APPENDIX I

SW 10th Street Connector \& I-95 Interchange Supplemental Traffic Forecast Scenarios
SW 10th Street Eastbound Weave Operations from the Connector Lane Egress, West of Newport Center Drive, to the Newport Center Drive and I-95 Intersections

SW 10th Street at I-95 - Alternatives Analysis Memorandum

MEMORANDUM

Date:	July 20, 2020
To:	Robert Bostian, Project Management, FDOT District 4
From:	Andrew Velasquez, AECOM Program Manager, Planning and Traffic Engineering Emam Emam, AECOM Traffic Engineering Group Manager
Copies:	Henry Pinzon, FTE Environmental Management Office Brian Ribaric, Atkins Project Manager Lisa Dykstra, RS\&H
Subject:	SW 10 ${ }^{\text {th }}$ Street Connector \& I-95 Interchange Supplemental Traffic Forecast Scenarios
FPN(s):	436964-1, 439891-1
Counties:	Broward (86)

At the request of the Florida Department of Transportation (FDOT) District 4, Florida's Turnpike Enterprise (FTE) staff was tasked with evaluating additional forecast scenarios addressing potential modifications to the SW $10^{\text {th }}$ Street Connector ramps to and from I-95. With the changes in traffic demand associated with the l-95 connections, the intermediate access ramp connections between the Florida's Turnpike and I-95 interchanges were also revisited and new forecast scenarios were developed. Furthermore, the Sawgrass Expressway/Turnpike interchange configuration has been revised since the previous forecast, resulting in a modified forecast affecting the new scenarios.

This memorandum is prepared in support of the I-95 Project Development and Environment (PD\&E) study from SW 10 th Street to Hillsboro Boulevard (FPID 436964-1) and the SW 10 ${ }^{\text {th }}$ Street Connector PD\&E study (FPID 439891-1). This memorandum provides supplemental traffic forecast scenarios to the Project Traffic Forecast Memorandum (PTFM), dated January 2019, and the SW $10^{\text {th }}$ Street Connector Toll-Free Project Traffic Forecast Memorandum, dated November 2019. The Alternative 3D 1.3b non-tolled forecast from the November 2019 memo is now referred to as "Base PD\&E Concept" since this forecast was used in the draft SW $10^{\text {th }}$ Street Connector PD\&E Project Traffic Analysis Report (PTAR), dated September 2019.

Since the publication of the draft SW $10^{\text {th }}$ Street Connector PD\&E PTAR, FTE has revised the interchange configuration at the Sawgrass Expressway/Turnpike interchange to remove the express lanes along the Sawgrass Expressway, and change the Turnpike Mainline configuration from two express lanes in each direction to one managed lane in each direction. The direct
connect ramps to/from the Turnpike south and from/to the SW $10^{\text {th }}$ Street Connector east were changed to connect to the Turnpike general lanes only, instead of the Turnpike express lanes only. These changes are reflected in each new forecast scenario for the SW $10^{\text {th }}$ Street Connector.

For simplification purposes, new scenario names were established in this memo rather than retaining previously named forecast scenario names. Scenarios A, B, and C describe three basic intermediate access options for the SW $10^{\text {th }}$ Street Connector, as described below:

Scenario A: Provides intermediate access for local SW 10 ${ }^{\text {th }}$ Street, serving Powerline Road (to/from the east) and Newport Center Drive (to/from the west).

Scenario B: Provides no access between local SW $10^{\text {th }}$ Street and the SW $10^{\text {th }}$ Street Connector; no ramps to serve either Powerline Road or Newport Center Drive.

Scenario C: Provides access east of Military Trail for local SW $10^{\text {th }}$ Street, serving Newport Center Drive to/from the west. There is no access to/from Powerline Road.

For each scenario, three sub-scenarios describe the connection possibilities for the SW $10^{\text {th }}$ Street Connector with the I-95 general use lanes (GULs) and express lanes (ELs), as describe below:

Sub-scenario 1: Connects to/from I-95 ELs only.
Sub-scenario 2: Connects to/from I-95 GULs, as well as I-95 ELs.
Sub-scenario 3: Connects to/from I-95 GULs only.
The scenario and sub-scenarios combinations create nine unique forecast scenarios (A1, A2, A3, B1, B2, B3, C1, C2, and C3), as summarized in Table 1. Appendix A also provides a schematic for each scenario east of the Sawgrass Expressway/Turnpike interchange. Appendix B provides the consolidated diagram with Sawgrass Expressway, Turnpike, SW $10^{\text {th }}$ Street, and I-95 for the previous Base PD\&E Concept and Scenario A2. The latest update of the Turnpike/Sawgrass interchange as shown in A2 can be described as follows:

- Sawgrass Expressway: 5 GTLs instead of 3 GTLs + 2 Els
- Turnpike Mainline: 1 Managed Lane + 4 GTLs instead of 2 ELs + 3 GTLs
- Sawgrass/Turnpike Interchange: No EL Direct Connect
- Turnpike to SW 10th Connector (from south to east): GTLs connection instead of ELs

Initial Directional Design Hour Volumes (DDHVs) were developed for the 2040 AM period only to compare and shortlist these scenarios for further analysis. This approach is approved by the study team.

Table 1: SW $10^{\text {th }}$ Street Connector Forecast Scenarios Summary

Scenario	Turnpike Interchange		Intermediate Access between Turnpike and I-95		I-95 Interchange Connection		
	GUL	EL	East of Powerline Rd.	East of Military Tr.	EL	EL \& GUL	GUL
PD\&E Base	X	X	X	X	X		
A1	X		X	X	X		
A2	X		X	X		X	
A3	X		X	X			X
B1	X				X		
B2	X					X	
B3	X						X
C1	x			x	X		
C2	x			X		X	
C3	X			X			X

The traffic forecasting process was accomplished using the Express Lane Time-of-Day (ELToD) model to identify traffic volume split between connector lanes and local lanes. The ELToD model encompasses the area of three study corridors:

- Florida's Turnpike corridor between Lake Worth Road and Atlantic Boulevard
- I-95 corridor between Congress Avenue and Atlantic Boulevard
- Sawgrass/SW $10^{\text {th }}$ Street corridor between University Drive and Natura Boulevard

The trip matrices from the Southeast Regional Planning Model (SERPM) were used as input to the subarea ELToD Model. Trip matrices for Scenarios A2/C2 are provided in Appendix C. Each of the scenarios was coded into ELToD to estimate the managed lane and local lane traffic. ELToD can model toll and non-toll portions of the system in one cohesive model network. In these forecast scenarios, the only express lane portion is I-95 Express since the other priced managed lane toll components were removed from SW $10^{\text {th }}$ Street, Sawgrass Expressway, and the Turnpike Mainline.

Figure 1 through 3 present the SW $10^{\text {th }}$ Street Connector and local lane 2040 AM DDHVs along SW $10^{\text {th }}$ Street between the Turnpike and I-95 for each scenario in comparison to the Base PD\&E Concept. The SW $10^{\text {th }}$ Street local lane volumes for both directions are shown at three locations: west of Powerline Road, west of Military Trail, and west of Newport Center Drive.

Figure 1: Year 2040 AM Peak Hour Scenario A Traffic Forecasts

\longrightarrow EL Ingress
\longrightarrow EL Egress
\longrightarrow
EL Segment
Turnpike Mainline / Secondary Road

AECOM
P.O. Box 613069

Florida's Turnpike Milepost 263, Building 5315
Ocoee, Florida 34761-3069
Tel: 407-532-3999
www.aecom.com

SW 10th Street Connector \& I-95 Interchange General Connection Evaluation
Page 5
Figure 2: Year 2040 AM Peak Hour Scenario B Traffic Forecasts

\longrightarrow EL Ingress
\longrightarrow EL Egress
\longrightarrow
\longrightarrow EL Surnike Mainline / Secondary Road

AECOM
P.O. Box 613069

Florida's Turnpike Milepost 263, Building 5315
Ocoee, Florida 34761-3069
Tel: 407-532-3999
www.aecom.com

SW 10th Street Connector \& I-95 Interchange General Connection Evaluation
Page 6
Figure 3: Year 2040 AM Peak Hour Scenario C Traffic Forecasts

\longrightarrow EL Ingress
 EL Egress $=$ EL Segment
 Turnpike Mainline / Secondary Road

AECOM
P.O. Box 613069

Florida's Turnpike Milepost 263, Building 5315
Ocoee, Florida 34761-3069
Tel: 407-532-3999
www.aecom.com

An important aspect of the new scenarios is the connection to the l-95 GULs. With the general use connection, the anticipated volume on the SW $10^{\text {th }}$ Street Connector increases, and local lane traffic decreases. Additionally, the connection to the l-95 GULs also affects the traffic volumes on I-95. As a way to compare the alternatives with one another and the Base PD\&E Concept, the I-95 general use lane (GUL) traffic north and south of SW $10^{\text {th }}$ Street is provided in Table 2. Additionally, the sum of the SW $10^{\text {th }}$ Street local lane traffic at each of the three locations shown on Figures 1 through 3 is also provided in Table 2. The scenarios were then ranked from 9 (worst) to 1 (best) based on these two criteria:

- The impacts to SW $10^{\text {th }}$ local have been always major concern to City of Deerfield Beach and locals. An alternative with higher local traffic (higher percentage compared to Base PD\&E) indicates unacceptable/degraded operations of major intersections (LOS F)
- I-95 operations is major concern to D4. Higher volumes on the I-95 GULs are undesirable and would suggest degraded operations compared to the Base PD\&E. Per lane volumes exceeding LOS D indicates fatal flow alternative and highlighted in red.

Table 2: SW $10^{\text {th }}$ Street Connector Intermediate Access Scenarios Evaluation

Evaluated Scenarios (2040 AM)	PD\&E Base Full Access between Turnpike and I-95	Full Access between Turnpike and 1.95			No Access between Turnpike and I. 95			Partial Access between Turnpike and I-95		
		(A1) EL Only	$\begin{gathered} \text { (A2) } \\ \text { EL \& GUL } \end{gathered}$	(A3) GUL Only	(B1) EL Only	$\begin{gathered} \text { (B2) } \\ \text { EL \& GUL } \end{gathered}$	(B3) GUL Only	$\begin{gathered} \text { (C1) } \\ \text { EL Only } \end{gathered}$	$\begin{gathered} \text { (C2) } \\ \text { EL \& GUL } \end{gathered}$	(C3) GUL Only
I-95 GUL NB North of Hillsboro Blvd (vphpl)*	1,730	1,700	1,820	2,150	1,800	1,830	2,220	1,770	1,820	2,130
I-95 GUL NB South of SW 10th (vphpl)*	1,830	1,780	1,800	1,830	1,890	1,820	1,920	1,840	1,790	1,820
Ranking (Based on higher/worst volume value per lane for the I-95 NB locations)		1	3	8	6	4	9	5	2	7
SW 10th Local Traffic**	11,720	11,770	10,530	11,110	17,300	13,970	15,470	13,650	11,850	12,840
	\%	100\%	90\%	95\%	148\%	119\%	132\%	116\%	101\%	110\%
Rank (Based on \% of the Base PD\&E concept)		3	1	2	9	7	8	6	4	5

* Red indicates I-95 mainline volumes per lane exceeds LOS D target
** SW 10 th local lane volumes for both directions at three locations: west of Powerline Road, west of Military Trail, and west of Newport Center Drive.

The findings based on the traffic forecast comparison can be summarized as follows:

- Scenarios A3, B3, and C3 have forecasted traffic volumes on the I-95 GULs that exceed the target Level of Service (LOS) D threshold (based on the FDOT Generalized Service Volume tables) north of the Hillsboro Boulevard interchange.
- Scenarios B1, B2, and B3 have traffic volumes on the SW $10^{\text {th }}$ Street local lanes that are 19 to 48 percent higher than the Base PD\&E Concept. This will result in degraded level of service conditions compared to the Base PD\&E Concept. Correspondingly, the SW $10^{\text {th }}$ Street Connector will be underutilized, with peak directional volumes in the range of 1,830 vehicles per hour (vph) to $2,220 \mathrm{vph}$.
- Scenarios A1, B1, and C1 maintain the Base PD\&E Concept between the SW $10^{\text {th }}$ Street Connector and I-95 express lanes and are less preferred by the City of Deerfield Beach. The Scenario A1 traffic volume for the egress east of Military Trail is 1,780 vph, which is approaching the practical capacity of a single lane ramp. The Scenario B1 and C1 traffic volumes on the SW $10^{\text {th }}$ Street local lanes are 48 and 16 percent higher than the Base PD\&E Concept, respectively. As a result, traffic operations along SW $10^{\text {th }}$ local lanes will be degraded compared to the Base PD\&E Concept.

Based on the findings from the traffic volume comparisons and considering the project goal to achieve concurrence from the City of Deerfield Beach, the project team determined that Scenarios A2 and C2 should move forward for further operational analysis by the PD\&E teams. Scenario D2 was introduced as a hybrid option and presented to the City of Deerfield Beach. It provides an eastbound ingress and westbound egress serving Powerline Road to and from the east. There are no access ramps serving Newport Center Drive. The three scenarios (A2, C2, and D2) are illustrated on Figure 4. The 2040 AM and PM SW 10 ${ }^{\text {th }}$ Street Connector volumes between the Turnpike and I-95 for Scenarios A2, C2, and D2 are presented on Figures 5 and 6, respectively. The D2 scenario local SW $10^{\text {th }}$ traffic is much higher than options A2 and C2 including the Base PD\&E option by at least 7 percent leading to undesirable operations (i.e, Military trail intersection will operate at LOS F), while SW $10^{\text {th }}$ Street Connector will be underutilized. Accordingly, this scenario will not be analyzed further, though the traffic volumes are provided herein for documentation purposes only.

Detailed 2020 and 2040 AM and PM turning movement projections are provided in Appendix D for the Base PD\&E, A2, and C2 concepts for an expanded analysis area that includes intersections north and south of SW $10^{\text {th }}$ Street and the interchanges at Hillsboro Boulevard and Sample Road. The 2020 and 2040 Annual Average Daily Traffic (AADT) was re-estimated for A2 and C2 concepts and these volumes are provided in Appendix E. The No Action alternative 2020 and 2040 AADT and AM/PM turns are provided in Appendix F.

Figure 4. I-95 Express and I-95 General Use Lane Connections (Scenarios A2, C2, and D2)

Figure 5: Year 2040 AM Peak Hour Traffic Forecasts

\longrightarrow EL Ingress	
\longrightarrow EL Egress	
\longrightarrow	EL Segment
	Turnnike Mainline / Secondary Road

AECOM

P.O. Box 613069

Florida's Turnpike Milepost 263, Building 5315
Ocoee, Florida 34761-3069
Tel: 407-532-3999
www.aecom.com

SW 10th Street Connector \& I-95 Interchange General Connection Evaluation
Page 11
Figure 6: Year 2040 PM Peak Hour Traffic Forecasts

AECOM
P.O. Box 613069

Florida's Turnpike Milepost 263, Building 5315
Ocoee, Florida 34761-3069
Tel: 407-532-3999
www.aecom.com

APPENDIX A

APPENDIX B

APPENDIX C

																																													Toal
	onet	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	
Tek .oftalawornhic	1	0	, 091	0	4.265	2,912	1,995	0	22	1,155	012	22,645	554	1,060	9356	6,205	0	0	0	0	0	0	4	2	18	1	3	3	3	523	12	2	417	14	1	17	6	6	2	9	1	44	56	7	39,88
Tree Luteworthed.	2	6,091	0	0	334	572	1,639	0	1,122	753	02	2.094	287	461	342	${ }^{851}$	0	0	0	0	0	0	6	2	${ }^{24}$	1	5	4	5	95	15	4	618	${ }^{23}$	2	27	${ }^{13}$	19	5	${ }^{21}$	1	${ }^{64}$	66	8	15,575
True mpluesubd.	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
TPe Bommon Eacaliva	4	4,268	332	0	0	13	2,267	0	1,059	824	02	2,139	360	664	489 1,	1,107	0	0	0	0	0	0	3	3	33	1	3	3	3	134	17	4	772	16	1	31	12	16	5	14	1	95	76	12	4,780
Treeatanicicave.	5	2,915	570	0	13	0	318	0 1,21	1,127	513	02	2,008	330	895	527	860	0	0	0	0	0	0	6	3	18	1	5	5	5	112	33	6	619	20	2	31	10	12	4	7	1	${ }^{64}$	23	9	1.000
Tree Glate ed .	6	2,006	1,633	0	2,264	317	0	0	70	1,392	06	6,647	3	8	179	538	0	0	0	0	0	0	3	0	2	1	2	2	3	160	45	8	264	9	1	${ }^{21}$	5	1	0	1	1	7	4	2	15,598
TRe¢ Exta	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TPke Smpme ed.	8	944	1,148	0	1,090	1,163	73	0	0	6	08	8,970	13	34	29	28	17	17	${ }^{23}$	37	28	28	39	8	17	10	0	0	0	0	49	13	51	${ }^{43}$	17	${ }^{34}$	12	${ }^{15}$	12	17	21	99	62	21	14,181
TMNe Cocanut creek	9	1,170	756	0	829	510	1,223	0	6	0	05	5,893	164	12	573 2,	2,393	534	10	9	14	11	11	15	3	6	3	0	0	0	0	17	5	18	17	7	12	5	6	5	7	8	32	21	7	14,509
TRMe Ataniciend.	10	0	0	0	0	0		0	0	,	010	10,386	0	,		0	,	-		,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10,386
Trks. ofatanaicielva	11	12,629	2,063	0	2,109	1,965	6,602	08	8,974	5,892 10	10,385	0	3,496	1,325	364	68	6,143	157	32	42	73	78	22	144	526	12	0	0	0	0	24	7	25	26	9	17	264	295	154	10	11	49	${ }^{31}$	11	${ }_{6}^{64,035}$
	12	546	279	0	349	318	3	0	12	161	-	3,516	0	6	859 3,	3,739	210	9	13	9	44	2	2	,	49	2	2	24	2	158	55	25	8	9	12	9	26	14	2	25	2	8	3	1	10,515
	13	1,067	458	0	661	892	8	0	33	12	01	1,323	6	0	80288	8,510	1,217	32	70	25	76	264	6	4	308	2	328	7	5	290	106	8	13	10		11	44	29	23	74	6	29	9	3	16,780
Sangess Epy U Univestivor.	14	927	338	0	485	524	182	0	28	575	0	358	857	793	0 2,	2,886	1,293	88	212	104	199	197	5	46	477	7	231	44	4	526	46	49	340	25	25	154	125	115	14	727	5	110	405	5	${ }^{13,350}$
	15	6,238	851	0	1,111	868	549	0	28	2,412	0	56	3,750	8,519	2.886	0	2,800	152	503	272	264	927	5	98	1,085	18	572	53	4	395	29	61	494	37	42	235	177	${ }^{134}$	${ }^{36}$ 1,12	1,412	5	145	1,999	6	${ }^{39,288}$
1.95 N.of Pemisisul corp. 0 .	16	0	0	0	0	0	0	0	16	523	06	6,053	231	1,306	1,313 2,	2,717	0	7,104	15,324	9,143 12	12,444 10	10,353 6	6,883	10	525	155	3,026	2,727 6,3	6,330	18,717	173	65	77	38	380	1,325	189	3	3	2	90	2	3	29	1072,22
1.95 Pememisula Cor. Dr.	17	0	0	0	0	0	0	0	16	9	0	140	10	35	85	144	7,104	0	180	377	335	638	460	3	62	25	299	143	433	1,209	18	5	2	4	14	118	14	3	3		9		2	3	11,088
1.95 Vemata Rd.	18	0	0	0	0	0	0	0	23	9	0	23	14	72	217	509	15,316	185	0	1,482	1,028	1,774	1,729	5	133	91	1,153	640	1,165	6,524	88	28	3	${ }^{13}$	54	496	63	4	4	3	26	2	3	12	32,89
1.95 C Sanash R River $^{\text {a }}$	19	0	0	0	0	0	0	0	40	15	0	27	10	26	109	281	9,122	364	1.992	0	1	1,315	663	4	19	22	760	654	674	2,547	36	5	4	30	27	311	53	11	11	4	14	3	4	6	18.995
1.595 Crates Sd.	20	0	0	0	0	0	0	0	27	11	0	58	49	79	211	274	12,519	311	958	6	0	3392	2,355	8	324	125	2,904	1,241 2,	2,120	5,988	276	84	3	${ }^{21}$	52	1,233	30	6	6	3	${ }^{24}$	2	3	17	30,779
1.95 P Palmetoto Pakkd.	21	0	0	0	0	0	0	0	28	11	0	68	2	267	210	976	10,400	640	1,722	1,303	332	0	1,820	22	210	131	2,682	1,401 2	2.011	5,375	171	59	4	22	${ }^{63}$	890	115	6	6	4	3	3	4	17	30,971
1.55 exilboro Bud.	22	4	7	0	4	7	4	0	46	17	0	0	3		6	5	6,950	480	1,706	6612	2,314 1,	1,784	-	4	9	5	1,524	2,825 3,3,	3,330	8,195	6		4	7	5	5	10	12	11	5	5	4	4		29,972
Naurabav. . . ofsw	23	2	3	0	6	4	1	0	16	5	0	347	5	7	96	206	24	5	11	6	29	33	3	0	3,934	991	101	171	112	232	8	1	1	5	6	157	32	22	4	48	6	2	6	4	${ }_{6,653}$
	24	14	18	0	26	15	2	0	16	6	0	493	46	283	442 1,	1,002	931	126	193	46	830	345	5	4,671	0	3,501	144	1,990 1,	1,661	6,985	118	18	1	56	59	722	599	277	122	659	131	9	62	47	22.670
Natra Buv. S. Sotsw 1 Oth	25	1	1	0	2	2	1	0	17	6	0	14	2	3	10	26	153	20	69	21	124	111	4	896	3,477	0	2	9	34	110	3	0	1	3	3	13	78	99	3	181	47	2	4	1	5,533
1.95 Smpmer Rd.	26	3	4	0	2	4	2	0	0	0	,	0	2	281	193	494	3,212	310	1,227	766	2,717 2	2.678	1,556	92	166	1	0	86	2,714	16,284	4	1	3	4	3	3	24	22	8	3	3	2	3	2	32,877
	27	2	4	0	2	4	2	0	0	0	0	0	19	6	35	41	2,735	146	675	6511.	1,195 1	1,430 2	2,710	117	2,166	9	83	0	251	18,434	3	1	2	4	2	3	63	44	9	12	11	2	2	1	30,87
	28	3	4	0	2	4	2	0	0	0	0	0	2	4	3	36	6,402	421	1,145	662 1,	1,963	2,024	3,283	92	1,796	27	2,746	315	0	23,277	4	1	3	4	3	43	192	138	74	118	87	2	3	3	44.85
1.59 es.ofatanicic ind.	29	421	76	0	107	87	131	0	0	0	-	0	113	231	415	33318	18,126	1,150	6,605	2,608 5,	5,320 5,	5,562 8	8,367	226	7,657	97	16,318	18,401 23	23,297	,	123	7	2	35	43	396	513	560	23	372	317	30	665	38	118,72
Waememe Eld. S. Sotsw 1 loth St	30	13	16	0	22	${ }^{38}$	54	0	79	27	.	0	49	87	49	31	119	13	74	26	196	118	5	5	172	2	4	4	4	${ }^{131}$	0	10	703	16	10	37	33	58	13	194	4	19	303	3	2,739
	31	3	6	0	7	8	10	0	24	8	0	0	26	8	50	60	47	4	23	5	62	46	1	1	26	0	1	1	1	9	6	0	271	5	5	4	10	18	5	67	1	2	3	0	${ }_{85} 8$
	32	444	650	0	808	646	277	0	58	20	0	0	8	13	369	546	59	2	3	4	3		4	0	1	0	3	3	3	2	609	225	0	5	3	4	3	4	2	3	3	751	10,307	78	15,26
	33	14	22	0	16	20	10	0	64	23	-	0	10	15	29	52	56	5	13	30	20	22	7	4	80	3	5	5	6	41	17	5	5	0	407	13	6	9	3	79	15	9	538	27	1,705
Swestane. S. Sofsw 10ats.	34	1	2	0	2	2	1	0	27	10	0	0	13	16	31	59	347	13	47	27	44	54	6	5	94	3	4	4	5	55	12	5	4	411	0	20	26	${ }^{41}$	82	214	14	8	512	7	2,153
Militay Trais ofots 10atst.	35	25	37	0	34	${ }^{38}$	23	0	22	8	-	0	7	8	100	128	1,199	114	486	291	1.092	769	5	102	932	11	4	4	54	505	28	4	3	8	16	0	546	884	6,	6,944	588	14	775	27	15,911
	36	9	17	0	16	${ }^{13}$	6	0	${ }^{13}$	5	0	302	30	53	144	211	174	12	45	42	28	91	7	15	495	47	21	64	195	424	45	13	4	5	33	582	0	19	4	362	21	8	314	4	3,982
Newport Centere or. . . of os 10in St.	37	9	26	0	22	16	1	0	15	6	-	312	16	34	131	143	3	2	3	8	5	5	7	9	210	55	18	50	151	500	89	25	5	7	57	1,037	17	0	94	4	57	3	5	8	${ }^{3,165}$
memal ono at Newoort center	38	3	6	0	6	5	-	0	12	5	0	158	2	25	14	35	3	2	3	6	4	4	6	1	68	2	6	7	60	18	14	\%	3	4	10	63	3	108	0	3	4	2	3	1	${ }_{689}$
Militay trial No.tsw 1 1atst	39	9	20	0	14	7	1	0	21	8	0	0	21	82	772 1,	1,646	2	2	3	4	3	3	5	33	845	150	3	14	130	422	194	59	3	62	193	6,603	305	3	3	0	${ }^{875}$	3	3	60	${ }^{12,586}$
Esator. . . . ots w loinst.	40	1	1	0	1	1	1	0	27	9	,	0	3	7	6	7	54	6	18	11	16	4	5	4	173	35	4	13	102	356	4	1	3	11	11	547	20	42	58	826	0	4	3	3	$2,3,3$
Westor E.afo fowetine Ra.	41	39	58	0	80	60	7	0	110	38	0	0	9	31	117	151	2	2	2	3	2	3	3	1	10	1	3	3	3	42	13	2	735	8	5	20	8	3	2	3	4	0	2.676	15	4,273
weline ed. . . . f West or.	42	59	${ }^{68}$	0	77	24	4	0	70	24	0	0	4	10	382 1,	1,963	2	2	,	4	3		4	5	74	3	3	3	4	948	218	26	10,367	633	533	559	250	4	3	4	3	2,607	0	642	1,594
mal zoneat Powerine	43	7	9	0	14	9	2	0	26	9	0	0	1	4	6	6	29	3	10	6	17	16	3	3	53	1	2	2	4	46	3	0	81	21	7	45	5	7	2	64	3	14	620	0	1,160
Toal		3, ${ }^{\text {a }}$	15.573	0	14,79	11,088	15,60	\bigcirc	14,192	14,508	10,385	64,930	10.55	16,77\|	13,530 39	3,2,36	100,333	11,908	32,04	18,721 36	30,829	31, 032	30.021	6,566	26,272	5.553	32,94	30,921 4	44,891	11	2,331	852	15,95	1.69	2,13	15,988	3,05	3,07	12	12,50	2,28	4,256	19,615	1,51	895,888

