                               |                 | $S_0 = 74$                | 4.1 mph               | (Exhibit             | 13-12)                               |                                 |                                    |
| S = mph (Exh                                                               | 13-13) tidit                       |                     |                               |                 | S = 62                    | 2.5 mph               | (Exhibit             | 13-13)                               |                                 |                                    |
| yright © 2016 Universit                                                    | ty of Florida, All F               | Rights Reserved     |                               |                 | HCS2010 <sup>TI</sup>     | <sup>M</sup> Versi    | on 6 90              |                                      | Generated:                      | 6/18/2020 1:26                     |

|                                                                                                                                  | BASIC F                                                                       | REEWAY SE                  | GMENTS WORKSHEET                                                                                                                                                    |                                    |                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------|
| General Information                                                                                                              |                                                                               |                            | Site Information                                                                                                                                                    |                                    |                                                                                      |
| Analyst<br>Agency or Company<br>Date Performed                                                                                   | AECOM                                                                         |                            | Highway/Direction of Travel<br>From/To<br>Jurisdiction                                                                                                              | l-95 NB<br>Seg 10-l                | Bet Off & On Ramps                                                                   |
| Analysis Time Period                                                                                                             | PM                                                                            |                            | Analysis Year                                                                                                                                                       | 2020 Bu                            | ild 2                                                                                |
| Project Description SW 10th                                                                                                      | h Street SIMR                                                                 |                            |                                                                                                                                                                     |                                    |                                                                                      |
| ✓ Oper.(LOS)                                                                                                                     |                                                                               |                            | Des.(N)                                                                                                                                                             | ∐ Pla                              | inning Data                                                                          |
| Flow Inputs                                                                                                                      |                                                                               |                            |                                                                                                                                                                     |                                    |                                                                                      |
| Volume, V<br>AADT                                                                                                                | 3690                                                                          | veh/h<br>veh/day           | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>                                                                                                          | 0.95<br>3                          |                                                                                      |
| Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D                                                     |                                                                               | veh/h                      | %RVs, P <sub>R</sub><br>General Terrain:<br>Grade % Length<br>Up/Down %                                                                                             | 0<br>Level<br>mi                   |                                                                                      |
| Calculate Flow Adjustr                                                                                                           | nents                                                                         |                            |                                                                                                                                                                     |                                    |                                                                                      |
| f <sub>p</sub>                                                                                                                   | 1.00                                                                          |                            | E <sub>R</sub>                                                                                                                                                      | 1.2                                |                                                                                      |
| E <sub>T</sub>                                                                                                                   | 1.5                                                                           |                            | $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$                                                                                                                        | 0.985                              |                                                                                      |
| Speed Inputs                                                                                                                     |                                                                               |                            | Calc Speed Adj and FFS                                                                                                                                              | 3                                  |                                                                                      |
| Lane Width                                                                                                                       |                                                                               | ft                         | f                                                                                                                                                                   |                                    | mph                                                                                  |
| Number of Lanes N                                                                                                                | 3                                                                             | п                          | 'LW<br>fu o                                                                                                                                                         |                                    | mph                                                                                  |
| Total Ramp Density, TRD                                                                                                          | 0                                                                             | ramps/mi                   | TRD Adjustment                                                                                                                                                      |                                    | mph                                                                                  |
| FFS (measured)                                                                                                                   | 70.0                                                                          | mph                        | FFS                                                                                                                                                                 | 70.0                               | mph                                                                                  |
| Base free-flow Speed, BFFS                                                                                                       |                                                                               | mph                        |                                                                                                                                                                     |                                    |                                                                                      |
| LOS and Performance                                                                                                              | Measures                                                                      |                            | Design (N)                                                                                                                                                          |                                    |                                                                                      |
| <u>Operational (LOS)</u><br>v <sub>p</sub> = (V or DDHV) / (PHF x N :<br>S<br>D = v <sub>p</sub> / S<br>LOS                      | x f <sub>HV</sub> x f <sub>p</sub> ) 1314<br>69.8<br>18.8<br>C                | pc/h/ln<br>mph<br>pc/mi/ln | Design (N)<br>Design LOS<br>v <sub>p</sub> = (V or DDHV) / (PHF x N x<br>S<br>D = v <sub>p</sub> / S<br>Required Number of Lanes, N                                 | f <sub>HV</sub> x f <sub>p</sub> ) | pc/h/ln<br>mph<br>pc/mi/ln                                                           |
| Glossary                                                                                                                         |                                                                               |                            | Factor Location                                                                                                                                                     |                                    |                                                                                      |
| N - Number of lanes<br>V - Hourly volume<br>v <sub>p</sub> - Flow rate<br>LOS - Level of service<br>DDHV - Directional design ho | S - Speed<br>D - Density<br>FFS - Free-flow<br>BFFS - Base free<br>our volume | speed<br>ee-flow speed     | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11, 11-<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits 11-2 | 13<br>2, 11-3                      | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-11 |

HCS 2010<sup>TM</sup> Version 6.90

Generated: 6/18/2020 1:28 AM

|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F                                                   | REEWAY                                               | WEAV                               | ING WOF                                                   | RKSHEE                         | Т                                            |                               |                               |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|------------------------------------|-----------------------------------------------------------|--------------------------------|----------------------------------------------|-------------------------------|-------------------------------|
| Genera                                                                       | I Informati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | on                                                  |                                                      |                                    | Site Info                                                 | rmation                        |                                              |                               |                               |
| Analyst<br>Agency/Co<br>Date Perfo<br>Analysis Ti                            | Analyst<br>Agency/Company AECOM<br>Date Performed<br>Analysis Time Period PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                                                      |                                    |                                                           | of Travel<br>gment Locati<br>r | I-95 N<br>on Seg 1<br>2020                   | IB<br>1-Bet On & C<br>Build 2 | Off to Exp                    |
| Project Des                                                                  | scription SW 10t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | h Street SIMF                                       | 2                                                    |                                    |                                                           |                                |                                              |                               |                               |
| Inputs                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                      |                                    | •                                                         |                                |                                              |                               |                               |
| Weaving co<br>Weaving n<br>Weaving se<br>Freeway fre                         | onfiguration<br>umber of lanes, N<br>egment length, L<br>ee-flow speed, F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N<br>s<br>FS                                        |                                                      | Two-Sided<br>4<br>2970ft<br>70 mph | Segment typ<br>Freeway min<br>Freeway ma:<br>Terrain type | e<br>imum speed<br>ximum capac | , S <sub>MIN</sub><br>sity, C <sub>IFL</sub> |                               | Freeway<br>15<br>2400<br>Leve |
| Conver                                                                       | rsions to p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c/h Unde                                            | r Base Co                                            | ondition                           | S                                                         |                                | •                                            | Ĩ.                            |                               |
|                                                                              | V (veh/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PHF                                                 | Truck (%)                                            | RV (%)                             | E <sub>T</sub>                                            | E <sub>R</sub>                 | f <sub>HV</sub>                              | fp                            | v (pc/h)                      |
| V <sub>FF</sub>                                                              | 3198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.95                                                | 3                                                    | 0                                  | 1.5                                                       | 1.2                            | 0.985                                        | 1.00                          | 3417                          |
| V <sub>RF</sub>                                                              | 2132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.92                                                | 2                                                    | 0                                  | 1.5                                                       | 1.2                            | 0.990                                        | 1.00                          | 2341                          |
| V <sub>FR</sub>                                                              | 492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.92                                                | 2                                                    | 0                                  | 1.5                                                       | 1.2                            | 0.990                                        | 1.00                          | 540                           |
| V <sub>RR</sub>                                                              | 328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.92                                                | 2                                                    | 0                                  | 1.5                                                       | 1.2                            | 0.990                                        | 1.00                          | 360                           |
| V <sub>NW</sub>                                                              | 6298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                      | -                                  |                                                           |                                | -                                            | V =                           | 6658                          |
| V <sub>W</sub>                                                               | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |                                                      |                                    |                                                           |                                |                                              | -                             |                               |
| VR                                                                           | 0.054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                                                      |                                    |                                                           |                                |                                              |                               |                               |
| Config                                                                       | uration Cha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | aracteris                                           | tics                                                 |                                    | •                                                         |                                |                                              |                               |                               |
| Minimum r                                                                    | maneuver lanes,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N <sub>WL</sub>                                     |                                                      | 0 lc                               | Minimum we                                                | aving lane c                   | hanges, LC <sub>MIN</sub>                    | I                             | 1080 lc/h                     |
| Interchang                                                                   | e density, ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |                                                      | 0.7 int/mi                         | Weaving lan                                               | e changes, L                   | -C <sub>W</sub>                              |                               | 1573 lc/h                     |
| Minimum F                                                                    | RF lane changes,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LC <sub>RF</sub>                                    |                                                      | 0 lc/pc                            | Non-weaving                                               | g lane chang                   | es, LC <sub>NW</sub>                         |                               | 2150 lc/h                     |
| Minimum F                                                                    | R lane changes,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LC <sub>FR</sub>                                    |                                                      | 0 lc/pc                            | Total lane ch                                             | nanges, LC <sub>AL</sub>       | L                                            |                               | 3723 lc/h                     |
| Minimum F                                                                    | RR lane changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , LC <sub>RR</sub>                                  |                                                      | 3 lc/pc                            | Non-weaving                                               | g vehicle inde                 | ex, I <sub>NW</sub>                          |                               | 1309                          |
| Weavin                                                                       | ng Segmen <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t Speed,                                            | Density, I                                           | _evel of                           | Service,                                                  | and Cap                        | oacity                                       |                               |                               |
| Weaving segment flow rate, v6576 veh/hWeaving segment capacity, cw8473 veh/h |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                      |                                    | Weaving inte<br>Weaving seg                               | ensity factor,<br>gment speed  | W<br>, S                                     |                               | 0.270<br>54.4 mph             |
| Weaving s                                                                    | egment v/c ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |                                                      | 0.776                              | Average wea                                               | aving speed,                   | S <sub>W</sub>                               |                               | 58.3 mph                      |
| Weaving segment density, D 30.6 pc/mi/lr                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                      |                                    | Average nor                                               | n-weaving sp                   | eed, $S_{_{NW}}$                             |                               | 54.2 mph                      |
| Level of Se                                                                  | ervice, LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |                                                      | D                                  | Maximum w                                                 | eaving length                  | n, L <sub>MAX</sub>                          |                               | 6232 ft                       |
| Notes                                                                        | a a mara na fara a secondaria da secondaria d | han tha!- !                                         | te d mention of the                                  |                                    |                                                           |                                | and diverse-                                 |                               | ana adum f                    |
| a. vveaving<br>Chapter 13,<br>b. For volum                                   | Segments longer t<br>"Freeway Merge a<br>nes that exceed the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nan the calcula<br>and Diverge Se<br>e weaving segi | egments".<br><u>ment capacity, the second second</u> | ngth should l                      | vice is "F".                                              | solated merge                  | and diverge ar                               | eas using the                 | procedures of                 |

HCS 2010<sup>TM</sup> Version 6.90

Generated: 8/14/2021 2:54 PM

|                                                                              | BASIC FRE                | EWAY SE          |                                                                         | Г                     |                  |
|------------------------------------------------------------------------------|--------------------------|------------------|-------------------------------------------------------------------------|-----------------------|------------------|
|                                                                              |                          |                  |                                                                         |                       |                  |
| General Information                                                          |                          |                  | Site Information                                                        |                       |                  |
| Analyst<br>Agency or Company<br>Date Performed                               | AECOM                    |                  | Highway/Direction of Travel<br>From/To                                  | I-95 NB<br>Seg 12-Nor | th of Hillsboro  |
| Analysis Time Period                                                         | PM                       |                  | Analysis Year                                                           | 2020 Build 2          | 2                |
| Project Description SW 1                                                     | Oth Street SIMI          | R                |                                                                         |                       |                  |
| Oper.(LOS)                                                                   |                          |                  | es.(N)                                                                  | Plannin               | g Data           |
| Flow Inputs                                                                  |                          |                  |                                                                         |                       |                  |
| Volume, V<br>AADT                                                            | 5330                     | veh/h<br>veh/day | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>              | 0.95<br>3             |                  |
| Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D |                          | veh/h            | %RVs, P <sub>R</sub><br>General Terrain:<br>Grade % Length<br>Up/Down % | 0<br>Level<br>mi      |                  |
| Calculate Flow Adjus                                                         | tments                   |                  |                                                                         |                       |                  |
| f <sub>n</sub>                                                               | 1.00                     |                  | E <sub>R</sub>                                                          | 1.2                   |                  |
| E <sub>T</sub>                                                               | 1.5                      |                  | $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$                            | ] 0.985               |                  |
| Speed Inputs                                                                 |                          |                  | Calc Speed Adj and F                                                    | FS                    |                  |
| Lane Width                                                                   |                          | ft               |                                                                         |                       |                  |
| Rt-Side Lat. Clearance                                                       |                          | ft               | f, M                                                                    |                       | mph              |
| Number of Lanes, N                                                           | 4                        |                  | f <sub>L</sub>                                                          |                       | mph              |
| Total Ramp Density, TRD                                                      |                          | ramps/mi         | TRD Adjustment                                                          |                       | mph              |
| FFS (measured)                                                               | 70.0                     | mph              | FFS                                                                     | 70.0                  | mph              |
| Base free-flow Speed,<br>BFFS                                                |                          | mph              |                                                                         |                       |                  |
| LOS and Performanc                                                           | e Measures               |                  | Design (N)                                                              |                       |                  |
| Operational (LOS)                                                            |                          |                  | <u>Design (N)</u><br>Design LOS                                         |                       |                  |
| v <sub>p</sub> = (v or DDnv)/ (FDF X)<br>x f <sub>p</sub> )                  | 1424 N X I <sub>HV</sub> | pc/h/ln          | v <sub>p</sub> = (V or DDHV) / (PHF x N<br>x f )                        | N x f <sub>HV</sub>   | pc/h/In          |
| S                                                                            | 69.4                     | mph              | <pre></pre>                                                             |                       | mph              |
| $D = v_p / S$                                                                | 20.5                     | pc/mi/ln         | D = v / S                                                               |                       | nc/mi/ln         |
| LOS                                                                          | С                        |                  | Required Number of Lanes                                                | , N                   | polinian         |
| Glossary                                                                     |                          |                  | Factor Location                                                         |                       |                  |
| N - Number of lanes                                                          | S - Speed                | d                | E Evhibita 11 10 11 10                                                  | £                     | Eyhihit 11 0     |
| V - Hourly volume                                                            | D - Densi                | ty               | $E_{\rm R}$ - Exhibits 11-10, 11-12                                     | LV<br>11 12 f         | V - EXHIDIL 11-0 |
| v <sub>n</sub> - Flow rate                                                   | FFS - Free               | -flow speed      | $E_{T} = EXMIDILS + 1 - 10, + 1 - 11,$                                  | 11-13 I <sub>LO</sub> | - Exhibit 11-9   |
| LOS - Level of service speed                                                 | BFFS - Bas               | se free-flow     | LOS, S, FFS, v <sub>p</sub> - Exhibits 1                                | 11-2,                 | RD - Page 11-11  |
| DDHV - Directional design                                                    | hour volume              |                  | 11-3                                                                    |                       |                  |

HCS 2010<sup>TM</sup> Version 6.90

Generated: 4/24/2021 3:02 PM

|                                                                                                                                  | BASIC F                                                                       | REEWAY SE                  | GMENTS WORKSHEET                                                                                                                                                    |                                    |                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------|
| General Information                                                                                                              |                                                                               |                            | Site Information                                                                                                                                                    |                                    |                                                                                      |
| Analyst<br>Agency or Company<br>Date Performed<br>Analysis Time Period                                                           | AECOM                                                                         |                            | Highway/Direction of Travel<br>From/To<br>Jurisdiction<br>Analysis Year                                                                                             | I-95 SB<br>Seg 1-B<br>2020 Bu      | et Hillsboro & Palmetto                                                              |
| Project Description SW 10th                                                                                                      | h Street SIMR                                                                 |                            |                                                                                                                                                                     | 2020 Du                            | 110 Z                                                                                |
| ✓ Oper.(LOS)                                                                                                                     |                                                                               |                            | Des.(N)                                                                                                                                                             | Pla                                | anning Data                                                                          |
| Flow Inputs                                                                                                                      |                                                                               |                            |                                                                                                                                                                     |                                    | 0                                                                                    |
| Volume, V<br>AADT<br>Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D                                                       | 4580                                                                          | veh/h<br>veh/day           | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub><br>%RVs, P <sub>R</sub><br>General Terrain:                                                              | 0.95<br>3<br>0<br>Level            |                                                                                      |
| DDHV = AADT x K x D                                                                                                              |                                                                               | veh/h                      | Grade % Length<br>Up/Down %                                                                                                                                         | mi                                 |                                                                                      |
| Calculate Flow Adjustr                                                                                                           | nents                                                                         |                            |                                                                                                                                                                     |                                    |                                                                                      |
| f <sub>p</sub>                                                                                                                   | 1.00                                                                          |                            | E <sub>R</sub>                                                                                                                                                      | 1.2                                |                                                                                      |
| Ε <sub>T</sub>                                                                                                                   | 1.5                                                                           |                            | $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$                                                                                                                        | 0.985                              |                                                                                      |
| Speed Inputs                                                                                                                     |                                                                               |                            | Calc Speed Adj and FFS                                                                                                                                              | 6                                  |                                                                                      |
| Lane Width<br>Rt-Side Lat. Clearance<br>Number of Lanes, N<br>Total Ramp Density, TRD                                            | 4                                                                             | ft<br>ft<br>ramps/mi       | f <sub>LW</sub><br>f <sub>LC</sub><br>TRD Adjustment                                                                                                                |                                    | mph<br>mph<br>mph                                                                    |
| FFS (measured)<br>Base free-flow Speed, BFFS                                                                                     | 70.0                                                                          | mph<br>mph                 | FFS                                                                                                                                                                 | 70.0                               | mph                                                                                  |
| LOS and Performance                                                                                                              | Measures                                                                      |                            | Design (N)                                                                                                                                                          |                                    |                                                                                      |
| <u>Operational (LOS)</u><br>v <sub>p</sub> = (V or DDHV) / (PHF x N :<br>S<br>D = v <sub>p</sub> / S<br>LOS                      | x f <sub>HV</sub> x f <sub>p</sub> ) 1223<br>70.0<br>17.5<br>B                | pc/h/ln<br>mph<br>pc/mi/ln | <u>Design (N)</u><br>Design LOS<br>v <sub>p</sub> = (V or DDHV) / (PHF x N x<br>S<br>D = v <sub>p</sub> / S<br>Required Number of Lanes, N                          | f <sub>HV</sub> x f <sub>p</sub> ) | pc/h/ln<br>mph<br>pc/mi/ln                                                           |
| Glossary                                                                                                                         |                                                                               |                            | Factor Location                                                                                                                                                     |                                    |                                                                                      |
| N - Number of lanes<br>V - Hourly volume<br>v <sub>p</sub> - Flow rate<br>LOS - Level of service<br>DDHV - Directional design ho | S - Speed<br>D - Density<br>FFS - Free-flow<br>BFFS - Base free<br>our volume | speed<br>ee-flow speed     | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11, 11-<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits 11-2 | -13<br>2, 11-3                     | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-11 |

HCS 2010<sup>TM</sup> Version 6.90

Generated: 6/18/2020 9:31 AM

|                                                                              |                                                                              | F                                                   | REEWAY                                      | WEAV                               | ING WOF                                                   | RKSHEE                          | Г                                           |                               |                                |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------|------------------------------------|-----------------------------------------------------------|---------------------------------|---------------------------------------------|-------------------------------|--------------------------------|
| Genera                                                                       | Informati                                                                    | on                                                  |                                             |                                    | Site Info                                                 | rmation                         |                                             |                               |                                |
| Analyst<br>Agency/Cor<br>Date Perfor<br>Analysis Tir                         | Analyst<br>Agency/Company AECOM<br>Date Performed<br>Analysis Time Period AM |                                                     |                                             |                                    |                                                           | of Travel<br>gment Locatio      | 195/S<br>on Seg 2<br>2020                   | B<br>2-Bet On from<br>Build 2 | Exp & Off                      |
| Project Des                                                                  | cription SW 10t                                                              | h Street SIMF                                       | R                                           |                                    |                                                           |                                 |                                             |                               |                                |
| Inputs                                                                       |                                                                              |                                                     |                                             |                                    | •                                                         |                                 |                                             |                               |                                |
| Weaving co<br>Weaving nu<br>Weaving se<br>Freeway fre                        | nfiguration<br>mber of lanes, N<br>gment length, L<br>e-flow speed, F        | N<br>s<br>FS                                        |                                             | Two-Sided<br>4<br>3900ft<br>70 mph | Segment typ<br>Freeway min<br>Freeway ma:<br>Terrain type | e<br>imum speed,<br>ximum capac | , S <sub>MIN</sub><br>ity, C <sub>IFL</sub> |                               | Freeway<br>15<br>2400<br>Level |
| Conver                                                                       | sions to p                                                                   | c/h Unde                                            | r Base Co                                   | ondition                           | S                                                         |                                 | 1                                           | 1                             |                                |
|                                                                              | V (veh/h)                                                                    | PHF                                                 | Truck (%)                                   | RV (%)                             | Ε <sub>Τ</sub>                                            | E <sub>R</sub>                  | f <sub>HV</sub>                             | fp                            | v (pc/h)                       |
| V <sub>FF</sub>                                                              | 3460                                                                         | 0.95                                                | 3                                           | 0                                  | 1.5                                                       | 1.2                             | 0.985                                       | 1.00                          | 3697                           |
| V <sub>RF</sub>                                                              | 850                                                                          | 0.92                                                | 2                                           | 0                                  | 1.5                                                       | 1.2                             | 0.990                                       | 1.00                          | 933                            |
| V <sub>FR</sub>                                                              | 1120                                                                         | 0.92                                                | 2                                           | 0                                  | 1.5                                                       | 1.2                             | 0.990                                       | 1.00                          | 1230                           |
| V <sub>RR</sub>                                                              | 90                                                                           | 0.92                                                | 2                                           | 0                                  | 1.5                                                       | 1.2                             | 0.990                                       | 1.00                          | 99                             |
| V <sub>NW</sub>                                                              | 5860                                                                         |                                                     |                                             |                                    |                                                           |                                 |                                             | V =                           | 5959                           |
| V <sub>W</sub>                                                               | 99                                                                           |                                                     |                                             |                                    |                                                           |                                 |                                             |                               |                                |
| VR                                                                           | 0.017                                                                        |                                                     |                                             |                                    |                                                           |                                 |                                             |                               |                                |
| Configu                                                                      | ration Cha                                                                   | aracterist                                          | tics                                        |                                    | 1                                                         |                                 |                                             |                               |                                |
| Minimum m                                                                    | aneuver lanes,                                                               | N <sub>WL</sub>                                     |                                             | 0 lc                               | Minimum we                                                | eaving lane cl                  | nanges, LC <sub>MIN</sub>                   |                               | 297 lc/h                       |
| Interchange                                                                  | e density, ID                                                                |                                                     |                                             | 0.7 int/mi                         | Weaving lan                                               | e changes, L                    | .C <sub>W</sub>                             |                               | 869 lc/h                       |
| Minimum R                                                                    | F lane changes,                                                              | LC <sub>RF</sub>                                    |                                             | 0 lc/pc                            | Non-weaving                                               | g lane chang                    | es, LC <sub>NW</sub>                        |                               | 2756 lc/h                      |
| Minimum F                                                                    | R lane changes,                                                              | LC <sub>FR</sub>                                    |                                             | 0 lc/pc                            | Total lane ch                                             | nanges, LC <sub>AL</sub>        | L                                           |                               | 3625 lc/h                      |
| Minimum R                                                                    | R lane changes                                                               | , LC <sub>RR</sub>                                  |                                             | 3 lc/pc                            | Non-weaving                                               | g vehicle inde                  | ex, I <sub>NW</sub>                         |                               | 1600                           |
| Weavin                                                                       | g Segmen <sup>-</sup>                                                        | t Speed,                                            | Density, l                                  | _evel of                           | Service,                                                  | and Cap                         | oacity                                      |                               |                                |
| Weaving segment flow rate, v5882 veh/hWeaving segment capacity, cw8859 veh/h |                                                                              |                                                     |                                             |                                    | Weaving inte<br>Weaving sec                               | ensity factor,<br>gment speed,  | W<br>, S                                    |                               | 0.213<br>60.7 mph              |
| Weaving segment v/c ratio 0.66                                               |                                                                              |                                                     |                                             |                                    | Average wea                                               | aving speed,                    | S <sub>W</sub>                              |                               | 60.3 mph                       |
| Weaving segment density, D 24.5 pc/mi/lr                                     |                                                                              |                                                     |                                             |                                    | Average nor                                               | n-weaving sp                    | eed, S <sub>NW</sub>                        |                               | 60.7 mph                       |
| Level of Se                                                                  | rvice, LOS                                                                   |                                                     |                                             | С                                  | Maximum we                                                | eaving length                   | i, L <sub>max</sub>                         |                               | 5881 ft                        |
| Notes                                                                        | annanta lauras d                                                             | han tha!'                                           | ted manufacture 1                           |                                    |                                                           |                                 | and diverses                                |                               | nno o duna - af                |
| a. vveaving s<br>Chapter 13, '<br>b. For volum                               | Freeway Merge a<br>sthat exceed the                                          | nan the calcula<br>and Diverge Se<br>e weaving segr | egments".<br>"gments".<br>ment capacity, th | ngth should l                      | vice is "F".                                              | solated merge                   | and diverge ar                              | eas using the                 | procedures of                  |

HCS 2010<sup>TM</sup> Version 6.90

Generated: 8/14/2021 4:38 PM

|                                                                                                                                       | BASIC F                                                                      | REEWAY SE                          | GMENTS WORKSHEET                                                                                                                                                    |                                    |                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------|
| General Information                                                                                                                   |                                                                              |                                    | Site Information                                                                                                                                                    |                                    |                                                                                      |
| Analyst<br>Agency or Company<br>Date Performed                                                                                        | AECOM                                                                        |                                    | Highway/Direction of Travel<br>From/To<br>Jurisdiction                                                                                                              | I-95 SB<br>Seg 3-B                 | et Off & On Ramp                                                                     |
| Project Description SW 10t                                                                                                            | th Street SIMR                                                               |                                    | Analysis Teal                                                                                                                                                       | 2020 Bu                            |                                                                                      |
| ✓ Oper.(LOS)                                                                                                                          | )                                                                            |                                    | Des.(N)                                                                                                                                                             | Pla                                | nning Data                                                                           |
| Flow Inputs                                                                                                                           | ,<br>                                                                        |                                    |                                                                                                                                                                     |                                    |                                                                                      |
| Volume, V<br>AADT<br>Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D                                                            | 4310                                                                         | veh/h<br>veh/day                   | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub><br>%RVs, P <sub>R</sub><br>General Terrain:<br>Grade % Length                                            | 0.95<br>3<br>0<br>Level<br>mi      |                                                                                      |
|                                                                                                                                       |                                                                              | ven/n                              | Up/Down %                                                                                                                                                           | 1111                               |                                                                                      |
| Calculate Flow Adjustr                                                                                                                | ments                                                                        |                                    |                                                                                                                                                                     |                                    |                                                                                      |
| f <sub>p</sub>                                                                                                                        | 1.00                                                                         |                                    | E <sub>R</sub>                                                                                                                                                      | 1.2                                |                                                                                      |
| Ε <sub>T</sub>                                                                                                                        | 1.5                                                                          |                                    | $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$                                                                                                                        | 0.985                              |                                                                                      |
| Speed Inputs                                                                                                                          |                                                                              |                                    | Calc Speed Adj and FFS                                                                                                                                              | 6                                  |                                                                                      |
| Lane Width<br>Rt-Side Lat. Clearance<br>Number of Lanes, N<br>Total Ramp Density, TRD<br>FFS (measured)<br>Base free-flow Speed, BFFS | 3<br>70.0                                                                    | ft<br>ft<br>ramps/mi<br>mph<br>mph | f <sub>∟w</sub><br>f <sub>LC</sub><br>TRD Adjustment<br>FFS                                                                                                         | 70.0                               | mph<br>mph<br>mph<br>mph                                                             |
| LOS and Performance                                                                                                                   | Measures                                                                     |                                    | Design (N)                                                                                                                                                          |                                    |                                                                                      |
| <u>Operational (LOS)</u><br>v <sub>p</sub> = (V or DDHV) / (PHF x N<br>S<br>D = v <sub>p</sub> / S<br>LOS                             | x f <sub>HV</sub> x f <sub>p</sub> ) 1535<br>68.7<br>22.3<br>C               | pc/h/ln<br>mph<br>pc/mi/ln         | <u>Design (N)</u><br>Design LOS<br>v <sub>p</sub> = (V or DDHV) / (PHF x N x<br>S<br>D = v <sub>p</sub> / S<br>Required Number of Lanes, N                          | f <sub>HV</sub> x f <sub>p</sub> ) | pc/h/ln<br>mph<br>pc/mi/ln                                                           |
| Glossary                                                                                                                              |                                                                              |                                    | Factor Location                                                                                                                                                     |                                    |                                                                                      |
| N - Number of lanes<br>V - Hourly volume<br>v <sub>p</sub> - Flow rate<br>LOS - Level of service<br>DDHV - Directional design ho      | S - Speed<br>D - Density<br>FFS - Free-flow<br>BFFS - Base fre<br>our volume | speed<br>ee-flow speed             | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11, 11-<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits 11-2 | 13<br>2, 11-3                      | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-11 |

HCS 2010<sup>TM</sup> Version 6.90

Generated: 6/18/2020 9:43 AM

|                                          |                                          | RAMP                                             | S AND RAM                   | P JUNCTI        | ONS WO                              | RKS                 | HEET                 |                                      |                                 |                                                 |
|------------------------------------------|------------------------------------------|--------------------------------------------------|-----------------------------|-----------------|-------------------------------------|---------------------|----------------------|--------------------------------------|---------------------------------|-------------------------------------------------|
| General Infor                            | rmation                                  |                                                  |                             | Site Infor      | mation                              |                     |                      |                                      |                                 |                                                 |
| Analyst                                  |                                          |                                                  | Fr                          | eeway/Dir of Tr | avel                                | I-95 SE             | }                    |                                      |                                 |                                                 |
| Agency or Company                        | AEC                                      | OM                                               | Ju                          | inction         |                                     | Seg 4-I             | Diverge to S         | SW 10th St                           |                                 |                                                 |
| Date Performed                           |                                          |                                                  | Ju                          | risdiction      |                                     | 0000 0              | 14.0                 |                                      |                                 |                                                 |
| Project Description                      | U AIVI                                   |                                                  | AI                          | alysis rear     |                                     | 2020 B              |                      |                                      |                                 |                                                 |
| Innuts                                   |                                          |                                                  |                             |                 |                                     |                     |                      |                                      |                                 |                                                 |
| mputs                                    |                                          | Freeway Num                                      | ber of Lanes N              | 3               |                                     |                     |                      |                                      |                                 |                                                 |
| Upstream Adj F                           | Ramp                                     | Ramo Numbe                                       | ar of Lanes N               | 1               |                                     |                     |                      |                                      | Downstre                        | am Adj                                          |
| Yes                                      | On                                       |                                                  |                             | I               |                                     |                     |                      |                                      |                                 |                                                 |
|                                          |                                          | Acceleration                                     | Lane Length, L <sub>A</sub> |                 |                                     |                     |                      |                                      | 🗹 Yes                           | 🗹 On                                            |
| I No □                                   | Off                                      |                                                  |                             | 200             |                                     |                     |                      |                                      | 🗌 No                            | Off                                             |
|                                          | <b>5</b> 4                               | Freeway Volu                                     | ime, V <sub>F</sub>         | 4310            |                                     |                     |                      |                                      | . =                             | 2400 ft                                         |
|                                          | π                                        | Ramp Volume                                      | e, V <sub>R</sub>           | 1100            |                                     |                     |                      |                                      | -down                           | 2400 IL                                         |
| V = v                                    | eh/h                                     | h/h Freeway Free-Flow Speed, S <sub>FF</sub> 70. |                             |                 |                                     |                     |                      |                                      | V <sub>D</sub> =                | 1290 veh/h                                      |
| <sup>•</sup> u •                         | Ramp Free-Flow Speed, S <sub>FR</sub> 45 |                                                  |                             |                 |                                     |                     |                      |                                      |                                 |                                                 |
| Conversion to pc/h Under Base Conditions |                                          |                                                  |                             | 2               |                                     |                     |                      |                                      |                                 |                                                 |
| (pc/h)                                   | V<br>(Veh/hr)                            | PHF                                              | Terrain                     | %Truck          | %Rv                                 |                     | f <sub>HV</sub>      | f <sub>p</sub>                       | v = V/PHF                       | <sup>-</sup> x f <sub>HV</sub> x f <sub>p</sub> |
| Freeway                                  | 4310                                     | 0.95                                             | Level                       | 3               | 0                                   | 0.                  | 985                  | 1.00                                 | 4                               | 605                                             |
| Ramp                                     | 1100                                     | 0.92                                             | Level                       | 2               | 0                                   | 0.                  | 990                  | 1.00                                 | 1:                              | 208                                             |
| UpStream                                 |                                          |                                                  |                             |                 |                                     |                     |                      |                                      |                                 |                                                 |
| DownStream                               | 1290                                     | 0.92                                             | Level                       | 2               | 0                                   | 0.                  | 990                  | 1.00                                 | 1                               | 416                                             |
|                                          |                                          | Merge Areas                                      |                             |                 |                                     |                     | C                    | iverge Areas                         |                                 |                                                 |
| Estimation of                            | f v <sub>12</sub>                        |                                                  |                             |                 | Estimat                             | ion o               | of v <sub>12</sub>   |                                      |                                 |                                                 |
|                                          | V <sub>12</sub> = V <sub>F</sub>         | ( P <sub>FM</sub> )                              |                             |                 |                                     |                     | V <sub>12</sub> =    | V <sub>R</sub> + (V <sub>F</sub> - \ | / <sub>R</sub> )P <sub>FD</sub> |                                                 |
| L <sub>EQ</sub> =                        | (Equa                                    | ation 13-6 or                                    | 13-7)                       |                 | L <sub>EQ</sub> =                   |                     | (                    | Equation 13-                         | -12 or 13-13                    | 3)                                              |
| P <sub>FM</sub> =                        | using                                    | Equation (                                       | Exhibit 13-6)               |                 | P <sub>FD</sub> =                   |                     | 0.                   | 589 using E                          | quation (Exh                    | ibit 13-7)                                      |
| V <sub>12</sub> =                        | pc/h                                     |                                                  |                             |                 | V <sub>12</sub> =                   |                     | 32                   | 10 pc/h                              |                                 |                                                 |
| $V_3$ or $V_{av34}$                      | pc/h (                                   | Equation 13                                      | -14 or 13-17)               |                 | $V_3$ or $V_{av34}$                 |                     | 13                   | 195 pc/h (Eq                         | uation 13-1                     | 4 or 13-17)                                     |
| Is $V_3$ or $V_{3\sqrt{34}} > 2,70$      | 00 pc/h? 🗌 Ye                            | s 🗌 No                                           |                             |                 | Is V <sub>3</sub> or V <sub>3</sub> | <sub>34</sub> > 2,7 | 00 pc/h? [           | Yes <b>√</b> No                      | )                               | ,                                               |
| Is $V_3$ or $V_{av34} > 1.5$             | * V <sub>12</sub> /2 Ye                  | s 🗌 No                                           |                             |                 | Is V <sub>3</sub> or V <sub>3</sub> | <sub>عم</sub> > 1.5 | * V <sub>12</sub> /2 | Yes Vo                               | )                               |                                                 |
|                                          | pc/h (                                   | Equation 13                                      | -16, 13-18, or              |                 |                                     | -                   | 12 –                 | c/h (Equatio                         | n 13-16, 13                     | -18, or 13-                                     |
| 11 1 03, V <sub>12a</sub> -              | 13-19)                                   |                                                  |                             |                 | 11 1 C3, V 12a                      |                     | - 19                 | 9)                                   |                                 |                                                 |
| Capacity Che                             | ecks                                     | 1                                                |                             |                 | Capacit                             | y Ch                | ecks                 |                                      |                                 |                                                 |
|                                          | Actual                                   |                                                  | Capacity                    | LOS F?          |                                     |                     | Actual               | (                                    | apacity                         | LOS F?                                          |
|                                          |                                          |                                                  |                             |                 | V <sub>F</sub>                      |                     | 4605                 | Exhibit 13                           | -8 7200                         | No                                              |
| V <sub>FO</sub>                          |                                          | Exhibit 13-8                                     |                             |                 | $V_{FO} = V_{F}$                    | - V <sub>R</sub>    | 3397                 | Exhibit 13                           | -8 7200                         | No                                              |
|                                          |                                          |                                                  |                             |                 | V <sub>R</sub>                      |                     | 1208                 | Exhibit 13-                          | 10 2100                         | No                                              |
| Flow Entering                            | g Merge In                               | fluence A                                        | lrea                        |                 | Flow Er                             | nterin              | g Dive               | rge Influe                           | nce Area                        |                                                 |
|                                          | Actual                                   | Max                                              | Desirable                   | Violation?      |                                     | /                   | Actual               | Max Desira                           | able                            | Violation?                                      |
| V <sub>R12</sub>                         |                                          | Exhibit 13-8                                     |                             |                 | V <sub>12</sub>                     | 3                   | 3210                 | Exhibit 13-8                         | 4400:All                        | No                                              |
| Level of Serv                            | vice Detern                              | nination (                                       | if not F)                   |                 | Level of                            | f Serv              | vice De              | terminatio                           | on (if not                      | F)                                              |
| D <sub>R</sub> = 5.475 + 0               | .00734 v <sub>R</sub> +                  | 0.0078 V <sub>12</sub> ·                         | - 0.00627 L <sub>A</sub>    |                 |                                     | D <sub>R</sub> = 4  | 1.252 + 0            | .0086 V <sub>12</sub> - (            | 0.009 L <sub>D</sub>            |                                                 |
| D <sub>R</sub> = (pc/mi/Ir               | ı)                                       |                                                  |                             |                 | D <sub>R</sub> = 30                 | 0.1 (pc             | /mi/ln)              |                                      |                                 |                                                 |
| LOS = (Exhibit                           | 13-2)                                    |                                                  |                             |                 | LOS = D                             | (Exhil              | oit 13-2)            |                                      |                                 |                                                 |
| Speed Determination                      |                                          |                                                  |                             |                 | Speed L                             | Deter               | minatio              | n                                    |                                 |                                                 |
| M <sub>s</sub> = (Exibit 1               | 3-11)                                    |                                                  |                             |                 | D <sub>s</sub> = 0.                 | 407 (E              | xhibit 13-           | 12)                                  |                                 |                                                 |
| S <sub>R</sub> = mph (Ext                | ,<br>nibit 13-11)                        |                                                  |                             |                 | S <sub>R</sub> = 58                 | 8.6 mph             | (Exhibit             | 13-12)                               |                                 |                                                 |
| $S_0 = mph (Ext)$                        | ,<br>nibit 13-11)                        |                                                  |                             |                 | S <sub>0</sub> = 75                 | 5.2 mph             | (Exhibit             | 13-12)                               |                                 |                                                 |
| S = mph (Exh                             | ,<br>nibit 13-13)                        |                                                  |                             |                 | S = 62                              | 2.8 mph             | (Exhibit             | 13-13)                               |                                 |                                                 |
| vright © 2016 Universit                  | ty of Florida, All R                     | Rights Reserved                                  |                             |                 | HCS2010TN                           | Versi               | on 6 90              | ,                                    | Generated:                      | 6/18/2020 9:46                                  |

