CONCEPTUAL

DRAINAGE/POND

SITING REPORT

SW 10TH STREET CONNECTOR PD&E STUDY

FPID 439891-1-22-02

DECEMBER 2020

CONCEPTUAL DRAINAGE/POND SITING REPORT

SR 869/SW 10th Street from west of SR 845/Powerline Road to west of Military Trail Financial Project No.: 439891-1-22-02

Prepared by RS&H, Inc. for the Florida Department of Transportation (FDOT), District 4

FL. Cert. No.; EB0005620 E.O.R.: Christian B. Jackson, P.E. License No.: 61898

CONTENTS

1.0	Introduction	1	
2.0	Location and Description of Project		
3.0	Typical Sections	2	
3.1	Existing Typical Section	2	
3.2	Proposed Typical Section		
4.0	Stormwater Management Systems	3	
4.1	Existing Drainage System	3	
4.	1.1 Existing Drainage System: C-3 Basin	3	
4.	1.2 Existing Drainage System: C-2 Basin		
4.2	Proposed Drainage System		
5.0	Geotechnical Characteristics		
5.1	Soils Information		
6.0	Stormwater Management Permitting		
6.1	Stormwater Quality Criteria		
6.	1.1 South Florida Water Management District	5	
6.	1.2 Broward County Environmental Protection and Growth Management	6	
6.2	Stormwater Quantity Criteria	7	
6.3	Floodplain Encroachment	7	
6.4	Roadway Base Protection	8	
7.0	Stormwater Management Facilities Evaluation	<u>C</u>	
7.1	Wet Detention Ponds		
8.0	Stormwater Management System Design	11	
8.1	Project Datum	11	
8.2	Control Elevations	11	
8.	2.1 Tailwater Elevations	11	
8.	2.2 Seasonal High Groundwater Table	11	
8.3	Storage Volumes Required	12	
8.	3.1 Water Quality Permit Requirements	12	
	3.2 Water Quantity Permit Requirements		
	3.3 Floodplain Compensation Requirements		
	3.4 Pre-Development Model		
8.	3.5 Post-Development Model		
8.4	Drainage Concept Recommendation	14	

9.0	Pond Siting Analysis	. 15
9.1	Initial Selection of Parcels for Proposed Ponds	. 15
9.2	Evaluation of Potential Pond Sites	.16
10.0	Pond Siting Summary and Final Recommendations	. 19

LIST OF APPENDICES

Appendix A: Design Aids

Figure 1 – Project Location Map Figure 2 – Existing Land Use Map Figure 3 – Future Land Use Map

Figure 4 – Soils Map

Figure 5 – USGS Quadrangle Map

Figure 6 – Verified Impaired Water Bodies Map (WBID and TMDLs Map)

Figure 7 – FEMA Flood Zone Map Figure 8 - SFWMD Drainage Basin Map

Figure 9 – SFWMD Rainfall Maps

Figure 10 – FDOT Criteria for Grade Datum Figure 11 – Vertical Datum Conversion

Figure 12 – FDOT District 4 Local Water Control District Map for Broward County

Figure 13 - Broward County Wellfield Map

Appendix B: Pre-Development Drainage Maps

Appendix C: Post-Development Drainage Maps

Appendix D: Drainage Analysis Documentation

Land Use Tables Drainage Calculations Summary Tables

Floodplain Calculations ICPR: Pre-Development ICPR: Post-Development

Appendix E: As-Built Plans: FPID 424655-1-52-01

Appendix F: SFWMD Drainage and Permit Documentation

Appendix G: Broward County Drainage and Permit Documentation

Appendix H: Geotechnical Report

Appendix I: Pond Siting Documentation

Appendix J: Project Correspondence

Appendix K: FTE Drainage Map and BCPA Parcel Information

LIST OF TABLES

Table 1 – Datum Conversion from NGVD 29 to NAVD 88	. 11
Table 2 – Water Quality Treatment Requirements	. 12
Table 3 – Pond Size Requirements	. 13

EXECUTIVE SUMMARY

This Conceptual Drainage/Pond Siting Report is part of the Preliminary Engineering Report for the Project Development and Environment (PD&E) study for SR 869/SW 10th Street in Broward County, Florida.

This report describes the existing roadway and drainage features of the study corridor, identifies key drainage and permitting criteria for the proposed improvements, provides a conceptual drainage design with minimum required pond sizes, evaluates alternative parcels for ponds, and provides a final recommendation.

The project is located along SR 869/SW 10th Street from west of Powerline Road to west of Military Trail. The roadway corridor within the PD&E study limits consists of a four-lane divided suburban principal arterial, widening to a six-lane divided urban principal arterial at the eastern and western limits of the project. The proposed improvements include widening to provide for a limited-access connector facility along the SR 869/SW 10th Street corridor. The existing drainage within the PD&E study limits consist primarily of an open swale system that collects and retains roadway runoff, with overflow discharges to the Broward County Water Control District (BCWCD) #2 C-3 and C-2 canals. The drainage system is divided into two distinct basins (the C-3 Basin and the C-2 Basin), which are then subdivided into several sub-basins based on existing collection and conveyance systems, interconnected stormwater management facilities, and outfalls. The proposed drainage design consists of a closed drainage system with drainage structures, pipes, and pumps, for collection and conveyance of stormwater runoff.

The project falls within the jurisdictional boundary of the South Florida Water Management District (SFWMD) and the Broward County Environmental Protection and Growth Management Department (BCEPGMD). SFWMD has established several criteria for water quality, water quantity, and floodplain compensation. The conventional approach for offsite stormwater management facility selection and design are identification of pond site alternatives located adjacent to or close to the project corridor which receive untreated stormwater runoff via piping from the roadway corridor and then contain control structures which discharge the treated runoff into the receiving waters. However, the BCWCD #2 basins are different, as they are designated as a "water quality basin" which provides storage, treatment, and groundwater control for the entire basin draining to it and, in the case of the C-2 Basin, is controlled by one structure (S-4) at the north end of the C-2 Canal which discharges to the SFWMD Hillsboro Canal. Therefore, in lieu of new stormwater management facilities within the basin, any of the existing stormwater management facilities within the entire basin could be expanded/modified as needed to provide the required water quality, water quantity, and floodplain compensation volume for the project. After discussions, both SFWMD and BCEPGMD have agreed that the stormwater quantity criteria for the project will be based on providing an expansion of the waterbodies within the BCWCD #2 C-2 Basin that offsets existing storage proposed to be filled by the project and which offsets the additional runoff volume created by the project. Additionally, SFWMD has requested a regional stormwater model and application for a master permit for the C-2 basin to ensure that the proposed improvements do not increase stages or discharges.

Based on the conceptual drainage design evaluation for the proposed roadway improvements, the minimum pond size required to meet FDOT drainage criteria, as well as BCEPGMD and SFWMD permit

criteria for the C-3 Basin is 5.14 acres, which can be accommodated with expansion of the existing stormwater management facilities within the SR 869/Sawgrass Expressway and Florida's Turnpike Interchange. For the C-2 Basin, the minimum pond size required to meet the criteria is 11.18 acres, which can be accommodated with an offsite wet detention pond requiring right-of-way acquisition.

During the initial pond siting evaluation process, seven pond site alternatives were identified: three conventional pond sites and four non-conventional (water quality basin) pond sites. The three conventional pond sites are within developed commercial/industrial land use properties located off frontage just south of SW 10th Street, east of Powerline Road, and would require permanent easements for drainage conveyance inflow and outflow. These three conventional pond site alternatives avoid residential relocations but impact and displace existing commercial/industrial businesses. The four non-conventional pond site alternatives are located north of SW 10th Street, within the vacated golf course property in the Century Village community. Since the initial evaluation of pond site alternatives, one of these four non-conventional pond sites has been developed and a portion of another is now being used for the developed site's drainage needs. Further, Century Village representatives have expressed that any pond sites within the community should be spread out over the remaining vacant areas and be incorporated with the proposed Century Village park system. The three remaining non-conventional pond sites would avoid displacement of commercial/industrial properties being considered for the conventional pond site locations south of SW 10th Street, while enabling the Department to meet all drainage and permit criteria through expansion of the waterbodies within the C-2 Basin. As such, no formal ranking associated with these sites will be conducted and these three pond sites will be considered the preferred alternative, contingent upon the ability to reach a mutual agreement with Century Village. If a mutual agreement with Century Village cannot be executed, however, the three conventional pond sites have been ranked and pond site Alternative 3 is the recommended pond site location of the conventional alternatives. Refer to Appendix I for further details on the pond siting evaluation.

1.0 INTRODUCTION

The Florida Department of Transportation (Department) is currently conducting a Project Development and Environment (PD&E) study that is evaluating potential roadway improvements to SR 869/SW 10th Street within the City of Deerfield Beach in Broward County, Florida. The major improvements being considered under the PD&E Study will address local and limited access transportation needs for SR 869/SW 10th Street, address safety and operational issues, enhance emergency response and evacuation, and improve system linkages and connectivity between I-95, Florida's Turnpike, and SR 869/SW 10th Street. The improved system connectivity and capacity will be achieved by widening to provide for a limited-access connector facility along the SR 869/SW 10th Street corridor.

The purpose of this report is to define the conceptual drainage design, evaluate minimum offsite pond requirements, and identify the recommended stormwater management facility locations, in support of the PD&E study, consistent with Federal, State, and local objectives. This report identifies the existing drainage systems within the proposed limits of work, FDOT drainage criteria and environmental permitting agency requirements that govern the final design, and the stormwater management facility options available to meet such criteria. Additionally, the report identifies the outfall locations and preliminary sizes (volume and area) of required stormwater management facilities and provides conclusions and recommendations for the proposed drainage systems.

This report was prepared in accordance with the FDOT PD&E Manual, Part 1, Chapter 12, and Part 2, Chapters 3, 9, and 11, dated June 14, 2017.

2.0 LOCATION AND DESCRIPTION OF PROJECT

The SW 10th Street Connector PD&E study is located in the City of Deerfield Beach, Florida, and the limits extend from west of SR 845/Powerline Road to west of Military Trail within the existing SW 10th Street right-of-way, approximately from milepost 21.077 to milepost 21.835 (Roadway ID 86472000) and from milepost 0.000 to milepost 1.400 (Roadway ID 86012000). The project falls within Sections 2, 3, 4, 9, 10 and 11 of Township 48 South and Range 42 East. For the graphical limits of this PD&E study, please refer to **Figure 1** of **Appendix A** for the Project Location Map and **Figure 5** of **Appendix A** for the USGS Quadrangle Map.

The project is located within the jurisdictional boundary of the South Florida Water Management District (SFWMD) and the Broward County Environmental Protection and Growth Management Department (BCEPGMD). The project lies within the SFWMD Hillsboro Canal Drainage Basin and the Broward County Water Control District (BCWCD #2) C-3 and C-2 Canal Basins. Refer to **Figure 8** of **Appendix A** for the SFWMD Drainage Basin Map and **Figure 12** of **Appendix A** for the FDOT District 4 Local Water Control District Map for Broward County which depict the BCWCD #2 basin limits.

The adjacent land use along SW 10th Street is recreational on the north side of SW 10th Street west of Powerline Road, commercial and residential on the south side of SW 10th Street west of Powerline Road, industrial from Powerline Road to SW 30th Avenue, multi-family residential on the north side of SW 10th Street from Just west of SW 30th Avenue to Military Trail and on the south side of SW 10th Street from SW 30th Avenue to SW 28th Avenue, single family residential on the south side of SW 10th Street from SW 28th Avenue to SW 24th Avenue, and commercial on the south side of SW 10th Street from SW 24th Avenue to Military Trail.

The project involves the addition of four new lanes on SW 10th Street from west of Powerline Road to Military Trail. The ending project limits will be located at the begin bridge limits for the proposed SW 10th Street bridge over Military Trail included under the adjacent I-95 PD&E study from SW 10th Street to Hillsboro Boulevard.

3.0 TYPICAL SECTIONS

3.1 EXISTING TYPICAL SECTION

Within the PD&E study limits, the existing typical section along SR 869/SW 10th Street consists of a four-lane divided suburban principal arterial, with raised curbed median, 12-foot travel lanes, 5-foot paved outside shoulders, and sidewalk along the south side. The existing typical section widens to a six-lane divided urban roadway at the eastern and western study limits, adjacent to connections with Powerline Road and Military Trail.

3.2 PROPOSED TYPICAL SECTION

The proposed typical section for SR 869/SW 10th Street within the PD&E study limits provides a four-lane divided urban principal arterial for the general purpose lanes, with raised curbed median, 11-foot travel lanes, 5-foot paved shoulders, and sidewalk along the south side. In the eastbound direction, 7-foot bicycle lanes are proposed from Waterways Boulevard to the end project limits. In the westbound direction, the bicycle lanes are shared use with the outside shoulder from Powerline Road to the end project limits. The proposed typical section widens to a six-lane divided urban roadway at the eastern and western study limits, adjacent to connections with Powerline Road and Military Trail as in the existing condition.

The proposed express lanes provide 100.5 feet of new impervious width, consisting of four 12-foot express lanes, two 12-foot inside shoulders, two 12-foot outside shoulders, a two-foot median concrete barrier wall, and two 1.25-foot barrier walls on the outside.

4.0 STORMWATER MANAGEMENT SYSTEMS

4.1 EXISTING DRAINAGE SYSTEM

The existing drainage within the SW 10th Street PD&E study limits consist primarily of an open swale system that collects and retains roadway runoff, with overflow discharges to the Broward County Water Control District (BCWCD) #2 C-3 and C-2 canals. The existing drainage within the project limits can be divided into two distinct systems, which are then subdivided into several sub-basins based on existing collection and conveyance systems, interconnected stormwater management facilities, and outfalls. Refer to **Appendix B** for pre-development drainage maps. The existing drainage systems have been delineated as follows:

4.1.1 Existing Drainage System: C-3 Basin

The C-3 Basin for the PD&E study is defined as the segment of SR 869/SW 10th Street from the begin project limits to the centerline of Powerline Road. The receiving waterbody within this basin is the BCWCD #2 C-3 Canal which crosses SW 10th Street via two 60-inch pipes. The C-3 Canal receives runoff from the entire BCWCD #2 C-3 Basin, which consists of the watershed area bounded by the Hillsboro Canal to the north, Powerline Road to the east, SR 834/Sample Road to the south and Florida's Turnpike to the west.

The C-3 Canal then flows north along the west side of Powerline Road and through the Deer Pointe, Villages of Hillsboro, and Villa Portofino communities and ultimately discharges to the SFWMD Hillsboro Canal via the S-1 control structure. The S-1 structure regulates the C-3 Basin control elevation to EL. 10.00-feet NGVD (8.42-feet NAVD) via four vertical lift gates and two 15,000 gallons per minute (GPM) pumps with two 72-inch outfall pipes. The C-3 Basin has been subdivided into five sub-basins. Within this basin, runoff from SW 10th Street eastbound is primarily retained within grassed swales and conveyed to the grassed swales along the westbound corridor, while runoff from SW 10th Street westbound is accommodated in wide grassed swales before overtopping into the C-3 Canal.

4.1.2 Existing Drainage System: C-2 Basin

The C-2 Basin is defined as the segment of SW 10th Street from Powerline Road to the end project limits. The receiving waterbody within this basin is the BCWCD #2 C-2 Canal which crosses SW 10th Street via a 72-inch pipe. The C-2 Canal receives runoff from the entire C-2 Basin, which consists of the watershed area bounded by the Hillsboro Canal to the north, Military Trail to the east, SR 834/Sample Road to the south and Powerline Road to the west.

The C-2 Canal meanders through the Century Village and Deer Creek communities and ultimately discharges to the SFWMD Hillsboro Canal via the S-4 control structure. The S-4 structure regulates the C-2 Basin control elevation to EL. 10.00-feet NGVD (8.42-feet NAVD) via three vertical lift gates and three 9,000 gallons per minute (GPM) pumps with two 66-inch outfall pipes. The outfall pipes discharge through a reach of the Hillsboro Canal located just upstream of the SFWMD G-56 structure, which controls the canal at an optimum stage of 7.70-feet NGVD (6.12-feet NAVD). This reach of the Hillsboro Canal has a basin allowable offsite discharge rate of 35 cubic feet per second per square mile (CSM). Refer to **Appendix F** for

SFWMD drainage and permit documentation; **Appendix G** for Broward County drainage and permit documentation.

The C-2 Basin has been subdivided into 23 sub-basins, including three offsite sub-basins. Runoff from SW 10th Street eastbound is accommodated within linear dry retention ponds. Runoff from SW 10th Street westbound is accommodated in narrow swales with overtopping into the adjacent Century Village parking lots during larger storm events, with a limited number of inlets and pipes within the SW 10th Street corridor, located mainly along the turn lanes and curb returns.

4.2 PROPOSED DRAINAGE SYSTEM

The proposed drainage design consists of a closed drainage system, consisting of drainage structures, pipes, and pumps, for collection and conveyance of runoff to stormwater management facilities for treatment and attenuation of stormwater runoff for the controlling design storm events. The proposed stormwater management facilities, consisting of either wet detention pond(s), dry detention pond(s), dry retention pond(s), or some combination thereof, has been determined based on an analysis of various factors which is discussed later in Section 7.0 of this report. The proposed stormwater management facility type is based on the facility type that provides the most practical, cost-effective solution for the Department to achieve the treatment and attenuation permitting requirements associated with the proposed improvements, while also minimizing impacts to the public.

For the C-3 Canal Basin, offsite right-of-way acquisition will not be necessary for stormwater management purposes, since there is ample opportunity to expand the existing stormwater management facilities within the SR 869/Sawgrass Expressway and Florida's Turnpike Interchange, and still accommodate future improvements along the Florida's Turnpike and Sawgrass Expressway, as confirmed with Florida Turnpike Enterprise (FTE) consultants, Corradino and HDR, during a Drainage Coordination Meeting conducted on 10/4/18. Refer to **Appendix J** for drainage coordination meeting minutes. Refer to **Appendix K** for the FTE Drainage Map illustrating proposed stormwater management basins and facilities, including additional areas available to accommodate stormwater management.

For the C-2 Canal Basin, offsite right-of-way acquisition will be necessary for stormwater management purposes, and is discussed in detail in Sections 8, 9, and 10 of this report.

There is no history of flooding within the existing facilities and the additional runoff from the proposed roadway improvements will be attenuated with additional compensation volume within the proposed stormwater facilities. Refer to **Appendix D** for Pre-Development and Post-Development Land Use Tables, Water Quality Calculations and Discharge/System Summary Table. The recommended drainage design and stormwater management facility type is discussed later in Section 8.4 of this report.

5.0 GEOTECHNICAL CHARACTERISTICS

A Geotechnical Report was prepared by GCME, Inc. as a part of this PD&E study. The report included review of all existing geotechnical information in connection with the project and completed six SPT borings at the project site. Refer to **Appendix H** for the Geotechnical Report.

5.1 SOILS INFORMATION

Based upon review of the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS / SCS) Soils Map for Broward County, as well as the project's Geotechnical Report, the project area is underlain by Udorthents, Margate Fine Sand, Immokalee Fine Sand, Pomello Fine Sand, and Pompano Fine Sand. See **Figure 4** in **Appendix A** for the USDA NRCS Soil Map of the project and **Appendix H** for the Geotechnical Report.

6.0 STORMWATER MANAGEMENT PERMITTING

The agencies having stormwater permitting jurisdiction over the proposed improvements include:

- South Florida Water Management District (SFWMD)
- Broward County Environmental Protection and Growth Management Department (BCEPGMD)

By Florida statute, the Department is exempt from local permitting for projects located along the State Highway System. However, the Department is not exempt for projects which require improvements within the local canal right-of-way, or which result in increased discharges to local receiving waters. As such, and as confirmed with both agencies at the FDOT-BCEPGMD and FDOT-SFWMD Drainage-Permitting Coordination Meetings conducted on 02/21/18 and 02/15/18, respectively, both agencies will have jurisdiction over the stormwater permitting for the project. Refer to **Appendix F** for SFWMD drainage and permit coordination meeting minutes and **Appendix G** for BCEPGMD drainage and permit coordination meeting minutes. The most recent SFWMD permit criteria are established in the SFWMD Environmental Resource Permit Information Manual 2014, with Applicant's Handbook Volume I dated 2013 and Applicant's Handbook Volume II dated 2016.

6.1 STORMWATER QUALITY CRITERIA

6.1.1 South Florida Water Management District

The SFWMD requires that all projects meet state water quality standards, as set forth in Chapter 17-302, Florida Administrative Code (FAC). According to the SFWMD Applicant's Handbook, Volume II, all projects must meet the following volumetric retention/detention requirements:

1. For wet detention systems, the first inch of runoff from the project or the total runoff from 2.5 inches times the percent of imperviousness, whichever is greater, must be detained on site. A wet

detention system is a system that maintains the control elevation at the seasonal high groundwater elevation and does not bleed down more than one-half inch of detention volume in 24 hours;

- 2. Dry detention systems must provide 75 percent (75%) of the required wet detention volume. Dry detention systems must maintain the control elevation at or above one foot above the seasonal high groundwater elevation;
- 3. Retention systems must provide 50 percent (50%) of the wet detention volume; and
- 4. For projects with more than 50 percent (50%) of imperviousness, discharge to the receiving water bodies must be made through baffles, skimmers, or other mechanisms suitable from preventing oil and grease from discharging to or from the retention/detention areas.

Projects having greater than 40% impervious area and which discharge directly to water bodies within a District permitted public water supply wellfield cone of depression, as defined by Broward County Wellfield Protection Ordinance contour for Zone 3 which are not a separated from the aquifer by strata at least ten feet thick and having an average saturated hydraulic conductivity of less than 0.1 feet per day, shall provide at least one half inch of dry detention or retention pretreatment as part of the required retention/detention, as confirmed with SFWMD on 02/15/18, however, no pretreatment is required for this project since none of the alternative stormwater management facilities actually fall within the limits of a permitted public water supply wellfield cone of depression. See **Appendix F** for further details on SFWMD coordination.

6.1.2 Broward County Environmental Protection and Growth Management

Since the project falls within the BCWCD #2 C-3 Basin and C-2 Basin, designated water quality basins, expansion of the existing stormwater management facilities to treat the additional development is an accepted practice, confirmed by BCEPGMD and SFWMD. Based on review of the Broward County Wet Season Water Table Maps, the SHGWT elevation in the study area ranges from approximately 8.00 – 10.00 feet NGVD (6.50 - 8.50 feet NAVD), with an average SHGWT elevation of 9.00-feet NGVD (7.50-feet NAVD). Input from Carl Archie, BCWCD #2, indicates that Broward County pumps in accordance with a SFWMD Diversion and Impoundment permit to maintain the entire basin between 9.50 - 10.00 feet NGVD (8.00 – 8.50 feet NAVD).

Accordingly, the BCWCD #2 S-4 control structure is providing approximately 0.50 - 1.00 feet of wet retention depth for the C-2 Basin. As such the proposed expansion should provide 50 percent (50%) of the required wet detention volume, i.e. the first inch of runoff from the project or the total runoff from 2.5 inches times the percent of imperviousness, whichever is greater.

Please refer to **Appendix G** for correspondence with BCEPGMD; refer to **Figure 12** and **Figure 13** in **Appendix A** for FDOT District 4 Local Water Control District Map for Broward County and Broward County Wellfield Map, respectively.

6.2 STORMWATER QUANTITY CRITERIA

SFWMD criteria govern peak discharge rate attenuation and attenuation volume by limiting the post-development peak discharge rate to the pre-development peak discharge rate for the 25-year – 72-hour design rainfall event using SFWMD 72-hour rainfall distribution. SFWMD requires that offsite discharge rates be limited to rates not causing adverse impacts to existing off-site properties, and:

- Historic discharge rates,
- Rates determined in previous SFWMD permit action, or
- Basin allowable discharge rates.

SFWMD also requires that provisions be made to replace or otherwise mitigate the loss of historical basin storage provided by the project.

However, since the project falls within the BCWCD #2 water quality basin, with regulated discharge to the SFWMD Hillsboro Canal via the S-4 control structure, both SFWMD and BCEPGMD have agreed that the stormwater quantity criteria for the project will be based on providing an expansion of the waterbodies within the BCWCD #2 basin that offsets existing storage proposed to be filled by the project and which offsets the additional runoff volume created by the project. Additionally, SFWMD has requested a regional stormwater model and application for a master permit for the C-2 basin to ensure that the proposed improvements do not increase stages or discharges. Refer to **Appendix F** and **Appendix G** for coordination with both SFWMD and BCEPGMD.

6.3 FLOODPLAIN ENCROACHMENT

The project corridor lies within Federal Emergency Management Administration (FEMA) FIRM Panel 12011C0167, with much of the project area located within Floodplain Zone AH (EL. 14.00-feet NAVD / 15.58-feet NGVD). Zone AH is a special flood hazard area, subject to inundation by the 100-year flood that experiences flood depths of 1 to 3 feet (which are usually areas of ponding) with determined base flood elevations. Refer to **Figure 7** in **Appendix A** for the FEMA Map FIRMETTES and FEMA Flood Zone Map, which identifies most of the roadway right-of-way, located south of the existing roadway, between west of Powerline Road and SW 24th Avenue in Zone AH.

In accordance with Executive Order 11988m "Floodplain Management", USDOT Order 5650.2, "Floodplain Management Protection", and Federal-Aid Policy Guide 23 CFR 650A, floodplains must be protected. The intent of these regulations is to avoid or minimize highway encroachments within the base floodplains, and to avoid supporting land use development incompatible with floodplain values. Encroachments resulting from the construction of the project will be fully compensated within the proposed stormwater management facilities to ensure there will be no increase or significant change to flood elevations and/or limits.

Minimal encroachments on a floodplain occur when there is a floodplain involvement but the impacts on human life, transportation facilities, and natural and beneficial floodplain values are not significant and can be resolved with minimal efforts. Normally, these minimal efforts to address the impacts will consist of applying the Department's drainage design standards and following the Water Management District's procedures to achieve results that will not increase or significantly change the flood elevations and/or limits. Projects with minimal encroachments may include, but are not limited to, projects which will not involve replacement or modification of existing drainage structures, projects which will involve replacement or modification of existing structures but are not expected to result in significant impacts, or projects involving replacement of drainage structures in heavily urbanized areas.

Based on these criteria, this project results in minimal floodplain encroachments. For the proposed improvements, in the C-3 Canal Basin, there is a floodplain encroachment volume of approximately 5,727 CY, which is compensated for within the proposed Pond 1. In the C-2 Canal Basin, there is a total floodplain encroachment volume of approximately 27,540 CY, which is compensated for within the proposed Pond 2. See **Floodplain Calculations** in **Appendix D** and Section 8.3.3 for further details.

6.4 ROADWAY BASE PROTECTION

FDOT has established the following criterion for base protection of roads:

- Freeways and Rural Multilane facilities shall provide a 3-foot clearance for the roadway base course above the base clearance water elevation (i.e. seasonal high ground water table, SHGWT). Using a base clearance water elevation (SHGWT) of 9.00-feet NGVD (7.50-feet NAVD), the minimum roadway base elevation allowable for the project along the SW 10th Street mainline is 12.00-feet NGVD (10.50-feet NAVD).
- Ramps shall provide a 2-foot clearance for the roadway base course above the base clearance water elevation (SHGWT). Using a base clearance water elevation (SHGWT) of 9.00-feet NGVD (7.50-feet NAVD), the minimum roadway base elevation allowable for the ramps is 11.00-feet NGVD (9.50-feet NAVD).
- All other facilities shall provide a 1-foot clearance for the roadway base course above the base clearance water elevation (SHGWT). Using a base clearance water elevation (SHGWT) of 9.00feet NGVD (7.50-feet NAVD), the minimum roadway base elevation allowable for all other facilities is 10.00 ft. NGVD (8.50-feet NAVD).

Refer to **Figure 11** in **Appendix A** for the FDOT Criteria for Grade Datum.

7.0 STORMWATER MANAGEMENT FACILITIES EVALUATION

Several types of stormwater management facilities alternatives are commonly used on roadway projects. The more commonly used alternatives in South Florida, particularly for roadway projects, include wet/dry detention ponds, wet/dry retention ponds, and French drains (exfiltration trenches). However, each of these stormwater management facility types has different design criteria and applications. Since the stormwater criteria of the two applicable stakeholder agencies must be met, the controlling criterion for the proposed facilities is the most stringent.

For this project, stormwater management facilities alternatives have only been evaluated for the C-2 Canal Basin since the required treatment and attenuation for the C-3 Canal Basin can be fully accommodated via modification and expansion of the existing stormwater treatment facilities within the SR 869/Sawgrass Expressway and Florida's Turnpike Interchange.

However, based on the proposed improvements, available right-of-way, and impacts to existing stormwater management facilities, new offsite stormwater management facilities are required to accommodate for additional water quality treatment, discharge attenuation, and floodplain compensation within the C-2 Basin.

The use of exfiltration trenches can be ruled out for this project given the short operation life for exfiltration systems (5-10 years), the well-known maintainability issues, and discouraged use by FDOT when other options are available. Furthermore, the use of dry retention/detention ponds can be ruled out for this project due to the high groundwater table elevation and relatively poor permeability of the existing soils.

Considering these constraints, the only acceptable option for the project is the use of wet detention ponds. We considered both conventional stormwater management wet detention ponds and the alternative method of expansion of the existing stormwater management facilities within the BCWCD #2 water quality basin to provide for treatment and attenuation. This was previously discussed in Section 6.2. Additional design criteria for wet detention ponds is provided below.

7.1 WET DETENTION PONDS

A detention pond is a storage area designed to temporarily hold back or store a defined quantity of stormwater runoff to control the rate of discharge into receiving waters through an outlet control structure. A wet detention pond is a detention pond with bottom elevation lower than one foot above the SHGWT, providing for a "permanent pool volume".

Size Requirements:

 Per SFWMD Applicant's Handbook Volume II, the minimum area of the detention pond measured at the control elevation is 0.5 acres, with a minimum width of 100 feet for linear areas more than 200 feet length. Irregular shaped areas may have narrower reaches but shall average at least 100 feet.

Maintenance Berms:

• Per FDOT Drainage Manual, design ponds to provide a minimum 20 feet of horizontal clearance between the top edge of the control elevation and the right-of-way line. Provide at least 15 feet adjacent to the pond at a slope of 1:8 or flatter. Create the inside edge of the maintenance berm to have a minimum radius of 30 feet and be a minimum of one foot above the maximum design stage elevation. Sod the berm area.

Slopes:

- Per FDOT, pond slopes shall be sodded to the control elevation of the pond.
- Per SFWMD, for purposes of public safety, water quality enhancement and maintenance, all wet retention /detention areas shall be designed with side slopes no steeper than 4:1 (horizontal: vertical) from top of bank out to a minimum depth of two feet below the control elevation (SHGWT).
 Side slopes shall be top soiled and stabilized through seeding or planting from 2 feet below to 1 foot above the control elevation to promote vegetative growth.

Freeboard:

 Per FDOT, as a safety factor for hydrologic inaccuracies, grading irregularities, control structure clogging, and downstream stage uncertainties, at least 1 foot of freeboard is required above the maximum stage of the pond. The freeboard is the vertical distance between the maximum design stage elevation of the pond and the inside edge of the berm. For linear treatment swales, the minimum freeboard is 0.50 foot.

Discharge Structures:

Per SFWMD, gravity control devices shall be sized based upon a maximum design discharge of ½ inch of the detention volume in 24 hours. The devices shall incorporate dimensions no smaller than 6 square inches of cross-sectional area, two inches minimum dimension, and 20 degrees for "V" notches. Gravity control devices shall be of a "V" or circular shaped configuration whenever possible, to increase detention time during minor events.

Maintaining Agency:

• FDOT will be the maintaining agency of all stormwater management facilities within the SR 869/SW 10th Street right-of-way. The Florida Turnpike Enterprise will be the maintaining agency of all stormwater management facilities within the Sawgrass Expressway and Florida's Turnpike right-of-way. Offsite ponds acquired by FDOT will be maintained by FDOT unless a maintenance agreement is executed with Broward County.

8.0 STORMWATER MANAGEMENT SYSTEM DESIGN

8.1 PROJECT DATUM

The vertical datum referenced in this report and calculations varies between NGVD 29 and NAVD 88. The datum shift was determined using the SFWMD Vertical Datum Conversion Application and is summarized in Table 1 below. Refer to **Figure 11** in **Appendix A** for the Vertical Datum Conversion from SFWMD.

Table 1 - Datum Conversion from NGVD 29 to NAVD 88

Location	Latitude	Longitude	Shift (ft.)
SR 869/SW 10th Street	26° 19′ 04.45″ N	80° 08′ 23.33″ W	(-)1.58

8.2 CONTROL ELEVATIONS

8.2.1 Tailwater Elevations

Existing SFWMD permit documentation was referenced to determine the tailwater elevations of the canals. Based on existing permits and Hillsboro Canal Basin Structures Design Criteria for the project limits, the tailwater elevation is constant for the project. The tailwater elevation of the C-3 Canal, C-2 Canal, and Hillsboro Canal was determined to be 9.00-feet NGVD (7.50-feet NAVD). Refer to **Appendix F** for the SFWMD permit documentation.

8.2.2 Seasonal High Groundwater Table

Prior to receipt of the geotechnical results, preliminary research was performed to determine the seasonal high groundwater table elevation (SHGWT) within the study limits. Specifically, the average high water data for the adjacent C-3 Canal and C-2 Canal, which controls and influences groundwater table elevations throughout the project area, was used to determine the assumed SHGWT elevation of 9.00-feet NGVD (7.50-feet NAVD). The SHGWT elevation is consistent with existing permits for the various drainage systems within the project limits, as well as existing permits for adjacent properties.

Groundwater monitoring wells were placed at two locations within the project corridor, and piezometer readings were taken on eight different dates from the two locations. The results from the piezometer readings in the geotechnical report show an average groundwater table elevation of 7.23-feet NAVD, which is consistent with the assumed SHGWT of 7.50-feet NAVD taken from the average high water data for the C-2 and C-3 canals. Refer to **Appendix F** for the SFWMD permit documentation and **Appendix H** for the Geotechnical Report.

8.3 STORAGE VOLUMES REQUIRED

The storage volumes required as part of the proposed stormwater management facilities must be the greater of the volumes required per water quality, water quantity, and floodplain compensation permit criteria.

8.3.1 Water Quality Permit Requirements

- The proposed improvements increase the impervious area in the C-3 Canal Basin from 9.95 to 20.02 acres resulting in a net increase of **10.07 acres** of impervious area.
- The proposed improvements increase the impervious area in the C-2 Canal Basin from 24.90 to 49.57 acres resulting in a net increase of **24.67 acres** of impervious area.

The storage volumes required for the water quality permit requirements based on wet detention requirements are as follows:

Basin Wet Detention Treatment Required
C-3 Canal 4.17 acre-feet
C-2 Canal 8.78 acre-feet

Table 2 – Water Quality Treatment Requirements

8.3.2 Water Quantity Permit Requirements

A pre-development vs. post-development analysis was completed to determine the storage volume required to maintain the allowable discharge while also providing the required water quality storage volume, 1 feet of freeboard clearance during the 25-year – 72-hour design storm event, and 2 feet of freeboard clearance during the 10-year – 24-hour design storm event. Given these design parameters and site characteristics, wet detention ponds were analyzed to determine the storage areas and weir elevations required to accommodate the water quality and water quantity permit criteria. See **Summary Tables** in **Appendix D**.