																																													Total
	zonet	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	
TerN. of flakeoroth Rd.	1	0	1,510	0	${ }_{1,188}$	1,240	635	0	270	293	0	2,992	98	202	260	1,938	0	0	0	0	0	0	1	1	9	0	1	1	1	29	2	1	173	2	0	2	1	1	1	1	0	30	16	2	10,000
TkR Lateworth Rd.	2	2,866	0	0	113	257	599	0	501	347	0	740	76	146	113	287	0	0	0	0	0	0	1	1	14	0	1	1	1	13	2	2	287	3	0	5	2	3	2	3	0	42	23	4	6,44
Tree Hypluxe Evd.	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\bigcirc
Tree Bopton Beach buc	4	1,396	137	0	0	6	1,031	0	543	418	0	971	118	250	202	508	0	0	0	0	0	0	1	3	23	1	1	1	1	24	4	2	463	3	0	8	3	4	3	3	0	72	32	6	${ }_{6,34}$
Trie Atanticave.	5	827	177	0	5	0	132	0	334	149	0	655	49	146	136	241	0	0	0	0	0	0	2	2	10	1	1	2	2	14	6	2	286	5	0	4	1	2	1	1	0	40	9	3	3,248
Tene ciade ed.	6	480	480	0	563	80	0	0	22	551	0	1,800	1	3	2	9	0	0	0	0	0	0	1	0	0	0	1	1	1	30	7	2	114	3	0	2	0	0	0	0	0	5	3	1	4,164
TrNe Bra	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tree Smple Rd.	8	189	246	0	255	461	37	0	0	1	0	3,444	9	25	20	18	7	9	12	14	12	13	16	4	11	6	0	0	0	0	16	7	20	27	6	16	6	9	8	7	10	59	32	14	5,046
TPke Cosunut creek $\mathrm{P}^{\text {a }}$	9	128	84	0	82	66	441	0	3	0	0	1,229	16	8	168	902	${ }^{88}$	5	4	4	4	4	5	1	3	2	0	0	0	0	5	2	6	8	2	5	2	3	2	2	3	18	10	4	${ }^{3,318}$
Tree Altanit Elvd.	10	0	0	0	0	0	0	0	0	0	0	2.510	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2.510
Trss.of Atanaicic ivd.	11	1,993	292	0	331	257	3,297	0	3,654	2,140	3,370	0	1,251	20	16	16	1,459	96	12	7	31	42	8	143	499	10	0	0	0	0	8	4	11	14	3	9	123	112	111	4	5	31	17	8	18,904
	12	74	59	0	71	70	1	0	3	35	0	1,883	0	3	166	1,991	34	2	0	1	2	0	1	0	19	0	0	6	1	13	5	0	1	2	1	6	6	1	1	1	1	5	1	1	4.46
Suwgass Rpy © Us $441 /$ /SR7	13	241	154	0	235	457	4	0	9	4	0	1,218	2	0	64	${ }^{3,126}$	97	6	1	1	32	119	2	2	138	1	78	5	2	60	2	1	4	6	4	4	23	4	17	33	2	18	3	2	6,880
Sawgas Expy Univestity or.	14	249	119	0	151	225	154	0	8	379	0	323	546	326	0	1,099	437	50	92	41	1	35	2	33	256	3	78	27	2	162	3	1	154	7	4	79	60	4	10	201	2	64	355	2	5,746
Suwgassexpy W.of funivesity	15	2,263	404	0	409	452	489	0	10	1,446	0	46	1.513	${ }^{2,396}$	811	0	940	88	257	108	10	128	2	71	601	7	257	20	2	157	3	1	256	16	10	184	123	27	35	546	2	88	1,59	2	15,76
	16	0	0	0	0	0	0	0	5	72	0	879	19	198	192	648	0	3,224	4,970	2,768	2,672	1,486	1,290	9	353	108	487	539	1,777	2,220	3	1	0	34	13	195	137	3	3	0	1	0	0	13	24,39
${ }^{1.95 ¢}$ Pemisisula Cor. P .	17	0	0	0	0	0	0	0	5	2	0	15	1	4	11	31	775	0	11	81	90	147	167	2	39	17	29	11	48	78	1	0	0	2	0	15	9	2	2	0	1	0	0	1	1,988
${ }^{1.585}$ Pramato Rd.	18	0	0	0	0	0	0	0	6	2	0	18	1	2	41	120	2,496	47	0	213	394	619	699	4	69	47	122	48	95	221	3	0	0	9	1	72	49	3	3	1		1	0	7	5,46
1.95 ¢ Spansis River	19	0	0	0	0	0	0	0	19	7	0	27	3	6	22	74	1,528	86	526	0	4	276	188	3	8	10	102	145	155	497	1	0	1	14	2	50	39	10	9	2	2	2	1	2	3,823
	20	0	0	0	0	0	0	0	9	3	0	31	6	12	52	63	1,605	69	128	2	0	52	316	6	151	43	164	42	4	1,074	5	1	0	4		72	16		5	1	1	1	0	6	3,950
1.55 Palmetoto Park kd.	21	0	0	0	0	0	0	0	10	4	0	32	1	14	33	399	2,426	215	457	413	35	0	591	${ }^{21}$	156	90	380	142	156	1,29	3	0	0	10	2	72	85	5	5	1	1	1	0	7	7,057
${ }^{1.955}$ ¢ Hillsboro Evx.	22	0	1	0	1	1	1	0	20	7	0	0	1	3	3	2	1,522	182	661	175	646	297	0	3	6	4	514	820	536	1,640	0	0	1	3	1	2	7	10	10	2	2	2	1	2	7.091
Natura Bv. N. . ofsw loth st.	23	0	1	0	1	1	0	0	7	2	0	-	4	2	19	43	0	1	1	1	1	1	1	0	951	303	69	93	52	117	1	0	0	4	1	61	25	17		30	${ }^{3}$	1	5	4	1.825
Sw 1oth St. . .of. 1.95	24	2	4	0	-	4	1	0	7	3	0	29	26	140	205	454	101	14	36	5	82	28	1	345	,	464	${ }^{23}$	470	264	1,182	15	2	0	51	7	357	482	224	121	429	50	6	29	42	5,712
Natura Bud. S. ofsw 10.hst.	25	0	0	0	0	1	0	0	5	2	0	0		1	5	12	35	6	30	8	49	27	1	266	535	0	1	3	15	44	0	0	0	3	1	4	65	55	3	67	11	1	2	1	1,261
1.59 ¢ Smple Re.	26	0	1	0	0	,	1	0	0	0	0	,	1	103	39	95	1,017	130	556	183	523	507	202	6	1	,	0	32	574	4,316	-	0	0	2	,	1	14	16	,	1	1	1	1	1	${ }_{8,31}$
1.59 C Copans Red.	27	0	1	0	0	1	1	0	0	0	0	0	2	2	6	8	331	57	358	179	198	314	645	17	338	1	7	0	8	4,612	0	0	0	1	1	1	39	18	7	1	2	1	0	1	7,155
1.95 ¢ Alanicichd.	28	0	1	0	0	1	1	0	0	0	0	0	1	2	1	1	872	128	616	123	526	388	689	9	256	4	277	16	0	4,102	0	0	0	2	1	7	146	75	64	17	14	1	0	1	8,34
$1.95 ¢$ ¢ Sof Atalanic Evo.	29	3	1	0		2	6	0	0	0	0	-	9	52	28	49	2,382	278	1,486	644	1,042	1,382	1,750	19	1,468	19	1,856	3,461	4,350	,	1	0	0	3	1	67	393	342	18	62	57	3	10	10	21,25
	30	4	5	0	10	12	26	0	${ }^{38}$	14	0	0	2	28	27	16	20	3	25	3	47	13	1	4	113	1	1	1	1	7	0	0	346	3	2	19	12	15	-	39	1	15	260	1	1,143
	31	0	1	0	1	2	4	0		2	0	0	23	5	44	55	1	0	1	0		1	0	0	8	0	0	0	0	0	3	0	46	0	0	1	1	1	1	3	0	1	17	0	233
Powe inie ed. 5.0 of sw wions st.	32	52	77	-	108	109	60	\bigcirc	31	11	0	-	,	${ }^{\circ}$	143	212	-	,	0	1	,	1	,	0	0	0	0	1	1	-	97	45	0	1	,	1	0	1	,	,	1	388	3,149	15	4.521
sw3oth Ave. 5. of sw 10.tst.	33	0	1	0	1	1	1	0	12	4	0	0	3	3	6	14	4	1	2	,	4	3	1	1	13	1	1	1	1	3	1	0	0	0	76	3	2	1	1	12	3	2	48	15	246
swzst Ave. S. . of sw 10atst.	34	0	0	0	0	0	0	0	11	4	0	0		5	12	27	104	4	7	7	10	8	2	3	68	2	1	2	2	5	1	0	1	99	0	9	6	2	2	51	5	3	92	5	568
	35	4	5	0	8	8	8	0	11	4	0	0	1	4	41	30	225	43	161	69	298	92	2	58	411	7	1	1	9	80	3	0	1	4	2	0	269	232	67	2,053	148	5	50	17	4,431
	36	0	0	0	0	0	0	0		1	0	5	2	1	10	11	20	4	14	8	7	16	2		${ }^{132}$	7	8	25	26	69	1	0	0	1	1	27	0	2	2	13	2	1	-	2	${ }^{427}$
	37	0	0	0	0	0	0	0	1	0	0	5	0	0	8	14	1	1	1	1	1	1	1	2	58	25	3	18	42	127	0	0	0	3	0	34	9	0	1	0	3	0	0		${ }_{3} 35$
Intemal one at Newoort Center	38	0	-	0	0	0	0	0	,	1	0	,	0	0	2	0	,	1	1	1	1	1	1	0	,	1	3	2	2	1	0	0	0	0	0	0	1	1	0	0	0	0	0	1	${ }^{26}$
Miltart trail N . ofsw Ioth st.	39	0	1	0	1	-	0	0	7	3	0	0	5	2	248	587	1	1	1	1	1	1	1	10	281	79	1	3	12	35	16	2	0	${ }^{53}$	11	1,583	156	1	1	0	12	1	1	43	3,64
Esator. . . ofsw 1 10 th St.	40	0	0	,	0	0	0	0	10	4	0	0		3	,	2	1	1	1	2		1	2		102	23	1	7	32	124	0	0	1	5		227	12	10	4	19	0	2	1		610
West O . E. . of Poweverine ed.	41	10	20	0	22	24	3	0	60	22	0	0	5	15	61	75	1	1	1	1	1	1	1	1	4	1	1	1	2	8	2	1	306	3	1	12	2	1	1	1	2	0	103	6	${ }^{783}$
Powefine Rd. .o. fo west or.	42	13	16	0	22	6	2	0	39	14	0	-	2	7	33	464	-	0	1	1	1	1	1	0	3	0	1	1	1	3	22	3	3,292	18	11	127	1	1	1	1	1	131	0	106	4,435
Intenal 2 one a Powerine	43	0	1	0	1	1	0	0	5	2	0	0	0	1	2	3	1	1	0	1	1	1	0	0	4	0	0	0	1	7	0	0	5		0	12	0	0	0	3	1	3	59	0	117
Total		10,29	3,97	0	3,586	3,74	6,937	0	5.83	5,953	3,30	18,353	3,80	4.14	3,254	13,688	${ }_{\text {18,32 }}$	4,55	10,30	5.067	6,30	6.007	6.596	1.056	7,121	1,230	4,499	5,99	8,81	${ }^{22,367}$	24	82	5,75	${ }^{42}$	173	3,35	2,388	${ }^{1,23}$	590	3,61	352	1.041	5,926	361	220,54

							皆																																						Total
	zonet	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	
TerN. of flakeoroth Rd.	1	0	2,866	0	1,397	828	482	0	181	125	0	1,544	75	245	249	2,269	0	0	0	0	0	0	0	0	2	0	0	0	0	3	4	0	56	0	0	6	0	0	0	0	0	8	11	0	10,353
TkR Lateworth Rd.	2	1,510	0	0	137	177	481	0	234	82	0	301	61	156	119	404	0	0	0	0	0	0	1	1	4	0	1	1	1	1	5	1	82	0	0	8	0	0	0	1	0	15	${ }^{13}$	1	3,966
Tree Hypluxe Eld.	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tree Bopton Beach buc	4	1,187	112	0	0	5	563	0	243	80	0	40	73	238	151	409	0	0	0	0	0	0	1	1	5	0	0	0	0	2	9	1	115	0	0	12	0	0	0	1	0	16	17	1	3,584
Trie Atanticave.	5	1,239	257	0	6	0	78	0	429	63	0	258	70	453	220	442	0	0	0	0	0	0	1	1	4	1	1	1	1	2	11	2	114	1	0	13	0	0	0	0	0	18	5	1	3,688
Toke Gide ed.	6	634	597	0	1.029	${ }^{133}$	0	0	${ }^{35}$	421	0	3,327	1	4	150	478	0	0	0	0	0	0	1	0	1	0	1	1	1	5	${ }^{23}$	4	${ }^{63}$	1	0	13	0	0	0	0	0	2	2	0	6,927
TrNe Bra	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tree Smple Rd.	8	279	517	0	562	348	23	0	0	2	0	3,650	3	9	8	10	5	4	4	16	10	8	15	3	6	4	0	0	0	0	30	6	29	5	8	16	3	2	2	6	9	39	27	4	5.576
TPke Cosunut creek $\mathrm{P}^{\text {a }}$	9	296	350	0	422	152	560	0	1	0	0	2,139	36	4	378	1,477	73	2	2	6	4	3	5	1	2	1	0	0	0	0	11	2	10	2	3	6	1	1	1	2	3	14	10	2	5,999
Tree Altanit Elvd.	10	0	0	0	0	0	0	0	0	0	0	3,369	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3,369
Trss.of Atanaicic ivd.	11	2,453	730	0	958	652	1,884	0	3,448	1,230	2,511	0	1,880	1,208	318	50	868	14	14	29	${ }^{38}$	29	7	2	27	2	0	0	0	0	13	3	${ }^{13}$	2	4	7	9	8	2	3	4	18	12	2	18,37
	12	93	72	0	112	47	1	0	9	15	0	1,270	0	2	543	1,510	21	1	1	2	7	1	1	2	24	1	1	2	1	7	2	${ }^{23}$	3	1	5	2	3	1	1	5	1	3	2	0	3,800
Suwgass Rpy © Us $441 /$ /SR7	13	202	145	0	250	147	3	0	24	8	0	7	3	0	324	2,393	230	4	2	5	16	13	3	1	138	1	95	2	2	47	25	5	8	1	4	6	2	1	1	2	4	11	5	1	4,120
Sawgas Expy Univestity or.	14	259	112	0	201	137	2	0	20	169	0	6	164	63	0	810	222	10	32	20	65	30	2	11	202	4	36	6	2	25	24	45	151	3	11	64	16	13	2	234	3	45	26	2	3,322
Suwgassexpy W.of funivesity	15	1,954	289	0	513	245	9	0	18	921	0	7	1,998	3,131	1,099	0	759	30	96	70	80	371	2	26	451	10	88	8	2	45	14	58	227	7	25	48	19	24	1	560	3	55	375	3	13,63
	16	0	0	0	0	0	0	0	6	75	0	1,314	29	83	368	794	0	1,518	3,085	1,439	2,049	2,106	1,156	0	159	47	775	283	851	1,79	13	1	0	1	62	134	16	0	0	0	1	0	0	1	18,48
${ }^{1.95 ¢}$ Pemisisula Cor. P .	17	0	0	0	0	0	0	0	7	4	0	80	2	5	41	73	3,915	0	57	79	86	182	135	1	22	8	96	47	122	202	2	0	0	0		25	3	1	1	0	1	0	0	0	5.202
${ }^{1.585}$ Pramato Rd.	18	0	0	0	0	0	0	0	11	3	0	5	0	1	84	234	4,242	8	0	533	176	427	541	1	62	${ }^{43}$	456	328	647	1,195	18	1	0	1	4	103	12	1	1	1	,	1	0	0	9,142
1.95 ¢ Spansis River	19	0	0	0	0	0	0	0	14	4	0	0	1	1	41	108	2,674	63	140	0	3	425	157	1	10	12	165	180	142	568	2	0	1	1	5	48	7	1	1	1	1	1	1	1	4,779
	20	0	0	0	0	0	0	0	13	4	0	27	2	34	1	11	3,058	84	306	4	0	37	608	1	161	82	493	209	636	963	39	3	1	1		219	7	1	1	1	1	1	0	1	7.006
1.58 P Palmeto Park Rd.	21	0	0	0	0	0	0	0	12	4	0	36	0	113	${ }^{33}$	120	1,860	150	527	276	71	0	250	1	49	40	429	297	420	1,145	10	1	0	1	5	60	15	1	1	1	1	1	0	1	5,932
${ }^{1.955}$ ¢ Hillsboro Evx.	22	1	1	0	1	2	1	0	20	6	0	0	1	2	2	2	1,527	162	562	178	405	556	0	1	2	2	226	807	990	1,920	1	0	1	1	2	1	3	1	1	1	2	1	1	0	7,338
Natura Bv. N. . ofsw loth st.	23	2	2	0	5	3	0	,	10	${ }^{3}$		347	1	5	76	163	11	2	3	3	8	20	2	0	688	445	17	59	37	59	7	1	0	1	5	93	7	5	1	17	4	1	1	0	2,113
Sw 1oth St. . .of. 1.95	24	7	10	0	17	8	0	0	9	3	0	463	17	123	224	529	160	14	${ }^{21}$	3	74	56	2	436	,	340	1	446	388	1,699	79	7	0	4	42	254	112	48	1	183	73	2	2	3	5,63
Natura Bud. S. ofsw 10.hst.	25	1	1	0	2	1	0	0	12	4	0	14	1	2	5	14	106	14	31	8	46	70	3	302	759	0	2	2	13	48	2	0	0	0	2	9	12	44	1	112	36	1	1	0	1.680
1.59 ¢ Smple Re.	26	0	1	,	1	,	1	0	0	0	0		,	77	76	251	667	32	114	112	243	414	509	59	32	1	0	14	614	3,146	0	0	0	-	,	1	7	3	,	1	1	1	0	-	6,384
${ }^{1.55}$ C Copans Sd d.	27	0	1	0	1	1	1	0	0	0	0	0	5	4	21	16	588	9	36	127	49	123	644	64	527	3	22	-	21	3,490	0	0	0	0	1	1	19	${ }^{13}$	1	2	4	1	0	0	5,795
1.95 ¢ Alanicichd.	28	1	1	0	1	1	1	0	0	0	0	0	1	2	1	2	1,959	43	71	137	5	137	425	36	299	15	395	4	0	3,983	1	0	1	0	1	5	20	31	1	7	21	1	1	1	7,609
$1.95 ¢$ ¢ Sof Atalanic Evo.	29	25	11	0	20	12	25	0	0	0	0	-	14	61	163	159	3,145	90	213	565	1,649	1,453	1,675	103	1,721	53	3,824	2,736	5,292	0	5	0	0	1		57	68	121	1	27	103	5	2	6	23,40
Watemay Eld. S. Sof sw 1oth 5 St.	30	4	4	0	7	13	15	0	39	12	0	0	13	6	8	8	9	1	6	2	15	5	1	1	${ }^{33}$	1	1	0	1	2	0	7	234	1	2	12	3	1	-	35	1	4	40	0	547
	31	1	3	0	5	4	4	0	18	6	0	0	1	2	4	3	1	0	1	1	2	1	0	0	5	0	0	0	0	0	1	0	110	0	1	1	0	0	0	5	0	1	5	0	187
Powe inie ed. 5.0 of sw wions st.	32	182	303	-	489	305	121	0	25	8	0	-	,	5	194	324	1	0	0	1	,		,	0	,	,	0	0	0	-	349	54	,	0	1	1	0	0	0	0	1	254	3,001	-	5.527
Sw3oth Ave S. . of sw Ioth St.	33	3	4	0	4	6	4	0	44	14	0	0	3	11	11	27	51	2	9	17	6	12	3	3	66	3	2	2	2	3	4	1	2	0	116	8	3	5	1	${ }^{65}$	7	3	22	1	552
swzst Ave. S. . of sw 10atst.	34	0	0	0	1	1	0	0	14	5	0	0	3	10	11	26	30	1	2	4	4	4	2	1	13	1	1	1	2	2	3	1	1	70	0	5	2	1	1	21	6	2	20	1	274
	35	1	2	0	3	2	1	0	8	3	0	,	3		39	92	237	15	60	49	95	70	2	38	369	4	1	1	8	63	-	1	1	1	3	0	47	59	0	1,571	250	4	46	5	3,162
	36	1	2	0	3	2	-	0	-	2	0	166	8	30	78	159	118	7	29	27	15	59	4	11	355	41	10	30	129	264	13	1	1	1	6	244	0	11	1	149	13	2	1	0	1,997
	37	1	3	0	3	1	0	0	10	3	0	130	1	5	5	30	2	1	2	6	4	3	6	7	144	29	9	12	57	200	13	1	1	1	2	183	3	0	1	1	9	1	1	-	380
Intemal one at Newoort Center	38	1	,	0	2	1	0	0	8		0	110		16	9	34	2	1	1		3	3	5	1	67	1	3	4	42	9	7	0	1	0		46	2	1	0	1	3	1	1	0	397
Miltay trail N . ofsw 10 n St	39	2	4	0	4	,	0	0	11	4	-	0	1	52	307	${ }^{837}$	1	0	1	2	1	1	2	22	509	67	1	1	25	67	48	4	1	7	55	2,216	25	0	0	0	14	1	1	3	4,29
Esator. . . ofsw 1 10 th St.	40	0	0	,	0	1	0	0	16	5	-	0	1	3	3	4	1	1	1	3	2	1	2	2	63	12	2	2	21	65	1	0	1	2	5	168	4	6	1	8	0	2	1	1	414
West O . E. . of Poweverine ed.	41	21	30	0	51	29	3	0	49	15	0	0	4	15	54	75	0	0	0	1	1	1	1	0	4	1	1	1	1	2	10	1	314	1	2	5	1	0	0	1	1	0	235	3	934
Powefine Rd. .o. fo west or.	42	12	18	0	24	7	2	0	29	9	0	0	1	3	326	1,470	0	0	0	1	0	0	1	2	24	2	0	0	0	8	191	15	2,776	19	69	65	4	0	0	1	1	183	0	53	5.318
Intenal 2 one a Powerine	43	3	4	0	7	4	1	0	20	6	0	0	1	3	3	2	17	1	6	2	9	7	2	2	46	1	1	1	1	10	1	0	21	\%	5	30	3	2	1	45	2	6	108	0	335
Total		${ }^{10,34}$	6,454	0	6,238	3,278	4.170	0	5.053	3,30	2.51	18,909	4,778	6,189	5,51	15,788	26.50	2284	5.38	3,731	5.220	6,26	6.176	1,47	7,058	1.27	7,157	5.888	10,473	21,30]	1,000	29	4,391	146	473	4,95	461	407	29	3,071	585	722	3,97	106	22,980