|                                                                                                                                       | BASIC F                                                         | REEWAY SE                          | GMENTS WORKSHEET                                                                                                                                                   |                                    |                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------|
| General Information                                                                                                                   |                                                                 |                                    | Site Information                                                                                                                                                   |                                    |                                                                                      |
| Analyst<br>Agency or Company<br>Date Performed<br>Analysis Time Period                                                                | AECOM<br>AM                                                     |                                    | Highway/Direction of Travel<br>From/To<br>Jurisdiction<br>Analysis Year                                                                                            | l-95 SB<br>Seg 5-Be<br>2020 Bu     | et Off & On Ramps<br>ild 2                                                           |
| Project Description SW 10t                                                                                                            | h Street SIMR                                                   |                                    |                                                                                                                                                                    | 2020 24                            |                                                                                      |
| ✓ Oper.(LOS)                                                                                                                          | )                                                               |                                    | Des.(N)                                                                                                                                                            | Pla                                | nning Data                                                                           |
| Flow Inputs                                                                                                                           |                                                                 |                                    |                                                                                                                                                                    |                                    | -                                                                                    |
| Volume, V<br>AADT<br>Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D                                     | 3210                                                            | veh/h<br>veh/day<br>veh/h          | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub><br>%RVs, P <sub>R</sub><br>General Terrain:<br>Grade % Length                                           | 0.95<br>3<br>0<br>Level<br>mi      |                                                                                      |
|                                                                                                                                       |                                                                 | ven/m                              | Up/Down %                                                                                                                                                          | 1111                               |                                                                                      |
| Calculate Flow Adjustr                                                                                                                | nents                                                           |                                    | _                                                                                                                                                                  |                                    |                                                                                      |
| f <sub>p</sub><br>Ε <sub>T</sub>                                                                                                      | 1.00<br>1.5                                                     |                                    | E <sub>R</sub><br>f <sub>HV</sub> = 1/[1+P <sub>T</sub> (E <sub>T</sub> - 1) + P <sub>R</sub> (E <sub>R</sub> - 1)]                                                | 1.2<br>0.985                       |                                                                                      |
| Speed Inputs                                                                                                                          |                                                                 |                                    | Calc Speed Adj and FFS                                                                                                                                             | 6                                  |                                                                                      |
| Lane Width<br>Rt-Side Lat. Clearance<br>Number of Lanes, N<br>Total Ramp Density, TRD<br>FFS (measured)<br>Base free-flow Speed, BFFS | 3<br>70.0                                                       | ft<br>ft<br>ramps/mi<br>mph<br>mph | f <sub>∟w</sub><br>f <sub>LC</sub><br>TRD Adjustment<br>FFS                                                                                                        | 70.0                               | mph<br>mph<br>mph<br>mph                                                             |
| LOS and Performance                                                                                                                   | Measures                                                        |                                    | Design (N)                                                                                                                                                         |                                    |                                                                                      |
| <u>Operational (LOS)</u><br>v <sub>p</sub> = (V or DDHV) / (PHF x N<br>S<br>D = v <sub>p</sub> / S<br>LOS                             | x f <sub>HV</sub> x f <sub>p</sub> ) 1143<br>70.0<br>16.3<br>B  | pc/h/ln<br>mph<br>pc/mi/ln         | <u>Design (N)</u><br>Design LOS<br>v <sub>p</sub> = (V or DDHV) / (PHF x N x<br>S<br>D = v <sub>p</sub> / S<br>Required Number of Lanes, N                         | f <sub>HV</sub> x f <sub>p</sub> ) | pc/h/ln<br>mph<br>pc/mi/ln                                                           |
| Glossary                                                                                                                              |                                                                 |                                    | Factor Location                                                                                                                                                    |                                    |                                                                                      |
| N - Number of lanes<br>V - Hourly volume<br>v <sub>p</sub> - Flow rate<br>LOS - Level of service<br>DDHV - Directional design ho      | S - Speed<br>D - Density<br>FFS - Free-flow<br>BFFS - Base free | speed<br>ee-flow speed             | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11, 11-<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits 11- | -13<br>2, 11-3                     | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-11 |

HCS 2010<sup>TM</sup> Version 6.90

Generated: 6/18/2020 9:49 AM

| RAMPS AND RAMP JUNCTIONS WORKSHEET                                                               |                    |                                  |                                |                                                  |                                      |                                                                             |                    |                    |                                                   |                     |                                    |
|--------------------------------------------------------------------------------------------------|--------------------|----------------------------------|--------------------------------|--------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------|--------------------|--------------------|---------------------------------------------------|---------------------|------------------------------------|
| Genera                                                                                           | al Infor           | mation                           |                                |                                                  | Site Infor                           | mation                                                                      |                    |                    |                                                   |                     |                                    |
| Analyst<br>Agency or<br>Date Perfol                                                              | Company<br>rmed    | AEC                              | ОМ                             | Fra<br>Ju<br>Ju                                  | eeway/Dir of Tranction<br>risdiction | avel                                                                        | I-95 S<br>Seg 6    | B<br>-Merge from   | n Hillsboro E&W                                   |                     |                                    |
| Analysis Ti                                                                                      | ime Period         | AM                               |                                | An                                               | alysis Year                          |                                                                             | 2020               | Build 2            |                                                   |                     |                                    |
| Project Des                                                                                      | scription          | SW 10th Stree                    | et SIMR                        |                                                  |                                      |                                                                             |                    |                    |                                                   |                     |                                    |
| inputs                                                                                           |                    |                                  | <b>L</b>                       |                                                  |                                      |                                                                             |                    |                    |                                                   |                     |                                    |
| Upstream /                                                                                       | Adj Ramp           |                                  | Freeway Num<br>Ramp Numbe      | iber of Lanes, N<br>r of Lanes, N                | 3<br>1                               |                                                                             |                    |                    |                                                   | Downstrea<br>Ramp   | ım Adj                             |
| ✓ Yes                                                                                            | 🗌 On               |                                  | Acceleration L                 | ane Length, L <sub>A</sub>                       | 300                                  |                                                                             |                    |                    |                                                   | 🗌 Yes               | On                                 |
| 🗌 No                                                                                             | ✓ Off              | :                                | Deceleration I<br>Freeway Volu | ₋ane Length L <sub>D</sub><br>me, V <sub>⊏</sub> | 3210                                 |                                                                             |                    |                    |                                                   | 🗹 No                | Off                                |
| L <sub>up</sub> =                                                                                | 2400               | ft                               | Ramp Volume                    | e, V <sub>R</sub>                                | 1290                                 |                                                                             |                    |                    |                                                   | L <sub>down</sub> = | ft                                 |
| $V_u = 1100 \text{ veh/h}$ Ramp Free-Flow Speed, $S_{FF}$ 70.0 V <sub>D</sub> = V <sub>D</sub> = |                    |                                  |                                |                                                  | V <sub>D</sub> =                     | veh/h                                                                       |                    |                    |                                                   |                     |                                    |
| Conversion to pc/h Under Base Conditions                                                         |                    |                                  |                                |                                                  |                                      |                                                                             |                    |                    |                                                   |                     |                                    |
| (pc                                                                                              | :/h)               | V<br>(Veh/hr)                    | PHF                            | Terrain                                          | %Truck                               | %Rv                                                                         |                    | f <sub>HV</sub>    | f <sub>p</sub>                                    | v = V/PHF           | x f <sub>HV</sub> x f <sub>p</sub> |
| Freeway                                                                                          |                    | 3210                             | 0.95                           | Level                                            | 3                                    | 0                                                                           | 0                  | ).985              | 1.00                                              | 34                  | 130                                |
| Ramp                                                                                             |                    | 1290                             | 0.92                           | Level                                            | 2                                    | 0                                                                           | 0                  | ).990              | 1.00                                              | 14                  | 116                                |
| UpStream                                                                                         |                    | 1100                             | 0.92                           | Level                                            | 2                                    | 0                                                                           | 0                  | ).990              | 1.00                                              | 12                  | 208                                |
| DownStrea                                                                                        | Stream             |                                  |                                |                                                  |                                      |                                                                             |                    |                    |                                                   |                     |                                    |
|                                                                                                  |                    |                                  | Merge Areas                    |                                                  | -                                    | Diverge Areas                                                               |                    |                    |                                                   |                     |                                    |
| Estimation of v <sub>12</sub> Estimation of v <sub>12</sub>                                      |                    |                                  |                                |                                                  |                                      |                                                                             |                    |                    |                                                   |                     |                                    |
|                                                                                                  |                    | V <sub>12</sub> = V <sub>F</sub> | (P <sub>EM</sub> )             |                                                  |                                      |                                                                             |                    | V - 1              |                                                   |                     |                                    |
| L <sub>E0</sub> =                                                                                |                    | 1383.24                          | (Fouation                      | 13-6 or 13-7)                                    |                                      | _                                                                           |                    | v <sub>12</sub> –  | v <sub>R</sub> + (v <sub>F</sub> - v <sub>R</sub> | ) <sup>P</sup> FD   |                                    |
| P=                                                                                               |                    | 0.586                            | using Equat                    | ion (Exhibit 13-6)                               |                                      | L <sub>EQ</sub> =                                                           |                    |                    | (Equation 13-                                     | 12 or 13-13         | 3)                                 |
|                                                                                                  |                    | 2010                             | nc/h                           |                                                  |                                      | P <sub>FD</sub> =                                                           |                    | I                  | using Equatio                                     | on (Exhibit 13      | -7)                                |
| * 12                                                                                             |                    | 1/20                             | pc/h<br>pc/h (Equati           | on 13-11 or 13-                                  |                                      | V <sub>12</sub> =                                                           |                    | I                  | pc/h                                              |                     |                                    |
| V <sub>3</sub> or V <sub>av34</sub>                                                              | > 2 70             | 17)                              |                                | 01110-14-01-10-                                  |                                      | V <sub>3</sub> or V <sub>av34</sub><br>Is V <sub>3</sub> or V <sub>av</sub> | <sub>24</sub> > 2, | 700 pc/h? [        | pc/h (Equation 1<br>□Yes □No                      | 3-14 or 13-17       | 7)                                 |
|                                                                                                  | $x_{34} \sim 2,70$ |                                  |                                |                                                  |                                      | Is V <sub>2</sub> or V                                                      | ،<br>ب > 1.        | 5 * V.,/2          |                                                   |                     |                                    |
| If Yes,V <sub>12a</sub>                                                                          | av34 ~ 1.5         | v <sub>12</sub> /2 ⊻ Ye<br>2010  | s          No<br>pc/h (Equati  | on 13-16, 13-                                    |                                      | lf Yes,V <sub>12a</sub> =                                                   | =                  | - ₁₂- ∟<br> <br>1; | pc/h (Equation<br>3-19)                           | n 13-16, 13         | -18, or                            |
| Canaai                                                                                           | the Cha            | 18, or                           | 13-19)                         |                                                  |                                      | Canaait                                                                     | V Ch               | aaka               | /                                                 |                     |                                    |
| Capaci                                                                                           | ty Che             | CNS<br>Actual                    |                                | `anasitu                                         |                                      | Lapach                                                                      | y Ch               | Actual             | Car                                               | o oitr              |                                    |
| <u> </u>                                                                                         |                    | Actual                           |                                | apacity                                          | LUS F?                               | V                                                                           |                    | Actual             |                                                   |                     | LUSF?                              |
| V                                                                                                |                    | 4846                             | Exhibit 13-8                   |                                                  | No                                   | $V_{FO} = V_{F}$                                                            | - V <sub>R</sub>   |                    | Exhibit 13-6                                      | 8                   |                                    |
|                                                                                                  | -0                 | 1010                             |                                |                                                  |                                      | V <sub>R</sub>                                                              |                    |                    | Exhibit 13-<br>10                                 | -                   |                                    |
| Flow E                                                                                           | nterind            | Merge In                         | fluence A                      | rea                                              |                                      | Flow En                                                                     | nterii             | ng Dive            | rge Influen                                       | ce Area             | •                                  |
|                                                                                                  |                    | Actual                           | Max                            | Desirable                                        | Violation?                           |                                                                             |                    | Actual             | Max Desi                                          | irable              | Violation?                         |
| V <sub>R</sub>                                                                                   | 12                 | 3426                             | Exhibit 13-8                   | 4600:All                                         | No                                   | V <sub>12</sub>                                                             |                    |                    | Exhibit 13-8                                      |                     |                                    |
| Level o                                                                                          | of Serv            | ice Deterr                       | nination (                     | if not F)                                        | 1                                    | Level of                                                                    | f Ser              | vice De            | terminatio                                        | n (if not           | F)                                 |
| Dn                                                                                               | = 5.475 +          | 0.00734 v <sub>D</sub> + (       | 0.0078 V <sub>40</sub> - 0.    | 00627 L                                          |                                      |                                                                             | D <sub>D</sub> =   | 4.252 + 0          | .0086 V <sub>40</sub> - 0.                        | .009 Lp             | ,                                  |
| $D_{-} = 2$                                                                                      | 29 7 (nc/m         | i/In)                            | 12                             | A                                                |                                      | $D_{-} = (r$                                                                | R<br>nc/mi/        | (ln)               | 12                                                | D                   |                                    |
|                                                                                                  | D (Evhibit ·       | 13.2)                            |                                |                                                  |                                      | -R (F                                                                       | Sc/IIII/<br>Svbibi | 11)<br>i+ 12 2)    |                                                   |                     |                                    |
|                                                                                                  |                    | 15-2)                            |                                |                                                  |                                      | LUS - (L                                                                    |                    | 11 13-2)           |                                                   |                     |                                    |
| speed                                                                                            | Detern             | ination                          |                                |                                                  |                                      | speea L                                                                     | Jetel              |                    | חו                                                |                     |                                    |
| M <sub>S</sub> = (                                                                               | 0.411 (Exik        | oit 13-11)                       |                                |                                                  |                                      | υ <sub>s</sub> = (Ε                                                         | xhibit             | 13-12)             |                                                   |                     |                                    |
| S <sub>R</sub> = 5                                                                               | 58.5 mph (         | Exhibit 13-11)                   |                                |                                                  |                                      | S <sub>R</sub> = m                                                          | ph (Ex             | hibit 13-12)       |                                                   |                     |                                    |
| S <sub>0</sub> = 6                                                                               | 66.7 mph (         | Exhibit 13-11)                   |                                |                                                  |                                      | S <sub>0</sub> = m                                                          | ph (Ex             | hibit 13-12)       |                                                   |                     |                                    |
| S = 6                                                                                            | 60.7 mph (         | Exhibit 13-13)                   |                                |                                                  |                                      | S = m                                                                       | ph (Ex             | hibit 13-13)       |                                                   |                     |                                    |

|                                                                                                                                  | BASIC F                                                                       | REEWAY SE                  | GMENTS WORKSHEET                                                                                                                                                    |                                    |                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------|
| General Information                                                                                                              |                                                                               |                            | Site Information                                                                                                                                                    |                                    |                                                                                      |
| Analyst<br>Agency or Company<br>Date Performed                                                                                   | AECOM                                                                         |                            | Highway/Direction of Travel<br>From/To<br>Jurisdiction                                                                                                              | I-95 SB<br>Seg 7-B                 | et On Ramps                                                                          |
| Analysis Time Period                                                                                                             | AM                                                                            |                            | Analysis Year                                                                                                                                                       | 2020 Bu                            | iild 2                                                                               |
| Project Description SW 10th                                                                                                      | h Street SIMR                                                                 |                            |                                                                                                                                                                     |                                    |                                                                                      |
| ✓ Oper.(LOS)                                                                                                                     |                                                                               |                            | Des.(N)                                                                                                                                                             |                                    | anning Data                                                                          |
|                                                                                                                                  |                                                                               |                            |                                                                                                                                                                     |                                    |                                                                                      |
| Volume, V<br>AADT                                                                                                                | 4500                                                                          | veh/h<br>veh/day           | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>                                                                                                          | 0.95<br>3                          |                                                                                      |
| Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D                                                     |                                                                               | veh/h                      | %Rvs, P <sub>R</sub><br>General Terrain:<br>Grade % Length<br>Up/Down %                                                                                             | 0<br>Level<br>mi                   |                                                                                      |
| Calculate Flow Adjustr                                                                                                           | nents                                                                         |                            |                                                                                                                                                                     |                                    |                                                                                      |
| f <sub>p</sub>                                                                                                                   | 1.00                                                                          |                            | E <sub>R</sub>                                                                                                                                                      | 1.2                                |                                                                                      |
| Έ <sub>Τ</sub>                                                                                                                   | 1.5                                                                           |                            | $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$                                                                                                                        | 0.985                              |                                                                                      |
| Speed Inputs                                                                                                                     |                                                                               |                            | Calc Speed Adj and FFS                                                                                                                                              | 6                                  |                                                                                      |
| Lane Width                                                                                                                       |                                                                               | ft                         |                                                                                                                                                                     |                                    |                                                                                      |
| Rt-Side Lat. Clearance                                                                                                           |                                                                               | ft                         | f <sub>LW</sub>                                                                                                                                                     |                                    | mph                                                                                  |
| Number of Lanes, N                                                                                                               | 3                                                                             |                            | f <sub>LC</sub>                                                                                                                                                     |                                    | mph                                                                                  |
| Total Ramp Density, TRD                                                                                                          |                                                                               | ramps/mi                   | TRD Adjustment                                                                                                                                                      |                                    | mph                                                                                  |
| FFS (measured)                                                                                                                   | 70.0                                                                          | mph                        | FFS                                                                                                                                                                 | 70.0                               | mph                                                                                  |
| Base free-flow Speed, BFFS                                                                                                       |                                                                               | mph                        |                                                                                                                                                                     |                                    |                                                                                      |
| LOS and Performance                                                                                                              | Measures                                                                      |                            | Design (N)                                                                                                                                                          |                                    |                                                                                      |
| <u>Operational (LOS)</u><br>v <sub>p</sub> = (V or DDHV) / (PHF x N :<br>S<br>D = v <sub>p</sub> / S<br>LOS                      | x f <sub>HV</sub> x f <sub>p</sub> ) 1603<br>68.1<br>23.5<br>C                | pc/h/ln<br>mph<br>pc/mi/ln | <u>Design (N)</u><br>Design LOS<br>v <sub>p</sub> = (V or DDHV) / (PHF x N x<br>S<br>D = v <sub>p</sub> / S<br>Required Number of Lanes, N                          | f <sub>HV</sub> x f <sub>p</sub> ) | pc/h/ln<br>mph<br>pc/mi/ln                                                           |
| Glossary                                                                                                                         |                                                                               |                            | Factor Location                                                                                                                                                     |                                    |                                                                                      |
| N - Number of lanes<br>V - Hourly volume<br>v <sub>p</sub> - Flow rate<br>LOS - Level of service<br>DDHV - Directional design ho | S - Speed<br>D - Density<br>FFS - Free-flow<br>BFFS - Base free<br>our volume | speed<br>ee-flow speed     | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11, 11-<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits 11-2 | -13<br>2, 11-3                     | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-11 |

HCS 2010<sup>TM</sup> Version 6.90

Generated: 6/18/2020 9:54 AM

Job: SW 10th Street SIMR Analyst: AECOM

| L       | ocation:            | Seg 8: I-               | 95 South              | bound On-Ram                                          | p from SW 1 | 0th Street E | EB & WB       |
|---------|---------------------|-------------------------|-----------------------|-------------------------------------------------------|-------------|--------------|---------------|
| Α       | nalysis Period:     | AM Peak                 | Hour                  |                                                       |             |              |               |
| Α       | nalysis Year:       | 2020 Bui                | d 2                   |                                                       |             |              | -<br>-        |
|         |                     |                         |                       |                                                       |             |              |               |
| 4,500 — |                     |                         |                       | ▶ 5,460                                               |             |              |               |
|         |                     |                         |                       |                                                       |             |              | $\rightarrow$ |
| 960     |                     |                         |                       |                                                       |             |              | -             |
|         |                     |                         | 0.05                  |                                                       |             |              |               |
|         |                     |                         | 0.95                  | In                                                    |             |              |               |
|         |                     | v <sub>fr</sub> –       | 5,460                 | vpn                                                   |             |              |               |
|         |                     | v <sub>r</sub> =        | 960                   | vph                                                   |             |              |               |
|         |                     | v <sub>f</sub> =        | 4,500                 |                                                       |             |              |               |
| Up      | ostream Freeway     | Tr % =                  | 3%                    |                                                       |             |              |               |
|         | Ramp                | Tr % =                  | 2%                    |                                                       |             |              |               |
| Dow     | nstream Freeway     | Tr % =                  | 3%                    |                                                       |             |              |               |
|         | Freeway             | f <sub>HV</sub> =       | 1/(1+P₁               | r(E <sub>T</sub> -1)+P <sub>R</sub> (E <sub>R</sub> - | 1)) =       | 0.985        |               |
|         | Ramp                | f <sub>HV</sub> =       | 1/(1+P <sub>1</sub>   | r(E <sub>T</sub> -1)+P <sub>R</sub> (E <sub>R</sub> - | 1)) =       | 0.9901       |               |
|         | flat terrain        | <b>Ε</b> <sub>τ</sub> = | 1.5                   |                                                       |             |              |               |
|         |                     | RV % =                  | 0                     |                                                       |             |              |               |
| Drive   | er Population adj.  | f <sub>P</sub> =        | 1.000                 |                                                       |             |              |               |
|         |                     | V <sub>fr</sub> =       | =v <sub>fr</sub> /(PH | $IF)(f_{HV})(f_{P}) =$                                | 5,834       | pc/h         |               |
|         |                     | V <sub>r</sub> =        | =v <sub>r</sub> /(PH  | $F)(f_{HV})(f_{P}) =$                                 | 1,021       | pc/h         |               |
|         |                     | V <sub>f</sub> =        | =v <sub>f</sub> /(PH  | $F)(f_{HV})(f_{P}) =$                                 | 4,808       | pc/h         |               |
| No. lan | es upstream of ramp | N =                     | 3                     |                                                       |             |              |               |

| <u>No. Ln</u> | Capacity Check (see Exhibits 25-3 and 25-7):             | Maximum | Actual | V/c  | LOS F? |
|---------------|----------------------------------------------------------|---------|--------|------|--------|
| 4             | Fwy downstream of ramp (assume 70 mph free-flow speed) = | 9,600   | 5,834  | 0.61 | No     |
| 3             | Fwy upstream of ramp (assume 70 mph free-flow speed) =   | 7,200   | 4,808  | 0.67 | No     |
| 1             | Capacity on On-Ramp (assume 45 mph free-flow speed) =    | 2,100   | 1,021  | 0.49 | No     |
|               |                                                          |         |        |      |        |

|                                                                                                                                       | BASIC F                                                                       | REEWAY SE                          | GMENTS WORKSHEET                                                                                                                                                   |                                    |                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------|
| General Information                                                                                                                   |                                                                               |                                    | Site Information                                                                                                                                                   |                                    |                                                                                      |
| Analyst<br>Agency or Company<br>Date Performed                                                                                        | AECOM                                                                         |                                    | Highway/Direction of Travel<br>From/To<br>Jurisdiction                                                                                                             | I-95 SB<br>Seg 9-Bo                | et 10th & Exit to Exp                                                                |
| Analysis Time Period                                                                                                                  | AM                                                                            |                                    | Analysis Year                                                                                                                                                      | 2020 Bu                            | 11a 2                                                                                |
|                                                                                                                                       |                                                                               |                                    |                                                                                                                                                                    |                                    | unning Data                                                                          |
| Flow Inputs                                                                                                                           |                                                                               |                                    | Des.(III)                                                                                                                                                          |                                    |                                                                                      |
| Volume, V<br>AADT                                                                                                                     | 5460                                                                          | veh/h<br>veh/day                   | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>                                                                                                         | 0.95<br>3                          |                                                                                      |
| Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D                                                          |                                                                               | veh/h                              | %RVs, P <sub>R</sub><br>General Terrain:<br>Grade % Length<br>Up/Down %                                                                                            | 0<br>Level<br>mi                   |                                                                                      |
| Calculate Flow Adjustr                                                                                                                | nents                                                                         |                                    |                                                                                                                                                                    |                                    |                                                                                      |
| f <sub>p</sub><br>E <sub>T</sub>                                                                                                      | 1.00<br>1.5                                                                   |                                    | E <sub>R</sub><br>f <sub>HV/</sub> = 1/[1+P <sub>T</sub> (E <sub>T</sub> - 1) + P <sub>P</sub> (E <sub>P</sub> - 1)]                                               | 1.2<br>0.985                       |                                                                                      |
| Speed Inputs                                                                                                                          |                                                                               |                                    | Calc Speed Adi and FFS                                                                                                                                             | 5                                  |                                                                                      |
| Lane Width<br>Rt-Side Lat. Clearance<br>Number of Lanes, N<br>Total Ramp Density, TRD<br>FFS (measured)<br>Base free-flow Speed, BFFS | 4<br>70.0                                                                     | ft<br>ft<br>ramps/mi<br>mph<br>mph | f <sub>LW</sub><br>f <sub>LC</sub><br>TRD Adjustment<br>FFS                                                                                                        | 70.0                               | mph<br>mph<br>mph<br>mph                                                             |
| LOS and Performance                                                                                                                   | Measures                                                                      |                                    | Design (N)                                                                                                                                                         |                                    |                                                                                      |
| <u>Operational (LOS)</u><br>v <sub>p</sub> = (V or DDHV) / (PHF x N<br>S<br>D = v <sub>p</sub> / S<br>LOS                             | x f <sub>HV</sub> x f <sub>p</sub> ) 1458<br>69.2<br>21.1<br>C                | pc/h/ln<br>mph<br>pc/mi/ln         | <u>Design (N)</u><br>Design LOS<br>v <sub>p</sub> = (V or DDHV) / (PHF x N x<br>S<br>D = v <sub>p</sub> / S<br>Required Number of Lanes, N                         | f <sub>HV</sub> x f <sub>p</sub> ) | pc/h/ln<br>mph<br>pc/mi/ln                                                           |
| Glossary                                                                                                                              |                                                                               |                                    | Factor Location                                                                                                                                                    |                                    |                                                                                      |
| N - Number of lanes<br>V - Hourly volume<br>v <sub>p</sub> - Flow rate<br>LOS - Level of service<br>DDHV - Directional design ho      | S - Speed<br>D - Density<br>FFS - Free-flow<br>BFFS - Base free<br>our volume | speed<br>ee-flow speed             | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11, 11-<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits 11- | -13<br>2, 11-3                     | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-11 |

HCS 2010<sup>TM</sup> Version 6.90

Generated: 6/18/2020 2:31 PM

## RAMPS AND RAMP JUNCTIONS WORKSHEET

|                                                                      | RAI                                 | MPS AND                                                  | RAMP JUNC                                                                                                                          | CTIONS W        | ORKSHE                                | EET                 |                      |                                                   |                                              |                                    |  |
|----------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------|---------------------|----------------------|---------------------------------------------------|----------------------------------------------|------------------------------------|--|
| General Infor                                                        | mation                              |                                                          |                                                                                                                                    | Site Infor      | mation                                |                     |                      |                                                   |                                              |                                    |  |
| Analyst                                                              |                                     |                                                          | Fre                                                                                                                                | eway/Dir of Tra | avel                                  | I-95 SB             |                      |                                                   |                                              |                                    |  |
| Agency or Company                                                    | AECO                                | MC                                                       | Ju                                                                                                                                 | nction          | :                                     | Seg 10-             | Merge fro            | m Ex to GP                                        |                                              |                                    |  |
| Date Performed                                                       |                                     |                                                          | Ju                                                                                                                                 | risdiction      |                                       |                     |                      |                                                   |                                              |                                    |  |
| Analysis Time Period                                                 | MA k                                |                                                          | An                                                                                                                                 | alysis Year     |                                       | 2020 Bu             | uild 2               |                                                   |                                              |                                    |  |
| Project Description                                                  | SW 10th Stree                       | t SIMR                                                   |                                                                                                                                    |                 |                                       |                     |                      |                                                   |                                              |                                    |  |
| Inputs                                                               |                                     |                                                          |                                                                                                                                    |                 |                                       |                     |                      |                                                   |                                              |                                    |  |
| I Instream Adi Ramp                                                  |                                     | Freeway Num                                              | ber of Lanes, N                                                                                                                    | 4               |                                       |                     |                      |                                                   | Downstrea                                    | am Adi                             |  |
| opstream naj ramp                                                    |                                     | Ramp Numbe                                               | r of Lanes, N                                                                                                                      | 1               |                                       |                     |                      |                                                   | Ramp                                         | in / oj                            |  |
| Yes Or                                                               | ı                                   | Acceleration I                                           | ane Length I                                                                                                                       | 600             |                                       |                     |                      |                                                   |                                              |                                    |  |
|                                                                      |                                     | Deceleration                                             |                                                                                                                                    | 000             |                                       |                     |                      |                                                   | Yes                                          | On                                 |  |
| No Of                                                                | f                                   |                                                          | Lane Length L <sub>D</sub>                                                                                                         |                 |                                       |                     |                      |                                                   | 🗌 No                                         | ✓ Off                              |  |
|                                                                      |                                     | Freeway Volu                                             | me, V <sub>F</sub>                                                                                                                 | 5460            |                                       |                     |                      |                                                   | _                                            | 4450 6                             |  |
| L <sub>up</sub> = ft                                                 |                                     | Ramp Volume, V <sub>R</sub> 270 L <sub>down</sub> – 1150 |                                                                                                                                    |                 |                                       |                     | 1150 π               |                                                   |                                              |                                    |  |
|                                                                      |                                     | Freeway Free-Flow Speed, S <sub>FF</sub> 70.0            |                                                                                                                                    |                 |                                       |                     | 650 vob/b            |                                                   |                                              |                                    |  |
| v <sub>u</sub> = veh/h                                               |                                     | Ramp Free-F                                              | low Speed, S <sub>ED</sub>                                                                                                         | 50.0            |                                       |                     |                      |                                                   | v <sub>D</sub> -                             | 050 Ven/n                          |  |
| Conversion to                                                        | o pc/h Und                          | der Base                                                 | Conditions                                                                                                                         |                 |                                       |                     |                      |                                                   |                                              |                                    |  |
| (no/h)                                                               | V                                   |                                                          | Torrain                                                                                                                            | 0/ Truels       | 0/ D                                  |                     |                      | f                                                 |                                              | vf vf                              |  |
| (pc/n)                                                               | (Veh/hr)                            | PHF                                                      | Terrain                                                                                                                            | % I FUCK        | %KV                                   |                     | HV                   | Р                                                 | v – v/Pnr                                    | x I <sub>HV</sub> x I <sub>p</sub> |  |
| Freeway                                                              | 5460                                | 0.95                                                     | Level                                                                                                                              | 3               | 0                                     | 0.9                 | 985                  | 1.00                                              | 5                                            | 834                                |  |
| Ramp                                                                 | 270                                 | 0.92                                                     | Level                                                                                                                              | 2               | 0                                     | 0.9                 | 90                   | 1.00                                              | 2                                            | 296                                |  |
| UpStream                                                             |                                     |                                                          |                                                                                                                                    |                 |                                       |                     |                      |                                                   |                                              |                                    |  |
| DownStream                                                           | 650                                 | 0.92                                                     | Level                                                                                                                              | 2               | 0                                     | 0.9                 | 90                   | 1.00                                              | 714                                          |                                    |  |
|                                                                      |                                     | Merge Areas                                              |                                                                                                                                    |                 |                                       |                     | 0                    | iverge Areas                                      |                                              |                                    |  |
| Estimation of                                                        | <sup>f</sup> v <sub>12</sub>        |                                                          |                                                                                                                                    |                 | Estimati                              | ion of              | f v <sub>12</sub>    |                                                   |                                              |                                    |  |
|                                                                      | $V_{40} = V_{F}$                    | (P <sub>EM</sub> )                                       |                                                                                                                                    |                 |                                       |                     | ., .                 |                                                   | <u>,                                    </u> |                                    |  |
| =                                                                    | (Equ:                               | ` ™′<br>ation 13_6 o                                     | r 13_7)                                                                                                                            |                 |                                       |                     | V <sub>12</sub> = 1  | v <sub>R</sub> + (v <sub>F</sub> - v <sub>R</sub> | P <sub>FD</sub>                              |                                    |  |
| EQ                                                                   |                                     |                                                          | $(\nabla \cdot \cdot \nabla \cdot \cdot \nabla \cdot \cdot \nabla \cdot \cdot \nabla \cdot \nabla \cdot \nabla \cdot \nabla \cdot$ |                 | L <sub>EQ</sub> =                     |                     | (                    | Equation 13-                                      | 12 or 13-1                                   | 3)                                 |  |
| FM -                                                                 | 0.181                               |                                                          | tion (Exhibit 13-6)                                                                                                                |                 | P <sub>FD</sub> =                     |                     | ι                    | using Equatio                                     | on (Exhibit 13                               | -7)                                |  |
| V <sub>12</sub> =                                                    | 1055                                | pc/h                                                     |                                                                                                                                    |                 | V <sub>12</sub> =                     |                     | F                    | oc/h                                              |                                              |                                    |  |
| $V_3$ or $V_{3\sqrt{34}}$                                            | 2389                                | pc/h (Equati                                             | on 13-14 or 13-                                                                                                                    |                 | $V_2$ or $V_{av24}$                   |                     |                      | oc/h (Equation 1                                  | 3-14 or 13-1                                 | 7)                                 |  |
|                                                                      | 17)                                 |                                                          |                                                                                                                                    |                 | Is V <sub>2</sub> or V <sub>2</sub>   |                     | )0 pc/h? □           |                                                   |                                              | ,                                  |  |
| $15 v_3 \text{ or } v_{av34} > 2,70$                                 |                                     | s 🗹 No                                                   |                                                                                                                                    |                 | le V or V                             | ×15                 | *\/ /2 □             |                                                   |                                              |                                    |  |
| Is $V_3$ or $V_{av34} > 1.5$                                         | <sup>•</sup> V <sub>12</sub> /2 ⊻Ye | s 🗌 No                                                   |                                                                                                                                    |                 | 15 v <sub>3</sub> 01 v <sub>av3</sub> | 34 - 1.5            | v <sub>12</sub> ′∠ ∟ |                                                   | n 12 16 13                                   | 0 10 or                            |  |
| If Yes,V <sub>12a</sub> =                                            | 2333                                | pc/h (Equati                                             | on 13-16, 13-                                                                                                                      |                 | If Yes,V <sub>12a</sub> =             |                     | 13                   | 3-19)                                             | 11 13-10, 13                                 | 5-10, UI                           |  |
|                                                                      | 18, or                              | 13-19)                                                   |                                                                                                                                    |                 | Conceit                               | · Cha               | aka                  | /                                                 |                                              |                                    |  |
| Capacity Che                                                         | CKS                                 | 1 .                                                      |                                                                                                                                    | 1 0 0 50        | Capacity                              |                     | CKS                  |                                                   |                                              |                                    |  |
|                                                                      | Actual                              |                                                          | Japacity                                                                                                                           | LOS F?          |                                       |                     | Actual               | Ca                                                | pacity                                       | LOS F?                             |  |
|                                                                      |                                     |                                                          |                                                                                                                                    |                 | V <sub>F</sub>                        |                     |                      | Exhibit 13-                                       | 8                                            |                                    |  |
| V <sub>FO</sub>                                                      | 6130                                | Exhibit 13-8                                             |                                                                                                                                    | No              | $V_{FO} = V_{F}$                      | - V <sub>R</sub>    |                      | Exhibit 13-                                       | 8                                            |                                    |  |
| ro                                                                   |                                     |                                                          |                                                                                                                                    |                 | V                                     |                     |                      | Exhibit 13                                        | -                                            |                                    |  |
|                                                                      |                                     |                                                          |                                                                                                                                    |                 | r R                                   |                     |                      | 10                                                |                                              |                                    |  |
| Flow Entering                                                        | g Merge In                          | fluence A                                                | rea                                                                                                                                |                 | Flow En                               | tering              | <u>g Dive</u> l      | rge Influen                                       | ice Area                                     |                                    |  |
| L                                                                    | Actual                              | Max                                                      | Desirable                                                                                                                          | Violation?      |                                       | A                   | ctual                | Max Desi                                          | irable                                       | Violation?                         |  |
| V <sub>R12</sub>                                                     | 2629                                | Exhibit 13-8                                             | 4600:All                                                                                                                           | No              | V <sub>12</sub>                       |                     |                      | Exhibit 13-8                                      |                                              |                                    |  |
| Level of Serv                                                        | ice Detern                          | nination (                                               | if not F)                                                                                                                          |                 | Level of                              | Serv                | ice De               | terminatio                                        | n (if not                                    | F)                                 |  |
| D <sub>R</sub> = 5.475 +                                             | 0.00734 v <sub>R</sub> + 0          | ).0078 V <sub>12</sub> - 0.                              | 00627 L <sub>A</sub>                                                                                                               |                 | [ C                                   | D <sub>R</sub> = 4. | .252 + 0             | .0086 V <sub>12</sub> - 0                         | .009 L <sub>D</sub>                          |                                    |  |
| D <sub>R</sub> = 22.1 (pc/m                                          | ii/ln)                              |                                                          |                                                                                                                                    |                 | D <sub>R</sub> = (n                   | c/mi/ln             | 1)                   |                                                   | -                                            |                                    |  |
| OS = C (Exhibit)                                                     | ,<br>13-2)                          |                                                          |                                                                                                                                    |                 | $ 0\rangle = (F$                      | vhihit              | ,<br>13-2)           |                                                   |                                              |                                    |  |
|                                                                      | nination                            |                                                          |                                                                                                                                    |                 |                                       | otor                | ninotic              | <u></u>                                           |                                              |                                    |  |
| Speed Detern                                                         | mation                              |                                                          |                                                                                                                                    |                 | Speea D                               | recern              |                      | 011                                               |                                              |                                    |  |
| M <sub>S</sub> = 0.315 (Exi                                          | bit 13-11)                          |                                                          |                                                                                                                                    |                 | u <sub>s</sub> = (E:                  | xhibit 13           | 3-12)                |                                                   |                                              |                                    |  |
| $S_R = 61.2 \text{ mph} (Exhibit 13-11)$ $S_R = mph (Exhibit 13-12)$ |                                     |                                                          |                                                                                                                                    |                 |                                       |                     |                      |                                                   |                                              |                                    |  |
| $S_0 = 65.5 \text{ mph}$                                             | (Exhibit 13-11)                     |                                                          |                                                                                                                                    |                 | S <sub>0</sub> = mp                   | oh (Exhi            | bit 13-12)           |                                                   |                                              |                                    |  |
| S = 63.6 mph                                                         | (Exhibit 13-13)                     |                                                          |                                                                                                                                    |                 | S = mr                                | oh (Exhi            | bit 13-13)           |                                                   |                                              |                                    |  |
| <u>ب</u>                                                             |                                     |                                                          |                                                                                                                                    |                 | I'                                    | · ·                 | 1                    |                                                   |                                              |                                    |  |