For this project, the pre-development vs. post-development discharge for the 25-year – 72-hour design storm, along with the requirement to provide 2 feet of freeboard clearance for the 10-year – 24-hour design storm were the controlling variables when maximizing the pond design size. Based off these controlling variables, below are the proposed pond sizes for each basin. Refer to the Summary Tables in Appendix D for further details:

Table 3 - Pond Size Requirements

Basin	Wet Detention Pond Size Required (at berm elevation of 13.50-feet NGVD)
C-3 Canal	5.14 acres
C-2 Canal	11.18 acres

8.3.3 Floodplain Compensation Requirements

As previously mentioned in Section 6.3, the project will result only in minimal encroachments to floodplains. Encroachments resulting from the construction of the preferred alternative will be fully compensated within the proposed stormwater management facilities to insure there will be no increase in flood elevations and/or limits. Based on the proposed improvements, in the C-3 Canal Basin, a minimum pond volume of 5,727 CY (3.6 acre-feet) is required to offset 100-year floodplain encroachment volume. Proposed Pond 1 in the C-3 Canal Basin provides 44,835 CY (27.79 acre-feet) of compensation volume, with a surplus compensation volume of 39,107 CY. In the C-2 Canal Basin, a minimum pond volume of 27,540 CY (17.1 acre-feet) is required to offset the 100-year floodplain encroachment volume. Proposed Pond 2 in the C-2 Canal Basin provides 100,769 CY (62.46 acre-feet) of compensation volume, with a surplus compensation volume of 73,229 CY. Refer to **Appendix D** for **Floodplain Calculations**.

8.3.4 Pre-Development Model

The pre-development and post-development models were developed using Advanced Integrated Channel and Pond Routing (AdICPR). Most of the input used to model existing features was acquired from topographic survey and existing drainage information obtained by existing plans and permits. In areas where topographic survey data was insufficient, other sources such as existing plans or permit documents were used to generate the input.

For the pre-development models, swales and ponds were modeled as separate stage-storage nodes in AdICPR, with assigned basins delineated for each node based on their direct contributing runoff area. Elevation contours were created for the swales and ponds in Microstation using the DTM feature of Geopak. These areas were measured at half foot contours and input into AdICPR as stage-storage nodes. Boundary conditions were modeled as static time-stage nodes with elevations based on SFWMD and BCEPGMD drainage and permit documentation.

Nodes are interconnected by links consisting of pipes or culverts, weirs, or drop structures. Pipe and culvert links have been input based on survey information, and review of existing plans and permit. Weirs and drop structures have also been modeled based on survey information, and review of existing plans and permit, depending on intended type of flow simulation and downstream conveyance and node type.

The calculations, AdICPR flood routing input, and results for pre-development conditions are found in **Appendix D**.

The rainfall depths for the various design storms simulated in the pre-development and post-development AdICPR models developed for this study include:

3-year, 24-hour: 6.45"
10-year, 24-hour: 10.50"
25-year, 72-hour: 16.00"
100-year, 72-hour: 22.00"

Refer to Figure 9 of Appendix A for the SFWMD Rainfall Maps.

8.3.5 Post-Development Model

For the post-development models, the C-3 Canal system was modeled as one stage-area node in AdICPR depicting the proposed Pond 1, with an assigned basin delineated for the node, based on overall contributing runoff area. The C-2 Canal system was modeled as one stage-area node in AdICPR depicting the proposed Pond 2, with an assigned basin delineated for the overall contributing onsite runoff area, and three separate stage-area nodes with assigned basins delineated for each of the three offsite contributing runoff areas. Elevation contours were created for Pond 1 and Pond 2 in Microstation, measured at half foot contours and input into AdICPR as stage-area nodes. These models were developed based on the conventional approach of collecting and conveying all roadway runoff directly to the proposed pond (stage-area node) and then discharging from the pond through a control structure (link) to the receiving waterbody (time-stage node). Additional (regional) modeling is required to address SFWMD needs associated with expansion of the BCWCD #2 system to accommodate the project. See the **Summary Tables** in **Appendix D** for a Pre-Post Summary of the Stormwater Management Systems that were analyzed as part of this evaluation. See **Appendix C** for the Post-Development Drainage Map, **Appendix D** for the Post-Development Calculations and Post-Development Nodal Diagram, Input Data, and Node Maximum Conditions Report.

8.4 DRAINAGE CONCEPT RECOMMENDATION

Evaluation of the various drainage concept alternatives and post-development models allow for the following conclusions:

Based on the proposed improvements, there will be an increase in impervious area and elimination of storage within existing swales. However, for the C-3 Basin, the existing stormwater management facilities within the SR 869/Sawgrass Expressway and Florida's Turnpike interchange can be expanded to accommodate the increased runoff from the roadway, as well as to mitigate for any loss of existing storage, as needed to meet BCEPGMD, FDOT, and SFWMD water quality treatment and discharge attenuation criteria. For the C-2 Basin, a new offsite wet detention stormwater management facility is required to accommodate the increased runoff from the roadway, as well as any loss of existing storage, either through conventional methods with conveyance from the roadway corridor and discharge to the receiving waters, or through the alternative method of expansion of the existing stormwater management facilities to meet water quality, water quantity, and floodplain compensation criteria.

The proposed stormwater management facilities meet FDOT drainage criteria, as well as BCEPGMD and SFWMD permit (water quality, water quantity, and floodplain) criteria. Refer to **Appendix C** for the Post-Development Drainage Maps for the proposed roadway design. Refer to the Post-Development Land-Use Tables included in **Appendix D** for each basin, as well as pre-development and post-development curve number calculations and area breakdowns. The peak discharge rates and peak stages for the 10-year – 24-hour, 25-year – 72-hour, and 100-year – 72-hour design storms are shown in the Drainage System Summary Tables, included in **Appendix D** for each basin.

9.0 POND SITING ANALYSIS

9.1 INITIAL SELECTION OF PARCELS FOR PROPOSED PONDS

For this project, pond siting analysis was performed for the C-2 Basin only, as this is the only basin requiring right-of-way acquisition for an offsite stormwater management facility to meet BCEPGMD, FDOT, and SFWMD water quality, water quantity, and floodplain criteria. From the preliminary pond siting selection process, seven pond site alternatives meeting the 11.18-acre minimum pond area requirement (at top of bank) were selected to be further evaluated by the multi-disciplinary pond siting team.

The first factor to look for when selecting alternatives would be any undeveloped property. No undeveloped or even partially developed areas exist within the C-2 Basin directly north or south of the SW 10th Street project limits. However, a few undeveloped and partially developed areas exist north of the SW 10th Street project limits and within the C-2 Basin, including parcels as part of an abandoned golf course within the Century Village Community, owned by Fairway Investors, LLC. Such parcels are all adjacent and/or hydraulically connected to the C-2 Canal, and could feasibly be expanded to provide treatment, attenuation, and floodplain compensation for the project since the C-2 Canal is a water quality basin per BCEPGMD.

The first three pond site alternatives, conventional pond site Alternatives 1 through 3, are each located south of the SW 10th Street project limits, east of Powerline Road, within industrial zoned sites with functioning businesses. While an initial pond siting screening would typically avoid developed properties, these three pond site alternatives avoid impacts to residential communities and displacement/relocation of residents, sparing the residential and commercial parcels south of SW 10th Street. Use of any of these three pond site alternatives allows the Department to conventionally collect and convey roadway runoff to the pond sites to be treated and attenuated before discharging through a control structure and outfall pipe to the C-2 Canal. Alternative 1 consists of a combination of eight different parcels for the pond construction totaling 12.82 acres, along with three additional parcels requiring easements for outflow. Alternative 2 consists of a combination of four different parcels totaling 12.07 acres, along with three additional parcels requiring easements for outflow. Alternative 3 consists of a combination of two different parcels totaling 13.54 acres, along with two additional parcels requiring easements for inflow. Refer to **Appendix I** for the Pond Site Alternatives Exhibit.

The next four pond site alternatives, non-conventional pond site Alternatives 4 through 7, are each located north of the SW 10th Street project limits, within the vacated golf course (owned by Fairway Investors, LLC) inside of the Century Village community. These four pond site alternatives avoid impacts to residential communities and displacement/relocation of residents, sparing the residential and commercial parcels north of SW 10th Street. Use of any of these four pond site alternatives allows the Department to make use of the opportunity to meet all drainage and permit criteria through expansion of the waterbodies within the C-2 Basin. Alternative 4 consists of the most westerly (19.26 acre) parcel contiguous with the C-2 Canal and SR 810 / Hillsboro Boulevard. Alternative 5, located just east of the C-2 Canal and Alternative 4, and west of the Century Village Clubhouse, consists of a 19.18-acre parcel. Alternative 6, located just east of the Century Village Golf Course, consists of a 17.11-acre parcel. Alternative 7, located just east of Alternative 6 and west of Military Trail, consists of a 22.78-acre parcel. It should be noted that since the initial identification of these four alternatives, the Alternative 7 parcel has been developed into a residential community and will utilize a portion of the Alternative 6 parcel for its drainage. The remaining parcels that make up Alternatives 4, 5, and a portion of Alternative 6 will continue to be evaluated as the project moves forward but as a potential shared use pond alternative in close coordination with Century Village, who now owns these remaining parcels and wishes to incorporate a park system within these parcels that can work with a pond management system.

9.2 EVALUATION OF POTENTIAL POND SITES

The non-conventional pond site Alternatives 4, 5, and 6 provide an overall better alternative for the project since they are undeveloped and proximate to the corridor. If the Department can come to a mutual agreement with Century Village on the potential shared use of these non-conventional pond site Alternatives, they will become the preferred alternative. However, if an agreement cannot be reached, use of the conventional pond site Alternatives 1, 2, and 3 will be required. As such these conventional alternatives have been evaluated with a multi-disciplinary team consisting of representatives from right-of-way, roadway design, drainage design, environmental management, construction, and maintenance, based on several factors, including:

- Right-of-Way cost, land use, zoning, easement considerations
- Drainage hydrology, hydraulics
- Flood Zone (FEMA)
- Contamination and Hazardous Materials Risk
- Utilities Involvement
- Threatened and Endangered Species Involvement
- Wetlands and Protected Uplands Involvement
- Cultural Resources Involvement
- Section 4(f) Involvement
- Public Wellfield Impacts
- Constructability cost, access, methodology
- Maintainability cost, access
- Community Impact public opinion, aesthetics

Each of these factors were assigned a weight based off how important that factor is to the overall pond siting evaluation process for this project. That weight is then multiplied by the score given to each pond site alternative for each factor to get the total score. The higher the weight and the higher the score, the more preferential the pond site alternative is.

Beginning with the right-of-way factors, including parcel costs, zoning, and land use, these constraints played a significant part of the evaluation process. As previously stated, the targeted parcels had to be large enough to meet the required pond sizes. In addition, priority was given to parcels that front the corridor or have existing drainage easements or public right-of-way that allow for connection from the proposed drainage system. The three conventional pond site alternatives are all developed sites within the industrial area of the SW 10th Street corridor. Although these alternatives avoid impacts to residential properties, there are still impacts to the functioning businesses within these parcels.

For the drainage and flood zone evaluation factors, preference was given to parcels located adjacent to or within access to an outfall and to parcels centrally located within the designated drainage basin. Sites centrally located within a drainage basin result in a more cost-effective storm drain design. Evaluation of the FEMA Flood Zone impacts showed that Alternative 1 ranked lowest, as it is located almost entirely within the 100-year floodplain, and Alternative 3 is partially located within the 100-year floodplain. Alternative 2 is located outside of the 100-year floodplain so it was scored highest since construction within this site would help to offset for floodplain encroachment from the roadway improvements.

Contamination is also a concern since the parcels included within the conventional pond site alternatives fall within or adjacent to industrial sites, which typically contain petroleum-based contaminants. Since all the pond site alternatives have contamination concerns, the scores across alternatives were similar.

Utilities evaluation at this preliminary level involves identifying locations within pond site alternatives or within the flowage easements of pond site alternatives with existing utilities and determining potential relocation costs associated with these utilities. The conventional pond site alternatives all scored lower for this factor, as they are located within developed or partially developed parcels and the flowage easements associated with these alternatives are located within side streets where public utilities may exist.

The environmental factors, including threatened and endangered species (TES), wetlands and protected uplands, cultural resources, and Section 4(f) were generally consistent with all pond site alternatives. Evaluating threatened and endangered species involves identification of any TES as threatened, endangered, or significant within the pond site alternatives. There were no TES identified on any of the pond site alternatives, so the scoring was essentially equal across all seven alternatives. Evaluating wetlands and protected uplands involves identifying any wetland habitats or historic presence. Lower weight should be given to parcels with known habitats or historic presence. Medium weight should be given to relatively undisturbed, natural, or stable habitat types. Higher weight should be given to disturbed low quality habitats. There were no wetlands or protected uplands identified on any of the pond site alternatives, as they are either developed sites or golf course property, so the scoring was equal across all seven alternatives. Cultural resource evaluation involves identification of the presence of cultural resources within the pond site alternatives, including archeological and historical resources which could affect the suitability of the site

in question. Alternatives 1 and 2 are partially developed industrial sites with structures that are over 50 years old and need to be evaluated for National Register eligibility, so they scored lower in preference. Alternative 3 scored higher as there are no identified cultural resources. Section 4(f) evaluation involves identifying any Section 4(f) properties within the project area and proposed pond site alternatives (i.e. public park, recreation area, wildlife refuge, and/or a public or private historic site) which could affect the suitability of the pond site. There were no Section 4(f) properties identified, so no score was given to the three conventional alternatives.

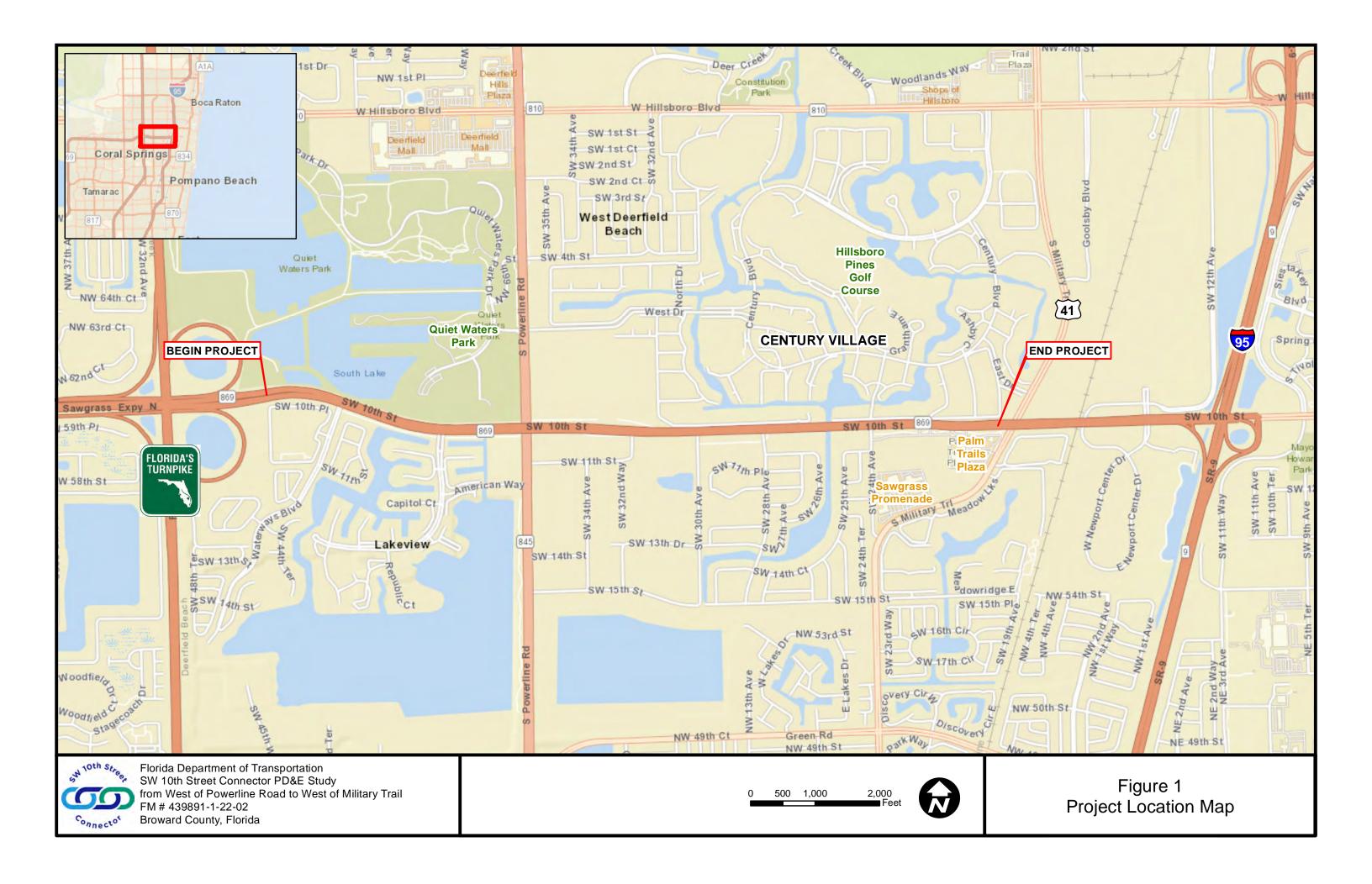
Public wellfield evaluation involves identification of wellfield sites within the project area. All pond site alternatives are outside of the 500-foot wellfield protection zone, so the scores had equal preference.

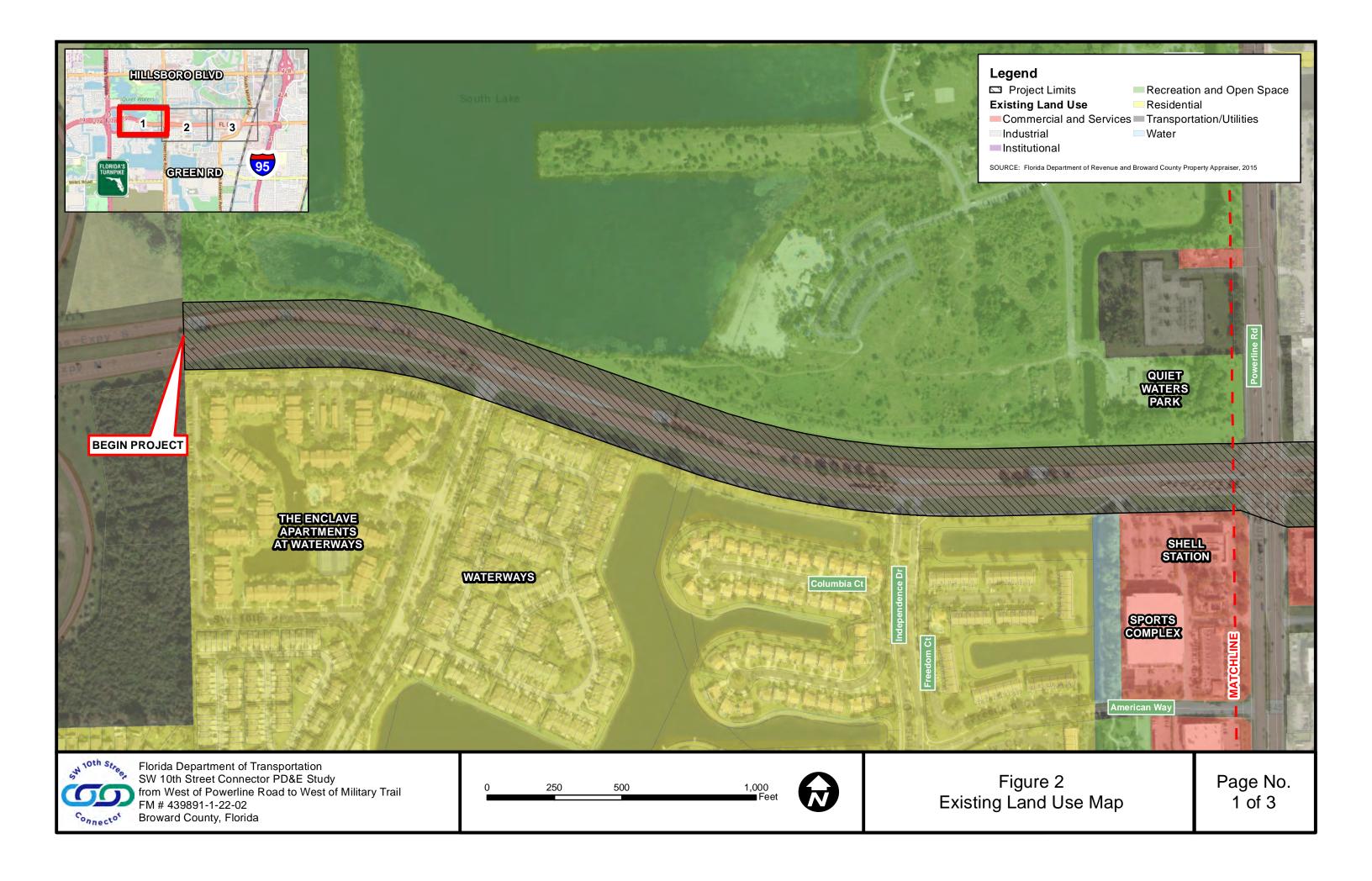
Construction evaluation involves considering the access to the parcel for pond construction and associated impacts which may affect construction costs, such as amount of drainage piping required to reach pond and irregularly shaped ponds. Maintenance evaluation involves considering the access to the parcel for pond maintenance and the costs of maintaining a facility at this parcel location, including control structures and inflow/outflow pipes. Alternatives 1, 2, and 3 all scored relatively low due to the construction and maintenance costs associated with conventional conveyance to and from the pond site from the roadway corridor to the outfall.

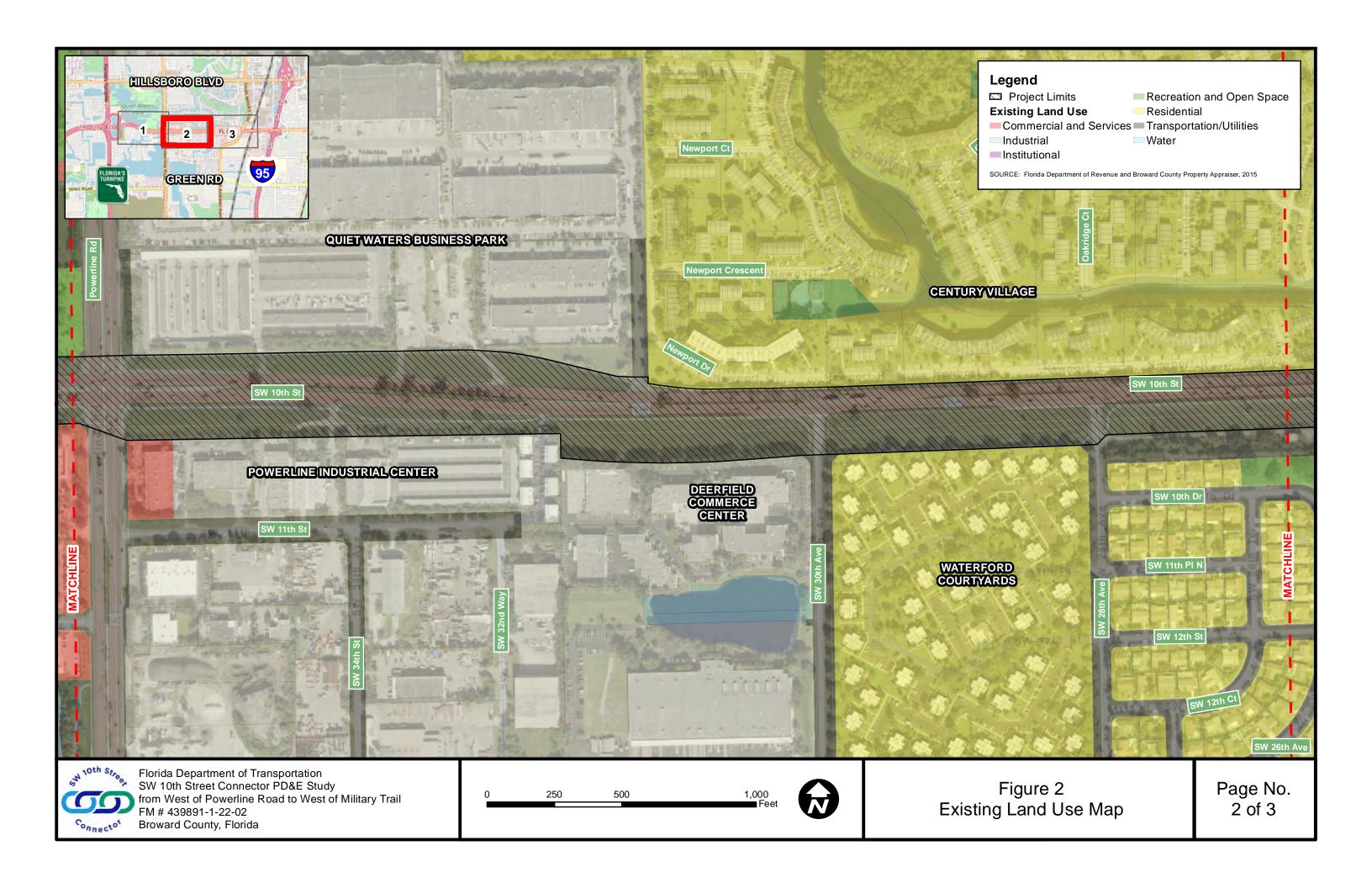
Community impacts evaluation involves both public opinion and aesthetics. For evaluating public opinion, the evaluator must consider possible impacts to the current or proposed land use of the parcels within or adjacent to the pond site alternatives (i.e. will the pond be well received by the community or adjacent residents). Aesthetics evaluation considers the need for landscape buffers or variable pond shapes in residential or commercial areas, as well as fencing adjacent to schools, etc. The conventional pond sites scored high in this category, as pond construction would improve the aesthetics in these industrial/commercial areas.

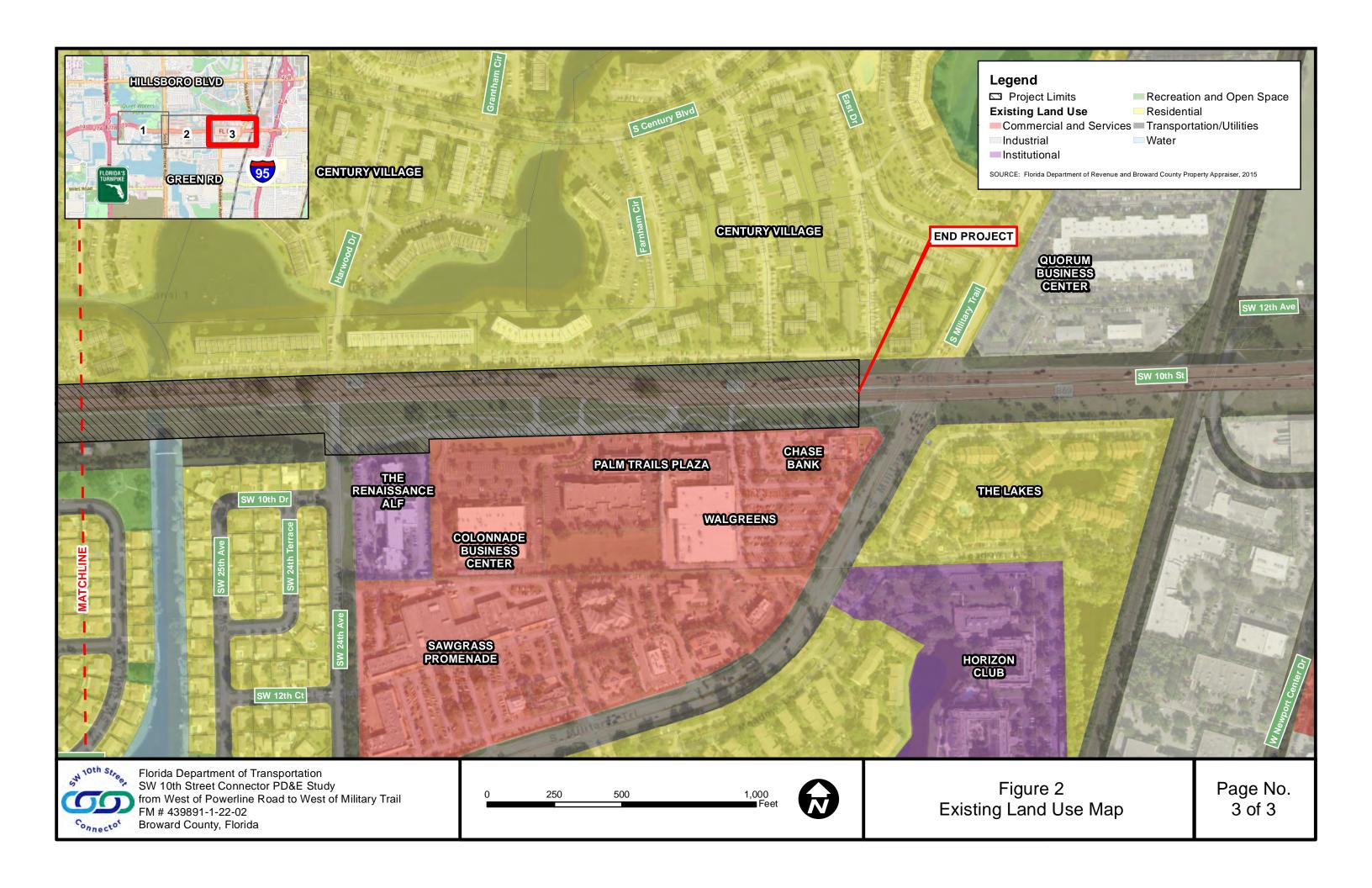
See Appendix I for the Pond Site Alternatives Exhibit, Evaluation Matrix and Pond Siting Meeting Minutes.

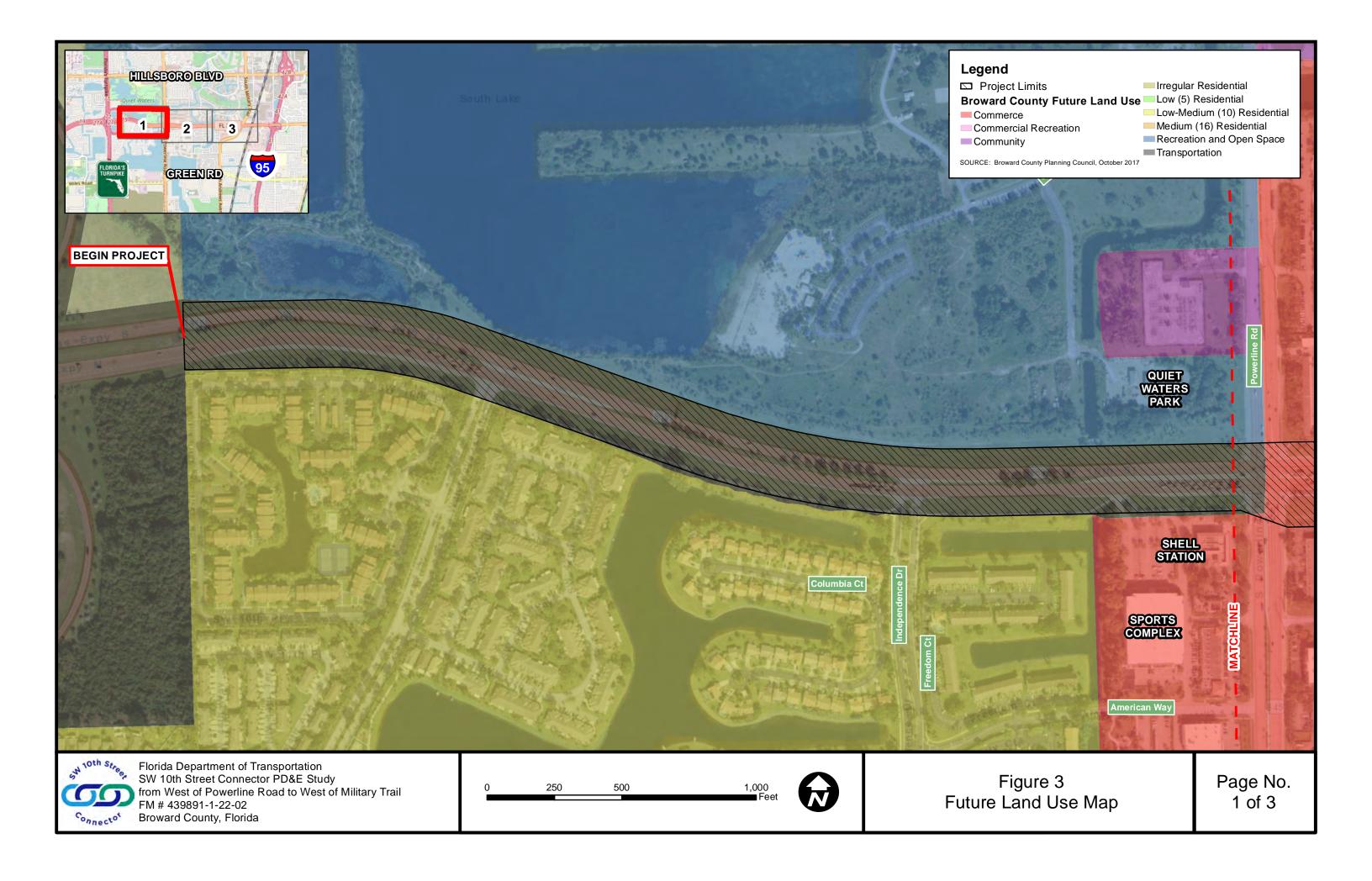

As noted earlier, since the initial identification of pond site alternatives, conditions have changed and Alternative 7 has been developed as well as a portion of Alternative 6. The remaining Alternatives 4-6 parcels are now under the ownership of Century Village which controls the large residential community surrounding these non-conventional pond site alternatives. The Department considers these alternatives to be best accommodation of drainage for the project due to their undeveloped nature and proximity to the corridor. The Department will consider the shared use of these alternatives through a mutual agreement with Century Village regarding how these parcels will be shared with the park system they envision that includes bicycle and pedestrian facilities. Refer to **Appendix J** for coordination meeting minutes.