		iz					单																																						Total
	zonet	1	2	3	-	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	
Tern. of fateworth Rd.	1	0	1,715	0	${ }^{1,681}$	844	878	0	469	736	0	8,610	381	613	425	1,998	0	0	0	0	0	0	3	0	6	0	2	2	2	491	6	1	188	12	1	9	5	6	1	8	0	6	29	4	${ }^{19,136}$
TRe Lateworth Re.	2	1,716	0	0	${ }^{85}$	138	559	0	387	324	0	1,052	151	160	111	160	0	0	0	0	0	0	4	0	6	0	3	3	3	${ }^{82}$	9	2	249	20	1	14	11	16	3	17	0	7	30	4	5.325
Tree Hypluse Elvad.	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tre Boymon Eeach Blud.	4	1,685	83	0	0	3	673	0	274	326	0	828	170	176	137	190	0	0	0	0	0	0	2	0	5	0	1	1	1	108	5	1	194	13	1	11	9	12	2	10	0	7	27	6	4,961
Tree etanicave.	5	849	136	0	3	0	107	0	365	301	0	1,095	211	296	171	177	0	0	0	0	0	0	3	0	4	0	3	2	3	96	16	2	218	15	1	14	8	10	2	6	0	6	10	5	4,34
TPke Glade ed.	6	892	556	0	671	104	0	0	13	420	0	1,520	0	1	26	50	0	0	0	0	0	0	1	0	1	0	1	1	1	125	15	2	87	6	1	7	4	0	0	0	0	0	0	0	4.506
Tree Bta	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
Tree Smple ed.	8	476	384	0	273	354	13	0	0	2	0	1.876	0	0	0	,	5	4	7	7	5	7	8	0	0	0	0	0	0	0	3	1	2	11	3	2	3	4	2	3	2	1	2	2	3,455
TPke cocunut Creer Patusay	9	746	322	0	324	292	422	0	2	0	0	2.526	112	0	27	45	${ }^{373}$	3	4	4	3	5	5	0	-	0	0	0	0	0	2	0	1	7	2	1	2	3	2	2	1	0	1	1	5.24
Tree Alanicie ind.	10	0	0	0	0	0	0	0	0	0	0	4,507	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4,507
Tres.of Atanatic ind.	11	8.683	1,041	0	821	1,057	1,521	0	1,871	2,523	4,505	0	365	97	30	2	3,816	47	6	6	4	6	7	0	0	0	0	0	0	0	3	1	2	10	2	1	132	176	42	3	2	1	2	2	26,784
Suggas Expy © Luos Rd.	12	379	147	0	166	201	0	0	0	111	0	363	0	1	150	238	156	7	12	6	${ }^{35}$	1	1	0	6	0	1	16	1	137	49	2	4	6	6	1	17	13	1	20	0	0	0	0	2.250
Suwgas Sppy us 441/SR7	13	623	159	0	175	287	1	0	0	0	0	98	1	0	414	2,991	890	23	67	19	28	132	2	1	32	0	155	1	1	184	78	2	1	3	2	1	19	24	6	38	1	0	0	0	6,400
Suwgas Sppy Univesity or.	14	419	107	0	132	161	25	0	0	27	0	29	147	403	0	978	633	27	88	43	133	132	1	1	19	0	117	11	1	338	19	3	35	15	9	11	48	98	2	292	1	1	24	1	4,532
Suggass Expy W. of Univestity or.	15	2,021	159	0	189	171	50	0	0	45	0	2	239	2,992	976	0	1,101	34	151	95	174	428	1	2	32	0	${ }^{227}$	24	0	193	11	2	11	14	7	3	35	${ }^{83}$	0	306	0	1	31	1	9,812
1.955 .of feemisula Cop. or.	16	0	0	0	0	0	0	0	5	376	0	3,860	183	1,025	752	1,274	0	2,363	7,269	4,937	7,724	6,761	4,438	0	12	0	1,765	1,906	3,702	14,718	156	64	77	3	305	997	36	0	0	2	89	1	2	14	6,58
$1.95 \pm$ Penisulu Corr. Dr.	17	0	0	0	0	0	0	0	4		0	45	8	26	33	40	2,414	0	112	217	158	309	158	0		0	174	86	262	929	15	5	2	2	12	79	1	0	0	1	8	1	2		5.08
1.59 Vemata Rd.	18	0	0	0	0	0	0	0	6	4	0	0	12	69	93	155	8,578	130	0	736	458	728	490	0	2	0	574	263	423	5,108	66	27	3	3	48	320	2	0	0	2	${ }^{24}$	1	3	4	18,335
1.95 S Sanaish River	19	0	0	0	0	0	0	0	6	4	0	0	6	19	46	99	4,941	214	827	0	1	614	318	0	1	0	492	329	378	1,481	33	5	3	15	20	212	7	0	0	2	11	1	3	3	10,033
	20	0	0	0	0	0	0	0	5	3	0	0	41	32	158	200	7,857	158	523	1	0	249	1,431	1	12	1	2,247	991	1,880	3,061	231	81	2	16	43	942	7	0	0	2	22	1	2	11	1,813
1.59 Peameto Park kd.	21	0	0	0	0	0	0	0	7	4	0	0	1	140	144	457	6,113	275	738	613	226	0	978	0	4	0	1.874	962	1,434	2,940	159	57	3	11	55	758	15	0	0	2	1	1	3	10	17,987
	22	3	5	0	2		1	0	6	4	-	0	1	1	1	1	3,901	136	483	308	1,262	932	0	0	0	0	784	1,197	1,804	4,635	5	1	3	3	2	2	0	0	0	2	1	1	3	1	15,95
	23	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	12	2	7	2	20	12	0	0	2,296	242	15	18	23	57	0	0	0	0	0	3	0	0	0	1	0	0	1	0	2,715
Sw 10n St.E. . of. 195	24	5	4	0	3	3	0	0	0	0	0	0	4	20	12	20	670	98	136	37	674	261	1	3,889	0	2,997	120	1,073	1,009	4,103	24	10	0	0	10	111	5	4	0	${ }^{48}$	7	1	32	2	15,095
	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	1	7	5	29	14	0	329	2,183	0	0	3	,	19	0	0	0	0		0	0	0	0	2	0	0	0	0	2.612
1.159 Sample Rd.	26	2	3	0	1	2	1	0	0	0	0	0	0	101	78	149	1,527	148	558	470	1,951	1,758	846	28	132	0	,	40	1,525	8,822	3	0	2	2	1	1	2	3	0	,	1	1	2	0	18,161
1.59 Copans Sd d.	27	2	2	-	1	2	1	,	0	,	0	0	12	1	8	18	1,816	81	282	346	947	${ }^{993}$	1,422	37	1,302	5	53	0	222	10,332	3	0	2	2	1	1	5	13	1	10	4	1	2	0	17,927
1.95 eatanicickd.	28	2	3	0		,	1	0	0	0	0		0	1	1	0	3,571	249	458	402	1,432	1,499	2,169	47	1,240	8	2.074	296	0	15,192	3	0	2	2	1	31	26	32	9	93	52	1	2	2	2,903
1.95 © S.of Alanaicis Bu.	29	393	64	0	85	73	100	O	0	0	0	0	91	118	224	125	12,59	782	4,006	1,399	2.629	2,727	4,942	103	4,469	25	10,638 11	12,203	13,65	0	117	7	1	31	38	273	52	97		283	158	22	653	22	7,407
	30	5	7	0	4	${ }^{13}$	${ }^{13}$	0	2	1	0	0	33	${ }^{53}$	13	8	90	8	${ }^{43}$	21	134	99	4	1	26	0	3	3	3	122	0	2	123	12		7	18	42	3	120	2	0	4	1	1.050
Indeanasance or. S. So sfw loth st.	31	1	2	0	1	2	,	0	0	0	0	0	1	2	2	1	45	3	21	4	57	${ }^{43}$	1	0	13	0	1	0	1	9	2	0	115	5	4	2	9	17	5	60	0	0	8	0	${ }_{4} 39$
	32	209	271	0	211	232	96	0	2	1	0	0	3	1	32	10	58	2	2	2	2	3	3	0	0	0	2	2	2	2	163	126	0	4	2	1	2	3	2	,	1	109	4,157	57	5.78
sw3ot Ave. S. of fsw 10atst.	33	11	17	0	12	13	5	,	7	4	0	0	4	2	11	10	2	1	2	11	10	8	2	0	1	0	2	2	2	35	13	4	3	0	215	2	2	3	1	2	5	4	468	10	907
	34	1	1	0	1	1	1	0	2	1	-	-	5	2	8	6	213	8	38	16	30	42	1	1	13	0	1	1	1	47	8	4	2	242	0	5	19	38	5	142	4	2	399		13.30
Miltay Trail 5 . ofsw $10 . \mathrm{St}$ St.	35	20	30	0	23	28	14	0	2	2	-	0	2	2	20	5	737	57	266	173	698	607	1	6	151	0	1	1	37	362	17	4	2	4	11	0	230	593	11	3,320	191	6	679	,	83,18
Newport Center or. 5.0 of sw 10.ts 5 St.	36	8	15	0	13	11	6	0	3		0	131	20	22	57	41	36	1	2	7	7	16	0	0	8	0	4	8	40	90	32	12	3	,	26	311	0	5	0	200	6	6	310	2	${ }^{1,467}$
Newoort Centere or. . . . ot sw woins st.	37	8	${ }^{23}$	0	18	14	0	0	4	3	-	178	15	28	119	99	0	0	0	0	0	-	1	0	8	1	6	${ }^{21}$	51	172	75	24	4	4	55	820	6	0	92	3	45	2	4	7	1.910
Intemal one a Newoort Center	38	2	5	-	4	3	0	0	3	2	,	47	1	8	3	1	0	0	0	0	0	0	0	,	1	0	0	2	16	8	7		3	3	8	17	0	106	0	2	1	1	2	1	265
	39	7	15	0	9	5	0	-	2	1	0	0	14	27	217	222	1	1	1	1	1	1	2	2	56	3	1	10	94	320	129	53	2	2	127	2,805	124	2	1	0	849	1	2	14	5.123
	40	0	0	0	0	0	0	0	1	1	0	-	0	1	0	0	52	4	16	,	13	1	1	0	8	0	1	4	49	167	2	0	1	4	3	152	3	26	1	798	0	0	1	-	1.320
Westor. . . Of Powemine ed.	41	7	$\stackrel{8}{ }$	0	8	7	0	0	1	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	2	0	1	1	1	33	0	0	115	5	3	3	5	1	1	1	1	0	2,339	6	2.556
Powefine Rd. .o.f west 0 or.	42	33	34	0	31	10	0	0	2	1	0	0	0	0	${ }^{23}$	28	2	2	2	2	2	3	,	3	48	1	2	2	2	937	5	9	4,299	596	453	367	244	3	2	2	1	2,293	0	484	9,931
Intenal zoneat fowerine	43	4	4	0		5	0	0	2	1	0	0	0	0	1	1	11	1	4	3	8	8	1	0	3	0	0	0	2	29	1	0	55	12	1	2	1	5	0	16	0	6	453	0	648
Total		19,212	5.32	0	4,95	4003	4,933	0	3,456	5,24	4,505	26,78	22,37	6.442	4,526	9,800	62,31	4,80	17,038	9,903	18,85	18,39	17,29	4,453	${ }^{12,102}$	2,986	21,38	19,455	26.36	75,882	1.886	52	5.819	1,119	1.486	8,29	1,116	1,40	202	5,823	1.992	2,93	9,92	63	453,304

									虽			$\begin{aligned} & \text { 咅 } \end{aligned}$																																	Toat
	zonet	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	
N.oflateonoth Rd.	1	0	9,172	0	5,722	5,988	3,314	0	934	3,019	0	22,700	953	1,125	1,190	7,642	0	0	0	0	0	0	8	5	49	3	6	6	6	444	40	13	993	27	3	${ }^{42}$	10	7	4	14	1	67	282	12	63,18
pre alemowthed.	2	9,172	0	0	1,057	1,345	1,780	0	2,028	135	0	1,425	459	1,146	380	507	0	0	0	0	0	0	36	15	92	4	26	24	24	189	57	22	547	38	7	26	14	16	8	16	5	52	173	23	20,86
Tree mpluse ivd.	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TPke Bommon Eeashme	4	5,723	1,057	0	0	39	2,982	0	1,043	1,319	0	3,174	531	793	508	781	0	0	0	0	0	0	11	7	74	3	8	8	8	120	48	26	1,490	40	4	61	14	17	10	21	1	83	231	21	20.36
Treatanaicave.	5	5,500	1,342	0	39	0	513	0	1,008	1,161	0	2,832	368	820	615	830	0	0	0	0	0	0	15	7	55	${ }^{3}$	11	11	11	${ }^{2}$	12	2	1,146	33	5	5	11	7	6	11		${ }^{71}$	77	14	16,6e
Pke clase fa	6	3,323	1.777	0	2,977	512	0	0	69	2,716	0	10,265	6	9	155	357	0	0	0	0	0	0	12	2	8	1	9	8	9	123	119	24	528	24	3	18	5	1	1	1	1	5	9	4	${ }^{23,079}$
Tree Exta	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\bigcirc
Trke Smple Red.	8	938	2.031	0	1,045	1,012	69	0	0	9	0	0, 274	19	31	30	60	5	7	6	18	11	10	17	3	4	2	0	0	0	0	11	4	13	4	8	3	2			4	5	8	12	5	15,866
Pke Coconut creek	9	3,030	135	0	1,318	1,162	2,727	0	9	0	0	8,500	168	27	804	2,109	88	5	4	13	8	7	12	2	3	1	0	0	0	0	10	4	9	5	6	2	2		2	${ }^{3}$		5	10	4	20,198
Tree Alanicitave.	10	0	0	0	0	0	0	0	0	0	0	11,082	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11,082
Tres. offataniticidud.	11	22,88	1,443	0	3,159	2,824	10,249	0	10,27	8,4991	11,082	0	5,055	1,586	407	20	5,845	447	743	619	451	870	12	176	2,604	31	0	0	0	0	11	4	9	7	5	22	262	370	196	912	40	6	11	4	90,96
	12	927	449	0	519	359	6	0	19	166	0	5,081	0	11	914	5,562	463	21	38	37	74	3	5	14	146	6	3	40	3	249	325	54	14	12	23	4	54	24	16	33	3	6	4	2	${ }_{15,68}$
	13	1,121	1,139	0	${ }^{90}$	${ }^{817}$	9	0	31	27	0	1,573	11	0	466	11,128	1,551	69	112	92	181	346	7	16	405	2	366	10	5	361	363	31	9	5	11	3	136	145	78	62	5	8	7	3	2,50,
engessempe Q Univestivor.	14	1,202	384	0	514	622	156	0	31	822	0	395	904	463	0	6,596	2,315	193	444	347	446	340	7	83	925	43	309	75	5	1,374	125	71	378	45	40	123	170	131	69	479	4	${ }^{36}$	1,82	6	22,96
Sawgass Epy W.of turivesity	15	7,688	507	0	781	829	359	0	60	2,109	0	11	5,574	11,129	6,596	0	5,291	151	504	389	279	911	4	58	634	32	595	55	3	458	91	55	236	38	43	60	120	128	47	525	3	45	1,916	3	${ }^{\text {48,313 }}$
1.95 .of fememisul coro. Or.	16	,	0	0	,			0	4	89	0	5,752	522	1,628	2,272	5,295	-	9,499 1	19,058	10,891	14,840	12,25	6,920	5	253	176	3,258	2,825	6,749	20,575	60	45	76	430	669	1,416	262	4	4	2	3	1	6	50	125,98
	17	0	0	0	0	0	0	0	6	4	0	409	24	75	177	142	9,499	0	492	667	549	1,049	629	4	51	27	411	197	540	1,489	8	4	3	15	22	156	28	5	5	3	3	1	2	5	16,700
1.958 Yeamato od.	18	0	0	0	0	0	0	0	5	4	0	703	43	121	428	488	19,28	482	0	1,740	1,600	2,276	1,811	5	116	69	1,163	674	1,154	6,046	36	14	2	23	34	376	84	4	4	3	3	1	2	12	38,54
1.55 S Samasiskiver	19	0	0	0	0	0	0	0	18	${ }^{13}$	0	596	${ }^{43}$	100	353	401	10,689	626	1,623	0	13	2,875	1,100	11	24	31	1,219	1,082	995	3,802	16	7	4	75	51	471	110	21	${ }^{21}$	8	9	3	4	18	${ }^{26,43}$
${ }^{-95}$ ¢ ladesesd.	20	0	0	0	0	0	0	0	9	-	0	403	86	175	438	303	14,955	526	1,505	11	0	439	2,505	5	219	129	3,161	1,390	2,375	5,221	111	58	2	31	42	1,108	19	9	9	4	5	1	2	25	35,288
	21	0	0	0	0	0	0	0	9	7	0	810	3	344	362	963	12,315	1,067	2,276	2,800	430	0	2,221	41	246	107	3,141	1,609	2.520	4,971	41	${ }^{36}$	2	${ }^{65}$	45	631	157	8	8	4	5	1	3	24	3,271
958 Hillsboresivd.	22	9	39	0	12	16	${ }^{13}$	0	19	${ }^{13}$	0	0	5	8	8	5	6,971	661	1,795	1,063	2,500	2,203	0	10	17	6	2,434	3,590	4,996	7,958	4	1	4	7	11	8	18	22	21	8	9	3	4	5	34,174
Naturavid. . .ots is woinst	23	7	17	0	13	13	3	0	5	3	0	311	19	15	161	100	6	2	4	6	23	31	4	0	3,343	2,130	121	210	146	237	12	2	1	4	9	23	${ }^{23}$	22	7	${ }^{33}$	10	1	17	4	7,093
	24	48	76	0	76	59	8	0	5	3	0	2,616	145	372	1,030	665	416	42	137	19	517	226	5	3,359	0	6,768	126	2,088	1,896	7,187	137	37	2	81	122	403	676	104	151	647	129	6	156	64	30,599
Natura Bux. S. O otsw 100	25	4	4	0	4	4	2		3	2	0	41	7	2	55	40	193	14	54	23	122	74	,	2,292	6,444	,	2	26	44	132	2	1	1	1	3	9	102	52	62	349	62	1	15	1	10,50
${ }^{95}$ ¢ Smmpered.	26	5	22	0	8	10	8	0	0	0	0	0	3	338	283	515	3,399	427	1,263	1,192	2,962	3,142	2,470	147	148	1	0	97	3,110	18,072	2	1	3	3		5	42	36	23	5	6		3	3	37,63
	27	5	19	0	6	9	7	0	0	0	0	0	32	9	63	${ }^{43}$	2,862	204	716	1,052	1,316	1,628	3,433	197	2,272	38	91	0	382	20,703	2	1	2	3	7	4	185	102	107	32	36	1	2	2	35,56
1.55 e Alanicicad.	28	5	19	0	7	9	7	0	0	0	0	0	3	4	4	3	6,901	534	1,163	963	2,214	2,528	4,606	172	2,080	51	3,066	368	0	25,781	2	1	2	3	7	34	394	221	324	168	210		2	5	51.86
	29	349	147	0	98	75	100	0	0	0	0	0	191	294	1,185	370	20,30	1,442	6,202	3,731	5,408	5,196	8,221	340	7,844	147	18,133	20,731	25,787	0	73	15	2	134	240	526	665	589	191	491	520	${ }^{31}$	1,595	95	131,188
	30	38	51	0	47	74	124	0	15	11	0	0	237	253	96	63	64	11	47	16	127	${ }^{43}$	4	7	162	2	3	3	3	${ }^{81}$	0	15	664	7	10	25	18	23	12	105	3	7	303	2	2,76
	${ }^{\text {a }}$	14	22	0	30	27	27	0	5	4	0	0	51	28	68	50	36	4	13	7	46	28	2	2	49	1	1	1	1	18	13	0	431	4	6	1	9	10	5	${ }^{43}$	1	2	97	1	2,161
	32	1,005	570	-	1,483	${ }_{1,136}$	525	0	14	9	0	0	14	10	385	243	87	3	2	4	3	2	4	1	2	0	3	3	3	2	515	399	0	1	3	1	2	2	1	2	2	360	12,582	34	19,418
swosot Ave S. . ofsw 1ont St.	33	41	38	0	64	55	40	-	8	-	0	0	12	7	69	54	313	13	20	57	23	${ }^{41}$	7		103	2	5	5	5	153	9	4	2	0	453	5	7	20	5	162	13	4	${ }^{341}$	31	2,202
Wwzst Ave s. S.otsw 10atst.	34	3	7	0	5	6	3	0	10	6	0	0	${ }^{23}$	18	48	52	690	24	32	57	43	34	14	10	152	2	10	10	10	294	10	5	4	437	0	6	23	41	12	209	23	4	398	10	2,788
	35	41	36	0	55	45	20	0	2	1	0	21		2	63	29	1,387	180	419	462	1,043	553	8	22	470	7	6	6	43	675	23	1	1	7	5	0	444	591	175	8,866	743	10	1,024	15	16,724
	36	15	20	0	20	14	8	0	3	2	0	328	73	175	232	166	249	25	62	90	20	131	12	10	406	50	36	176	386	515	24	13	2	8	32	563	0	19	3	138	31	3	397	5	4,462
	37	9	${ }^{23}$	0	23	9	1	0	3	2	0	445	32	183	162	154	3	4	3	14	8	6	13	8	59	22	25	92	201	428	31	15	2	29	57	740	15	0	${ }^{348}$	3	57	1	2	12	3,241
Inemal zone at Newport Center	38	6	11	0	14	8	1	0	3	2	0	251	22	103	91	62	3	4	3	14	8	6	12	2	74	26	16	80	262	130	14	8	2	5	14	213	3	373	0	3	11	1	2	2	1,863
Miltay trail N.otsw 10m	39	${ }^{15}$	16	0	${ }^{24}$	12	1	0	5	4	0	913	34	72	532	584	3	3	3	8	5	5	8	25	632	267	6	41	211	56	94	${ }^{41}$	2	154	234	7,89	133	3	3	0	403	1	2	73	13,036
Eastor. . . ots w 1 onst.	40	1	5	0	2	2	2	0	6	4	0	32	3	5	5	3	4	4	3	9	6	5	9	6	135	45	6	46	262	609	3	1	3	12	22	675	23	39	9	377	0	2	3	3	2389
Westor. . . of fowerine ed.	41	64	54	-	77	66	5	0	7	5	0	0	6	7	35	44	1	1	1	2	1	1	2		5	0	2	2	2	38	5	2	321	3	4	12	3	1	1	1	1	0	3,803	7	4.591
Powerine ed. N. . of westor.	42	299	188	0	242	80	8	0	12	9	0	0	4	7	1,819	1.886	6	2	2	4	2	3	4	19	179	15	3	3	3	2,032	259	105	12,431	334	464	907	301	2	1	2	3	3,686	0	540	25,86
temal 2 one at Powerine	43	13	24	0	25	16	4	0	6	4	0	0	2	3	7	3	50	5	11	16	26	22	5	3	58	1	3	3	7	112	2	1	35	29	12	18	5	10	2	74	3	7	530	0	${ }^{1,155}$
Total		63,309	20,845	0	20,54	16,72	23,09	\bigcirc	15,60 2	20,188	11,082	90,90	15,911	2,9,98	22,95	48,361	125,96	16,700	38,759	26,36	35,33	37,24	33,171	7,098	30,533	10,25	37,84	35,93	5,8,89	1312,231	2,79	1,61	19,388	2,185	2,741	12.551	4.550	[3,82	1,952	13,000	2,380	4,533	2,584	1,49	0,647