Copyright © 2016 University of Florida, All Rights Reserved

HCS2010<sup>TM</sup> Version 6.90

|                                     |                           | RAMP                   | S AND RAM                     | P JUNCTI        | ONS WO                               | RKS                 | HEET                 |                                      |                      |                |
|-------------------------------------|---------------------------|------------------------|-------------------------------|-----------------|--------------------------------------|---------------------|----------------------|--------------------------------------|----------------------|----------------|
| General Infor                       | rmation                   |                        |                               | Site Infor      | mation                               |                     |                      |                                      |                      |                |
| Analyst                             |                           |                        | Fre                           | eeway/Dir of Tr | avel                                 | I-95 SE             | }                    |                                      |                      |                |
| Agency or Company                   | AECO                      | MC                     | Ju                            | nction          |                                      | Seg 11              | - Diverge to         | o Express                            |                      |                |
| Date Performed                      |                           |                        | Ju                            | risdiction      |                                      | •                   | -                    |                                      |                      |                |
| Analysis Time Perio                 | d AM                      |                        | An                            | alysis Year     |                                      | 2020 B              | uild 2               |                                      |                      |                |
| Project Description                 | SW 10th Stree             | t SIMR                 |                               |                 |                                      |                     |                      |                                      |                      |                |
| Inputs                              |                           | ¥                      |                               |                 |                                      |                     |                      |                                      |                      |                |
| Upstream Adj F                      | Ramp                      | Freeway Num            | nber of Lanes, N              | 4               |                                      |                     |                      |                                      | Downstrea            | am Adj         |
|                                     |                           | Ramp Numbe             | er of Lanes, N                | 1               |                                      |                     |                      |                                      | Ramp                 | ,              |
| Yes 🖸                               | 🗹 On                      | Acceleration I         | Lane Length, L                |                 |                                      |                     |                      |                                      |                      |                |
|                                     |                           | Deceleration           | lane Length L_                | 200             |                                      |                     |                      |                                      |                      |                |
|                                     | _] Off                    | Eroowov Volu           |                               | E720            |                                      |                     |                      |                                      | 🗹 No                 | Off            |
|                                     | 150 #                     |                        | ine, v <sub>F</sub>           | 5730            |                                      |                     |                      |                                      | I. =                 | ft             |
| Lup –                               | 150 11                    | Ramp Volume            | e, V <sub>R</sub>             | 650             |                                      |                     |                      |                                      | down                 |                |
| V = 27                              | 70 veh/h                  | Freeway Free           | e-Flow Speed, S <sub>FF</sub> | 70.0            |                                      |                     |                      |                                      | V <sub>D</sub> =     | veh/h          |
|                                     | o ven/n                   | Ramp Free-F            | low Speed, S <sub>FR</sub>    | 45.0            |                                      |                     |                      |                                      |                      |                |
| Conversion t                        | o pc/h Und                | der Base               | Conditions                    |                 |                                      |                     |                      |                                      |                      |                |
| (no/h)                              | V                         |                        | Torrain                       | % Truck         | 0/ Dv                                |                     | f                    | f                                    |                      | vfvf           |
| (рслі)                              | (Veh/hr)                  | ГШ                     | Terrain                       | /011UCK         | 70INV                                |                     | 'HV                  | 'p                                   | v – v/i i ii         | ∧'HV ^'p       |
| Freeway                             | 5730                      | 0.95                   | Level                         | 3               | 0                                    | 0.                  | 985                  | 1.00                                 | 61                   | 22             |
| Ramp                                | 650                       | 0.92                   | Level                         | 2               | 0                                    | 0.                  | 990                  | 1.00                                 | 7                    | 14             |
| UpStream                            | 270                       | 0.92                   | Level                         | 2               | 0                                    | 0.                  | 990                  | 1.00                                 | 2                    | 96             |
| DownStream                          |                           |                        |                               |                 |                                      |                     |                      |                                      |                      |                |
|                                     | _                         | Merge Areas            |                               |                 |                                      |                     |                      | iverge Areas                         |                      |                |
| Estimation of                       | f v <sub>12</sub>         |                        |                               |                 | Estimat                              | ion o               | of v <sub>12</sub>   |                                      |                      |                |
|                                     | $V_{12} = V_{E}$          | (P <sub>EM</sub> )     |                               |                 |                                      |                     | V <sub>12</sub> =    | V <sub>P</sub> + (V <sub>F</sub> - V |                      |                |
| L <sub>FO</sub> =                   | (Equa                     | tion 13-6 or           | 13-7)                         |                 | L <sub>EO</sub> =                    |                     | 12                   | Equation 13                          | -12 or 13-13         | )              |
| -EQ<br>P =                          |                           | Equation (             | Evhibit $13_6$                |                 | -EQ<br>P =                           |                     | 0.                   | 136 using E                          | nuation (Evhi        | /<br>hit 13 7) |
| 'FM                                 | using                     |                        |                               |                 | 'FD                                  |                     | 0.0                  | 450 using ∟                          |                      | bit 13-7)      |
| v <sub>12</sub> -                   | pc/n                      |                        |                               |                 | v <sub>12</sub> -                    |                     | 30                   | 1/2 pc/n                             |                      |                |
| v <sub>3</sub> or v <sub>av34</sub> | pc/h (                    | Equation 13            | 3-14 or 13-17)                |                 | v <sub>3</sub> or v <sub>av34</sub>  |                     | 15                   | 525 pc/h (Eq                         | uation 13-14         | 4 or 13-17)    |
| Is $V_3$ or $V_{av34} > 2,70$       | 00 pc/h? 🗌 Ye             | s 🗌 No                 |                               |                 | Is V <sub>3</sub> or V <sub>av</sub> | <sub>34</sub> > 2,7 | 00 pc/h?             | Yes 🗹 No                             | )                    |                |
| Is $V_3$ or $V_{av34} > 1.5$        | * V <sub>12</sub> /2  Yes | s 🗌 No                 |                               |                 | Is V <sub>3</sub> or V <sub>av</sub> | <sub>34</sub> > 1.5 | * V <sub>12</sub> /2 | Yes 🗹 No                             | )                    |                |
| If Yes,V <sub>122</sub> =           | pc/h (                    | Equation 13            | 8-16, 13-18, or               |                 | If Yes,V <sub>120</sub> =            | =                   | р                    | c/h (Equatio                         | n 13-16, 13          | -18, or 13-    |
|                                     | 13-19)                    |                        |                               |                 |                                      |                     | 1                    | 9)                                   |                      |                |
| Capacity Cne                        |                           | 1                      |                               |                 | Capacit                              | y Cn                | ecks                 |                                      |                      |                |
|                                     | Actual                    |                        | Capacity                      | LOS F?          | <u> </u>                             |                     | Actual               | (                                    | apacity              | LOS F?         |
|                                     |                           |                        |                               |                 | V <sub>F</sub>                       |                     | 6122                 | Exhibit 13                           | -8 9600              | No             |
| V <sub>FO</sub>                     |                           | Exhibit 13-8           |                               |                 | $V_{FO} = V_{F}$                     | - V <sub>R</sub>    | 5408                 | Exhibit 13                           | -8 9600              | No             |
|                                     |                           |                        |                               |                 | V <sub>R</sub>                       |                     | 714                  | Exhibit 13-                          | 10 2100              | No             |
| Flow Enterin                        | a Merae In                | fluence A              | rea                           |                 | Flow En                              | terin               | a Dive               | rae Influe                           | nce Area             | 8              |
|                                     | Actual                    | Max                    | Desirable                     | Violation?      |                                      |                     | Actual               | Max Desira                           | able                 | Violation?     |
| Varia                               |                           | Exhibit 13-8           |                               |                 | Via                                  |                     | 3072                 | Exhibit 13-8                         | 4400·All             | No             |
|                                     | l<br>vico Dotorn          | nination (             | (if not E)                    |                 |                                      | <u> </u>            | vice De              | torminati                            | n (if not            | <b></b> )      |
|                                     |                           |                        |                               |                 | Lever                                |                     |                      |                                      |                      | r)             |
| $D_{R} = 5.475 \pm 0$               | .00734 V <sub>R</sub> + 1 | 0.0078 v <sub>12</sub> | - 0.00627 L <sub>A</sub>      |                 |                                      | $D_R = 2$           | 1.252 + 0            | .0086 v <sub>12</sub> - (            | 0.009 L <sub>D</sub> |                |
| D <sub>R</sub> = (pc/mi/lr          | ו)                        |                        |                               |                 | D <sub>R</sub> = 31                  | 1.5 (pc             | /mi/ln)              |                                      |                      |                |
| LOS = (Exhibit                      | 13-2)                     |                        |                               |                 | LOS = D                              | (Exhil              | oit 13-2)            |                                      |                      |                |
| Speed Determination                 |                           |                        |                               |                 | Speed L                              | Deter               | minatic              | on                                   |                      |                |
| M_ = (Exibit 13-11)                 |                           |                        |                               |                 | D <sub>s</sub> = 0.                  | 362 (E              | xhibit 13-           | ·12)                                 |                      |                |
| $S = mnh (Ev)^{1}$                  |                           |                        |                               |                 | S <sub>p</sub> = 50                  | ).9 mnh             | (Exhibit             | ,<br>13-12)                          |                      |                |
|                                     |                           |                        |                               |                 | S.= 70                               | 5 3 mnh             | (Evhibit             | 13_12)                               |                      |                |
| $S_0 = mpn (Ext)$                   | 11DIT 13-11)              |                        |                               |                 |                                      | - o                 |                      | 10-12)                               |                      |                |
| p = mpn (Exr                        | iidit 13-13)              |                        |                               |                 | 5 = 65                               | o.9 mph             | (Exhibit             | 13-13)                               |                      |                |
| yright © 2016 Universit             | ty of Florida, All R      | ights Reserved         |                               |                 | HCS2010 <sup>™</sup>                 | <sup>A</sup> Versi  | on 6.90              |                                      | Generated:           | 6/18/2020 2:43 |



|                                                                                                                                       | BASIC F                                                                       | REEWAY SE                          | GMENTS WORKSHEET                                                                                                                                                    |                                    |                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------|
| General Information                                                                                                                   |                                                                               |                                    | Site Information                                                                                                                                                    |                                    |                                                                                      |
| Analyst<br>Agency or Company<br>Date Performed                                                                                        | AECOM                                                                         |                                    | Highway/Direction of Travel<br>From/To<br>Jurisdiction                                                                                                              | I-95 SB<br>Seg 13-L                | Bet Off & On Ramps                                                                   |
| Project Description SW 10t                                                                                                            | h Street SIMR                                                                 |                                    | Analysis real                                                                                                                                                       | 2020 Би                            |                                                                                      |
| ✓ Oper.(LOS)                                                                                                                          |                                                                               |                                    | Des.(N)                                                                                                                                                             | Pla                                | nning Data                                                                           |
| Flow Inputs                                                                                                                           |                                                                               |                                    |                                                                                                                                                                     |                                    | 3                                                                                    |
| Volume, V<br>AADT<br>Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D                                                            | 4220                                                                          | veh/h<br>veh/day                   | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub><br>%RVs, P <sub>R</sub><br>General Terrain:                                                              | 0.95<br>3<br>0<br>Level            |                                                                                      |
| DDHV = AADT x K x D                                                                                                                   |                                                                               | ven/h                              | Grade % Length<br>Up/Down %                                                                                                                                         | mı                                 |                                                                                      |
| Calculate Flow Adjustr                                                                                                                | nents                                                                         |                                    |                                                                                                                                                                     |                                    |                                                                                      |
| f <sub>p</sub>                                                                                                                        | 1.00                                                                          |                                    | E <sub>R</sub>                                                                                                                                                      | 1.2                                |                                                                                      |
| Ε <sub>T</sub>                                                                                                                        | 1.5                                                                           |                                    | $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$                                                                                                                        | 0.985                              |                                                                                      |
| Speed Inputs                                                                                                                          |                                                                               |                                    | Calc Speed Adj and FFS                                                                                                                                              | 6                                  |                                                                                      |
| Lane Width<br>Rt-Side Lat. Clearance<br>Number of Lanes, N<br>Total Ramp Density, TRD<br>FFS (measured)<br>Base free-flow Speed, BFFS | 3<br>70.0                                                                     | ft<br>ft<br>ramps/mi<br>mph<br>mph | f <sub>LW</sub><br>f <sub>LC</sub><br>TRD Adjustment<br>FFS                                                                                                         | 70.0                               | mph<br>mph<br>mph<br>mph                                                             |
| LOS and Performance                                                                                                                   | Measures                                                                      |                                    | Design (N)                                                                                                                                                          |                                    |                                                                                      |
| <u>Operational (LOS)</u><br>v <sub>p</sub> = (V or DDHV) / (PHF x N<br>S<br>D = v <sub>p</sub> / S<br>LOS                             | x f <sub>HV</sub> x f <sub>p</sub> ) 1503<br>68.9<br>21.8<br>C                | pc/h/ln<br>mph<br>pc/mi/ln         | <u>Design (N)</u><br>Design LOS<br>v <sub>p</sub> = (V or DDHV) / (PHF x N x<br>S<br>D = v <sub>p</sub> / S<br>Required Number of Lanes, N                          | f <sub>HV</sub> x f <sub>p</sub> ) | pc/h/ln<br>mph<br>pc/mi/ln                                                           |
| Glossary                                                                                                                              |                                                                               |                                    | Factor Location                                                                                                                                                     |                                    |                                                                                      |
| N - Number of lanes<br>V - Hourly volume<br>v <sub>p</sub> - Flow rate<br>LOS - Level of service<br>DDHV - Directional design ho      | S - Speed<br>D - Density<br>FFS - Free-flow<br>BFFS - Base free<br>our volume | speed<br>ee-flow speed             | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11, 11-<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits 11-2 | 13<br>2, 11-3                      | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-11 |

HCS 2010<sup>TM</sup> Version 6.90

Generated: 6/18/2020 3:13 PM

|                                                                                                                                                                                                               |                                 | F                  | REEWA           | Y WEAV                             | ING WOF                                                                                                                                                   | RKSHEE                                                                                                              | Т                         |               |               |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------|-----------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------|---------------|---------------|--|
| Genera                                                                                                                                                                                                        | al Informati                    | on                 |                 |                                    | Site Info                                                                                                                                                 | rmation                                                                                                             |                           |               |               |  |
| Analyst<br>Agency/Co<br>Date Perfo<br>Analysis Ti                                                                                                                                                             | ompany<br>ormed<br>ime Period   | AECOI<br>AM        | М               |                                    | Freeway/Dir<br>Weaving Seg<br>Analysis Yea                                                                                                                | Freeway/Dir of Travel I-95 SB<br>Weaving Segment Location Seg 14- Bet Sample & Copans<br>Analysis Year 2020 Build 2 |                           |               |               |  |
| Project De                                                                                                                                                                                                    | scription SW 10t                | h Street SIMF      | 2               |                                    |                                                                                                                                                           |                                                                                                                     |                           |               |               |  |
| Inputs                                                                                                                                                                                                        |                                 |                    |                 |                                    | 1                                                                                                                                                         |                                                                                                                     |                           |               |               |  |
| Weaving configuration       One-Side         Weaving number of lanes, N       Weaving segment length, L <sub>s</sub> Weaving segment length, FFS       70 mp         Preeway free-flow speed, FFS       70 mp |                                 |                    |                 | One-Sided<br>4<br>2520ft<br>70 mph | Segment type     Freew       Freeway minimum speed, S <sub>MIN</sub> 24       Freeway maximum capacity, C <sub>IFL</sub> 24       Terrain type     Letter |                                                                                                                     |                           |               |               |  |
| Conve                                                                                                                                                                                                         | rsions to p                     | c/h Unde           | r Base Co       | ondition                           | S                                                                                                                                                         |                                                                                                                     | r                         | 1             |               |  |
|                                                                                                                                                                                                               | V (veh/h)                       | PHF                | Truck (%)       | RV (%)                             | Ε <sub>Τ</sub>                                                                                                                                            | E <sub>R</sub>                                                                                                      | f <sub>HV</sub>           | fp            | v (pc/h)      |  |
| V <sub>FF</sub>                                                                                                                                                                                               | 3605                            | 0.95               | 3               | 0                                  | 1.5                                                                                                                                                       | 1.2                                                                                                                 | 0.985                     | 1.00          | 3852          |  |
| V <sub>RF</sub>                                                                                                                                                                                               | 1780                            | 0.92               | 2               | 0                                  | 1.5                                                                                                                                                       | 1.2                                                                                                                 | 0.990                     | 1.00          | 1954          |  |
| V <sub>FR</sub>                                                                                                                                                                                               | 615                             | 0.92               | 2               | 0                                  | 1.5                                                                                                                                                       | 1.2                                                                                                                 | 0.990                     | 1.00          | 675           |  |
| V <sub>RR</sub>                                                                                                                                                                                               | 0                               | 0.95               | 0               | 0                                  | 1.5                                                                                                                                                       | 1.2                                                                                                                 | 1.000                     | 1.00          | 0             |  |
| V <sub>NW</sub>                                                                                                                                                                                               | 3852                            |                    | -               | -                                  |                                                                                                                                                           |                                                                                                                     | -                         | V =           | 6481          |  |
| V <sub>w</sub>                                                                                                                                                                                                | 2629                            |                    |                 |                                    |                                                                                                                                                           |                                                                                                                     |                           |               |               |  |
| VR                                                                                                                                                                                                            | 0.406                           |                    |                 |                                    |                                                                                                                                                           |                                                                                                                     |                           |               |               |  |
| Config                                                                                                                                                                                                        | uration Cha                     | aracteris          | tics            |                                    |                                                                                                                                                           |                                                                                                                     |                           |               |               |  |
| Minimum r                                                                                                                                                                                                     | maneuver lanes,                 | N <sub>WL</sub>    |                 | 2 lc                               | Minimum we                                                                                                                                                | aving lane cl                                                                                                       | hanges, LC <sub>MIN</sub> |               | lc/h          |  |
| Interchang                                                                                                                                                                                                    | ge density, ID                  |                    |                 | 0.7 int/mi                         | Weaving lan                                                                                                                                               | e changes, L                                                                                                        | .C <sub>w</sub>           |               | lc/h          |  |
| Minimum I                                                                                                                                                                                                     | RF lane changes                 | , LC <sub>rf</sub> |                 | 1 lc/pc                            | Non-weaving                                                                                                                                               | g lane chang                                                                                                        | es, LC <sub>NW</sub>      |               | lc/h          |  |
| Minimum I                                                                                                                                                                                                     | FR lane changes                 | , LC <sub>FR</sub> |                 | 1 lc/pc                            | Total lane ch                                                                                                                                             | nanges, LC <sub>AL</sub>                                                                                            | L                         |               | lc/h          |  |
| Minimum I                                                                                                                                                                                                     | RR lane changes                 | , LC <sub>RR</sub> |                 | lc/pc                              | Non-weaving                                                                                                                                               | g vehicle inde                                                                                                      | ex, I <sub>NW</sub>       |               |               |  |
| Weavir                                                                                                                                                                                                        | ng Segmen                       | t Speed,           | Density,        | Level of                           | Service,                                                                                                                                                  | and Cap                                                                                                             | oacity                    |               |               |  |
| Weaving s                                                                                                                                                                                                     | segment flow rate               | , V                |                 | 6398 veh/h                         | Weaving inte                                                                                                                                              | ensity factor,                                                                                                      | W                         |               |               |  |
| Weaving s                                                                                                                                                                                                     | segment capacity                | , c <sub>w</sub>   |                 | 5829 veh/h                         | Weaving seg                                                                                                                                               | gment speed                                                                                                         | , S                       |               | mph           |  |
| Weaving s                                                                                                                                                                                                     | segment v/c ratio               |                    |                 | 1.098                              | Average wea                                                                                                                                               | aving speed,                                                                                                        | S <sub>w</sub>            |               | mph           |  |
| Weaving s                                                                                                                                                                                                     | Weaving segment density, D pc/m |                    |                 |                                    |                                                                                                                                                           | /In Average non-weaving speed, S <sub>NW</sub>                                                                      |                           |               | mph           |  |
| Level of S                                                                                                                                                                                                    | evel of Service, LOS            |                    |                 |                                    | F Maximum weaving length, L <sub>MAX</sub> 6745 ft                                                                                                        |                                                                                                                     |                           |               |               |  |
| Notes                                                                                                                                                                                                         |                                 |                    |                 |                                    |                                                                                                                                                           |                                                                                                                     |                           |               |               |  |
| a. Weaving<br>Chapter 13                                                                                                                                                                                      | segments longer t               | han the calcula    | ated maximum le | ength should l                     | be treated as is                                                                                                                                          | olated merge                                                                                                        | and diverge are           | eas using the | procedures of |  |

Chapter 13, "Freeway Merge and Diverge Segments". b. For volumes that exceed the weaving segment capacity, the level of service is "F".

Copyright © 2016 University of Florida, All Rights Reserved

HCS 2010<sup>TM</sup> Version 6.90

Generated: 6/18/2020 3:16 PM

|                                                                                                                                  | BASIC F                                                                       | REEWAY SE                  | GMENTS WORKSHEET                                                                                                                                                    |                                    |                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------|
| General Information                                                                                                              |                                                                               |                            | Site Information                                                                                                                                                    |                                    |                                                                                      |
| Analyst<br>Agency or Company<br>Date Performed                                                                                   | AECOM                                                                         |                            | Highway/Direction of Travel<br>From/To<br>Jurisdiction                                                                                                              | I-95 SB<br>Seg 1-B                 | et Hillsboro & Palmetto                                                              |
| Analysis Time Period                                                                                                             | PM                                                                            |                            | Analysis Year                                                                                                                                                       | 2020 Bu                            | iild 2                                                                               |
| Project Description SW 10t                                                                                                       | n Street SIMR                                                                 |                            |                                                                                                                                                                     |                                    | unning Data                                                                          |
| Elow Inpute                                                                                                                      |                                                                               |                            | Des.(N)                                                                                                                                                             |                                    | anning Data                                                                          |
|                                                                                                                                  | 4690                                                                          | veh/h                      | Dook Hour Foster, DHF                                                                                                                                               | 0.05                               |                                                                                      |
| AADT                                                                                                                             | 4000                                                                          | veh/day                    | %Trucks and Buses, P <sub>T</sub>                                                                                                                                   | 0.95<br>3                          |                                                                                      |
| Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D                                                     |                                                                               | veh/h                      | %Rvs, P <sub>R</sub><br>General Terrain:<br>Grade % Length<br>Up/Down %                                                                                             | 0<br>Level<br>mi                   |                                                                                      |
| Calculate Flow Adjustr                                                                                                           | nents                                                                         |                            |                                                                                                                                                                     |                                    |                                                                                      |
| f <sub>p</sub>                                                                                                                   | 1.00                                                                          |                            | E <sub>R</sub>                                                                                                                                                      | 1.2                                |                                                                                      |
| Έ <sub>Τ</sub>                                                                                                                   | 1.5                                                                           |                            | $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$                                                                                                                        | 0.985                              |                                                                                      |
| Speed Inputs                                                                                                                     |                                                                               |                            | Calc Speed Adj and FFS                                                                                                                                              | 3                                  |                                                                                      |
| Lane Width                                                                                                                       |                                                                               | ft                         |                                                                                                                                                                     |                                    |                                                                                      |
| Rt-Side Lat. Clearance                                                                                                           |                                                                               | ft                         | f <sub>LW</sub>                                                                                                                                                     |                                    | mph                                                                                  |
| Number of Lanes, N                                                                                                               | 4                                                                             |                            | t <sub>LC</sub>                                                                                                                                                     |                                    | mph                                                                                  |
| Total Ramp Density, TRD                                                                                                          |                                                                               | ramps/mi                   | TRD Adjustment                                                                                                                                                      |                                    | mph                                                                                  |
| FFS (measured)                                                                                                                   | 70.0                                                                          | mph                        | FFS                                                                                                                                                                 | 70.0                               | mph                                                                                  |
| Base free-flow Speed, BFFS                                                                                                       |                                                                               | mph                        |                                                                                                                                                                     |                                    |                                                                                      |
| LOS and Performance                                                                                                              | Measures                                                                      |                            | Design (N)                                                                                                                                                          |                                    |                                                                                      |
| <u>Operational (LOS)</u><br>v <sub>p</sub> = (V or DDHV) / (PHF x N<br>S<br>D = v <sub>p</sub> / S<br>LOS                        | x f <sub>HV</sub> x f <sub>p</sub> ) 1250<br>70.0<br>17.9<br>B                | pc/h/ln<br>mph<br>pc/mi/ln | <u>Design (N)</u><br>Design LOS<br>v <sub>p</sub> = (V or DDHV) / (PHF x N x<br>S<br>D = v <sub>p</sub> / S<br>Required Number of Lanes, N                          | f <sub>HV</sub> x f <sub>p</sub> ) | pc/h/ln<br>mph<br>pc/mi/ln                                                           |
| Glossary                                                                                                                         |                                                                               |                            | Factor Location                                                                                                                                                     |                                    |                                                                                      |
| N - Number of lanes<br>V - Hourly volume<br>v <sub>p</sub> - Flow rate<br>LOS - Level of service<br>DDHV - Directional design ho | S - Speed<br>D - Density<br>FFS - Free-flow<br>BFFS - Base free<br>our volume | speed<br>ee-flow speed     | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11, 11-<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits 11-2 | 13<br>2, 11-3                      | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-11 |

HCS 2010<sup>TM</sup> Version 6.90

Generated: 6/18/2020 9:33 AM

|                                                                                                                             |                                                                              | F                              | REEWAY                         | WEAV                               | ING WOF                                                   | RKSHEE                         | Т                                           |                               |                                |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------|--------------------------------|------------------------------------|-----------------------------------------------------------|--------------------------------|---------------------------------------------|-------------------------------|--------------------------------|
| Genera                                                                                                                      | I Information                                                                | on                             |                                |                                    | Site Info                                                 | rmation                        |                                             |                               |                                |
| Analyst<br>Agency/Cor<br>Date Perfor<br>Analysis Tir                                                                        | Analyst<br>Agency/Company AECOM<br>Date Performed<br>Analysis Time Period PM |                                |                                |                                    | Freeway/Dir<br>Weaving Sec<br>Analysis Yea                | of Travel<br>gment Locatio     | 195/S<br>on Seg 2<br>2020                   | B<br>2-Bet On from<br>Build 2 | Exp & Off                      |
| Project Des                                                                                                                 | cription SW 10t                                                              | h Street SIMF                  | 2                              |                                    |                                                           |                                |                                             |                               |                                |
| Inputs                                                                                                                      |                                                                              |                                |                                |                                    | •                                                         |                                |                                             |                               |                                |
| Weaving configurationTwo-SidedWeaving number of lanes, N4Weaving segment length, Ls3900flFreeway free-flow speed, FFS70 mph |                                                                              |                                |                                | Two-Sided<br>4<br>3900ft<br>70 mph | Segment typ<br>Freeway min<br>Freeway ma:<br>Terrain type | e<br>imum speed<br>ximum capac | , S <sub>MIN</sub><br>ity, C <sub>IFL</sub> |                               | Freeway<br>15<br>2400<br>Level |
| Conver                                                                                                                      | sions to po                                                                  | c/h Unde                       | r Base Co                      | ndition                            | S                                                         | Ĩ                              | •                                           | 1                             |                                |
|                                                                                                                             | V (veh/h)                                                                    | PHF                            | Truck (%)                      | RV (%)                             | E <sub>T</sub>                                            | E <sub>R</sub>                 | f <sub>HV</sub>                             | fp                            | v (pc/h)                       |
| V <sub>FF</sub>                                                                                                             | 3730                                                                         | 0.95                           | 3                              | 0                                  | 1.5                                                       | 1.2                            | 0.985                                       | 1.00                          | 3985                           |
| V <sub>RF</sub>                                                                                                             | 870                                                                          | 0.92                           | 2                              | 0                                  | 1.5                                                       | 1.2                            | 0.990                                       | 1.00                          | 955                            |
| V <sub>FR</sub>                                                                                                             | 950                                                                          | 0.92                           | 2                              | 0                                  | 1.5                                                       | 1.2                            | 0.990                                       | 1.00                          | 1043                           |
| V <sub>RR</sub>                                                                                                             | 100                                                                          | 0.92                           | 2                              | 0                                  | 1.5                                                       | 1.2                            | 0.990                                       | 1.00                          | 110                            |
| V <sub>NW</sub>                                                                                                             | 5983                                                                         |                                |                                |                                    |                                                           |                                |                                             | V =                           | 6093                           |
| V <sub>W</sub>                                                                                                              | 110                                                                          |                                |                                |                                    |                                                           |                                |                                             |                               |                                |
| VR                                                                                                                          | 0.018                                                                        |                                |                                |                                    |                                                           |                                |                                             |                               |                                |
| Configu                                                                                                                     | iration Cha                                                                  | aracteris                      | tics                           |                                    | 1                                                         |                                |                                             |                               |                                |
| Minimum m                                                                                                                   | aneuver lanes, l                                                             | N <sub>WL</sub>                |                                | 0 lc                               | Minimum we                                                | eaving lane cl                 | hanges, LC <sub>MIN</sub>                   | 1                             | 330 lc/h                       |
| Interchange                                                                                                                 | e density, ID                                                                |                                |                                | 0.7 int/mi                         | Weaving lan                                               | e changes, L                   | .C <sub>W</sub>                             |                               | 902 lc/h                       |
| Minimum R                                                                                                                   | F lane changes,                                                              | $\mathrm{LC}_{\mathrm{RF}}$    |                                | 0 lc/pc                            | Non-weaving lane changes, LC <sub>NW</sub> 280            |                                |                                             |                               |                                |
| Minimum F                                                                                                                   | R lane changes,                                                              | $\mathrm{LC}_{\mathrm{FR}}$    |                                | 0 lc/pc                            | Total lane ch                                             | nanges, LC <sub>AL</sub>       | L                                           |                               | 3707 lc/h                      |
| Minimum R                                                                                                                   | R lane changes,                                                              | , LC <sub>RR</sub>             |                                | 3 lc/pc                            | Non-weaving                                               | g vehicle inde                 | ex, I <sub>NW</sub>                         |                               | 1633                           |
| Weavin                                                                                                                      | g Segment                                                                    | t Speed,                       | Density, I                     | _evel of                           | Service,                                                  | and Cap                        | oacity                                      |                               |                                |
| Weaving segment flow rate, v6014 veh/hWeaving segment capacity, cw8855 veh/h                                                |                                                                              |                                |                                | 5014 veh/h<br>3855 veh/h           | Weaving inte<br>Weaving sec                               | ensity factor,<br>gment speed  | W<br>, S                                    |                               | 0.217<br>60.3 mph              |
| Weaving segment v/c ratio 0.6                                                                                               |                                                                              |                                |                                | 0.679                              | 9 Average weaving speed, S <sub>w</sub>                   |                                |                                             |                               |                                |
| Weaving segment density, D 25.3 pc/m                                                                                        |                                                                              |                                |                                |                                    | /In Average non-weaving speed, $S_{NW}$ 60.3              |                                |                                             |                               | 60.3 mph                       |
| Level of Se                                                                                                                 | rvice, LUS                                                                   |                                |                                | С                                  | Maximum weaving length, L <sub>MAX</sub> 5894 ft          |                                |                                             |                               |                                |
| Notes                                                                                                                       | ognosta lange 1                                                              | han tha asland                 | tod movimenter !-              | nath obaulat                       | o trooted as !-                                           | alatad man-                    | and diverse                                 | iooo uoise the                | propoduros of                  |
| <ul> <li>a. weaving s</li> <li>Chapter 13, </li> <li>b. For volum</li> </ul>                                                | Freeway Merge a                                                              | and Diverge Se<br>weaving segi | egments".<br>nent capacity, th | <u>ne level of</u> sei             | vice is "F".                                              | solateu merge                  | and diverge ar                              | eas using the                 | sideeuures of                  |