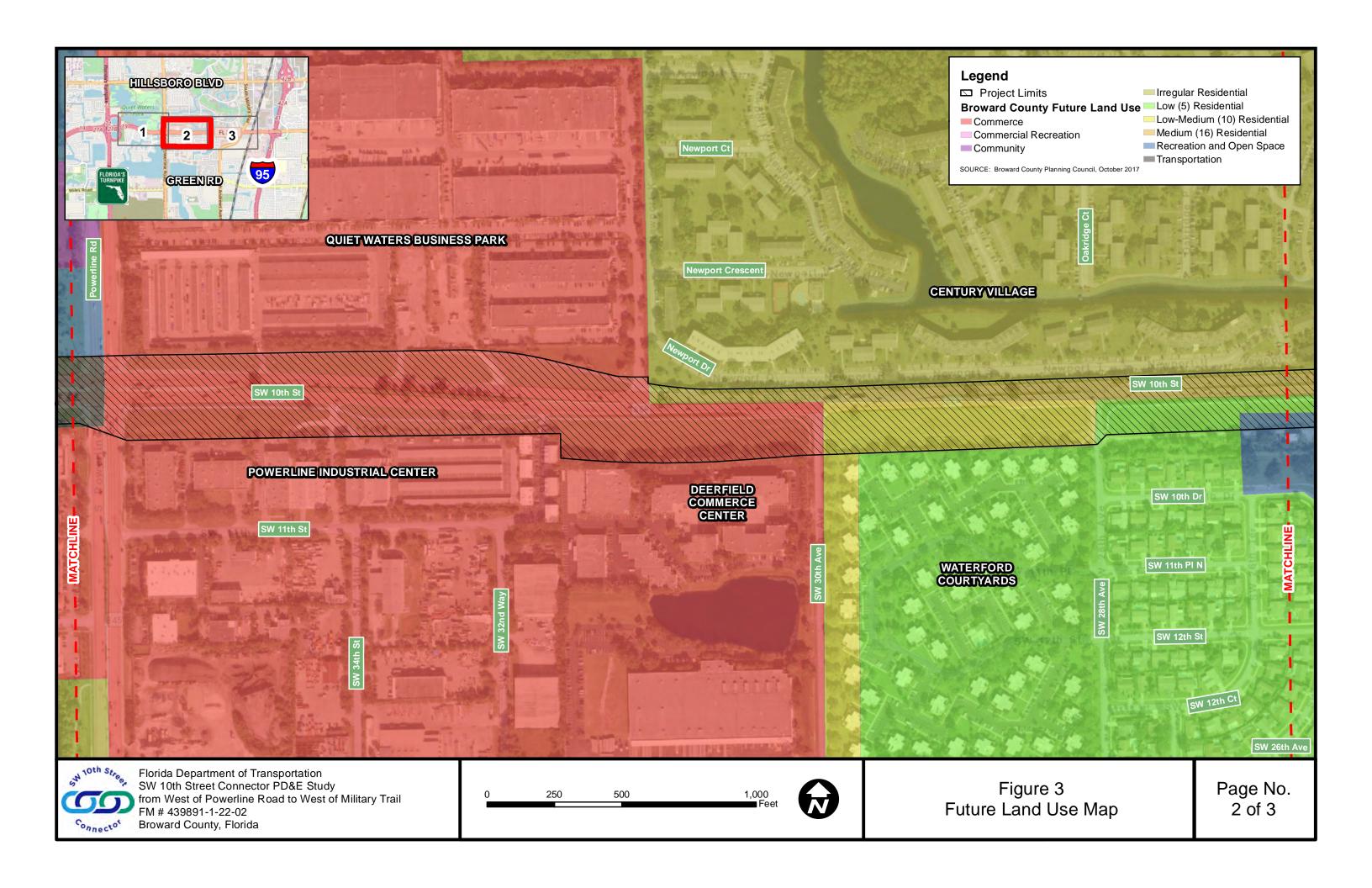

10.0 POND SITING SUMMARY AND FINAL RECOMMENDATIONS

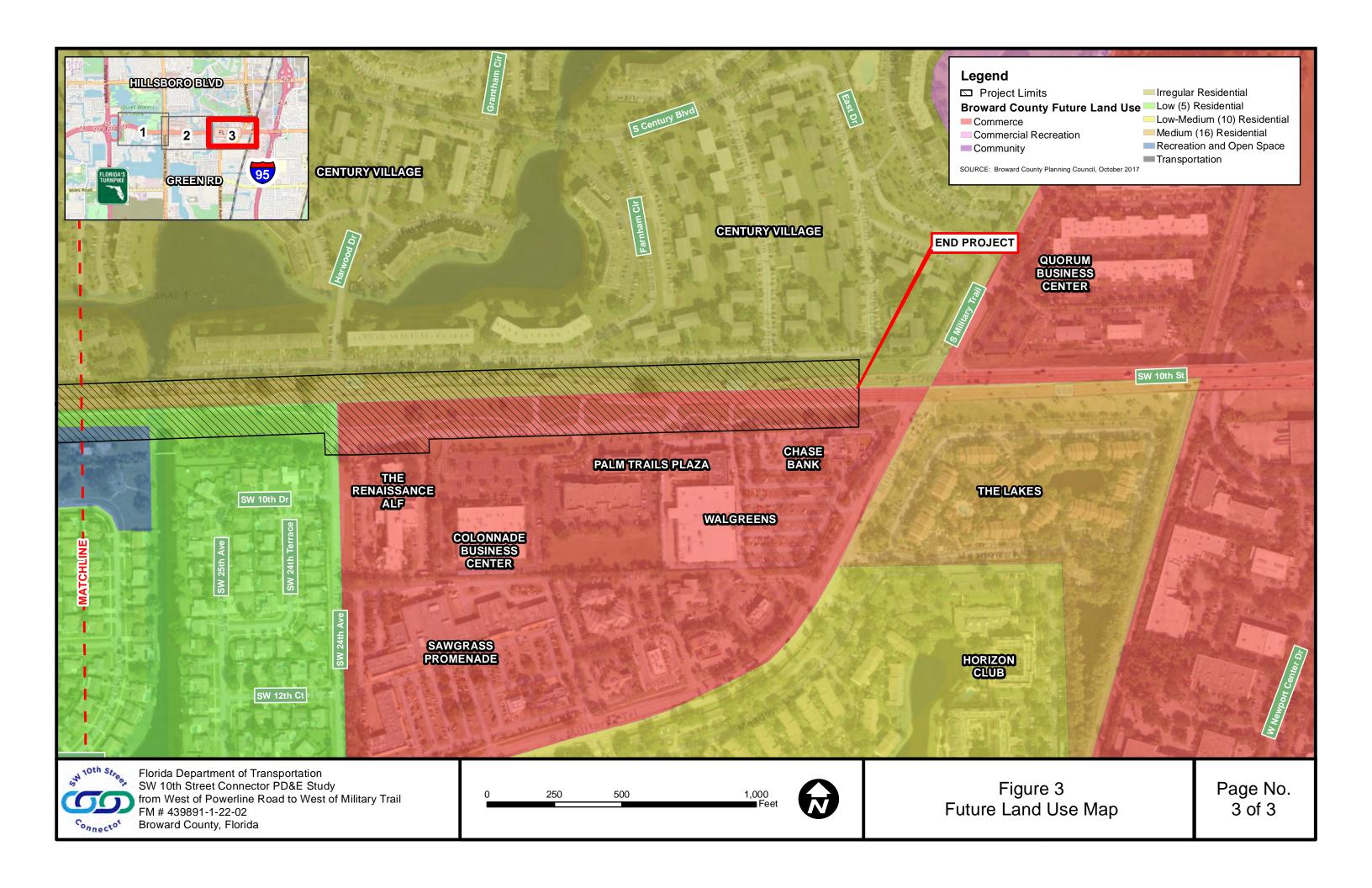

Based on the comprehensive pond siting evaluation performed for this project, portions of Alternatives 4-6 are recommended for accommodation of drainage within the C-2 Basin, if a shared use agreement can be executed in the future with Century Village to spread and meander the required drainage pond(s) throughout these western three pond site alternatives. These parcels are hydraulically connected with the C-2 Canal and could feasibly be expanded to provide treatment, attenuation, and floodplain compensation for the project since the C-2 Canal is a water quality basin. As requested by SFWMD, the regional stormwater modeling and "master" permit application packages should be completed and submitted as soon as possible. If a mutual agreement with Century Village cannot be executed, the three conventional pond sites have been ranked with pond site Alternative 3 being the recommended pond site location. Refer to Appendix I for further details on pond site alternative location and evaluation results.