20as somantoptaz: AM															\qquad																														Total
	2onet	1	2	3	-	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	
TrkN. of takeworth Rd	1	0	2,531	0	1,656	2,354	961	0	410	1.030	0	3,948	275	349	413	2,433	0	0	0	0	0	0	3	2	24	1	3	4	3	49	3	1	411	17	0	15	3	2	2	6	0	29	${ }^{45}$	4	16,989
Tree lateworth d.	2	4,407	0	0	248	627	829	0	863	123	0	643	181	311	189	206	0	0	0	0	0	0	7	4	21	1	6	8	8	16	3	1	98	6	1	4	1	2	2	2	1	13	10	4	8,895
TPKe Hyplux Evi.	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TRK® Boymon Beach bin	4	1,941	306	0	0	8	1,301	0	574	682	0	1,049	208	339	252	370	0	0	0	0	0	0	4	3	41	1	3	4	4	31	4	4	763	28	1	24	5	6	6	10	1	42	${ }^{43}$	11	8,067
TMe Atanaticave.	5	1,613	348	0	21	0	253	0	327	538	0	869	87	144	186	318	0	0	0	0	0	0	5	3	25	1	5	6	6	25	6	4	579	24	1	19	4	2	4	5	1	37	15	6	${ }_{5,48}$
Tree Giad ed.	6	778	690	-	637	129	0	0	24	1,066	0	2,029	2	4	3	7	0	0	0	0	0	0	4	0	1	0	4	5	5	14	11	3	322	18	1	7	0	0	0	1	1	3	4	2	5,74
Trke Exta	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TRKe Sample Rd.	8	336	458	0	343	604	40	0	0	3	0	4,322	14	22	20	11	2	4	4	6	4	5	7	1	2	1	0	0	0	0	3	1	6	2	2	1	1	2	2	2	2	5	6	3	6.245
Trke cocunut creer Patwey	9	413	4	0	113	203	824	0	5	0	0	1,763	37	11	364	830	${ }^{13}$	2	2	3	2	2	3	1	1	0	0	0	0	0	1	1	3	1	1	1	1	1	1	1	1	2	3	2	4,613
TRKe Atantic end.	10	0	0	0	0	0	0	0	0	0	0	2,674	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2.65
Trks. of Atanticie bud.	11	2.574	98	0	419	531	4,843	0	4,564	3,100	3,599	0	1,751	14	19	7	1,244	203	257	223	78	344	4	73	1,231	8	0	0	0	0	2	1	4	1	1	1	58	100	81	206	1	3	4	2	25.6
Savgass Expe © Leos sad.	12	245	113	0	150	153	3	0	5	4	0	2,807	0	5	121	2,383	65	2	1	1	4	1	1	2	31	1	1	18	2	35	4	0	5	1	2	3	12	3	6	6	1	5	1	1	6,24
Suwgass Exy © U S41/ /SR7	13	405	299	0	315	575	5	0	8	6	0	1,447	5	0	96	3,647	254	15	7	10	51	152	2	3	112	1	132	8	2	88	2	0	4	2	4	2	15	5	11	30	2	5	2	1	1,26
Sawgas Expy Univesity O.	14	491	111	0	174	373	133	0	10	418	0	375	299	201	0	2,545	803	112	212	157	58	42	3	38	438	9	171	60	3	657	2	2	221	26	7	110	69	24	33	145	2	18	918	3	9,473
Savgass Expy W.of f Univesity 0 .	15	3,091	228	0	259	403	304	0	49	1,237	0	9	2,014	2,937	1,848	0	1,220	73	202	138	13	35	2	24	254	6	269	22	2	165	1	0	121	18	7	59	52	${ }^{13}$	26	158	1	${ }^{21}$	821	1	15,933
	16	0	0	0	0	0	0	0	2	7	0	667	39	252	400	1,990	0	4,319	6,230	2,957	3,178	1,783	1,371	5	172	128	471	572	1,568	1,880	6	1	0	34	50	306	227	4	3	1	1	,	1	22	27,59
	17	0	0	0	0	0	0	0	2	2	0	45	2	6	24	21	1,047	0	101	141	161	230	231	3	30	14	27	17	41	52	1	0	0	1	2	25	21	4	4	1	1	0	0	2	2.26
1.55 Cramat Rd.	18	0	0	0	0	0	0	0	2	2	0	126	3	11	68	71	3,067	155	0	289	608	598	731	4	65	38	106	55	87	141	4	0	0	3	4	70	69	4	3	1	1	0	0	7	6,392
1.95 ¢ Spanish River	19	0	0	0	0	0	0	0	11	8	0	175	8	22	77	59	1,483	159	513	0	7	761	349	9	16	19	153	228	195	484	2	1	2	9	9	81	91	20	19	4	5	2	2	5	4,987
1.958 Clades Red.	20	0	0	0	0	0	0	0	4	3	0	138	8	51	132	30	1,939	104	179	3	0	69	363		106	57	147	27	31	988	10	1	1	1	4	56	13	8	7	2	2	1	1	10	4,998
1.55 e Palmetoto Parkd.	${ }^{21}$	0	0	0	0	0	0	0	4	3	0	170	1	12	81	276	2,710	343	740	787	45	0	795	40	187	72	465	161	272	1,173	4	1	1	1	1	28	130	7	7	2	2	1	1	7	8,529
1.95 ¢ \#ulboro ivd.	22	3	13	0	6	10	7	0	12	9	0	0	3	4	4	2	1,392	251	727	262	869	450	0	7	14	5	753	1,039	982	1,329	1	0	2	2	3	4	14	20	19	4	5	2	2	3	${ }_{8,23}$
	${ }^{23}$	2	4	0	5	5	2	0	2	2	0	101	11	2	49	26	0	0	0	1	0	1	1	0	1,123	480	64	93	48	73	1	0	0	2	4	4	15	17	6	28	4	1	12	3	2,193
Sw 10thst. . of.t.95	24	12	15	0	22	27	4	0	3	2	-	824	67	121	421	259	23	7	16	2	29	17	1	620	0	917	8	399	328	964	22	3	0	31	35	145	583	78	142	413	51	4	69	52	${ }^{6,735}$
	25	1	1	0	1	2	1	0	1	1	0	20	4	1	23	19	16	5	11	4	22	12	0	530	844	0	0		10	25	0	0	0	1	1	2	78	25	54	168	17	0	5	1	1,909
${ }^{1.595}$ esample Rd.	26	2	7	0	3	5	4	0	0	0	-	0	1	127	53	79	987	176	627	279	592	546	361	4	2	0	0	${ }^{43}$	624	4,711	1	0	1	1	2	2	27	29	16	2		1	1	2	9,324
1.950 Copans Sd.	27	1	5	0	2	4	3	0	-	0	0	0	,	2	6	5	324	87	347	225	246	378	866	14	171	0	9	0	98	5,083	0	0	1	1	1	2	119	55	88	11	8	1	1	1	8, ${ }^{168}$
1.59 e Atanit evva.	28	1	5	0	2	4	3	0	0	0	0	0	1	2	2	1	856	151	572	164	515	438	926	8	144	2	377	72	-	4,547	0	0	1	1	1	3	316	138	296	55	46	1	1	1	0,551
1.59 e Sotatanicic Evx.	29	22	7	0	9	18	17	0	0	0	0	0	12	54	99	30	1,945	307	1,327	731	895	1,297	1,591	10	628	8	2,249	3,886	4.819	0	3	1	1	20	27	114	562	409	164	228	110	10	271	36	21,95
	30	10	8	0	17	33	58	0	7	5	-	0	2	11	16	6	28	7	32	6	68	20	2	4	99	1	1	2	2	27	0	0	402	3	2	${ }^{13}$	11	14	8	44	1	6	239	1	1,24
Indepandance or. 5.0 of sw 10ats st.	31	1	2	0	5	5	5	-	2	1	0	0	${ }^{23}$	3	30	23	3	1	2	1	4	2	0	0	10	0	0	0	0	3	3	0	81	0	0	1	1	1	1	3	,	1	26	0	${ }^{248}$
	32	145	56	0	252	289	17	0	7	5	0	0	3	4	64	70	58	2	1	2	1	1	2	0	1	0	1	2	2	1	92	43	0	0	1	1	1	1	1	1	1	201	3,704	11	5.046
	33	2	3	0	3	4	2	0	3	2	0	0	3	1	5		29	4	5	6	5	2	2	1	19	0	2	2	2	17	1	0	1	-	${ }^{83}$	1	2	4	3	32	3	1	55	13	${ }^{330}$
Swzstave. S. .ofsw 10atst.	34	1	2	0	2	3	1	0	4	3	0		9	4	16	18	292	10	${ }^{\text {}}$	18	12	6	5	1	61	1	5	6	6	78	2	1	2	45	0	2	5	12	5	84	8	2	169	7	919
	35	7	3	0	12	16	1	0	1	1	0	8	0			0	219	90	192	136	${ }^{337}$	66	3	7	156	3	2	3	4	122	2	0	0	0	1	0	207	171	104	2,209	148	3	159	3	4,402
	${ }^{36}$	0	0	0	1	1	0	0	0		0	7	3	5	8	4	25	8	17	15	5	24	3	3	77	10	15	75	77	84	1	0	0	0	1	11	0	4	2	7	1	0	6	1	500
	37	0	0	0	0	0	0	-	0	0	0	10	1	4	6	5	1	1	1	2	1	1	2	2	19	10	5	47	80	143	0	0	0	1		15	8	0	6	0	2	0	0	1	376
Interal 2one at Newport Center	38	0	0	0	0	0	0	0	0	0	0	3	0	3	2	1	1	1	1	2	1	1	2	0	6	${ }^{\text {a }}$	5	19	22	18	,	0	0	0	0	1	1	7	0	0	0	0	0	0	101
	39	1	1	0	2	2	1	0	2	2	0	273	6	2	177	199	1	2	1	2	2	2	3	1	163	${ }^{88}$	2	12	34	75	19	3	1	31	11	1,952	113	1	1	0	8	1	1	45	3,243
Eastor.r.0. of sw wath st.	40	0	1	-	-	1	1	0	2	2	0	32	1	2	2	,	1	2	2	2	2	2	3	2	52	19	2	20	84	197	0	0	1	1	3	186	9	6	5	11	0	1	1	1	659
	41	12	5	0	18	20	2	0	3	3	0		2	2	11	14	0	0	0	1	0	1	1	0	1	,	1	1	1	13	1	0	93	2	0	6	1	0	0	0	1	0	467	2	687
Poweline d. . . . of west O .	42	30	14	0	21	8	3	0	5	4	0	0	1	2	175	238	0	1	1	1	1	1	1	0	18	2	1	1	1	387	${ }^{13}$	2	3,356	60	11	221	20	1	0	1	1	608	0	76	5,286
Intenal 2 one at Powerine	43	1	2	0	2	2	1	0	1	1	0	0	0	0	1	1	2	1	0	2	0	0	1	0	2	0	1	1	1	15	0	0	6	0	0	8	0	1	0	3	0	2	61	0	120
Total		16,599	5,39	0	4.23	6,416	9.67	0	6,24	8,27	3,599	24,533	5,000	5,045	5,470	15,39	1,984	6,606	12,30	6,578	7,84	7,288	7,660	1,484	${ }_{6,367}$	1,909	5,466	6,917	9,454	23,07	230	7	6,489	336	288	3,503	2.860	1,198	${ }^{1,41}$	3,888	448	1.031	\|,128	355	26,320

20as soma_N_Toptaz: PM						官			夏																											\qquad									Total
	2onet	1	2	3	4	5	6	7	8	-	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	
Tren. of takeornth Rd.	1	0	4,407	0	1,940	1,612	777	0	333	409	0	2.589	244	405	484	3,093	0	0	0	0	0	0	3	1	10	1	2	1	2	22	9	1	145	1	1	12	1	0	0	1	0	9	32	1	1.559
Tree lateworth d.	2	2,531	0	0	307	349	692	0	455	4	0	95	112	300	110	229	0	0	0	0	0	0	12	3	12	1	7	5	6	7	8	2	56	1	3	4	1	1	0	1	1	4	16	3	5,39
Tree enpluxe evd.	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tree boymon Eeas bivd.	4	1,656	247	-	0	21	638	0	341	112	0	421	149	316	172	260	0	0	0	0	0	0	6	3	17	1	4	3	3	9	16	5	252	1	2	20	1	1	1	2	1	14	${ }^{23}$	3	4,721
Tree Atanticave.	5	2,355	624	0	8	0	129	0	600	202	0	533	152	577	370	404	0	0	0	0	0	0	9	3	${ }^{21}$	1	6	4	5	18	31	6	291	2	3	27	1	1	0	2	1	16	8	2	6,413
Tre Gided ed.	6	962	826	0	1.301	253	0	0	39	814	0	4,856	3	5	${ }^{131}$	304	0	0	0	0	0	0	7	1	3	0	4	3	4	17	55	5	17	1	1	2	0	0	0	1	1	2	3	1	9,68
Tree Exta	7	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\bigcirc
TRKe Sample Rd.	8	411	862	0	575	327	24	0	0	5	0	4,562	5	8	10	50	3	2	2	12	6	4	10	1	2	1	0	0	0	0	6	2	7	1	6	1	1	1	1	2	3	3	5	1	6,920
Tree Cocanut Creek Parke	9	1,032	123	0	683	538	1,062	0	3	0	0	3,099	4	6	414	1,240	9	2	1	8	5	3	7	1	1	1	0	0	0	0	5	1	5	1	4	1	1	0	0	2	2	2	4	1	8270
TrKe Atanicicavd.	10	0	0	0	0	0	0	0	0	0	0	3,598	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3,598
Trks.of Atamitic bud.	11	3,954	643	0	1,050	869	2,021	0	${ }_{4}^{4}, 32$	1,764	2.675	0	2,795	1,450	376	12	823	49	108	183	196	177	5	58	606	14	0	0	0	0	3	1	3	1	3	${ }^{13}$	15	${ }^{23}$	8	266	37	1	2	1	24,529
Savgass Expe Q Lros s.	12	274	179	0	207	86	2	0	14	37	0	1,772	0	5	295	2,015	45	2	3	8	11	1	2	6	46	2	1	3	1	11	1	22	3	1	11	1	5	2	1	5	1	1	1	0	5,085
Sawgass Epye U 4 Sa1/ SR7 7	13	349	310	0	339	143	4	0	22	11	0	0	5	0	199	2,937	294	6	9	21	68	11	3	1	84	0	117	2	2	48	10	3	4	1	5	1	11	10	6	1	2	1	2	1	5,092
Sawgas Expy Univesity O.	14	425	194	0	259	191	3	0	21	376	0	6	125	99	0	1,848	480	25	56	76	180	81	3	27	301	15	51	7	2	92	14	30	59	2	20	10	16	15	6	168	2	8	175	1	5,469
	15	2,421	204	0	368	316	7	0	11	831	0	0	2,382	3,645	2,546	0	1,264	21	56	56	39	268	2	14	179	12	73	5	1	27	5	${ }^{23}$	${ }^{63}$	2	21	0	8	12	3	182	1	10	231	1	15,306
${ }^{1.955}$ Nof feenisula corp. or.	16	0	0	0	0	0	0	0	2	10	0	1,005	54	212	662	852	0	2.036	3,690	1,715	2.522	2,421	1,166	1	73	45	826	297	897	1,580	19	3	${ }^{41}$	7	209	132	21	0	0	0	1	0	0	1	20,500
$95 ¢$ Penisinl coro. Dr.	17	0	0	0	0	0	0	0	3	1	0	150		12	86	57	5,27	0	173	171	126	284	195	1	21	13	137	74	146	231		1	2	1	7	50	6	1	1	1	1	0	0	1	7,184
- 95 E Q ramato ed d.	18	0	0	0	0	0	0	0	3	1	0	198	1	5	168	162	5,336	74	0	591	224	635	585	1	49	30	503	305	576	1,035	${ }^{21}$	2	1	1	6	111	14	1	1	1	1	0	0	0	10,6a1
1.55 ¢ Spansh River	19	0	0	0	0	0	0	0	5	3	0	198	1	9	144	128	3,153	128	212	0		785	245	2	9	12	260	229	191	661	4	1	1	2	15	91	14	2	2	1	2	0	1	2	6,519
	20	0	0	0	0	0	0	0	4	2	0	70	4	49	55	12	3,647	157	481	7	0	46	836	1	104	70	568	258	619	833	53	4	1	1	10	232	4	1	1	1	1	0	1	0	8.32
1.59 P Palmeto Parkrd.	${ }^{21}$	0	0	0	0	0	0	-	4	2	0	278	1	128	35	29	2,182	240	504	764	96	0	379	1	55	34	460	${ }^{347}$	462	1,060	13	2	1	0	4	40	20	1	1	1	1	0	1	0	7,48
1.95 ¢ Hillsoro Bud.	22	3	7	0	4	5	4	0	7	3	0	-	2	,	3	2	1.589	228	583	332	478	769	0	2	3	1	402	1,051	1,290	1,715	1	0	2	1	5	2	4	2	2	2	2	1	1	1	8,512
	23	4	9	0	7	8	1	0	3	2	0	196	6	8	106	68	,	1	,	4		17	3	0	1,076	834	21	72	46	46	10	1	1	1	3	15	7	5	1	2	5	0	1	1	2,597
Sw loth St. . .0, 1.95	24	25	22	0	${ }^{43}$	27	1	0	2	1	0	1,377	36	130	499	294	37	5	10	3	26	${ }^{33}$	2	618	0	546	4	363	349	1,179	93	10	1	6	60	130	87	${ }^{24}$	8	126	47	1	19	2	6,248
Naturatud. S. ofsw 10	25	2	2	0	3	2	1	0	2	1	0	17	2	1	22	15	59	6	12	7	30	28	2	565	1,392	0	1	1	10	33		0	0	0	2	G	24	26	7	146	37	0	5	0	2480
1.59 e Sample Rd.	26	3	6	0	3	4	3	0	0	0	0	0	1	134	171	273	637	31	99	170	226	527	718	63	10	0	0	15	770	3,550	1	0	1	0	4	2	15	6	6	2	2	0	1	1	7,457
$1.585^{\text {c Copans }}$ d.	27	3	6	0	3	4	4	0	0	0	0	0	15	7	50	18	647	16	${ }^{43}$	212	35	152	824	77	428	3	33	0	92	3,880	1	0	1	0	4	2	62	43	18	7	13	0	1	1	6,70
	28	3	6	0	3	4	4	0	0	0	0	0	1	2	3	1	1,795	40	68	183	40	260	789	41	356	10	488	49	0	4,416	1	0	1	0	4	3	65	74	22	20	56	0	1	1	8, 81
	29	46	15	0	29	23	13	0	-	0	-	0	35	90	662	169	2,554	60	132	541	1,523	1,333	1,271	73	1,242	29	4,384	3,033	5,850	0	22	3	1	5	68	90	${ }^{84}$	158	20	51	${ }^{157}$	9	364	14	24,53
Watemy Elv. S. Sots sw 10th St.	30	7	7	0	9	15	25	0	6	3	0	0	10	5	5	2	16	3	8	4	31	9	2	1	37	1	1	1	1	6	0	8	201	1	5	6	3	2	1	${ }^{43}$	1	1	30	0	519
Indepandance Of. S. . ofs w woth st	31	3	3	0	9	10	7	0	3	2	0	0	1	1	6	1		1	1	2	4	1	1	0	6	0	1	0	1	2	1	0	105	0	2	0	1	0	0	6	1	0	4	0	190
	32	393	93	0	729	552	306	0	6	3	-	0	5	4	226	125	0	,	0	2	1	1	2	0	,	0	1	1	1	1	337	77	0	0	2	0	0	0	0	1	1	64	3,201	8	${ }_{6,145}$
	33	32	11	0	53	45	33	0	4	2	0	0	2	3	53	37	59	2	3	13	3	2	2	1	32	1	2	1	1	27	5		1	0	79	1	1	3	0	${ }^{43}$	2	2	113	0	674
	34	1	2	0	3	2	2	0	5	2	0	0	6	12	22	23	141	6	7	22	14		7	6	58	1	4	3	4	58	5	1	2	75	0	2	5	6	2	25	7	1	33	1	580
	35	7	2	0	10	8	3	-	1	0	0	0	1	1	51	28	401	28	63	87	${ }^{83}$	31	4	2	113	1	2	2	4	115	5		0	0	1	0	25	38	2	2,016	223	2	96	4	3,460
	36	4	1	0	7	6	0	0	2	1	0	90	20	24	112	84	207	17	${ }^{43}$	68	13	100	9	6	316	38	19	94	288	395	14	2	1	1	8	244	0	${ }^{13}$	1	125	11	1	30	0	2,415
	37	3	2	0	8	3	1	0	2	1	0	133	4	8	33	17	3	,	2	12	7	5	11	6	36	10	18	37	106	244	16	1	1	1	14	171	6	0	0	1	,	0	1	1	935
Inemal zone at Nevoort Center	38	3	2	0	7	5	-	0		1	0	108	9	15	46	36		3	2	12	6	5	10		65	23	10	59	229	98	9	1	1	1		104		0	0	1	-	0	1	0	${ }^{39}$
Militar tral N . of tw woth st.	39	8	3	0	13	8	1	0	3	1	0	296	8	44	213	235	1	1	1	4	2	2	4	16	312	116	2	12	70	223	52	5	1	13	108	2,367	16	0	0	0	9	0	1	4	4,177
	${ }_{40}$	1	2	0	1	1	1	0	4	2	0	0	2	,	3	2	2	1	1	5	3	2	5	2	41	13	3	9	61	113	1	0	2	1	11	166	3	4	1	6	0	1	1	1	${ }^{47}$
West O . E. Of fowerine ed.	41	20	9	0	28	25	2	0	3	2	0	0	3	4	13	16	0	0	0	1	1	0	1		2	0	1	0	1	6	3	1	126	0	2	3	1	0	0	0	1	0	736	1	1,014
Powetine ad. N. . of west O .	42	42	10	-	40	14	3	0	6	3	0	0	1	2	915	829	1	0	0	2	1	1	2	6	46	3	1	1	1	233	195	24	3,173	20	190	225	12	0	0	1	1	557	0	74	6,366
Intenal oneat Poweveline	43	6	6	0	15	8	3	0	5	2	0	0	1	2	5	1	27	2	6	5	14	8	3	2	39	1	2	1	2	35	2	0	14	5	8	4	2	2	1	45	2	2	103	0	339
Total		16,990	8,45	0	8,068	5.887	5.78	0	${ }^{6,288}$	4,615	2,65	25,688	6,211	7,731	9,46	15,98]	30,666	3,193	6,322	5,302	6,96	8,004	${ }^{7}, 146$	[1,619	7,203	1,885	8,419	6,399	12,09	22,02	1,056	29	4,587	162	918	4,291	563	478	126	3,308	648	717	5.29	136	${ }^{222,45}$