HCS 2010<sup>TM</sup> Version 6.90

Generated: 8/14/2021 4:40 PM

|                                                                                                                                       | BASIC F                                                                      | REEWAY SE                          | GMENTS WORKSHEET                                                                                                                                                    |                                    |                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------|
| General Information                                                                                                                   |                                                                              |                                    | Site Information                                                                                                                                                    |                                    |                                                                                      |
| Analyst<br>Agency or Company<br>Date Performed<br>Analysis Time Period                                                                | AECOM                                                                        |                                    | Highway/Direction of Travel<br>From/To<br>Jurisdiction                                                                                                              | I-95 SB<br>Seg 3-B                 | et Off & On Ramp                                                                     |
| Project Description SW 10                                                                                                             | th Street SIMR                                                               |                                    |                                                                                                                                                                     | 2020 Bu                            |                                                                                      |
| ✓ Oper.(LOS                                                                                                                           | )                                                                            |                                    | Des.(N)                                                                                                                                                             | Pla                                | anning Data                                                                          |
| Flow Inputs                                                                                                                           | ,                                                                            |                                    |                                                                                                                                                                     |                                    | 5                                                                                    |
| Volume, V<br>AADT<br>Peak-Hr Prop. of AADT, K<br>Peak Hr Direction Bron. D                                                            | 4600                                                                         | veh/h<br>veh/day                   | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub><br>%RVs, P <sub>R</sub><br>Conoral Terrain:                                                              | 0.95<br>3<br>0                     |                                                                                      |
| DDHV = AADT x K x D                                                                                                                   |                                                                              | veh/h                              | General Terrain.<br>Grade % Length<br>Up/Down %                                                                                                                     | mi                                 |                                                                                      |
| Calculate Flow Adjust                                                                                                                 | ments                                                                        |                                    |                                                                                                                                                                     |                                    |                                                                                      |
| f <sub>p</sub><br>Ε <sub>T</sub>                                                                                                      | 1.00<br>1.5                                                                  |                                    | E <sub>R</sub><br>f <sub>HV</sub> = 1/[1+P <sub>T</sub> (E <sub>T</sub> - 1) + P <sub>R</sub> (E <sub>R</sub> - 1)]                                                 | 1.2<br>0.985                       |                                                                                      |
| Speed Inputs                                                                                                                          |                                                                              |                                    | Calc Speed Adj and FFS                                                                                                                                              | 6                                  |                                                                                      |
| Lane Width<br>Rt-Side Lat. Clearance<br>Number of Lanes, N<br>Total Ramp Density, TRD<br>FFS (measured)<br>Base free-flow Speed, BFFS | 3<br>70.0                                                                    | ft<br>ft<br>ramps/mi<br>mph<br>mph | f <sub>∟w</sub><br>f <sub>LC</sub><br>TRD Adjustment<br>FFS                                                                                                         | 70.0                               | mph<br>mph<br>mph<br>mph                                                             |
| LOS and Performance                                                                                                                   | Measures                                                                     |                                    | Design (N)                                                                                                                                                          |                                    |                                                                                      |
| <u>Operational (LOS)</u><br>v <sub>p</sub> = (V or DDHV) / (PHF x N<br>S<br>D = v <sub>p</sub> / S<br>LOS                             | x f <sub>HV</sub> x f <sub>p</sub> ) 1638<br>67.8<br>24.2<br>C               | pc/h/ln<br>mph<br>pc/mi/ln         | $\frac{\text{Design (N)}}{\text{Design LOS}}$ $v_p = (V \text{ or DDHV}) / (PHF x N x)$ $S$ $D = v_p / S$ Required Number of Lanes, N                               | f <sub>HV</sub> x f <sub>p</sub> ) | pc/h/ln<br>mph<br>pc/mi/ln                                                           |
| Glossary                                                                                                                              |                                                                              |                                    | Factor Location                                                                                                                                                     |                                    |                                                                                      |
| N - Number of lanes<br>V - Hourly volume<br>v <sub>p</sub> - Flow rate<br>LOS - Level of service<br>DDHV - Directional design h       | S - Speed<br>D - Density<br>FFS - Free-flow<br>BFFS - Base fre<br>our volume | speed<br>ee-flow speed             | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11, 11-<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits 11-2 | .13<br>2, 11-3                     | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-11 |

HCS 2010<sup>TM</sup> Version 6.90

Generated: 6/18/2020 9:44 AM

|                               |                                  | RAMP                | 'S AND RAM                    | P JUNCTI        | ONS WC                    | RKS                   | HEET                 |                                        |                                 |                                    |
|-------------------------------|----------------------------------|---------------------|-------------------------------|-----------------|---------------------------|-----------------------|----------------------|----------------------------------------|---------------------------------|------------------------------------|
| General Infor                 | rmation                          |                     |                               | Site Infor      | mation                    |                       |                      |                                        |                                 |                                    |
| Analyst                       |                                  |                     | Fr                            | eeway/Dir of Tr | avel                      | I-95 SE               | 3                    |                                        |                                 |                                    |
| Agency or Company             | AEC                              | MC                  | Ju                            | inction         |                           | Seg 4-                | Diverge to           | SW 10th St                             |                                 |                                    |
| Date Performed                |                                  |                     | Ju                            | risdiction      |                           | 2020 0                |                      |                                        |                                 |                                    |
| Project Description           | SW 10th Stree                    | t SIMR              | AI                            | alysis i eal    |                           | 2020 6                |                      |                                        |                                 |                                    |
| Inputs                        |                                  |                     |                               |                 |                           |                       |                      |                                        |                                 |                                    |
|                               |                                  | Freeway Num         | ber of Lanes N                | 3               |                           |                       |                      |                                        |                                 |                                    |
| Upstream Adj F                | lamp                             | Ramp Numbe          | of Lanes N                    | 1               |                           |                       |                      |                                        | Downstre                        | am Adj                             |
| Yes                           | On                               |                     | ano Longth                    | I               |                           |                       |                      |                                        |                                 | _                                  |
|                               |                                  | Deceleration        | Lane Length, L <sub>A</sub>   | 200             |                           |                       |                      |                                        | Ves 🗹                           | 🗹 On                               |
| I I No □                      | Off                              |                     |                               | 200             |                           |                       |                      |                                        | 🗌 No                            | Off                                |
|                               | <del>1</del>                     | Freeway volu        | ime, v <sub>F</sub>           | 4600            |                           |                       |                      |                                        | . =                             | 2400 ft                            |
| L up −                        | L                                | Ramp Volume         | e, V <sub>R</sub>             | 840             |                           |                       |                      |                                        | down                            | 2400 10                            |
| V = v                         | eh/h                             | Freeway Free        | e-Flow Speed, S <sub>FF</sub> | 70.0            |                           |                       |                      |                                        | V <sub>D</sub> =                | 1410 veh/h                         |
|                               |                                  | Ramp Free-F         | low Speed, S <sub>FR</sub>    | 45.0            |                           |                       |                      |                                        |                                 |                                    |
| Conversion t                  | o pc/h Un                        | der Base            | Conditions                    |                 |                           |                       |                      |                                        |                                 |                                    |
| (pc/h)                        | V<br>(Veh/hr)                    | PHF                 | Terrain                       | %Truck          | %Rv                       |                       | f <sub>HV</sub>      | f <sub>p</sub>                         | v = V/PHF                       | x f <sub>HV</sub> x f <sub>p</sub> |
| Freeway                       | 4600                             | 0.95                | Level                         | 3               | 0                         | 0.                    | 985                  | 1.00                                   | 49                              | <b>∂</b> 15                        |
| Ramp                          | 840                              | 840 0.92 Level 2    |                               |                 | 0                         | 0.                    | 990                  | 1.00                                   | 9                               | 22                                 |
| UpStream                      |                                  |                     |                               |                 |                           |                       |                      |                                        |                                 |                                    |
| DownStream                    | 1410                             | 0.92                | Level                         | 2               | 0                         | 0.                    | 990                  | 1.00                                   | 1                               | 548                                |
|                               | <b>f</b>                         | Merge Areas         |                               |                 | <b>F</b> ation of         |                       | <u>[</u>             | Diverge Areas                          |                                 |                                    |
| Estimation of                 | r v <sub>12</sub>                |                     |                               |                 | Estimat                   |                       | <sup>or v</sup> 12   |                                        |                                 |                                    |
|                               | V <sub>12</sub> = V <sub>F</sub> | ( P <sub>FM</sub> ) |                               |                 |                           |                       | V <sub>12</sub> =    | • V <sub>R</sub> + (V <sub>F</sub> - V | / <sub>R</sub> )P <sub>FD</sub> |                                    |
| L <sub>EQ</sub> =             | (Equa                            | ition 13-6 or       | 13-7)                         |                 | L <sub>EQ</sub> =         |                       | (                    | Equation 13-                           | 12 or 13-13                     | 3)                                 |
| P <sub>FM</sub> =             | using                            | Equation (          | Exhibit 13-6)                 |                 | P <sub>FD</sub> =         |                       | 0.                   | 595 using Ec                           | quation (Exh                    | ibit 13-7)                         |
| V <sub>12</sub> =             | pc/h                             |                     |                               |                 | V <sub>12</sub> =         |                       | 32                   | 297 pc/h                               |                                 |                                    |
| $V_3^{}$ or $V_{av34}^{}$     | pc/h (                           | Equation 13         | -14 or 13-17)                 |                 | $V_3^{}$ or $V_{av34}^{}$ |                       | 16                   | 618 pc/h (Equ                          | uation 13-1                     | 4 or 13-17)                        |
| Is $V_3$ or $V_{av34} > 2,70$ | 00 pc/h? 🗌 Ye                    | s 🗌 No              |                               |                 | Is $V_3$ or $V_{av}$      | <sub>/34</sub> > 2,7  | '00 pc/h?            | Yes 🗹 No                               |                                 |                                    |
| Is $V_3$ or $V_{av34} > 1.5$  | * V <sub>12</sub> /2             | s 🗌 No              |                               |                 | Is $V_3$ or $V_{av}$      | , <sub>34</sub> > 1.5 | * V <sub>12</sub> /2 | Yes 🗹 No                               |                                 |                                    |
| If Yes,V <sub>12a</sub> =     | pc/h (                           | Equation 13         | -16, 13-18, or                |                 | If Yes,V <sub>12a</sub> = | =                     | p                    | c/h (Equation                          | n 13-16, 13                     | -18, or 13-                        |
| Canacity Che                  | 10-19)                           |                     |                               |                 | Canacit                   | v Ch                  | ocks                 | 9)                                     |                                 |                                    |
|                               | Actual                           |                     | Capacity                      | LOS F?          |                           | <u>y en</u>           | Actual               | С                                      | apacity                         | LOS F?                             |
|                               |                                  |                     |                               |                 | V_                        |                       | 4915                 | Exhibit 13-                            | -8 7200                         | No                                 |
| V-a                           |                                  | Exhibit 13-8        |                               |                 | $V_{} = V_{}$             | - V_                  | 3003                 | Exhibit 13.                            | -8 7200                         | No                                 |
| FO                            |                                  |                     |                               |                 | V                         | - 'R                  | 022                  | Exhibit 13                             | 10 2100                         | No                                 |
| Elever Enderin                |                                  | <u></u>             |                               |                 |                           |                       | 922                  |                                        | 2100                            | NU                                 |
| Flow Entering                 | g werge in                       | Max                 | Area<br>Dosirablo             | Violation?      | FIOW Er                   | Terin                 | Actual               | Max Dosira                             | ice Area                        | Violation?                         |
| V                             | Actual                           | Evhibit 13-8        | Desilable                     | violation       | V                         | +                     | 2007                 | Evhibit 13-8                           |                                 | No                                 |
|                               | l<br>vico Dotorr                 | nination (          | (if not E)                    |                 |                           | fSor                  |                      | torminatic                             | n (if not                       | <u> </u>                           |
| $D = 5.475 \pm 0$             | 00734  v +                       |                     | 0.006271                      |                 | Leveror                   |                       | 1 252 + 0            |                                        |                                 | .,                                 |
| $D_R = 0.470 + 0$             | .00704 V R '                     | 0.0070 12           | - 0.00027 L <sub>A</sub>      |                 | D - 2                     | $D_R = -$             | f.202 · 0            | .0000 • 12 - 0                         |                                 |                                    |
| $B_{\rm R}$ (pc/m/m)          |                                  |                     |                               |                 | $D_R = 3$                 | 0.6 (pc               | //////)              |                                        |                                 |                                    |
|                               | LOS - (Exhibit 13-2)             |                     |                               |                 |                           |                       | olt 13-2)            |                                        |                                 |                                    |
| Speed Determination           |                                  |                     |                               |                 | Speed L                   | Deter                 | minatic              | <u>on</u>                              |                                 |                                    |
| M <sub>S</sub> = (Exibit 1    | M <sub>S</sub> = (Exibit 13-11)  |                     |                               |                 |                           | .381 (E               | xnidit 13-           | -12)                                   |                                 |                                    |
| S <sub>R</sub> = mph (Exh     | nibit 13-11)                     |                     |                               |                 | S <sub>R</sub> = 59       | 9.3 mph               | (Exhibit             | 13-12)                                 |                                 |                                    |
| S <sub>0</sub> = mph (Exh     | nibit 13-11)                     |                     |                               |                 | $S_0 = 74$                | 4.4 mph               | (Exhibit             | 13-12)                                 |                                 |                                    |
| S = mph (Ext                  | nibit 13-13)                     |                     |                               |                 | S = 63                    | 3.6 mph               | (Exhibit             | 13-13)                                 |                                 |                                    |
| yright © 2016 Universi        | ty of Florida, All R             | ights Reserved      |                               |                 | HCS2010 <sup>™</sup>      | <sup>M</sup> Versi    | on 6.90              |                                        | Generated:                      | 6/18/2020 9:47                     |

|                                                                                                                                  | BASIC F                                                                      | REEWAY SE                    | GMENTS WORKSHEET                                                                                                                                                    |                                    |                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------|
| General Information                                                                                                              |                                                                              |                              | Site Information                                                                                                                                                    |                                    |                                                                                      |
| Analyst<br>Agency or Company<br>Date Performed<br>Analysis Time Period                                                           | AECOM<br>PM                                                                  |                              | Highway/Direction of Travel<br>From/To<br>Jurisdiction<br>Analysis Year                                                                                             | I-95 SB<br>Seg 5-B<br>2020 Bu      | et Off & On Ramps<br>ild 2                                                           |
| Project Description SW 10                                                                                                        | th Street SIMR                                                               |                              |                                                                                                                                                                     | 2020 Du                            |                                                                                      |
| ✓ Oper.(LOS)                                                                                                                     | )                                                                            |                              | Des.(N)                                                                                                                                                             | Pla                                | nning Data                                                                           |
| Flow Inputs                                                                                                                      | ,<br>                                                                        |                              |                                                                                                                                                                     |                                    | 0                                                                                    |
| Volume, V<br>AADT<br>Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D                                                       | 3760                                                                         | veh/h<br>veh/day             | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub><br>%RVs, P <sub>R</sub><br>General Terrain:                                                              | 0.95<br>3<br>0<br>Level            |                                                                                      |
| DDHV = AADT x K x D                                                                                                              |                                                                              | veh/h                        | Grade % Length<br>Up/Down %                                                                                                                                         | mi                                 |                                                                                      |
| Calculate Flow Adjust                                                                                                            | ments                                                                        |                              |                                                                                                                                                                     |                                    |                                                                                      |
| f <sub>p</sub><br>E <sub>T</sub>                                                                                                 | 1.00<br>1.5                                                                  |                              | E <sub>R</sub><br>f <sub>1 N/</sub> = 1/[1+P <sub>7</sub> (E <sub>7</sub> - 1) + P <sub>0</sub> (E <sub>8</sub> - 1)]                                               | 1.2<br>0.985                       |                                                                                      |
| Speed Inputs                                                                                                                     | -                                                                            |                              | Calc Speed Adi and FES                                                                                                                                              | 3                                  |                                                                                      |
| Lane Width                                                                                                                       |                                                                              | ft                           |                                                                                                                                                                     | ,                                  |                                                                                      |
| Rt-Side Lat. Clearance<br>Number of Lanes, N<br>Total Ramp Density, TRD<br>FFS (measured)<br>Base free-flow Speed, BFFS          | 3<br>70.0                                                                    | ft<br>ramps/mi<br>mph<br>mph | f <sub>∟w</sub><br>f <sub>LC</sub><br>TRD Adjustment<br>FFS                                                                                                         | 70.0                               | mph<br>mph<br>mph<br>mph                                                             |
| LOS and Performance                                                                                                              | Measures                                                                     |                              | Design (N)                                                                                                                                                          |                                    |                                                                                      |
| <u>Operational (LOS)</u><br>v <sub>p</sub> = (V or DDHV) / (PHF x N<br>S<br>D = v <sub>p</sub> / S<br>LOS                        | x f <sub>HV</sub> x f <sub>p</sub> ) 1339<br>69.8<br>19.2<br>C               | pc/h/ln<br>mph<br>pc/mi/ln   | Design (N)<br>Design LOS<br>v <sub>p</sub> = (V or DDHV) / (PHF x N x<br>S<br>D = v <sub>p</sub> / S<br>Required Number of Lanes, N                                 | f <sub>HV</sub> x f <sub>p</sub> ) | pc/h/ln<br>mph<br>pc/mi/ln                                                           |
| Glossary                                                                                                                         |                                                                              |                              | Factor Location                                                                                                                                                     |                                    |                                                                                      |
| N - Number of lanes<br>V - Hourly volume<br>v <sub>p</sub> - Flow rate<br>LOS - Level of service<br>DDHV - Directional design he | S - Speed<br>D - Density<br>FFS - Free-flow<br>BFFS - Base fre<br>our volume | speed<br>ee-flow speed       | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11, 11-<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits 11-2 | 13<br>2, 11-3                      | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-11 |

HCS 2010<sup>TM</sup> Version 6.90

Generated: 6/18/2020 9:50 AM

|                                                               | RA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MPS AND                      | RAMP JUN                     | CTIONS W                    | ORKSH                                | EET                 |                        |                            |                     |                                    |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|-----------------------------|--------------------------------------|---------------------|------------------------|----------------------------|---------------------|------------------------------------|
| General Infe                                                  | Site Infor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mation                       |                              |                             |                                      |                     |                        |                            |                     |                                    |
| Analyst<br>Agency or Compa                                    | ny AEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ОМ                           | Fr<br>Ju                     | eeway/Dir of Tra<br>Inction | avel                                 | I-95 S<br>Seg 6     | B<br>-Merge from       | n Hillsboro E&W            |                     |                                    |
| Date Performed<br>Analysis Time Per                           | iod PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              | Ju<br>Ar                     | nsulction<br>alvsis Year    |                                      | 20201               | Build 2                |                            |                     |                                    |
| Project Description                                           | n SW 10th Stree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t SIMR                       | 7.0                          |                             |                                      | 20201               |                        |                            |                     |                                    |
| Inputs                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                              |                             |                                      |                     |                        |                            |                     |                                    |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Freeway Num                  | ber of Lanes, N              | 3                           |                                      |                     |                        |                            |                     | A .!!                              |
| Upstream Adj Rar                                              | np                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ramp Numbe                   | r of Lanes, N                | 1                           |                                      |                     |                        |                            | Downstrea<br>Ramp   | m Adj                              |
| Yes                                                           | Un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Acceleration L               | 300                          |                             |                                      |                     |                        | 🗌 Yes                      | 🗌 On                |                                    |
| No 🔽                                                          | Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Freeway Volu                 | 3760                         |                             |                                      |                     |                        | 🗹 No                       | Off                 |                                    |
| L <sub>up</sub> = 2400                                        | ) ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ramp Volume                  | e, V <sub>R</sub>            | 1410                        |                                      |                     |                        |                            | L <sub>down</sub> = | ft                                 |
| V <sub>u</sub> = 840                                          | veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Freeway Free<br>Ramp Free-Fl | -Flow Speed, S <sub>FF</sub> | 70.0<br>50.0                |                                      |                     |                        |                            | V <sub>D</sub> =    | veh/h                              |
| Conversion                                                    | to pc/h Un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | der Base                     | Conditions                   |                             |                                      |                     |                        |                            |                     |                                    |
| (pc/h)                                                        | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PHF                          | Terrain                      | %Truck                      | %Rv                                  |                     | f                      | f                          | v = V/PHF           | x f <sub>uv</sub> x f <sub>n</sub> |
| Freeway                                                       | (Veh/hr)<br>3760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.95                         | l evel                       | 3                           | 0                                    |                     | ⊓v<br>) 985            | p<br>1 00                  | 40                  | нv р<br>17                         |
| Ramp                                                          | 1410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.92                         | Level                        | 2                           | 0                                    |                     | ) 990                  | 1.00                       | 15                  | 48                                 |
| UpStream                                                      | 840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.92                         | Level                        | 2                           | 0                                    |                     | ).990                  | 1.00                       | 9:                  | 22                                 |
| DownStream                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                              |                             |                                      |                     |                        |                            |                     |                                    |
| Merge Areas Diverge Areas                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                              |                             |                                      |                     |                        |                            |                     |                                    |
| Estimation                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Estimat                      | tion o                       | of v <sub>12</sub>          |                                      |                     |                        |                            |                     |                                    |
|                                                               | V <sub>12</sub> = V <sub>F</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ( P <sub>FM</sub> )          |                              |                             |                                      |                     | V <sub>12</sub> = '    | Vp + (Vr - Vp              | )P <sub>ED</sub>    |                                    |
| L <sub>EQ</sub> =                                             | 1537.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l (Equation                  | 13-6 or 13-7)                |                             | L <sub>EO</sub> =                    |                     | 12                     | Equation 13-               | 12 or 13-13         | 5)                                 |
| P <sub>FM</sub> =                                             | 0.586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | using Equat                  | ion (Exhibit 13-6)           | 1                           |                                      |                     | l                      | using Equatio              | n (Exhibit 13-      | ,<br>7)                            |
| V <sub>12</sub> =                                             | 2354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pc/h                         |                              |                             | $V_{12} =$                           |                     |                        | oc/h                       | ,                   | '                                  |
| $V_3^{}$ or $V_{av34}^{}$                                     | 1663<br>17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pc/h (Equati                 | on 13-14 or 13-              |                             | $V_3^{12}$ or $V_{av34}^{12}$        |                     |                        | pc/h (Equation 1           | 3-14 or 13-17       | )                                  |
| Is $V_3$ or $V_{av34} > 2$                                    | ,700 pc/h? 🗌 Ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s 🗹 No                       |                              |                             | Is V <sub>3</sub> or V <sub>av</sub> | <sub>/34</sub> > 2, | 700 pc/h?              | Yes No                     |                     |                                    |
| Is $V_3$ or $V_{av34} > 1$                                    | .5 * V <sub>12</sub> /2 🗹 Ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s 🗌 No                       |                              |                             | Is V <sub>3</sub> or V <sub>av</sub> | <sub>34</sub> > 1.  | 5 * V <sub>12</sub> /2 | Yes No                     |                     | 10                                 |
| If Yes,V <sub>12a</sub> =                                     | 2354<br>18. or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pc/h (Equati                 | on 13-16, 13-                |                             | lf Yes,V <sub>12a</sub> =            | =                   | <br>1:                 | oc/h (Equatio<br>3-19)     | n 13-16, 13         | -18, or                            |
| Capacity Cl                                                   | hecks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10-19)                       |                              |                             | Capacit                              | y Ch                | necks                  |                            |                     |                                    |
|                                                               | Actual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C                            | apacity                      | LOS F?                      | <u> </u>                             |                     | Actual                 | Car                        | pacity              | LOS F?                             |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                              |                             | V <sub>F</sub>                       |                     |                        | Exhibit 13-8               | 8                   |                                    |
| V <sub>FO</sub>                                               | 5565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Exhibit 13-8                 |                              | No                          | V <sub>FO</sub> = V <sub>F</sub>     | - V <sub>R</sub>    |                        | Exhibit 13-8               | 8                   |                                    |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                              |                             | V <sub>R</sub>                       |                     |                        | Exhibit 13-<br>10          | -                   |                                    |
| Flow Enteri                                                   | ng Merge In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | fluence A                    | rea                          |                             | Flow Er                              | nterii              | ng Dive                | rge Influen                | ce Area             |                                    |
|                                                               | Actual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Max                          | Desirable                    | Violation?                  |                                      | +                   | Actual                 | Max Desi                   | rable               | Violation?                         |
|                                                               | 3902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Exhibit 13-8                 | 4600:All                     | NO                          | V <sub>12</sub>                      |                     | nico Do                | Exhibit 13-8               | n (if not i         | -)                                 |
| Level of Sel                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                              |                             | Levero                               | r Ser               |                        |                            |                     | 7                                  |
| $D_R = 5.475 \pm 0.00734 V_R \pm 0.0076 V_{12} = 0.00627 L_A$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                              |                             |                                      | U <sub>R</sub> -    | 4.252 + U<br>" 、       | .0000 v <sub>12</sub> - 0. | .009 L <sub>D</sub> |                                    |
| D <sub>R</sub> – 33.3 (ро<br>109 – D (Бурі                    | ///////)<br>hit 12:0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |                              |                             | $\nu_{\rm R} = (r$                   | ⊃C/MI/<br>=vhihi    | 'IN)<br>it 12 2)       |                            |                     |                                    |
| Speed Determination                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                              |                             |                                      |                     | rminatic               | <u>n</u>                   |                     |                                    |
| M = 0.494  //                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                              |                             | $D_{a} = (F_{a})$                    |                     | 13-12)                 | // 1                       |                     |                                    |
| $S_{-} = 56.4 \text{ mm}$                                     | $\frac{1}{1000} = \frac{1000}{1000} =$ |                              |                              |                             | s (⊑<br>S <sub>□</sub> = m           | nph (Ex             | (hibit 13-12)          |                            |                     |                                    |
| S.= 650mm                                                     | $\frac{   }{   } = \frac{   }{   } = \frac{   }{    } = \frac{   }{                                $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |                              |                             | S <sub>0</sub> = m                   | nph (Fx             | (hibit 13-12)          |                            |                     |                                    |
| S = 59.0  mm                                                  | bh (Exhibit 13-13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                              |                             | S = m                                | nph (Ex             | (hibit 13-13)          |                            |                     |                                    |
| ļ'                                                            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                              |                             | I                                    | `                   | ,                      |                            |                     |                                    |

|                                                                                                                                       | BASIC F                                                                       | REEWAY SE                          | GMENTS WORKSHEET                                                                                                                                                    |                                    |                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------|
| General Information                                                                                                                   |                                                                               |                                    | Site Information                                                                                                                                                    |                                    |                                                                                      |
| Analyst<br>Agency or Company<br>Date Performed                                                                                        | AECOM                                                                         |                                    | Highway/Direction of Travel<br>From/To<br>Jurisdiction                                                                                                              | I-95 SB<br>Seg 7-B                 | et On Ramps                                                                          |
| Analysis Time Period                                                                                                                  | PM                                                                            |                                    | Analysis Year                                                                                                                                                       | 2020 Bu                            | 1110 Z                                                                               |
| Oper (LOS)                                                                                                                            |                                                                               |                                    | Des (N)                                                                                                                                                             | Pla                                | anning Data                                                                          |
| Flow Inputs                                                                                                                           | ,                                                                             |                                    | 200.(11)                                                                                                                                                            |                                    |                                                                                      |
| Volume, V<br>AADT                                                                                                                     | 5170                                                                          | veh/h<br>veh/day                   | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>                                                                                                          | 0.95<br>3                          |                                                                                      |
| Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D                                                          |                                                                               | veh/h                              | %RVs, P <sub>R</sub><br>General Terrain:<br>Grade % Length<br>Up/Down %                                                                                             | 0<br>Level<br>mi                   |                                                                                      |
| Calculate Flow Adjustr                                                                                                                | ments                                                                         |                                    |                                                                                                                                                                     |                                    |                                                                                      |
| f <sub>p</sub>                                                                                                                        | 1.00                                                                          |                                    | E <sub>R</sub>                                                                                                                                                      | 1.2                                |                                                                                      |
| E <sub>T</sub>                                                                                                                        | 1.5                                                                           |                                    | $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$                                                                                                                        | 0.985                              |                                                                                      |
| Speed Inputs                                                                                                                          |                                                                               |                                    | Calc Speed Adj and FFS                                                                                                                                              | 6                                  |                                                                                      |
| Lane Width<br>Rt-Side Lat. Clearance<br>Number of Lanes, N<br>Total Ramp Density, TRD<br>FFS (measured)<br>Base free-flow Speed, BFFS | 3<br>70.0                                                                     | ft<br>ft<br>ramps/mi<br>mph<br>mph | f <sub>Lw</sub><br>f <sub>LC</sub><br>TRD Adjustment<br>FFS                                                                                                         | 70.0                               | mph<br>mph<br>mph<br>mph                                                             |
| LOS and Performance                                                                                                                   | Measures                                                                      |                                    | Design (N)                                                                                                                                                          |                                    |                                                                                      |
| <u>Operational (LOS)</u><br>v <sub>p</sub> = (V or DDHV) / (PHF x N<br>S<br>D = v <sub>p</sub> / S<br>LOS                             | x f <sub>HV</sub> x f <sub>p</sub> ) 1841<br>65.2<br>28.2<br>D                | pc/h/ln<br>mph<br>pc/mi/ln         | Design (N)<br>Design LOS<br>v <sub>p</sub> = (V or DDHV) / (PHF x N x<br>S<br>D = v <sub>p</sub> / S<br>Required Number of Lanes, N                                 | f <sub>HV</sub> x f <sub>p</sub> ) | pc/h/ln<br>mph<br>pc/mi/ln                                                           |
| Glossary                                                                                                                              |                                                                               |                                    | Factor Location                                                                                                                                                     |                                    |                                                                                      |
| N - Number of lanes<br>V - Hourly volume<br>v <sub>p</sub> - Flow rate<br>LOS - Level of service<br>DDHV - Directional design ho      | S - Speed<br>D - Density<br>FFS - Free-flow<br>BFFS - Base free<br>our volume | speed<br>ee-flow speed             | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11, 11-<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits 11-2 | -13<br>2, 11-3                     | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-11 |

HCS 2010<sup>TM</sup> Version 6.90

Generated: 6/18/2020 9:55 AM

Job: SW 10th Street SIMR Analyst: AECOM

| Location:                  | Seg 8: I-               | Seg 8: I-95 Southbound On-Ramp from SW 10th Street EB & PM Peak Hour |                                                       |       |        |  |  |  |  |  |
|----------------------------|-------------------------|----------------------------------------------------------------------|-------------------------------------------------------|-------|--------|--|--|--|--|--|
| Analysis Year:             | 2020 Buil               | d 2                                                                  |                                                       |       |        |  |  |  |  |  |
|                            |                         | ~ _                                                                  |                                                       |       |        |  |  |  |  |  |
| 5,170                      |                         |                                                                      | → 6,220                                               |       |        |  |  |  |  |  |
|                            |                         |                                                                      |                                                       |       |        |  |  |  |  |  |
| 1,050                      |                         |                                                                      |                                                       |       |        |  |  |  |  |  |
|                            | PHF =                   | 0.95                                                                 |                                                       |       |        |  |  |  |  |  |
|                            | v <sub>fr</sub> =       | 6,220                                                                | vph                                                   |       |        |  |  |  |  |  |
|                            | v <sub>r</sub> =        | 1,050                                                                | vph                                                   |       |        |  |  |  |  |  |
|                            | v <sub>f</sub> =        | 5,170                                                                |                                                       |       |        |  |  |  |  |  |
| Upstream Freeway           | Tr % =                  | 3%                                                                   |                                                       |       |        |  |  |  |  |  |
| Ramp                       | Tr % =                  | 2%                                                                   |                                                       |       |        |  |  |  |  |  |
| Downstream Freeway         | Tr % =                  | 3%                                                                   | / <b>_</b> / <b>_</b> / <b>_</b>                      |       |        |  |  |  |  |  |
| Freeway                    | f <sub>HV</sub> =       | 1/(1+P <sub>1</sub>                                                  | r(E <sub>T</sub> -1)+P <sub>R</sub> (E <sub>R</sub> - | 1)) = | 0.985  |  |  |  |  |  |
| Ramp                       | f <sub>HV</sub> =       | 1/(1+P₁                                                              | r(E <sub>T</sub> -1)+P <sub>R</sub> (E <sub>R</sub> - | 1)) = | 0.9901 |  |  |  |  |  |
| flat terrain               | <b>Ε</b> <sub>τ</sub> = | 1.5                                                                  |                                                       |       |        |  |  |  |  |  |
|                            | RV % =                  | 0                                                                    |                                                       |       |        |  |  |  |  |  |
| Driver Population adj.     | f <sub>P</sub> =        | 1.000                                                                |                                                       |       |        |  |  |  |  |  |
|                            | V <sub>fr</sub> =       | =v <sub>fr</sub> /(PH                                                | $IF)(f_{HV})(f_{P}) =$                                | 6,646 | pc/h   |  |  |  |  |  |
|                            | V <sub>r</sub> =        | =v <sub>r</sub> /(PH                                                 | $ F)(f_{HV})(f_{P}) =$                                | 1,116 | pc/h   |  |  |  |  |  |
|                            | V <sub>f</sub> =        | =v <sub>f</sub> /(PH                                                 | $F)(f_{HV})(f_{P}) =$                                 | 5,524 | pc/h   |  |  |  |  |  |
| No. lanes upstream of ramp | N =                     | 3                                                                    |                                                       |       |        |  |  |  |  |  |

| <u>No. Ln</u> | Capacity Check (see Exhibits 25-3 and 25-7):             | Maximum | Actual | V/c  | LOS F? |
|---------------|----------------------------------------------------------|---------|--------|------|--------|
| 4             | Fwy downstream of ramp (assume 70 mph free-flow speed) = | 9,600   | 6,646  | 0.69 | No     |
| 3             | Fwy upstream of ramp (assume 70 mph free-flow speed) =   | 7,200   | 5,524  | 0.77 | No     |
| 1             | Capacity on On-Ramp (assume 45 mph free-flow speed) =    | 2,100   | 1,116  | 0.53 | No     |

|                                                                                                                                       | BASIC F                                                                      | REEWAY SE                          | GMENTS WORKSHEET                                                                                                                                                    |                                    |                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------|
| General Information                                                                                                                   |                                                                              |                                    | Site Information                                                                                                                                                    |                                    |                                                                                      |
| Analyst<br>Agency or Company<br>Date Performed                                                                                        | AECOM                                                                        |                                    | Highway/Direction of Travel<br>From/To<br>Jurisdiction                                                                                                              | I-95 SB<br>Seg 9-B                 | et 10th & Exit to Exp                                                                |
| Project Description SW 10                                                                                                             | th Street SIMR                                                               |                                    |                                                                                                                                                                     | 2020 Bu                            |                                                                                      |
| ✓ Oper.(LOS                                                                                                                           | )                                                                            |                                    | Des.(N)                                                                                                                                                             | Pla                                | nning Data                                                                           |
| Flow Inputs                                                                                                                           | /                                                                            |                                    | ()                                                                                                                                                                  |                                    |                                                                                      |
| Volume, V<br>AADT<br>Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop. D                                                            | 6220                                                                         | veh/h<br>veh/day                   | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub><br>%RVs, P <sub>R</sub><br>General Terrain:                                                              | 0.95<br>3<br>0                     |                                                                                      |
| DDHV = AADT x K x D                                                                                                                   |                                                                              | veh/h                              | Grade % Length<br>Up/Down %                                                                                                                                         | mi                                 |                                                                                      |
| Calculate Flow Adjust                                                                                                                 | ments                                                                        |                                    |                                                                                                                                                                     |                                    |                                                                                      |
| f <sub>ρ</sub><br>Ε <sub>Τ</sub>                                                                                                      | 1.00<br>1.5                                                                  |                                    | E <sub>R</sub><br>f <sub>HV</sub> = 1/[1+P <sub>T</sub> (E <sub>T</sub> - 1) + P <sub>R</sub> (E <sub>R</sub> - 1)]                                                 | 1.2<br>0.985                       |                                                                                      |
| Speed Inputs                                                                                                                          |                                                                              |                                    | Calc Speed Adj and FFS                                                                                                                                              | 6                                  |                                                                                      |
| Lane Width<br>Rt-Side Lat. Clearance<br>Number of Lanes, N<br>Total Ramp Density, TRD<br>FFS (measured)<br>Base free-flow Speed, BFFS | 4<br>70.0                                                                    | ft<br>ft<br>ramps/mi<br>mph<br>mph | f <sub>LW</sub><br>f <sub>LC</sub><br>TRD Adjustment<br>FFS                                                                                                         | 70.0                               | mph<br>mph<br>mph<br>mph                                                             |
| LOS and Performance                                                                                                                   | Measures                                                                     |                                    | Design (N)                                                                                                                                                          |                                    |                                                                                      |
| <u>Operational (LOS)</u><br>v <sub>p</sub> = (V or DDHV) / (PHF x N<br>S<br>D = v <sub>p</sub> / S<br>LOS                             | x f <sub>HV</sub> x f <sub>p</sub> ) 1661<br>67.5<br>24.6<br>C               | pc/h/ln<br>mph<br>pc/mi/ln         | $\frac{\text{Design (N)}}{\text{Design LOS}}$ $v_p = (V \text{ or DDHV}) / (PHF x N x)$ $S$ $D = v_p / S$ Required Number of Lanes, N                               | f <sub>HV</sub> x f <sub>p</sub> ) | pc/h/ln<br>mph<br>pc/mi/ln                                                           |
| Glossary                                                                                                                              |                                                                              |                                    | Factor Location                                                                                                                                                     |                                    |                                                                                      |
| N - Number of lanes<br>V - Hourly volume<br>v <sub>p</sub> - Flow rate<br>LOS - Level of service<br>DDHV - Directional design he      | S - Speed<br>D - Density<br>FFS - Free-flow<br>BFFS - Base fre<br>our volume | speed<br>ee-flow speed             | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11, 11-<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits 11-2 | .13<br>2, 11-3                     | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-11 |