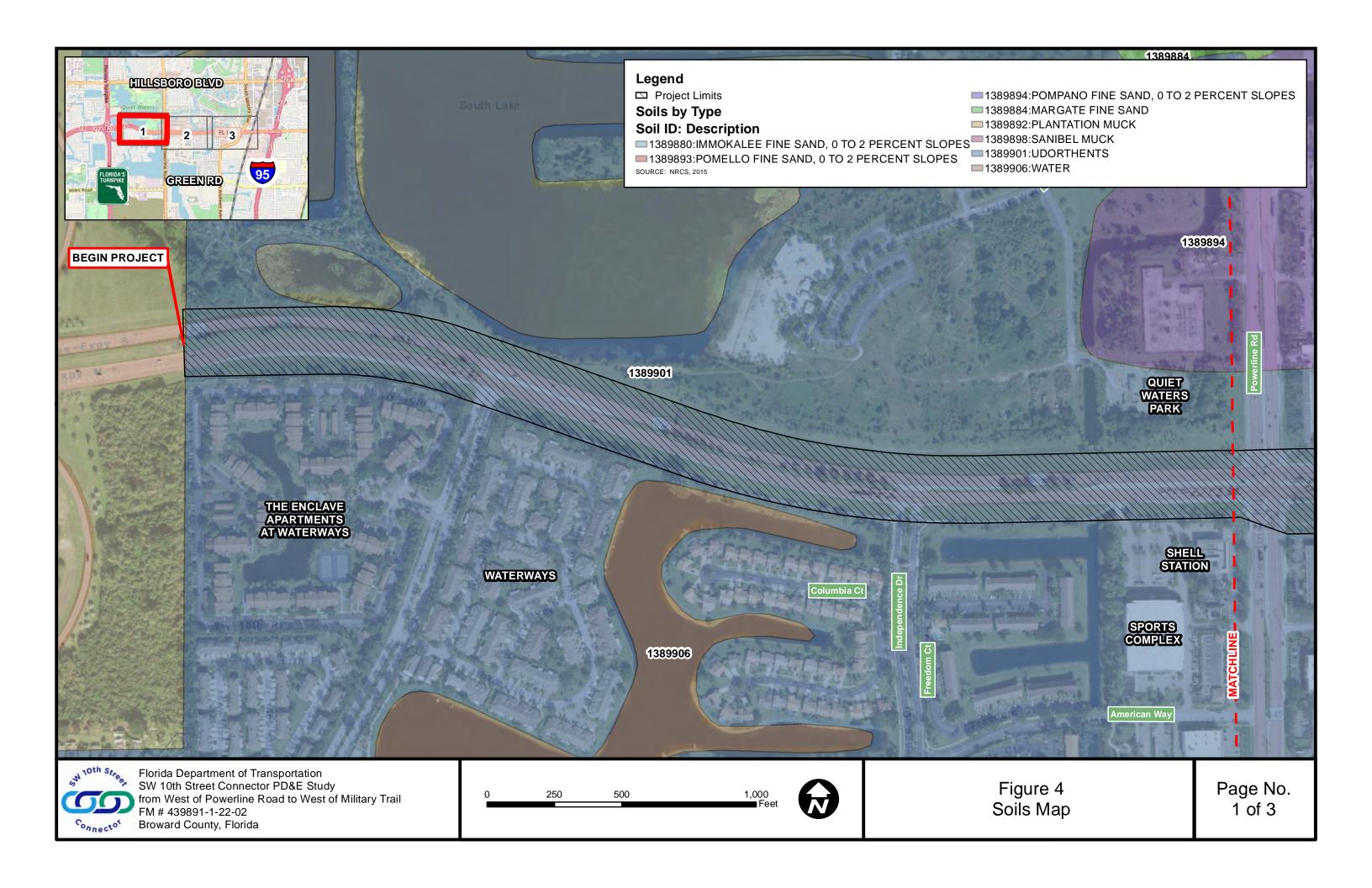

APPENDIX A

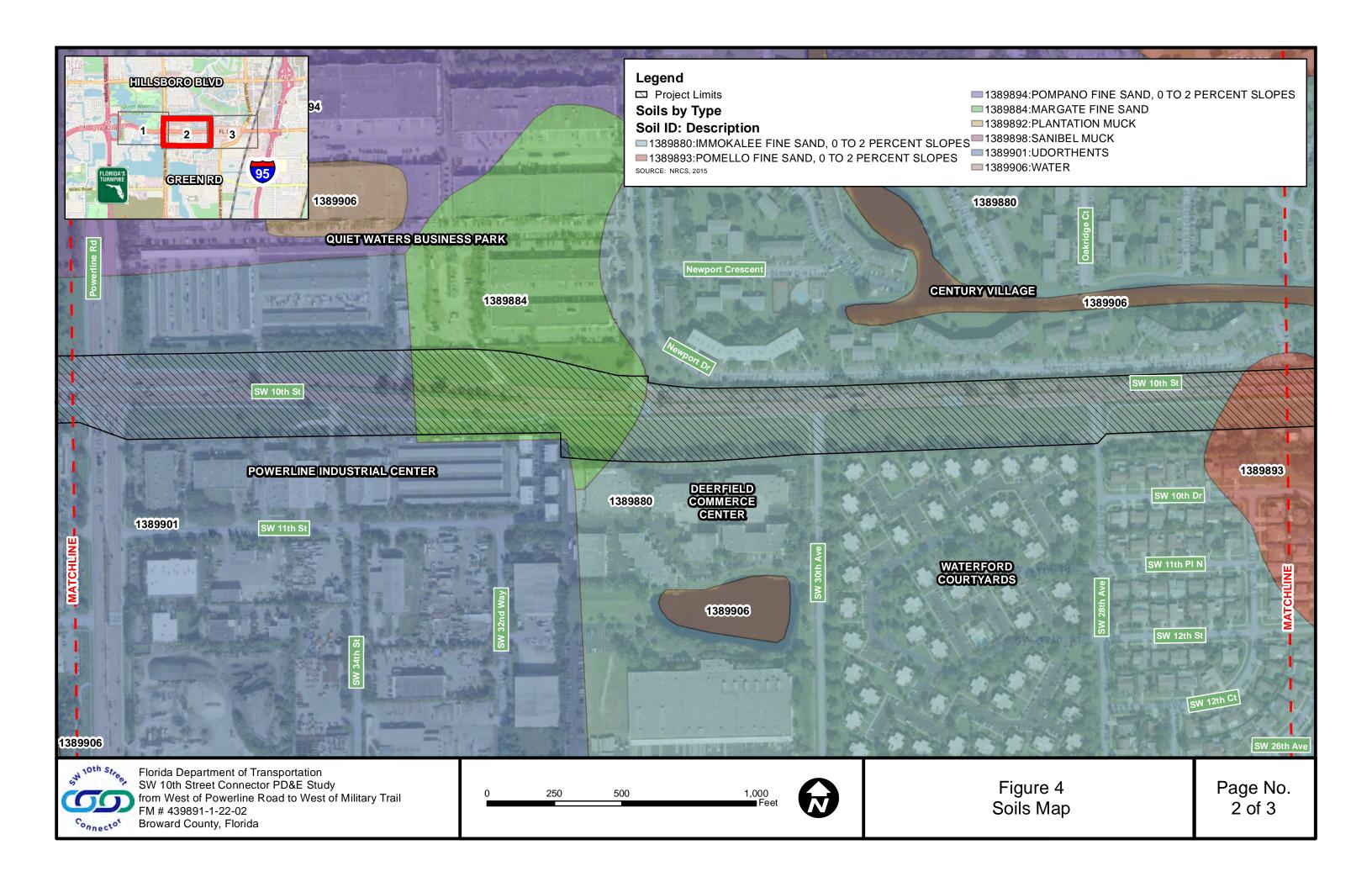

DESIGN AIDS

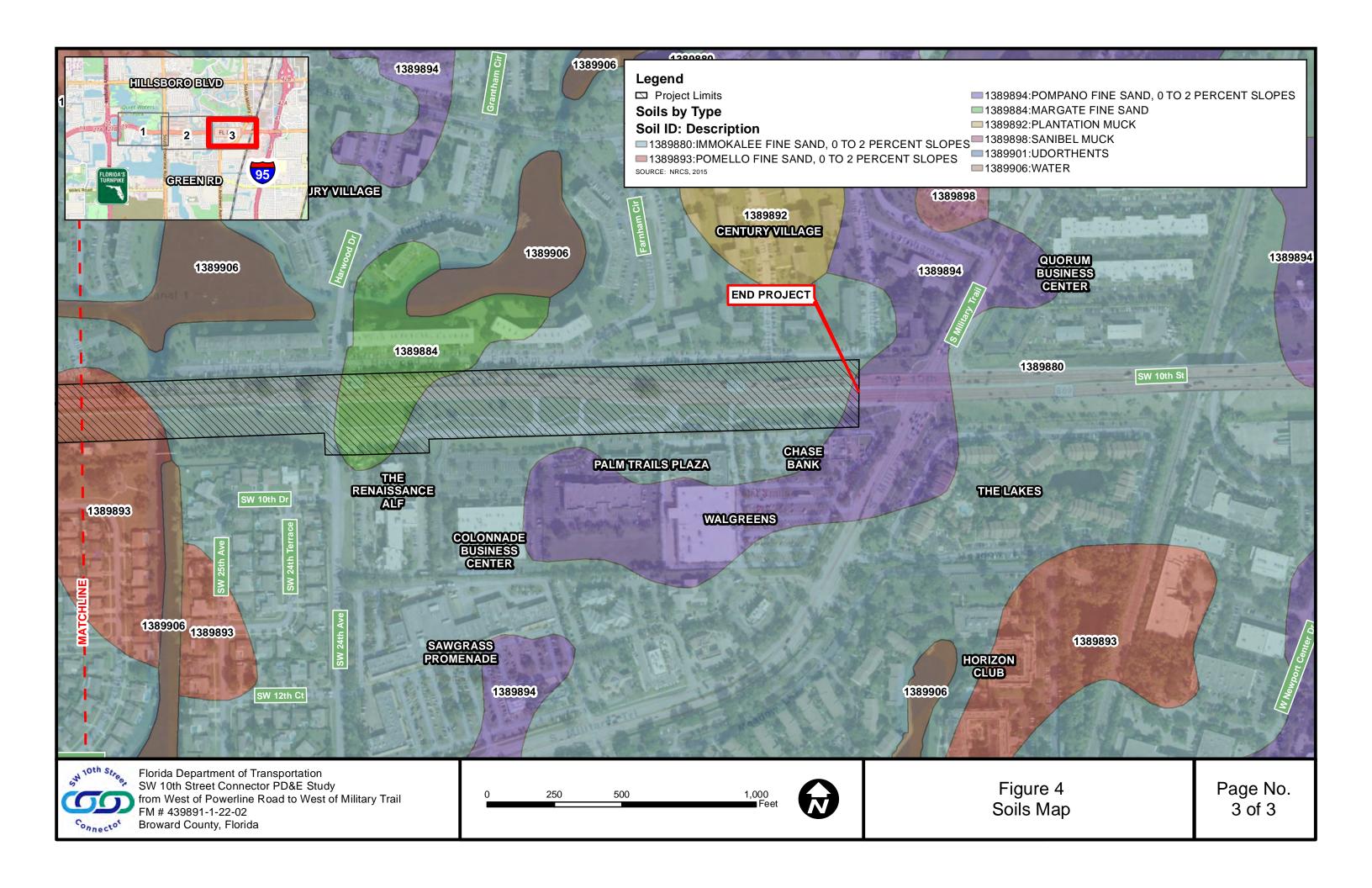


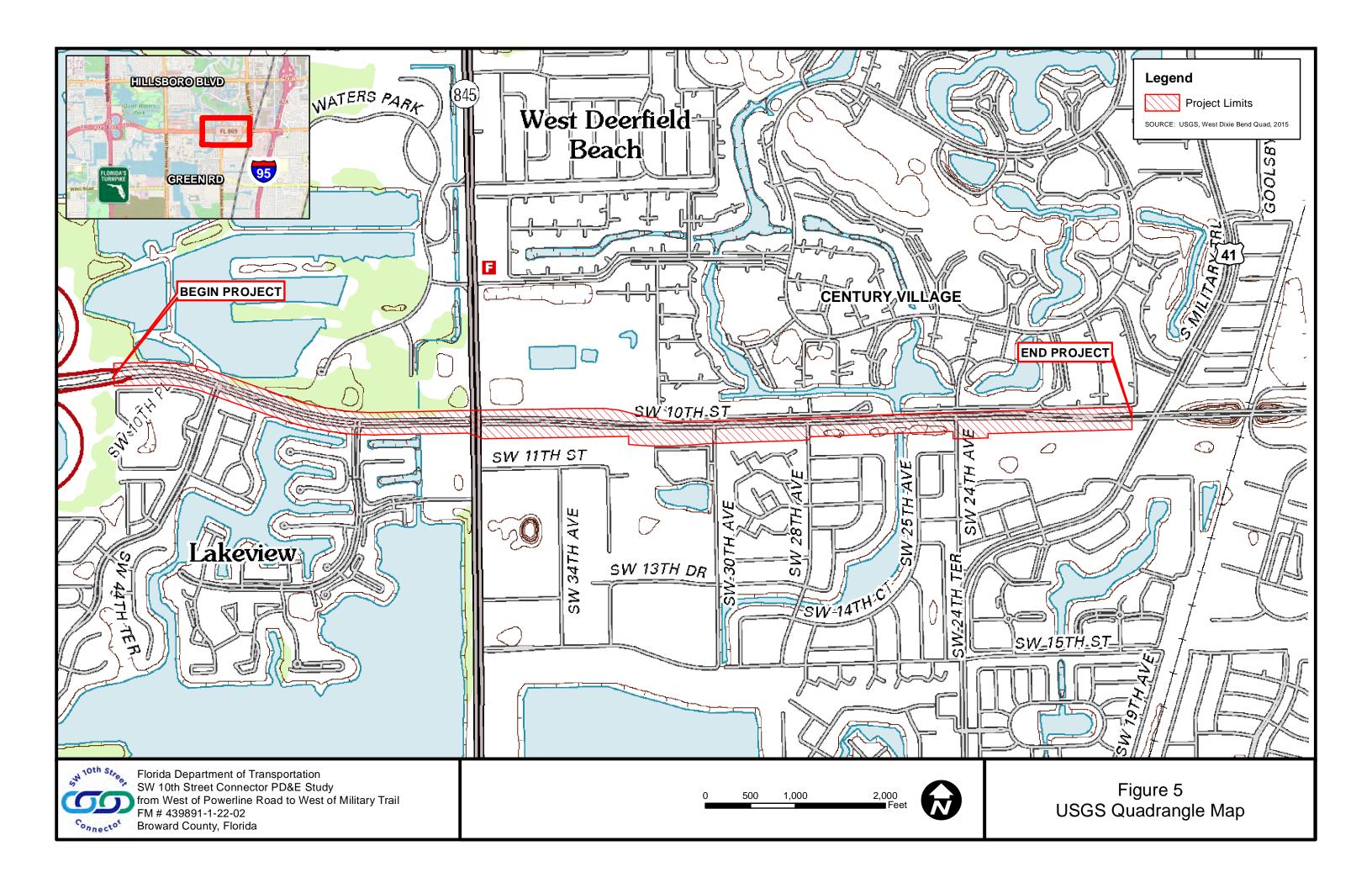


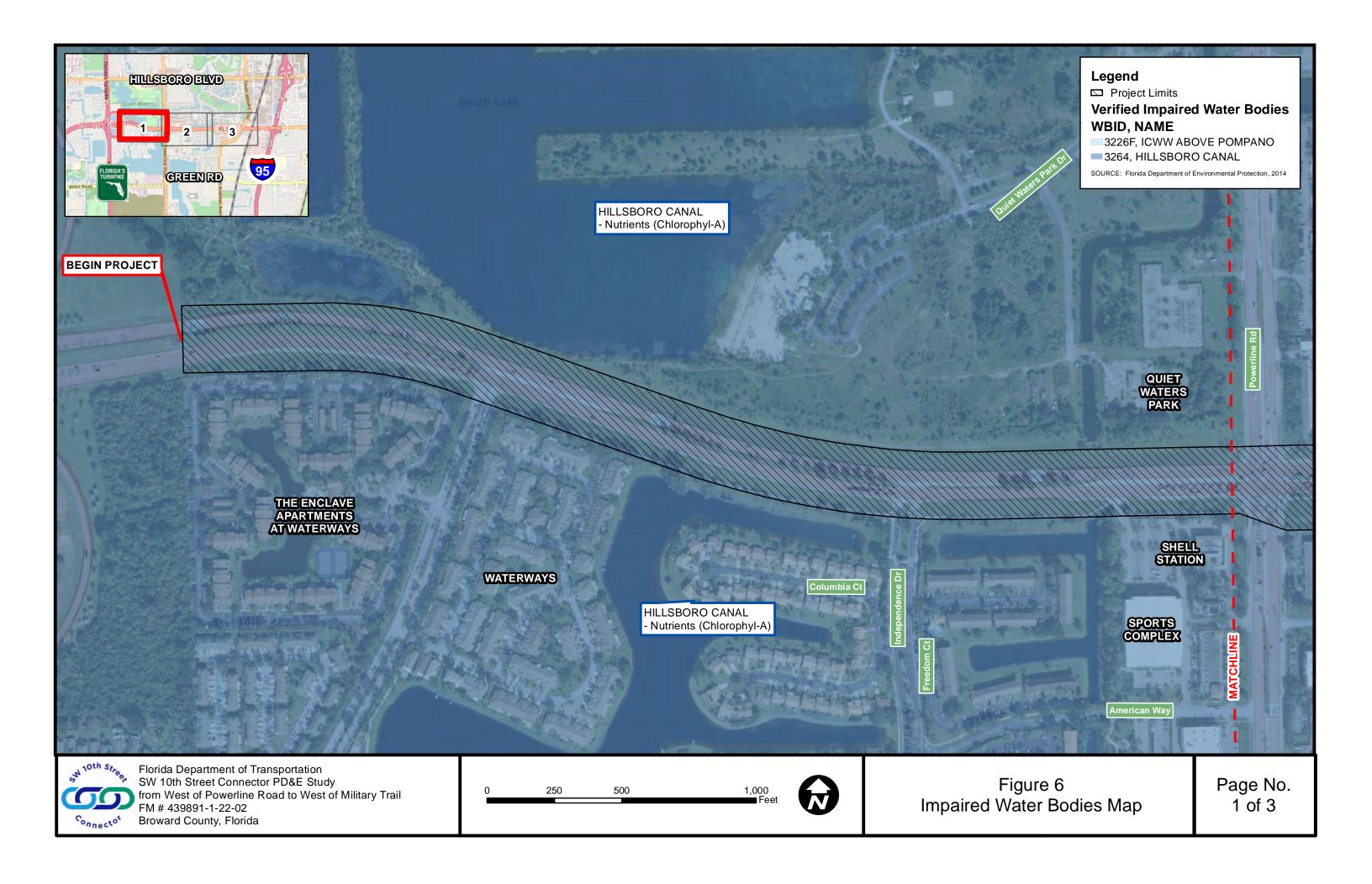


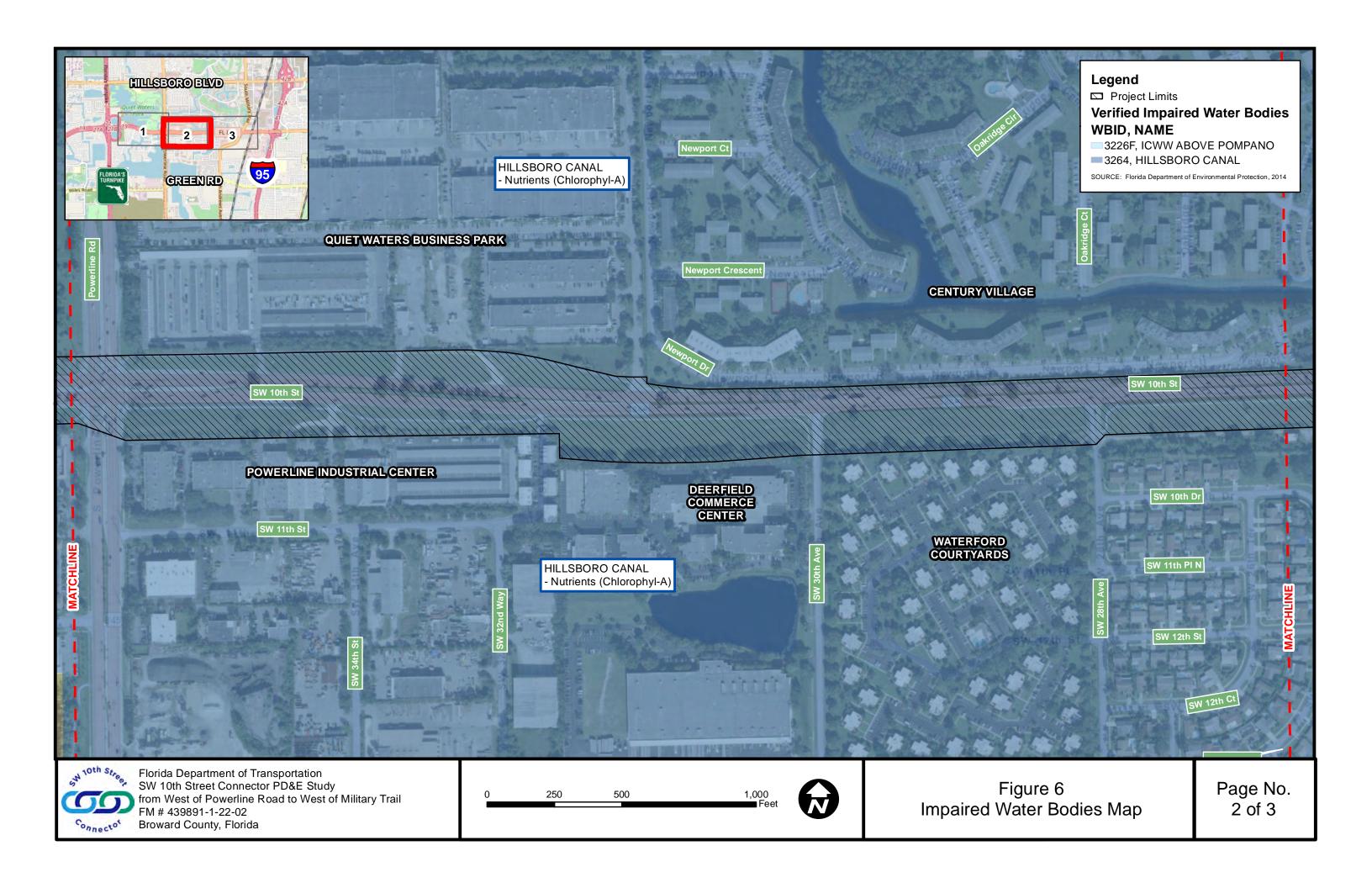


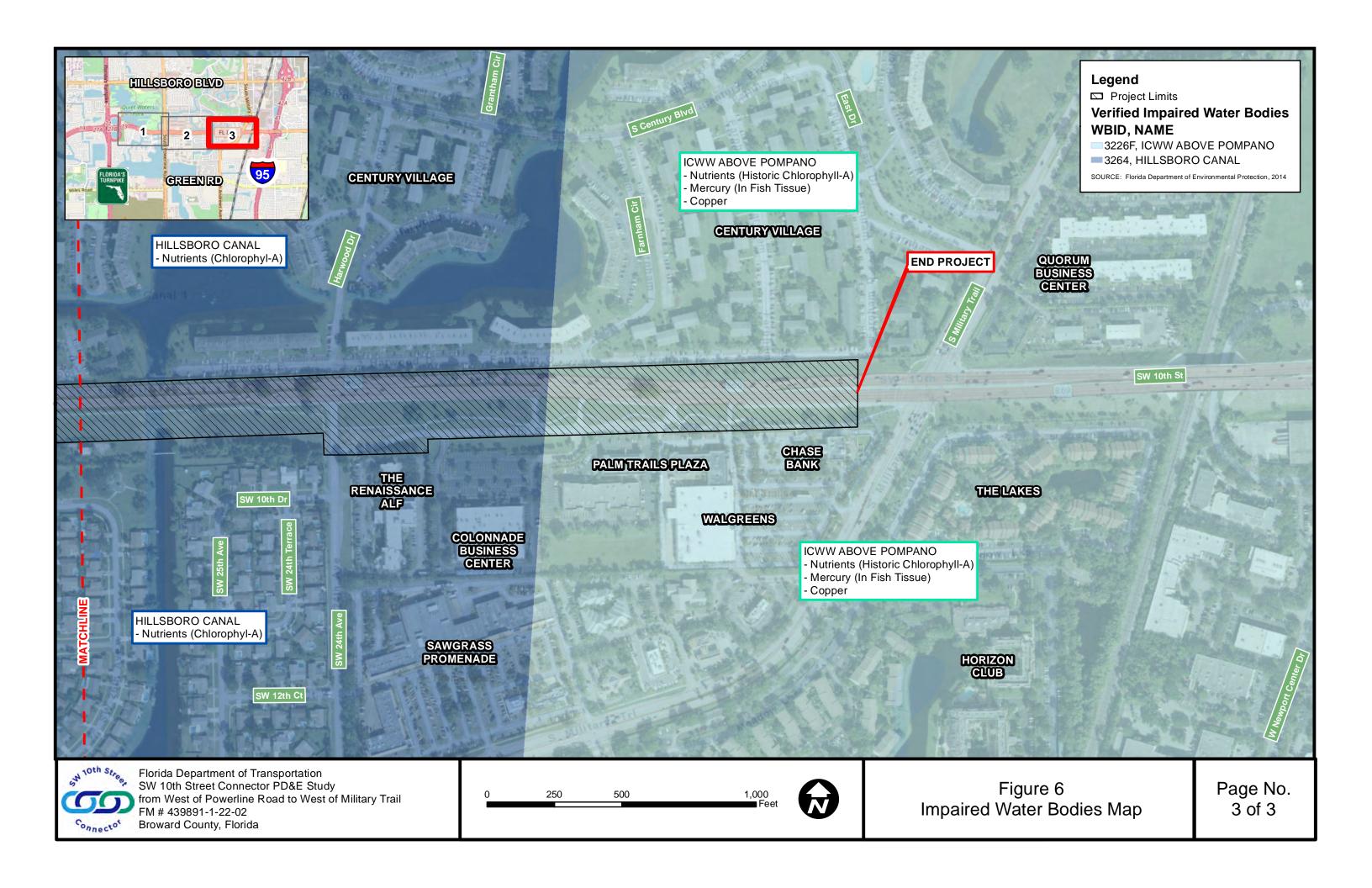


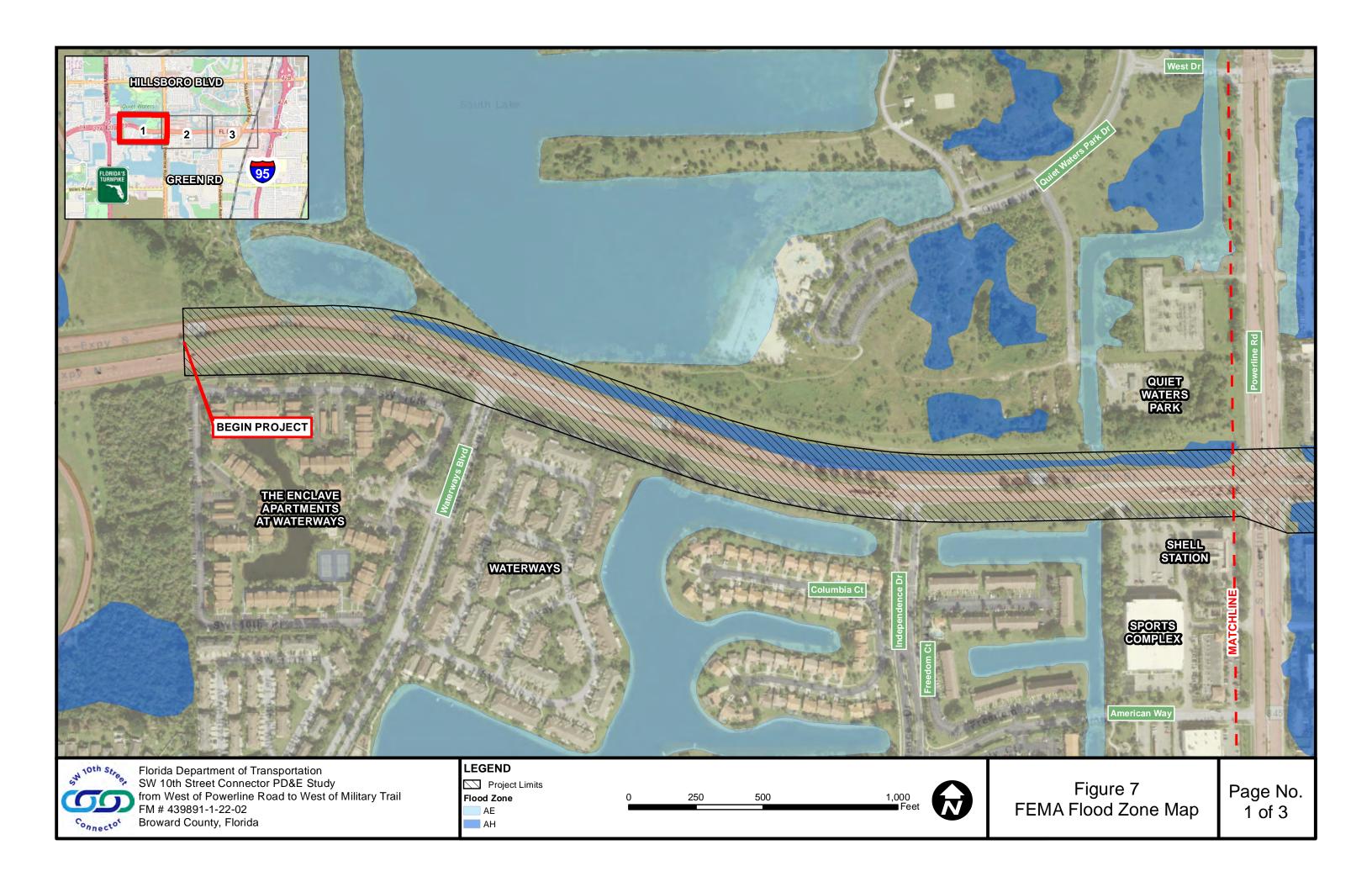


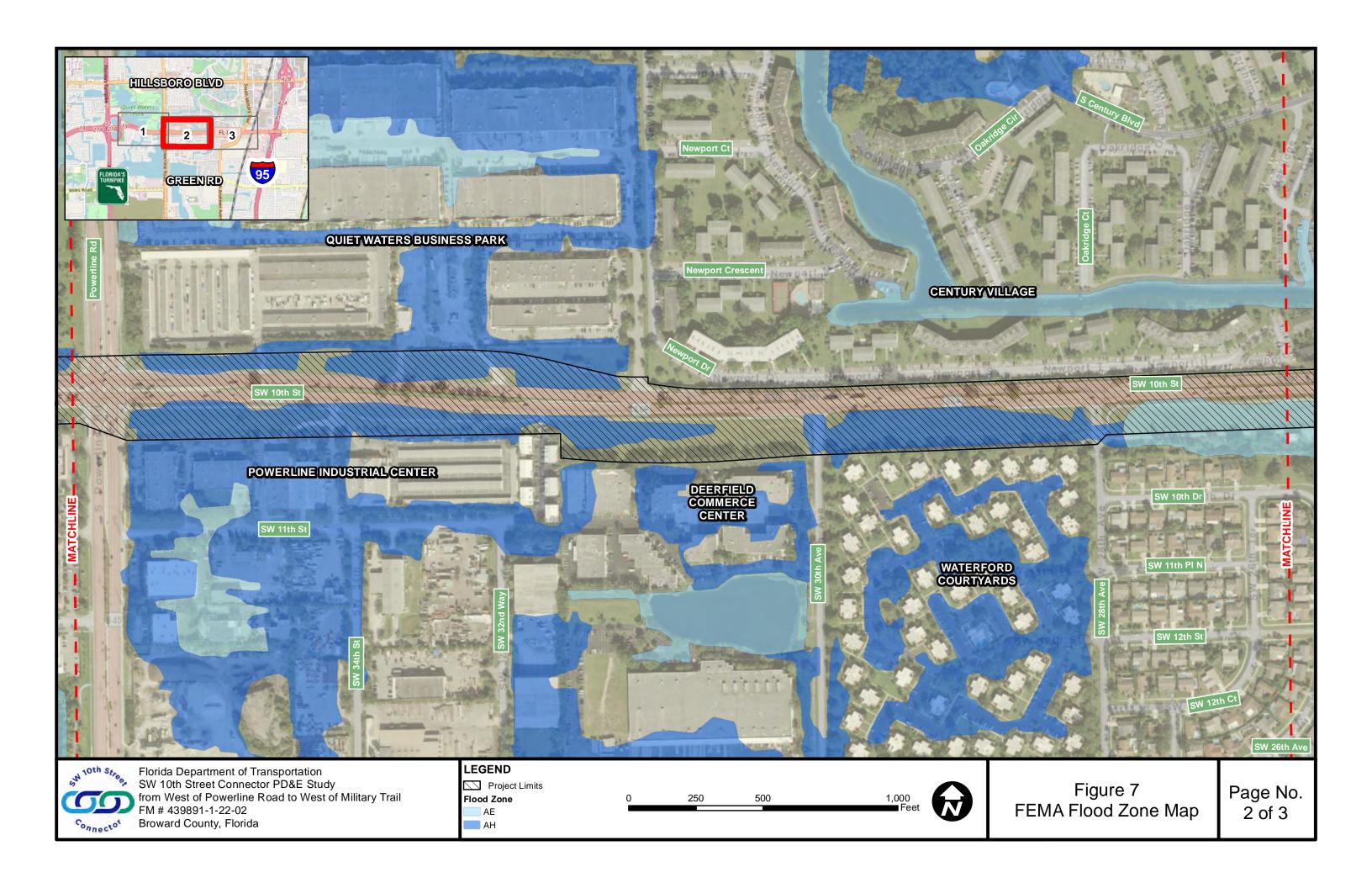


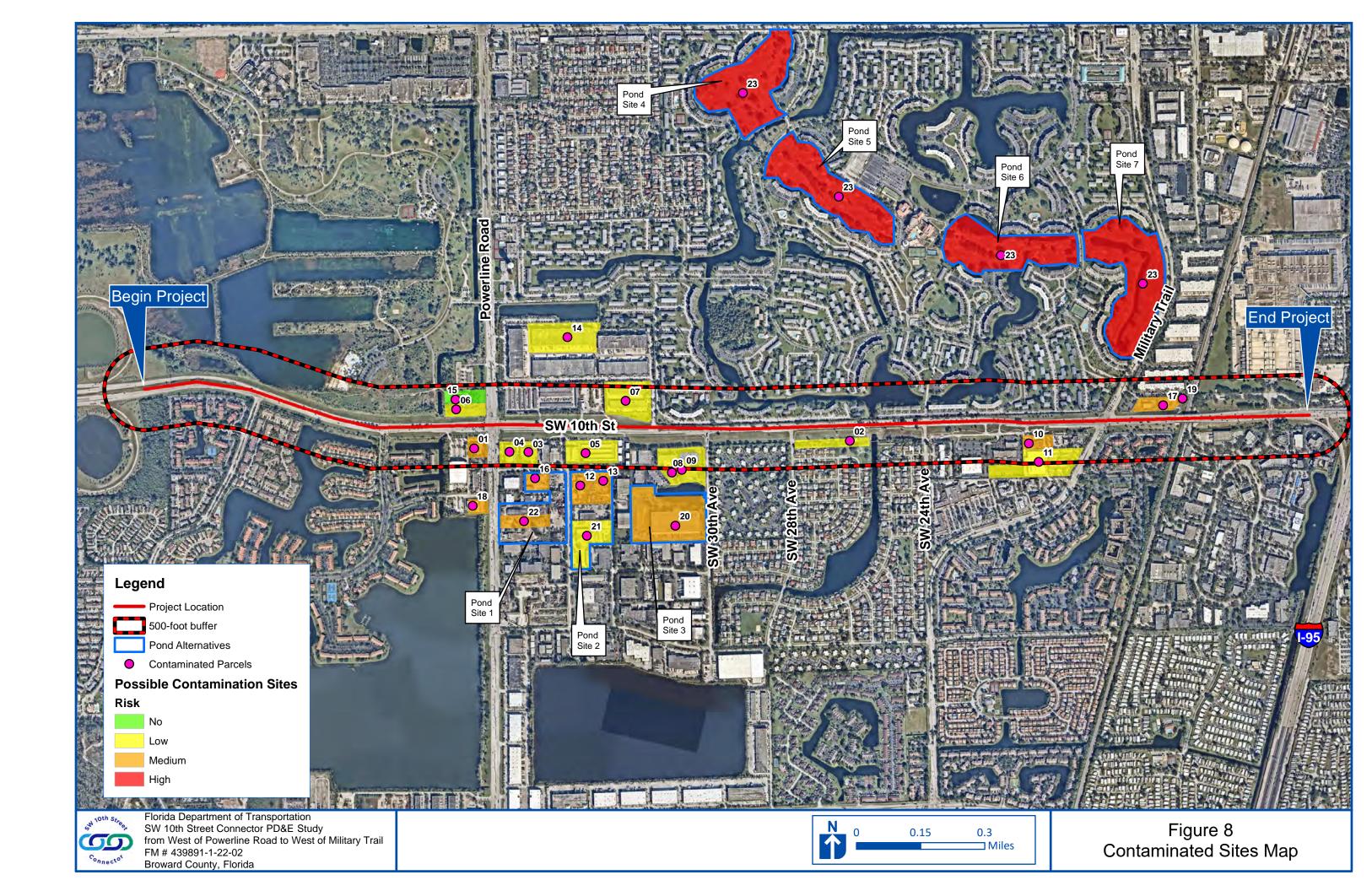












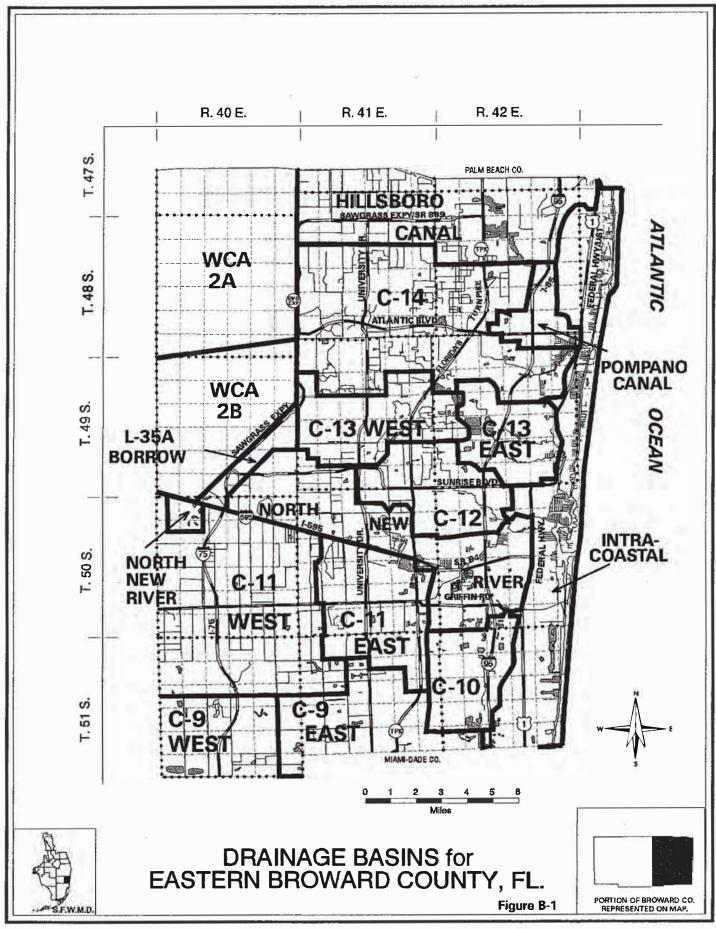


Figure 9 - SFWMD Drainage Basin Map

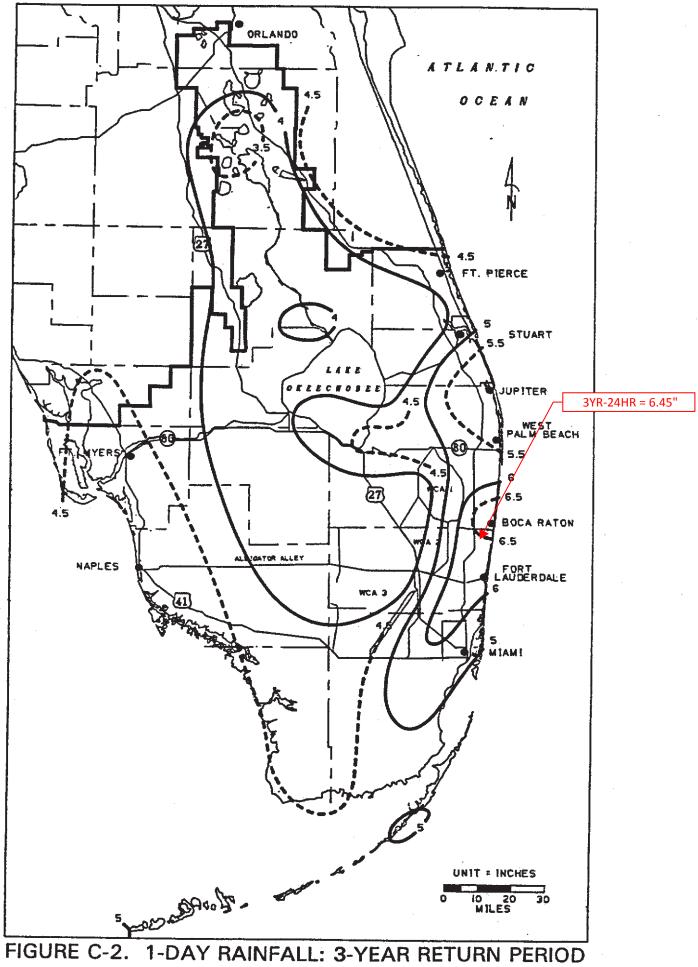


Figure 10 - SFWMD Rainfall Maps

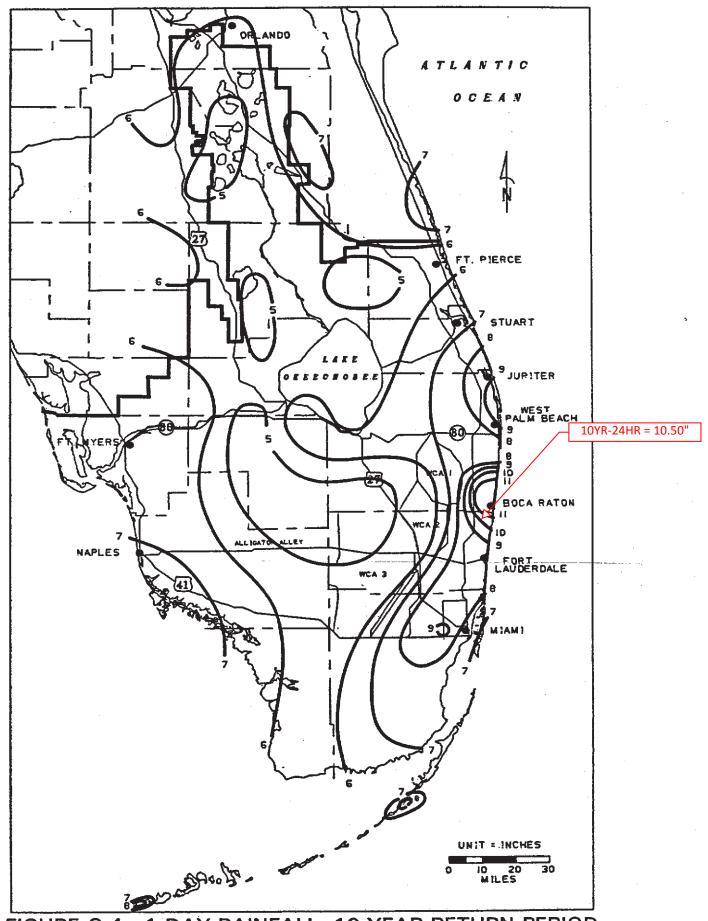


FIGURE C-4. 1-DAY RAINFALL: 10-YEAR RETURN PERIOD

Figure 10 - SFWMD Rainfall Maps

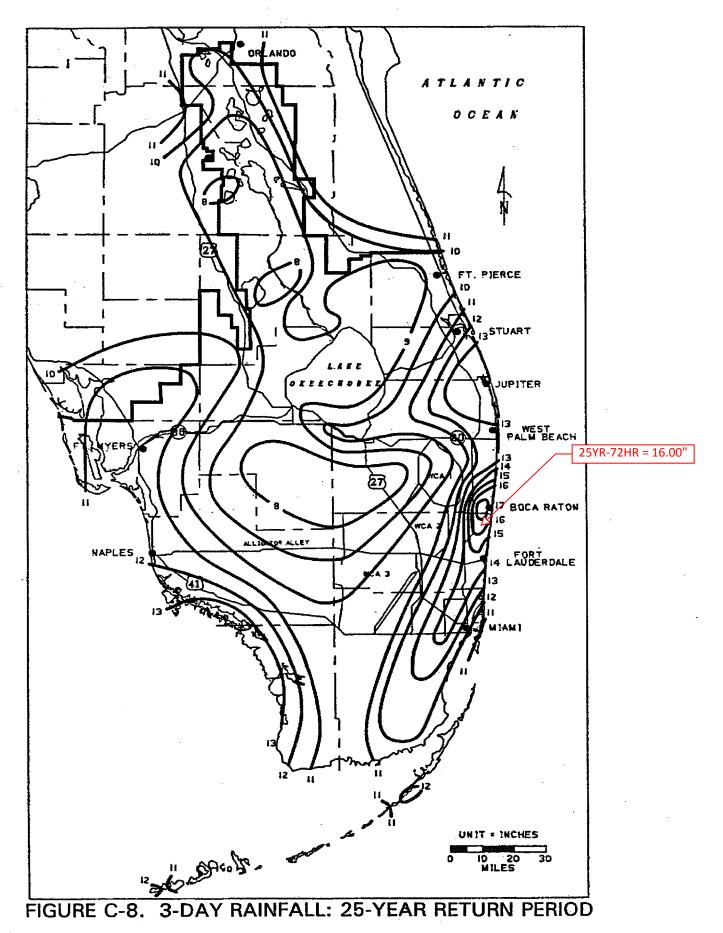


Figure 10 - SFWMD Rainfall Maps

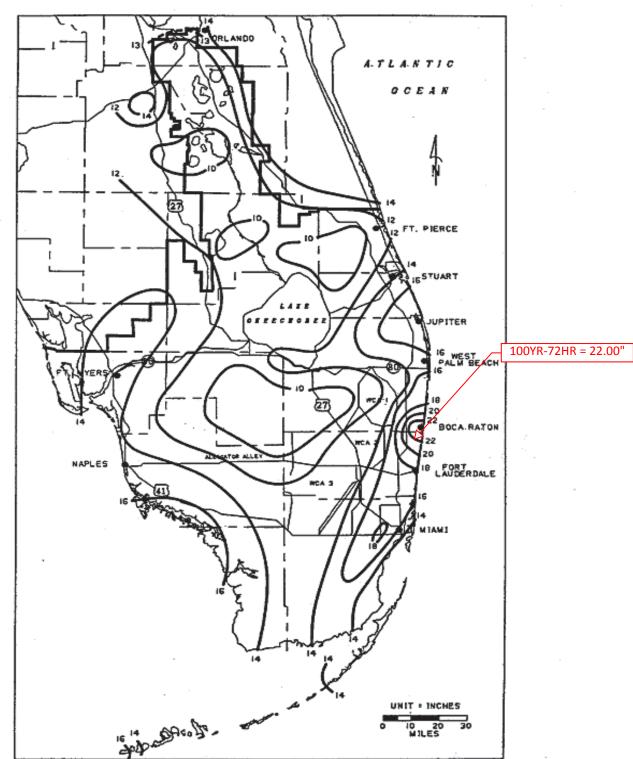


FIGURE C-9. 3-DAY RAINFALL: 100-YEAR RETURN PERIOD

Figure 10 - SFWMD Rainfall Maps

Table 2.6.3 Criteria for Grade Datum

CLEARANCE FOR THE ROADWAY BASE COURSE ABOVE THE BASE CLEARANCE WATER ELEVATION	
TYPE FACILITY REQUIRED C	
Freeways and Rural Multilane Mainline	<mark>3 ft.</mark>
Ramps (proper)	2 ft. ¹
Low Point on Ramps at Cross Roads	1 ft. ¹
Rural Two-lane with Design Year ADT Greater than 1500 VPD	2 ft. ¹
All Other Facilities Including Urban	1 ft. 1

This clearance requires a reduction in the design resilient modulus (see the *Flexible Pavement Design Manual*). Notify the Pavement Design Engineer that the clearance is less than 3 feet.

Table 2.6.4 Grade Criteria for Curb and Gutter Sections

GRADES ON CURB AND GUTTER SECTIONS		
Minimum Distance Required between VPI's	250 ft.	
Minimum Grade (%)	0.3 %	

(See *Table 2.6.1* for Maximum Grades)

Convert Point Page 1 of 1

SFWMD Home

Point Conversion

VDCA Features

Inputs:

Point Conversion

Block File Conversion

Name (Optional)

Time Series File Conversion

Valid Latitude & Longitude formats are:

Administer Constants

- Degrees.XXXX
- · Degrees Minutes.XXXX
- Degrees Minutes Seconds.XXXX

Vertical Datum Home • XXXX represents a fractional part of the preceding unit

Help / Home / Logout

26.190445 Latitude/Y 80.082333 Longitude/X

● Lat/Long ○ Y/X Latitude/Longitude or Y/X

Height (Optional) Unit of Measure

US Feet ✔

Default

NGVD 29 🗸 Input Datum

Conversion Method

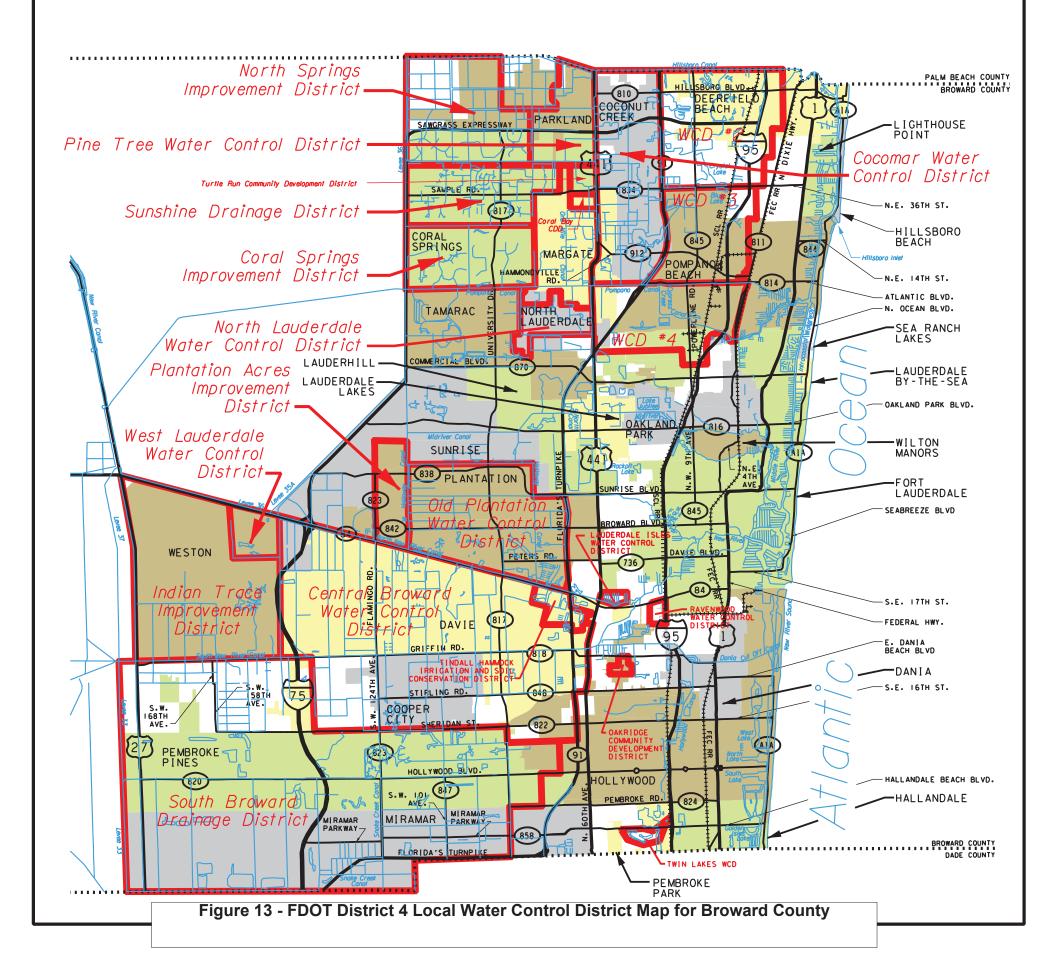
Convert

Results:

Date/Time	Fri Nov 11 16:26:08 EST 2016
Name (Optional)	1111071110.20.00 E51 2010
Ivallie (Optioliai)	
Latitude/Y	26.190445
Longitude/X	80.082333
Datum Offset	-1.5839
Output Datum	NAVD 88
Adjusted Height	
Unit of Measure	FEET
Conversion Method Applied	Force Vertcon 05
Order/Class	
Surveyed Point Name	None
Surveyed Point Lat	
Surveyed Point Long	
Print	

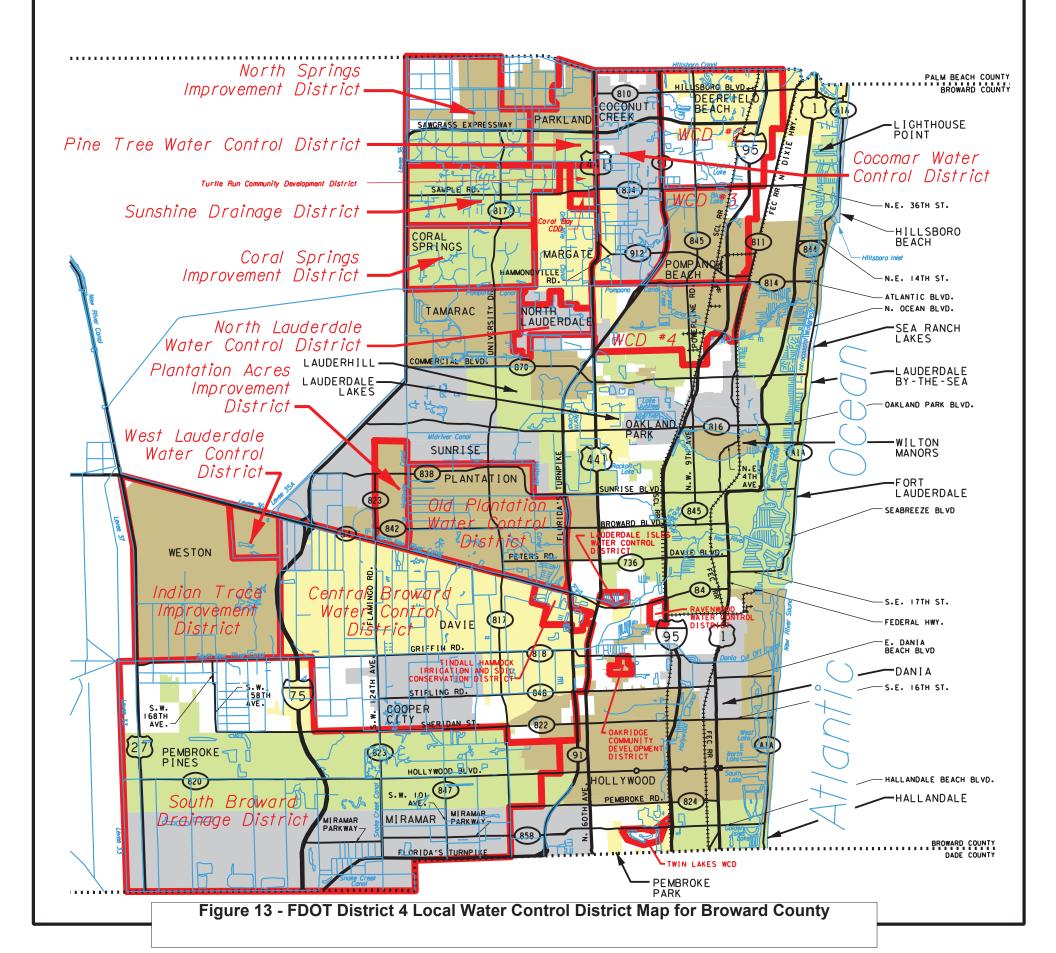
Privacy Policy | Disclaimer | User Survey