2040 Option A2／C2 Trip Tables

		㪯				曾			晋																																				Total
	\％net	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	33	40	41	42	43	
Tren．of takeworth Rd．	1	0	2，233	0	2，126	1，532	1，577	0	191	1，580	0	16，163	433	372	293	2，117	0	0	0	0	0	0	2	2	16	1	1	1	1	373	27	10	438	9	1	15	7	4	2	7	0	29	205	6	2，773
Tree lateworth d．	2	2，234	0	0	502	369	259	0	710	8	0	686	166	534	81	73	0	0	0	0	0	0	18	8	59	3	12	11	10	166	47	18	${ }^{393}$	31	4	17	13	${ }^{13}$	6	12	3	${ }^{34}$	147	16	6，662
Tree Hypluse Evd．	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
TPKe Boymon Beash biv．	4	2，126	504	0	0	9	1，043	0	128	525	0	1，704	174	138	84	151	0	0	0	0	0	0	2	2	16	0	1	1	1	80	27	18	474	11	1	18	8	10	4	8	0	27	165	7	7，468
Tree Alaniticave．	5	1，533	370	0	9	0	131	0	82	421	0	1，430	128	100	59	108	0	0	0	0	0	0	1	1	9	0	1	1	1	45	${ }^{37}$	13	276	7	1	11	5	4	2	3	0	18	${ }^{53}$	5	4,864
Tree Glade Rd．	6	1，583	261	0	1，038	131	0	0	5	837	0	3，379	1	1	20	${ }^{46}$	0	0	0	0	0	0	1	1	4	0	1	1	1	92	53	16	189	6	1	9	5	0	0	0	0	1	2	0	2，883
Trke Exta	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TRKe Sample Rd．	8	190	712	0	127	81	5	0	0	1	0	1，391	0	0	0	0	0	0	0	1	0	1	1	0	0	0	0	0	0	0	2	1	1	1	0	0	0	0	0	0	0	0	1	0	2.520
TRe Cocount Creek Park	9	1，585	8	0	522	${ }^{421}$	${ }^{841}$	0	1	0	0	3，638	127	10	27	39	67	1	1	2	1	2	2	0	0	0	0	0	0	0	4	2	1	3	1	0	1	1	1	1	1	1	3	1	7，315
True Ataniticud．	10	0	0	0	0	－	0	0	0	0	0	4，810	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4,810
Trks．of Atamitic ivd．	11	16，158	702	0	1，689	1，424	3，385	0	1，389	3，636	4.808	0	510	122	13	2	3，777	196	378	213	176	349	3	45	767	9	0	0	0	0	6	3	2	5	1	9	189	248	107	439	1	1	5	1	40,71
Suggas Expy © Luos fad．	12	408	157	0	162	120	0	0	0	125	0	502	0	2	498	1，164	353	16	${ }^{35}$	28	59	1	1	6	68	3	1	19	1	204	320	31	6	10	11	0	37	20	9	${ }^{23}$	1	1	${ }^{2}$	1	4，001
	13	367	530	0	135	98	1	0	0	11	0	126	2	0	171	4，544	1，003	49	97	61	63	182	2	12	209	1	116	1	1	225	352	28	2	3	2	0	110	130	61	31	1	1	3	1	8，73
Suwgas kpy Q Univestity O．	14	286	79	0	81	58	20	0	0	27	0	13	479	163	0	2，203	1，032	56	176	115	208	216	1	17	187	19	87	8	1	624	109	38	99	16	13	3	84	92	30	166	1	10	732	2	7，54
Savgass Exp W．of funivesity or．	15	2，176	75	0	154	110	47	0	0	${ }^{41}$	0	1	1，179	4，547	2，022	0	3，008	57	245	196	227	609	1	19	200	15	254	28	1	266	85	32	53	18	15	0	${ }^{61}$	104	19	184	1	15	${ }^{864}$	0	17，108
${ }^{1955}$ Nof femisisul crop．Or．	16	－	0	0	0	0	0	0	0	72	0	4，080	429	1，164	1，210	3，353	0	3，144	9，138	6，220	9，140	8，055	4，382	0	8	3	1，962	1，956	4，283	17，114	35	42	34	389	409	978	14	0	0	1	1	0	，	27	7，699
	17	0	0	0	0	0	0	0	0	1	0	214	20	57	67	64	3，224	0	218	355	263	535	203	0	1	0	248	106	352	1，206	3	3	1	13	13	80	1	0	0	1	1	0	1	2	7，25
． 958 Q Vamato od. ．	18	0	0	0	0	0	0	0	0	1	0	379	39	105	192	255	10，826	253	0	860	768	1，043	496	0	2	1	553	315	491	4，87	11	12	1	19	24	195	1	0	0	1	1	0	1	5	21，
1．95 CSpansh R River	19	0	0	0	0	0	0	0	1	2	0	222	33	69	133	214	6，053	339	898	0	2	1，330	505	0	0	0	806	625	609	2，558	10	5	1	64	26	298	6	0	0	2	2	0	1	11	14，922
	20	0	0	0	0	0	0	0	0	1	0	195	75	75	251	261	9，369	265	844	2	0	324	1，306	1	10	2	2，447	1，105	1,726	3，400	49	53	0	28	28	820	2	0	0	1	1	0	1	15	22，59
1．95e Palmetoto Parks．	${ }^{21}$	0	0	0	0	0	0	0	1	2	0	362	1	204	246	658	7，422	484	1,031	1，250	289	0	1,046	1	4	1	2，216	1,101	1，787	2，738	24	34	1	64	39	563	7	0	0	2	2	0	1	16	2，594
1.55 ¢ ¢ilbsor 8 ind．	22	2	19	0	2	1	1	0	1	2	0	0	1	1	1	1	3，990	181	484	469	1，153	984	0	－	0	0	1，280	1，500	2，423	4，914	1	1	0	4	2	2	0	0	0	2	2	0	1	1	17，288
	23	1	3	0	1	0	0	0	0	0	0	14	2	4	6	6	3	0	，	1	21	13	1	0	1，143	816	36	46	52	118	1	1	0	2	1	5	0	0	0	3	1	0	4	0	2，35
	24	10	39	0	11	6	2	0	0	0	0	415	42	121	110	112	355	30	111	14	463	175	2	2，121	0	5，305	115	1，326	1，219	5，043	21	${ }^{23}$	0	44	26	128	6	2	1	107	${ }^{31}$	1	${ }^{67}$	11	17，6616
Natura ind．S．of tw 10	25	0	1	0	0	0	0	0	0	0	0	4	1	0	9	7	118	3	31	13	71	35	1	1，197	4，208	0	0	22	23	74	0	0	0	1	0	1	1	1	0	${ }^{34}$	8	0	5	0	5.87
1.59 e Sample Rd．	26	1	9	0	1	1	1	0	0	0	0	0	1	78	59	163	1，774	220	537	743	2，144	2.069	1,391	79	135	1	0	39	1，716	9，811	1	0	0	2	1	1	1	1	0	1	1	0	1	1	20，92
$1.585^{\text {c Copans }}$ d．	27	1	8	0	1	1	0	0	0	0	0	0	14	1	6	19	1，890	101	326	616	1，035	1，098	1，742	107	1，673	35	49	0	192	11，740	1	0	0	2	1	1	4	5	1	13	15	0	1	1	20，700
$1.95{ }^{\text {e Alanicic ivd．}}$	28	1	8	－	1	1	0	0	0	0	0	0	0	1	0	0	4，250	343	523	616	1，660	1.831	2，891	124	1，580	38	2，200	247	0	16，818	1	0	0	2	1	28	12	9	6	93	108	0	0	3	${ }^{33,398}$
	29	281	125	0	60	34	69	0	－	0	0	0	143	151	423	172	15,531	1，075	4，743	2，459	2，991	2.565	5，359	257	5，974	110	11，500	13，812	15，117	0	${ }^{48}$	11	0	109	145	322	19	22	7	212	253	13	960	45	85,120
	30	21	${ }^{36}$	0	21	26	${ }^{41}$	0	1	2	0	0	226	237	74	55	20	1	7	6	27	14	1	1	25	0	1	1	1	49	0	7	${ }^{61}$	4	3	7	5	8	2	18	1	0	35	0	1.043
	31	9	17	0	17	12	15	0	1	1	0	0	27	24	32	26	30	2	9	4	37	25	1	1	33	0	0	0	0	13	9	0	246	4	4	1	7	9	4	33	0	1	68	0	${ }^{723}$
	32	468	422	0	503	294	202	0	0	1	0	0	6	2	95	48	28	1	1	0	，	1	0	0	1	0	0	0	0	，	86	279	0	1	，	0	1	1	0	0	0	${ }^{95}$	5，676	15	${ }^{8.22}$
	33	7	${ }^{24}$	0	8	6	4	0	1	2	0	0	7	2	11	11	225	7	12	38	16	38	3	3	52	1	2	2	2	110	4	3	1	0	291	3	4	14	2	87	8	1	173	17	1，198
	34	1	3	0	1	1	1	0	0	1	0	0	8	2	10	11	257	8	17	17	17	25	2	2	33	1	1	1	1	159	3	3	0	317	0	1	13	23	4	100	8	1	196	2	1，299
	35	27	32	0	32	21	16	0	0	0	0	13	0	1	5	0	767	62	164	238	624	456	2	13	201	2	1	1	35	438	16	1	0	7	3	0	212	383	70	3，861	372	6	769	9	8，863
	36	10	19	0	${ }^{12}$	8	7	0	0	1	0	232	51	146	${ }^{113}$	78	16	1	2	6	3	8	0	0	13	1	2	8	${ }^{21}$	${ }^{36}$	10	11	1	7	${ }^{23}$	309	0	2	0	6	19	2	360	4	1，547
	37	6	20	0	${ }^{14}$	5	0	0	0	1	0	303	27	171	123	131	，	，	0	0	0	0	0	0	4	2	2	8	15	41	15	14	1	27	42	554	2	0	${ }^{341}$	2	49	0	1	10	1.931
Intemal one at Newoort Center	38	3	9	－	7	3	0	－	0		0	139	13	86	43	25	，	0	，	0	0	0	0	0	2	0	0	2	12	14	4	7	1	4	8	108	0	366	0	2	5	0	1	1	${ }_{868}$
Militar tral N ．of tw woth st．	39	6	11	－	8	3	0	0	0	1	0	345	20	26	142	150	1	1	1	2	1	1	2	8	157	${ }^{63}$	1	16	108	269	22	33	0	109	115	3，578	4	1	1	0	385	0	1	24	5.16
	40	0	3	0	0	0	0	0	0	1	－	－	1	1	1	1	1	1	1	2	1	1	2	2	43	${ }^{13}$	1	17	117	299	1	0	0	9	8	322	11	29	3	360	0	0	1	1	1.253
	41	33	39	0	31	20	1	0	0	1	0	0	1	2	10	14	0	0	0	0	0	0	0	0	2	0	0	0	0	19	1	1	102	2	1	3	2	0	0	0	0	0	2，599	3	2，890
Poweline ed．．．．of West dr．	42	228	164	0	182	59	2	0	1	3	0	0	2	3	729	818	4	1	1	1	1	1	1	12	115	10	1	1	1	1，412	51	80	5，902	254	264	461	268	1	1	1	1	2，521	0	390	13，94
ntenal zoneat Powerine	43	7	16	0	7	6	1	0	0	1	0	0	1	1	2	0	22	1	5	9	12	13	1	1	18	0	1	1	4	62	1	0	15	23	3	5	3	7	1	26	1	3	366	0	${ }_{6} 66$
Total		29，70	6，661	0	7，43	4,359	2,67	0	2，517	7，30	4,008	40，759	4,380	8，722	7，599	17，09］	75，47	6，901	20，38	14.556	21，473	22，01	19，32	40,06	16.93	6，458	23，00］	2，3，36	30,32	85，99	1,98	835	8.302	1，627	1，535	8，857	1.127	1．507	68	5，945	1,288	2，75	${ }^{13,488}$	658	568，881

APPENDIX D

Appendix D

Appendix D

Appendix D

Appendix D

Appendix D

Appendix D

Appendix D

Appendix D

Appendix D

Appendix D

Appendix D

Appendix D

Appendix D

Appendix D

Appendix D

Appendix D

Appendix D

Appendix D

Appendix D

Appendix D

Appendix D

Appendix D

Appendix D

Appendix D

Base PD\&E Concept, A2, and C2-2020 DDHVs Turns Hillsboro Blvd and I-95 (S.R. 9)

Base PD\&E Concept, A2, and C2-2040 DDHVs Turns Hillsboro Blvd and I-95 (S.R. 9)

Base PD\&E Concept, A2, and C2-2020 DDHVs Turns Sample Rd and I-95 (S.R. 9)

Base PD\&E Concept, A2, and C2-2040 DDHVs Turns Sample Rd and I-95 (S.R. 9)

Appendix E

APPENDIX F

Appendix F

Appendix F

Appendix F

Appendix F

Appendix F

Appendix F

Appendix F

Appendix F

Appendix F

Appendix F

Appendix F

Appendix F

SW 10 ${ }^{\text {th }}$ Street Connector Project
 Eastbound Weave Operations at the Connector Lane Egress Technical Memo

Date:	Monday, March 08, 2021
Project:	SW 10 ${ }^{\text {th }}$ Street and I-95 Connector Design Consultant (CDC)
Prepared by:	Megan McGinley and Will Suero (HDR)
Subject:	SW 10 Newport Center Drive, to the Newport Center Drive and I-95 Intersections
Attachments:	(2021) Traffic Analysis Presentation for Newport Center Drive Intersection Analysis (2018) Alternatives Analysis Memorandum for SW 10

The intersection of SW $10^{\text {th }}$ Street at Newport Center Drive was reevaluated to determine whether a full intersection opening could provide acceptable operations and be implemented over a Restricted Crossing U-Turn (RCUT) intersection. A Vissim traffic analysis was conducted by the CDC Team in January 2021 where network-level segment speeds and intersection-level movement performance measures were compared for the Design Year of 2040. Prior to this Vissim analysis, the Intersection Control Evaluation (ICE) process and a Synchro analysis was conducted to screen potential intersection configurations. While the analyses (attached) showed that the full intersection configuration could still accommodate the 2040 traffic volumes, the purpose of this memo is to document:
(1) whether the weaving movement from the connector lane egress, west of Newport Center Drive, to the eastbound left-turn at SW 12 ${ }^{\text {th }}$ Ave/Newport Center Drive as well as the l-95 ramp terminal intersections is feasible based on traffic demand and design guidance, and
(2) how the full intersection opening affects traffic operations for the overall eastbound weave segment between the connector lane egress, west of Newport Center Drive, and the Newport Center Drive and I-95 ramp terminal intersection.

1.0 Background

There are three major documents relevant to this memo:

- I-95 at SW $10^{\text {th }}$ St PD\&E Study from south of SW $10^{\text {th }}$ Street to north of Hillsboro Boulevard (2020)
o FPID 436964-1
- SW $10^{\text {th }}$ Street Connector PD\&E Study from Military Trail to west of Powerline Road (2020)
o FPID 439891-1
- \quad SW $10^{\text {th }}$ Street at I-95 Alternatives Analysis Memorandum (2018)
o FPID N/A, supporting documentation for 436964-1 \& 439891-1
It should be noted that the entire analysis in this 2021 memo is based on the 2040 Build volume set for the SW $10^{\text {th }}$ Street without Powerline Road Ramps Alternative (sometimes referred to as Scenario C2), which corresponds to Alternative 1 in the SW $10^{\text {th }}$ Street PD\&E and Alternative 2 A in the I-95 PD\&E.

1.1 SW 10 ${ }^{\text {th }}$ Street \& I-95 PD\&E Studies

Both PD\&E studies include Newport Center Drive as an analysis intersection. As of 2020, both studies documented the RCUT at Newport Center Drive as the Build Alternative. This memo, written in 2021, may result in the I-95 at SW $10^{\text {th }}$ St PD\&E Study revising the Build Alternative to include a full intersection opening for local SW $10^{\text {th }}$ St at Newport Center Dr.

In the SW $10^{\text {th }}$ Street Connector PD\&E Study, Vissim modeling was conducted where the weaving movement from the connector lane egress, west of Newport Center Drive, to the eastbound left-turn at SW $12^{\text {th }}$ Ave/Newport Center Drive was NOT permitted.

1.2 SW 10 ${ }^{\text {th }}$ Street Alternatives Analysis Memo

In 2018, an alternatives analysis (memorandum attached) was conducted for SW $10^{\text {th }}$ Street to determine the optimal managed lane ingress and egress configurations for Design Year 2040.

In the SW $10^{\text {th }}$ Street Connector PD\&E Study, Vissim modeling was conducted where the weaving movement from the connector lane egress, west of Newport Center Drive, to the eastbound left-turn at SW $12^{\text {th }}$ Ave/Newport Center Drive WAS permitted, based origin on destination volumes (OD) described later.

As part of the analysis, each of the ingress/egress configurations assumed the RCUT configuration at the SW $12^{\text {th }}$ Ave/Newport Center Drive intersection. The egress configurations considered for the location west of Newport Center Drive were:

- Inside Merge

- Both Sides Merge

- Outside Merge

To compare the egress configurations, the 2018 Alternatives Analysis Memorandum reported the overall 2040 model delay and the required minimum lane changes. The conclusion of the memo was that the Both Sides Egress Merge provided the best operating conditions. However, the Outside Egress Merge was the option carried into the SW $10^{\text {th }}$ Street Connector and I-95 at SW 10 ${ }^{\text {th }}$ St PD\&E studies.

2.0 Methodology

To evaluate the eastbound connector lane egress movement to the eastbound left-turn at SW $12^{\text {th }}$ Ave/Newport Center Drive, the OD demand was calculated using the 2018 Alternatives Analysis data, shown in Figure 1. The relative percentage distribution per movement was applied to the "without Powerline Road Ramps" 2040 volume set (Alternative 1 in the SW $10^{\text {th }}$ Street Connector PD\&E Study and Alternative 2A in the I-95/SW 10 ${ }^{\text {th }}$ St PD\&E).

EL	
GP	Traffic volumes in vehicles per hour (vph)
FDOT	Florida Department of Transportation

41 percent express lane traffic weaving, and 611 vph minimum lane changes to reach destination 77 percent general-purpose lane traffic weaving, and $1,167 \mathrm{vph}$ minimum lane changes to reach destination

Figure 1. 2018 Alternatives Analysis Memo Origin-Destination Data

To evaluate the overall eastbound connector lane egress weave to the SW $12^{\text {th }}$ Ave/Newport Center Drive and the I-95 ramp terminal intersections, Vissim version 8.00-15 was used. The Vissim network was previously calibrated and driver behavior inputs are consistent with the Vissim model used in the 2018 Alternatives Analysis Memorandum and in the 2020 SW 10 ${ }^{\text {th }}$ Street Connector PD\&E Study. The simulation time was 3 hours with Measures of Effectiveness (MOEs) reported for the peak hour. The MOEs, listed below, were selected based on the MOEs used in the ongoing SW $10^{\text {th }}$ Street/I-95 PD\&E studies and in discussions with FDOT.

- Vissim - Average Speeds; Served Volume; Delay, LOS, and Queue Length

3.0 Alternative

The alternative analyzed was a full intersection opening at Newport Center Drive, as shown in Figure 2. Surface level streets are displayed in the grey and gold/brown color. The elevated $10^{\text {th }}$ Street connector lanes are represented by the blue color. This configuration for Newport Center Drive includes lane modifications relative to the existing configuration.