HCS 2010<sup>TM</sup> Version 6.90

Generated: 6/18/2020 2:32 PM

|                                     | RAI                              | MPS AND                                                   | RAMP JUN                     | CTIONS W                                | ORKSH                                   | EET                |                        |                            |                    |            |
|-------------------------------------|----------------------------------|-----------------------------------------------------------|------------------------------|-----------------------------------------|-----------------------------------------|--------------------|------------------------|----------------------------|--------------------|------------|
| General Infor                       | rmation                          |                                                           |                              | Site Infor                              | mation                                  |                    |                        |                            |                    |            |
| Analyst                             |                                  |                                                           | Fr                           | eeway/Dir of Tr                         | ravel I-95 SB                           |                    |                        |                            |                    |            |
| Agency or Company                   | AEC                              | ОМ                                                        | Ju                           | Inction                                 | Seg 10-Merge from Ex to GP              |                    |                        |                            |                    |            |
| Date Performed                      |                                  |                                                           | Ju                           | irisdiction                             |                                         | Ū                  | Ū                      |                            |                    |            |
| Analysis Time Perio                 | d PM                             |                                                           | Ar                           | nalysis Year                            |                                         | 2020               | Build 2                |                            |                    |            |
| Project Description                 | SW 10th Stree                    | t SIMR                                                    |                              |                                         |                                         |                    |                        |                            |                    |            |
| Inputs                              |                                  |                                                           |                              |                                         |                                         |                    |                        |                            |                    |            |
| LInstream Adi Ramn                  |                                  | Freeway Num                                               | ber of Lanes, N              | 4                                       |                                         |                    |                        |                            | Downstre           | am Adi     |
|                                     |                                  | Ramp Numbe                                                | r of Lanes, N                | 1                                       |                                         |                    |                        |                            | Ramp               |            |
| Yes Or                              | า                                | Acceleration I                                            | ane Length L                 | 600                                     |                                         |                    |                        |                            |                    |            |
|                                     |                                  | Personante i Lano Longth, L <sub>A</sub> 0000 IV Yes □ On |                              |                                         |                                         |                    | □ On                   |                            |                    |            |
| 🗹 No 📃 Of                           | f                                |                                                           |                              |                                         |                                         |                    |                        |                            | 🗌 No               | ✓ Off      |
|                                     |                                  | Freeway Volume, V <sub>F</sub> 6220                       |                              |                                         |                                         |                    | 1150 8                 |                            |                    |            |
| $L_{up} = ft$                       |                                  | Ramp Volume                                               | e, V <sub>R</sub>            | 190                                     |                                         |                    |                        |                            | └down ─            | 1150 11    |
|                                     |                                  | Freeway Free                                              | -Flow Speed, S <sub>FF</sub> | 70.0                                    |                                         |                    |                        |                            | V_ =               | 700 veh/h  |
| v <sub>u</sub> – ven/r              | 1                                | Ramp Free-Fl                                              | ow Speed, S <sub>FR</sub>    | 50.0                                    |                                         |                    |                        |                            | * D                | 700 Venini |
| Conversion t                        | o pc/h Und                       | der Base                                                  | Conditions                   |                                         |                                         |                    |                        |                            |                    |            |
| (nc/h)                              | V                                | PHF                                                       | Terrain                      | %Truck                                  | %Rv                                     |                    | f                      | f                          | v = V/PHF          | x fx f     |
| (poin)                              | (Veh/hr)                         |                                                           |                              | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                    | ·HV                    | ·p                         |                    | ну к тр    |
| Freeway                             | 6220                             | 0.95                                                      | Level                        | 3                                       | 0                                       |                    | ).985                  | 1.00                       | 6                  | 646        |
| Ramp                                | 190                              | 0.92                                                      | Level                        | 2                                       | 0                                       |                    | ).990                  | 1.00                       | 2                  | 209        |
| UpStream<br>Davum Otras and         | 700                              | 0.00                                                      |                              |                                         |                                         |                    | 000                    | 4.00                       |                    | 200        |
| DownStream                          | 700                              | 0.92                                                      | Level                        | 2                                       | 0                                       | (                  | ).990                  | 1.00                       |                    | 68         |
| Merge Areas                         |                                  |                                                           |                              |                                         |                                         | ion                |                        | liverge Areas              |                    |            |
|                                     | <b>v</b> 12                      |                                                           |                              |                                         | LStillat                                |                    | 12                     |                            |                    |            |
|                                     | V <sub>12</sub> = V <sub>F</sub> | ( P <sub>FM</sub> )                                       |                              |                                         |                                         |                    | V <sub>12</sub> =      | Vp + (Vr - Vp              | )P <sub>ED</sub>   |            |
| L <sub>EQ</sub> =                   | (Equa                            | ation 13-6 o                                              | r 13-7)                      |                                         | =                                       |                    | 12                     | (Equation 13-              | / FD<br>12 or 13_1 | 3)         |
| P <sub>FM</sub> =                   | 0.192                            | using Equat                                               | tion (Exhibit 13-6)          | 1                                       | P =                                     |                    |                        | using Equation             | n (Evhibit 13      | -7)        |
| V <sub>12</sub> =                   | 1274                             | pc/h                                                      |                              |                                         | FD                                      |                    |                        |                            |                    | -1)        |
|                                     | 2686                             | pc/h (Equati                                              | on 13-14 or 13-              |                                         | v <sub>12</sub> –                       |                    |                        |                            |                    |            |
| v <sub>3</sub> or v <sub>av34</sub> | 17)                              |                                                           |                              |                                         | v <sub>3</sub> or v <sub>av34</sub>     | _                  |                        | pc/h (Equation 1           | 3-14 or 13-1       | ()         |
| Is $V_3$ or $V_{av34} > 2,70$       | 0 pc/h? 🗌 Ye                     | s 🗹 No                                                    |                              |                                         | Is V <sub>3</sub> or V <sub>av</sub>    | <sub>34</sub> > 2, | 700 pc/h?              | _Yes ∟No                   |                    |            |
| Is $V_3$ or $V_{av34} > 1.5$        | * V <sub>12</sub> /2 Ve          | s 🗌 No                                                    |                              |                                         | Is V <sub>3</sub> or V <sub>av</sub>    | <sub>34</sub> > 1. | 5 * V <sub>12</sub> /2 | Yes 🗌 No                   |                    |            |
|                                     | 2658                             | pc/h (Equati                                              | on 13-16, 13-                |                                         | If Yes,V <sub>12a</sub> =               | =                  | 1                      | pc/h (Equatio              | n 13-16, 13        | 8-18, or   |
| 11 103, v <sub>12a</sub> -          | 18, or                           | 13-19)                                                    |                              |                                         | 120                                     |                    | 1.                     | 3-19)                      |                    |            |
| Capacity Che                        | ecks                             |                                                           |                              |                                         | Capacit                                 | y Ch               | necks                  |                            |                    |            |
|                                     | Actual                           | C                                                         | Capacity                     | LOS F?                                  |                                         |                    | Actual                 | Car                        | pacity             | LOS F?     |
|                                     |                                  |                                                           |                              |                                         | V <sub>F</sub>                          |                    |                        | Exhibit 13-8               | 3                  |            |
| V=o                                 | 6855                             | Exhibit 13-8                                              |                              | No                                      | $V_{FO} = V_{F}$                        | -V <sub>R</sub>    |                        | Exhibit 13-8               | 3                  |            |
| FO                                  |                                  |                                                           |                              |                                         | <u> </u>                                |                    |                        | Exhibit 13-                |                    |            |
|                                     |                                  |                                                           |                              |                                         | ۷R                                      |                    |                        | 10                         |                    |            |
| Flow Entering                       | g Merge In                       | fluence A                                                 | rea                          |                                         | Flow En                                 | iterii             | ng Dive                | rge Influen                | ce Area            |            |
|                                     | Actual                           | Max                                                       | Desirable                    | Violation?                              |                                         |                    | Actual                 | Max Desi                   | rable              | Violation? |
| V <sub>R12</sub>                    | 2867                             | Exhibit 13-8                                              | 4600:All                     | No                                      | V <sub>12</sub>                         |                    |                        | Exhibit 13-8               |                    |            |
| Level of Serv                       | rice Detern                      | nination (                                                | if not F)                    |                                         | Level of                                | f Ser              | vice De                | terminatio                 | n (if not          | F)         |
| D <sub>R</sub> = 5.475 +            | 0.00734 v <sub>R</sub> + 0       | 0.0078 V <sub>12</sub> - 0.                               | 00627 L <sub>A</sub>         |                                         |                                         | D <sub>R</sub> =   | 4.252 + 0              | .0086 V <sub>12</sub> - 0. | 009 L <sub>D</sub> |            |
| D <sub>R</sub> = 24.0 (pc/m         | ni/ln)                           |                                                           |                              |                                         | D <sub>R</sub> = (p                     | oc/mi/             | ′ln)                   |                            |                    |            |
| LOS = C (Exhibit                    | 13-2)                            |                                                           |                              |                                         | I OS = (E                               | Exhibi             | ,<br>it 13-2)          |                            |                    |            |
| Speed Deter                         | nination                         |                                                           |                              |                                         | Speed [                                 | Dete               | rminatio               | <i>n</i>                   |                    |            |
|                                     |                                  |                                                           |                              |                                         |                                         |                    |                        |                            |                    |            |
| w <sub>s</sub> = 0.330 (Exi         | dit 13-11)                       |                                                           |                              |                                         | ⊂s (⊏<br>S -                            |                    | $10^{-12}$             |                            |                    |            |
| $S_R = 60.8 \text{ mph}$            | (Exhibit 13-11)                  |                                                           |                              |                                         | o <sub>R</sub> - m                      | ihii (⊑x           | 1011 13-12)            |                            |                    |            |
| S <sub>0</sub> = 64.6 mph           | (Exhibit 13-11)                  |                                                           |                              |                                         | S₀= m                                   | ph (Ex             | (nibit 13-12)          |                            |                    |            |
| S = 63.0 mph                        | (Exhibit 13-13)                  |                                                           |                              |                                         | S= m                                    | ph (Ex             | (hibit 13-13)          |                            |                    |            |

| Site Information           Site Information           Appropriate         Finance/OPT Travel         145 SB           Appropriate         Seg 11- Diverge to Express           Dependence         Seg 11- Diverge to Express           Display         Display           Project Description         SW 10th Street SIMR           Imputs         Downstream Adj           Upstream Adj Ramp         Freeway Number of Lanes, N         4           Ramp Number of Lanes, N         1         Prese           Upstream Adj Ramp         Freeway Number of Lanes, N         4           Question and Langib, L <sub>x</sub> Downstream Adj           Decentration Lane Langib, L <sub>x</sub> 200           V <sub>a</sub> =         190 veh/h         Ramp Volume, V <sub>x</sub> 6410           V <sub>a</sub> =         190 veh/h         Ramp Pole         V <sub>b</sub> =         V <sub>b</sub> Ramp         V <sub>b</sub> =         V <sub>b</sub> 100         6849           Ramp         Upstream         30         0.920         1.00         768           Upstream         190         0.92         Level         2         0         0.990         1.00         768           Brand         0.92         Level         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                          | RAMPS AND RAMP JUNCTIONS WORKSHEET |                    |                               |                 |                                        |                     |                      |                                      |                                 |                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------|--------------------|-------------------------------|-----------------|----------------------------------------|---------------------|----------------------|--------------------------------------|---------------------------------|----------------|
| Analyst         Freeway/Dir of Travel         145 SB<br>Agency of Compare lot Express<br>Junction           Appendy of Compare lot Express<br>Junction         Seg 11- Diverge lot Express<br>Seg 11- Diverge lot Express         Junction           Analysis Time Priod         PM         Analysis Year         2020 Build 2           Project Description         SW 10th Street SIMR         Downstream Adj<br>Ramp         Analysis Year           Upsteam Adj Ramp         Freeway Volume V <sub>1</sub> 0         On         Ownstream Adj<br>Ramp         Analysis Year           Upsteam Adj Ramp         Freeway Volume, V <sub>2</sub> 6410         Image         Ownstream Adj<br>Ramp         Image           No         Orff         Deceleration Lave Length L <sub>2</sub> 200         Image         Image         Image           V <sub>11</sub> =         190         Vehth         Freeway Volume, V <sub>2</sub> 6410         Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | General Infor                                                                            | rmation                            |                    |                               | Site Infor      | mation                                 |                     |                      |                                      |                                 |                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analyst                                                                                  |                                    |                    | Fre                           | eeway/Dir of Tr | avel                                   | I-95 SE             | }                    |                                      |                                 |                |
| Date Performed         Jundication           Analysis Time Project Description         SW 10th Street SIMR         2020 Build 2           Imputs         Project Description         SW 10th Street SIMR         Downstream Adj           Imputs         Prevent Values, N         1         Acceleration Lane Length L <sub>0</sub> Downstream Adj           Imputs         Prevent Values, V <sub>k</sub> 6410         Imputs         Imputs           Imputs         Prevent Values, V <sub>k</sub> 700         Imputs         Imputs           Imputs         Prevent Yours, V <sub>k</sub> 700         Imputs         Imputs         Imputs           Imputs         Prevent Yours, V <sub>k</sub> 700         Imputs         Imputs         Imputs         Imputs           Imputs         Prevent Yours, V <sub>k</sub> 700         Imputs         Imputs<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Agency or Company                                                                        | AECO                               | MC                 | Ju                            | nction          |                                        | Seg 11              | - Diverge to         | o Express                            |                                 |                |
| Analysis Time Period PM Analysis Year 2020 Build 2<br>Hopelat Description SW (bh) Steter SIMR<br>Hopelat Description Lane Lengh, L <sub>A</sub><br>$\square$ Ves $\square$ On<br>$\square$ Orf<br>Freeway Number of Lanes, N 1<br>$\square$ Ves $\square$ On<br>$\square$ Deceleration Lane Lengh, L <sub>A</sub><br>$\square$ Acceleration Lane Lengh, L <sub>A</sub><br>$\square$ Ves $\square$ On<br>$\square$ Deceleration Lane Lengh, L <sub>A</sub><br>$\square$ Ves $\square$ On<br>$\square$ Deceleration Lane Lengh, L <sub>A</sub><br>$\square$ Ves $\square$ On<br>$\square$ Pression Speed, Sec<br>$\square$ Transing Free-Two Speed, Sec<br>$\square$ Transing Free-Two Speed, Sec<br>$\square$ Transing Free-Two Speed, Sec<br>$\square$ Output Pression Speed, Sec<br>$\square$ Speed Determination of V12<br>$\square$ Pression to pc/h Under Base Conditions<br>$\square$ (pch) $\square$ Visting Free-Two Speed, Sec<br>$\square$ Transing Free-Two Speed, Sec<br>$\square$ Output Pression Speed Determination ( <i>H</i> Output Pre | Date Performed                                                                           |                                    |                    | Ju                            | risdiction      |                                        | •                   | -                    |                                      |                                 |                |
| Project Description         SW 10th Street SIMR           Upstream Adj Ramp         Freeway Number of Lanes, N         4         Downstream Adj         Ramp         Downstream Adj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Analysis Time Perio                                                                      | d PM                               |                    | An                            | alysis Year     |                                        | 2020 B              | uild 2               |                                      |                                 |                |
| Imputs         Freeway Number of Lanes, N         4         Downstream Adj<br>Ramp         Downstream Adj<br>Ramp           □ Yes         On         Acceleration Lane Length, L <sub>h</sub> □ Yes         On           □ No         Off         Deceleration Lane Length, L <sub>h</sub> □ Yes         On           □ No         Off         Deceleration Lane Length, L <sub>h</sub> □ Yes         On           V <sub>u</sub> =         190         veh/h         Ramp Volume, V <sub>x</sub> 700         □ V <sub>a</sub> V <sub>u</sub> =         190         veh/h         Ramp Tree-Flow Speed, S <sub>PT</sub> 70.0         □ V <sub>a</sub> □ V <sub>a</sub> □ V <sub>a</sub> □ V <sub>a</sub> v = VIPHF X f <sub>hrv</sub> X f <sub>p</sub> Preversy         6410         0.95         Level         2         0         0.990         1.00         688           UpSteam         190         0.92         Level         2         0         0.990         1.00         208           DownSteam         190         0.92         Level         2         0         0.990         1.00         208           DownSteam         190         0.92         Level         2         0         0.990         1.00         209           DownSteam         190         0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Project Description                                                                      | SW 10th Stree                      | t SIMR             |                               |                 |                                        |                     |                      |                                      |                                 |                |
| Upsteam Adj RampFreeway Number of Lanes, N4Downstream Adj<br>Ramp $\square$ Yes $\square$ Acceleration Lane Length, La<br>Acceleration Lane Length, La<br>Mamp Volume, Va<br>Freeway Volume, Va<br>a man Volume, Va<br>Ramp Free-Flow Speed, Srg<br>Ramp Volume, Va<br>Ramp Free-Flow Speed, Srg<br>Ramp Fre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Inputs                                                                                   |                                    |                    |                               |                 |                                        |                     |                      |                                      |                                 |                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Upstream Adj R                                                                           | Ramp                               | Freeway Nun        | nber of Lanes, N              | 4               |                                        |                     |                      |                                      | Downstrea                       | am Adj         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                          |                                    | Ramp Numbe         | er of Lanes, N                | 1               |                                        |                     |                      |                                      | Ramp                            | ,              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes 🖸                                                                                    | 🗹 On                               | Acceleration       | Lane Length, L                |                 |                                        |                     |                      |                                      |                                 |                |
| $ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                          | Deceleration Lane Length L 200     |                    |                               |                 |                                        |                     |                      |                                      |                                 |                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No L                                                                                     | _] Off                             | Erooway Volu       |                               | £00<br>6410     |                                        |                     |                      |                                      | 🗹 No                            | Off            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 - 11                                                                                   | 150 <del>ft</del>                  |                    | ine, v <sub>F</sub>           | 0410            |                                        |                     |                      |                                      | I. =                            | ft             |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                          | 150 11                             | Ramp Volum         | e, v <sub>R</sub>             | 700             |                                        |                     |                      |                                      | down                            |                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V = 10                                                                                   | 0 veh/h                            | Freeway Free       | e-Flow Speed, S <sub>FF</sub> | 70.0            |                                        |                     |                      |                                      | V <sub>D</sub> =                | veh/h          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                          |                                    | Ramp Free-F        | low Speed, S <sub>FR</sub>    | 45.0            |                                        |                     |                      |                                      |                                 |                |
| $ \begin{array}{ c c c c } \hline (pch) & V \\ (Vehhr) & PHF & Terrain & \% Truck & \% Rv & f_{HV} & f_p & V = V/PHF x f_{HV} x f_p \\ \hline Freeway & 6410 & 0.95 & Level & 3 & 0 & 0.965 & 1.00 & 6849 \\ \hline Ramp & 700 & 0.92 & Level & 2 & 0 & 0.990 & 1.00 & 768 \\ \hline UgStream & 190 & 0.92 & Level & 2 & 0 & 0.990 & 1.00 & 209 \\ \hline DownStream & 10 & 0.92 & Level & 2 & 0 & 0.990 & 1.00 & 209 \\ \hline DownStream & 10 & V_{12} & \hline V_{12} = V_p (P_{FM}) & V_{12} = V_p (P_{FM}) \\ \hline V_{12} = V_p (P_{FM}) & V_{12} = V_p + (V_p - V_p) P_{FD} \\ \hline V_{12} = (Equation 13-6 \text{ or } 13-7) \\ \hline P_{PM} = & using Equation (Exhibit 13-6) \\ V_{12} = pc/h & V_{12} = V_p + (V_p - V_p) P_{FD} \\ \hline V_{12} = pc/h & V_{12} = 0 & A30 using Equation (Exhibit 13-7) \\ V_{13} \sigma_{13-19} & V_{12} = 3419 pc/h \\ \hline V_{12} = yc/h (Equation 13-16, 13-18, or 13-17) \\ \hline Is V_{3} \sigma_{13-19} & V_{13} = V_{13} + V_{12} & V_{13} & V_{13} & V_{13} & V_{12} & V_{13} & V_{13} & V_{12} & V_{12} & V_{13} & V_{12} & V_{12} & V_{13} & V_{12} & V_{12} & V_{13} & V_{12} & V_{13} & V_{12} & V_{12} & V_{12} & V_{13} & V_{13} & V_{12} & V_{13} & V_{1$                                                                                                                                                                                                                                                                                                                                                                                                                                           | Conversion t                                                                             | o pc/h Und                         | der Base           | Conditions                    |                 |                                        |                     |                      |                                      |                                 |                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (nc/h)                                                                                   | V                                  | DHE                | Terrain                       | %Truck          | %Pv                                    |                     | f                    | f                                    | v = V/PHF                       | xf xf          |
| $\begin{array}{c c c c c c c } \hline Freeway & 6410 & 0.95 & Level & 3 & 0 & 0.985 & 1.00 & 6649 \\ \hline Ramp & 700 & 0.92 & Level & 2 & 0 & 0.990 & 1.00 & 768 \\ \hline UpStream & 190 & 0.92 & Level & 2 & 0 & 0.990 & 1.00 & 768 \\ \hline UpStream & Merge Areas & Diverge Areas & V_{12} = V_R + (V_F - V_R)P_D & U_{EQ} = & (Equation 13-6 or 13-7) & U_{EQ} = & (Equation 13-14 or 13-7) & U_{2} = & 0.436 & using Equation (Exhibit 13-6) & V_{12} = & 0.436 & using Equation (Exhibit 13-7) & V_{2} = & 0.436 & using Equation (Exhibit 13-7) & V_{2} = & 0.436 & using Equation (Exhibit 13-7) & V_{2} = & 0.436 & using Equation (Exhibit 13-7) & V_{2} = & 0.436 & using Equation (Exhibit 13-7) & V_{2} = & 0.436 & using Equation (Exhibit 13-7) & V_{2} = & 0.436 & using Equation (Exhibit 13-7) & V_{2} = & 0.436 & using Equation (Exhibit 13-7) & V_{2} = & 0.436 & using Equation (Exhibit 13-7) & V_{2} = & 0.436 & using Equation (Exhibit 13-7) & V_{2} = & 0.66 & U_{2} = & 0.06 & V_{2} = & 0.008 & V_{12} = & 0.08 & V_{12} = & U_{12} & U_{13} & U_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (pc/ii)                                                                                  | (Veh/hr)                           |                    | Tenain                        | 70 TTUCK        | 701.00                                 |                     | 'HV                  | 'p                                   | V V/I I II                      | Λ'HV Λ'p       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Freeway                                                                                  | 6410                               | 0.95               | Level                         | 3               | 0                                      | 0.                  | 985                  | 1.00                                 | 68                              | 49             |
| $\begin{array}{c                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ramp                                                                                     | 700                                | 0.92               | Level                         | 2               | 0                                      | 0.                  | 990                  | 1.00                                 | 76                              | 68             |
| $ \begin{array}{ c c c c c c } \hline DownStream & Diverge Areas & Diverge Influence Area & Dive$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UpStream                                                                                 | 190                                | 0.92               | Level                         | 2               | 0                                      | 0.                  | 990                  | 1.00                                 | 20                              | )9             |
| Merge Areas         Diverge Areas           Estimation of $v_{12}$ Estimation of $v_{12}$ $v_{12} = v_{R} + (V_{F} - V_{R})^{P}_{FM}$ $v_{12} = V_{R} + (V_{F} - V_{R})^{P}_{FD}$ $v_{12} = pch$ $v_{12} = v_{R} + (V_{F} - V_{R})^{P}_{FD}$ $v_{12} = pch$ $v_{12} = v_{R} + (V_{F} - V_{R})^{P}_{FD}$ $v_{12} = pch$ $v_{12} = 3419 pch$ $v_{30} < v_{wd4} > 2.700 pch?$ Yes $v_{30} < v_{wd4} > 2.700 pch?$ Yes $v_{30} < v_{wd4} > 1.5^{*} v_{12}/2$ Yes $v_{30} < v_{wd4} > 1.5^{*} v_{12}/2$ Yes $v_{30} < v_{wd4} > 1.5^{*} v_{12}/2$ Yes $v_{10} < v_{12} = v_{10} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DownStream                                                                               |                                    |                    |                               |                 |                                        |                     |                      |                                      |                                 |                |
| Estimation of $v_{12}$ $V_{12} = V_{F} (P_{FM})$ $V_{12} = V_{R} + (V_{F} - V_{R})P_{FD}$ $V_{EQ} =$ (Equation 13-6 or 13-7) $V_{12} = V_{R} + (V_{F} - V_{R})P_{FD}$ $V_{EQ} =$ (Equation 13-6 or 13-7) $V_{12} = V_{R} + (V_{F} - V_{R})P_{FD}$ $V_{12} =$ DA         (Equation 13-12 or 13-13) $V_{12} =$ DA $V_{12} =$ DA $V_{12} =$ DA $V_{12} =$ DA $V_{3}$ or $V_{av24} > 2.700$ pc/h? $\square$ Yes $\square$ No         Is $V_{3}$ or $V_{av24} > 2.700$ pc/h? $\square$ Yes $\square$ No           Is $V_{3}$ or $V_{av24} > 1.5 + V_{12}/2$ $\square$ Yes $\square$ No         Is $V_{3}$ or $V_{av24} > 1.5 + V_{12}/2$ $\square$ Yes $\square$ No           If Yes, $V_{12a} =$ pc/h (Equation 13-16, 13-18, or 13-18)           Max point (Equation 13-16, 13-18, or 13-18)         PCA           Capacity Checks         Capacity Checks           VFO         Actual         Capacity Checks           Flow Entering Merge Influence Area         Flow Entering Diverge Influence Area           Flow Entering Diverge Influence Area         Flow Entering Diverge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                          | I                                  | Merge Areas        |                               |                 |                                        | -                   |                      | liverge Areas                        |                                 |                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Estimation of                                                                            | t v <sub>12</sub>                  |                    |                               |                 | Estimat                                | ion o               | t v <sub>12</sub>    |                                      |                                 |                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                          | V <sub>12</sub> = V <sub>F</sub>   | (P <sub>FM</sub> ) |                               |                 |                                        |                     | V <sub>12</sub> =    | V <sub>R</sub> + (V <sub>F</sub> - \ | / <sub>R</sub> )P <sub>FD</sub> |                |
| $ \begin{array}{c c c c c c c c c } & using Equation (Exhibit 13-6) & P_{FD}^{L} = 0.436 using Equation (Exhibit 13-7) \\ V_{12} = pc/h & V_{12} = 3419 pc/h \\ V_{12} = 3419 pc/h & V_{12} = 3419 pc/h \\ V_{12} = 3419 pc/h & V_{12} = 3419 pc/h \\ V_{12} = 3419 pc/h & V_{12} = 3419 pc/h \\ V_{12} = 3419 pc/h & V_{12} = 3419 pc/h & V_{12} = 3419 pc/h \\ V_{12} = yc/h (Equation 13-14 or 13-17) \\ Is V_3 or V_{av34} > 2,700 pc/h? ] Yes ] No \\ Is V_3 or V_{av34} > 2,700 pc/h? ] Yes ] No \\ Is V_3 or V_{av34} > 1.5^* V_{12}/2 ] Yes ] No \\ Is V_3 or V_{av34} > 1.5^* V_{12}/2 ] Yes ] No \\ If Yes, V_{12a} = pc/h (Equation 13-16, 13-18, or 13-16, 13-18, or 13-16, 13-18, or 13-19) \\ \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L <sub>FO</sub> =                                                                        | (Equa                              | ition 13-6 or      | 13-7)                         |                 | L <sub>E0</sub> =                      |                     | (                    | Equation 13-                         | 12 or 13-13                     | )              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P =                                                                                      | usina                              | Equation (         | Fxhibit 13-6)                 |                 |                                        |                     | 0,                   | 436 Usina Fa                         | nuation (Exhi                   | ,<br>hit 13-7) |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V =                                                                                      | nc/h                               |                    |                               |                 |                                        |                     | 0.<br>24             | 10 no/h                              |                                 |                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sup>v</sup> 12                                                                          | pc/n                               | Faultion 10        | ) 11 ar 10 17)                |                 | $^{v}12$                               |                     | J4                   | 19 pc/11                             |                                 |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <sup>v</sup> <sub>3</sub> 01 <sup>v</sup> <sub>av34</sub>                                | рс/п (                             |                    | -14 01 13-17)                 |                 | v <sub>3</sub> 01 v <sub>av34</sub>    |                     | / ا<br>⊐ 0 ا/ د 00   | 15 pc/n (Eq                          | uation 13-14                    | FOF 13-17)     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IS $V_3$ or $V_{av34} > 2,70$                                                            |                                    | s 🗌 No             |                               |                 | IS V <sub>3</sub> OF V <sub>av</sub>   | <sub>34</sub> > 2,7 |                      | Yes ⊻No                              | 1                               |                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Is $V_3$ or $V_{av34} > 1.5$                                                             | * V <sub>12</sub> /2 Yes           | s 🗌 No             |                               |                 | Is V <sub>3</sub> or V <sub>av</sub>   | <sub>34</sub> > 1.5 | * V <sub>12</sub> /2 | Yes 🗹 No                             |                                 |                |
| Total Tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lf Yes,V <sub>12a</sub> =                                                                | pc/h (<br>13 10)                   | Equation 13        | 3-16, 13-18, or               |                 | If Yes,V <sub>12a</sub> =              |                     | p                    | c/h (Equatio                         | n 13-16, 13-                    | 18, or 13-     |
| Capacity ChecksActualCapacityLOS F?ActualCapacityLOS F? $V_{FO}$ Exhibit 13-8 $V_F$ 6849Exhibit 13-89600No $V_{FO}$ Exhibit 13-8 $V_F$ 6081Exhibit 13-89600No $V_{FO}$ Exhibit 13-8 $V_F$ 6081Exhibit 13-89600No $V_{FO}$ Exhibit 13-8 $V_F$ 6081Exhibit 13-89600No $V_{FO}$ Exhibit 13-8Prove Entering Diverge Influence AreaFlow Entering Diverge Influence AreaActualMax DesirableViolation?ActualMax DesirableViolation? $V_{R12}$ Exhibit 13-8 $V_{12}$ 3419Exhibit 13-84400:AllNoLevel of Service Determination (if not F)Level of Service Determination (if not F)D <sub>R</sub> = 4.252 + 0.0086 V <sub>12</sub> - 0.009 L <sub>D</sub> D <sub>R</sub> = 34.8 (pc/mi/ln)LOS = (pc/mi/ln)D <sub>R</sub> = 34.8 (pc/mi/ln)LOS = D (Exhibit 13-2)UOS = D (Exhibit 13-2)UOS = D (Exhibit 13-12)Speed DeterminationM <sub>S</sub> = (Exhibit 13-11)D <sub>S</sub> = 0.367 (Exhibit 13-12)S <sub>R</sub> = mph (Exhibit 13-11)S <sub>R</sub> = 59.7 mph (Exhibit 13-12)S <sub>R</sub> = mph (Exhibit 13-11)S <sub>0</sub> = 74.7 mph (Exhibit 13-12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Canacity Cho                                                                             | 10-19)                             |                    |                               |                 | Canacit                                | v Ch                |                      | 9)                                   |                                 |                |
| Actual         Colpacity         LOS F?         Actual         Colpacity         LOS F? $V_{FO}$ Exhibit 13-8 $V_F$ 6849         Exhibit 13-8         9600         No $V_{FO}$ $V_F$ 6081         Exhibit 13-8         9600         No $V_{RO}$ $V_F$ 6081         Exhibit 13-8         9600         No $V_{RO}$ $V_F$ $V_R$ $V_R$ $V_R$ $V_R$ $V_R$ $V_R$ $V_{R12}$ Exhibit 13-8         Violation? $V_{12}$ $3419$ Exhibit 13-8 $4400$ :All         No           Level of Service Determination (if not F) $Level of Service Determination (if not F)$ $D_R = 34.8$ (pc/mi/ln) $D_R = 4.252 + 0.0086 V_{12} - 0.009 L_D$ $D_R = 34.8$ (pc/mi/ln)           LOS = (Exhibit 13-2) $D_R = 0.367$ (Exhibit 13-2) $S_R = 0.367$ (Exhibit 13-12) $S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                          | Actual                             |                    | )<br>anaoit <i>u</i>          |                 | <u>Capach</u>                          |                     | Actual               |                                      | onooit (                        |                |
| $ \begin{array}{c c c c c c c c c c } V_{FO} & V_{F} & 6849 & Exhibit 13-8 & 9600 & No \\ \hline V_{FO} = V_{F} - V_{R} & 6081 & Exhibit 13-8 & 9600 & No \\ \hline V_{R} & 768 & Exhibit 13-10 & 2100 & No \\ \hline V_{R} & 768 & Exhibit 13-10 & 2100 & No \\ \hline V_{R} & 768 & Exhibit 13-10 & Volation? & Actual & Max Desirable & Violation? & V_{12} & 3419 & Exhibit 13-8 & 4400:All & No \\ \hline V_{R12} & Exhibit 13-8 & V_{12} & 3419 & Exhibit 13-8 & 4400:All & No \\ \hline Level of Service Determination (if not F) & Level of Service Determination (if not F) & D_{R} = 4.252 + 0.0086 V_{12} - 0.009 L_{D} & D_{R} = 34.8 (pc/mi/ln) & D_{R} = 34.8 (pc/mi/ln) & D_{R} = 34.8 (pc/mi/ln) & LOS = D (Exhibit 13-2) & Speed Determination & Speed Determination & M_{S} = (Exhibit 13-11) & S_{R} = mph (Exhibit 13-11) & S_{R} = 59.7 mph (Exhibit 13-12) & S_{R} = 59.7 mph (Exhibit 13-12) & S_{R} = 74.7 mph (Exhibit 13-12) & S_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                          | Actual                             |                    |                               | LUGF?           | V                                      |                     | Actual               | Cubibit 42                           |                                 |                |
| $ \begin{array}{ c c c c c } \hline V_{FO} & Exhibit 13-8 & end{picture} \\ \hline V_{FO} & V_{FO} & V_{F} & 0.081 & Exhibit 13-8 & 9600 & No \\ \hline V_{R} & 768 & Exhibit 13-10 & 2100 & No \\ \hline V_{R} & 768 & Exhibit 13-10 & 2100 & No \\ \hline V_{R} & 768 & Exhibit 13-10 & Volume & Volu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                          |                                    |                    |                               |                 | V <sub>F</sub>                         |                     | 6849                 |                                      | -0 9000                         | INO            |
| V <sub>R</sub> 768Exhibit 13-102100NoFlow Entering Diverge Influence AreaFlow Entering Diverge Influence AreaActualMax DesirableViolation?ActualMax DesirableViolation?V <sub>R12</sub> Exhibit 13-8Violation?ActualMax DesirableViolation?V <sub>R12</sub> Exhibit 13-8Violation?V123419Exhibit 13-84400:AllNoLevel of Service Determination (if not F)Level of Service Determination (if not F)D <sub>R</sub> = 4.252 + 0.0086 V <sub>12</sub> - 0.009 L <sub>D</sub> VD <sub>R</sub> = 5.475 + 0.00734 v <sub>R</sub> + 0.0078 V <sub>12</sub> - 0.00627 L <sub>A</sub> D <sub>R</sub> = 34.8 (pc/mi/ln)D <sub>R</sub> = 4.252 + 0.0086 V <sub>12</sub> - 0.009 L <sub>D</sub> VD <sub>R</sub> = (pc/mi/ln)D <sub>R</sub> = 0.00734 v <sub>R</sub> + 0.0078 V <sub>12</sub> - 0.00627 L <sub>A</sub> D <sub>R</sub> = 34.8 (pc/mi/ln)D <sub>R</sub> = 34.8 (pc/mi/ln)VLOS = (Exhibit 13-2)D <sub>R</sub> = 0.00734 v <sub>R</sub> + 0.0078 V <sub>12</sub> - 0.00627 L <sub>A</sub> D <sub>R</sub> = 34.8 (pc/mi/ln)US = D (Exhibit 13-2)VSpeed DeterminationSpeed DeterminationSpeed DeterminationSpeet DeterminationSpeet DeterminationM <sub>S</sub> = (Exhibit 13-11)S <sub>R</sub> = 0.367 (Exhibit 13-12)S <sub>R</sub> = 59.7 mph (Exhibit 13-12)Speet DeterminationS <sub>R</sub> = mph (Exhibit 13-11)S <sub>0</sub> = 74.7 mph (Exhibit 13-12)Speet DeterminationSpeet Determination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V <sub>FO</sub>                                                                          |                                    | Exhibit 13-8       |                               |                 | $V_{FO} = V_{F}$                       | - V <sub>R</sub>    | 6081                 | Exhibit 13                           | -8 9600                         | No             |
| Flow Entering Merge Influence AreaActualMax DesirableViolation?ActualMax DesirableViolation? $V_{R12}$ Exhibit 13-8Violation?ActualMax DesirableViolation? $V_{R12}$ Exhibit 13-8Violation?Violation?Violation?NoLevel of Service Determination (if not F)Level of Service Determination (if not F)D_R = 4.252 + 0.0086 V <sub>12</sub> - 0.009 L_DD_R $D_R = (pc/mi/ln)$ $D_R = 34.8 (pc/mi/ln)$ $D_R = 34.8 (pc/mi/ln)$ $D_R = 34.8 (pc/mi/ln)$ $D_R = 0.367 (Exhibit 13-2)$ Speed Determination $M_S = (Exibit 13-11)$ $D_S = 0.367 (Exhibit 13-12)$ $S_R = mph (Exhibit 13-11)$ $S_0 = 74.7 mph (Exhibit 13-12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                    |                    |                               |                 | V <sub>R</sub>                         |                     | 768                  | Exhibit 13-                          | 10 2100                         | No             |
| ActualMax DesirableViolation?ActualMax DesirableViolation? $V_{R12}$ Exhibit 13-8 $V_{12}$ 3419Exhibit 13-84400:AllNoLevel of Service Determination (if not F) $D_R = 5.475 + 0.00734 v_R + 0.0078 V_{12} - 0.00627 L_A$ $D_R = 4.252 + 0.0086 V_{12} - 0.009 L_D$ $D_R = 34.8 (pc/mi/ln)$ $DS = (pc/mi/ln)$ $LOS = D (Exhibit 13-2)$ $LOS = D (Exhibit 13-2)$ $D_S = 0.367 (Exhibit 13-12)$ Speed Determination $M_S = (Exibit 13-11)$ $S_R = 59.7 mph (Exhibit 13-12)$ $S_R = mph (Exhibit 13-11)$ $S_0 = 74.7 mph (Exhibit 13-12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Flow Enterin                                                                             | g Merge In                         | fluence A          | Area                          |                 | Flow En                                | terin               | q Dive               | rge Influei                          | nce Area                        |                |
| $V_{R12}$ Exhibit 13-8 $V_{12}$ 3419         Exhibit 13-8         4400:All         No           Level of Service Determination (if not F)         Level of Service Determination (if not F)         Level of Service Determination (if not F) $D_R = 5.475 + 0.00734 v_R + 0.0078 V_{12} - 0.00627 L_A$ $D_R = 4.252 + 0.0086 V_{12} - 0.009 L_D$ $D_R = 34.8 (pc/mi/ln)$ $D_R = (pc/mi/ln)$ $D_R = 34.8 (pc/mi/ln)$ $LOS = D (Exhibit 13-2)$ $LOS = D (Exhibit 13-2)$ Speed Determination         Speed Determination $S_R = 0.367 (Exhibit 13-12)$ $S_R = 59.7 mph (Exhibit 13-12)$ $S_0 = 74.7 mph (Exhibit 13-12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                                                                        | Actual                             | Max                | Desirable                     | Violation?      |                                        |                     | Actual               | Max Desira                           | able                            | Violation?     |
| Level of Service Determination (if not F)         Level of Service Determination (if not F) $D_R = 5.475 + 0.00734 v_R + 0.0078 V_{12} - 0.00627 L_A$ $D_R = 4.252 + 0.0086 V_{12} - 0.009 L_D$ $D_R = (pc/mi/ln)$ $D_R = 34.8 (pc/mi/ln)$ LOS = (Exhibit 13-2)         LOS = D (Exhibit 13-2)           Speed Determination         Speed Determination $M_S = (Exhibit 13-11)$ $D_S = 0.367 (Exhibit 13-12)$ $S_R = mph (Exhibit 13-11)$ $S_R = 59.7 mph (Exhibit 13-12)$ $S_0 = mph (Exhibit 13-11)$ $S_0 = 74.7 mph (Exhibit 13-12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V <sub>R12</sub>                                                                         |                                    | Exhibit 13-8       |                               |                 | V <sub>12</sub>                        |                     | 3419                 | Exhibit 13-8                         | 4400:All                        | No             |
| D <sub>R</sub> = 5.475 + 0.00734 v <sub>R</sub> + 0.0078 V <sub>12</sub> - 0.00627 L <sub>A</sub> D <sub>R</sub> = 4.252 + 0.0086 V <sub>12</sub> - 0.009 L <sub>D</sub> D <sub>R</sub> = (pc/mi/ln)       D <sub>R</sub> = 34.8 (pc/mi/ln)         LOS = (Exhibit 13-2)       LOS = D (Exhibit 13-2)         Speed Determination       Speed Determination         M <sub>S</sub> = (Exhibit 13-11)       D <sub>s</sub> = 0.367 (Exhibit 13-12)         S <sub>R</sub> = mph (Exhibit 13-11)       S <sub>R</sub> = 59.7 mph (Exhibit 13-12)         S <sub>0</sub> = mph (Exhibit 13-11)       S <sub>0</sub> = 74.7 mph (Exhibit 13-12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | l evel of Serv                                                                           | ı<br>vice Detern                   | nination (         | (if not F)                    |                 | l evel of                              | Ser                 | vice De              | terminatio                           | n (if not                       | F)             |
| $D_R = (pc/mi/ln)$ $D_R = 34.8 (pc/mi/ln)$ $LOS = (Exhibit 13-2)$ $LOS = D (Exhibit 13-2)$ <b>Speed Determination Speed Determination</b> $M_S = (Exhibit 13-11)$ $D_s = 0.367 (Exhibit 13-12)$ $S_R = mph (Exhibit 13-11)$ $S_0 = 74.7 mph (Exhibit 13-12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $D = 5475 \pm 0$                                                                         | 00734 v + 0                        | 0.0078.V           | - 0.006271                    |                 | 2010/0/                                | D = 4               | 252 + 0              | 0086 V - 0                           | 0091                            | /              |
| $D_R =$ (pc/mi/in) $LOS =$ (Exhibit 13-2) $LOS =$ (Exhibit 13-2) <b>Speed Determination Speed Determination</b> $M_S =$ (Exhibit 13-11) $S_R =$ mph (Exhibit 13-11) $S_n =$ mph (Exhibit 13-11) $S_0 =$ 74.7 mph (Exhibit 13-12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $D_{\rm R} = 5.475 \pm 0.00734$ V $_{\rm R} \pm 0.0078$ V $_{12} = 0.00027$ L $_{\rm A}$ |                                    |                    |                               |                 | D - 0                                  |                     | , .,, .              | 12                                   |                                 |                |
| LOS = (Exhibit 13-2)       LOS = D (Exhibit 13-2)         Speed Determination       Speed Determination $M_S$ = (Exibit 13-11) $D_s$ = 0.367 (Exhibit 13-12) $S_R$ = mph (Exhibit 13-11) $S_R$ = 59.7 mph (Exhibit 13-12) $S_0$ = mph (Exhibit 13-11) $S_0$ = 74.7 mph (Exhibit 13-12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $D_R = (pc/m/m)$                                                                         |                                    |                    |                               |                 | D <sub>R</sub> = 34.8 (pc/mi/ln)       |                     |                      |                                      |                                 |                |
| Speed Determination         Speed Determination $M_s$ = (Exibit 13-11) $D_s$ = 0.367 (Exhibit 13-12) $S_R$ = mph (Exhibit 13-11) $S_R$ = 59.7 mph (Exhibit 13-12) $S_0$ = mph (Exhibit 13-11) $S_0$ = 74.7 mph (Exhibit 13-12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LOS = (Exhibit                                                                           | 13-2)                              |                    |                               |                 | LOS = D                                | (Exhil              | oit 13-2)            |                                      |                                 |                |
| $M_S =$ (Exibit 13-11) $D_s =$ 0.367 (Exhibit 13-12) $S_R =$ mph (Exhibit 13-11) $S_R =$ 59.7 mph (Exhibit 13-12) $S_0 =$ mph (Exhibit 13-11) $S_0 =$ 74.7 mph (Exhibit 13-12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Speed Determination                                                                      |                                    |                    |                               |                 | Speed L                                | Deter               | minatio              | n                                    |                                 |                |
| $S_{R}^{=}$ mph (Exhibit 13-11) $S_{R}^{=}$ 59.7 mph (Exhibit 13-12) $S_{0}^{=}$ mph (Exhibit 13-11) $S_{0}^{=}$ 74.7 mph (Exhibit 13-12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M <sub>s</sub> = (Exibit 1                                                               | M <sub>s</sub> = (Exibit 13-11)    |                    |                               |                 | D <sub>s</sub> = 0.367 (Exhibit 13-12) |                     |                      |                                      |                                 |                |
| $S_0 = mph (Exhibit 13-11)$ $S_0 = 74.7 mph (Exhibit 13-12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $S_{p} = mnh (Fxh)$                                                                      | ,<br>nibit 13-11)                  |                    |                               |                 | S <sub>R</sub> = 59                    | ).7 mph             | (Exhibit             | 13-12)                               |                                 |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                          | nihit 13_11)                       |                    |                               |                 | S <sub>0</sub> = 74                    | I.7 moh             | (Exhibit             | ,<br>13-12)                          |                                 |                |
| S = mph (Exhibit 13-13) $S = 65.6 mph (Exhibit 13-13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S = mnh (Evt)                                                                            | nibit 13-13)                       |                    |                               |                 | S = 65                                 | 56 mnh              | (Evhibit             | ,<br>13_13)                          |                                 |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                          | w of Florida All D                 | ights Possaved     |                               |                 |                                        |                     |                      | 10 10)                               | Generated: (                    | 5/18/2020 2.4. |