Figure 12 - Vertical Datum Conversion



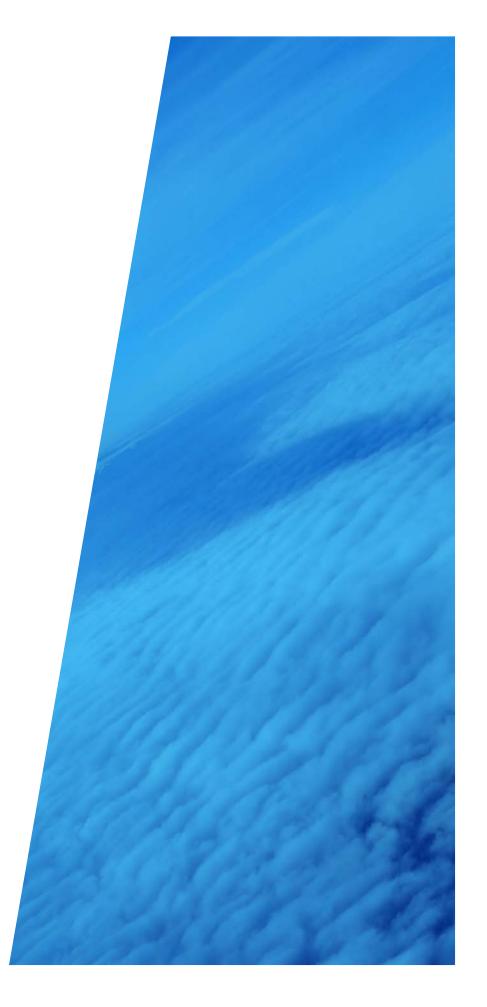
Broward County

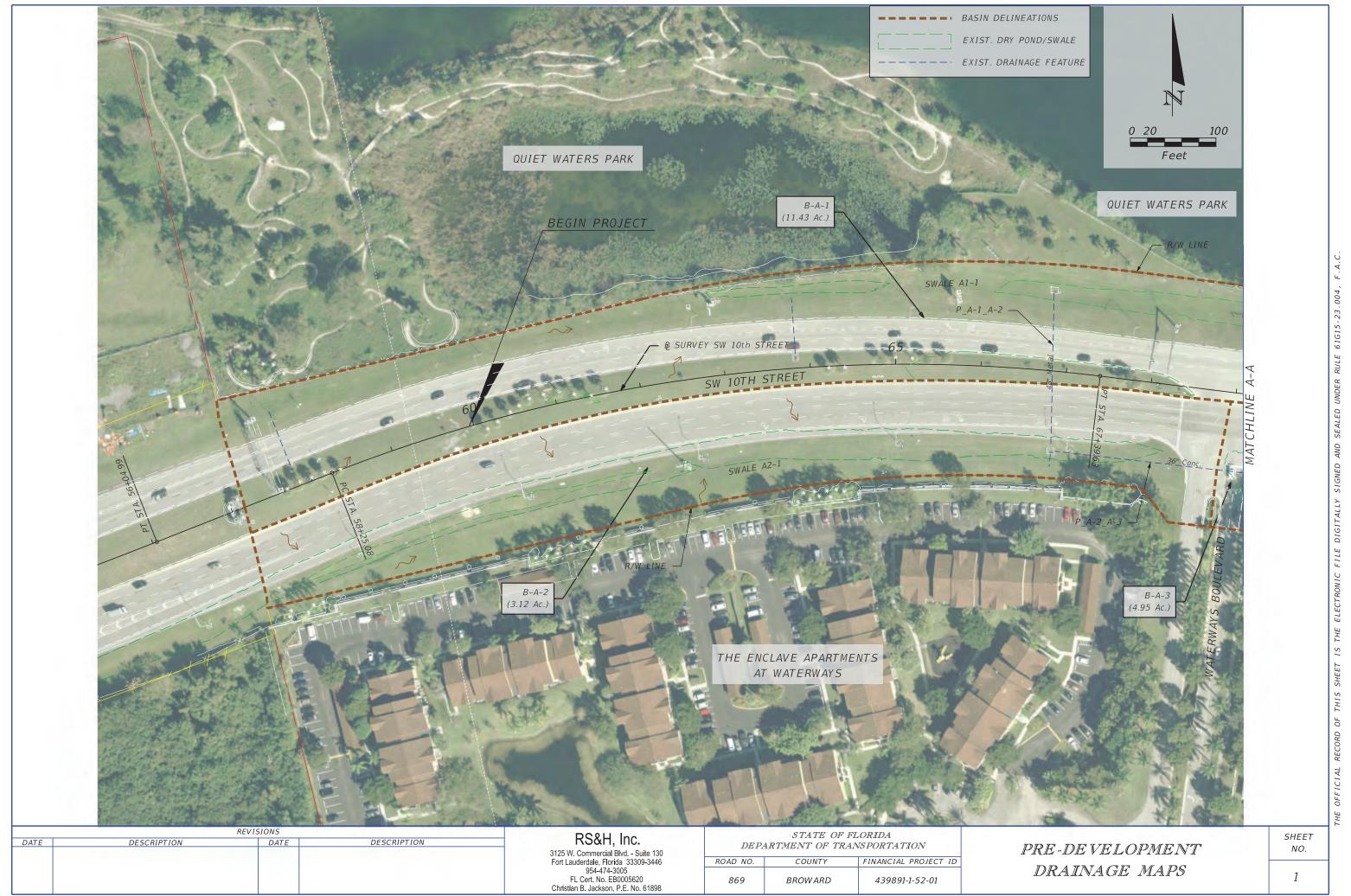
November, 1999



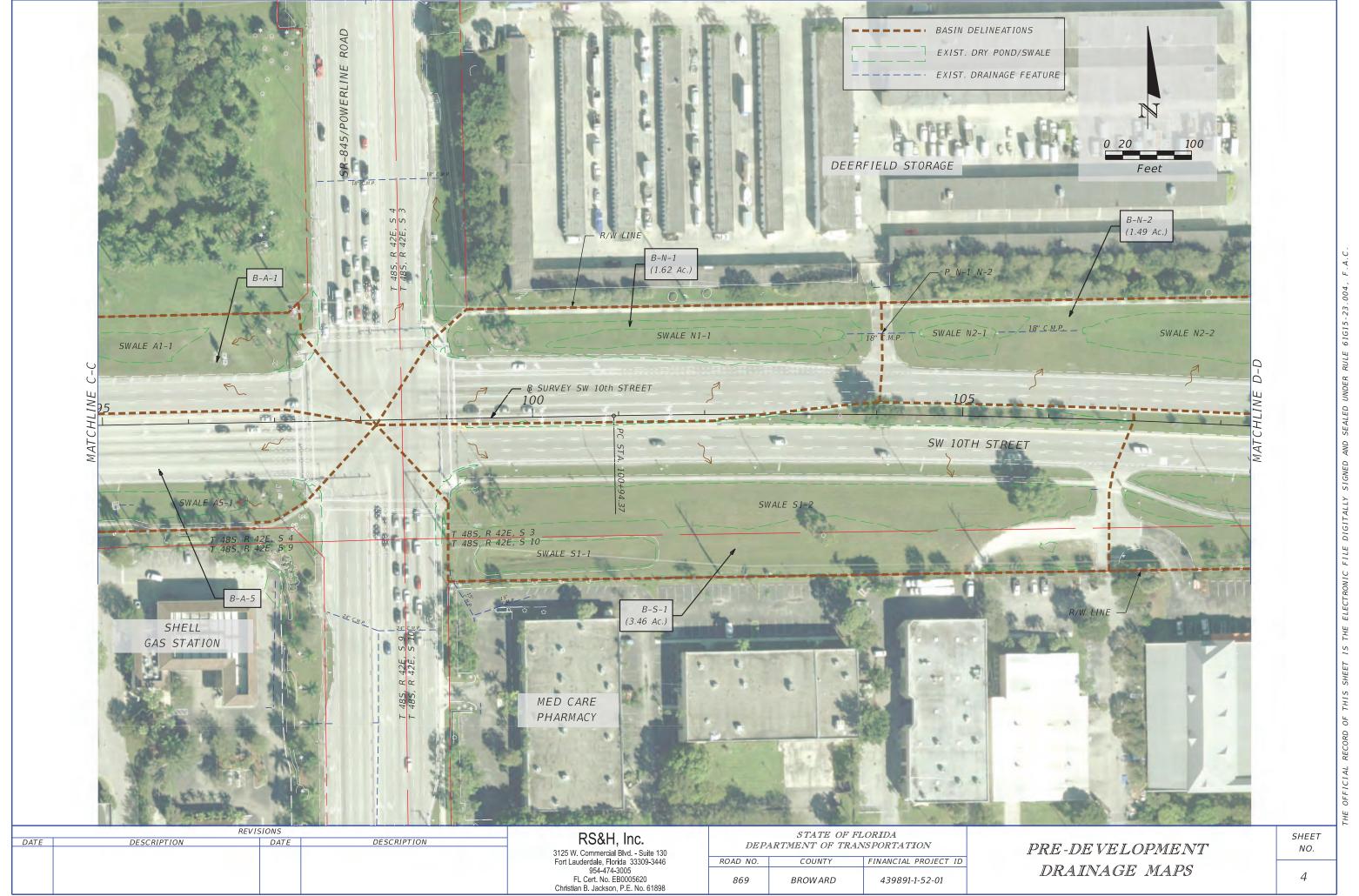
Broward County

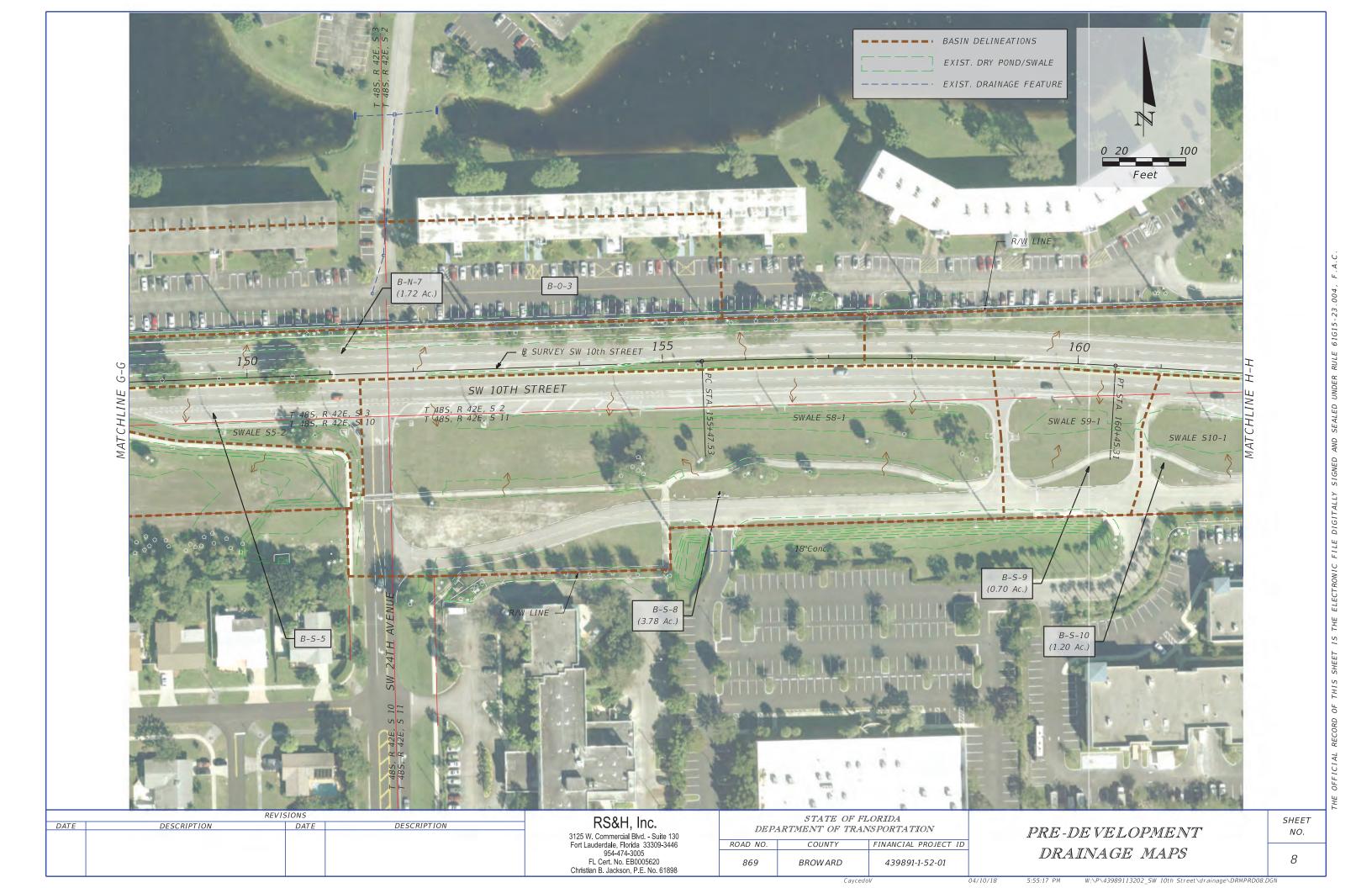
November, 1999

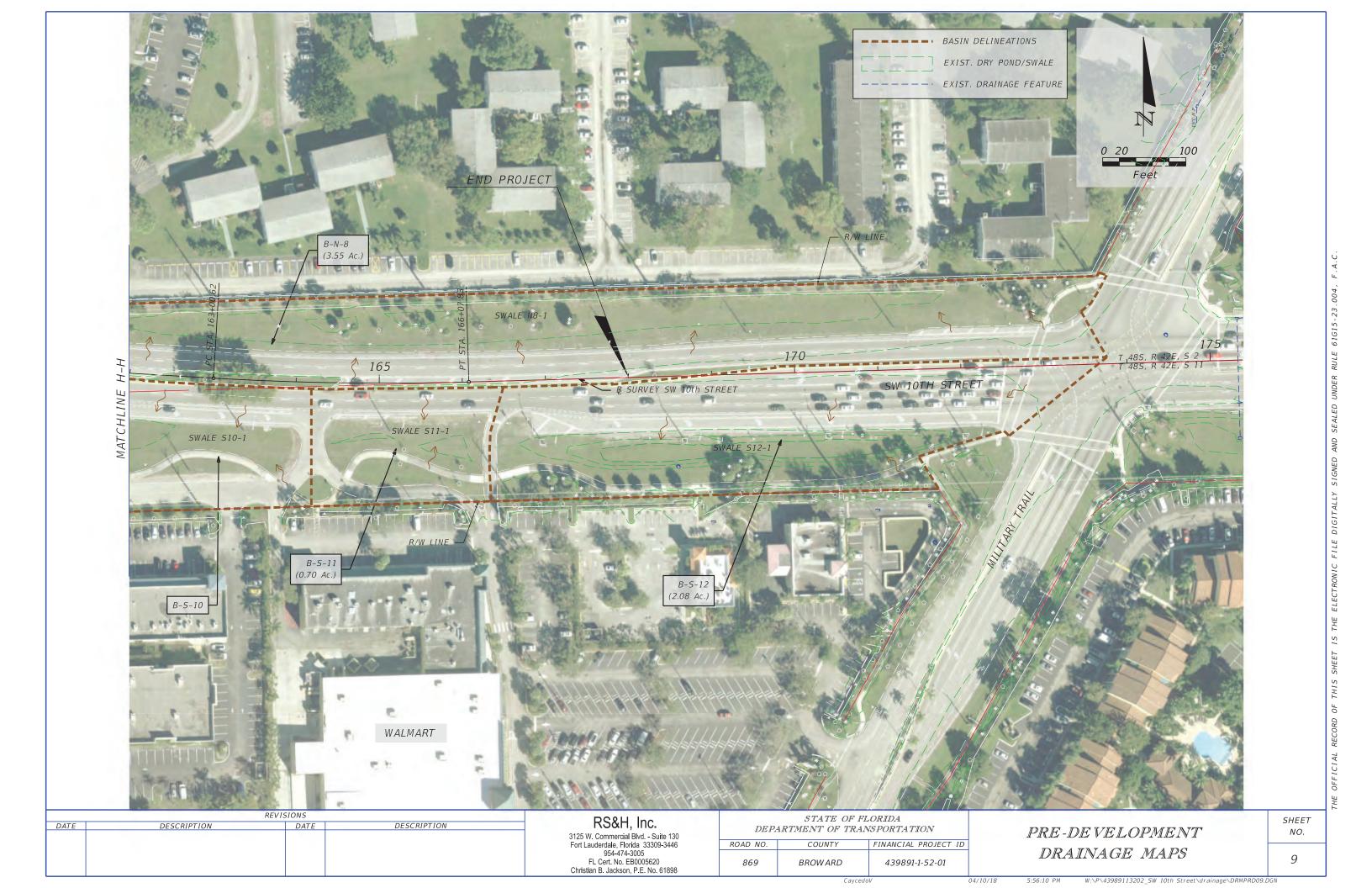


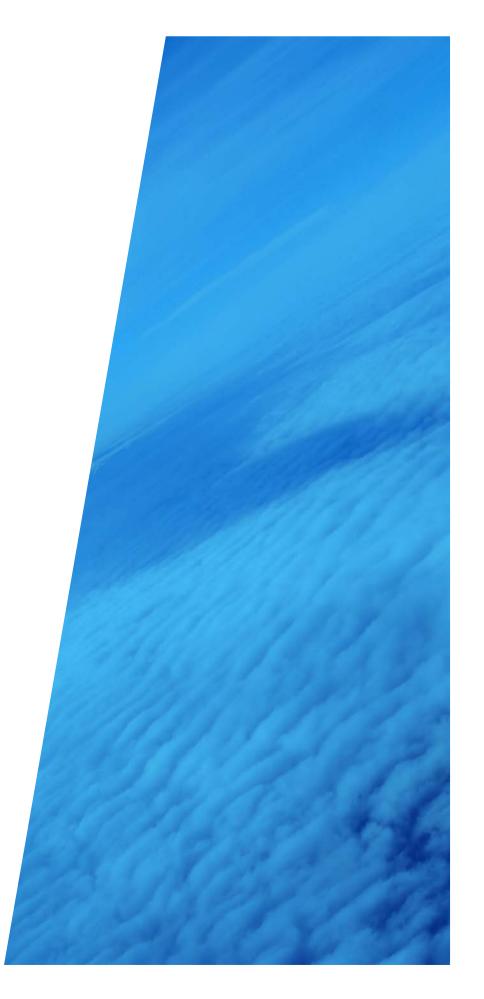


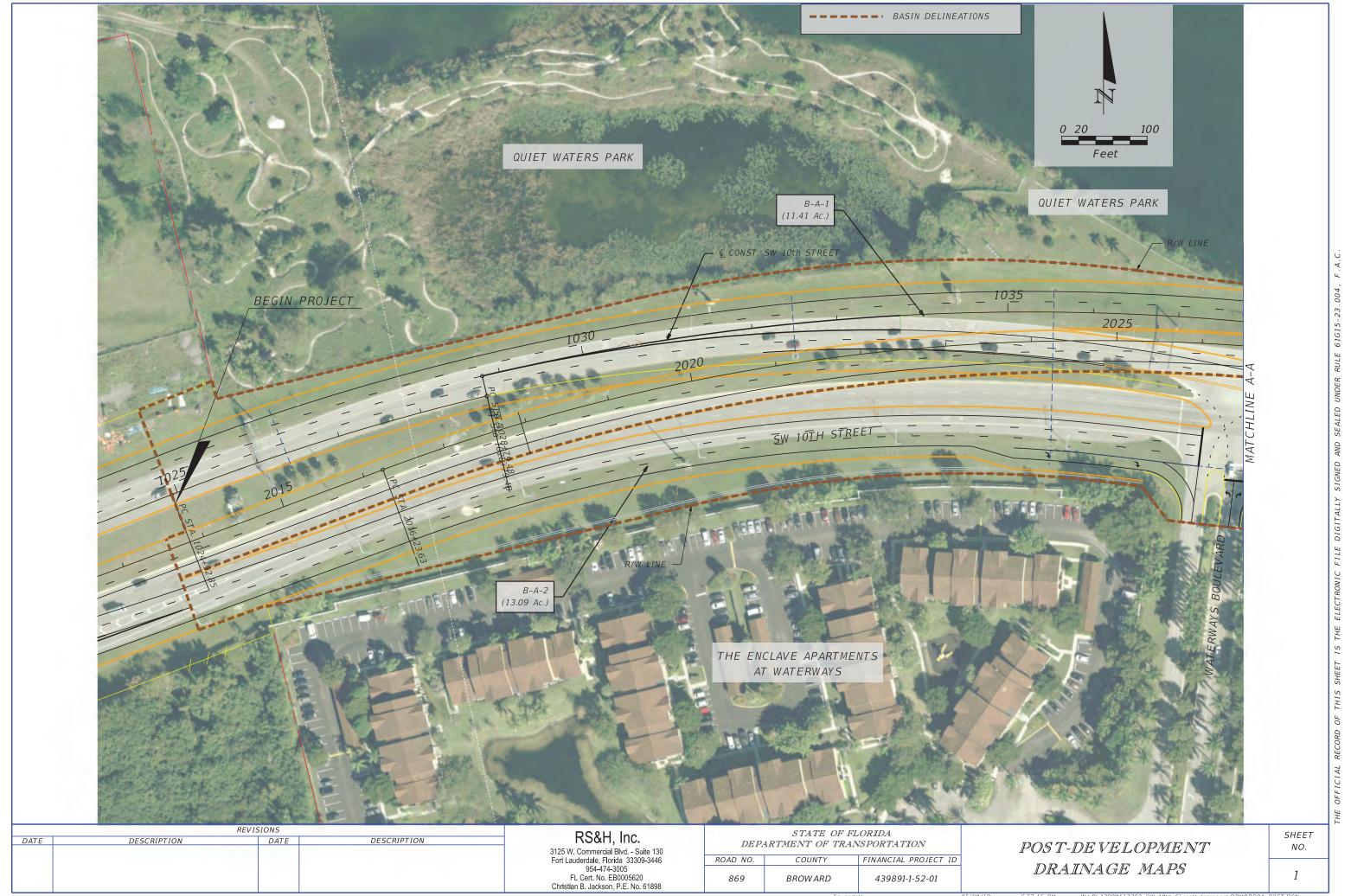
APPENDIX B

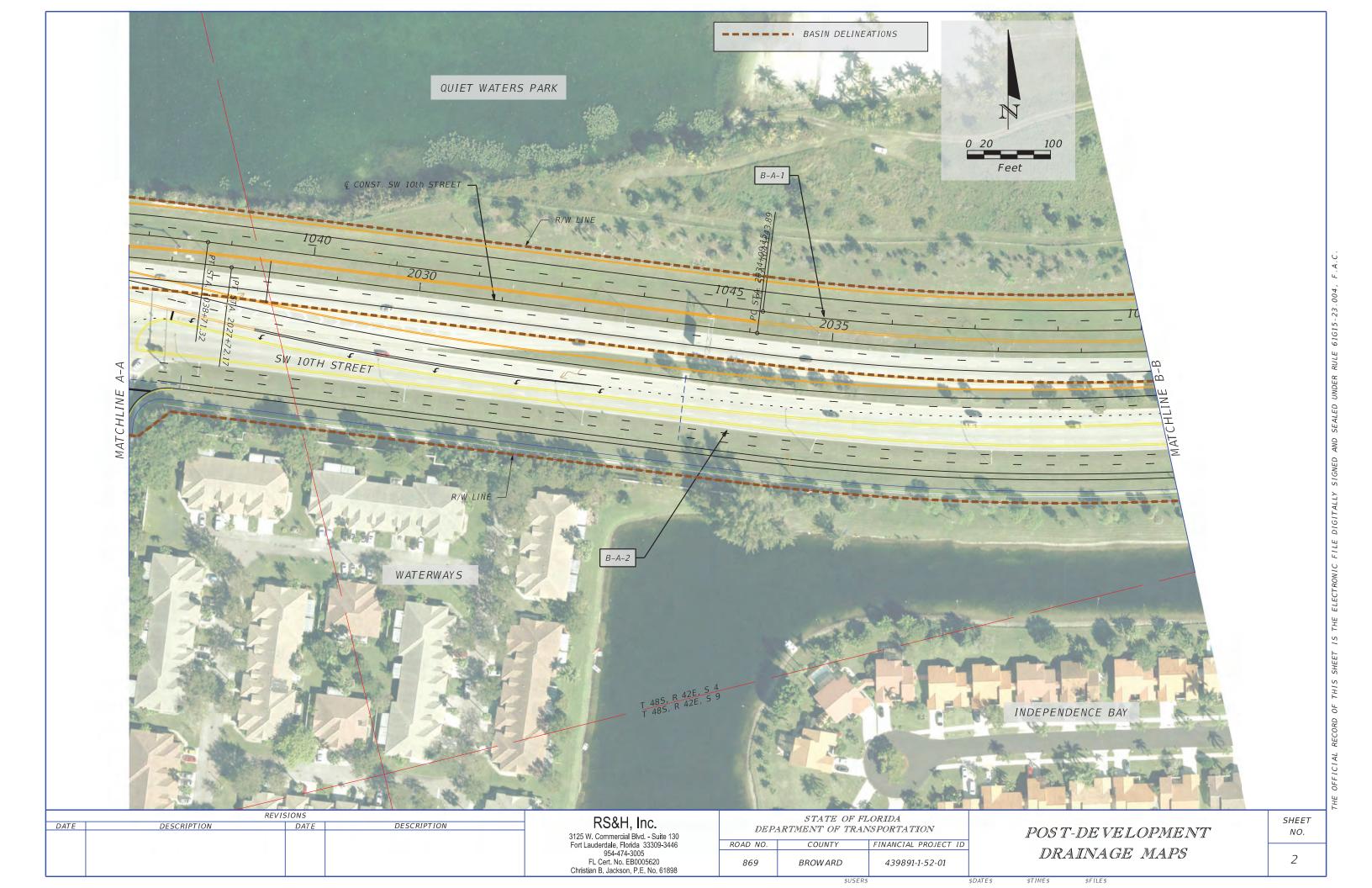

PRE-DEVELOPMENT
DRAINAGE MAPS

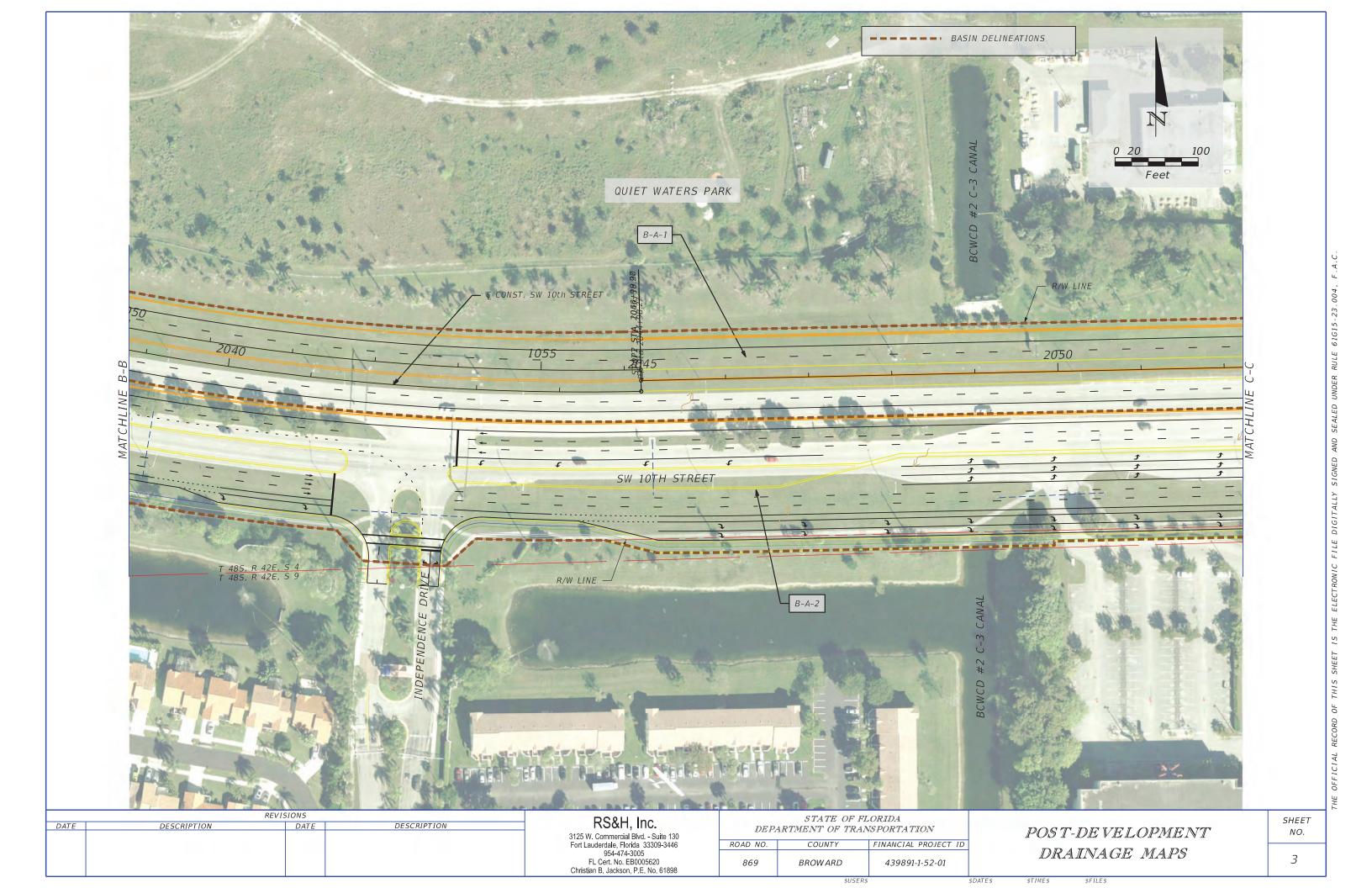


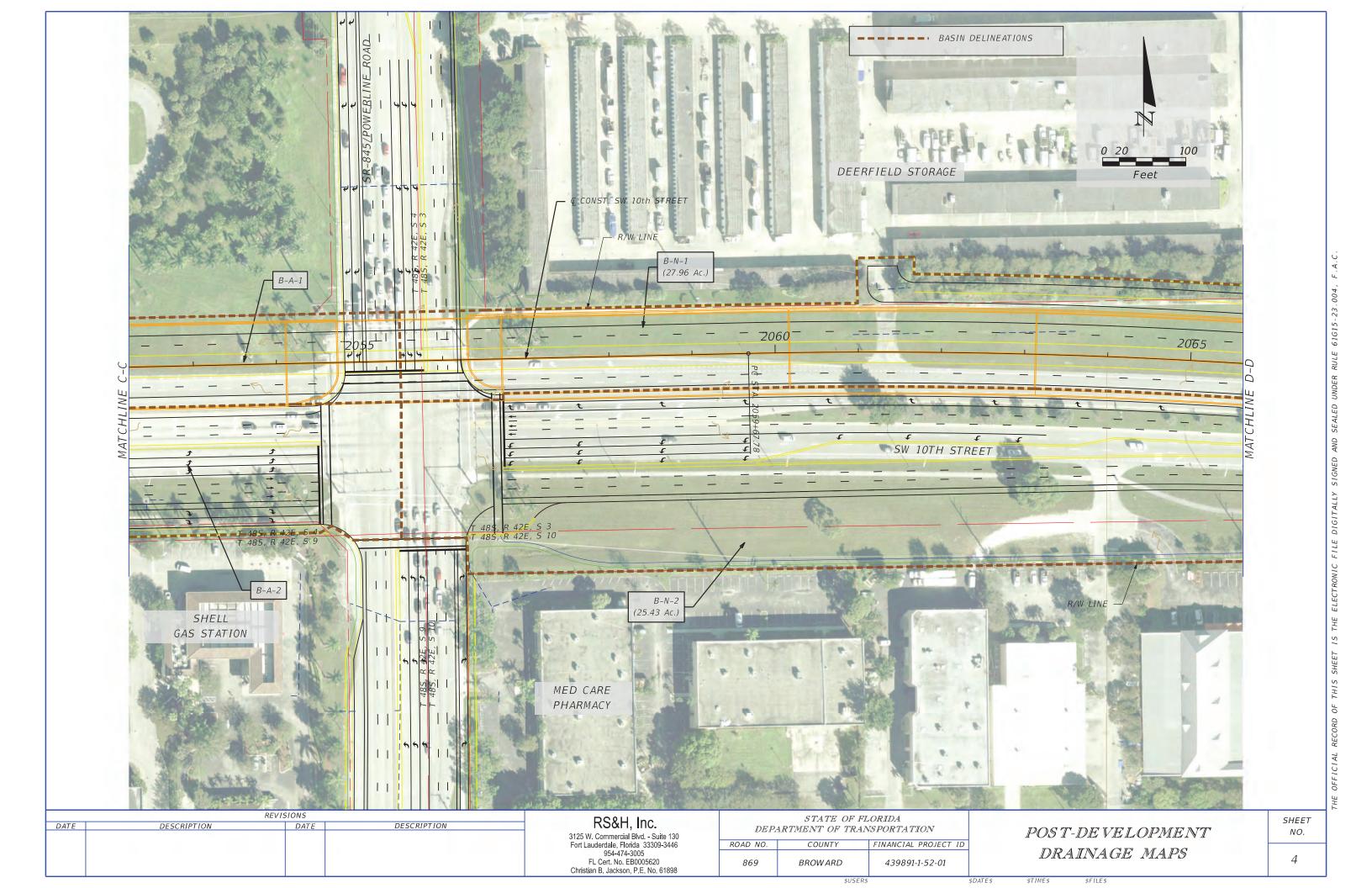


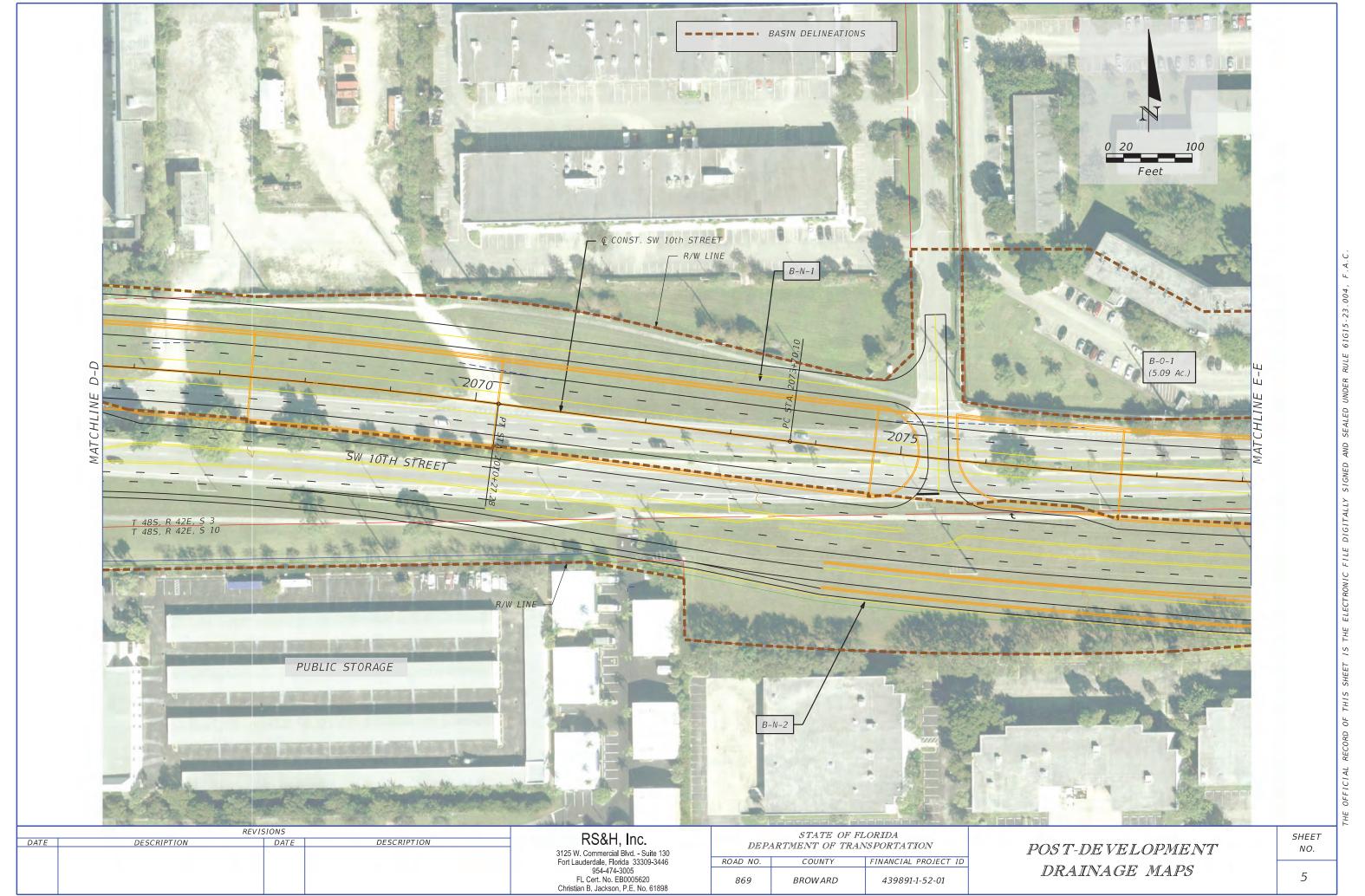


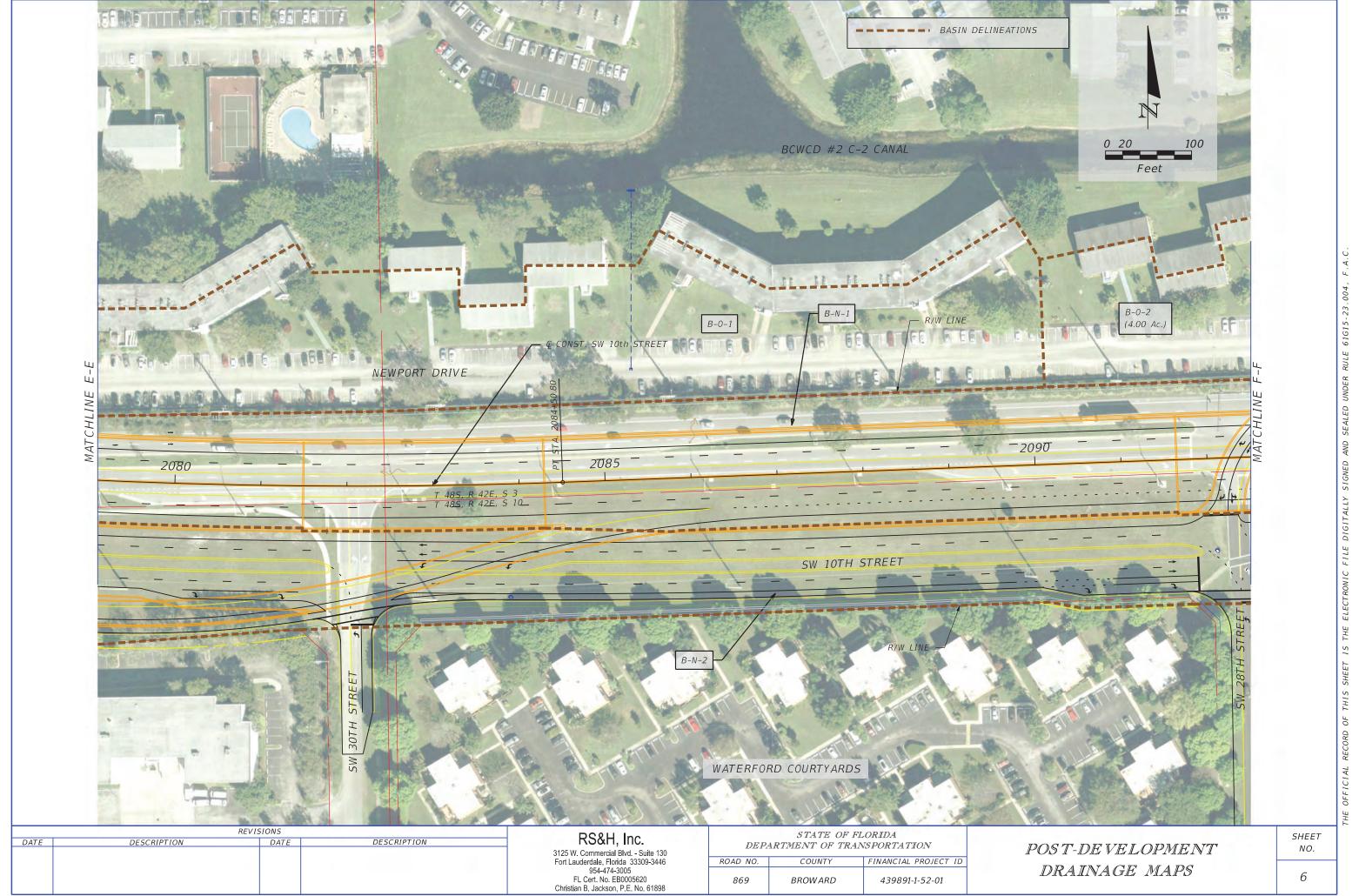


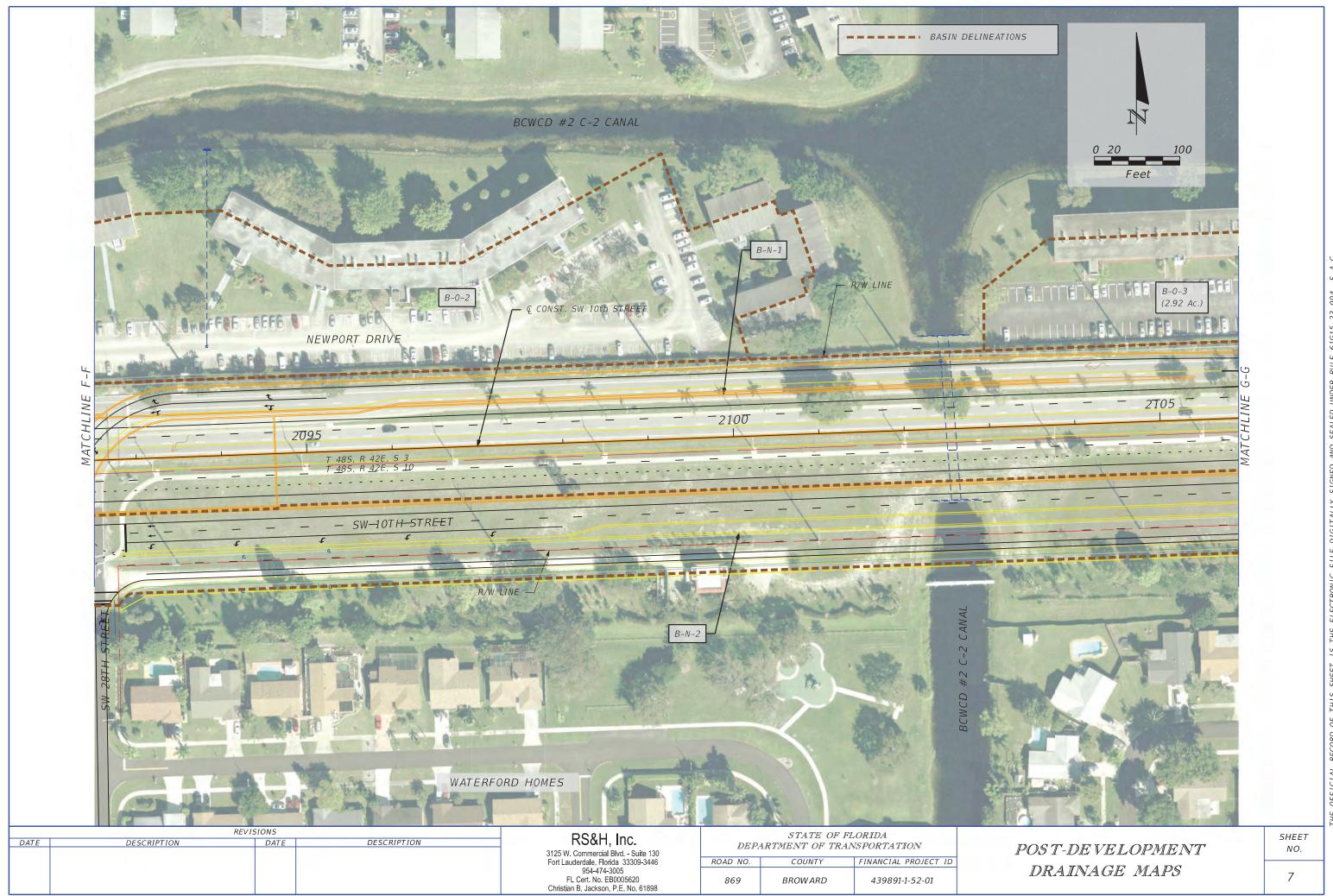


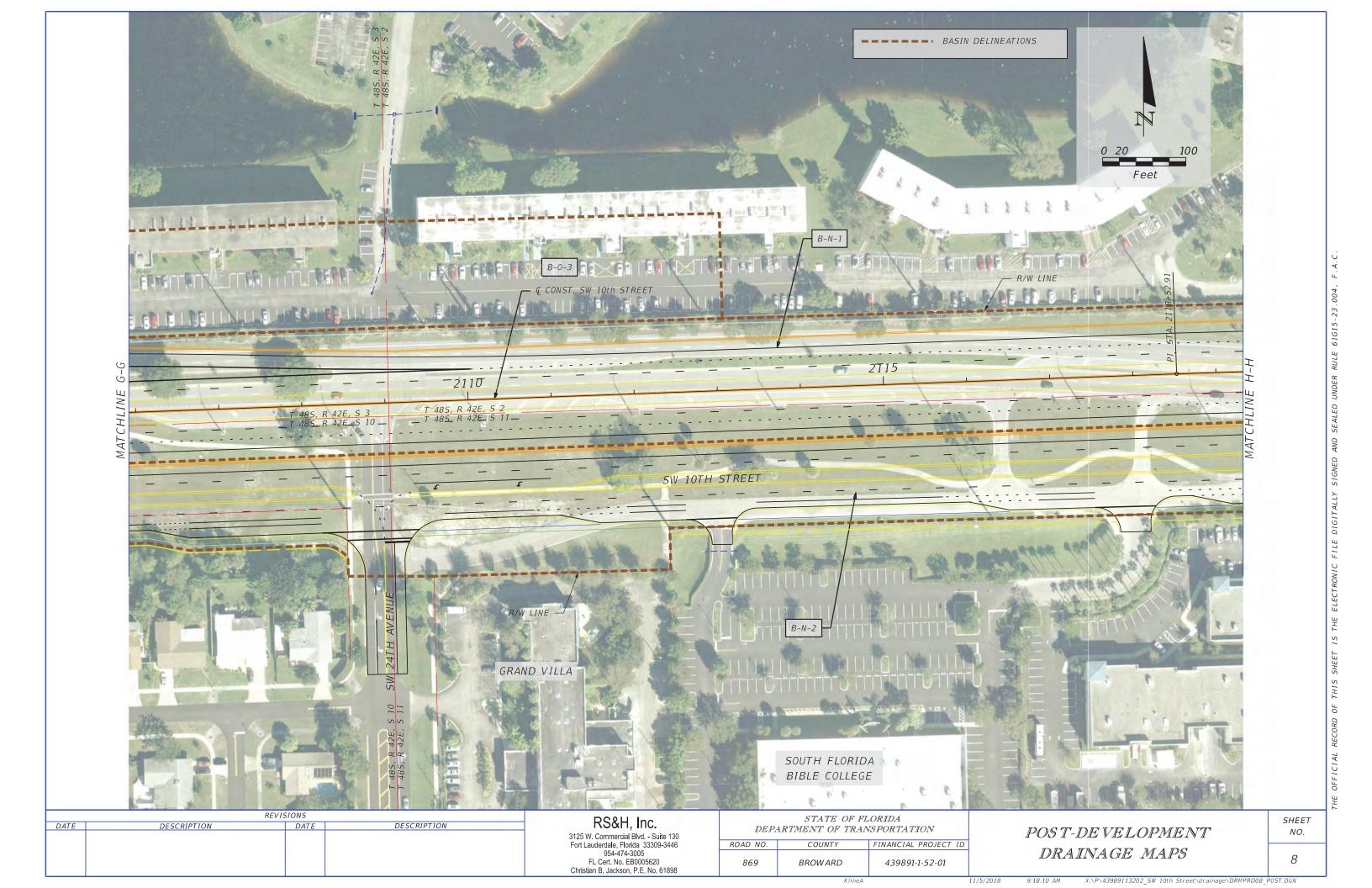

APPENDIX C

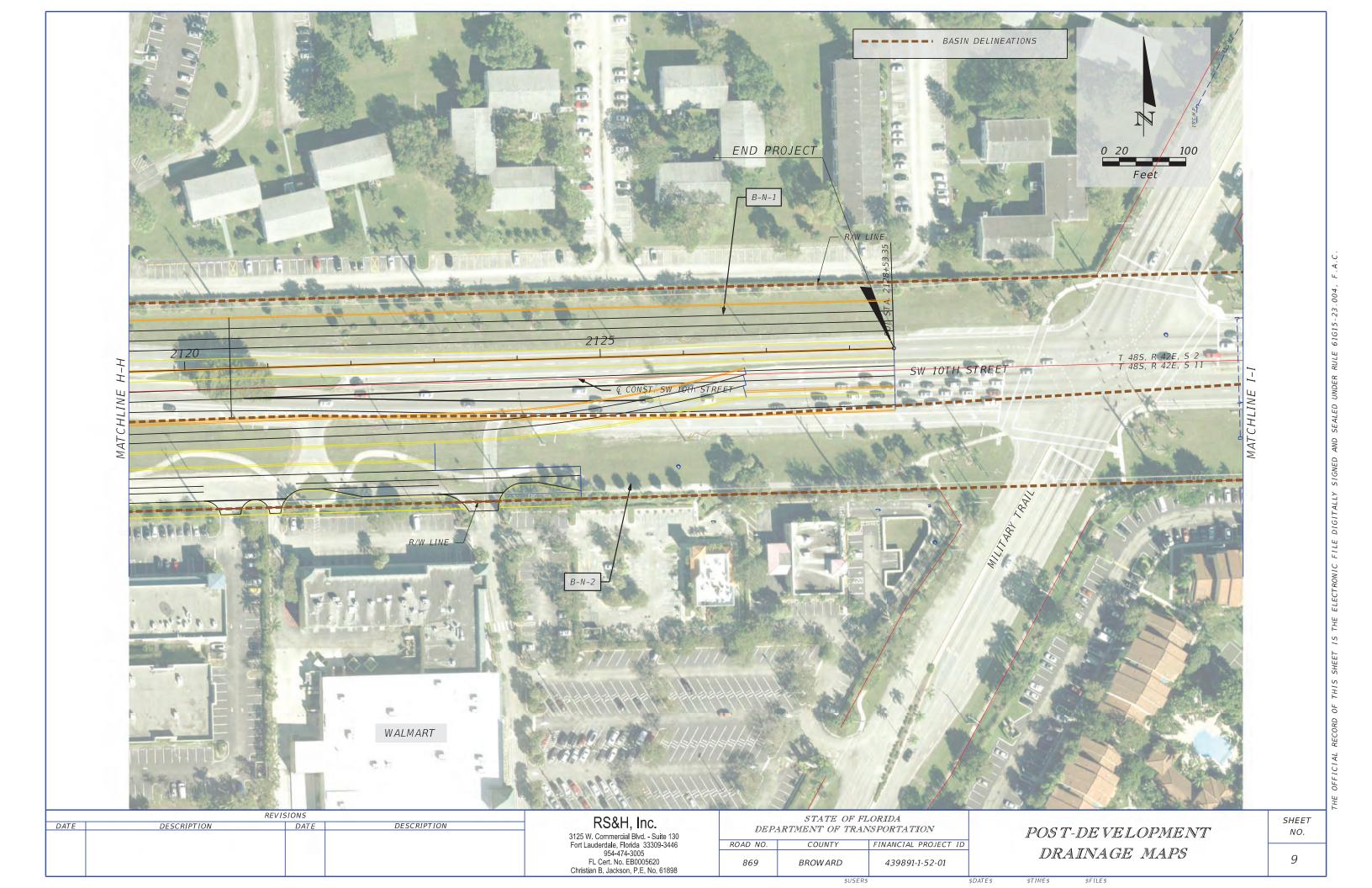

POST-DEVELOPMENT
DRAINAGE MAPS

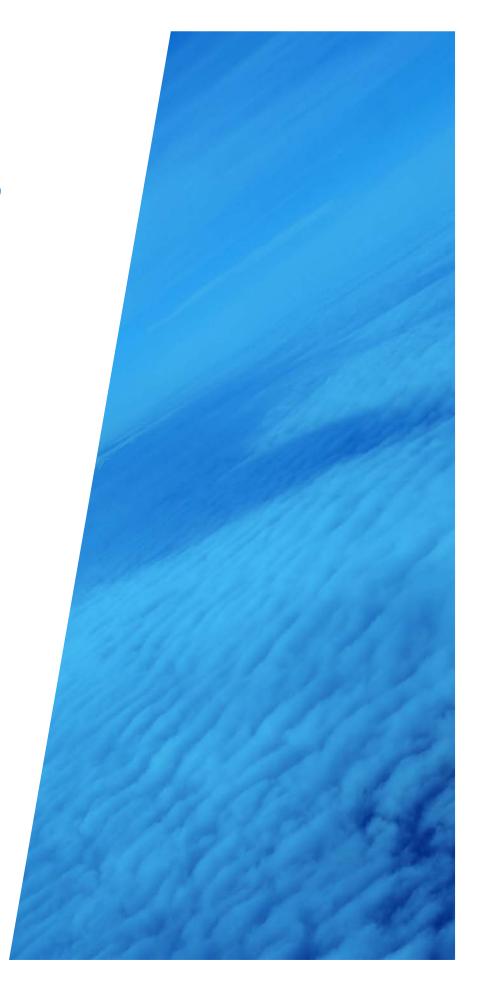












APPENDIX D

DRAINAGE ANALYSIS
DOCUMENTATION

Pre-Development Land Use Table

SHGWT EL. (ft-NAVD):

7.5

Offsite Onsite Time of Total Onsite Onsite Total Offsite Offsite Average Average Compacted Total Water Water Onsite **Pervious** Offsite Conc. Impervious Impervious **Pervious** Depth Soil Ground Sub-Basin Surface Basin Area Surface CN to SHGWT Storage, So Area Area Area Area Area Area Elev. (Ac.) Area Area (min.) (Ac.) (Ac.) (Ac.) (Ac.) (Ac.) (Ac.) (ft. NAVD) (ft.) (Ac.) (Ac.) 10 11.43 0.00 7.43 0.00 0.00 13.50 6.00 8.18 65.29 B-A-1 11.43 4.00 0.00 0.00 10 B-A-2 3.12 3.12 1.69 0.00 1.43 0.00 0.00 0.00 12.50 5.00 8.18 72.77 0.00 C-3 B-A-3 10 4.95 4.95 2.22 0.00 2.73 0.00 0.00 0.00 0.00 12.50 5.00 8.18 68.90 Canal B-A-4 10 2.40 2.40 1.06 0.00 1.34 0.00 0.00 0.00 0.00 12.50 5.00 8.18 68.65 B-A-5 1.52 10 1.52 0.98 0.00 0.54 0.00 0.00 0.00 0.00 12.50 77.48 5.00 8.18 **SUB TOTAL** 23.42 23.42 9.95 0.00 13.47 0.00 0.00 0.00 0.00 B-N-1 10 1.62 1.62 0.61 0.00 13.00 76.45 1.01 0.00 0.00 0.00 0.00 6.00 B-N-2 10 1.49 1.49 0.59 0.00 0.90 0.00 0.00 0.00 0.00 13.00 5.50 8.18 66.93 10 B-N-3 1.22 1.22 0.45 0.00 0.77 0.00 0.00 0.00 0.00 13.00 5.50 8.18 65.95 10 2.17 2.17 0.99 0.00 1.18 0.00 0.00 13.50 6.00 8.18 69.23 B-N-4 0.00 0.00 10 0.78 74.34 B-N-5 1.85 1.85 1.07 0.00 0.00 0.00 0.00 0.00 13.50 6.00 8.18 B-N-6 10 1.42 1.42 0.85 0.57 0.00 0.00 0.00 13.50 6.00 8.18 75.28 B-N-7 10 1.72 1.72 1.01 0.00 0.71 0.00 0.00 0.00 0.00 13.50 6.00 8.18 74.76 3.55 67.39 10 3.55 1.45 0.00 2.10 0.00 0.00 0.00 0.00 12.50 5.00 B-N-8 8.18 B-O-1 10 5.09 0.00 0.00 0.00 5.09 2.85 0.00 2.24 12.50 5.00 73.51 0.00 8.18 B-O-2 10 4.00 0.00 0.00 0.00 4.00 2.38 12.50 5.00 75.08 10 0.00 82.98 B-O-3 2.92 0.00 0.00 0.00 2.92 2.19 0.00 0.73 12.50 5.00 8.18 C-2 B-S-1 10 1.04 0.00 2.42 0.00 0.00 63.61 3.46 3.46 0.00 0.00 13.50 6.00 8.18 Canal 10 B-S-2 2.82 2.82 1.01 0.00 1.81 0.00 0.00 0.00 0.00 13.50 6.00 8.18 65.57 10 B-S-3 5.06 5.06 1.23 3.83 0.00 0.00 0.00 0.00 13.00 5.50 61.76 B-S-4 10 4.53 4.53 1.12 0.00 3.41 0.00 0.00 0.00 0.00 11.50 4.00 8.18 61.89 B-S-5 10 2.14 2.14 1.30 0.00 0.84 0.00 0.00 0.00 0.00 12.50 5.00 8.18 75.70 62.36 B-S-6 10 2.36 2.36 0.16 0.03 2.17 0.00 0.00 0.00 0.00 11.00 3.50 6.57 10 1.30 1.30 0.00 62.46 B-S-7 0.09 1.19 0.00 11.00 3.50 B-S-8 10 3.78 3.78 2.18 0.00 67.95 1.60 0.00 0.00 0.00 0.00 13.00 5.50 8.18 10 B-S-9 0.70 0.70 0.33 0.00 0.37 0.00 0.00 0.00 0.00 13.00 5.50 8.18 69.81 10 0.66 0.00 0.54 0.00 0.00 72.93 B-S-10 1.20 1.20 0.00 0.00 12.50 5.00 8.18 B-S-11 10 0.70 0.70 0.00 0.37 0.00 0.00 0.00 12.50 69.81 0.33 0.00 5.00 8.18 B-S-12 10 2.08 2.08 1.20 0.88 0.00 0.00 0.00 12.00 8.18 74.29 **SUB TOTAL** 57.18 45.17 17.49 0.05 27.63 12.01 7.41 0.00 4.60 SYSTEM TOTAL 80.60 68.59 27.44 0.05 41.10 12.01 7.41 0.00 4.60

Post-Development Land Use Table

SHGWT EL. (ft-NAVD): 7.5

Basin	Sub-Basin	Time of Conc. t _c (min.)	Total Area (Ac.)	Total Onsite Area (Ac.)	Onsite Impervious Area (Ac.)	Onsite Water Surface Area (Ac.)	Onsite Pervious Area (Ac.)	Total Offsite Area (Ac.)	Offsite Impervious Area (Ac.)	Offsite Water Surface Area (Ac.)	Offsite Pervious Area (Ac.)	Average Ground Elev. (ft. NAVD)	Average Depth to SHGWT (ft.)	Compacted Soil Storage, S _o (in)	CN
C-3	Pond 1	10	11.41	11.41	10.01	0.00	1.40	0.00	0.00	0.00	0.00	13.00	6.00	8.18	90.91
Canal	Polia 1	10	13.27	13.27	10.00	0.00	3.26	0.00	0.00	0.00	0.00	13.00	6.00	8.18	83.25
SUB TOT	AL		24.67	24.67	20.02	0.00	4.66	0.00	0.00	0.00	0.00				
	Pond 2	10	27.96	27.96	21.99	0.00	5.96	0.00	0.00	0.00	0.00	13.00	6.00	8.18	85.14
	Poliu 2	10	25.43	25.43	20.17	0.00	5.26	0.00	0.00	0.00	0.00	12.50	5.00	8.18	85.52
C-2 Canal	B-O-1	10	5.09	0.00	0.00	0.00	0.00	5.09	2.85	0.00	2.24	12.50	5.00	8.18	73.51
Canai	B-O-2	10	4.00	0.00	0.00	0.00	0.00	4.00	2.38	0.00	1.62	12.50	5.00	8.18	75.08
	B-O-3	10	2.92	0.00	0.00	0.00	0.00	2.92	2.19	0.00	0.73	12.50	5.00	8.18	82.98
SUB TOT	AL		65.40	53.39	42.16	0.00	11.23	12.01	7.41	0.00	4.60				
SYSTEM	TOTAL		90.07	78.06	62.18	0.00	15.88	12.01	7.41	0.00	4.60				

Water Quality

Sub-Basin	SHGWT EL. (ft. NAVD)	Total Onsite Area (Ac.) [POST-DEV.]	Onsite Impervious Area (Ac.) [POST-DEV.]	Onsite Pervious Area (Ac.) [POST-DEV.]	Total Offsite Area (Ac.)	Offsite Impervious Area (Ac.)	Offsite Water Surface Area (Ac.)	Offsite Pervious Area (Ac.)	1" over Total Onsite Area (Ac-ft)	2.5" over Impervious Area (Ac-ft)	¹ Water Quality Treatment Required (Ac-ft)	DRY- DETENTION TREATMENT VOLUME PROVIDED (Ac-ft)	WET- DETENTION TREATMENT VOLUME PROVIDED (Ac-ft)	DRY- / WET- RETENTION TREATMENT VOLUME PROVIDED (Ac-ft)	FRENCH DRAIN TREATMENT VOLUME PROVIDED (Ac-ft)	² TOTAL TREATMENT VOLUME PROVIDED (Ac-ft)	SURPLUS TREATMENT VOLUME PROVIDED (Ac-ft)
Pond 1	7.50	11.41	10.01	1.40	0.00	0.00	0.00	0.00	0.95	2.09	2.09	0.00	4.22	0.00	0.00	4.22	0.05
Polid 1	7.50	13.27	10.00	3.26	0.00	0.00	0.00	0.00	1.11	2.08	2.08	0.00	4.22	0.00	0.00	4.22	0.03
SUB T	OTAL	24.67	20.02	4.66	0.00	0.00	0.00	0.00	2.06	4.17	4.17	0.00	4.22	0.00	0.00	4.22	0.05
Pond 2	7.50	27.96	21.99	5.96	0.00	0.00	0.00	0.00	2.33	4.58	4.58	0.00	9.79	0.00	0.00	9.79	1.00
Poliu 2	7.50	25.43	20.17	5.26	0.00	0.00	0.00	0.00	2.12	4.20	4.20	0.00	9.79	0.00	0.00	3.73	1.00
B-O-1	7.50	0.00	0.00	0.00	5.09	2.85	0.00	2.24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
B-O-2	7.50	0.00	0.00	0.00	4.00	2.38	0.00	1.62	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
B-O-3	7.50	0.00	0.00	0.00	2.92	2.19	0.00	0.73	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SUB T	OTAL	53.39	42.16	11.23	12.01	7.41	0.00	4.60	4.45	8.78	8.78	0.00	9.79	0.00	0.00	9.79	1.00
SYSTEM	TOTAL	78.06	62.18	15.88	12.01	7.41	0.00	4.60	6.51	12.95	12.95	0.00	14.00	0.00	0.00	14.00	1.05

¹Greater of 1" over Total Onsite Area and 2.5" over Onsite Impervious Area; Volume based on wet detention requirements.

²Sum of all treatment provided; Retention and Dry Detention volumes divided by 0.50 and 0.75, respectively to account for 50% and 25% credits.

	POND 1		POND 2				
TYPE:	WET DET	ENTION	TYPE:	WET DETENTION			
STAGE (ft-NAVD)	AREA (Ac.)	VOLUME (Ac-ft)	STAGE (ft-NAVD)	AREA (Ac.)	VOLUME (Ac-ft)		
7.50	4.14		7.50	9.66			
8.50	4.30	4.22	8.50	9.91	9.79		
9.50	4.46	8.60	9.50	10.16	19.82		
10.50	4.63	13.14	10.50	10.41	30.10		
11.50	4.80	17.85	11.50	10.66	40.63		
12.50	4.97	22.73	12.50	10.92	51.42		
13.50	5.14	27.79	13.50	11.18	62.46		

	STAGE-AREA RELATIONSHIP			REQUIRED WATER QUALITY TREATMENT	MINIMUM WEIR ELEVATION FOR FULL	PROVID	DED WATER O	UALITY
	TYPE:	WET DETENTION		VOLUME	WATER QUALITY TREATMENT	TREATMENT		
	STAGE (ft-NAVD)	AREA (Ac.)	VOLUME (Ac-ft)	VOLUME (Ac-ft)	ELEVATION (ft-NAVD)	WEIR ELEVATION (ft-NAVD)	VOLUME PROVIDED (Ac-ft)	SURPLUS VOLUME (Ac-ft)
TOTALS	7.50	4.14	-	WET DETENTION	WET DETENTION			
	8.50	4.30	4.22					
(POND 1)	9.50	4.46	8.60					
	10.50	4.63	13.14					
	11.50	4.80	17.85	4.17	8.49	8.50	4.22	0.05
	12.50	4.97	22.73					
	13.50	5.14	27.79					

	STAGE-AREA RELATIONSHIP			REQUIRED WATER QUALITY TREATMENT	MINIMUM WEIR ELEVATION FOR FULL	PROVID	DED WATER Q	UALITY
	TYPE:	WET DE	TENTION	VOLUME	WATER QUALITY TREATMENT		TREATMENT	
	STAGE (ft-NAVD)	AREA (Ac.)	VOLUME (Ac-ft)	VOLUME (Ac-ft)	ELEVATION (ft-NAVD)	WEIR ELEVATION (ft-NAVD)	VOLUME PROVIDED (Ac-ft)	SURPLUS VOLUME (Ac-ft)
TOTALS	7.50	9.66	-	WET DETENTION	WET DETENTION			
TOTALS	8.50	9.91	9.79					
(POND 2)	9.50	10.16	19.82					
	10.50	10.41	30.10				1 !	
	11.50	10.66	40.63	8.78	8.40	8.50	9.79	1.00
	12.50	10.92	51.42					
	13.50	11.18	62.46					

Bleeder Sizing/Design

Drainage System:

Pond 1	Pond/Swale Name:
PrCS Pond 1	Control Structure No.:
24.67	Contributing Area (Ac.):
2.06	Detention Volume, 1" x Total Area (Ac-ft):
1.03	Bleed-Down Volume, $V_{\it DET}$ (1/2 Detention Vol.) (Ac-ft):
24.00	Bleed-Down Time (hrs):
86400	Bleed-Down Time (sec):
0.52	Average Discharge Rate, Q (cfs):
8.50	Weir Elevation (ft-NAVD):
7.50	Bleeder Invert EL. [SHGWT EL.] (ft-NAVD):
4.00	111 11/61

Head, H (ft) 1.00
Weir Coefficient: 0.60

V-Notch Sizing Minimum V-Notch Angle = 20°	
Number of V-Notches Proposed:	1
Bleed-Down Volume per V-Notch, $oldsymbol{V}_{ extit{DET}}$ (Ac-ft):	1.03
Maximum V-Notch Angle, 0 , (rad):	0.94
Maximum V-Notch Angle, 0 , (deg):	53.66
$\theta = 2 \tan^{-1} \left[0.492 \frac{V_{DET}}{H^{2.5}} \right]$	
Proposed V-Notch(s) Angle (deg):	53
Proposed V-Notch Angle (rad):	0.93
V-Notch Height [= H] (ft):	1.00
V-Notch Top Width (ft):	1.00
V-Notch Sideslope [horz./vert.]:	0.4986