Figure 2. Full Intersection Opening Alternative for Newport Center Drive

4.0 Analysis Summary

The eastbound weave distance and 2040 segment volumes, as shown in Figure 3, are the same for the full intersection opening and the RCUT documented in the SW $10^{\text {th }}$ Street Connector PD\&E Study. The 2040 AM and PM peak hour turning movement volumes (TMVs) for the full intersection opening adjusts the RCUT northbound and southbound approaches to reflect the ability to turn left and through, shown in Figure 4. The full intersection TMVs were obtained from the source traffic forecasting conducted by Florida's Turnpike Enterprise (FTE). Note the RCUT TMVs were also developed from the FTE forecasts, however, there are some minor differences due to the RCUT configuration assuming some volume uses the SW $12^{\text {th }}$ Ave slip ramp.

Figure 3. Eastbound Weave Segment Volumes and Distances along SW $10^{\text {th }}$ Street

RCUT (from SW 10 ${ }^{\text {th }}$ St Connector PD\&E Study)	Full Opening (from source modeling by FTE)
	2040 AM Volume (veh/hr) 2040 PM Volume (veh/hr)

Figure 4. Newport Center Drive 2040 Design Year Traffic Volumes

4.1 Eastbound Weaving Movement from the Connector Lane Egress to the Eastbound Left-Turn at SW $12{ }^{\text {th }}$ Ave/Newport Center Drive

The relative OD percentages for the general purpose (GP) and express lane ${ }^{1}$ (EL) egress were calculated for the AM peak hour using the volumes provided in the 2018 Alternatives Analysis Memo. The AM peak hour was chosen for analysis since the eastbound egress and eastbound left turn volumes at SW 12th Ave/Newport Center Drive were higher than during the PM peak hour. The OD percentages for both the GP and EL egress are shown below in Figure 5.

The OD percentages were applied to the eastbound EL egress and GP volumes from the SW 10th Street Connector PD\&E Study to determine the eastbound left-turn volumes that originate from the EL egress or GP lanes. As shown in Figure 6, approximately 80 vehicles would originate from the EL egress.

Figure 5. Relative OD Percentages from the Alternatives Analysis Memo

Figure 6. Origin-Destination Volumes for the Eastbound Left-Turn from EL Egress

[^0]Given the potential demand for the weaving movement and the short distance of 325 feet to complete the movement, the FDOT Access Management Handbook and the Florida Design Manual (FDM) were reviewed for minimum weaving distance guidance prior to operational analysis.

The FDOT Access Management Handbook states that "drivers may make erratic maneuvers in areas where there is limited separation between the off-ramp and the median opening". The desirable weaving distance to overcome erratic behavior is shown in Figure 7, where the weaving distance for two lanes of traffic is 800 to 1,600 feet, assuming a weaving segment average speed of 34 to 45 miles per hour (mph). The Handbook does state that the weave section may be as low as 400 feet if average speeds can be reduced to 35 mph . However, given that the connector lane egress is a free-flow movement with a design and posted speed of 35 mph (based on the SW $10^{\text {th }}$ Street typical section package), 40 mph would be expected as the free-flow speed. Further, the 325 -foot distance violates the Florida Administrative Code standard that connection spacing be 440 feet for the context classification of this roadway (C3R).

Figure 7. FDOT Access Management Handbook Weaving Distance Guidance

The FDM also includes standard geometric details at ingress and egress locations. In FDM Exhibit 211-4, shown in Figure 8, there is a 1,000-foot minimum distance specified as the starting weave length.

Figure 8. FDM Exhibit 211-4 (Begin Express Lanes Typical Egress)

To confirm that a short weave distance was not operationally viable, a Vissim simulation for the AM peak hour was run, as shown in Figure 9. The simulation resulted in vehicles being forced to come to a full stop in the weave segment to allow for the eastbound egress to eastbound leftturn to be completed.

Figure 9. Vissim Simulation Snapshot for the Eastbound Egress to Left-Turn Movement
Overall, based on the FDOT guidance and operational simulation showing that vehicles must make a full stop in the weave segment, the eastbound egress weaving movement to the eastbound left-turn at SW $12^{\text {th }}$ Ave/Newport Center Drive should not be permitted. This restriction is consistent with the SW $10^{\text {th }}$ Street Connector PD\&E study modeling effort. The vehicles exiting the eastbound connector lane, with a destination of northbound SW $12^{\text {th }}$ Ave/Newport Center Drive, would be expected to make an eastbound right-turn at Newport Center Drive and use the Newport Center Drive and the SW $12{ }^{\text {th }}$ Avenue loop road below SW $10^{\text {th }} \mathrm{St}$, to reach the north side (SW $12^{\text {th }}$ Ave).

4.2 Eastbound Weave Segment from the Connector Lane Egress to the SW 12 ${ }^{\text {th }}$ Ave/Newport Center Drive and the I-95 Intersections

The overall eastbound weave segment operations were evaluated based on eastbound queueing in the weave segment and eastbound segment speeds. These metrics offer comparison to the previous efforts in the PD\&E studies where the RCUT configuration was assumed. The intersection of Newport Center Drive was modeled in Vissim as a connected system with the I-95 interchange ramps for synchronization purposes with the cycle lengths and offsets. Full interchange results, including delay and LOS, can be found as part of the Vissim analysis summary presentation in the Attachments.

4.2.1 Eastbound Weaving Volumes

The weaving OD volumes used in this Newport Center Drive full intersection analysis are displayed in Figure 10. Based on the insufficient weaving distance between the connector lane egress and the eastbound left-turn at SW $12^{\text {th }}$ Ave/Newport Center Drive, as identified in Section 4.1, the OD volume is assumed as zero for that movement. These are OD volumes are consistent with the SW $10^{\text {th }}$ Street Connector PD\&E study.

Figure 10. Weaving OD Volumes Used in Newport Center Drive Full Intersection Analysis

4.2.2 Eastbound Queueing in the Weave Segment

The eastbound queueing at the Newport Center Drive intersection is expected to interact with the ability to make weaving maneuvers by reducing the effective weave distance. While the entire segment length from the eastbound egress to the Newport Center Drive eastbound stop bar is 1,025 feet, that distance may be effectively reduced by a queue. The eastbound intersection queues are shown in Tables 1 and 2. The eastbound queueing for the full intersection configuration is similar to the RCUT configuration, although delays differ due to signal timing differences. The SW $10^{\text {th }}$ Street PD\&E utilized a 180 second cycle length and the Newport Center Drive alternatives analysis used a 150 second cycle length. Operational intersection results for the rest of the Newport Center Drive movements and the I-95 interchange are provided in the Attachments.

Table 1. Eastbound SW 10 ${ }^{\text {th }}$ Street at Newport Center Drive - 2040 AM Peak Hour Results

SW 10 ${ }^{\text {th }}$ Street Intersection Location	Mvmnt	SW 10 ${ }^{\text {th }}$ St PD\&E (Newport as RCUT)				Alternative(Newport as Full Intersection)			
		Served Volume	Max Queue (ft)	Delay and LOS		Served Volume	Max Queue (ft)	Delay and LOS	
				Mvmnt	App			Mvmnt	App
Newport Center Dr Eastbound	L	359	315	84.0 (F)	16.9 (B)	345	281	66.2 (E)	27.8 (C)
	T	1,776	640	6.0 (A)		1,717	640	20.5 (C)	
	R	545	640	9.0 (A)		504	640	26.1 (C)	

Table 2. Eastbound SW $10^{\text {th }}$ Street at Newport Center Drive - 2040 PM Peak Hour Results

SW 10 ${ }^{\text {th }}$ Street Intersection Location	Mvmnt	$\begin{aligned} & \text { SW 10 }{ }^{\text {th }} \text { St PD\&E } \\ & \text { (Newport as RCUT) } \end{aligned}$				Alternative (Newport as Full Intersection)			
		Served Volume	Max Queue (ft)	Delay and LOS		Served Volume	Max Queue (ft)	Delay and LOS	
				Mvmnt	App			Mvmnt	App
Newport Center Dr Eastbound	L	92	164	55.0 (D)	6.9 (A)	91	109	73.4 (E)	34.5 (C)
	T	1,837	613	5.0 (A)		1,846	617	32.5 (C)	
	R	83	613	5.0 (A)		82	617	36.4 (D)	

The maximum eastbound through queue for the full intersection opening occurs in the AM peak hour and is 640 feet, which is the approximate distance shown below.

4.2.3 Eastbound Segment Speeds

The eastbound queue results are supported by the segment speeds, given that a queue is not expected to be present at all times. The segment speeds with Newport Center Drive as a full intersection versus Newport Center Drive as an RCUT is shown in Figures 11 and 12. The eastbound segment speeds remain similar, primarily experiencing 30-45 mph immediately entering the weave, and reducing to $15-30 \mathrm{mph}$ approaching the Newport Center Drive signal. It is also noted that the southbound exit ramp experiences additional slowdowns ($<15 \mathrm{mph}$) in the Full Intersection option, which is indicative of increased queuing. Maximum ramp queues are summarized in the next Section 4.2.4.

Figure 11. Eastbound SW 10 ${ }^{\text {th }}$ Street at Newport Center Drive - 2040 AM Peak Hour Segment Speeds

In the PM peak hour, the segment speeds entering the weave segment for the full intersection opening are also similar to the RCUT. However, the full intersection option experiences sustained $15-30 \mathrm{mph}$ speeds through the majority of the weave segment, which is lower than the RCUT. This is primarily due to the shorter cycle length and increased side street signal time required to serve Newport Center Drive, which has higher northbound and southbound volumes in the PM peak hour. It is also noted that the southbound exit ramp experiences additional slowdowns ($<15 \mathrm{mph}$) in the Full Intersection option, which is indicative of increased queuing. Maximum ramp queues are summarized in Section 4.2.4.

> Newport Analysis Results Newport as Full Intersection

Figure 12. Eastbound SW 10 ${ }^{\text {th }}$ Street at Newport Center Drive - 2040 PM Peak Hour Segment Speeds

4.2.4 I-95 Interchange Exit-Ramp Terminal Queues

The southbound and northbound exit ramp queues are compared in Table 3 and Table 4. The queues for the Full Intersection option remain within the available storage distance for all but one movement - the southbound approach in the PM peak hour. For this movement, the maximum queue is approximately 1 car length beyond the storage distance (648 feet of queue versus 625 feet of storage). Visual observation of the traffic simulation indicated this maximum queue occurred only rarely during the peak hour. Also, for this approach, there is an additional $1,000+$ feet beyond the 625 -foot storage bay distance, prior to the physical I-95 gore point. Given that configuration and the low occurrence of the maximum queue relative to an average queue, gore modifications are not anticipated. Full interchange results, including delay and LOS, can be found as part of the Vissim analysis summary presentation in the Attachments.

Table 3. I-95 at SW 10 ${ }^{\text {th }}$ Street Interchange Exit Ramps - 2040 PM Peak Hour Results

I-95 Ramps at SW 10 ${ }^{\text {th }}$ Street	Mvmnt	SW 10 ${ }^{\text {th }}$ St PD\&E (Newport as RCUT)			Alternative(Newport as Full Intersection)		
		Served Volume	Max Queue (ft)	Storage Distance (ft)	Served Volume	Max Queue (ft)	Storage Distance (ft)
Northbound Exit Ramp	NBL	520	232	425	524	223	425
	NBR	691	294		676	276	
Southbound Exit Ramp	SBL	295	233	625	281	391	625
	SBR	572	233		583	391	

Table 4. I-95 at SW 10 ${ }^{\text {th }}$ Street Interchange Exit Ramps - 2040 PM Peak Hour Results

I-95 Ramps at SW $10^{\text {th }}$ Street	Mvmnt	SW 10 ${ }^{\text {th }}$ St PD\&E (Newport as RCUT)			Alternative(Newport as Full Intersection)		
		Served Volume	Max Queue (ft)	Storage Distance (ft)	Served Volume	Max Queue (ft)	Storage Distance (ft)
Northbound Exit Ramp	NBL	768	364	425	770	298	425
	NBR	479	228		465	212	
Southbound Exit Ramp	SBL	409	333	625	396	648	625
	SBR	835	333		847	648	

5.0 Conclusion

The purpose of this memo was to document:
(1) whether the weaving movement from the connector lane egress, west of SW $12^{\text {th }}$ Ave/Newport Center Drive, to the eastbound left-turn at SW $12^{\text {th }}$ Ave/Newport Center Drive is feasible based on traffic demand and design guidance, and
(2) how the full intersection opening affects traffic operations for the overall eastbound weave segment between the connector lane egress, west of Newport Center Drive, and the Newport Center Drive and I-95 intersections.

In response to those two points, key findings of the traffic operational analysis conducted for the Newport Center Drive Full Intersection Opening and its impact on the eastbound weave components are:
(1) The weaving movement demand from the connector lane egress to the eastbound leftturn at SW $12^{\text {th }}$ Ave/Newport Center Drive could be expected to be approximately 80 vehicles, if permitted. However, it is recommended that this weave movement be physically prohibited due to design concerns and inability to meet recommended minimum weave distances in the FDOT Access Management Handbook and the FDM.
a. This memo is anticipated to result in a design change to the previous Build Configuration in the PD\&E Studies. The design change would shift the Newport Center Drive eastbound left-turn turn bay access west (upstream of the connector lane egress) to physically prohibit connector lane traffic from being able to access to turn bay.
(2) When compared to the RCUT, the full intersection opening at Newport Center Drive results in similar traffic operations for the eastbound queueing and segment speeds. Therefore, the overall eastbound weave segment, from the connector lane egress to the Newport Center Drive intersection and the I-95 interchange is not anticipated to be adversely impacted when compared to the RCUT.

It should also be noted that while no adverse impacts are expected at the I-95 ramp terminals with the Full Intersection configuration, the RCUT configuration does provides residual capacity beyond the design year, as supported by the more favorable speeds and queuing shown in Figures 11 and 12.

Attachments

SW 10 ${ }^{\text {th }}$ Street CDC - Newport Center Drive Intersection Control Evaluation (ICE)
 Intersection Control Evaluation (ICE)

2016 AM

TYPE OF INTERSECTION	Overall VIC Ratio	VIC Ranking	$\begin{aligned} & \text { Multimodal } \\ & \text { Score } \end{aligned}$	Pedestrian Accommodations	Bicycle Accommodations	Transit Accommodations
Signalized Restricted Crossing U- Turn E-W	0.46	1	6.3	Cood	Cood	Fair
Median U-Turn E-W	0.56	2	6.3	cood	Coed	Fair
Quadrant Roadway N-W	0.57	3	4.4	Fair	Fair	Fair
Partial Median U-Turn E-W	0.58	4	6.3	Good	Cood	Fair
Quadrant Roadway S.W	0.59	5	4.4	Fair	Fair	Fair
Traffic Signal	0.83	6	4.8	Fair	Fair	cood
--	--	--	--	--	--	--
--	-	--	--	--	--	--
--	-	--	--	--	--	--
-	-	--	--	--	--	--

2016 PM

TYPE OF INTERSECTION	Overall VIC Ratio	VIC Ranking	Multimodal Score	Pedestrian Accommodations	Bicycle Accommodations	Transit Accommodations
Median U-Turn E-W	0.55	1	6.3	Good	Good	Fair
$\begin{gathered} \text { Signalized Restricted Crossing U- } \\ \text { Turn E-W } \\ \hline \end{gathered}$	0.56	2	6.3	Good	Geod	Fair
Quadrant Roadway S.W	0.58	3	4.4	Fair	Fair	Fair
Quadrant Roadway N-W	0.64	4	4.4	Fair	Fair	Fair
Partial Median U-Turn E-W	0.75	5	6.3	Good	Geod	Fair
Traffic Signal	1.09	6	4.8	Fair	Fair	Cood
- -	--	--	--	--	-	--
--	-	--	--	--	--	--
--	--	--	--	--	--	--
-	-	--	--	--	--	--

Notes:

1. Existing Configuration Assumed
2. While some configurations listed may not be geometrically feasible, they were included for this initial capacity screening comparison.

2040 AM(PM) Volume (veh/hr)

SW 10th Street CDC - Newport Center Drive Intersection Control Evaluation (ICE)

2040 AM

TYPE OF INTERSECTION	Overall VIC Ratio	VIC Ranking	Multimodal Score	Pedestrian Accommodations	Bicycle Accommodations	Transit Accommodations
Signalized Restricted Crossing U- Turn E-W	0.55	1	6.3	Coed	Coed	Fair
Quadrant Roadway N-W	0.62	2	4.4	Fair	Fair	Fair
Traffic Signal	0.66	3	4.8	Fair	Fair	Coed
Median U-Turn E-W	0.71	4	6.3	Coed	Coed	Fair
Quadrant Roadway S-W	0.76	5	4.4	Fair	Fair	Fair
Partial Median U-Turn E-W	0.76	5	6.3	Coed	Coed	Fair
--	--	--	--	--	--	--
--	--	--	--	--	--	--
--	--	--	--	--	--	--
--	--	--	--	--	--	--

2040 PM

TYPE OF INTERSECTION	$\begin{gathered} \text { Overall } \\ \text { V/C } \\ \text { Ratio } \end{gathered}$	VIC Ranking	$\begin{aligned} & \text { Multimodal } \\ & \text { Score } \end{aligned}$	Pedestrian Accommodations	Bicycle Accommodations	Transit Accommodations
Median U-Turn E-W	0.48	1	6.3	Cood	Cood	Fair
Signalized Restricted Crossing UTurn E-W	0.58	2	6.3	Good	Good	Fair
Quadrant Roadway S.W	0.59	3	4.4	Fair	Fair	Fair
Quadrant Roadway N-W	0.69	4	4.4	Fair	Fair	Fair
Partial Median U-Turn E-W	0.79	5	6.3	Good	Cood	Fair
Traffic Signal	1.12	6	4.8	Fair	Fair	Cood
-	--	--	--	--	--	--
-	--	--	--	--	--	--
-	--	--	--	--	--	--
-	-	--	--	--	--	--

Notes:

1. Ultimate 95 Ramp Configuration Assumed
2. While some configurations listed may not be geometrically feasible, they were included for this initial capacity screening comparison.

2040 AM Volume (veh/hr)

Intersection Alternatives Analysis (for Ultimate Configuration)

December 17th, 2020

Agenda

- Alternatives Analyzed
- Analysis Results
- Intersection LOS and V/C Ratios
- Critical Movement Queue Lengths
- Sensitivity Analysis Overview
- Recommendations and Next Steps (Vissim)

Analysis Approach

- 4 Newport Center Drive Alternatives vetted in Synchro for Design Year 2040
- Overall analysis includes: Newport Center Drive, I-95 West Ramp Terminal, I-95 East Ramp Terminal
- Corridor signals optimized and coordinated

SW 10 ${ }^{\text {th }}$ Street CDC - Newport Center Drive Intersection Alternatives Analysis

Alternative 4
NBL \& SBL Allowed, but NBT \& SBT Prohibited

SW 10 ${ }^{\text {th }}$ Street CDC - Newport Center Drive Intersection Alternatives Analysis

Signal Phasing

4-Phase Signal
New movement permitted (compared to the RCUT)

3-Phase Signal

3-Phase Signal

Alternative 1 Full Intersection Opening (With Lane Modifications) Allow NBL Only

Alternative 3 Allow SBL Only

SW 10th Street CDC - Newport Center Drive Intersection Alternatives Analysis

DRAFT

FDOTY SW 10 th Street CDC - Newport Center Drive Intersection Alternatives Analysis

DRAFT

PD\&E Design RCUT

Alternative 1

Full Intersection

Opening

 (With Lane Modifications)m667 (\#822) ft

SB:

NB:
324 (426) ft

Alternative 2 Allow NBL

Alternative 3 Allow SBL
m483 (495) ft

Alternative 4

 NBL \& SBL Allowed, but NBT \& SBT Prohibitedm560 (\#897) ft

Legend \& Notes

\# = volume exceeds capacity, queue may be longer $\mathrm{m}=$ metered by upstream signal

New movement permitted (compared to the RCUT)

2040 AM Volume (veh/hr)

$$
2040 \text { PM Volume (veh/hr) }
$$

Alternative 1 Full Intersection Opening (With Lane Modifications)

SW 10 ${ }^{\text {th }}$ Street CDC - Newport Center Drive Intersection Alternatives Analysis
Sensitivity Analysis for FULL Intersection Alternative

Legend \& Notes

\# = volume exceeds capacity, queue may be longer $\mathrm{m}=$ metered by upstream signal

New movement permitted (compared to the RCUT)
2035 AM Volume (veh/hr)

2035 PM Volume (veh/hr)					
$\stackrel{496}{\leftarrow}$			$\uparrow \quad 110$		
	5	136	\longleftarrow	1,755	
	\downarrow	\longrightarrow	\downarrow	119	
				SW 10 ${ }^{\text {th }}$	
	88	$\stackrel{4}{4}$	\leftarrow	\uparrow	$\stackrel{ }{ }$
	1,766	\rightarrow		14	
	79	\checkmark -			
		©			
		$\stackrel{\rightharpoonup}{\square}$			
			6		

SW 10 ${ }^{\text {th }}$ Street CDC - Newport Center Drive

 Intersection Alternatives Analysis
Overall Findings

- At the I-95 Interchange:
- Operations remain fairly consistent between the alternatives analysis in Synchro
- At Newport Center Drive:
- Alternative 1, the full intersection opening with modifications to the existing striping, could have a service life through 2030/2035.
- Alternative 2 that allows a NBL may be operationally feasible, but will preclude pedestrian crossings through the center median.
- Alternative 3 that allows a SBL is not operationally sufficient (V/C >1 and EBT queue nears storage).
- Alternative 4 that prohibits the NBT and SBT is operationally promising, but designing the intersection to prohibit those movements needs further consideration.

SW 10 ${ }^{\text {th }}$ Street CDC - Newport Center Drive Intersection Alternatives Analysis

Recommendations

To meet local stakeholder expectations, evaluate Alternative 1 or
Alternative 4 as an alternative to the RCUT.