|                                                                                                                                       | BASIC F                                                                      | REEWAY SE                          | GMENTS WORKSHEET                                                                                                                                                    |                                    |                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------|
| General Information                                                                                                                   |                                                                              |                                    | Site Information                                                                                                                                                    |                                    |                                                                                      |
| Analyst<br>Agency or Company<br>Date Performed                                                                                        | AECOM                                                                        |                                    | Highway/Direction of Travel<br>From/To<br>Jurisdiction                                                                                                              | I-95 SB<br>Seg 13-I                | Bet Off & On Ramps                                                                   |
| Project Description SW 10                                                                                                             | th Street SIMR                                                               |                                    | Analysis fear                                                                                                                                                       | 2020 Bu                            | 110 2                                                                                |
| Qper (LOS                                                                                                                             |                                                                              |                                    | Des (N)                                                                                                                                                             | Pla                                | Inning Data                                                                          |
| Flow Inputs                                                                                                                           | /                                                                            | ·                                  |                                                                                                                                                                     |                                    |                                                                                      |
| Volume, V<br>AADT<br>Peak-Hr Prop. of AADT, K                                                                                         | 4640                                                                         | veh/h<br>veh/day                   | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub><br>%RVs, P <sub>R</sub>                                                                                  | 0.95<br>3<br>0                     |                                                                                      |
| Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D                                                                                      |                                                                              | veh/h                              | General Terrain:<br>Grade % Length<br>Up/Down %                                                                                                                     | Level<br>mi                        |                                                                                      |
| Calculate Flow Adjust                                                                                                                 | ments                                                                        |                                    |                                                                                                                                                                     |                                    |                                                                                      |
| f <sub>ρ</sub><br>Ε <sub>Τ</sub>                                                                                                      | 1.00<br>1.5                                                                  |                                    | E <sub>R</sub><br>f <sub>HV</sub> = 1/[1+P <sub>T</sub> (E <sub>T</sub> - 1) + P <sub>R</sub> (E <sub>R</sub> - 1)]                                                 | 1.2<br>0.985                       |                                                                                      |
| Speed Inputs                                                                                                                          |                                                                              |                                    | Calc Speed Adi and FFS                                                                                                                                              | 3                                  |                                                                                      |
| Lane Width<br>Rt-Side Lat. Clearance<br>Number of Lanes, N<br>Total Ramp Density, TRD<br>FFS (measured)<br>Base free-flow Speed, BFFS | 3<br>70.0                                                                    | ft<br>ft<br>ramps/mi<br>mph<br>mph | f <sub>LW</sub><br>f <sub>LC</sub><br>TRD Adjustment<br>FFS                                                                                                         | 70.0                               | mph<br>mph<br>mph<br>mph                                                             |
| LOS and Performance                                                                                                                   | Measures                                                                     |                                    | Design (N)                                                                                                                                                          |                                    |                                                                                      |
| <u>Operational (LOS)</u><br>v <sub>p</sub> = (V or DDHV) / (PHF x N<br>S<br>D = v <sub>p</sub> / S<br>LOS                             | x f <sub>HV</sub> x f <sub>p</sub> ) 1652<br>67.6<br>24.4<br>C               | pc/h/ln<br>mph<br>pc/mi/ln         | Design (N)<br>Design LOS<br>v <sub>p</sub> = (V or DDHV) / (PHF x N x<br>S<br>D = v <sub>p</sub> / S<br>Required Number of Lanes, N                                 | f <sub>HV</sub> x f <sub>p</sub> ) | pc/h/ln<br>mph<br>pc/mi/ln                                                           |
| Glossary                                                                                                                              |                                                                              |                                    | Factor Location                                                                                                                                                     |                                    |                                                                                      |
| N - Number of lanes<br>V - Hourly volume<br>v <sub>p</sub> - Flow rate<br>LOS - Level of service<br>DDHV - Directional design h       | S - Speed<br>D - Density<br>FFS - Free-flow<br>BFFS - Base fre<br>our volume | speed<br>ee-flow speed             | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11, 11-<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits 11-2 | 13<br>2, 11-3                      | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-11 |

HCS 2010<sup>TM</sup> Version 6.90

Generated: 6/18/2020 3:14 PM

|                                                               |                                                                                        | F                                                | REEWAY                                          | ( WEAV                             | ING WOF                                                                                                  | RKSHEE                         | Г                                           |               |                                |  |  |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------|---------------|--------------------------------|--|--|
| Genera                                                        | I Informatio                                                                           | on                                               |                                                 |                                    | Site Info                                                                                                | rmation                        |                                             |               |                                |  |  |
| Analyst<br>Agency/Cor<br>Date Perfor<br>Analysis Tir          | npany<br>med<br>ne Period                                                              | AECON<br>PM                                      | 1                                               |                                    | Freeway/Dir of TravelI-95 SBWeaving Segment LocationSeg 14- Bet Sample & CopansAnalysis Year2020 Build 2 |                                |                                             |               |                                |  |  |
| Project Des                                                   | cription SW 10th                                                                       | n Street SIMR                                    |                                                 |                                    |                                                                                                          |                                |                                             |               |                                |  |  |
| Inputs                                                        |                                                                                        |                                                  |                                                 |                                    |                                                                                                          |                                |                                             |               |                                |  |  |
| Weaving co<br>Weaving nu<br>Weaving se<br>Freeway fre         | nfiguration<br>Imber of lanes, N<br>Igment length, L <sub>s</sub><br>Pe-flow speed, FF | S                                                |                                                 | One-Sided<br>4<br>2520ft<br>70 mph | Segment typ<br>Freeway min<br>Freeway ma:<br>Terrain type                                                | e<br>imum speed<br>kimum capac | , S <sub>MIN</sub><br>ity, C <sub>IFL</sub> |               | Freeway<br>15<br>2400<br>Level |  |  |
| Conver                                                        | sions to po                                                                            | /h Unde                                          | r Base Co                                       | ondition                           | s                                                                                                        |                                | 1                                           | Ĩ             | -                              |  |  |
|                                                               | V (veh/h)                                                                              | PHF                                              | Truck (%)                                       | RV (%)                             | Ε <sub>Τ</sub>                                                                                           | E <sub>R</sub>                 | f <sub>HV</sub>                             | fp            | v (pc/h)                       |  |  |
| V <sub>FF</sub>                                               | 3995                                                                                   | 0.95                                             | 3                                               | 0                                  | 1.5                                                                                                      | 1.2                            | 0.985                                       | 1.00          | 4268                           |  |  |
| V <sub>RF</sub>                                               | 1410                                                                                   | 0.92                                             | 2                                               | 0                                  | 1.5                                                                                                      | 1.2                            | 0.990                                       | 1.00          | 1548                           |  |  |
| V <sub>FR</sub>                                               | 645                                                                                    | 0.92                                             | 2                                               | 0                                  | 1.5                                                                                                      | 1.2                            | 0.990                                       | 1.00          | 708                            |  |  |
| V <sub>RR</sub>                                               | 0                                                                                      | 0.95                                             | 0                                               | 0                                  | 1.5                                                                                                      | 1.2                            | 1.000                                       | 1.00          | 0                              |  |  |
| V <sub>NW</sub>                                               | 4268                                                                                   |                                                  |                                                 |                                    | -                                                                                                        |                                | -                                           | V =           | 6524                           |  |  |
| V <sub>W</sub>                                                | 2256                                                                                   |                                                  |                                                 |                                    |                                                                                                          |                                |                                             | -             |                                |  |  |
| VR                                                            | 0.346                                                                                  |                                                  |                                                 |                                    |                                                                                                          |                                |                                             |               |                                |  |  |
| Configu                                                       | uration Cha                                                                            | racterist                                        | ics                                             |                                    | •                                                                                                        |                                |                                             |               |                                |  |  |
| Minimum m                                                     | naneuver lanes, N                                                                      | N <sub>WL</sub>                                  |                                                 | 2 lc                               | Minimum we                                                                                               | aving lane cl                  | nanges, LC <sub>MIN</sub>                   | I             | 2256 lc/h                      |  |  |
| Interchange                                                   | e density, ID                                                                          |                                                  |                                                 | 0.7 int/mi                         | Weaving lan                                                                                              | e changes, L                   | .C <sub>w</sub>                             |               | 2705 lc/h                      |  |  |
| Minimum R                                                     | F lane changes,                                                                        | LC <sub>RF</sub>                                 |                                                 | 1 lc/pc                            | Non-weaving                                                                                              | g lane chang                   | es, LC <sub>NW</sub>                        |               | 1475 lc/h                      |  |  |
| Minimum F                                                     | R lane changes,                                                                        | LC <sub>FR</sub>                                 |                                                 | 1 lc/pc                            | Total lane ch                                                                                            | nanges, LC <sub>AL</sub>       | L                                           |               | 4180 lc/h                      |  |  |
| Minimum R                                                     | R lane changes,                                                                        | $LC_{RR}$                                        |                                                 | lc/pc                              | Non-weaving                                                                                              | g vehicle inde                 | ex, I <sub>NW</sub>                         |               | 753                            |  |  |
| Weavin                                                        | g Segment                                                                              | Speed,                                           | Density, I                                      | _evel of                           | Service,                                                                                                 | and Cap                        | oacity                                      |               |                                |  |  |
| Weaving se<br>Weaving se                                      | egment flow rate,<br>egment capacity,                                                  | v<br>c <sub>w</sub>                              |                                                 | 6439 veh/h<br>6838 veh/h           | Weaving inte<br>Weaving sec                                                                              | ensity factor,<br>gment speed  | W<br>, S                                    |               | 0.337<br>49.0 mph              |  |  |
| Weaving se                                                    | egment v/c ratio                                                                       |                                                  |                                                 | 0.942                              | Average wea                                                                                              | aving speed,                   | Sw                                          |               | 56.1 mph                       |  |  |
| Weaving se                                                    | egment density, [                                                                      | )                                                | 33                                              | 3.3 pc/mi/ln                       | Average nor                                                                                              | -weaving sp                    | eed, S <sub>NW</sub>                        |               | 45.9 mph                       |  |  |
| Level of Se                                                   | rvice, LOS                                                                             |                                                  |                                                 | D                                  | Maximum we                                                                                               | eaving length                  | i, L <sub>max</sub>                         |               | 6080 ft                        |  |  |
| <b>Notes</b><br>a. Weaving s<br>Chapter 13, '<br>b. For volum | segments longer th<br>"Freeway Merge a<br>es that exceed the                           | nan the calcula<br>nd Diverge Se<br>weaving segr | ted maximum le<br>gments".<br>nent capacity, th | ength should l<br>ne level of sei  | be treated as is rvice is "F".                                                                           | olated merge                   | and diverge ar                              | eas using the | procedures of                  |  |  |

HCS 2010<sup>TM</sup> Version 6.90

Generated: 6/18/2020 3:17 PM

|                                              | RAMPS AND RAMP JUNCTIONS WORKSHEET           |                        |                          |                    |                           |                    |                               |                              |                     |                                    |
|----------------------------------------------|----------------------------------------------|------------------------|--------------------------|--------------------|---------------------------|--------------------|-------------------------------|------------------------------|---------------------|------------------------------------|
| General Infor                                | rmation                                      |                        |                          | Site Infor         | mation                    |                    |                               |                              |                     |                                    |
| Analyst                                      |                                              |                        | Fr                       | eeway/Dir of Tr    | avel                      | I-95 NE            | B Express L                   | ane                          |                     |                                    |
| Agency or Company                            | AEC                                          | OM                     | Ju                       | Inction            | (                         | Off to S           | SW 10th Co                    | nnector                      |                     |                                    |
| Date Performed                               | d AM                                         |                        | Ju<br>Ar                 | risdiction<br>Voar |                           | 2020 B             | uild 2                        |                              |                     |                                    |
| Project Description                          | SW 10th Stree                                | t SIMR                 |                          | arysis real        |                           | 2020 D             |                               |                              |                     |                                    |
| Inputs                                       |                                              |                        |                          |                    |                           |                    |                               |                              |                     |                                    |
| Linstroom Adi E                              | Jamp                                         | Freeway Nun            | nber of Lanes, N         | 2                  |                           |                    |                               | l,                           | Downstroo           | m Adi                              |
|                                              | kanip                                        | Ramp Numbe             | er of Lanes, N           | 1                  |                           |                    |                               | F                            | Ramp                | n Auj                              |
| Yes                                          | On                                           | Acceleration           | Lane Length, L.          |                    |                           |                    |                               |                              |                     |                                    |
|                                              | <b>7</b> .0%                                 | Deceleration           | Lane Length $L_{a}$      | 345                |                           |                    |                               |                              | L Yes               | On                                 |
| I NO L                                       | _ Off                                        | Freeway Volu           | ime. V <sub>e</sub>      | 1110               |                           |                    |                               |                              | ✓ No                | Off                                |
| L <sub>up</sub> = 1                          | ft                                           | Ramp Volum             | e V_                     | 60                 |                           |                    |                               | l                            | -down =             | ft                                 |
| up                                           |                                              | Freeway Free           | -Flow Speed S            | 70.0               |                           |                    |                               |                              |                     |                                    |
| V <sub>u</sub> = v                           | reh/h                                        | Ramn Free-F            | low Speed S              | 60.0               |                           |                    |                               |                              | √ <sub>D</sub> =    | veh/h                              |
| Conversion t                                 | to nc/h Un                                   | dor Basa               | Conditions               | 00.0               |                           |                    |                               |                              |                     |                                    |
| Conversion                                   |                                              |                        | Conditions               |                    |                           |                    | .                             | .                            |                     |                                    |
| (pc/h)                                       | (Veh/hr)                                     | PHF                    | Terrain                  | %Truck             | %Rv                       |                    | f <sub>HV</sub>               | f <sub>p</sub>               | / = V/PHF :         | k f <sub>HV</sub> x f <sub>p</sub> |
| Freeway                                      | 1110                                         | 0.95                   | Level                    | 3                  | 0                         | 0.                 | 985                           | 1.00                         | 118                 | 6                                  |
| Ramp                                         | 60                                           | 0.95                   | Level                    | 2                  | 0                         | 0.                 | 990                           | 1.00                         | 64                  |                                    |
| UpStream                                     |                                              |                        |                          |                    |                           | +                  |                               |                              |                     |                                    |
| DownStream                                   |                                              | Merge Areas            |                          |                    |                           |                    | I                             | iverne Areas                 |                     |                                    |
| Estimation o                                 | f Via                                        | merge meus             |                          |                    | Estimati                  | ion o              | f V <sub>42</sub>             | Weige Alleus                 |                     |                                    |
|                                              | 12<br>V - V                                  | (P)                    |                          |                    |                           |                    | 1 <u>2</u>                    | V + (V - V)                  | \D                  |                                    |
| _                                            | V <sub>12</sub> - V <sub>F</sub>             | $(_{FM})$              | 12 7)                    |                    |                           |                    | v <sub>12</sub> –             | $^{v}R$ ' ( $^{v}F$ $^{-}vR$ | /「FD<br>2 or 12 12) |                                    |
| E <sub>EQ</sub> -                            | (Equa                                        | Equation (             | IJ-7                     |                    | EQ -                      |                    | (L                            |                              | 2 01 13-13)         | H 10 7)                            |
| FM -                                         | using<br>nc/b                                |                        | Exhibit 15-0)            |                    | FD -                      |                    | 1.0                           | 00 using ⊑qu                 |                     | 11 13-7)                           |
| $V_{12}$                                     | pc/n                                         | Equation 13            | 11 or 13 17)             |                    | $V_{12}$ – V or V         |                    | 0                             | oo pc/n                      | n 12 14 or          | 10 17)                             |
| $v_3$ or $v_{av34}$                          | $p_{0,nc/h} = \frac{1}{2} \sqrt{n}$          |                        | 5-14-01-15-17)           |                    | ls V or V                 | <u>\</u> 27        | 0<br>00.pc/b2 □               | Vee                          | 113-14 01           | 13-17)                             |
| $V_{3} \text{ or } V_{av34} > 2,70$          |                                              |                        |                          |                    | Is V or V                 | 34 ~ 2,7<br>< 1 5  | * V/ /2                       |                              |                     |                                    |
| 13 V <sub>3</sub> 01 V <sub>av34</sub> / 1.5 | <sup>v</sup> <sub>12</sub> <sup>/2</sup> mre | Fouation 13            | 3-16, 13-18, or          |                    |                           | 34 ~ 1.5           | <sup>v</sup> 12 <sup>/2</sup> | ∴res into<br>c/h (Fouation   | 13-16, 13-1         | 18. or 13-                         |
| If Yes,V <sub>12a</sub> =                    | 13-19                                        | )                      |                          |                    | If Yes,V <sub>12a</sub> = |                    | 19                            | ))                           |                     |                                    |
| Capacity Che                                 | ecks                                         |                        |                          |                    | Capacity                  | y Ch               | ecks                          |                              |                     |                                    |
|                                              | Actual                                       | (                      | Capacity                 | LOS F?             |                           |                    | Actual                        | Cap                          | acity               | LOS F?                             |
|                                              |                                              |                        |                          |                    | V <sub>F</sub>            |                    | 1186                          | Exhibit 13-8                 | 4800                | No                                 |
| V <sub>FO</sub>                              |                                              | Exhibit 13-8           |                          |                    | $V_{FO} = V_{F}$          | - V <sub>R</sub>   | 1122                          | Exhibit 13-8                 | 4800                | No                                 |
|                                              |                                              |                        |                          |                    | V <sub>R</sub>            |                    | 64                            | Exhibit 13-10                | 2200                | No                                 |
| Flow Entering                                | g Merge In                                   | fluence A              | Area                     |                    | Flow En                   | terin              | g Diver                       | ge Influend                  | ce Area             |                                    |
|                                              | Actual                                       | Мах                    | Desirable                | Violation?         |                           | 1                  | Actual                        | Max Desirabl                 | е                   | Violation?                         |
| V <sub>R12</sub>                             |                                              | Exhibit 13-8           |                          |                    | V <sub>12</sub>           | 1                  | 186                           | Exhibit 13-8                 | 4400:All            | No                                 |
| Level of Serv                                | vice Deterr                                  | mination               | (if not F)               |                    | Level of                  | Serv               | /ice De                       | termination                  | n (if not F         | )                                  |
| D <sub>R</sub> = 5.475 + 0.                  | .00734 v <sub>R</sub> +                      | 0.0078 V <sub>12</sub> | - 0.00627 L <sub>A</sub> |                    | [ [                       | ) <sub>R</sub> = 4 | .252 + 0.                     | 0086 V <sub>12</sub> - 0.0   | 09 L <sub>D</sub>   |                                    |
| D <sub>R</sub> = (pc/mi/In                   | ו)                                           |                        |                          |                    | D <sub>R</sub> = 11       | .3 <b>(pc</b> /    | /mi/ln)                       |                              |                     |                                    |
| LOS = (Exhibit                               | 13-2)                                        |                        |                          |                    | LOS = B                   | (Exhit             | oit 13-2)                     |                              |                     |                                    |
| Speed Deterr                                 | mination                                     |                        |                          |                    | Speed D                   | Deter              | minatio                       | n                            |                     |                                    |
| M <sub>s</sub> = (Exibit 1                   | 3-11)                                        |                        |                          |                    | D <sub>s</sub> = 0.1      | 109 (E             | xhibit 13-                    | 12)                          |                     |                                    |
| $S_{p} = mph (Fxh)$                          | ,<br>nibit 13-11)                            |                        |                          |                    | S <sub>R</sub> = 67       | .0 mph             | (Exhibit                      | 13-12)                       |                     |                                    |
| $S_0 = mph (Ext)$                            | $S_{n} = mph (Exhibit 13-11)$                |                        |                          |                    |                           | A mph              | (Exhibit 1                    | 3-12)                        |                     |                                    |
| S = mph (Exh                                 | nibit 13-13)                                 |                        |                          |                    | S = 67                    | .0 mph             | (Exhibit                      | 13-13)                       |                     |                                    |
|                                              |                                              |                        |                          |                    |                           |                    |                               |                              |                     |                                    |

HCS2010<sup>TM</sup> Version 6.90

Generated: 6/6/2021 11:09 AM

|                                                      | RAMPS AND RAMP JUNCTIONS WORKSHEET                                                                    |                     |                               |                           |                           |                     |                        |                                                   |                               |                       |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------|-------------------------------|---------------------------|---------------------------|---------------------|------------------------|---------------------------------------------------|-------------------------------|-----------------------|
| General Infor                                        | mation                                                                                                |                     |                               | Site Infor                | mation                    |                     |                        |                                                   |                               |                       |
| Analyst                                              |                                                                                                       |                     | Fre                           | eeway/Dir of Tra          | avel                      | I-95 N              | B Express L            | anes                                              |                               |                       |
| Agency or Company                                    | AECO                                                                                                  | MC                  | Ju                            | nction                    |                           | On fro              | m SW 10th              | St. Connector                                     |                               |                       |
| Date Performed<br>Analysis Time Perior               |                                                                                                       |                     | JU<br>An                      | risdiction<br>alvsis Year |                           | 2020 8              | Ruild 2                |                                                   |                               |                       |
| Project Description                                  | SW 10th Stree                                                                                         | t SIMR              | 7.0                           |                           |                           | 20201               |                        |                                                   |                               |                       |
| Inputs                                               |                                                                                                       |                     |                               |                           |                           |                     |                        |                                                   |                               |                       |
| Linstream Adi Ramn                                   |                                                                                                       | Freeway Num         | ber of Lanes, N               | 2                         |                           |                     |                        |                                                   | Downstre                      | am Adi                |
|                                                      |                                                                                                       | Ramp Numbe          | er of Lanes, N                | 1                         |                           |                     |                        |                                                   | Ramp                          | ann Aaj               |
| Yes Or                                               | ı                                                                                                     | Acceleration I      | Lane Length, L <sub>A</sub>   | 1040                      |                           |                     |                        |                                                   | TYes                          | □ On                  |
|                                                      | f                                                                                                     | Deceleration        | Lane Length L <sub>D</sub>    |                           |                           |                     |                        |                                                   |                               |                       |
|                                                      | 1                                                                                                     | Freeway Volu        | ime, V <sub>F</sub>           | 1050                      |                           |                     |                        |                                                   | M NO                          | U Off                 |
| L <sub>up</sub> = ft                                 |                                                                                                       | Ramp Volume         | e, V <sub>R</sub>             | 760                       |                           |                     |                        |                                                   | L <sub>down</sub> =           | ft                    |
|                                                      |                                                                                                       | Freeway Free        | e-Flow Speed, S <sub>FF</sub> | 70.0                      |                           |                     |                        |                                                   | V =                           | veh/h                 |
| v <sub>u</sub> = veh/h                               | l                                                                                                     | Ramp Free-F         | low Speed, S <sub>FR</sub>    | 60.0                      |                           |                     |                        |                                                   | v <sub>D</sub> –              | ven/n                 |
| Conversion t                                         | o pc/h Und                                                                                            | der Base            | Conditions                    |                           |                           |                     |                        |                                                   |                               |                       |
| (pc/h)                                               | V                                                                                                     | PHF                 | Terrain                       | %Truck                    | %Rv                       |                     | f <sub>LN/</sub>       | f                                                 | v = V/PHF                     | x f <sub>uv</sub> x f |
| Erooway                                              | (Veh/hr)                                                                                              | 0.05                | Loval                         | 2                         | 0                         |                     | 005                    | p<br>1.00                                         | -                             | 122                   |
| Ramn                                                 | 760                                                                                                   | 0.95                | Level                         | 2<br>2                    | 0                         |                     | 900                    | 1.00                                              |                               | 808                   |
| UpStream                                             | 700                                                                                                   | 0.75                | Level                         | 2                         | Ŭ                         |                     | .,,,,                  | 1.00                                              |                               | 000                   |
| DownStream                                           |                                                                                                       |                     |                               |                           |                           |                     |                        |                                                   |                               |                       |
|                                                      | - I                                                                                                   | Merge Areas         |                               |                           |                           | -                   | D                      | iverge Areas                                      |                               |                       |
| Estimation of                                        | <sup>v</sup> <sub>12</sub>                                                                            |                     |                               |                           | Estimat                   | on o                | of V <sub>12</sub>     |                                                   |                               |                       |
|                                                      | $V_{12} = V_{F}$                                                                                      | ( P <sub>FM</sub> ) |                               |                           |                           |                     | V <sub>12</sub> = \    | / <sub>R</sub> + (V <sub>F</sub> - V <sub>F</sub> | <sub>R</sub> )P <sub>FD</sub> |                       |
| L <sub>EQ</sub> =                                    | (Equa                                                                                                 | ation 13-6 o        | r 13-7)                       |                           | L <sub>EQ</sub> =         |                     | (                      | Equation 13                                       | -12 or 13-1                   | 3)                    |
| P <sub>FM</sub> =                                    | 1.000                                                                                                 | using Equa          | tion (Exhibit 13-6)           |                           | P <sub>FD</sub> =         |                     | U                      | ising Equation                                    | on (Exhibit 1                 | 3-7)                  |
| V <sub>12</sub> =                                    | 1122                                                                                                  | oc/h                |                               |                           | V <sub>12</sub> =         |                     | p                      | oc/h                                              |                               |                       |
| V <sub>3</sub> or V <sub>av34</sub>                  | 0 pc/ł                                                                                                | n (Equation         | 13-14 or 13-17)               |                           | $V_3$ or $V_{av34}$       |                     | þ                      | oc/h (Equation                                    | 13-14 or 13-1                 | 7)                    |
| Is $V_3$ or $V_{av34} > 2,70$                        | 0 pc/h?  Ye                                                                                           | s 🗹 No              |                               |                           | Is $V_3$ or $V_{av3}$     | <sub>34</sub> > 2,7 | 700 pc/h?              | Yes No                                            | )                             |                       |
| Is $V_3$ or $V_{av34} > 1.5$                         | <sup>•</sup> V <sub>12</sub> /2 <b>Ye</b>                                                             | s 🗹 No              | 0 40 40 40                    |                           | Is $V_3$ or $V_{av3}$     | <sub>34</sub> > 1.5 | 5 * V <sub>12</sub> /2 | Yes No                                            | )                             | 0.40                  |
| If Yes,V <sub>12a</sub> =                            | pc/n (<br>13-19)                                                                                      | Equation 1.         | 3-16, 13-18, or               |                           | If Yes,V <sub>12a</sub> = |                     | р<br>13                | c/n (Equatio<br>3-19)                             | on 13-16, 1                   | 3-18, OF              |
| Capacity Che                                         | cks                                                                                                   |                     |                               |                           | Capacit                   | y Ch                | ecks                   |                                                   |                               |                       |
|                                                      | Actual                                                                                                | (                   | Capacity                      | LOS F?                    |                           |                     | Actual                 | Ca                                                | apacity                       | LOS F?                |
|                                                      |                                                                                                       |                     |                               |                           | V <sub>F</sub>            |                     |                        | Exhibit 13                                        | -8                            |                       |
| VEO                                                  | 1930                                                                                                  | Exhibit 13-8        |                               | No                        | $V_{FO} = V_{F}$          | - V <sub>R</sub>    |                        | Exhibit 13                                        | -8                            |                       |
| FO                                                   |                                                                                                       |                     |                               |                           | Vn                        |                     |                        | Exhibit 13                                        | 3-                            |                       |
| Elever Endersin                                      |                                                                                                       | fluoree             |                               |                           |                           | 4 - 11              |                        | 10                                                |                               |                       |
| Flow Entering                                        | g ivierge in<br>Actual                                                                                | TIUENCE A           | A <b>rea</b><br>Dosirablo     | Violation?                | FIOW EN                   |                     | Actual                 | <u>ge influei</u><br>Max Dos                      | nce Area                      | Violation?            |
| Vera                                                 | 2064                                                                                                  | Exhibit 13-8        | 4600·All                      | No                        | Via                       | +                   | Actual                 | Exhibit 13-8                                      |                               | violation:            |
| Level of Serv                                        | ice Detern                                                                                            | nination (          | (if not F)                    | 110                       | l evel of                 | Ser                 | vice De                | terminatio                                        | n (if not                     | <b>F</b>              |
| $D_{-} = 5.475 +$                                    | $0.00734 \text{ y}_{-} + 0$                                                                           | 0078 V 0            | 006271.                       |                           |                           | )_ = /              | 4 252 + 0              | $0086 V_{} - 000000000000000000000000000000000$   | 0091-                         | • )                   |
| $D_{\rm p} = 13.6 ({\rm nc/m})$                      | u/In)                                                                                                 |                     | COOLT LA                      |                           | D_ = (n                   | -R<br>c/mi/         | In)                    | 12                                                |                               |                       |
| $I_{R} = B(Exhibit)$                                 | 13-2)                                                                                                 |                     |                               |                           | PR (P                     | xhihi               | t 13-2)                |                                                   |                               |                       |
| Speed Deterr                                         | nination                                                                                              |                     |                               |                           | Speed [                   |                     | rminatio               | n                                                 |                               |                       |
|                                                      | hit 12 11)                                                                                            |                     |                               |                           | $D_{r} = (F$              | xhibit              | 13-12)                 | ••                                                |                               |                       |
| $V_{\rm S}^{-} = 0.227$ (EXI                         | UIL IJ-11)<br>(Evhibit 12 11)                                                                         |                     |                               |                           | S <sub>D</sub> = mi       | oh (Fx              | hibit 13-12)           |                                                   |                               |                       |
| $P_R^-$ os.o mpn<br>S = N/A mmb /                    | (EXIIIDIL  13 - 11)                                                                                   |                     |                               |                           | S <sub>o</sub> = m        | oh (Fv              | hibit 13-12)           |                                                   |                               |                       |
| $P_0$ = N/A mph (<br>S = 63.6 mph                    | $S_0 = N/A \text{ mph (Exhibit 13-11)}$<br>$S_0 = mph (Exhibit 13-12)$<br>$S_0 = mph (Exhibit 13-12)$ |                     |                               |                           |                           |                     |                        |                                                   |                               |                       |
| S = 63.6 mph (Exhibit 13-13) S = mph (Exhibit 13-13) |                                                                                                       |                     |                               |                           |                           |                     |                        |                                                   |                               |                       |