Circular Orifice Sizing Minimum Orifice Diameter = 3"										
Number of Circular Orifices Proposed: 0										
Average Discharge per Orifice, Q (cfs):										
$Q=4.8A\sqrt{h}, A=\pi r^2, h=H-r$ Select Orifice Diameter with Discharge nearest to but less than ${m Q}$										
Orifice Diameter (in)	Orifice Radius, <i>r</i> (ft)	Area, <i>A</i> (ft²)	h (ft)	Discharge Rate (cfs)						
3.0	0.125	0.049	0.875	0.22						
4.0	0.167	0.087	0.833	0.38						
5.0	0.208	0.136	0.792	0.58						
6.0	0.250	0.196	0.750	0.82						
	Propose	ed Orifice(s) D	Diameter (in):							

Bleeder Sizing/Design

Drainage System:

Pond 2	Pond/Swale Name:						
PrCS Pond 2	Control Structure No.:						
53.39	Contributing Area (Ac.):						
4.45	Detention Volume, 1" x Total Area (Ac-ft):						
2.22	Bleed-Down Volume, $V_{\it DET}$ (1/2 Detention Vol.) (Ac-ft):						
24.00	Bleed-Down Time (hrs):						
86400	Bleed-Down Time (sec):						
1.12	Average Discharge Rate, Q (cfs):						
8.50	Weir Elevation (ft-NAVD):						
7.50	Bleeder Invert EL. [SHGWT EL.] (ft-NAVD):						
<u> </u>							

Head, H (ft) 1.00
Weir Coefficient: 0.60

V-Notch Sizing	
Minimum V-Notch Angle = 20°	
Number of V-Notches Proposed:	2
Bleed-Down Volume per V-Notch, $oldsymbol{V}_{\it DET}$ (Ac-ft):	1.11
Maximum V-Notch Angle, $m{ heta}$, (rad):	1.00
Maximum V-Notch Angle, $m{ heta}$, (deg):	57.38
$\theta = 2 \tan^{-1} \left[0.492 \frac{V_{DET}}{H^{2.5}} \right]$	
Proposed V-Notch(s) Angle (deg):	57
Proposed V-Notch Angle (rad):	0.99
V-Notch Height [= <i>H</i>] (ft):	1.00
V-Notch Top Width (ft):	1.09
V-Notch Sideslope [horz./vert.]:	0.5430

Circular Orifice Sizing Minimum Orifice Diameter = 3"										
Number of Circular Orifices Proposed: 0										
Average Discharge per Orifice, Q (cfs):										
$Q=4.8A\sqrt{h}, A=\pi r^2, h=H-r$ Select Orifice Diameter with Discharge nearest to but less than ${m Q}$										
Orifice Diameter (in)	Orifice Radius, <i>r</i> (ft)	Area, <i>A</i> (ft²)	<i>h</i> (ft)	Discharge Rate (cfs)						
Diameter	Radius, r	A		Rate						
Diameter (in)	Radius, <i>r</i> (ft)	A (ft²)	(ft)	Rate (cfs)						
Diameter (in) 3.0	Radius, <i>r</i> (ft) 0.125	A (ft²) 0.049	(ft) 0.875	Rate (cfs) 0.22						

Proposed Orifice(s) Diameter (in):

System Summary Tables - Summary of Peak Discharges

	PR	E-DEVELOPME	NT	PO	POST-DEVELOPMENT			
RECEIVING WATERBODY:	10yr-24hr Peak Flow Rate (cfs)	25yr-72hr Peak Flow Rate (cfs)	100yr-72hr Peak Flow Rate (cfs)	10yr-24hr Peak Flow Rate (cfs)	25yr-72hr Peak Flow Rate (cfs)	100yr-72hr Peak Flow Rate (cfs)	Pre-Post 25yr- 72hr Peak Discharge Reduction (cfs):	
C-2 Canal	49.62	64.35	185.41	57.38	61.78	65.84	2.57	
C-3 Canal	31.84	74.26	106.56	39.23	44.02	50.04	30.24	

System Summary Tables - Summary of Outfalls/Control Structures

	Receiving Waterbody: C-2 Canal						
	PRE-DEVELOPMENT						
ICPR Link/Basin:	Outfall Pipe / Weir Description:	Weir Type / Geometry	Weir Elevation (ft - NAVD)	Bleeder Type / Geometry	Bleeder Invert Elevation (ft-NAVD)		
P_O-1_C-2	24" Pipe						
P_O-2_C-2	24" Pipe						
P_O-3_C-2	24" Pipe						
W_S-6_C-2	Weir	Broad Crested Vertical	12.00				
W_S-7_C-2	Weir	Broad Crested Vertical	12.00				

	POST-DEVELOPMENT					
ICPR Link/Basin:	Outfall Pipe / Weir Description:	Weir Type / Geometry	Weir Elevation (ft - NAVD)	Bleeder Type / Geometry	Bleeder Invert Elevation (ft-NAVD)	
PrCS Pond 2	Drop Structure	Raised Type C Ditch Bottom Inlet	8.50	V-Notch (2-57°)	7.50	

	Receiving Waterbody:	C-3 Canal			
PRE-DEVELOPMENT					
ICPR Link/Basin:	Outfall Pipe / Weir Description:	Weir Type / Geometry	Weir Elevation (ft - NAVD)	Bleeder Type / Geometry	Bleeder Invert Elevation (ft-NAVD)
W_A-1_C-3	Weir	Broad Crested Vertical	12.25		

POST-DEVELOPMENT					
ICPR Link/Basin:	Outfall Pipe / Weir Description:	Weir Type / Geometry	Weir Elevation (ft - NAVD)	Bleeder Type / Geometry	Bleeder Invert Elevation (ft-NAVD)
PrCS Pond 1	Drop Structure	Raised Type H Ditch Bottom Inlet	8.50	V-Notch (1-53°)	7.50

System Summary Tables

	Summary of Peak Stages																									
		T		W	Р	RE-DEVELOPMEN	IT	P	OST-DEVELOPME	NT																
Pond/Swale (PRE)	Pond/Swale (POST)	Type: [Wet/Dry, Det./Ret., FD]	Disposition [Exist./ Prop./ Modified]	Warning EL. [Min. Berm/ Min. EOP] (ft-NAVD)	Max 10yr-24hr Stage (ft-NAVD)	Max 25yr-72hr Stage (ft-NAVD)	Max 100yr-72hr Stage (ft-NAVD)	Max 10yr-24hr Stage (ft-NAVD)	Max 25yr-72hr Stage (ft-NAVD)	Max 100yr-72hr Stage (ft-NAVD)																
Swale A1-1					12.50	12.68	12.79																			
Swale A2-1	1				12.56	12.87	13.09																			
Swale A3-1	Pond 1	Wet Detention	Proposed	13.5 (Berm) 12.0 (Min EOP)	12.62	13.07	13.38	9.75	10.33	11.16																
Swale A4-1	1			12.0 (WIII LOF)	12.72	13.26	13.62																			
Swale A5-1	1				12.78	13.35	13.73																			
Swale N1-1					13.50	13.84	14.38																			
Swale N2-1_N2-2	1											13.50	13.83	14.32												
Swale N3-1	1									13.50	13.77	14.16														
Swale N4-1	1				13.50	13.66	13.83																			
B-N-5	1			12.54	12.54	12.67	1																			
B-N-6	1													12.53	12.53	12.54										
B-N-7	1											12.64	12.65	12.86												
Swale N8-1	1		Proposed													13.26	13.63	13.81								
Swale S1-1_S1-2																							13.01	13.15	13.33	
Swale S2-1_S2-2	Pond 2	Wet Detention											13.5 (Berm)	13.01	13.15	13.32	10.47	11.84	10.10							
Swale S3-1	Pond 2	wet betention		12.5 (Min EOP)	12.62	13.07	13.28	10.47	11.84	13.43																
Swale S4-1					12.45	13.07	13.28																			
Swale S5-1_S5-2]				13.02	13.05	13.09																			
Swale S6-1]				11.39	12.14	12.64																			
Swale S7-1]				10.87	12.10	12.43																			
Swale S8-1]				13.02	13.07	13.19																			
Swale S9-1]			13.04	13.15	13.25																				
Swale S10-1]				13.04	13.16	13.25																			
Swale S11-1]				13.03	13.16	13.26																			
Swale S12-1]				13.03	13.17	13.26																			

SR 869/SW 10th Street Connector PD&E Study Drainage Calculations Floodplain Calculations

Zone 1 - Turnpike/Sawgrass Expressway to Powerline Road					
Floodplain Zone AH	- Floodplain Elevation =	13.00	ft. NAVD		
Existing Aver	age Ground Elevation =	12.00	ft. NAVD		
Average Depth (FT)	Depth (YD)	Encroachment Area (SY)	Encroachment Volume (CY)		
1.00	0.33	17,182.00	5,727.33		

Proposed Pond						
	tion Volume inds)	Compensation Volume (French Drain)		•		Total Compensation Volume
Ac-ft	СҮ	Ac-ft	СҮ	CY		
27.79	44,834.53	-	-	44,834.53		

Zone 2 - Powerline Road to SW 30th Street					
Floodplain Zone AH	- Floodplain Elevation =	14.00	ft. NAVD		
Existing Aver	age Ground Elevation =	12.50	ft. NAVD		
Average Depth (FT)	Depth (YD)	Encroachment Area (SY)	Encroachment Volume (CY)		
1.50	0.50	39,107.20	19,553.60		

Proposed Pond					
•	Compensation Volume (Ponds)		ion Volume n Drain)	Total Compensation Volume	
Ac-ft	CY	Ac-ft	CY	СҮ	
62.46	100,768.80	-	-	100,768.80	

Zone 3 - SW 30th Street to Military Trail					
Floodplain Zone AH	- Floodplain Elevation =	ft. NAVD			
Existing Aver	age Ground Elevation =	12.50	ft. NAVD		
Average Depth (FT)	Depth (YD)	Encroachment Area (SY)	Encroachment Volume (CY)		
1.50	0.50	15,972.00	7,986.00		

otal Encroachment Volume (CY) - Floodplain Zone AH = 33,267

Total Compensation Volume (CY) - Ponds =	145,603
--	---------

Compensation > Encroachment	=	yes
Surplus Compensation (CY)	=	112,336

^{*} Refer to Appendix C - FEMA Floodplain Encroachment Map in the Location Hydraulics Memorandum

W:\P\43989113202_SW 10th Street\drainage\\CPR\SW 10th - Pre-Development\

Manual Basin: Basin B-A-1

Scenario: Pre-Development

Node: Swale A1-1

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH256 Peaking Factor: 256.0

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient Zone	Reference ET Station
11.4300	B-A-1	B-A-1			

Comment:

Manual Basin: Basin B-A-2

Scenario: Pre-Development

Node: Swale A2-1

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH256 Peaking Factor: 256.0

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient Zone	Reference ET Station
3.1200	B-A-2	B-A-2			

Comment:

Manual Basin: Basin B-A-3

Scenario: Pre-Development

Node: Swale A3-1

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH256 Peaking Factor: 256.0

	Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient Zone	Reference ET Station
Γ	4.9500	B-A-3	B-A-3			

Comment:

Manual Basin: Basin B-A-4

Scenario: Pre-Development Node: Swale A4-1

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH256 Peaking Factor: 256.0

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient Zone	Reference ET Station
2.4000	B-A-4	B-A-4			

Comment:

Manual Basin: Basin B-A-5

Scenario: Pre-Development

Node: Swale A5-1

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs

Time Shift: 0.0000 hr Unit Hydrograph: UH256 Peaking Factor: 256.0

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient Zone	Reference ET Station
1.5200	B-A-5	B-A-5			

Comment:

Manual Basin: Basin B-N-

Scenario: Pre-Development Node: Swale N1-1 Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH256
Peaking Factor: 256.0

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient Zone	Reference ET Station
1.6200	B-N-1	B-N-1			

Comment:

Manual Basin: Basin B-N-2

Scenario: Pre-Development

Node: Swale N2-1_N2-2

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH256 Peaking Factor: 256.0

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient Zone	Reference ET Station
1.4900	B-N-2	B-N-2			

Comment:

Manual Basin: Basin B-N-3

Scenario: Pre-Development

Node: Swale N3-1

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs

Time Shift: 0.0000 hr Unit Hydrograph: UH256 Peaking Factor: 256.0

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient	Reference ET
				Zone	Station
1.2200	B-N-3	B-N-3			

Comment:

Manual Basin: Basin B-N-4

Scenario: Pre-Development

Node: Swale N4-1

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH256 Peaking Factor: 256.0

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient Zone	Reference ET Station
2.1700	B-N-4	B-N-4			

Comment:

Manual Basin: Basin B-N-5

Scenario: Pre-Development

Node: B-N-5

Hydrograph Method: NRCS Unit Hydrograph Infiltration Method: Curve Number

Time of Concentration: 10.0000 min

Max Allowable Q: 0.00 cfs

Time Shift: 0.0000 hr

Unit Hydrograph: UH256 Peaking Factor: 256.0

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient Zone	Reference ET Station
1.8500	B-N-5	B-N-5			

Comment:

Manual Basin: Basin B-N-6

Scenario: Pre-Development

Node: B-N-6

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH256 Peaking Factor: 256.0

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient Zone	Reference ET Station
1.4200	B-N-6	B-N-6			

Comment:

Manual Basin: Basin B-N-7

Scenario: Pre-Development

Node: B-N-7

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH256 Peaking Factor: 256.0

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient Zone	Reference ET Station
1.7200	B-N-7	B-N-7			

Comment:

Manual Basin: Basin B-N-8

Scenario: Pre-Development

Node: Swale N8-1

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs

Time Shift: 0.0000 hr Unit Hydrograph: UH256 Peaking Factor: 256.0

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient	Reference ET
				Zone	Station
3.5500	B-N-8	B-N-8			

Comment:

Manual Basin: Basin B-O-

Scenario: Pre-Development

Node: B-O-1

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH256
Peaking Factor: 256.0

	Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient Zone	Reference ET Station
Ì	5.0900	B-O-1	B-O-1			

Comment:

Manual Basin: Basin B-O-2

Scenario: Pre-Development

Node: B-O-2

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH256 Peaking Factor: 256.0

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient Zone	Reference ET Station
4.0000	B-O-2	B-O-2			

Comment:

Manual Basin: Basin B-O-3

Scenario: Pre-Development

Node: B-O-3

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs

Time Shift: 0.0000 hr Unit Hydrograph: UH256 Peaking Factor: 256.0

I	Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient	Reference ET
					Zone	Station
I	2.9200	B-O-3	B-O-3			

Comment:

Manual Basin: Basin B-S-1

Scenario: Pre-Development

Node: Swale S1-1_S1-2

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH256 Peaking Factor: 256.0

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient Zone	Reference ET Station
3.4600	B-S-1	B-S-1			

Comment:

Manual Basin: Basin B-S-10

Scenario: Pre-Development

Node: Swale S10-1

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.000 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH256 Peaking Factor: 256.0

Area [a	ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient Zone	Reference ET Station
	1.2000	B-S-10	B-S-10			

Comment:

Manual Basin: Basin B-S-11

Scenario: Pre-Development

Node: Swale S11-1

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH256 Peaking Factor: 256.0

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient Zone	Reference ET Station
0.7000	B-S-11	B-S-11			

Comment:

Manual Basin: Basin B-S-12

Scenario: Pre-Development Node: Swale S12-1

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH256 Peaking Factor: 256.0

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient Zone	Reference ET Station
2.0800	B-S-12	B-S-12			

Comment:

Manual Basin: Basin B-S-2

Scenario: Pre-Development

Node: Swale S2-1_S2-2

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs

Time Shift: 0.0000 hr Unit Hydrograph: UH256 Peaking Factor: 256.0

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient Zone	Reference ET Station
2.8200	B-S-2	B-S-2			

Comment:

Manual Basin: Basin B-S-3

Scenario: Pre-Development Node: Swale S3-1 Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH256
Peaking Factor: 256.0

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient Zone	Reference ET Station
5.0600	B-S-3	B-S-3			

Comment:

Manual Basin: Basin B-S-4

Scenario: Pre-Development

Node: Swale S4-1

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH256 Peaking Factor: 256.0

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient Zone	Reference ET Station
4.5300	B-S-4	B-S-4			

Comment:

Manual Basin: Basin B-S-5

Scenario: Pre-Development

Node: Swale S5-1_S5-2

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs

Time Shift: 0.0000 hr Unit Hydrograph: UH256 Peaking Factor: 256.0

I	Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient	Reference ET
ı					Zone	Station
I	2.1400	B-S-5	B-S-5			

Comment:

Manual Basin: Basin B-S-6

Scenario: Pre-Development

Node: Swale S6-1

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH256 Peaking Factor: 256.0

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient Zone	Reference ET Station
2.3600	B-S-6	B-S-6			

Comment:

Manual Basin: Basin B-S-7

Scenario: Pre-Development

Node: Swale S7-1

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.000 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH256 Peaking Factor: 256.0

Aı	rea [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient Zone	Reference ET Station
	1.3000	B-S-7	B-S-7			

Comment:

Manual Basin: Basin B-S-8

Scenario: Pre-Development

Node: Swale S8-1

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH256 Peaking Factor: 256.0

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient Zone	Reference ET Station
3.7800	B-S-8	B-S-8			

Comment:

Manual Basin: Basin B-S-9

Scenario: Pre-Development

Node: Swale S9-1

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs

Time Shift: 0.0000 hr
Unit Hydrograph: UH256
Peaking Factor: 256.0

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient Zone	Reference ET Station
0.7000	B-S-9	B-S-9			

Comment:

Curve Number: Soil Storage-SFWMD [Set]

Land Cover Zone	Soil Zone	Curve Number [dec]
B-A-1	B-A-1	65.3
B-A-2	B-A-2	72.8
B-A-3	B-A-3	68.9
B-A-4	B-A-4	68.7
B-A-5	B-A-5	77.5
B-N-1	B-N-1	76.5
B-N-2	B-N-2	66.9
B-N-3	B-N-3	66.0
B-N-4	B-N-4	69.2
B-N-5	B-N-5	74.3
B-N-6	B-N-6	75.3
B-N-7	B-N-7	74.8
B-N-8	B-N-8	67.4
B-O-1	B-O-1	73.5
B-O-2	B-O-2	75.1
B-O-3	B-O-3	83.0
B-S-1	B-S-1	63.6
B-S-10	B-S-10	72.9
B-S-11	B-S-11	69.8

Land Cover Zone	Soil Zone	Curve Number [dec]
B-S-12	B-S-12	74.3
B-S-2	B-S-2	65.6
B-S-3	B-S-3	61.8
B-S-4	B-S-4	61.9
B-S-5	B-S-5	75.7
B-S-6	B-S-6	62.4
B-S-7	B-S-7	62.5
B-S-8	B-S-8	68.0
B-S-9	B-S-9	69.8

Node: B-N-5

Scenario: Pre-Development
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 12.50 ft

Stage [ft]	Area [ac]	Area [ft2]
12.50	0.0224	976
13.00	0.7203	31376
13.50	1.3209	57538
14.00	2.2400	97574
7.50	0.0001	4
12.49	0.0001	4

Comment: Surface storage for Basin B-N-5. Warning stage = R/W or EOP elev., whichever is lower

Node: B-N-6

Scenario: Pre-Development
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 12.50 ft

Stage [ft]	Area [ac]	Area [ft2]
12.50	0.1836	7998
13.00	0.4516	19672
13.50	0.9385	40881
14.00	1.1943	52024
7.50	0.0001	4
12.49	0.0001	4

Comment: Surface storage for Basin B-N-6.

Warning stage = R/W or EOP elev., whichever is lower

Node: R-N-7

Scenario: Pre-Development
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 12.50 ft

Stage [ft]	Area [ac]	Area [ft2]
12.50	0.0909	3960
13.00	0.5187	22595
13.50	1.1900	51836
14.00	1.5400	67082
7.50	0.0001	4
12.49	0.0001	4

Comment: Surface storage for Basin B-N-7.

Warning stage = R/W or EOP elev., whichever is lower

Node: B-O-1

Scenario: Pre-Development
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 12.00 ft

Stage [ft]	Area [ac]	Area [ft2]
4.04	0.0001	4
10.74	0.0001	4
12.00	2.0900	91040
13.00	3.6000	156816
14.00	4.8000	209088

Comment:

Node: B-O-2

Scenario: Pre-Development
Type: Stage/Area

Base Flow: 0.00 cfs

Initial Stage: 7.50 ft Warning Stage: 12.00 ft

Stage [ft]	Area [ac]	Area [ft2]
4.98	0.0001	4
11.28	0.0001	4
12.00	1.8000	78408
13.00	3.0600	133294
14.00	3.7500	163350

Comment:

Node: B-O-3

Scenario: Pre-Development
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 12.00 ft

Stage [ft] Area [ft2] 4.00 0.0001 11.99 0.0001 4 12.00 1.6500 71874 13.00 1.8400 80150 14.00 2.3000 100188

Comment:

Node: C-2 Cana

Scenario: Pre-Development
Type: Time/Stage
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 7.50 ft

Boundary Stage:

Year	Month	Day	Hour	Stage [ft]
0	0	0	0.0000	7.50
0	0	0	999.0000	7.50

Comment: Boundary

Node: C-2_Canal

Scenario: Pre-Development
Type: Time/Stage
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 7.50 ft

Boundary Stage:

Year	Month	Day	Hour	Stage [ft]
0	0	0	0.0000	7.50
0	0	0	999.0000	7.50

Comment: Boundary

Node: C-3 Canal

Scenario: Pre-Development
Type: Time/Stage
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 7.50 ft

Boundary Stage:

Year	Month	Day	Hour	Stage [ft]
0	0	0	0.0000	7.50
0	0	0	999.0000	7.50

Comment: Boundary

Node: Swale A1-

Scenario: Pre-Development
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 11.75 ft

Stage [ft]	Area [ac]	Area [ft2]
4.09	0.0001	4
10.49	0.0001	4
10.50	0.0073	318
11.00	0.3006	13094
11.25	0.6983	30418
12.00	2.4694	107567
12.25	3.0205	131573
12.50	3.8924	169553

Stage [ft]	Area [ac]	Area [ft2]
13.00	5.0376	219438
14.00	8.3509	363765

Comment: Stage/area includes surface storage within basin.

Warning stage = EOP elev.

Node: Swale A2-1

Scenario: Pre-Development
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 12.75 ft

Stage [ft]	Area [ac]	Area [ft2]
3.98	0.0001	4
10.24	0.0001	4
10.25	0.0355	1546
10.50	0.0979	4265
10.75	0.1577	6869
11.00	0.2403	10467
11.25	0.3234	14087
11.50	0.4593	20007
11.75	0.6011	26184
12.00	0.7721	33633
13.00	1.8313	79771
14.00	2.8421	123802

Comment: Stage/area includes surface storage within basin. Warning stage = EOP elev.

Node: Swale A3-1

Scenario: Pre-Development
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 12.50 ft

Stage [ft]	Area [ac]	Area [ft2]
5.43	0.0001	4
11.24	0.0001	4
11.25	0.0748	3258
11.50	0.2868	12493
12.00	0.6853	29852

Stage [ft]	Area [ac]	Area [ft2]
13.00	1.5841	69003
14.00	3.0031	130815

Comment: Stage/area includes surface storage within basin.

Warning stage = sidewalk elev.

Node: Swale A4-1

Scenario: Pre-Development
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 11.75 ft

Stage [ft]	Area [ac]	Area [ft2]
7.50	0.0001	4
11.49	0.0001	4
11.50	0.0983	4282
11.75	0.3983	17350
12.00	0.5554	24193
12.50	0.7246	31564
13.00	0.9896	43107
13.50	1.2936	56349
14.00	1.7045	74248

Comment: Stage/area includes surface storage within basin. Warning stage = sidewalk elev.

Node: Swale A5-1

Scenario: Pre-Development
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 12.00 ft

Stage [ft]	Area [ac]	Area [ft2]
7.50	0.0001	4
10.99	0.0001	4
11.00	0.0416	1812
11.25	0.1032	4495
11.50	0.1707	7436
11.75	0.2190	9540
12.00	0.2672	11639
12.25	0.3355	14614

Stage [ft]	Area [ac]	Area [ft2]
12.50	0.4040	17598
13.00	0.5663	24668
14.00	0.9657	42066

Comment: Stage/area includes surface storage within basin. Warning stage = sidewalk elev.

Node: Swale N1-1

Scenario: Pre-Development
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 13.00 ft

Stage [ft]	Area [ac]	Area [ft2]
11.50	0.0062	270
12.00	0.1361	5929
13.00	0.4362	19001
14.00	0.9129	39766
7.50	0.0001	4
11.49	0.0001	4

Comment: Warning stage = R/W or EOP elev., whichever is lower.

Node: Swale N2-1_N2-2

Scenario: Pre-Development
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 13.50 ft

Stage [ft]	Area [ac]	Area [ft2]
11.50	0.1496	6517
12.00	0.2810	12240
13.00	0.6326	27556
13.50	1.0367	45159
14.00	1.2662	55156
7.50	0.0001	4
11.49	0.0001	4

Comment: Stage/Area for Swale N2-1 and Swale N2-2 included in this node. Warning stage = R/W or EOP elev., whichever is lower.

Node: Swale N3-1

Scenario: Pre-Development
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 13.00 ft

Stage [ft]	Area [ac]	Area [ft2]
11.50	0.0556	2422
12.00	0.3362	14645
13.00	0.6818	29699
13.50	0.8819	38416
7.50	0.0001	4
11.49	0.0001	4

Comment: Warning stage = R/W or EOP elev., whichever is lower.

Node: Swale N4-1

Scenario: Pre-Development
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 12.50 ft

Stage [ft]	Area [ac]	Area [ft2]
11.50	0.0298	1298
12.00	0.2073	9030
13.00	0.7321	31890
14.00	1.4474	63049
7.50	0.0001	4
11.49	0.0001	4

Comment: Warning stage = R/W or EOP elev., whichever is lower.

Node: Swale N8-

Scenario: Pre-Development
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 12.50 ft

Stage [ft]	Area [ac]	Area [ft2]
11.00	0.0394	1716
11.50	0.4146	18060

Stage [ft]	Area [ac]	Area [ft2]
12.50	0.8366	36442
13.00	1.7187	74867
13.50	2.3464	102209
14.00	3.1063	135310
7.50	0.0001	4
10.99	0.0001	4

Comment: Warning stage = R/W or EOP elev., whichever is lower.

Node: Swale S1-1 S1-2

Scenario: Pre-Development
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 14.00 ft

Stage [ft]	Area [ac]	Area [ft2]
11.00	0.0854	3720
11.50	0.3725	16226
12.00	0.8607	37492
13.00	1.8849	82106
14.00	2.6761	116571
14.50	2.9600	128938
7.50	0.0001	4
10.99	0.0001	4

Comment: Stage/Area for Swale S1-1 and Swale S1-2 included in this node. Warning stage = R/W or EOP elev., whichever is lower.

Node: Swale S10-1

Scenario: Pre-Development
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 12.50 ft

Stage [ft]	Area [ac]	Area [ft2]
11.50	0.0564	2457
12.00	0.1495	6512
12.50	0.3001	13072
13.50	1.0972	47794
7.50	0.0001	4
11.49	0.0001	4

Comment: Warning stage = R/W or EOP elev., whichever is lower.

Node: Swale S11-

Scenario: Pre-Development
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 13.00 ft

Stage [ft]	Area [ac]	Area [ft2]
12.00	0.0298	1298
12.50	0.1625	7079
13.00	0.3059	13325
13.50	0.5249	22865
7.50	0.0001	4
11.99	0.0001	4

Comment: Warning stage = R/W or EOP elev., whichever is lower.

Node: Swale S12-

Scenario: Pre-Development
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 12.00 ft

Stage [ft]	Area [ac]	Area [ft2]
9.50	0.0424	1847
10.00	0.1448	6307
11.00	0.2712	11813
12.00	0.4437	19328
13.00	0.9284	40441
13.50	1.2681	55238
7.50	0.0001	4
9.49	0.0001	4

Comment: Warning stage = R/W or EOP elev., whichever is lower.

Node: Swale S2-1_S2-2

Scenario: Pre-Development

Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 12.00 ft

Stage [ft]	Area [ac]	Area [ft2]
11.50	0.2102	9156
12.00	0.5120	22303
12.50	1.0091	43956
13.00	1.7300	75359
13.50	1.9459	84763
7.50	0.0001	4
11.49	0.0001	4

Comment: Stage/Area for Swale S2-1 and Swale S2-2 included in this node. Warning stage = R/W or EOP elev., whichever is lower.

Node: Swale S3-1

Scenario: Pre-Development
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 13.00 ft

Stage [ft]	Area [ac]	Area [ft2]
11.50	0.2595	11304
12.00	0.6659	29007
13.00	2.7234	118631
14.00	4.4377	193306
7.50	0.0001	4
11.49	0.0001	4

Comment: Warning stage = R/W or EOP elev., whichever is lower.

Node: Swale S4-

Scenario: Pre-Development
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 12.50 ft

Stage [ft]	Area [ac]	Area [ft2]
10.00	0.1510	6578
10.50	0.4696	20456

Stage [ft]	Area [ac]	Area [ft2]
11.00	1.0492	45703
11.50	1.7613	76722
12.00	2.7020	117699
13.00	3.7973	165410
7.50	0.0001	4
9.99	0.0001	4

Comment: Warning stage = R/W or EOP elev., whichever is lower.

Node: Swale S5-1 S5-2

Scenario: Pre-Development
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 12.50 ft

Stage [ft]	Area [ac]	Area [ft2]
11.50	0.0420	1830
12.00	0.3363	14649
12.50	0.6806	29647
13.00	1.3211	57547
7.50	0.0001	4
11.49	0.0001	4

Comment: Stage/Area for Swale S5-1 and Swale S5-2 included in this node. Warning stage = R/W or EOP elev., whichever is lower.

Node: Swale S6-1

Scenario: Pre-Development
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 11.50 ft

Stage [ft]	Area [ac]	Area [ft2]
9.50	0.5862	25535
10.00	1.0450	45520
10.50	1.2788	55705
11.50	1.6625	72419
12.00	1.8070	78713
7.50	0.0001	4
9.49	0.0001	4

Comment: Warning stage = R/W or EOP elev., whichever is lower.

Node: Swale S7-1

Scenario: Pre-Development
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 12.50 ft

Stage [ft]	Area [ac]	Area [ft2]
9.00	0.4540	19776
10.00	0.7703	33554
11.00	0.8591	37422
11.50	0.9090	39596
12.00	1.0253	44662
7.50	0.0001	4
8.99	0.0001	4

Comment: Warning stage = R/W or EOP elev., whichever is lower.

Node: Swale S8-

Scenario: Pre-Development
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 12.00 ft

Stage [ft]	Area [ac]	Area [ft2]
11.00	0.0464	2021
11.50	0.1782	7762
12.00	0.3957	17237
12.50	0.7372	32112
13.00	1.4658	63850
13.50	2.2245	96899
7.50	0.0001	4
10.99	0.0001	4

Comment: Warning stage = R/W or EOP elev., whichever is lower.

Node: Swale S9-1

Scenario: Pre-Development

Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 12.50 ft

Stage [ft]	Area [ac]	Area [ft2]
12.00	0.0621	2705
12.50	0.1994	8686
13.00	0.3697	16104
13.50	0.5633	24537
7.50	0.0001	4
11.99	0.0001	4

Comment: Warning stage = R/W or EOP elev., whichever is lower.

Pipe Link: P_A-1_A-2	Upst	ream	Down	stream	
Scenario:	Pre-Development	Invert:	4.09 ft	Invert:	3.98 ft
From Node:	Swale A1-1	Manning's N:	0.0220	Manning's N:	0.0220
To Node:	Swale A2-1	Geometry	y: Circular	Geometr	y: Circular
Link Count:	1	Max Depth:	4.00 ft	Max Depth:	4.00 ft
Flow Direction:	Both			Bottom Clip	
Damping:	0.0000 ft	Default:	0.00 ft	Default:	0.00 ft
Length:	181.00 ft	Op Table:		Op Table:	
FHWA Code:	0	Ref Node:		Ref Node:	
Entr Loss Coef:	0.70	Manning's N:	0.0000	Manning's N:	0.0000
Exit Loss Coef:	0.00			Top Clip	
Bend Loss Coef:	0.00	Default:	0.00 ft	Default:	0.00 ft
Bend Location:	0.00 ft	Op Table:		Op Table:	
Energy Switch:	Energy	Ref Node:		Ref Node:	
		Manning's N:	0.0000	Manning's N:	0.0000
Comment:					

Pipe Link: P_A-2_A-3	3	Upst	ream	Down	stream
Scenario:	Pre-Development	Invert:	5.95 ft	Invert:	5.43 ft
From Node:	Swale A3-1	Manning's N:	0.0120	Manning's N:	0.0120
To Node:	Swale A2-1	Geometry	: Circular	Geometry	y: Circular
Link Count:	1	Max Depth:	3.00 ft	Max Depth:	3.00 ft
Flow Direction:	Both			Bottom Clip	
Damping:	0.0000 ft	Default:	0.00 ft	Default:	0.00 ft
Length:	281.00 ft	Op Table:		Op Table:	
FHWA Code:	1	Ref Node:		Ref Node:	
Entr Loss Coef:	0.50	Manning's N:	0.0000	Manning's N:	0.0000
Exit Loss Coef:	0.00			Top Clip	
Bend Loss Coef:	0.00	Default:	0.00 ft	Default:	0.00 ft

Bend Location:0.00 ftOp Table:Op Table:Energy Switch:EnergyRef Node:Ref Node:

Manning's N: 0.0000 Manning's N: 0.0000

Comment:

Pipe Link: P_A-3_A-4 10.54 ft Scenario: Pre-Development Invert: 10.65 ft Invert: From Node: Swale A4-1 Manning's N: 0.0220 Manning's N: 0.0220 To Node: Swale A3-1 Link Count: 2 Max Depth: 1.50 ft Max Depth: 1.50 ft Bottom Clip Flow Direction: Both 0.00 ft Damping: 0.0000 ft Default: 0.00 ft Default: Length: 135.00 ft Op Table: Op Table: FHWA Code: Ref Node: Ref Node: 0 Entr Loss Coef: 0.70 Manning's N: 0.0000 Manning's N: 0.0000 Exit Loss Coef: Bend Loss Coef: 0.00 Default: 0.00 ft Default: 0.00 ft Bend Location: 0.00 ft Op Table: Op Table: Ref Node: Ref Node: Energy Switch: Energy Manning's N: 0.0000 Manning's N: 0.0000 Comment:

Pipe Link: P_A-4_A-5 Invert: 8.09 ft Invert: 7.96 ft Scenario: Pre-Development From Node: Swale A4-1 Manning's N: 0.0120 Manning's N: 0.0120 To Node: Swale A5-1 Link Count: 1 Max Depth: 1.25 ft Max Depth: 1.25 ft Flow Direction: Both Damping: 0.0000 ft Default: 0.00 ft Default: 0.00 ft Length: 126.00 ft Op Table: Op Table: FHWA Code: 1 Ref Node: Ref Node: Entr Loss Coef: 0.50 Manning's N: 0.0000 Manning's N: 0.0000 Exit Loss Coef: 0.00 Bend Loss Coef: 0.00 Default: 0.00 ft Default: 0.00 ft Bend Location: 0.00 ft Op Table: Op Table: Energy Switch: Energy Ref Node: Ref Node: Manning's N: 0.0000 Manning's N: 0.0000 Comment:

Pipe Link: P_N-1_N-2 Upstream Downstream

Scenario: Pre-Development Invert: 10.51 ft Invert: 10.64 ft

From Node:	Swale N1-1	Manning's N:	0.0240	Manning's N:	0.0240
To Node:	Swale N2-1_N2-2	Geometry	: Circular	Geometr	y: Circular
Link Count:	1	Max Depth:	1.50 ft	Max Depth:	1.50 ft
Flow Direction:	Both			Bottom Clip	
Damping:	0.0000 ft	Default:	0.00 ft	Default:	0.00 ft
Length:	82.00 ft	Op Table:		Op Table:	
FHWA Code:	5	Ref Node:		Ref Node:	
Entr Loss Coef:	0.50	Manning's N:	0.0000	Manning's N:	0.0000
Exit Loss Coef:	0.00			Top Clip	
Bend Loss Coef:	0.00	Default:	0.00 ft	Default:	0.00 ft
Bend Location:	0.00 ft	Op Table:		Op Table:	
Energy Switch:	Energy	Ref Node:		Ref Node:	
		Manning's N:	0.0000	Manning's N:	0.0000
Comment:					

Pipe Link: P_N-2_N-3	3	Upst	ream	Dow	nstream
Scenario:	Pre-Development	Invert:	10.82 ft	Invert	10.93 ft
From Node:	Swale N2-1_N2-2	Manning's N:	0.0240	Manning's N	0.0240
To Node:	Swale N3-1	Geometry	y: Circular	Geomet	ry: Circular
Link Count:	1	Max Depth:	1.50 ft	Max Depth	1.50 ft
Flow Direction:	Both			Bottom Clip	
Damping:	0.0000 ft	Default:	0.00 ft	Default	0.00 ft
Length:	82.00 ft	Op Table:		Op Table	
FHWA Code:	5	Ref Node:		Ref Node	
Entr Loss Coef:	0.50	Manning's N:	0.0000	Manning's N	0.0000
Exit Loss Coef:	0.00			Top Clip	
Bend Loss Coef:	0.00	Default:	0.00 ft	Default	0.00 ft
Bend Location:	0.00 ft	Op Table:		Op Table	:
Energy Switch:	Energy	Ref Node:		Ref Node	
		Manning's N:	0.0000	Manning's N	0.0000
Comment:					

Pipe Link: P_N-3_N-	4	Upst	ream	Down	stream
Scenario:	Pre-Development	Invert:	10.51 ft	Invert:	10.84 ft
From Node:	Swale N3-1	Manning's N:	0.0240	Manning's N:	0.0240
To Node:	Swale N4-1	Geometry	y: Circular	Geometry	y: Circular
Link Count:	1	Max Depth:	1.50 ft	Max Depth:	1.50 ft
Flow Direction:	Both			Bottom Clip	
Damping:	0.0000 ft	Default:	0.00 ft	Default:	0.00 ft
Length:	106.00 ft	Op Table:		Op Table:	
FHWA Code:	5	Ref Node:		Ref Node:	
Entr Loss Coef:	0.50	Manning's N:	0.0000	Manning's N:	0.0000
Exit Loss Coef:	0.00			Top Clip	
Bend Loss Coef:	0.00	Default:	0.00 ft	Default:	0.00 ft

Bend Location:0.00 ftOp Table:Op Table:Energy Switch:EnergyRef Node:Ref Node:

Manning's N: 0.0000 Manning's N: 0.0000

Comment:

Pipe Link: P_O-1_C-2 Scenario: Pre-Development Invert: 4.04 ft Invert: 3.50 ft From Node: B-O-1 Manning's N: 0.0240 Manning's N: 0.0240 To Node: C-2_Canal Link Count: 1 Max Depth: 2.00 ft Max Depth: 2.00 ft Bottom Clip Flow Direction: Both Damping: 0.0000 ft Default: 0.00 ft Default: 0.00 ft Length: 200.00 ft Op Table: Op Table: FHWA Code: Ref Node: Ref Node: 5 Entr Loss Coef: 0.50 Manning's N: 0.0000 Manning's N: 0.0000 Exit Loss Coef: 0.00 Bend Loss Coef: 0.00 Default: 0.00 ft Default: 0.00 ft Bend Location: 0.00 ft Op Table: Op Table: Ref Node: Ref Node: Energy Switch: Energy Manning's N: 0.0000 Manning's N: 0.0000 Comment:

Pipe Link: P_O-2_C-2 Scenario: Pre-Development 3.50 ft Invert: 4.98 ft Invert: From Node: B-O-2 Manning's N: 0.0240 Manning's N: 0.0240 To Node: C-2 Canal Link Count: 1 Max Depth: 2.00 ft Max Depth: 2.00 ft Flow Direction: Both Damping: 0.0000 ft Default: 0.00 ft Default: 0.00 ft Length: 223.00 ft Op Table: Op Table: FHWA Code: 5 Ref Node: Ref Node: Entr Loss Coef: 0.50 Manning's N: 0.0000 Manning's N: 0.0000 Exit Loss Coef: 0.00 Bend Loss Coef: 0.00 Default: 0.00 ft Default: 0.00 ft Bend Location: 0.00 ft Op Table: Op Table: Energy Switch: Energy Ref Node: Ref Node: Manning's N: 0.0000 Manning's N: 0.0000 Comment:

From Node:	B-O-3	Manning's N:	0.0240	Manning's N:	0.0240
To Node:	C-2_Canal	Geometry	: Circular	Geometr	y: Circular
Link Count:	1	Max Depth:	2.00 ft	Max Depth:	2.00 ft
Flow Direction:	Both			Bottom Clip	
Damping:	0.0000 ft	Default:	0.00 ft	Default:	0.00 ft
Length:	258.00 ft	Op Table:		Op Table:	
FHWA Code:	5	Ref Node:		Ref Node:	
Entr Loss Coef:	0.50	Manning's N:	0.0000	Manning's N:	0.0000
Exit Loss Coef:	0.00			Top Clip	
Bend Loss Coef:	0.00	Default:	0.00 ft	Default:	0.00 ft
Bend Location:	0.00 ft	Op Table:		Op Table:	
Energy Switch:	Energy	Ref Node:		Ref Node:	
		Manning's N:	0.0000	Manning's N:	0.0000
Comment:					

Scenario:	Pre-Development	Botto	m Clip
From Node:	Swale A1-1	Default:	0.00 ft
To Node:	C-3 Canal	Op Table:	
Link Count:	1	Ref Node:	
Flow Direction:	Both	Тор	Clip
Damping:	0.0000 ft	Default:	0.00 ft
Weir Type:	Broad Crested Vertical	Op Table:	
Geometry Type:	Irregular	Ref Node:	
Invert:	12.25 ft	Discharge	Coefficients
Control Elevation:	12.25 ft	Weir Default:	2.800
Cross Section:	X_A-1_C-3	Weir Table:	
		Orifice Default:	0.600
		Orifice Table:	

Weir Link: W_N-4_N-5			
Scenario:	Pre-Development	Botto	m Clip
From Node:	Swale N4-1	Default:	0.00 ft
To Node:	B-N-5	Op Table:	
Link Count:	1	Ref Node:	
Flow Direction:	Both	Тор	Clip
Damping:	0.0000 ft	Default:	0.00 ft
Weir Type:	Paved Road Vertical	Op Table:	
Geometry Type:	Irregular	Ref Node:	
Invert:	13.50 ft	Discharge	Coefficients
Control Elevation:	13.50 ft	Weir Default:	2.800
Cross Section:	X-N-4_N-5	Weir Table:	
		Orifice Default:	0.600

Orifice Table:

Comment:

Weir Link: W_N-5_N-6

Scenario: Pre-Development

From Node: B-N-5 To Node: B-N-6

Link Count: 1

Flow Direction: Both Damping: 0.0000 ft

Weir Type: Paved Road Vertical

Geometry Type: Irregular

Invert: 13.00 ft

Control Elevation: 13.00 ft

Cross Section: X-N-5_N-6

Comment:

Weir Link: W_N-5_O-1

From Node: B-N-5

To Node: B-O-1 Link Count: 1

Flow Direction: Both

Damping: 0.0000 ft

Weir Type: Gravel Road Vertical

Geometry Type: Irregular

Invert: 12.50 ft

Control Elevation: 12.50 ft

Cross Section: X_N-5_O-1

Default: 0.00 ft

Op Table:

Ref Node:

Default: 0.00 ft

Op Table:

Ref Node:

Discharge Coefficients

Weir Default: 2.800

Weir Table:

Orifice Default: 0.600

Orifice Table:

Scenario: Pre-Development

Default: 0.00 ft

Op Table: Ref Node:

Default: 0.00 ft

Op Table:

Ref Node:

Discharge Coefficients

Weir Default: 2.800 Weir Table:

Orifice Default: 0.600

Orifice Table:

Comment:

Weir Link: W_N-6_O-2

Scenario: Pre-Development

From Node: B-N-6 To Node: B-O-2 Link Count: 1

Default: 0.00 ft

Op Table: Ref Node: Flow Direction: Both Damping: 0.0000 ft

Weir Type: Gravel Road Vertical

Geometry Type: Irregular Invert: 12.50 ft

Control Elevation: 12.50 ft Cross Section: X_N-6_O-2

Default: 0.00 ft Op Table: Ref Node:

Discharge Coefficients

Weir Default: 2.800

Weir Table:

Orifice Default: 0.600

Orifice Table:

Comment:

Weir Link: W_N-7_N-8

Scenario: Pre-Development

From Node: B-N-7

To Node: Swale N8-1 Link Count: 1

Flow Direction: Both

Damping: 0.0000 ft

Weir Type: Paved Road Vertical Geometry Type: Irregular

Invert: 13.50 ft

Control Elevation: 13.50 ft

Cross Section: X-N-7_N-8

Default: 0.00 ft

Op Table:

Ref Node: Top Clip

Default: 0.00 ft

Op Table:

Ref Node:

Discharge Coefficients

Weir Default: 2.800

Weir Table: Orifice Default: 0.600

Orifice Table:

Comment:

Weir Link: W_N-7_O-3

Scenario: Pre-Development

From Node: B-N-7

To Node: B-O-3

Link Count: 1 Flow Direction: Both

Damping: 0.0000 ft

Weir Type: Gravel Road Vertical

Geometry Type: Irregular

Invert: 12.50 ft

Control Elevation: 12.50 ft

Cross Section: X_N-7_O-3

Default: 0.00 ft

Op Table:

Ref Node:

Default: 0.00 ft

Op Table:

Ref Node:

Discharge Coefficients

Weir Default: 2.800

Weir Table:

Orifice Default: 0.600

Orifice Table:

Comment:

Weir Link: W_S-10_S-11		
Scenario:	Pre-Development	Bottom Clip
From Node:	Swale S10-1	Default: 0.00 ft
To Node:	Swale S11-1	Op Table:
Link Count:	1	Ref Node:
Flow Direction:	Both	Top Clip
Damping:	0.0000 ft	Default: 0.00 ft
Weir Type:	Paved Road Vertical	Op Table:
Geometry Type:	Irregular	Ref Node:
Invert:	13.00 ft	Discharge Coefficients
Control Elevation:	13.00 ft	Weir Default: 2.800
Cross Section:	X-S-10_S-11	Weir Table:
		Orifice Default: 0.600
		Orifice Table:
Comment:		

eir Link: W_S-11_S-12			
Scenario:	Pre-Development	Botto	m Clip
From Node:	Swale S11-1	Default:	0.00 ft
To Node:	Swale S12-1	Op Table:	
Link Count:	1	Ref Node:	
Flow Direction:	Both	Тор	Clip
Damping:	0.0000 ft	Default:	0.00 ft
Weir Type:	Paved Road Vertical	Op Table:	
Geometry Type:	Irregular	Ref Node:	
Invert:	13.00 ft	Discharge	Coefficients
Control Elevation:	13.00 ft	Weir Default:	2.800
Cross Section:	X-S-11_S-12	Weir Table:	
		Orifice Default:	0.600
		Orifice Table:	