PD\&E Design

Intersection Alternatives Analysis (for Ultimate Configuration)

Agenda

- Analysis Results
- Intersection Queue Lengths
- Intersection LOS
- Traffic flow between Newport Center Drive, the Connector Lanes, and the System Interchange
- Recommendations and Discussion

Analysis Approach

- Modeled 2035 and 2040 AM and PM in Vissim 8
- Overall analysis includes: Newport Center Drive, I-95 West Ramp Terminal, I-95 East Ramp Terminal
- Corridor signals used timing from Synchro, adjusted splits as needed

Alternative 1-Full Intersection Opening (With Lane Modifications Relative to Existing Condition)

SW 10 ${ }^{\text {th }}$ Street CDC - Newport Center Drive Intersection Alternatives Analysis

PD\&E Design - RCUT

Alternative 1 - Full Intersection Opening (With Lane Modifications Relative to Existing Condition)

Legend \& Notes

Legend
$<15 \mathrm{mph}$
$15-30 \mathrm{mph}$
$30-45 \mathrm{mph}$
> 45 mph

2040 PM Volume (veh/hr)

$\begin{array}{rr} 545 & 5 \\ \leftarrow & \downarrow \end{array}$	$\stackrel{150}{\longrightarrow}$	$\stackrel{L}{\leftarrow}$	$\begin{aligned} & 120 \\ & 1,815 \\ & 125 \end{aligned}$	
		SW 10 ${ }^{\text {th }}$ St		
95	$\stackrel{4}{4}$	\leftarrow	\uparrow	$\stackrel{ }{ }$
1,870	\rightarrow	435	15	470
85	∇	$\overbrace{0}$		

SW 10 ${ }^{\text {th }}$ Street CDC - Newport Center Drive Intersection Alternatives Analysis

PD\&E Design - RCUT

Alternative 1 - Full Intersection Opening (With Lane Modifications Relative to Existing Condition)

Legend \& Notes

Legend
< 15 mph
$15-30 \mathrm{mph}$
$30-45 \mathrm{mph}$
$>45 \mathrm{mph}$

2040 AM Volume (veh/hr)

SW 10 ${ }^{\text {th }}$ Street CDC - Newport Center Drive Intersection Alternatives Analysis

Alternative 1 - Full Intersection Opening (With Lane Modifications Relative to Existing Condition)

Screenshot taken during the peak hour, upon the start of the eastbound and westbound signal phase

Traffic Simulation of Alternative 1

Alternative 1 - Full Intersection Opening (With Lane Modifications Relative to Existing Condition)


```
PD&E Design - RCUT
```


2-Phase Signal

Alternative 1 - Full Intersection Opening (With Lane Modifications Relative to Existing Condition)

4-Phase Signal

SW 10 ${ }^{\text {th }}$ Street CDC - Newport Center Drive Intersection Alternatives Analysis

PM Vissim Results

$\begin{array}{r} 2040 \mathrm{PI} \\ \text { VS. } 2040 \mathrm{PI} \end{array}$			2040 PTAR (Newport as RCUT)					2040 Alternative 1 (Newport as Full Intersection)				
		Movement	Volume	Max Queue	Delay and LOS (s/veh)			Volume	Max Queue	Delay and LOS (s/veh)		
Int	Approach				Movement	Approach	Int			Movement	Approach	Int
Newport Center Dr	EB	L	92	164	55 (D)	6.9 (A)	15.2 (B)	91	109	73.4 (E)	34.5 (C)	27.5 (C)
		T	1,837	613	5 (A)			1,846	617	32.5 (C)		
		R	83	613	5 (A)			82	617	36.4 (D)		
	WB	L	125	66	19 (B)	4.5 (A)		125	138	82.1 (F)	19.5 (B)	
		T	1,775	286	4 (A)			1,794	597	16.3 (B)		
		R	115	0	2 (A)			117	0	3 (A)		
	NB	L	591	322	49 (D)	49.4 (D)		454	338	48.7 (D)	32.8 (C)	
		T						18	246	45 (D)		
		R						489	355	17.6 (B)		
	SB	L	740	256	40 (D)	39.7 (D)		137	292	42.5 (D)	22.6 (C)	
		T						5	292	56.4 (E)		
		R						529	292	17.2 (B)		
I-95 Ramps at SW 10th Street	EB	L	827	620	25 (C)	26.3 (C)	34 (C)	840	385	12.3 (B)	18 (B)	32 (C)
		T	895	400	45 (D)			919	370	34.6 (C)		
		R	699	0	3 (A)			708	8	3.1 (A)		
	WB	L	752	178	50 (D)	24.3 (C)		755	215	40.8 (D)	27.2 (C)	
		T	931	178	10 (A)			928	215	24.6 (C)		
		R	305	34	5 (A)			297	0	1.1 (A)		
	NB	L	520	232	48 (D)	50.1 (D)		524	223	47.6 (D)	47.6 (D)	
		R	691	294	52 (D)			676	276	47.7 (D)		
	SB	L	295	233	111 (F)	55 (D)		281	391	62.1 (E)	61.4 (E)	
		R	572	233	26 (C)			583	391	61 (E)		

Findings

WBT Max Queue increases but remains within the storage distance (~900 feet)

LOS F

Key movement for result comparison
Notes: (1) Signal timing and cycle lengths differ between the RCUT and the Full Intersection; the l-95 ramp terminal delay is slightly improved due to the signal timing differences. (2) The volume column confirms that the expected demand is reaching the intersections/interchanges.

SW 10th Street CDC - Newport Center Drive Intersection Alternatives Analysis

PM Vissim Results

$\begin{array}{r} 2040 \text { PIVI } 2035 \text { PS. } 201 \end{array}$			2040 PTAR (Newport as RCUT)					2035 Alternative 1 (Newport as Full Intersection)				
	Approach	Movement	Volume	Max Queue	Delay and LOS (s/veh)			Volume	Max Queue	Delay and LOS (s/veh)		
Intersection					Movement	Approach	Int			Movement	Approach	Intersecti on
Newport Center Dr	EB	L	92	164	55 (D)	6.9 (A)	15.2 (B)	87	116	70.7 (E)	29.1 (C)	24.6 (C)
		T	1,837	613	5 (A)			1,693	586	27 (C)		
		R	83	613	5 (A)			79	586	29.6 (C)		
	WB	L	125	66	19 (B)	4.5 (A)		113	114	81.5 (F)	17.6 (B)	
		T	1,775	286	4 (A)			1,651	570	14.2 (B)		
		R	115	0	2 (A)			114	0	2.9 (A)		
	NB	L	591	322	49 (D)	49.4 (D)		396	335	50.4 (D)	32.9 (C)	
		T						16	242	42.2 (D)		
		R						408	351	15.5 (B)		
	SB	L	740	256	40 (D)	39.7 (D)		124	262	48.6 (D)	21.1 (C)	
		T						4	262	45.1 (D)		
		R						458	262	13.4 (B)		
I-95 Ramps at SW 10th Street	EB	L	827	620	25 (C)	26.3 (C)	34 (C)	782	640	13.7 (B)	18.4 (B)	30.9 (C)
		T	895	400	45 (D)			814	373	34.5 (C)		
		R	699	0	3 (A)			643	25	3.8 (A)		
	WB	L	752	178	50 (D)	24.3 (C)		671	182	38.7 (D)	25.1 (C)	
		T	931	178	10 (A)			863	182	22.6 (C)		
		R	305	34	5 (A)			286	0	1.1 (A)		
	NB	L	520	232	48 (D)	50.1 (D)		495	197	42.2 (D)	42.9 (D)	
		R	691	294	52 (D)			607	244	43.5 (D)		
	SB	L	295	233	111 (F)	55 (D)		263	397	66 (E)	63 (E)	
		R	572	233	26 (C)			519	397	61.5 (E)		

LOS F

Key movement for result comparison
Notes: (1) Signal timing and cycle lengths differ between the RCUT and the Full Intersection; the l-95 ramp terminal delay is slightly improved due to the signal timing differences. (2) The volume column confirms that the expected demand is reaching the intersections/interchanges.

SW 10th Street CDC - Newport Center Drive Intersection Alternatives Analysis

AM Vissim Results

$\text { vs. } 2040$			2040 PTAR (Newport as RCUT)					2040 Alternative 1 (Newport as Full Intersection)				
Intersection	Approach	Movement	Volume	Max Queue	Delay and LOS (s/veh)			Volume	Max Queue	Delay and LOS (s/veh)		
					Movement	Approach	Int			Movement	Approach	Int
Newport Center Dr	EB	L	359	315	84 (F)	16.9 (B)	14.4 (B)	345	281	66.2 (E)	27.8 (C)	23.7 (C)
		T	1,776	640	6 (A)			1,717	640	20.5 (C)		
		R	545	640	9 (A)			504	640	26.1 (C)		
	WB	L	431	208	28 (C)	9.1 (A)		431	292	73.4 (E)	19 (B)	
		T	1,852	254	6 (A)			1,867	313	9.9 (A)		
		R	428	60	4 (A)			428	0	3.8 (A)		
		L						88	105	68.2 (E)		
	NB	T	178	107	41 (D)	40.7 (D)		11	10	37.9 (D)	29.5 (C)	
		R						135	122	3.6 (A)		
		L						55	158	65.6 (E)		
	SB	T	140	112	35 (C)	35.3 (D)		12	158	68.9 (E)	31.2 (C)	
		R						89	158	4.8 (A)		
		L	532	369	19 (B)			518	408	15.1 (B)		
	EB	T	886	354	54 (D)	30 (C)		867	379	47.8 (D)	26.4 (C)	
		R	537	0	1 (A)			517	0	1.9 (A)		
		L	766	392	103 (F)			773	197	43.6 (D)		
I-95 Ramps at	WB	T	1,109	392	21 (C)	47.3 (D)	43.6 (D)	1,108	197	34.7 (C)	33.6 (C)	38.8 (D)
SW 10th Street		R	282	142	1 (A)		43.6 (D)	274	0	1 (A)		(D)
	NB	L	768	364	58 (E)			770	298	53.8 (D)		
	NB	R	479	228	52 (D)	55.9 (E)		465	212	49.1 (D)	52 (D)	
	SB	L	409	333	72 (E)	46 (D)		396	648	51.4 (D)	53.5 (D)	
		R	835	333	33 (C)	46 (D)		847	648	54.5 (D)	53.5 (D)	

LOS F

Key movement for result comparison

Findings

EBT and WBL delay increases, but max queue remains similar to the RCUT

SB exit ramp queues increase but remain near the storage distance (~625 feet before single lane section and additional 1,000+ feet after)

Notes: (1) Signal timing and cycle lengths differ between the RCUT and the Full Intersection; the I-95 ramp terminal delay is slightly improved due to the signal timing differences. (2) The volume column confirms that the expected demand is reaching the intersections/interchanges.

SW 10th Street CDC - Newport Center Drive Intersection Alternatives Analysis

AM Vissim Results

2040$\text { vs. } 2035$			2040 PTAR (Newport as RCUT)					2035 Alternative 1 (Newport as Full Intersection)				
Intersection	Approach	Movement	Volume	Max Queue	Delay and LOS (s/veh)			Volume	Max Queue	Delay and LOS (s/veh)		
					Movement	Approach	Int			Movement	Approach	Int
Newport Center Dr	EB	L	359	315	84 (F)	16.9 (B)	14.4 (B)	342	274	66.5 (E)	27.9 (C)	23.8 (C)
		T	1,776	640	6 (A)			1,668	650	20.4 (C)		
		R	545	640	9 (A)			494	650	26.3 (C)		
	WB	L	431	208	28 (C)	9.1 (A)		415	294	74.4 (E)	19 (B)	
		T	1,852	254	6 (A)			1,789	302	9.7 (A)		
		R	428	60	4 (A)			406	0	3.4 (A)		
		L						82	103	68.8 (E)		
	NB	T	178	107	41 (D)	40.7 (D)		11	10	43.6 (D)	29.6 (C)	
		R						127	120	3.1 (A)		
		L						52	161	65.3 (E)		
	SB	T	140	112	35 (C)	35.3 (D)		11	161	68.6 (E)	31.1 (C)	
		R						84	162	5 (A)		
		L	532	369	19 (B)			502	368	15.2 (B)		
	EB	T	886	354	54 (D)	30 (C)		831	406	46.1 (D)	25.6 (C)	
		R	537	0	1 (A)			499	0	1.9 (A)		
		L	766	392	103 (F)			735	184	42.3 (D)		
I-95 Ramps at	WB	T	1,109	392	21 (C)	47.3 (D)		1,056	184	33.4 (C)	32.5 (C)	379 (D)
SW 10th Street		R	282	142	1 (A)			261	15	1 (A)		
	NB	L	768	364	58 (E)	55.9 (E)		729	292	52 (D)	51 (D)	
	NB	R	479	228	52 (D)	55.9 (E)		450	212	49.5 (D)	51 (D)	
	SB	L	409	333	72 (E)			384	534	49.4 (D)		
	S	R	835	333	33 (C)			823	534	54.6 (D)	53 (D)	

LOS F

Key movement for result comparison
Notes: (1) Signal timing and cycle lengths differ between the RCUT and the Full Intersection; the I-95 ramp terminal delay is slightly improved due to the signal timing differences. (2) The volume column confirms that the expected demand is reaching the intersections/interchanges.

SW 10 ${ }^{\text {th }}$ Street CDC - Newport Center Drive Intersection Alternatives Analysis

1. The eastbound and westbound approaches at Newport Center Drive can still accommodate the 2040 traffic volumes in the "full intersection" configuration. However, the northbound and southbound approaches may need to wait more than 1 signal cycle to exit the intersection.
2. Travel speeds on SW $10^{\text {th }}$ are reduced during the peak hour but max queues are not anticipated to exceed storage.
3. Compared to the RCUT configuration, the operations at the I-95 ramp terminals remain fairly consistent for the "full intersection" configuration.
4. While pedestrian phases are not modeled, any minor street pedestrian call is expected to significantly degrade operations on SW $10^{\text {th }}$ Street.

Based on model assumptions and results, the full intersection opening at Newport Center Drive can be implemented through approximately 2035 or 2040.

MEMORANDUM

Date: August 10, 2018
\section*{DRAFT}
To: Robert Bostian, P.E., FDOT D4
Hui Zhao, P.E., FDOT D4
From: Pramod Choudhary, P.E., PTOE, AECOM
Andrew Velasquez, P.E., PTOE, AECOM/Florida's Turnpike
Copies: Anson Sonnet, P.E., FDOT D4
Vilma Croft, P.E., HNTB
Lisa Dykstra, P.E., RS\&H
Subject: SW $10^{\text {th }}$ Street at I-95 - Alternatives Analysis Memorandum
FPID(s): 436964-1 and 439891-1
State Road: SW $10^{\text {th }}$ Street (S.R. 869)
County: Broward

INTRODUCTION

The purpose of this memorandum is to document the various alternatives that were developed and analyzed for the I-95 and SW $10^{\text {th }}$ Street PD\&E Study (FPID 436964-1) and the SW $10^{\text {th }}$ Street Connector PD\&E Study (FPID 439891-1). Traffic evaluation was conducted for two different Build Alternatives (a depressed Center Alignment and a depressed Northern Alignment for the proposed managed lanes), with six different managed lanes ingress and egress configurations resulting in a total of twelve (12) Build Alternatives. In addition, 2016 Existing Conditions, 2040 No-Build Conditions, and 2040 Partial Build Conditions were also evaluated.

The fifteen scenarios (existing 2016 conditions, 2040 No-Build conditions, 2040 Partial Build conditions, and twelve 2040 Build Concept conditions) were first analyzed by conducting a Tier 1 volume to capacity ratio analysis of the SW 10th Street local lanes and proposed managed lanes. In addition, the vehicle-miles traveled in the managed lanes during the peak hours for each of the twelve Build Concepts were calculated and compared. Subsequently, a Tier 2 intersection operations analysis was completed for the signalized intersections along SW $10^{\text {th }}$ Street. A Tier 2 freeway analysis of the proposed managed lanes connecting the Sawgrass, Florida's Turnpike and I-95 was also completed. The peak hour traffic operations analysis results were reviewed to screen the twelve Build Concepts for any traffic operations fatal flaws, and the comparison of results was used to identify the most advantageous Build Concepts to be considered further.

Overall, Tier 1 and Tier 2 analyses resulted in the selection of the North Build Alternative 3D-1.3 and the Center Build Alternative 3D-1.3 as the top ranked alternatives. Please refer to the Traffic Analysis Technical Memorandum dated May 4, 2018 and prepared by RS\&H. VISSIM microsimulation was conducted to further evaluate these two shortlisted alternatives. The North Build Alternative 3D-1.3 was found to provide better operating conditions than the Center Build Alternative. Hence, the North Build Alternative 3D-1.3 was operationally considered as the best Build Alternative and was further refined to improve the overall operations. One of the refinements was to modify the Newport Drive intersection to eliminate the northbound and southbound through and left-turn movements from the intersection and convert the unsignalized intersection of SW $12^{\text {th }}$ Avenue and Newport Drive into a roundabout.

AECOM

The documentation provided herein includes the lane geometry, traffic volumes, and intersection analysis for the No-Build, Partial Build and Build 3D-1.3 alternatives along SW $10^{\text {th }}$ Street from Military Trail to FAU Research Boulevard. In addition, VISSIM traffic simulation results of the shortlisted alternatives have also been included to help in the determination of the operationally best alternative.

LANE GEOMETRY

Figures $\mathbf{1}$ through $\mathbf{3}$ provide the lane geometry for the future year alternatives described below:
No-Build Alternative - This alternative assumes future capacity with the Turnpike Mainline widening, 95 Express Phase 3 Lanes and a portion of the Sawgrass Expressway Widening from Sunrise Boulevard to U.S. 441. No improvements are included along the Sawgrass Expressway from U.S. 441 to Powerline Road and along SW $10^{\text {th }}$ Street. The No-Build includes the intersection improvements under construction at the SW $10^{\text {th }}$ Street/l-95 interchange and Hillsboro Boulevard/l-95 interchange.

Partial Build Alternative - In addition to the No-Build improvements, the Partial-Build alternative assumes:

- Full Interchange at Turnpike Mainline/Sawgrass Expressway/SW $10^{\text {th }}$ Street.
- Direct Connections to northbound and southbound 95 Express.
- Modification to the I-95 interchange ramp terminals to include additional turn lanes and a new westbound to northbound ramp.

This alternative assumes that the 95 Express direct connect ramps will extend west of Military Trail via gradeseparated ramps. The full interchange at Turnpike Mainline/Sawgrass Expressway will connect to an atgrade SW $10^{\text {th }}$ Street arterial west of the Powerline Road intersection. SW $10^{\text {th }}$ Street also remains as a fourlane arterial between Powerline Road and Military Trail.

Build SW 10 th Street Alternative 3D-1.3 North Alignment and Modified Newport Drive Intersection (North

 Modified) - In addition to the Partial-Build improvements, the Build alternative includes:- Four managed lanes (2 in each direction) along SW $10^{\text {th }}$ Street with grade separation at Powerline Road and Military Trail intersections.
- Managed lane ingress and egress ramps on either side of the Military Trail intersection.
- Removal of the northbound and southbound left turns at Newport Drive with additional northbound and southbound right turn lanes.
- Access from eastbound SW $12^{\text {th }}$ Avenue to westbound SW $10^{\text {th }}$ Street managed lanes.
- A Roundabout at the intersection of East Newport Center Drive and West Newport Center Drive.

Through coordination with the SW $10^{\text {th }}$ Street Connector PD\&E team, 12 Build Alternatives (3D 1.1 through 1.6 Center and North Alignments) were developed to evaluate the best potential ingress/egress combination along SW 10 ${ }^{\text {th }}$ Street. Build Alternatives 3D-1.3 Center and 3D-1.3 North alignments reflected the highest ranked ingress/egress combination through the tiered screening process. For simplicity, in comparing the intersection analysis results, Alternative 3D 1.3 North alignment is compared against the Partial and No-Build alternatives.

TRAFFIC FORECASTS

Figures 4 through 6 show the 2040 Directional Design Hour Volumes (DDHVs) for No-Build, Partial Build and Build 3D.1.3 alternatives. The No-Build and Partial Build alternatives were provided in the Draft SW $10^{\text {th }}$ Street Project Traffic Forecast Memorandum (PTFM), dated January 2018. The PTFM also included the forecasts for Build Alternative 3-D 1.1. The DDHVs for Build Alternative 3D-1.3 North Modified were developed in coordination with the SW $10^{\text {th }}$ Street Connector PD\&E team using output from the Express Lanes Time-of-Day Model and then manually reassigning traffic to accommodate median closures or restricted movements.

AECOM

INTERSECTION ANALYSIS RESULTS

Tables 1 through 3 present the 2040 level of service and control delays (in seconds/vehicle) for the No-Build, Partial Build, and Build 3D1.3 North Alignment (Modified), respectively, for the SW $10^{\text {th }}$ Street intersections from Military Trail to FAU Research Boulevard. The analysis was conducted using Synchro software and reported as Highway Capacity Manual 2000 output, consistent with the SW $10^{\text {th }}$ Street PTFM methodology. The results show the following:

2040 AM Peak Hour

1. The analysis generally shows a progressive improvement (reduction) in overall intersection delays from the No-Build to Partial Build to Build alternatives.
2. At the Military Trail intersection, the Partial Build alternative is expected to reduce the delay by more than 62 seconds/vehicle from the No-Build alternative and the Build alternative would further reduces it by another 34 seconds/vehicle. The Build alternative provides LOS D at this intersection.
3. The Newport Center Drive intersection is expected to operate at LOS D, C and B under the No-Build, Partial Build and Build alternatives, respectively.
4. The I-95 SB Ramp intersection is expected to operate at LOS E, D and D under the No-Build, Partial Build and Build alternatives, respectively. The average vehicle delays between the Partial Build and Build alternatives are comparable.
5. The I-95 NB Ramp intersection is expected to operate at LOS F, C and C under the No-Build, Partial Build and Build alternatives, respectively. The Partial Build and Build alternatives would reduce the overall intersection delays by more than 54 seconds per vehicle when compared with the No-Build alternative. The average vehicle delays between the Partial Build and Build alternatives are comparable.
6. The FAU Research Park Boulevard is expected to operate at LOS D under the No-Build, Partial Build and Build alternatives with comparable delays.

2040 PM Peak Hour

1. The analysis generally shows a progressive improvement (reduction) in overall intersection delays from the No-Build to Partial Build to Build alternatives.
2. At the Military Trail intersection, the Partial Build alternative would reduce the delay by 72 seconds/vehicle from the No-Build alternative and the Build alternative would further reduces it by another 31 seconds/vehicle. The intersection is expected to operate at LOS F, F and D under the NoBuild, Partial Build and Build alternatives, respectively.
3. The Newport Center Drive intersection is expected to operate at LOS F, E and C under the No-Build, Partial Build and Build alternatives, respectively. The Partial Build alternative would reduce the delay by 19 seconds/vehicle from the No-Build alternative and the Build alternative would further reduces it by more than 34 seconds/vehicle.
4. The I-95 SB Ramp intersection is expected to operate at LOS D, C and D under the No-Build, Partial Build and Build alternatives, respectively.
5. The I-95 NB Ramp intersection is expected to operate at LOS F, C and C under the No-Build, Partial Build and Build alternatives, respectively. The Partial Build and Build alternatives would reduce the overall intersection delays by more than 124 seconds per vehicle when compared with the No-Build alternative. The average vehicle delays between the Partial Build and Build alternatives are comparable.
6. The FAU Research Park Boulevard is expected to operate at LOS E, E and D under the No-Build, Partial Build and Build alternatives. The Partial Build would reduce the delay by more than 19 seconds per vehicle and the Build alternative would further reduce it by 5 seconds per vehicle.

VISSIM Simulation of the North and Center Build Alternative 3D-1.3

As discussed above, based on the VISSIM traffic simulation of the North and Center Build Alternatives, certain refinements were made to the Build concepts. Therefore, hereinafter, the 3D-1.3 Build Alternatives have been identified as "Base" and "Modified". The modified alternative incorporates the elimination of the northbound and southbound through and left-turn movements from the intersection of SW $10^{\text {th }}$ Street and Newport Drive and the conversion of the currently unsignalized intersection of SW $12{ }^{\text {th }}$ Avenue and Newport Drive into a roundabout.