HCS2010<sup>TM</sup> Version 6.90

Generated: 6/6/2021 11:45 AM

|                                           | RAMPS AND RAMP JUNCTIONS WORKSHEET           |                        |                               |                    |                              |                    |                      |                                                   |                    |                                    |
|-------------------------------------------|----------------------------------------------|------------------------|-------------------------------|--------------------|------------------------------|--------------------|----------------------|---------------------------------------------------|--------------------|------------------------------------|
| General Info                              | rmation                                      |                        |                               | Site Infor         | mation                       |                    |                      |                                                   |                    |                                    |
| Analyst                                   |                                              |                        | Fr                            | eeway/Dir of Tr    | avel                         | I-95 SB            | Express L            | ane                                               |                    |                                    |
| Agency or Company                         | AEC                                          | OM                     | Ju                            | Inction            | (                            | Off to S           | SW 10th Co           | nnector                                           |                    |                                    |
| Date Performed                            | d AM                                         |                        | JU<br>Ar                      | risdiction<br>Voar |                              | 2020 B             | uild 2               |                                                   |                    |                                    |
| Project Description                       | SW 10th Stree                                | et SIMR                |                               |                    | · · · · · ·                  | 2020 D             |                      |                                                   |                    |                                    |
| Inputs                                    |                                              |                        |                               |                    |                              |                    |                      |                                                   |                    |                                    |
| Linstroam Adi I                           | Damn                                         | Freeway Nun            | nber of Lanes, N              | 2                  |                              |                    |                      |                                                   | Downstreau         | m Adi                              |
| Opsilean Auj I                            | vanip                                        | Ramp Numbe             | er of Lanes, N                | 1                  |                              |                    |                      |                                                   | Ramp               | плај                               |
| Yes [                                     | On                                           | Acceleration           | Lane Length, L <sub>₄</sub>   |                    |                              |                    |                      |                                                   |                    | On                                 |
| No                                        | Off                                          | Deceleration           | Lane Length L <sub>D</sub>    | 250                |                              |                    |                      |                                                   |                    |                                    |
|                                           |                                              | Freeway Volu           | ume, V <sub>F</sub>           | 1010               |                              |                    |                      |                                                   | MO NO              | Off                                |
| L <sub>up</sub> =                         | ft                                           | Ramp Volum             | e, V <sub>R</sub>             | 370                |                              |                    |                      | I                                                 | -down =            | ft                                 |
| N/ _                                      |                                              | Freeway Free           | e-Flow Speed, S <sub>FF</sub> | 70.0               |                              |                    |                      | ,                                                 | / =                | voh/h                              |
| $V_u = V_u$                               | /eh/h                                        | Ramp Free-F            | low Speed, S <sub>FR</sub>    | 60.0               |                              |                    |                      |                                                   | v <sub>D</sub> -   | ven/n                              |
| Conversion                                | to pc/h Un                                   | der Base               | Conditions                    |                    |                              |                    |                      | I                                                 |                    |                                    |
| (pc/h)                                    | V<br>(Veh/hr)                                | PHF                    | Terrain                       | %Truck             | %Rv                          |                    | f <sub>HV</sub>      | f <sub>p</sub>                                    | / = V/PHF >        | ۲ f <sub>HV</sub> x f <sub>p</sub> |
| Freeway                                   | 1010                                         | 0.95                   | Level                         | 3                  | 0                            | 0.                 | 985                  | 1.00                                              | 107                | 9                                  |
| Ramp                                      | 370                                          | 0.95                   | Level                         | 2                  | 0                            | 0.                 | 990                  | 1.00                                              | 393                | 3                                  |
| UpStream                                  |                                              |                        |                               |                    |                              | 4                  |                      |                                                   |                    |                                    |
| DownStream                                |                                              | Morgo Arooc            |                               |                    |                              |                    |                      | Niverge Areas                                     |                    |                                    |
| Estimation o                              | fv                                           | werge Areas            |                               |                    | Fstimati                     | ion o              | of V                 | nverge Areas                                      |                    |                                    |
|                                           | <u>12</u>                                    |                        |                               |                    |                              |                    | <u>12</u>            |                                                   | <u>\</u>           |                                    |
|                                           | $V_{12} = V_F$                               | (P <sub>FM</sub> )     | 40.7)                         |                    |                              |                    | V <sub>12</sub> =    | V <sub>R</sub> + (V <sub>F</sub> - V <sub>R</sub> | )P <sub>FD</sub>   |                                    |
| L <sub>EQ</sub> =                         | (Equa                                        | Tauratian (            | 13-7)                         |                    | L <sub>EQ</sub> =            |                    | (1                   |                                                   | 2 OF 13-13)        |                                    |
| F <sub>FM</sub> =                         | using                                        | Equation (             | EXHIDIT 13-0)                 |                    | FD =                         |                    | 1.0                  | JUU using Equ                                     | ation (Exhib       | IL 13-7)                           |
| $v_{12} = 12$                             | pc/n                                         | Equation 10            | (14 - 12 + 17)                |                    | $v_{12} =$                   |                    | 10                   | 1/9 pc/n                                          | 10 11              | 40.47)                             |
| $v_3 \cup v_{av34}$                       | punn (<br>00 nc/b2 ⊡va                       |                        | 5-14 01 13-17)                |                    | $v_3 \cup v_{av34}$          | 、 <b>2</b> 7       | 0<br>□ pc/b2         | pc/n (Equation                                    | 11 13-14 01        | 13-17)                             |
| $15 V_3 01 V_{av34} > 2,7$                | *V /2 UVa                                    |                        |                               |                    | $15 V_3 01 V_{av3}$          | 34 > 2,7<br>> 1 5  | * V /2 E             |                                                   |                    |                                    |
| $13 v_3 01 v_{av34} > 1.5$                | <sup>v</sup> <sub>12</sub> <sup>/2</sup> mre | Fouation 13            | 3-16, 13-18, or               |                    |                              | 34 > 1.5           | v <sub>12</sub> /∠ ∟ | _ res ⊻ No<br>c/h (Fquation                       | 13-16, 13-1        | 8. or 13-                          |
| If Yes,V <sub>12a</sub> =                 | 13-19                                        | )                      | ,,,                           |                    | If Yes,V <sub>12a</sub> =    |                    | 19                   | 9)                                                | ,                  | -,                                 |
| Capacity Ch                               | ecks                                         |                        |                               |                    | Capacity                     | y Ch               | ecks                 |                                                   |                    |                                    |
|                                           | Actual                                       | (                      | Capacity                      | LOS F?             |                              |                    | Actual               | Cap                                               | bacity             | LOS F?                             |
|                                           |                                              |                        |                               |                    | V <sub>F</sub>               |                    | 1079                 | Exhibit 13-8                                      | 4800               | No                                 |
| V <sub>FO</sub>                           |                                              | Exhibit 13-8           |                               |                    | $V_{FO} = V_{F}$             | - V <sub>R</sub>   | 686                  | Exhibit 13-8                                      | 4800               | No                                 |
|                                           |                                              |                        |                               |                    | V <sub>R</sub>               |                    | 393                  | Exhibit 13-10                                     | 2200               | No                                 |
| Flow Enterin                              | g Merge Ir                                   | nfluence A             | Area                          |                    | Flow En                      | terin              | g Diver              | rge Influend                                      | ce Area            |                                    |
|                                           | Actual                                       | Max                    | Desirable                     | Violation?         |                              |                    | Actual               | Max Desirabl                                      | е                  | Violation?                         |
| V <sub>R12</sub>                          |                                              | Exhibit 13-8           |                               |                    | V <sub>12</sub>              | 1                  | 079                  | Exhibit 13-8                                      | 4400:All           | No                                 |
| Level of Service Determination (if not F) |                                              |                        |                               |                    | Level of                     | Ser                | /ice De              | termination                                       | n (if not F        | )                                  |
| D <sub>R</sub> = 5.475 + 0                | .00734 v <sub>R</sub> +                      | 0.0078 V <sub>12</sub> | - 0.00627 L <sub>A</sub>      |                    |                              | 2 <sub>R</sub> = 4 | .252 + 0.            | .0086 V <sub>12</sub> - 0.0                       | 009 L <sub>D</sub> |                                    |
| D <sub>R</sub> = (pc/mi/lı                | ר)                                           |                        |                               |                    | D <sub>R</sub> = 11          | .3 <b>(pc</b> /    | /mi/ln)              |                                                   |                    |                                    |
| LOS = (Exhibit                            | 13-2)                                        |                        |                               |                    | LOS = B                      | (Exhib             | oit 13-2)            |                                                   |                    |                                    |
| Speed Determination                       |                                              |                        |                               |                    | Speed D                      | )eter              | minatio              | on                                                |                    |                                    |
| M <sub>S</sub> = (Exibit 1                | 3-11)                                        |                        |                               |                    | D <sub>s</sub> = 0.1         | 138 <b>(E</b>      | xhibit 13-           | 12)                                               |                    |                                    |
| S <sub>R</sub> = mph (Ex                  | hibit 13-11)                                 |                        |                               |                    | S <sub>R</sub> = 66          | .1 mph             | (Exhibit             | 13-12)                                            |                    |                                    |
| S <sub>0</sub> = mph (Ex                  | hibit 13-11)                                 |                        |                               |                    | S <sub>0</sub> = N/          | A mph              | (Exhibit 1           | 13-12)                                            |                    |                                    |
| S = mph (Ex                               | hibit 13-13)                                 |                        |                               |                    | S = 66.1 mph (Exhibit 13-13) |                    |                      |                                                   |                    |                                    |

HCS2010<sup>TM</sup> Version 6.90

Generated: 6/6/2021 11:52 AM

| General Info                                                   | rmation                           |                             |                              | Site Infor       | mation                    |                     |                        |                                                   |                     |                                                 |
|----------------------------------------------------------------|-----------------------------------|-----------------------------|------------------------------|------------------|---------------------------|---------------------|------------------------|---------------------------------------------------|---------------------|-------------------------------------------------|
| Analyst<br>Agency or Company                                   |                                   | OM                          | Fre                          | eeway/Dir of Tra | avel                      | 1-95 S<br>On fro    | B Express L            | anes<br>St. Connoctor                             |                     |                                                 |
| Date Performed                                                 | y AECO                            | UIVI                        | Jur                          | risdiction       |                           | UITIIU              |                        |                                                   |                     |                                                 |
| Analysis Time Peric                                            | od AM                             |                             | An                           | alysis Year      |                           | 2020 [              | Build 2                |                                                   |                     |                                                 |
| Project Description                                            | SW 10th Stree                     | t SIMR                      |                              |                  |                           |                     |                        |                                                   |                     |                                                 |
| mpuis                                                          |                                   | Frooway Num                 | her of Lanes N               | n                |                           |                     |                        |                                                   |                     |                                                 |
| Upstream Adj Ram                                               | р                                 | Ramp Numbe                  | r of Lanes N                 | 2                |                           |                     |                        |                                                   | Downstrea<br>Ramp   | am Adj                                          |
| □Yes □O                                                        | 'n                                | Acceleration I              | Lane Length, $L_{A}$         | 1100             |                           |                     |                        |                                                   |                     | □ On                                            |
| ⊠No □O                                                         | off                               | Deceleration                | Lane Length L <sub>D</sub>   |                  |                           |                     |                        |                                                   | ⊠ No                |                                                 |
|                                                                |                                   | Freeway Volu                | me, V <sub>F</sub>           | 640              |                           |                     |                        |                                                   |                     | 4 C.                                            |
| L <sub>up</sub> = ft                                           |                                   | Ramp Volume                 | e, V <sub>R</sub>            | 160              |                           |                     |                        |                                                   | ∟ <sub>down</sub> = | п                                               |
| V <sub>u</sub> = veh/                                          | h                                 | Freeway Free                | -Flow Speed, S <sub>FF</sub> | 70.0             |                           |                     |                        |                                                   | V <sub>D</sub> =    | veh/h                                           |
|                                                                | (                                 | Ramp Free-F                 | low Speed, S <sub>FR</sub>   | 60.0             |                           |                     |                        |                                                   |                     |                                                 |
| Conversion                                                     | to pc/n Und                       | der Base                    | Conditions                   |                  | r                         | -                   |                        |                                                   |                     |                                                 |
| (pc/h)                                                         | v<br>(Veh/hr)                     | PHF                         | Terrain                      | %Truck           | %Rv                       |                     | f <sub>HV</sub>        | f <sub>p</sub>                                    | v = V/PHF           | <sup>F</sup> x f <sub>HV</sub> x f <sub>p</sub> |
| Freeway                                                        | 640                               | 0.95                        | Level                        | 3                | 0                         | 0                   | .985                   | 1.00                                              |                     | 584                                             |
| Ramp                                                           | 160                               | 0.95                        | Level                        | 2                | 0                         | 0                   | .990                   | 1.00                                              | · · · ·             | 170                                             |
| UpStream<br>DownStream                                         |                                   |                             |                              |                  |                           | -                   |                        |                                                   |                     |                                                 |
| Downourcum                                                     |                                   | Merge Areas                 |                              |                  |                           | _                   | I<br>D                 | iverge Areas                                      | I                   |                                                 |
| Estimation o                                                   | of v <sub>12</sub>                | -                           |                              |                  | Estimati                  | ion d               | of v <sub>12</sub>     | -                                                 |                     |                                                 |
|                                                                | $V_{12} = V_{F}$                  | (P <sub>FM</sub> )          |                              |                  |                           |                     | V <sub>12</sub> = \    | / <sub>R</sub> + (V <sub>F</sub> - V <sub>R</sub> | )P <sub>ED</sub>    |                                                 |
| L <sub>FO</sub> =                                              | (Equa                             | ation 13-6 o                | r 13-7)                      |                  | L <sub>FO</sub> =         |                     | (                      | Equation 13-                                      | 12 or 13-1          | 3)                                              |
| P <sub>FM</sub> =                                              | 1.000                             | using Equat                 | tion (Exhibit 13-6)          |                  | P <sub>FD</sub> =         |                     | U                      | ising Equation                                    | on (Exhibit 13      | 3-7)                                            |
| V <sub>12</sub> =                                              | 684 p                             | c/h                         |                              |                  | V <sub>12</sub> =         |                     | p                      | oc/h                                              |                     |                                                 |
| V <sub>3</sub> or V <sub>av34</sub>                            | 0 pc/l                            | h (Equation                 | 13-14 or 13-17)              |                  | $V_3$ or $V_{av34}$       |                     | þ                      | oc/h (Equation <sup>2</sup>                       | 13-14 or 13-1       | 7)                                              |
| Is $V_3$ or $V_{av34} > 2,7$                                   | '00 pc/h? 🗌 Ye                    | s 🗹 No                      |                              |                  | Is $V_3$ or $V_{av3}$     | <sub>84</sub> > 2,7 | 700 pc/h? 🗌            | Yes 🗌 No                                          |                     |                                                 |
| Is $V_3$ or $V_{av34} > 1.5$                                   | 5 * V <sub>12</sub> /2 <b>∐Ye</b> | s 🗹 No                      |                              |                  | Is $V_3$ or $V_{av3}$     | <sub>34</sub> > 1.5 | 5 * V <sub>12</sub> /2 | Yes 🗌 No                                          |                     |                                                 |
| If Yes,V <sub>12a</sub> =                                      | pc/h<br>13-19)                    | (Equation 13                | 3-16, 13-18, or              |                  | If Yes,V <sub>12a</sub> = |                     | p<br>13                | oc/h (Equatio                                     | n 13-16, 13         | 3-18, or                                        |
| Capacity Ch                                                    | ecks                              |                             |                              |                  | Capacity                  | v Ch                | ecks                   | , 10)                                             |                     |                                                 |
|                                                                | Actual                            | (                           | Capacity                     | LOS F?           |                           | ,<br>               | Actual                 | Са                                                | pacity              | LOS F?                                          |
|                                                                |                                   |                             |                              |                  | V <sub>F</sub>            |                     |                        | Exhibit 13-                                       | 8                   |                                                 |
| V <sub>EO</sub>                                                | 854                               | Exhibit 13-8                |                              | No               | $V_{FO} = V_{F}$          | - V <sub>R</sub>    |                        | Exhibit 13-                                       | 8                   |                                                 |
|                                                                |                                   |                             |                              |                  | V <sub>R</sub>            |                     |                        | Exhibit 13                                        | -                   |                                                 |
| Flow Enterin                                                   | na Merae In                       | fluence A                   | Area                         |                  | Flow En                   | terii               | na Diver               | ae Influer                                        | ice Area            |                                                 |
|                                                                | Actual                            | Max                         | Desirable                    | Violation?       |                           |                     | Actual                 | Max Des                                           | irable              | Violation?                                      |
| V <sub>R12</sub>                                               | 936                               | Exhibit 13-8                | 4600:All                     | No               | V <sub>12</sub>           |                     |                        | Exhibit 13-8                                      |                     |                                                 |
| Level of Ser                                                   | vice Detern                       | nination (                  | ïf not F)                    |                  | Level of                  | Ser                 | vice De                | terminatio                                        | on (if not          | F)                                              |
| D <sub>R</sub> = 5.475                                         | + 0.00734 v <sub>R</sub> + 0      | 0.0078 V <sub>12</sub> - 0. | 00627 L <sub>A</sub>         |                  | [ [                       | D <sub>R</sub> = -  | 4.252 + 0.             | 0086 V <sub>12</sub> - 0                          | .009 L <sub>D</sub> |                                                 |
| D <sub>R</sub> = 5.2 (pc/m                                     | ni/In)                            |                             |                              |                  | D <sub>R</sub> = (p       | c/mi/               | ln)                    |                                                   |                     |                                                 |
| LOS = A (Exhibi                                                | t 13-2)                           |                             |                              |                  | LOS = (E                  | xhibi               | t 13-2)                |                                                   |                     |                                                 |
| Speed Deter                                                    | mination                          |                             |                              |                  | Speed D                   | )eter               | rminatio               | n                                                 |                     |                                                 |
| M <sub>S</sub> = 0.199 (E)                                     | kibit 13-11)                      |                             |                              |                  | $D_s = (E)$               | xhibit              | 13-12)                 |                                                   |                     |                                                 |
| S <sub>R</sub> = 64.4 mph                                      | n (Exhibit 13-11)                 |                             |                              |                  | S <sub>R</sub> = mp       | oh (Ex              | hibit 13-12)           |                                                   |                     |                                                 |
| $S_0 = N/A mph (Exhibit 13-11)$ $S_0 = mph (Exhibit 13-12)$    |                                   |                             |                              |                  |                           |                     |                        |                                                   |                     |                                                 |
| S = 64.4  mph (Exhibit 13-13)<br>S = 64.4  mph (Exhibit 13-13) |                                   |                             |                              |                  |                           |                     |                        |                                                   |                     |                                                 |

HCS2010<sup>TM</sup> Version 6.90

Generated: 6/6/2021 11:57 AM

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RAMPS AND RAMP JUNCTIONS WORKSHEET           |                                     |                               |                    |                              |                                                                                          |                      |                             |                                 |                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------|-------------------------------|--------------------|------------------------------|------------------------------------------------------------------------------------------|----------------------|-----------------------------|---------------------------------|------------------------------------|
| General Info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rmation                                      |                                     |                               | Site Infor         | mation                       |                                                                                          |                      |                             |                                 |                                    |
| Analyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |                                     | Fr                            | eeway/Dir of Tr    | avel                         | I-95 NB                                                                                  | B Express L          | .ane                        |                                 |                                    |
| Agency or Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AEC                                          | OM                                  | Ju                            | Inction            | (                            | Off to S                                                                                 | SW 10th Co           | nnector                     |                                 |                                    |
| Date Performed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d DM                                         |                                     | Ju<br>Ar                      | risdiction<br>Voar |                              | 2020 B                                                                                   | uild 2               |                             |                                 |                                    |
| Project Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SW 10th Stree                                | et SIMR                             |                               |                    | · · · · · ·                  | 2020 D                                                                                   |                      |                             |                                 |                                    |
| Inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                     |                               |                    |                              |                                                                                          |                      |                             |                                 |                                    |
| Linstroam Adi [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Damn                                         | Freeway Nun                         | nber of Lanes, N              | 2                  |                              |                                                                                          |                      |                             | Downstreau                      | m Adi                              |
| Opsiteant Auj 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vanip                                        | Ramp Numbe                          | er of Lanes, N                | 1                  |                              |                                                                                          |                      |                             | Ramp                            | плај                               |
| Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | On                                           | Acceleration                        | Lane Length, L <sub>₄</sub>   |                    |                              |                                                                                          |                      |                             |                                 |                                    |
| No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Off                                          | Deceleration                        | Lane Length L <sub>D</sub>    | 345                |                              |                                                                                          |                      |                             |                                 |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | Freeway Volu                        | ume, V <sub>F</sub>           | 890                |                              |                                                                                          |                      |                             | MO NO                           | Off                                |
| L <sub>up</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ft                                           | Ramp Volum                          | e, V <sub>R</sub>             | 150                |                              |                                                                                          |                      | I                           | -down =                         | ft                                 |
| V -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              | Freeway Free                        | e-Flow Speed, S <sub>FF</sub> | 70.0               |                              |                                                                                          |                      | ,                           | / =                             | veh/h                              |
| $v_u = v_u$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /eh/h                                        | Ramp Free-F                         | low Speed, S <sub>FR</sub>    | 60.0               |                              |                                                                                          |                      |                             | v <sub>D</sub> -                | ven/n                              |
| Conversion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | to pc/h Un                                   | der Base                            | Conditions                    |                    |                              |                                                                                          |                      | I                           |                                 |                                    |
| (pc/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V<br>(Veh/hr)                                | PHF                                 | Terrain                       | %Truck             | %Rv                          |                                                                                          | f <sub>HV</sub>      | f <sub>p</sub>              | / = V/PHF >                     | k f <sub>HV</sub> x f <sub>p</sub> |
| Freeway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 890                                          | 0.95                                | Level                         | 3                  | 0                            | 0.                                                                                       | 985                  | 1.00                        | 95                              | 1                                  |
| Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 150                                          | 0.95                                | Level                         | 2                  | 0                            | 0.                                                                                       | 990                  | 1.00                        | 159                             | 7                                  |
| UpStream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |                                     |                               |                    |                              | <u> </u>                                                                                 |                      |                             |                                 |                                    |
| DownStream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              | Morgo Arooc                         |                               |                    |                              |                                                                                          |                      | Niverge Areas               |                                 |                                    |
| Estimation o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | fv                                           | werge Areas                         |                               |                    | Fstimati                     | ion o                                                                                    | of V                 | nverge Areas                |                                 |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>12</u>                                    |                                     |                               |                    |                              |                                                                                          | <u>12</u>            |                             | <u>\</u>                        |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_{12} = V_F$                               | (P <sub>FM</sub> )<br>stice 12.6 or | 10 7)                         |                    |                              |                                                                                          | v <sub>12</sub> =    | $V_R + (V_F - V_R)$         | )P <sub>FD</sub><br>2 ar 12 12) |                                    |
| L <sub>EQ</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (⊏qua                                        |                                     | 13-7                          |                    | L <sub>EQ</sub> =            |                                                                                          | (1                   |                             | 2 01 13-13)                     | (1 1 0 7)                          |
| FFM -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | using                                        | Equation (                          | EXHIBIT 13-0)                 |                    | FD -                         |                                                                                          | 1.0                  | J00 using ∈qu               | auon (Exnip                     | IL 13-7)                           |
| $v_{12} - v_{12} - v$ | pc/n                                         | Equation 12                         | (14  or  12 17)               |                    | $v_{12} = 12$                |                                                                                          | 95                   | o pc/n<br>                  | - 40 44                         | 40 47)                             |
| $v_3 \cup v_{av34}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | punn (<br>00 nc/b2 ⊡va                       |                                     | 5-14 01 13-17)                |                    | $v_3 \cup v_{av34}$          | <br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> | 0<br>□ pc/b2         | pc/n (Equation              | 11 13-14 01                     | 13-17)                             |
| $15 V_3 01 V_{av34} > 2,7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *V /2 UVa                                    |                                     |                               |                    | $15 V_3 01 V_{av3}$          | 34 × 2, 1                                                                                | * V /2 E             |                             |                                 |                                    |
| $13 v_3 01 v_{av34} > 1.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <sup>v</sup> <sub>12</sub> <sup>/2</sup> mre | Fouation 13                         | 3-16, 13-18, or               |                    |                              | 34 > 1.5                                                                                 | v <sub>12</sub> /∠ ∟ | _ res ⊻ No<br>c/h (Fquation | 13-16, 13-1                     | 18. or 13-                         |
| If Yes,V <sub>12a</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13-19                                        | )                                   |                               |                    | If Yes,V <sub>12a</sub> =    |                                                                                          | 19                   | 9)                          |                                 |                                    |
| Capacity Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ecks                                         |                                     |                               |                    | Capacity                     | y Che                                                                                    | ecks                 |                             |                                 |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Actual                                       | (                                   | Capacity                      | LOS F?             |                              |                                                                                          | Actual               | Cap                         | bacity                          | LOS F?                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                     |                               |                    | V <sub>F</sub>               |                                                                                          | 951                  | Exhibit 13-8                | 4800                            | No                                 |
| V <sub>FO</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | Exhibit 13-8                        |                               |                    | $V_{FO} = V_{F}$             | - V <sub>R</sub>                                                                         | 792                  | Exhibit 13-8                | 4800                            | No                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                     |                               |                    | V <sub>R</sub>               |                                                                                          | 159                  | Exhibit 13-10               | 2200                            | No                                 |
| Flow Enterin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | g Merge Ir                                   | nfluence A                          | Area                          |                    | Flow En                      | terin                                                                                    | g Diver              | rge Influend                | ce Area                         |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Actual                                       | Max                                 | Desirable                     | Violation?         |                              |                                                                                          | Actual               | Max Desirabl                | е                               | Violation?                         |
| V <sub>R12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              | Exhibit 13-8                        |                               |                    | V <sub>12</sub>              | -                                                                                        | 951                  | Exhibit 13-8                | 4400:All                        | No                                 |
| Level of Service Determination (if not F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |                                     |                               |                    | Level of                     | Serv                                                                                     | /ice De              | termination                 | n (if not F                     | )                                  |
| D <sub>R</sub> = 5.475 + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                                     | 2 <sub>R</sub> = 4            | .252 + 0.          | .0086 V <sub>12</sub> - 0.0  | 009 L <sub>D</sub>                                                                       |                      |                             |                                 |                                    |
| D <sub>R</sub> = (pc/mi/lr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ר)                                           |                                     |                               |                    | D <sub>R</sub> = 9.3         | 3 <b>(pc/r</b>                                                                           | ni/ln)               |                             |                                 |                                    |
| LOS = (Exhibit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13-2)                                        |                                     |                               |                    | LOS = A                      | (Exhib                                                                                   | oit 13-2)            |                             |                                 |                                    |
| Speed Deter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mination                                     |                                     |                               |                    | Speed D                      | Deter                                                                                    | minatio              | on                          |                                 |                                    |
| M <sub>S</sub> = (Exibit 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-11)                                        |                                     |                               |                    | D <sub>s</sub> = 0.1         | 117 <b>(E</b> :                                                                          | xhibit 13-           | 12)                         |                                 |                                    |
| S <sub>R</sub> = mph (Exi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | hibit 13-11)                                 |                                     |                               |                    | S <sub>R</sub> = 66          | .7 mph                                                                                   | (Exhibit             | 13-12)                      |                                 |                                    |
| S <sub>0</sub> = mph (Exi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | hibit 13-11)                                 |                                     |                               |                    | S <sub>0</sub> = N/          | A mph                                                                                    | (Exhibit 1           | 13-12)                      |                                 |                                    |
| S = mph (Ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | hibit 13-13)                                 |                                     |                               |                    | S = 66.7 mph (Exhibit 13-13) |                                                                                          |                      |                             |                                 |                                    |

HCS2010<sup>TM</sup> Version 6.90

Generated: 6/6/2021 11:42 AM

| RAMPS AND RAMP JUNCTIONS WORKSHEET                                            |                                 |                              |                                    |                                          |                                  |                  |                          |                                                   |                     |                                    |
|-------------------------------------------------------------------------------|---------------------------------|------------------------------|------------------------------------|------------------------------------------|----------------------------------|------------------|--------------------------|---------------------------------------------------|---------------------|------------------------------------|
| General Info                                                                  | rmation                         |                              |                                    | Site Infor                               | mation                           |                  |                          |                                                   |                     |                                    |
| Analyst<br>Agency or Company<br>Date Performed                                | AECO                            | DM                           | Fre<br>Ju<br>Ju                    | eeway/Dir of Tra<br>nction<br>risdiction | avel                             | I-95 N<br>On fro | B Express L<br>m SW 10th | anes<br>St. Connector                             |                     |                                    |
| Analysis Time Perio                                                           | d PM                            |                              | An                                 | alysis Year                              |                                  | 2020 I           | Build 2                  |                                                   |                     |                                    |
| Project Description                                                           | SW 10th Street                  | t SIMR                       |                                    |                                          |                                  |                  |                          |                                                   |                     |                                    |
| Inputs                                                                        |                                 | 1                            |                                    |                                          |                                  |                  |                          |                                                   | 1                   |                                    |
| Upstream Adj Ramp                                                             | •                               | Freeway Nun<br>Ramp Numbe    | nber of Lanes, N<br>er of Lanes, N | 2<br>1                                   |                                  |                  |                          |                                                   | Downstrea<br>Ramp   | am Adj                             |
| Yes O                                                                         | n                               | Acceleration                 | Lane Length, L <sub>A</sub>        | 1040                                     |                                  |                  |                          |                                                   | Yes                 | On                                 |
| ✓ No O                                                                        | ff                              | Deceleration<br>Freeway Volu | Lane Length L <sub>D</sub>         | 740                                      |                                  |                  |                          |                                                   | 🗹 No                | Off                                |
| L <sub>up</sub> = ft                                                          |                                 | Ramp Volum                   | e, V <sub>R</sub>                  | 390                                      |                                  |                  |                          |                                                   | L <sub>down</sub> = | ft                                 |
| V <sub>u</sub> = veh/ł                                                        | ı                               | Freeway Free<br>Domp Free F  | e-Flow Speed, S <sub>FF</sub>      | 70.0                                     |                                  |                  |                          |                                                   | V <sub>D</sub> =    | veh/h                              |
| Conversion                                                                    | to no/h Un                      |                              | Conditions                         | 00.0                                     |                                  |                  |                          |                                                   |                     |                                    |
| Conversion                                                                    |                                 |                              | Conditions                         |                                          | r                                | <u> </u>         |                          |                                                   |                     |                                    |
| (pc/h)                                                                        | (Veh/hr)                        | PHF                          | Terrain                            | %Truck                                   | %Rv                              |                  | f <sub>HV</sub>          | f <sub>p</sub>                                    | v = V/PHF           | x f <sub>HV</sub> x f <sub>p</sub> |
| Freeway                                                                       | 740                             | 0.95                         | Level                              | 3                                        | 0                                | 0                | .985                     | 1.00                                              |                     | 791                                |
| Ramp                                                                          | 390                             | 0.95                         | Level                              | 2                                        | 0                                | 0                | .990                     | 1.00                                              | 4                   | 115                                |
| DownStream                                                                    |                                 |                              |                                    |                                          |                                  | +                |                          |                                                   |                     |                                    |
|                                                                               | · · · · · ·                     | Merge Areas                  |                                    |                                          |                                  |                  | I<br>D                   | iverge Areas                                      | 1                   |                                    |
| Estimation o                                                                  | f v <sub>12</sub>               |                              |                                    |                                          | Estimati                         | ion d            | of v <sub>12</sub>       |                                                   |                     |                                    |
|                                                                               | $V_{12} = V_{E}$                | (P <sub>EM</sub> )           |                                    |                                          |                                  |                  | $V_{12} = 1$             | / <sub>D</sub> + (V <sub>E</sub> - V <sub>E</sub> | )P <sub>ED</sub>    |                                    |
| L <sub>EO</sub> =                                                             | (Equa                           | ation 13-6 o                 | r 13-7)                            |                                          | L <sub>EO</sub> =                |                  | 12 (                     | Equation 13                                       | -12 or 13-1         | 3)                                 |
| P <sub>EM</sub> =                                                             | 1.000                           | using Equa                   | tion (Exhibit 13-6)                |                                          | P <sub>ED</sub> =                |                  | Ĺ                        | ,<br>ising Equatio                                | on (Exhibit 13      | ,<br>3-7)                          |
| $V_{12} =$                                                                    | 791 p                           | c/h                          | (                                  |                                          | $V_{12} =$                       |                  | p                        | oc/h                                              | ,                   | ,                                  |
| $V_2$ or $V_{2\nu^24}$                                                        | ,<br>1/3a 0                     | (Equation                    | 13-14 or 13-17)                    |                                          | $V_{2}^{12}$ or $V_{2}^{12}$     |                  | r                        | c/h (Equation <sup>-</sup>                        | 13-14 or 13-1       | 7)                                 |
| $I_{\rm S} V_2 \text{ or } V_{2 \nu 2 4} > 2.7$                               | 00 pc/h? 🗌 Yes                  | s VNo                        | ,                                  |                                          | Is $V_2$ or $V_{2V^2}$           | , > 2,           | '<br>700 pc/h? ∏         | Yes No                                            |                     | ,                                  |
| Is $V_2$ or $V_{2\nu^2 4} > 1.5$                                              | * V <sub>12</sub> /2 <b>Yes</b> | s VNo                        |                                    |                                          | Is $V_2$ or $V_{av2}$            | , > 1.           | 5 * V <sub>12</sub> /2 ∏ | Yes No                                            |                     |                                    |
| If Yes,V <sub>12a</sub> =                                                     | pc/h (<br>13-19)                | Equation 1                   | 3-16, 13-18, or                    |                                          | If Yes, V <sub>12a</sub> =       | 14               | 12 –<br>F<br>13          | oc/h (Equatio<br>3-19)                            | on 13-16, 13        | 3-18, or                           |
| Capacity Che                                                                  | ecks                            |                              |                                    |                                          | Capacity                         | y Ch             | ecks                     | - /                                               |                     |                                    |
|                                                                               | Actual                          | (                            | Capacity                           | LOS F?                                   |                                  |                  | Actual                   | Са                                                | pacity              | LOS F?                             |
|                                                                               |                                 |                              |                                    |                                          | V <sub>F</sub>                   |                  |                          | Exhibit 13-                                       | 8                   |                                    |
| V <sub>FO</sub>                                                               | 1206                            | Exhibit 13-8                 |                                    | No                                       | V <sub>FO</sub> = V <sub>F</sub> | - V <sub>R</sub> |                          | Exhibit 13-                                       | 8                   |                                    |
|                                                                               |                                 |                              |                                    |                                          | V <sub>R</sub>                   |                  |                          | Exhibit 13                                        | 5-                  |                                    |
| Flow Enterin                                                                  | g Merge In                      | fluence A                    | Area                               |                                          | Flow En                          | terii            | ng Diver                 | ge Influer                                        | nce Area            |                                    |
|                                                                               | Actual                          | Max                          | Desirable                          | Violation?                               |                                  |                  | Actual                   | Max Des                                           | irable              | Violation?                         |
| V <sub>R12</sub>                                                              | 1300                            | Exhibit 13-8                 | 4600:All                           | No                                       | V <sub>12</sub>                  |                  |                          | Exhibit 13-8                                      |                     |                                    |
| Level of Serv                                                                 | vice Detern                     | nination (                   | (if not F)                         |                                          | Level of                         | Ser              | vice De                  | terminatio                                        | on (if not          | F)                                 |
| D <sub>R</sub> = 5.475 +                                                      | - 0.00734 v <sub>R</sub> + 0    | ).0078 V <sub>12</sub> - 0.  | 00627 L <sub>A</sub>               |                                          | [ [                              | ) <sub>R</sub> = | 4.252 + 0.               | 0086 V <sub>12</sub> - 0                          | .009 L <sub>D</sub> |                                    |
| D <sub>R</sub> = 8.2 (pc/m                                                    | /ln)                            |                              |                                    |                                          | D <sub>R</sub> = (p              | c/mi/            | ln)                      |                                                   |                     |                                    |
| LOS = A (Exhibit                                                              | 13-2)                           |                              |                                    |                                          | LOS = (E                         | xhibi            | t 13-2)                  |                                                   |                     |                                    |
| Speed Deter                                                                   | mination                        |                              |                                    |                                          | Speed D                          | )etel            | rminatio                 | n                                                 |                     |                                    |
| M <sub>S</sub> = 0.211 (Ex                                                    | ibit 13-11)                     |                              |                                    |                                          | D <sub>s</sub> = (E              | xhibit           | 13-12)                   |                                                   |                     |                                    |
| S <sub>R</sub> = 64.1 mph                                                     | (Exhibit 13-11)                 |                              |                                    |                                          | S <sub>R</sub> = mp              | oh (Ex           | hibit 13-12)             |                                                   |                     |                                    |
| S <sub>0</sub> = N/A mph (Exhibit 13-11) S <sub>0</sub> = mph (Exhibit 13-12) |                                 |                              |                                    |                                          |                                  |                  |                          |                                                   |                     |                                    |
| S = 64.1  mph (Exhibit 13-13)<br>S = mph (Exhibit 13-13)                      |                                 |                              |                                    |                                          |                                  |                  |                          |                                                   |                     |                                    |