Evaluation of North Build Alternative Base and Center Build Alternative Base

VISSIM micro-simulation analysis was conducted for the Base condition for North and Center Build Alternatives 3D-1.3. For the Center Base alignment, VISSIM micro-simulation analysis identified significant constraints in the WB direction between Military Trail and the I-95 ramps. The primary reason for the traffic congestion and backup was insufficient intersection throughput capacity at Newport Center Drive and constrained weaving operations accessing the WB express lane ingress. In the North Base alignment, the express lanes are relocated to the north side of SW $10^{\text {th }}$ Street from the center location thereby providing better operating conditions than the Center Base alignment. Tables 4A and 4B summarize the VISSIM network-wide summary. The green highlighting indicates the alternative with better operations. Figures 7A and 7B depict the VISSIM network for the North Base and Center Base alternatives.

Findings

The VISSIM results indicate that in the Build Option 1.3 North Base, there is significant reduction in latent (i.e., unmet) demand and delay in the AM and PM conditions. Based on these traffic operations results the North Build Alternative Base preforms better than the Center Build Alternative Base. Therefore, the Center Build Alternative was eliminated and North Build Alternative Base was advanced further in the PD\&E process for additional concept refinements to improve the traffic operations at the Newport Center Drive intersection.

Evaluation of North Build Alternative Base and North Build Alternative Modified

To improve traffic operations and achieve acceptable traffic operations at all study area intersections, the North Build Alternative Base was further refined by eliminating the NB and SB through and left-turn movements at the Newport Center Drive and SW $10^{\text {th }}$ Street intersection. The traffic from the eliminated movements was reassigned via the loop connector which passes under SW $10^{\text {th }}$ Street along the railway line. Tables 5A and 5B summarize the VISSIM network-wide summary. The green highlighting indicates the alternative with better operations. Figures 8A and 8B depict the VISSIM network for the North Modified and Center Modified alternatives.

Findings

The VISSIM results indicate that in the North Build Alternative Modified, there is improvement in delay, speed and travel time in the AM condition. In the PM condition, there is significant reduction in latent (i.e., unmet) demand and delay along with improvement in delay, speed and travel time. Hence, the North Build Alternative Modified was operationally found to be the best alternative for further consideration in the PD\&E process.

Table 1A - No-Build 2040 SW 10th Street Signalized Intersection Analysis Results - AM

Synchro 9.2.914.6
LOS notes:
HCM 2000 level of service (LOS) and delay results from Synchro
Delay is in sec/veh units
: LOS E reflecting at capacity operations

Queue notes:
HCM methodology does not report queues, results are from Synchro outputs report
\sim : Volume exceeds capacity, queue is theoretically infinite
\#: 95th percentile volume exceeds capacity
m : Upstream metering is in effect
*Combined SB ramps intersections delay notes
The WBT at the I-95 SB on-ramp intersection and EBT at the I-95 SB off-ramp intersection are not used in the calculation of the combined weighted intersection delay.

Table 1B - No-Build 2040 SW 10th Street Signalized Intersection Analysis Results - PM

Arterial	Signal Controlled Intersections	Measure of Effectiveness (MOE)	Location	PM Movement/Approach LOS (Delay)												Intersection PM LOS (Delay)
				Eastbound			Westbound			Northbound			Southbound			
				Left	Through	Right										
SW 10th Street	South Military Trail	LOS (Delay)	Movement	F (314.4)	E (61.2)	C (23.6)	E (78.7)	F (342.0)	E (55.4)	F (92.2)	E (68.3)	E (61.8)	F (85.3)	F (92.3)	F (96.5)	F (157.2)
			Approach	F (97.7)			F (263.3)			E (70.4)			F (92.5)			
		Volume to Capacity ratio	Movement	1.44	1.01	0.15	0.91	1.63	0.66	0.78	0.8	0.6	0.75	0.99	0.96	
		Queue Length 95th (ft)	Movement	\#452	\#958	m31	m291	m\#2176	m338	\#191	507	351	217	\#758	\#731	
		LOS (Delay)	Movement	F (83.0)	B (16.6)		F (208.8)	D (51.2)	B (14.8)	F (113.5)	F (115.7)	F (406.9)	E (65.1)	E (65.1)	F (262.3)	
	East Newport Center	LOS(Delay)	Approach		B (18.7)			E (57.5)			F (275.4)			F (215.5)		F 81.8$)$
		Volume to Capacity ratio	Movement	0.73	0.76		1.15	1.02	0.11	0.91	0.92	1.68	0.22	0.23	1.36	(81.8)
		Queue Length 95th (ft)	Movement	m78	m229		\#380	\#1358	34	\#408	\#416	\#824	122	123	\#727	
		LOS (Delay)	Movement		F (88.5)	A (0.5)	F (101.0)	A (0.2)								
	I-95 Southbound On-	LOS (Delay)	Approach		E (66.3)			C (22.6)								
		Volume to Capacity ratio	Movement		1	0.48	1.03	0.48								
		Queue Length 95th (ft)	Movement		m625	m0	\#843	0								D 4
		LOS (Delay)	Movement		B (12.6)			A (9.9)					D (54.0)		A (4.1)	
	I-95 Southbound Off-		Approach		B (12.6)			A (9.9)						B (14.4)		
	ramp	Volume to Capacity ratio	Movement		0.66			0.63					0.36		0.79	
		Queue Length 95th (ft)	Movement		m661			m151					205		0	
		LOS (Delay)	Movement		D (52.5)	A (1.7)	E (75.3)	C (32.6)		F (441.1)		F (501.6)				
	I-95 Northbound Ramps	LOS (Delay)	Approach		C (31.5)			D (39.6)			F (460.0)					F (148.4)
		Volume to Capacity ratio	Movement		0.88	0.67	0.81	0.66		1.8		1.92				F(148.4)
		Queue Length 95th (ft)	Movement		818	380	\#528	590		\#1186		\#1305				
		LOS (Delay)	Movement	D (40.1)	C (29.1)		F (147.0)	C (23.2)	B (17.6)	F (567.3)	E (57.8)	E (56.1)	E (77.2)	F (113.1)	F (136.8)	
	FAU Research Park	LOS (Delay)	Approach		C (30.4)			D (40.0)			F (321.3)			F (113.6)		
	Boulevard	Volume to Capacity ratio	Movement	0.87	0.72		1.11	0.49	0.09	2.08	0.25	0.09	0.85	0.99	1.05	E(大9.2)
		Queue Length 95th (ft)	Movement	\#272	601		\#417	353	39	\#655	107	63	\#391	\#531	\#542	

Synchro 9.2.914.6
LOS notes:
HCM 2000 level of service (LOS) and delay results from Synchro
Delay is in sec/veh units
: LOS E reflecting at capacity operations

Queue notes:
HCM methodology does not report queues, results are from Synchro outputs report
\sim : Volume exceeds capacity, queue is theoretically infinite
\#: 95th percentile volume exceeds capacity
m : Upstream metering is in effect
*Combined SB ramps intersections delay notes
The WBT at the I-95 SB on-ramp intersection and EBT at the I-95 SB off-ramp intersection are not used in the calculation of the combined weighted intersection delay

Table 2A - Partial-Build 2040 - SW 10th Street Signalized Intersection Analysis Results - AM

Synchro 9.2.914.6
LOS notes:
HCM 2000 level of service (LOS) and delay results from Synchro
Delay is in sec/veh units
: LOS E reflecting at capacity operations
: LOS F reflecting over capacity operations

Queue notes:
HCM methodology does not report queues, results are from Synchro outputs report
\sim : Volume exceeds capacity, queue is theoretically infinite
\#: 95th percentile volume exceeds capacity
m : Upstream metering is in effect

Table 2B- Partial-Build 2040 - SW 10th Street Signalized Intersection Analysis Results - PM

Synchro 9.2.914.6
LOS notes:
HCM 2000 level of service (LOS) and delay results from Synchro
Delay is in sec/veh units

[^1]Queue notes:
HCM methodology does not report queues, results are from Synchro outputs report
\sim : Volume exceeds capacity, queue is theoretically infinite
\#: 95th percentile volume exceeds capacity
m : Upstream metering is in effect

Table 3A - Build 3D-1.3 2040 - North Alignment - SW 10th Street Signalized Intersection Analysis Results - AM (Modified)

LOS notes:
HCM 2000 level of service (LOS) and delay results from Synchro
Delay is in sec/veh units
: LOS E reflecting at capacity operations
: LOS F reflecting over capacity operations

Queue notes:
HCM methodology does not report queues, results are from Synchro outputs report
\sim : Volume exceeds capacity, queue is theoretically infinite
\#: 95th percentile volume exceeds capacity
m : Upstream metering is in effect

Table 3B - Build 3D-1.3 2040 - North Alignment - SW 10th Street Signalized Intersection Analysis Results - PM (Modified)

Synchro 9.2.914.6
LOS notes:
HCM 2000 level of service (LOS) and delay results from Synchro
Delay is in sec/veh units
: LOS E reflecting at capacity operations
: LOS F reflecting over capacity operations

Queue notes:
HCM methodology does not report queues, results are from Synchro outputs report
\sim : Volume exceeds capacity, queue is theoretically infinite
\#: 95th percentile volume exceeds capacity
m : Upstream metering is in effect

A=COM
Table 4A: 2040 AM Peak Period VISSIM Network-wide Summary

Alternative (2040 AM Peak Period)	Average		Total			Latent	
	Delay (sec/veh)	Speed (mph)	Travel Time (veh-hrs)	Delay (veh-hrs)	Vehicles Processed	Delay (veh-hrs)	$\begin{aligned} & \text { Demand } \\ & \text { (veh) } \end{aligned}$
Build Option 1.3 Center Base	395	25	3,879	1,627	44,437	2,461	3,327
Build Option 1.3 North Base	327	27	3,717	1,393	45,936	6	8

= Favorable alternative for the referenced measure of effectiveness

Table 4B: 2040 PM Peak Period VISSIM Network-wide Summary

Alternative (2040 PM Peak Period)	Average		Total			Latent	
	Delay	Speed	Travel Time (mph)	Delay (veh-hrs)	Vehicles (veh-hrs)	Delay (veh-hrs)	Demand (veh)
Build Option 1.3 Center Base	1,035	15	6,803	4,566	47,763	3,982	5,904
Build Option 1.3 North Base	428	24	4,388	1,935	48,814	1,018	1,392

\square = Favorable alternative for the referenced measure of effectiveness

Table 5A: 2040 AM Peak Period VISSIM Network-wide Summary

$\begin{array}{c}\text { Alternative } \\ \text { (2040 AM Peak } \\ \text { Period) }\end{array}$	Average		Total			Latent	
	Delay						
(sec/veh)							

(mph)\end{array} $$
\begin{array}{c}\text { Travel } \\
\text { Time } \\
\text { (veh-hrs) }\end{array}
$$ \quad $$
\begin{array}{c}\text { Delay } \\
\text { (veh-hrs) }\end{array}
$$ $$
\begin{array}{c}\text { Vehicles } \\
\text { Processed }\end{array}
$$ $$
\begin{array}{c}\text { Delay } \\
\text { (veh-hrs) }\end{array}
$$ $$
\begin{array}{c}\text { Demand } \\
\text { (veh) }\end{array}
$$\right]\)
= Favorable alternative for the referenced measure of effectiveness

Table 5B: 2040 PM Peak Period VISSIM Network-wide Summary

$\left.$| Alternative
 (2040 PM Peak
 Period) | Average | | Total | | | Latent | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Delay | | | | | | |
| (sec/veh) | | | | | | | | | Speed |
| :---: |
| (mph) | | Travel |
| :---: |
| Time |
| (veh-hrs) |\quad| Delay |
| :---: |
| (veh-hrs) | | Vehicles |
| :---: |
| Processed | | Delay |
| :---: |
| (veh-hrs) | | Demand |
| :---: |
| (veh) | \right\rvert\,

= Favorable alternative for the referenced measure of effectiveness

Figure 7A: Build Option 3D-1.3 North Base

FDOTI

Figure 7B: Build Option 3D-1.3 Center Base

FDOTY

Figure 8A: Build Option 3D-1.3 North Modified

Figure 8B: Build Option 3D-1.3 Center Modified

Roundabout vs. Stop Controlled Intersection Analysis (SW 12 ${ }^{\text {th }}$ Avenue \& Newport Center Drive)

The intersection of SW $12^{\text {th }}$ Avenue and Newport Center Drive is currently a two-way stop controlled intersection with the NB and SB approaches as free movements and EB and WB movements as Stop controlled. In future years, it is projected that the truck activity at this intersection would increase causing potential safety concerns. Therefore, to mitigate any potential traffic operational safety concerns, a signal and a roundabout option were considered for this intersection. However, the signal warrant analysis was not satisfied for the intersection due to low traffic volume so the signal option was eliminated and a roundabout option was considered for traffic operational analysis comparison with the Stop controlled intersection.

Tables 6A and 6B summarize the VISSIM analysis results for roundabout and Stop controlled intersection conditions. The VISSIM analysis indicates that the traffic operational analysis is very similar between roundabout and Stop controlled intersection. However, a roundabout has significant safety benefits over a Stop controlled intersection. According to FHWA - Technical Summary on Roundabouts, numerous studies have shown significant safety improvements at intersections converted from conventional forms to roundabouts. The physical shape of roundabouts eliminate crossing conflicts that are present at conventional intersections, thus reducing the total number of potential conflict points and the most severe of those conflict points. The most comprehensive and recent study showed overall reductions of 35 percent in total crashes and 76 percent in injury crashes. Severe, incapacitating injuries and fatalities are rare, with one study reporting 89-percent reduction in these types of crashes and another reporting 100-percent reduction in fatalities. Therefore, a roundabout is recommended at the intersection of SW $12^{\text {th }}$ Avenue and Newport Center Drive.

North Build Alternative 3D-1.3 Modified - Evaluation of Eastbound Express Lane Egress Merge Conditions

Due to the proximity of the eastbound express lane egress to the Newport Center Drive intersection and the I-95 southbound ramp intersection, significant weaving and lane changes are induced in the eastbound direction. In order to provide the best operating conditions, the eastbound express lane egress was evaluated using VISSIM traffic simulation for the following merge conditions:

- Inside Egress Merge (see Figure 9)
- Outside Egress Merge (See Figure 10)
- Both Inside and Outside Egress Merge (See Figure 11)

Table 7 summarizes the results of the VISSIM analysis of the express lane egress merge conditions. The analysis shows that a combination of both inside and outside merge would provide the best operating conditions in the eastbound direction. Figure 12 depicts the both inside and outside egress merge conditions with a roundabout at the intersection of Newport Center Drive and SW $12{ }^{\text {th }}$ Avenue.

AECOM
Table 6A: 2040 AM Design Hour VISSIM Intersection Summary

Approach (AM Design Hour)	Movement	Roundabout			Stop Controlled		
		Queue Length Maximum (ft)	Demand Processed (Veh)	Delay (sec/veh)	Queue Length Maximum (ft)	Demand Processed (Veh)	Delay (sec/veh)
Northbound	U-Turn	0	0	0.0	0	0	0.0
	Left	55	24	10.3	36	25	1.8
	Through	55	30	8.3	0	31	0.1
	Right	55	6	7.3	9	6	0.7
Southbound	U-Turn	0	0	0.0	0	0	0.0
	Left	298	491	5.7	208	491	3.4
	Through	298	335	6.2	108	335	2.4
	Right	298	24	7.0	108	24	1.8
Eastbound	U-Turn	0	0	0.0	0	0	0.0
	Left	189	82	12.0	118	82	12.5
	Through	189	76	11.8	121	77	9.8
	Right	189	75	12.3	122	75	12.0
Westbound	U-Turn	0	0	0.0	0	0	0.0
	Left	39	4	2.9	73	4	11.5
	Through	39	66	2.2	89	66	14.0
	Right	39	32	1.6	89	32	5.6
Overall			1,246	6.9		1,247	5.2

AECOM
Table 6B: 2040 PM Design Hour VISSIM Intersection Summary

Approach (AM Design Hour)	Movement	Roundabout			Stop Controlled		
		Queue Length Maximum (ft)	Demand Processed (Veh)	Delay (sec/veh)	Queue Length Maximum (ft)	Queue Length Maximum (ft)	Demand Processed (Veh)
Northbound	U-Turn	0	0	0.0	0	0	0.0
	Left	120	169	5.4	68	169	2.5
	Through	120	263	4.4	0	264	0.2
	Right	120	10	4.1	31	10	0.5
Southbound	U-Turn	0	0	0.0	0	0	0.0
	Left	127	94	12.6	84	93	3.8
	Through	127	54	13.7	0	54	1.9
	Right	127	28	15.6	0	28	2.8
Eastbound	U-Turn	0	0	0.0	0	0	0.0
	Left	80	176	3.5	126	175	13.7
	Through	80	9	4.4	128	9	7.3
	Right	80	9	4.0	130	9	10.5
Westbound	U-Turn	0	0	0.0	0	0	0.0
	Left	293	9	14.6	325	9	15.6
	Through	293	382	14.1	337	384	28.3
	Right	293	97	5.6	337	97	7.6
Overall			1,300	8.6		1,300	11.8

Figure 9: Build Option 3D-1.3 North Modified Inside Merge

Figure 10: Build Option 3D-1.3 North Modified Outside Merge

Figure 11: Build Option 3D-1.3 North Modified Both Side Merge

FDOTY

Table 7: North Build Alternative 3D-1.3 Modified - Express Lane Alignment Vehicle-Hours Comparison: Inside Egress Merge vs. Outside Egress Merge vs. Both Side Egress Merge

Concepts	2040 (Delay in vehicle-hours)		
	AM	PM	Total
Inside Egress Merge	1,096	1,546	2,642
Outside Egress Merge	1,078	1,529	2,606
Both Sides Egress merge	1,083	1,406	2,489

Figure 12: Build Option 3D-1.3 North Modified Both Side Merge With Roundabout

AECOM

North Build Alternative 3D-1.3 Modified - Comparison of Weaving Volumes and Minimum Number of Lane Changes for the Eastbound Express Lane Egress Merge Conditions

In addition to the VISSIM analysis discussed above, the eastbound egress merge conditions were also evaluated for weaving volumes and the number of lane changes that would occur due to the different egress merge conditions in the eastbound direction. The origin and destination volumes for both the General Purpose (GP) lane and Express Lane (EL) were determined. Based on the location of the EL egress, the weaving volumes between the GP lane and the EL traffic were estimated. In addition, the number of lane changes that the vehicles from both the GP lane and the EL will have to make in order to reach their destinations was estimated. Table 8 provides a comparison of the weaving volumes and minimum number of lane changes for the different express egress merge conditions. As shown in green highlighting, both sides egress merge would provide the best operating conditions. With both sides egress merge, the express lane traffic can reach their destinations without any weaving and lane changes, and the GP lane traffic would experience the least weaving and the least number of vehicles having to make lane changes to reach their destinations. Figures $\mathbf{1 3}$ through $\mathbf{1 5}$ show the origin and destination traffic from both the GP and the Express lanes for the inside merge, outside merge, and both sides merge conditions, respectively.

Table 8: North Build Alternative 3D-1.3 Modified - Express Lane Alignment
Weaving Volumes and Minimum Lane Changes Comparison: Inside Egress Merge vs. Outside Egress Merge vs. Both Side Egress Merge

Concepts	AM Peak Hour				PM Peak Hour			
	From GP Lane		From Express Lane		From GP Lane		From Express Lane	
	Weaving \%	Minimum Lane Changes (vph)	Weaving \%	Minimum Lane Changes (vph)	Weaving \%	Minimum Lane Changes (vph)	Weaving \%	Minimum Lane Changes (vph)
Inside Egress Merge	26\%	356	54\%	2,052	26\%	300	61\%	2,093
Outside Egress Merge	73\%	1,269	38\%	870	77\%	1,167	41\%	611
Both Sides Egress Merge	20\%	267	0\%	0	4\%	48	0\%	0

North Build Alternative 3D-1.3 Modified - User Benefit Calculation for the Eastbound Express Lane Egress Merge Conditions

A user benefit calculation was conducted for the different express egress merge conditions for design year 2040. Cumulative benefits for the three merge conditions in 2018 dollars were determined based on the benefits for each year from opening year 2020 to design year 2040. Table 9 summarizes the user benefits in dollars between the three merge conditions.

Table 9: North Build Alternative 3D-1.3 Modified - Express Lane Alignment User Benefit in Dollars

Present Day Benefit in Dollars (2018)	Outside Egress Merge Minus Inside Egress Merge	Both Sides Egress Merge Minus Inside Egress Merge	Both Sides Egress Merge Minus Outside Egress Merge
Cumulative Benefit Difference	$\$ 1,513,100$	$\$ 6,441,200$	$\$ 4,927,500$

AECOM

The maximum benefit will be realized by both sides egress followed by outside egress and then inside egress. When compared with the inside egress, the outside egress provides approximately $\$ 1.5$ million in additional cumulative benefits. The both sides egress provides approximately $\$ 6.4$ million and $\$ 4.9$ million in additional benefits compared to the inside egress and outside egress, respectively. It can therefore be concluded from Table 9 that for as long as the cost of adding the inside merge to the outside merge remains within $\$ 4.9$ million, the benefits will outweigh the cost, otherwise it will be better to maintain the outside only option.

CONCLUSION

As documented in the Traffic Analysis Technical Memorandum dated May 4, 2018 and prepared by RS\&H, Tier 1 and Tier 2 analyses resulted in the selection of the North Build Alternative 3D-1.3 and the Center Build Alternative 3D-1.3 as the two most suitable alternatives. VISSIM micro simulation resulted in the selection of the North Build Alternative 3D-1.3 as the operationally best Build Alternative. This alternative was further refined to eliminate the northbound and southbound through and left-turn movements from the SW $10^{\text {th }}$ Street and Newport Center Drive intersection and convert the unsignalized intersection of SW 12th Avenue and Newport Center Drive into a roundabout. Additionally, three different express lane egress merge conditions were evaluated for weaving volumes, number of lane changes, and vehicle hours of delay. A combination of both the inside and outside express lane egress merge condition was found to provide the best operating conditions. The both sides egress merge condition also provided the maximum cumulative benefit when compared to the inside only and the outside only merge conditions.

Figure 13A: 2040 AM Build Condition - Inside Merge EB Weaving

EL
GP

Traffic volumes in vehicles per hour (vph)

Abstract

54 percent express lane traffic weaving, and $2,052 \mathrm{vph}$ minimum lane changes to reach destination

26 percent general-purpose lane traffic weaving, and 356 vph minimum lane changes to reach destination

Figure 13B: 2040 PM Build Condition - Inside Merge EB Weaving

EL
GP

Traffic volumes in vehicles per hour (vph)

61 percent express lane traffic weaving, and 2,093 vph minimum lane changes to reach destination 300 vph minimum lane changes to reach destination

Figure 14A: 2040 AM Build Condition - Outside Merge EB Weaving

Figure 14B: 2040 PM Build Condition - Outside Merge EB Weaving

Figure 15A: 2040 AM Build Condition - Both Side Merge EB Weaving

EL

FDOTV
Florida Department of Transportation

Figure 15B: 2040 PM Build Condition - Both Side Merge EB Weaving

[^0]: ${ }^{1}$ Note that "express lanes" here refers to the SW $10^{\text {th }}$ Street connector lanes. In 2018, the terminology for the SW $10^{\text {th }}$ Street connector lanes was "express lanes".

[^1]: LOS E reflecting at capacity operations
 LOS F reflecting over capacity operations