HCS2010<sup>TM</sup> Version 6.90

Generated: 6/6/2021 11:47 AM

|                                      | RAMPS AND RAMP JUNCTIONS WORKSHEET |                        |                          |                    |                           |                    |                      |                                                   |                     |            |
|--------------------------------------|------------------------------------|------------------------|--------------------------|--------------------|---------------------------|--------------------|----------------------|---------------------------------------------------|---------------------|------------|
| General Info                         | rmation                            |                        |                          | Site Infor         | mation                    |                    |                      |                                                   |                     |            |
| Analyst                              |                                    |                        | Fr                       | eeway/Dir of Tr    | avel                      | I-95 SB            | Express L            | ane                                               |                     |            |
| Agency or Company                    | AEC                                | OM                     | Ju                       | Inction            | (                         | Off to S           | SW 10th Co           | nnector                                           |                     |            |
| Date Performed                       | d DM                               |                        | JU<br>Ar                 | risdiction<br>Voar |                           | 2020 B             | uild 2               |                                                   |                     |            |
| Project Description                  | SW 10th Stree                      | t SIMR                 |                          | arysis real        |                           | 2020 D             |                      |                                                   |                     |            |
| Inputs                               |                                    |                        |                          |                    |                           |                    |                      |                                                   |                     |            |
|                                      | Domn                               | Freeway Nun            | nber of Lanes, N         | 2                  |                           |                    |                      |                                                   | Downotroor          | n Adi      |
| Upsilealli Auj P                     | tainp                              | Ramp Numbe             | er of Lanes, N           | 1                  |                           |                    |                      | F                                                 | Ramp                | li Auj     |
| Yes                                  | On                                 | Acceleration           | Lane Length, L           |                    |                           |                    |                      |                                                   |                     |            |
|                                      | <b>O</b> #                         | Deceleration           | Lane Length L            | 250                |                           |                    |                      |                                                   |                     |            |
|                                      |                                    | Freeway Volu           | Ime, V <sub>E</sub>      | 1730               |                           |                    |                      |                                                   | l≪ No               | Off        |
| L <sub>up</sub> =                    | ft                                 | Ramp Volum             | e, V <sub>P</sub>        | 560                |                           |                    |                      | l                                                 | -down =             | ft         |
|                                      |                                    | Freeway Free           | e-Flow Speed, S          | 70.0               |                           |                    |                      |                                                   |                     |            |
| $V_u = v$                            | /eh/h                              | Ramp Free-F            | low Speed, SED           | 60.0               |                           |                    |                      |                                                   | v <sub>D</sub> =    | ven/n      |
| Conversion t                         | to pc/h Un                         | der Base               | Conditions               |                    |                           |                    |                      |                                                   |                     |            |
| (nc/h)                               | V                                  | PHF                    | Terrain                  | %Truck             | %Rv                       |                    | f                    | f                                                 | v = V/PHE           | fxf        |
|                                      | (Veh/hr)                           | 0.05                   |                          | 70TTUCK            | /0100                     |                    | 'HV                  | 'p                                                |                     | · 'HV ^ 'p |
| Freeway                              | 1/30                               | 0.95                   | Level                    | 3                  | 0                         | 0.                 | 985                  | 1.00                                              | 184                 | 8          |
| Railip<br>UnStream                   | 000                                | 0.95                   | Level                    | 2                  | 0                         | 0.                 | 990                  | 1.00                                              | 593                 | )          |
| DownStream                           |                                    |                        |                          |                    |                           | +                  |                      |                                                   |                     |            |
|                                      |                                    | Merge Areas            |                          |                    |                           |                    | D                    | iverge Areas                                      |                     |            |
| Estimation o                         | f v <sub>12</sub>                  |                        |                          |                    | Estimati                  | ion o              | f v <sub>12</sub>    |                                                   |                     |            |
|                                      | $V_{12} = V_{F}$                   | (P <sub>FM</sub> )     |                          |                    |                           |                    | V <sub>12</sub> =    | V <sub>R</sub> + (V <sub>F</sub> - V <sub>R</sub> | )P <sub>FD</sub>    |            |
| L <sub>FO</sub> =                    | (Equa                              | ation 13-6 or          | <sup>-</sup> 13-7)       |                    | L <sub>FO</sub> =         |                    | <br>(E               | Equation 13-12                                    | 2 or 13-13)         |            |
| P <sub>FM</sub> =                    | using                              | Equation (             | Exhibit 13-6)            |                    | P <sub>FD</sub> =         |                    | 1.0                  | 00 using Equ                                      | ation (Exhibi       | t 13-7)    |
| V <sub>12</sub> =                    | pc/h                               |                        |                          |                    | V <sub>12</sub> =         |                    | 18                   | 48 pc/h                                           |                     |            |
| $V_3$ or $V_{av34}$                  | pc/h (                             | Equation 13            | 8-14 or 13-17)           |                    | $V_3$ or $V_{av34}$       |                    | 0                    | pc/h (Equation                                    | n 13-14 or          | 13-17)     |
| Is $V_3$ or $V_{av34} > 2,70$        | 00 pc/h? 🗌 Ye                      | s 🗌 No                 |                          |                    | Is $V_3$ or $V_{av3}$     | <sub>4</sub> > 2,7 | 00 pc/h? 🗌           | Yes 🗹 No                                          |                     | ·          |
| Is $V_3$ or $V_{av34} > 1.5$         | * V <sub>12</sub> /2 <b>Ye</b>     | s 🗌 No                 |                          |                    | Is $V_3$ or $V_{av3}$     | <sub>4</sub> > 1.5 | * V <sub>12</sub> /2 | Yes 🗹 No                                          |                     |            |
| If Yes,V <sub>126</sub> =            | pc/h (                             | Equation 13            | 8-16, 13-18, or          |                    | If Yes, V <sub>10</sub> = |                    | p                    | c/h (Equation                                     | 13-16, 13-1         | 8, or 13-  |
| Canacity Ch                          | 13-19)                             | )                      |                          |                    | Conceit                   | v Ch               | 19                   | 9)                                                |                     |            |
|                                      | Actual                             |                        | 2 anacity                |                    |                           |                    | Actual               | Car                                               | ocity               |            |
|                                      | Actual                             |                        | Japacity                 | LUSF?              | V                         |                    | 1010                 | Evhibit 13-8                                      | 1800                | LUS F ?    |
| V                                    |                                    | Evhibit 12.0           |                          |                    | V = V                     | V                  | 1040                 | Exhibit 12.0                                      | 4000                | No         |
| v FO                                 |                                    | EXHIDIL 13-8           |                          |                    | $v_{FO} - v_F$            | - v <sub>R</sub>   | 1253                 | EXTIDIL 13-8                                      | 4800                | INO        |
|                                      |                                    |                        | -                        |                    | V <sub>R</sub>            |                    | 595                  | Exhibit 13-10                                     | 2200                | No         |
| Flow Enterin                         | g Merge Ir                         | fluence A              | Area                     | N/Islatise O       | Flow En                   | terin              | g Diver              | ge Influend                                       | e Area              | Malakaro   |
| V                                    | Actual                             | IVIAX                  | Desirable                | violation?         | V                         | <i>F</i>           |                      | Every Land                                        | e<br>4400-All       | violation? |
|                                      | ico Dotorr                         | EXTINUE 13-0           | (if not E)               |                    |                           |                    | <sup>848</sup>       |                                                   | 4400.All            |            |
| $D = 5.475 \pm 0$                    |                                    |                        |                          |                    | Leveror                   |                    | 252 ± 0              |                                                   | <u>1 (11 1101 F</u> | )          |
| $D_{\rm R} = 5.475 \pm 0$            | $100734 V_{R}^{+}$                 | 0.0076 v <sub>12</sub> | - 0.00027 L <sub>A</sub> |                    | L<br>D _ 17               | <sub>R</sub> – 4   | ·.202 + 0.           | 0000 v <sub>12</sub> - 0.0                        |                     |            |
| $D_R = (pc/m/n)$                     | 1)                                 |                        |                          |                    | $D_R = 1/$                | .9 (pc/            | mi/in)               |                                                   |                     |            |
|                                      | 13-2)                              |                        |                          |                    | LOS = B                   |                    | oit 13-2)            |                                                   |                     |            |
| Speed Deter                          | mination                           |                        |                          |                    | speea D                   | veter              | minatio              |                                                   |                     |            |
| M <sub>S</sub> = (Exibit 1           | 3-11)                              |                        |                          |                    | $D_{s} = 0.1$             | 15/ (E:            | xnidit 13-           | 12)                                               |                     |            |
| S <sub>R</sub> = mph (Exhibit 13-11) |                                    |                        |                          |                    | S <sub>R</sub> = 65       | .6 mph             | (Exhibit             | 13-12)                                            |                     |            |
| S <sub>0</sub> = mph (Ext            | hibit 13-11)                       |                        |                          |                    | ⊃ <sub>0</sub> = N//      | A mph              | (Exhibit 1           | 3-12)                                             |                     |            |
| S = mph (Exhibit 13-13) S = 6        |                                    |                        |                          |                    |                           | .6 mph             | (Exhibit             | 13-13)                                            |                     |            |

HCS2010<sup>TM</sup> Version 6.90

Generated: 6/6/2021 11:55 AM

| RAMPS AND RAMP JUNCTIONS WORKSHEET |                            |                            |                               |                  |                                       |                     |                        |                                                   |                               |                                    |
|------------------------------------|----------------------------|----------------------------|-------------------------------|------------------|---------------------------------------|---------------------|------------------------|---------------------------------------------------|-------------------------------|------------------------------------|
| General Infor                      | mation                     |                            |                               | Site Infor       | mation                                |                     |                        |                                                   |                               |                                    |
| Analyst                            |                            |                            | Fre                           | eeway/Dir of Tra | avel                                  | I-95 S              | B Express L            | anes                                              |                               |                                    |
| Agency or Company                  | AECO                       | MC                         | Ju                            | nction           |                                       | On fro              | m SW 10th              | St. Connector                                     |                               |                                    |
| Analysis Time Period               | PM                         |                            | Ju<br>An                      | alvsis Year      |                                       | 2020                | Build 2                |                                                   |                               |                                    |
| Project Description                | SW 10th Street             | SIMR                       |                               |                  |                                       |                     | 2011012                |                                                   |                               |                                    |
| Inputs                             |                            |                            |                               |                  |                                       |                     |                        |                                                   |                               |                                    |
| Upstream Adi Ramp                  |                            | Freeway Num                | nber of Lanes, N              | 2                |                                       |                     |                        |                                                   | Downstrea                     | am Adi                             |
|                                    |                            | Ramp Numbe                 | er of Lanes, N                | 1                |                                       |                     |                        |                                                   | Ramp                          | <b>,</b>                           |
| Yes Or                             | l                          | Acceleration I             | Lane Length, L <sub>A</sub>   | 1100             |                                       |                     |                        |                                                   | ∏Yes                          | On                                 |
| ✓ No Of                            | F                          | Deceleration               | Lane Length L <sub>D</sub>    |                  |                                       |                     |                        |                                                   |                               |                                    |
|                                    |                            | Freeway Volu               | ime, V <sub>F</sub>           | 1170             |                                       |                     |                        |                                                   |                               |                                    |
| L <sub>up</sub> = ft               |                            | Ramp Volume                | e, V <sub>R</sub>             | 80               |                                       |                     |                        |                                                   | L <sub>down</sub> =           | ft                                 |
| V = veh/h                          |                            | Freeway Free               | e-Flow Speed, S <sub>FF</sub> | 70.0             |                                       |                     |                        |                                                   | V <sub>D</sub> =              | veh/h                              |
| °u ven/n                           |                            | Ramp Free-F                | low Speed, S <sub>FR</sub>    | 60.0             |                                       |                     |                        |                                                   | D                             |                                    |
| Conversion to                      | o pc/h Und                 | ler Base                   | Conditions                    |                  | -                                     |                     |                        |                                                   |                               |                                    |
| (pc/h)                             | V<br>(Veh/hr)              | PHF                        | Terrain                       | %Truck           | %Rv                                   |                     | f <sub>HV</sub>        | f <sub>p</sub>                                    | v = V/PHF                     | x f <sub>HV</sub> x f <sub>p</sub> |
| Freeway                            | 1170                       | 0.95                       | Level                         | 3                | 0                                     | 0                   | .985                   | 1.00                                              | 1                             | 250                                |
| Ramp                               | 80                         | 0.95                       | Level                         | 2                | 0                                     | 0                   | .990                   | 1.00                                              |                               | 85                                 |
| UpStream                           |                            |                            |                               |                  |                                       |                     |                        |                                                   |                               |                                    |
| DownStream                         |                            |                            |                               |                  |                                       |                     |                        | ·                                                 |                               |                                    |
| Estimation of                      | TV I                       | vierge Areas               |                               |                  | Fstimati                              | ion                 | D<br>Df V              | iverge Areas                                      |                               |                                    |
|                                    | <b>*</b> 12                | (5)                        |                               |                  | LSumau                                |                     | <u>12</u>              |                                                   |                               |                                    |
|                                    | $V_{12} = V_{F}$           | (P <sub>FM</sub> )         |                               |                  |                                       |                     | V <sub>12</sub> = V    | / <sub>R</sub> + (V <sub>F</sub> - V <sub>F</sub> | <sub>R</sub> )P <sub>FD</sub> |                                    |
| L <sub>EQ</sub> =                  | (Equa                      | ation 13-6 o               | r 13-7)                       |                  | L <sub>EQ</sub> =                     |                     | (                      | Equation 13                                       | -12 or 13-1                   | 3)                                 |
| P <sub>FM</sub> =                  | 1.000                      | using Equa                 | tion (Exhibit 13-6)           |                  | P <sub>FD</sub> =                     |                     | L                      | ising Equatio                                     | on (Exhibit 13                | 3-7)                               |
| $V_{12} =$                         | 1250 p                     | bc/h                       |                               |                  | $V_{12} =$                            |                     | p                      | oc/h                                              |                               |                                    |
| $v_3$ or $v_{av34}$                | 0 pc/r                     | (Equation                  | 13-14 or 13-17)               |                  | $v_3$ or $v_{av34}$                   |                     | ]<br>                  |                                                   | 13-14 OF 13-1                 | 1)                                 |
| $15 V_3 01 V_{av34} > 2,70$        |                            | s ⊻No                      |                               |                  | $15 V_3 OI V_{av3}$                   | <sub>34</sub> > 2,  | 100 pc/11?             | JYes ∐No                                          |                               |                                    |
| $15 V_3 U V_{av34} > 1.5$          | $v_{12}/2 \square Yes$     | S ⊠N0<br>Fquation 1:       | 3-16 13-18 or                 |                  | IS V <sub>3</sub> OF V <sub>av3</sub> | <sub>34</sub> > 1.: | o v <sub>12</sub> /∠ ∟ | ⊥Yes ∟ No<br>oc/b (Equatio                        | n 13-16 1                     | 3-18 or                            |
| If Yes,V <sub>12a</sub> =          | 13-19)                     |                            | 0 10, 10 10, 01               |                  | If Yes,V <sub>12a</sub> =             |                     | 13                     | 8-19)                                             | , in 10 10, it                | 0 10, 01                           |
| Capacity Che                       | cks                        |                            |                               |                  | Capacit                               | y Ch                | lecks                  |                                                   |                               |                                    |
|                                    | Actual                     | (                          | Capacity                      | LOS F?           | ļ                                     |                     | Actual                 | Ca                                                | pacity                        | LOS F?                             |
|                                    |                            |                            |                               |                  | V <sub>F</sub>                        |                     |                        | Exhibit 13-                                       | 8                             |                                    |
| V <sub>FO</sub>                    | 1335                       | Exhibit 13-8               |                               | No               | V <sub>FO</sub> = V <sub>F</sub>      | - V <sub>R</sub>    |                        | Exhibit 13-                                       | 8                             |                                    |
|                                    |                            |                            |                               |                  | V <sub>R</sub>                        |                     |                        | Exhibit 13                                        | 5-                            |                                    |
| Flow Entering                      | n Merce In                 | fluence A                  | Irea                          |                  | Flow En                               | terii               | na Diver               | rae Influei                                       |                               |                                    |
|                                    | Actual                     | Max                        | Desirable                     | Violation?       |                                       | T                   | Actual                 | Max Des                                           | irable                        | Violation?                         |
| V <sub>R12</sub>                   | 1485                       | Exhibit 13-8               | 4600:All                      | No               | V <sub>12</sub>                       |                     |                        | Exhibit 13-8                                      |                               |                                    |
| Level of Serv                      | ice Detern                 | nination (                 | if not F)                     |                  | Level of                              | Ser                 | vice De                | terminatio                                        | n (if not                     | <b>F</b> )                         |
| D <sub>R</sub> = 5.475 +           | 0.00734 v <sub>R</sub> + 0 | .0078 V <sub>12</sub> - 0. | 00627 L <sub>A</sub>          |                  | [                                     | ) <sub>R</sub> = 1  | 4.252 + 0.             | 0086 V <sub>12</sub> - 0                          | .009 L <sub>D</sub>           |                                    |
| D <sub>R</sub> = 9.0 (pc/mi/       | ln)                        |                            |                               |                  | D <sub>R</sub> = (p                   | c/mi/               | ln)                    |                                                   |                               |                                    |
| LOS = A (Exhibit                   | 13-2)                      |                            |                               |                  | LOS = (E                              | xhibi               | t 13-2)                |                                                   |                               |                                    |
| Speed Detern                       | nination                   |                            |                               |                  | Speed L                               | )etel               | rminatio               | n                                                 |                               |                                    |
| M <sub>s</sub> = 0.206 (Fxi        | oit 13-11)                 |                            |                               |                  | D <sub>s</sub> = (E                   | xhibit              | 13-12)                 |                                                   |                               |                                    |
| $S_{p} = 64.2 \text{ mph}$         | Exhibit 13-11)             |                            |                               |                  | S <sub>R</sub> = m                    | oh (Ex              | hibit 13-12)           |                                                   |                               |                                    |
| $S_0 = N/A mph ($                  | Exhibit 13-11)             |                            |                               |                  | S <sub>0</sub> = m                    | oh (Ex              | hibit 13-12)           |                                                   |                               |                                    |
| S = 64.2  mph                      | Exhibit 13-13)             |                            |                               |                  | S = m                                 | oh (Ex              | hibit 13-13)           |                                                   |                               |                                    |
| , · · · · ·                        |                            |                            |                               |                  |                                       |                     |                        |                                                   |                               |                                    |

HCS2010<sup>TM</sup> Version 6.90

Generated: 6/6/2021 12:01 PM

| RAMPS AND RAMP JUNCTIONS WORKSHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                             |                                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                |                                                 |                     |                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------|-------------------------------------------------|---------------------|------------------------------------|
| General Infor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mation                     |                             |                                    | Site Inform                              | mation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                                |                                                 |                     |                                    |
| Analyst<br>Agency or Company<br>Date Performed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AECO                       | DM                          | Fre<br>Ju                          | eeway/Dir of Tra<br>nction<br>risdiction | avel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I-95 N<br>N. of H   | B CD<br>Hillsboro Blv          | d                                               |                     |                                    |
| Analysis Time Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AM                         |                             | An                                 | alysis Year                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2020 E              | Build 2                        |                                                 |                     |                                    |
| Project Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SW 10th Street             | SIMR                        |                                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                |                                                 |                     |                                    |
| Inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                             |                                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                |                                                 |                     |                                    |
| Upstream Adj Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | Freeway Num<br>Ramp Numbe   | nber of Lanes, N<br>er of Lanes, N | 2<br>1                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                |                                                 | Downstrea<br>Ramp   | am Adj                             |
| Yes On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | Acceleration I              | Lane Length, L <sub>A</sub>        | 890                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                |                                                 | □Yes                | On                                 |
| 🗹 No 🛛 Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | Deceleration                | Lane Length L <sub>D</sub>         | 1000                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                |                                                 | ✓ No                | Off                                |
| L <sub>up</sub> = ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | Freeway Volu<br>Ramp Volume | ime, v <sub>F</sub><br>e. Ve       | 1230<br>710                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                |                                                 | L <sub>down</sub> = | ft                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Freeway Free                | e-Flow Speed, S <sub>FF</sub>      | 55.0                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                |                                                 | V =                 | veh/h                              |
| v <sub>u</sub> = veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | Ramp Free-F                 | low Speed, S <sub>FR</sub>         | 40.0                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                |                                                 | V <sub>D</sub> –    | VEII/II                            |
| Conversion to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | o pc/h Und                 | ler Base                    | Conditions                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                |                                                 |                     |                                    |
| (pc/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V<br>(Veh/hr)              | PHF                         | Terrain                            | %Truck                                   | %Rv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | f <sub>HV</sub>                | f <sub>p</sub>                                  | v = V/PHF           | x f <sub>HV</sub> x f <sub>p</sub> |
| Freeway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1230                       | 0.95                        | Level                              | 3                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                   | .985                           | 1.00                                            | 1                   | 314                                |
| Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 710                        | 0.95                        | Level                              | 2                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                   | .990                           | 1.00                                            | 7                   | /55                                |
| UpStream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                             |                                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                |                                                 |                     |                                    |
| DownStream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | Norgo Aroas                 |                                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | I                              | ivorgo Aroas                                    |                     |                                    |
| Estimation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Van                        | icige Areas                 |                                    |                                          | Estimati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ion d               | of V <sub>40</sub>             | iverge Areas                                    |                     |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 12<br>V V V              |                             |                                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | $\frac{12}{12}$                |                                                 |                     |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $v_{12} = v_F$             | (r <sub>FM</sub> )          | - 10 7)                            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | v <sub>12</sub> - v            | R <sup>+</sup> (V <sub>F</sub> - V <sub>F</sub> | ۲ <sup>۲</sup> FD   | 2)                                 |
| L <sub>EQ</sub> –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (⊏qua                      |                             | 1 13-7)                            |                                          | EQ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | (                              | Equation 13.                                    | - 12 01 13-1        | 3)<br>  7)                         |
| FFM -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.000                      | using Equa                  | uon (Exhibit 13-6)                 |                                          | FD -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | L                              | ising ⊑quatio                                   |                     | -/)                                |
| $v_{12} - v_{12} - v$ | 1314  <br>0 ma/h           | )C/II                       | 10 11 10 17)                       |                                          | $v_{12} - v_{12} - v$ |                     | ۱                              | o/h (Equation )                                 | 10 11 or 10 1       | 7)                                 |
| $v_3 \cup v_{av34}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0  pc/r                    |                             | 13-14 01 13-17)                    |                                          | $v_3 \cup v_{av34}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>`</u> 2'         | l<br>⊒ 200 pc/b2               |                                                 | 13-14 01 13-1       | 1)                                 |
| $13V_3 \text{ or } V_{av34} > 2,700$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $V /2 \square V $          |                             |                                    |                                          | $13 V_3 O V_{av3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ، 4 ~ 2,<br>1 1 ~   | 5 * V /2 □                     |                                                 |                     |                                    |
| If Yes, $V_{12a} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pc/h (                     | Equation 1                  | 3-16, 13-18, or                    |                                          | If Yes, V <sub>12a</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34 ~ 1              | <sup>1</sup> 2′ <sup>2</sup> □ | c/h (Equatio                                    | n 13-16, 13         | 3-18, or                           |
| Capacity Che                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cks                        |                             |                                    |                                          | Capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | v Ch                | ecks                           | 5-13)                                           |                     |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Actual                     | (                           | Capacity                           | LOS F?                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Actual                         | Са                                              | pacity              | LOS F?                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                             | ()                                 |                                          | Vr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                | Exhibit 13-                                     | 8                   |                                    |
| V <sub>EO</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2069                       | Exhibit 13-8                |                                    | No                                       | V <sub>FO</sub> = V <sub>F</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - V <sub>R</sub>    |                                | Exhibit 13-                                     | 8                   |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                             |                                    |                                          | V <sub>R</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                | Exhibit 13<br>10                                | -                   |                                    |
| Flow Entering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n Merae In                 | fluence A                   | Area                               | .8                                       | Flow En                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | terii               | na Diver                       | ae Influer                                      | nce Area            |                                    |
| Ĭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Actual                     | Мах                         | Desirable                          | Violation?                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Actual                         | Max Des                                         | irable              | Violation?                         |
| V <sub>R12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2069                       | Exhibit 13-8                | 4600:All                           | No                                       | V <sub>12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                | Exhibit 13-8                                    |                     |                                    |
| Level of Servi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ice Detern                 | nination (                  | ïf not F)                          |                                          | Level of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ser                 | vice De                        | terminatic                                      | n (if not           | F)                                 |
| D <sub>R</sub> = 5.475 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00734 v <sub>R</sub> + C | 0.0078 V <sub>12</sub> - 0. | 00627 L <sub>A</sub>               |                                          | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D <sub>R</sub> = 4  | 4.252 + 0.                     | 0086 V <sub>12</sub> - 0                        | .009 L <sub>D</sub> |                                    |
| D <sub>R</sub> = 15.7 (pc/mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | i/ln)                      |                             |                                    |                                          | D <sub>R</sub> = (p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c/mi/               | ln)                            |                                                 |                     |                                    |
| LOS = B (Exhibit 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13-2)                      |                             |                                    |                                          | LOS = (E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | xhibi               | t 13-2)                        |                                                 |                     |                                    |
| Speed Detern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nination                   |                             |                                    |                                          | Speed D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )eter               | rminatio                       | n                                               |                     |                                    |
| M <sub>S</sub> = 0.281 (Exit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oit 13-11)                 |                             |                                    |                                          | D <sub>s</sub> = (E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | xhibit <sup>-</sup> | 13-12)                         |                                                 |                     |                                    |
| S <sub>R</sub> = 51.4 mph (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Exhibit 13-11)             |                             |                                    |                                          | S <sub>R</sub> = mp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oh (Ex              | hibit 13-12)                   |                                                 |                     |                                    |
| $S_0 = N/A mph (E)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Exhibit 13-11)             |                             |                                    |                                          | S <sub>0</sub> = mp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oh (Ex              | hibit 13-12)                   |                                                 |                     |                                    |
| $S_0^{=}$ N/A mph (Exhibit 13-11) $S_0^{-}$ Input (Exhibit 13-12) $S =$ 51.4 mph (Exhibit 13-13) $S =$ mph (Exhibit 13-13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                             |                                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                |                                                 |                     |                                    |

HCS2010<sup>TM</sup> Version 6.90

Generated: 8/26/2021 2:54 PM

|                                                      | RAI                        | ORKSHE                      | ET                                 |                                          |                           |                     |                        |                                                   |                     |                       |
|------------------------------------------------------|----------------------------|-----------------------------|------------------------------------|------------------------------------------|---------------------------|---------------------|------------------------|---------------------------------------------------|---------------------|-----------------------|
| General Infor                                        | mation                     |                             |                                    | Site Infor                               | mation                    |                     |                        |                                                   |                     |                       |
| Analyst<br>Agency or Company<br>Date Performed       | AECO                       | MC                          | Fre<br>Ju                          | eeway/Dir of Tra<br>nction<br>risdiction | avel                      | I-95 N<br>N. of I   | B CD<br>Hillsboro Blvo | 1.                                                |                     |                       |
| Analysis Time Period                                 | d PM                       |                             | An                                 | alysis Year                              |                           | 2020 I              | Build 2                |                                                   |                     |                       |
| Project Description                                  | SW 10th Stree              | t SIMR                      |                                    |                                          |                           |                     |                        |                                                   |                     |                       |
| Inputs                                               |                            |                             |                                    |                                          |                           |                     |                        |                                                   | h                   |                       |
| Upstream Adj Ramp                                    |                            | Freeway Num<br>Ramp Numbe   | nber of Lanes, N<br>er of Lanes, N | 2<br>1                                   |                           |                     |                        |                                                   | Downstrea<br>Ramp   | am Adj                |
| Yes Or                                               | ı                          | Acceleration I              | Lane Length, L <sub>A</sub>        | 890                                      |                           |                     |                        |                                                   | Yes                 | On                    |
| 🗹 No 🗌 Of                                            | f                          | Deceleration                | Lane Length L <sub>D</sub>         | 1500                                     |                           |                     |                        |                                                   | <b></b> ✓ No        | Off                   |
| L <sub>up</sub> = ft                                 |                            | Ramp Volume                 | e, V <sub>E</sub>                  | 1520<br>640                              |                           |                     |                        |                                                   | L <sub>down</sub> = | ft                    |
| V = veh/h                                            |                            | Freeway Free                | -Flow Speed, S <sub>FF</sub>       | 55.0                                     |                           |                     |                        |                                                   | V <sub>D</sub> =    | veh/h                 |
| vu venn                                              | I                          | Ramp Free-F                 | low Speed, S <sub>FR</sub>         | 40.0                                     |                           |                     |                        |                                                   | D                   | •                     |
| Conversion t                                         | o pc/h Und                 | der Base                    | Conditions                         |                                          |                           |                     |                        |                                                   |                     |                       |
| (pc/h)                                               | V<br>(Veh/hr)              | PHF                         | Terrain                            | %Truck                                   | %Rv                       |                     | $f_{\rm HV}$           | f <sub>p</sub>                                    | v = V/PHF           | $ m x~f_{HV}~x~f_{p}$ |
| Freeway                                              | 1520                       | 0.95                        | Level                              | 3                                        | 0                         | 0                   | .985                   | 1.00                                              | 1                   | 624                   |
| Ramp                                                 | 640                        | 0.95                        | Level                              | 2                                        | 0                         | 0                   | .990                   | 1.00                                              | 6                   | 080                   |
| UpStream                                             |                            |                             |                                    |                                          |                           | _                   |                        |                                                   |                     |                       |
| DownStream                                           | <u> </u>                   | Morgo Aroac                 |                                    |                                          |                           |                     | <u> </u>               | ivorgo Aroac                                      |                     |                       |
| Estimation of                                        | fv.                        | Merge Areas                 |                                    |                                          | Fstimati                  | ion d               | of V.                  | iverge Areas                                      |                     |                       |
|                                                      | 12                         | ( D )                       |                                    |                                          | Loumaa                    |                     | <u> </u>               | / . /\/ \/                                        | <u>\</u> D          |                       |
|                                                      | $v_{12} = v_F$             | (P <sub>FM</sub> )          |                                    |                                          |                           |                     | v <sub>12</sub> = (    | / <sub>R</sub> + (v <sub>F</sub> - v <sub>R</sub> | P <sub>FD</sub>     | 2)                    |
| L <sub>EQ</sub> =                                    | (Equa                      | ation 13-6 o                | r 13-7)                            |                                          | L <sub>EQ</sub> =         |                     | (                      | Equation 13-                                      | 12 or 13-1          | 3)                    |
| P <sub>FM</sub> =                                    | 1.000                      | using Equa                  | tion (Exhibit 13-6)                |                                          | P <sub>FD</sub> =         |                     | U                      | sing Equatio                                      | n (Exhibit 13       | -/)                   |
| V <sub>12</sub> =                                    | 1624                       | pc/h                        |                                    |                                          | V <sub>12</sub> =         |                     | p                      | c/h                                               |                     |                       |
| $V_3$ or $V_{av34}$                                  | 0 pc/ł                     | n (Equation                 | 13-14 or 13-17)                    |                                          | $v_3$ or $v_{av34}$       |                     | ۲<br>۵۰۰ ۳۰۰           | c/h (Equation 1                                   | 3-14 or 13-1        | /)                    |
| IS $V_3$ or $V_{av34} > 2,70$                        | )U pc/n? []Ye              | s ⊠No                       |                                    |                                          | IS $V_3$ or $V_{av3}$     | <sub>34</sub> > 2,  |                        |                                                   |                     |                       |
| IS $V_3$ or $V_{av34} > 1.5$                         | "V <sub>12</sub> /2 ∐Yes   | s ⊠No<br>(Equation 1'       | 2 16 12 19 or                      |                                          | IS $V_3$ or $V_{av3}$     | <sub>84</sub> > 1.9 | o V <sub>12</sub> /2 ∟ | JYes ∐No                                          | n 10 16 10          | 10 or                 |
| If Yes,V <sub>12a</sub> =                            | 13-19)                     |                             | 5-10, 15-10, 01                    |                                          | If Yes,V <sub>12a</sub> = |                     | 13                     | ic/ii (⊏qualio<br>i-19)                           | 11 13-10, 13        | 5-10, UI              |
| Capacity Che                                         | ecks                       |                             |                                    |                                          | Capacity                  | y Ch                | ecks                   | 1                                                 |                     |                       |
|                                                      | Actual                     | (                           | Capacity                           | LOS F?                                   |                           |                     | Actual                 | Са                                                | pacity              | LOS F?                |
|                                                      |                            |                             |                                    |                                          | V <sub>F</sub>            |                     |                        | Exhibit 13-                                       | 8                   |                       |
| V <sub>FO</sub>                                      | 2304                       | Exhibit 13-8                |                                    | No                                       | $V_{FO} = V_{F}$          | - V <sub>R</sub>    |                        | Exhibit 13-                                       | 8                   |                       |
|                                                      |                            |                             |                                    |                                          | V <sub>R</sub>            |                     |                        | Exhibit 13<br>10                                  | -                   |                       |
| Flow Entering                                        | g Merge In                 | fluence A                   | Area                               | -                                        | Flow En                   | terii               | ng Diver               | ge Influer                                        | ice Area            |                       |
|                                                      | Actual                     | Max                         | Desirable                          | Violation?                               |                           |                     | Actual                 | Max Des                                           | irable              | Violation?            |
| V <sub>R12</sub>                                     | 2304                       | Exhibit 13-8                | 4600:All                           | No                                       | V <sub>12</sub>           |                     |                        | Exhibit 13-8                                      |                     |                       |
| Level of Serv                                        | rice Detern                | nination (                  | ïf not F)                          |                                          | Level of                  | Ser                 | vice De                | terminatio                                        | n (if not           | F)                    |
| D <sub>R</sub> = 5.475 +                             | 0.00734 v <sub>R</sub> + 0 | ).0078 V <sub>12</sub> - 0. | 00627 L <sub>A</sub>               |                                          | [ [                       | D <sub>R</sub> = -  | 4.252 + 0.             | 0086 V <sub>12</sub> - 0                          | .009 L <sub>D</sub> |                       |
| D <sub>R</sub> = 17.6 (pc/m                          | ni/ln)                     |                             |                                    |                                          | D <sub>R</sub> = (p       | c/mi/               | ln)                    |                                                   |                     |                       |
| LOS = B (Exhibit                                     | 13-2)                      |                             |                                    |                                          | LOS = (E                  | xhibi               | t 13-2)                |                                                   |                     |                       |
| Speed Deterr                                         | nination                   |                             |                                    |                                          | Speed D                   | )eter               | rminatio               | n                                                 |                     |                       |
| $M_{c} = 0.289 (Fvi$                                 | hit 13-11)                 |                             |                                    |                                          | $D_s = (E)$               | xhibit              | 13-12)                 |                                                   |                     |                       |
| $S_{n=} = 51.2 \text{ mnh}$                          | (Exhibit 12_11)            |                             |                                    |                                          | S <sub>P</sub> = mu       | oh (Ex              | hibit 13-12)           |                                                   |                     |                       |
| $S_{R} = N/A mph/$                                   | Evhihit 12 11)             |                             |                                    |                                          | $S_0 = mr$                | oh (Ex              | ,<br>hibit 13-12)      |                                                   |                     |                       |
| S = 51.2  mph                                        | (Exhibit 13-13)            |                             |                                    |                                          | S = mr                    | oh (Fv              | hibit 13-13)           |                                                   |                     |                       |
| S = 51.2 mph (Exhibit 13-13) S = mph (Exhibit 13-13) |                            |                             |                                    |                                          |                           |                     |                        |                                                   |                     |                       |

HCS2010<sup>TM</sup> Version 6.90

Generated: 8/26/2021 2:55 PM