Weir Link: W_S-1_S-2		
Scenario:	Pre-Development	Bottom Clip
From Node:	Swale S1-1_S1-2	Default: 0.00 ft
To Node:	Swale S2-1_S2-2	Op Table:
Link Count:	1	Ref Node:
Flow Direction:	Both	Top Clip
Damping:	0.0000 ft	Default: 0.00 ft
Weir Type:	Paved Road Vertical	Op Table:
Geometry Type:	Irregular	Ref Node:
Invert:	12.60 ft	Discharge Coefficients
Control Elevation:	12.60 ft	Weir Default: 2.800
Cross Section:	X-S-1_S-2	Weir Table:

Orifice Default: 0.600
Orifice Table:

Comment:

Weir Link: W_S-2_S-3

Scenario: Pre-Development
From Node: Swale S2-1_S2-2
To Node: Swale S3-1

Link Count: 1
Flow Direction: Both
Damping: 0.0000 ft

Weir Type: Paved Road Vertical Geometry Type: Irregular

Invert: 13.00 ft Control Elevation: 13.00 ft

Cross Section: X-S-2_S-3

Rottom Clin

Default: 0.00 ft

Op Table: Ref Node:

Top Clip

Default: 0.00 ft Op Table:

Ref Node:

Discharge Coefficients

Weir Default: 2.800

Weir Table:
Orifice Default: 0.600

Orifice Table:

Comment:

Weir Link: W_S-3_S-4

Scenario: Pre-Development From Node: Swale S3-1 To Node: Swale S4-1

Link Count: 1
Flow Direction: Both

Damping: 0.0000 ft
Weir Type: Paved Road Vertical

Geometry Type: Irregular Invert: 12.50 ft

Control Elevation: 12.50 ft

Cross Section: X-S-3_S-4

Bottom Clip

Default: 0.00 ft

Op Table: Ref Node:

Ton Clin

Default: 0.00 ft

Op Table: Ref Node:

Discharge Coefficients

Weir Default: 2.800 Weir Table:

Orifice Default: 0.600
Orifice Table:

Comment:

Weir Link: W_S-4_S-5

Scenario: Pre-Development
From Node: Swale S4-1

To Node: Swale S5-1_S5-2

Bottom Clip

Default: 0.00 ft

Op Table:

Link Count: 1

Flow Direction: Both

Damping: 0.0000 ft

Weir Type: Paved Road Vertical

Geometry Type: Irregular

Invert: 13.00 ft

Control Elevation: 13.00 ft

Cross Section: X-S-4_S-5

Ref Node:

Top Clip

Default: 0.00 ft

Op Table:

Ref Node:

Discharge Coefficients

Weir Default: 2.800

Weir Table:

Orifice Default: 0.600

Orifice Table:

Comment:

Weir Link: W_S-4_S-6

Scenario: Pre-Development

From Node: Swale S4-1

To Node: Swale S6-1 Link Count: 1

Flow Direction: Both

Damping: 0.0000 ft

Weir Type: Paved Road Vertical

Geometry Type: Irregular

Invert: 13.00 ft

Control Elevation: 13.00 ft

Cross Section: X-S-4_S-6

Rottom Clin

Default: 0.00 ft

Op Table:

Ref Node:

Top Clip

Default: 0.00 ft

Op Table:

Ref Node:

Discharge Coefficients

Weir Default: 2.800

Weir Table:
Orifice Default: 0.600

Orifice Table:

Comment:

Weir Link: W_S-5_S-6

Scenario: Pre-Development

From Node: Swale S5-1_S5-2

To Node: Swale S6-1

Link Count: 1

Flow Direction: Both

Damping: 0.0000 ft

Weir Type: Paved Road Vertical

Geometry Type: Irregular

Invert: 13.00 ft

Control Elevation: 13.00 ft

Cross Section: X-S-5_S-6

Bottom Clip

Default: 0.00 ft

Op Table:

Ref Node:

Top one

Default: 0.00 ft

Op Table:

Ref Node:

Discharge Coefficients

Weir Default: 2.800

Weir Table:

Orifice Default: 0.600

Orifice Table:

Comment:

Weir Link: W_S-5_S-7			
Scenario:	Pre-Development	Botto	m Clip
From Node:	Swale S5-1_S5-2	Default:	0.00 ft
To Node:	Swale S7-1	Op Table:	
Link Count:	1	Ref Node:	
Flow Direction:	Both	Тор	Clip
Damping:	0.0000 ft	Default:	0.00 ft
Weir Type:	Paved Road Vertical	Op Table:	
Geometry Type:	Irregular	Ref Node:	
Invert:	13.00 ft	Discharge (Coefficients
Control Elevation:	13.00 ft	Weir Default:	2.800
Cross Section:	X-S-5_S-7	Weir Table:	
		Orifice Default:	0.600
		Orifice Table:	
Comment:			

eir Link: W_S-5_S-8			
Scenario:	Pre-Development	Botto	m Clip
From Node:	Swale S5-1_S5-2	Default:	0.00 ft
To Node:	Swale S8-1	Op Table:	
Link Count:	1 _	Ref Node:	
Flow Direction:	Both	Тор	Clip
Damping:	0.0000 ft	Default:	0.00 ft
Weir Type:	Paved Road Vertical	Op Table:	
Geometry Type:	Irregular	Ref Node:	
Invert:	12.70 ft	Discharge	Coefficients
Control Elevation:	12.70 ft	Weir Default:	2.800
Cross Section:	X-S-5_S-8	Weir Table:	
		Orifice Default:	0.600
		Orifice Table:	

Weir Link: W_S-6_C-2			
Scenario:	Pre-Development	Botto	m Clip
From Node:	Swale S6-1	Default:	0.00 ft
To Node:	C-2 Canal	Op Table:	
Link Count:	1	Ref Node:	
Flow Direction:	Both	Тор	Clip
Damping:	0.0000 ft	Default:	0.00 ft
Weir Type:	Broad Crested Vertical	Op Table:	
Geometry Type:	Irregular	Ref Node:	
Invert:	12.00 ft	Discharge (Coefficients
Control Elevation:	12.00 ft	Weir Default:	2.800
Cross Section:	X_S-6_C-2	Weir Table:	

Orifice Default: 0.600 Orifice Table:

Default: 0.00 ft

Default: 0.00 ft

Discharge Coefficients

Op Table: Ref Node:

Op Table:

Ref Node:

Weir Default: 2.800

Comment:

Weir Link: W_S-7_C-2

Scenario: Pre-Development From Node: Swale S7-1 To Node: C-2 Canal

Link Count: 1 Flow Direction: Both Damping: 0.0000 ft

Weir Type: Broad Crested Vertical

Geometry Type: Irregular

Control Elevation: 12.00 ft

Invert: 12.00 ft

Cross Section: X_S-7_C-2 Weir Table: Orifice Default: 0.600

Orifice Table:

Comment:

Weir Link: W_S-8_S-9

Scenario: Pre-Development From Node: Swale S8-1 To Node: Swale S9-1

Link Count: 1 Flow Direction: Both

> Damping: 0.0000 ft Weir Type: Paved Road Vertical

Geometry Type: Irregular

Invert: 13.00 ft

Control Elevation: 13.00 ft Cross Section: X-S-8_S-9

Default: 0.00 ft

Op Table: Ref Node:

Default: 0.00 ft Op Table: Ref Node:

Discharge Coefficients

Weir Default: 2.800 Weir Table:

Orifice Default: 0.600 Orifice Table:

Comment:

Weir Link: W_S-9_S-10

Scenario: Pre-Development From Node: Swale S9-1 Default: 0.00 ft

To Node: Swale S10-1 Op Table: Link Count: 1

Flow Direction: Both

Damping: 0.0000 ft

Weir Type: Paved Road Vertical

Geometry Type: Irregular

Invert: 12.00 ft

Control Elevation: 12.00 ft

Cross Section: X-S-9_S-10

Ref Node:

Ton Clin

Default: 0.00 ft

Op Table:

Ref Node:

Discharge Coefficients

Weir Default: 2.800

Weir Table:

Orifice Default: 0.600

Orifice Table:

Comment:

....

Scenario: Pre-Development

Lid: No

Bottom Point Table

Order	Station [ft]	Elevation [ft]
0	0.00	14.00
1	14.00	13.50
2	41.00	13.50
3	45.00	14.00

Comment: Basin B-N-4 to B-N-5

Weir Cross Section: X-N-5_N-6

Scenario: Pre-Development

Lid: No

Bottom Point Table

Order	Station [ft]	Elevation [ft]
0	0.00	13.00
1	60.00	13.60

Comment: Basin B-N-5 to B-N-6

Weir Cross Section: X-N-7 N-8

Scenario: Pre-Development

Lid: No

Bottom Point Table

Order	Station [ft]	Elevation [ft]
0	0.00	13.80
1	61.00	13.50

Comment: Basin B-N-7 to B-N-8

Weir Cross Section: X-S-10_S-11

Scenario: Pre-Development

Lid: No

Bottom Point Table

Order	Station [ft]	Elevation [ft]
0	0	00 14.00
1	41	60 13.00
2	109	00 13.00
3	141	50 13.20

Comment: Basin B-S-10 to B-S-11

Weir Cross Section: X-S-11_S-12

Scenario: Pre-Development

Lid: No

Bottom Point Table

Order	Station [ft]	Elevation [ft]
0	0.00	14.00
1	31.40	13.00
2	101.30	13.00
3	139.70	13.50

Comment: Basin B-S-11 to B-S-12

Weir Cross Section: X-S-1_S-2

Scenario: Pre-Development

Lid: No

Bottom Point Table

Order	Station [ft]	Elevation [ft]
0	0.00	14.60
1	77.00	13.00

Order	Station [ft]	Elevation [ft]
2	193.00	12.60

Comment: Basin B-S-1 to B-S-2

Weir Cross Section: X-S-2_S-3

Scenario: Pre-Development

Lid: No

Bottom Point Table

Order	Station [ft]	Elevation [ft]
0	0	.00 14.00
1	34	.00 14.00
2	77	.00 13.00
3	152	.00 13.00

Comment: Basin B-S-2 to B-S-3

Weir Cross Section: X-S-3 S-4

Scenario: Pre-Development

Lid: No

Bottom Point Table

Order	Station [ft]	Elevation [ft]
0	0.00	14.00
1	26.00	13.00
2	47.00	12.60
3	199.00	12.50

Comment: Basin B-S-3 to B-S-4

Weir Cross Section: X-S-4 S-5

Scenario: Pre-Development

Lid: No

Bottom Point Table

Order	Station [ft]	Elevation [ft]
0	0.00	14.00
1	22.50	13.00
2	149.00	13.00

Comment: Basin B-S-4 to B-S-5

Weir Cross Section: X-S-4 S-6

Scenario: Pre-Development

Lid: No

Bottom Point Table

Order	Station [ft]	Elevation [ft]
0	0.00	13.20
1	50.00	13.00

Comment: Basin B-S-4 to B-S-6

Weir Cross Section: X-S-5 S-6

Scenario: Pre-Development

Lid: No

Bottom Point Table

Order	Station [ft]	Elevation [ft]
0	0.00	13.00
1	1075.50	13.00

Comment: Basin B-S-5 to B-S-6

Weir Cross Section: X-S-5_S-7

Scenario: Pre-Development

Lid: No

Bottom Point Table

Order	Station [ft]	Elevation [ft]
0	0.00	13.00
1	652.00	13.00

Comment: Basin B-S-5 to B-S-7

Weir Cross Section: X-S-5 S-8

Scenario: Pre-Development

Lid: No

Bottom Point Table

Order	Station [ft]	Elevation [ft]
0	0.00	13.30
1	16.50	13.00
2	138.00	12.70

Comment: Basin B-S-5 to B-S-8

Weir Cross Section: X-S-8 S-9

Scenario: Pre-Development

Lid: No

Bottom Point Table

Order	Station [ft]	Elevation [ft]
0	0.00	14.00
1	16.00	13.00
2	126.00	13.00
3	182.00	14.00

Comment: Basin B-S-8 to B-S-9

Weir Cross Section: X-S-9_S-10

Scenario: Pre-Development

Lid: No

Bottom Point Table

Order	Station [ft]	Elevation [ft]
0	0.00	14.00
1	19.00	13.00
2	53.00	12.00
3	70.00	12.00
4	146.00	13.00
5	174.00	14.00

Comment: Basin B-S-9 to B-S-10

Weir Cross Section: X_A-1_C-3

Scenario: Pre-Development

Lid: No

Bottom Point Table

Order	Station [ft]	Elevation [ft]
0	0.00	12.25
1	96.00	12.25

Comment:

Weir Cross Section: X_N-5_O-1

Scenario: Pre-Development

Lid: No

Bottom Point Table

Order	Station [ft]	Elevation [ft]
0	0	.00 13.50
2	407	.00 12.50
3	1022	.00 12.50
4	1032	.00 13.00
5	1388	.00 13.00

Comment:

Weir Cross Section: X_N-6_O-2

Scenario: Pre-Development

Lid: No

Bottom Point Table

Order	Station [ft]	Elevation [ft]
0	0.00	13.00
1	63.00	12.50
2	780.00	12.50

Comment:

Weir Cross Section: X N-7 O-3

Scenario: Pre-Development

Lid: No

Bottom Point Table

Dollow Found additional and a second a second and a second a second and a second a second and a second and a second and a			
Order	Station [ft]	Elevation [ft]	
0		0.00 12.50	
1	59	06.00 13.00	
2	101	2.00 13.00	

Comment:

Weir Cross Section: X S-6 C-2

Scenario: Pre-Development

Lid: No

Bottom Point Table

Order	Station [ft]	Elevation [ft]
0	0.00	12.00
1	60.00	12.00

Comment:

Weir Cross Section: X S-7 C-2

Scenario: Pre-Development

Lid: No

Bottom Point Table

Order	Station [ft]	Elevation [ft]
0	0.00	12.00
1	60.00	12.00

Comment:

Simulation: 100YR-72HR

Min Calculation Time:

Scenario: Pre-Development
Run Date/Time: 04/10/18 5:42:48 PM
Program Version: ICPR4 4.03.02.00

Genera

Run Mode: Normal

	Year	Month	Day	Hour [hr]
Start Time:	0	0	0	0.0000
End Time:	0	0	0	96.0000

Max Calculation Time:

Output Time Increments

Hydrology

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.0000

Surface Hydraulics

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.0000

Groundwater

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	360.0000

Restart File

Save Restart: False

Resources & Lookup Tables

R				

Rainfall Folder: Reference ET Folder: Unit Hydrograph Folder:

Lookup Tables

Boundary Stage Set: Extern Hydrograph Set:

Curve Number Set: Soil Storage-SFWMD

Green-Ampt Set:

Vertical Layers Set:

Impervious Set: Soil Storage-SFWMD

Roughness Set: Crop Coef Set: Fillable Porosity Set: Conductivity Set: Leakage Set:

Tolerances & Options

Time Marching: SAOR IA Recovery Time: 24.0000 hr Max Iterations: 6 ET for Manual Basins: False

Over-Relax Weight 0.5 dec

Fact:

dZ Tolerance: 0.0010 ft Manual Basin Rain Opt: Global
Max dZ: 1.0000 ft OF Region Rain Opt: Global

Link Optimizer Tol: 0.0001 ft Rainfall Name: ~SFWMD-72

Rainfall Amount: 22.00 in Edge Length Option: Automatic Storm Duration: 72.0000 hr

Dflt Damping (2D): 0.0050 ft
Min Node Srf Area 100 ft2

Dflt Damping (1D): 0.0050 ft
Min Node Srf Area 100 ft2

(2D): (1D):

Energy Switch (2D): Energy Energy Switch (1D): Energy

Comment:

Simulation: 10YR-24HR

Scenario: Pre-Development
Run Date/Time: 04/10/18 5:46:15 PM
Program Version: ICPR4 4.03.02.00

Genera

Run Mode: Normal

	Year	Month	Day	Hour [hr]
Start Time:	0	0	0	0.0000
End Time:	0	0	0	48.0000

Output Time Increments

Hydrology

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	5.0000

Surface Hydraulics

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	5.0000

Groundwater

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	360.0000

Restart File

Save Restart: False

Resources & Lookup Tables

Resources

Rainfall Folder: Reference ET Folder: Unit Hydrograph Folder: Lookup Tables

Boundary Stage Set: Extern Hydrograph Set:

Curve Number Set: Soil Storage-SFWMD

Green-Ampt Set: Vertical Layers Set:

Impervious Set: Soil Storage-SFWMD

Roughness Set: Crop Coef Set: Fillable Porosity Set: Conductivity Set: Leakage Set:

(1D):

Tolerances & Options

Time Marching: SAOR IA Recovery Time: 24.0000 hr
Max Iterations: 6 ET for Manual Basins: False

Over-Relax Weight 0.5 dec

Fact:

(2D):

dZ Tolerance: 0.0010 ft Manual Basin Rain Opt: Global

Rainfall Amount: 10.50 in Edge Length Option: Automatic Storm Duration: 24.0000 hr

Dflt Damping (2D): 0.0050 ft
Min Node Srf Area 100 ft2

Dflt Damping (1D): 0.0050 ft
Min Node Srf Area 100 ft2

Energy Switch (2D): Energy Energy Switch (1D): Energy

Comment:

Simulation: 25YR-72HR

Scenario: Pre-Development
Run Date/Time: 04/10/18 5:50:54 PM
Program Version: ICPR4 4.03.02.00

Ger

Run Mode: Normal

	Year	Month	Day	Hour [hr]
Start Time:	0	0	0	0.0000
End Time:	0	0	0	96.0000
				_
	Hydrology [sec]	Surface Hydraulics	Groundwater [sec]	

[sec]

Min Calculation Time: 30.0000 0.0500 900.0000

Max Calculation Time: 30.0000

Hydrology

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.0000

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.0000

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	360.0000

Save Restart: False

Rainfall Folder: Reference ET Folder:

Unit Hydrograph

Folder:

Boundary Stage Set:

Extern Hydrograph Set:

Curve Number Set: Soil Storage-SFWMD

Green-Ampt Set:

Vertical Layers Set:

Impervious Set: Soil Storage-SFWMD

Roughness Set:

Crop Coef Set:

Fillable Porosity Set:

Conductivity Set:

Leakage Set:

Time Marching: SAOR IA Recovery Time: 24.0000 hr Max Iterations:

Over-Relax Weight 0.5 dec

Fact:

dZ Tolerance: 0.0010 ft

Max dZ: 1.0000 ft Link Optimizer Tol: 0.0001 ft ET for Manual Basins: False

Manual Basin Rain Opt: Global OF Region Rain Opt: Global

Rainfall Name: ~SFWMD-72 Edge Length Option: Automatic

(2D):

Rainfall Amount: 16.00 in

Storm Duration: 72.0000 hr

Dflt Damping (2D): 0.0050 ft
Min Node Srf Area 100 ft2

Dflt Damping (1D): 0.0050 ft
Min Node Srf Area 100 ft2

(1D):

Energy Switch (2D): Energy Energy Switch (1D): Energy

Comment:

Simulation: 3YR-24HR

Scenario: Pre-Development
Run Date/Time: 04/10/18 5:53:54 PM
Program Version: ICPR4 4.03.02.00

General

Run Mode: Normal

	Year	Month	Day	Hour [hr]
Start Time:	0	0	0	0.0000
End Time:	0	0	0	48.0000

	Hydrology [sec]	Surface Hydraulics	Groundwater [sec]
_		[sec]	
Min Calculation Time:	30.0000	0.0500	900.0000

Max Calculation Time: 30.0000

Output Time Increments

Hydrology

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	5.0000

Surface Hydraulics

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	5.0000

Groundwater

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	360.0000

Restart File

Save Restart: False

Resources & Lookup Tables

Resource

Rainfall Folder:

Reference ET Folder: Unit Hydrograph

Folder:

Lookup Tables

Boundary Stage Set:

Extern Hydrograph Set:

Curve Number Set: Soil Storage-SFWMD

Green-Ampt Set:

Vertical Layers Set:

Impervious Set: Soil Storage-SFWMD

Roughness Set:

Crop Coef Set:

Fillable Porosity Set:

Conductivity Set:

Leakage Set:

(1D):

Tolerances & Options

Time Marching: SAOR IA Recovery Time: 24.0000 hr
Max Iterations: 6 ET for Manual Basins: False

Over-Relax Weight 0.5 dec

Fact:

dZ Tolerance: 0.0010 ft Manual Basin Rain Opt: Global
Max dZ: 1.0000 ft OF Region Rain Opt: Global

Link Optimizer Tol: 0.0001 ft Rainfall Name: ~SCSIII-24

Rainfall Amount: 6.45 in
Edge Length Option: Automatic Storm Duration: 24.0000 hr

Dflt Damping (2D): 0.0050 ft
Min Node Srf Area 100 ft2

Dflt Damping (1D): 0.0050 ft
Min Node Srf Area 100 ft2

(2D):

Energy Switch (2D): Energy Energy Switch (1D): Energy

Comment:


Node Max Conditions [Pre-Development]

	ditions [Pre-Deve		May Stage	Min/May	May Tatal	May Tatal	May Surface
Node Name	Sim Name	Warning	Max Stage	Min/Max	Max Total	Max Total	Max Surface
		Stage [ft]	[ft]	Delta Stage	Inflow [cfs]	Outflow [cfs]	Area [ft2]
B-N-5	100YR-72HR	12.50	12.67	[ft] 0.0010	32.09	32.09	11204
B-N-6	100YR-72HR 100YR-72HR	12.50	12.67	0.0010	13.28	13.28	8937
B-N-7	100YR-72HR 100YR-72HR	12.50	12.86	0.0009	19.63	19.62	17347
B-0-1	-						
B-O-1	100YR-72HR 100YR-72HR	12.00 12.00	12.67 12.35	0.0046 0.0059	78.79 50.67	19.14 17.60	134840 97449
B-O-2							
C-2 Canal	100YR-72HR 100YR-72HR	12.00 7.50	12.86 7.50	0.0056 0.0000	46.28 131.47	17.27 0.00	78977 0
C-2 Canal	100YR-72HR 100YR-72HR	7.50	7.50	0.0000	53.94	0.00	0
							0
C-3 Canal	100YR-72HR	7.50	7.50	0.0000	106.56	0.00	_
Swale A1-1	100YR-72HR	11.75	12.79	0.0010	125.37	106.56	198956
Swale A2-1	100YR-72HR	12.75	13.09	0.0010	45.98	34.41	83896
Swale A3-1 Swale A4-1	100YR-72HR	12.50 11.75	13.38 13.62	0.0010	47.60 23.30	21.47 7.86	92685
	100YR-72HR			0.0010			60639
Swale A5-1	100YR-72HR	12.00	13.73	0.0010	14.32	2.93	37300
Swale N1-1	100YR-72HR	13.00	14.38	0.0009	15.22	2.23	39767
Swale	100YR-72HR	13.50	14.32	0.0010	15.43	2.59	55158
N2-1_N2-2	100//5 70//5	10.00		0.0010	44.6	2.12	20110
Swale N3-1	100YR-72HR	13.00	14.16	0.0010	11.62	3.68	38418
Swale N4-1	100YR-72HR	12.50	13.83	0.0010	21.18	16.63	57822
Swale N8-1	100YR-72HR	12.50	13.81	0.0008	32.04	12.39	122927
Swale	100YR-72HR	14.00	13.33	0.0009	30.51	22.18	93328
S1-1_S1-2							
Swale S10-1	100YR-72HR	12.50	13.25	0.0007	33.70	59.47	39049
Swale S11-1	100YR-72HR	13.00	13.26	0.0010	23.48	23.06	18230
Swale S12-1	100YR-72HR	12.00	13.26	0.0009	19.38	17.36	48188
Swale	100YR-72HR	12.00	13.32	0.0010	45.06	40.47	81437
S2-1_S2-2							
Swale S3-1	100YR-72HR	13.00	13.28	0.0010	79.99	49.01	139564
Swale S4-1	100YR-72HR	12.50	13.28	0.0009	72.39	62.25	165410
Swale	100YR-72HR	12.50	13.09	0.0010	113.05	113.01	57547
S5-1_S5-2							
Swale S6-1	100YR-72HR	11.50	12.64	0.0010	90.48	85.17	78713
Swale S7-1	100YR-72HR	12.50	12.43	0.0010	49.64	46.65	44662
Swale S8-1	100YR-72HR	12.00	13.19	0.0010	71.27	68.58	76116
Swale S9-1	100YR-72HR	12.50	13.25	0.0010	63.88	38.52	20246
B-N-5	10YR-24HR	12.50	12.54	0.0009	9.44	9.44	3170
B-N-6	10YR-24HR	12.50	12.53	0.0009	7.35	7.34	8669
B-N-7	10YR-24HR	12.50	12.64	0.0009	8.83	8.81	9107
B-O-1	10YR-24HR	12.00	11.59	0.0053	35.09	17.02	61235
B-O-2	10YR-24HR	12.00	11.78	0.0052	27.98	16.55	54611
B-O-3	10YR-24HR	12.00	12.14	0.0050	25.37	16.06	73017
C-2 Canal	10YR-24HR	7.50	7.50	0.0000	0.00	0.00	0
C-2_Canal	10YR-24HR	7.50	7.50	0.0000	49.62	0.02	0
C-3 Canal	10YR-24HR	7.50	7.50	0.0000	31.84	0.00	0
Swale A1-1	10YR-24HR	11.75	12.50	0.0010	53.69	31.84	168981

Node Name	Sim Name	Warning	Max Stage	Min/Max	Max Total	Max Total	Max Surface
Node Name	Sim Name	Stage [ft]	[ft]	Delta Stage	Inflow [cfs]	Outflow [cfs]	Area [ft2]
		Stage [it]	[14]	[ft]	milow [ci3]	outnow [ci3]	/ (Cd [(Z)
Swale A2-1	10YR-24HR	12.75	12.56	0.0010	22.08	14.51	59468
Swale A3-1	10YR-24HR	12.50	12.62	0.0010	23.63	9.69	54265
Swale A4-1	10YR-24HR	11.75	12.72	0.0010	12.42	3.97	36692
Swale A5-1	10YR-24HR	12.00	12.78	0.0010	8.11	1.53	21518
Swale N1-1	10YR-24HR	13.00	13.50	0.0009	8.52	2.29	29381
Swale	10YR-24HR	13.50	13.50	0.0010	8.93	1.19	45135
N2-1_N2-2							
Swale N3-1	10YR-24HR	13.00	13.50	0.0010	8.05	0.06	38407
Swale N4-1	10YR-24HR	12.50	13.50	0.0010	10.18	1.53	47448
Swale N8-1	10YR-24HR	12.50	13.26	0.0009	16.09	0.00	88929
Swale	10YR-24HR	14.00	13.01	0.0010	14.50	0.04	82460
S1-1_S1-2							
Swale S10-1	10YR-24HR	12.50	13.04	0.0009	5.99	1.23	31692
Swale S11-1	10YR-24HR	13.00	13.03	0.0010	3.32	1.73	13979
Swale S12-1	10YR-24HR	12.00	13.03	0.0010	10.61	0.29	41252
Swale	10YR-24HR	12.00	13.01	0.0010	12.32	1.85	75545
S2-1_S2-2							
Swale S3-1	10YR-24HR	13.00	12.62	0.0010	20.31	8.56	84927
Swale S4-1	10YR-24HR	12.50	12.45	0.0010	18.24	0.00	139085
Swale	10YR-24HR	12.50	13.02	0.0010	13.18	8.80	57547
S5-1_S5-2							
Swale S6-1	10YR-24HR	11.50	11.39	0.0010	9.61	0.00	70555
Swale S7-1	10YR-24HR	12.50	10.87	0.0010	5.31	0.00	36934
Swale S8-1	10YR-24HR	12.00	13.02	0.0010	17.32	5.97	65278
Swale S9-1	10YR-24HR	12.50	13.04	0.0010	3.40	1.64	16702
B-N-5	25YR-72HR	12.50	12.54	0.0009	12.17	12.17	3519
B-N-6	25YR-72HR	12.50	12.53	0.0008	9.40	9.39	8767
B-N-7	25YR-72HR	12.50	12.65	0.0009	11.35	11.32	9682
B-O-1	25YR-72HR	12.00	11.94	0.0046	45.48	17.75	86940
B-O-2	25YR-72HR	12.00	12.00	0.0058	35.83	16.96	77982
B-O-3	25YR-72HR	12.00	12.28	0.0056	31.35	16.30	74169
C-2 Canal	25YR-72HR	7.50	7.50	0.0000	13.42	0.00	0
C-2_Canal	25YR-72HR	7.50	7.50	0.0000	50.93	0.02	0
C-3 Canal	25YR-72HR	7.50	7.50	0.0000	74.26	0.00	0
Swale A1-1	25YR-72HR	11.75	12.68	0.0010	88.99	74.26	187437
Swale A2-1	25YR-72HR	12.75	12.87	0.0010	34.26	27.13	73977
Swale A3-1	25YR-72HR	12.50	13.07	0.0010	33.66	17.25	73110
Swale A4-1	25YR-72HR	11.75	13.26	0.0010	16.53	6.49	49939
Swale A5-1	25YR-72HR	12.00	13.35	0.0010	10.18	2.42	30702
Swale N1-1	25YR-72HR	13.00	13.84	0.0009	10.79	2.02	36529
Swale	25YR-72HR	13.50	13.83	0.0010	11.17	1.47	51689
N2-1_N2-2							
Swale N3-1	25YR-72HR	13.00	13.77	0.0010	9.32	2.05	38418
Swale N4-1	25YR-72HR	12.50	13.66	0.0010	13.77	4.99	52455
Swale N8-1	25YR-72HR	12.50	13.63	0.0007	22.18	1.18	110521
Swale	25YR-72HR	14.00	13.15	0.0010	25.61	6.76	87441

Node Name	Sim Name	Warning	Max Stage	Min/Max	Max Total	Max Total	Max Surface
Node Name	Silli Name	Stage [ft]	[ft]	Delta Stage	Inflow [cfs]	Outflow [cfs]	Area [ft2]
		Stage [it]	[14]	[ft]	ITITIOW [CI3]	Outnow [cl3]	Arca [It2]
S1-1_S1-2				[11]			
Swale S10-1	25YR-72HR	12.50	13.16	0.0006	16.63	24.54	35865
Swale S11-1	25YR-72HR	13.00	13.16	0.0010	11.49	11.05	16447
Swale S12-1	25YR-72HR	12.00	13.17	0.0010	19.84	8.34	45401
Swale	25YR-72HR	12.00	13.17	0.0010	18.19	12.35	78236
S2-1_S2-2	2311(-72111(12.00	13.13	0.0010	10.17	12.55	70230
Swale S3-1	25YR-72HR	13.00	13.07	0.0010	29.90	28.01	124221
Swale S4-1	25YR-72HR	12.50	13.07	0.0010	57.33	6.64	165410
Swale	25YR-72HR	12.50	13.05	0.0010	47.20	47.16	57547
S5-1_S5-2	2311(72111(12.50	13.03	0.0010	47.20	47.10	37547
Swale S6-1	25YR-72HR	11.50	12.14	0.0010	40.99	8.68	78713
Swale S7-1	25YR-72HR	12.50	12.10	0.0010	24.09	4.94	44662
Swale S8-1	25YR-72HR	12.00	13.07	0.0008	35.65	35.24	68761
Swale S9-1	25YR-72HR	12.50	13.15	0.0010	25.79	18.40	18708
B-N-5	3YR-24HR	12.50	12.52	0.0009	4.81	4.80	2485
B-N-6	3YR-24HR	12.50	12.52	0.0009	3.78	3.78	8470
B-N-7	3YR-24HR	12.50	12.61	0.0009	4.52	4.50	7915
B-O-1	3YR-24HR	12.00	10.92	0.0021	17.73	15.57	12906
B-O-2	3YR-24HR	12.00	10.72	0.0010	14.37	14.34	100
B-O-3	3YR-24HR	12.00	10.87	0.0010	13.72	13.69	100
C-2 Canal	3YR-24HR	7.50	7.50	0.0000	0.00	0.00	0
C-2_Canal	3YR-24HR	7.50	7.50	0.0000	43.53	0.01	0
C-3 Canal	3YR-24HR	7.50	7.50	0.0000	3.32	0.00	0
Swale A1-1	3YR-24HR	11.75	12.31	0.0010	26.74	3.32	140460
Swale A2-1	3YR-24HR	12.75	12.31	0.0010	12.94	4.33	48007
Swale A3-1	3YR-24HR	12.50	12.31	0.0010	12.25	5.30	42162
Swale A4-1	3YR-24HR	11.75	12.32	0.0010	6.46	2.71	28888
Swale A5-1	3YR-24HR	12.00	12.32	0.0010	4.27	1.22	15468
Swale N1-1	3YR-24HR	13.00	12.85	0.0009	4.44	1.79	17056
Swale	3YR-24HR	13.50	12.85	0.0010	4.87	0.87	25271
N2-1_N2-2		10.00	.2.00	0.00.0		0.07	
Swale N3-1	3YR-24HR	13.00	12.85	0.0010	4.59	0.07	27453
Swale N4-1	3YR-24HR	12.50	12.85	0.0010	4.86	1.28	28479
Swale N8-1	3YR-24HR	12.50	12.62	0.0009	7.49	0.00	45709
Swale	3YR-24HR	14.00	12.30	0.0010	6.38	0.00	50887
S1-1_S1-2							
Swale S10-1	3YR-24HR	12.50	12.89	0.0006	3.12	0.16	26676
Swale S11-1	3YR-24HR	13.00	13.01	0.0010	1.60	0.04	13462
Swale S12-1	3YR-24HR	12.00	12.02	0.0010	5.40	0.00	19763
Swale	3YR-24HR	12.00	12.57	0.0010	5.59	0.00	48230
S2-1_S2-2							
Swale S3-1	3YR-24HR	13.00	12.56	0.0010	8.66	0.27	78960
Swale S4-1	3YR-24HR	12.50	11.34	0.0009	7.80	0.00	67097
Swale	3YR-24HR	12.50	12.89	0.0010	5.76	0.00	51187
S5-1_S5-2			,				
Swale S6-1	3YR-24HR	11.50	10.06	0.0005	4.14	0.00	46746

Node Name	Sim Name	Warning Stage [ft]	Max Stage [ft]	Min/Max Delta Stage [ft]	Max Total Inflow [cfs]	Max Total Outflow [cfs]	Max Surface Area [ft2]
Swale S7-1	3YR-24HR	12.50	9.49	0.0009	2.29	0.00	26499
Swale S8-1	3YR-24HR	12.00	12.89	0.0010	8.13	0.43	56621
Swale S9-1	3YR-24HR	12.50	12.89	0.0010	1.74	0.97	14499

Manual Basin: B-O-1

Scenario: Post-Development

Node: B-O-1

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH256 Peaking Factor: 256.0

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient Zone	Reference ET Station
5.0900	B-O-1	B-O-1			

Comment:

Manual Basin: B-O-2

Scenario: Post-Development

Node: B-O-2

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH256 Peaking Factor: 256.0

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient Zone	Reference ET Station
4.0000	B-O-2	B-O-2			

Comment:

Manual Basin: B-O-3

Scenario: Post-Development

Node: B-O-3

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH256 Peaking Factor: 256.0

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name		Reference ET Station
2.9200	B-O-3	B-O-3		20110	Otation

Comment:

Manual Basin: POND

Scenario: Post-Development

Node: POND 1

Hydrograph Method: NRCS Unit Hydrograph
Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.000 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH256 Peaking Factor: 256.0

	Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient Zone	Reference ET Station
1	24.6700	POND 1	POND 1			

Comment:

Manual Basin: POND 2

Scenario: Post-Development

Node: POND 2

Hydrograph Method: NRCS Unit Hydrograph Infiltration Method: Curve Number

Time of Concentration: 10.0000 min

Max Allowable Q: 0.000 cfs

Time Shift: 0.0000 hr

Unit Hydrograph: UH256

Init Hydrograph: UH256 Peaking Factor: 256.0

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coeficient Zone	Reference ET Station
53.3900	POND 2	POND 2			

Comment:

Node: B-O-

Scenario: Post-Development
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 12.50 ft

Stage [ft]	Area [ac]	Area [ft2]
4.04	0.0001	4
10.74	0.0001	4
12.00	2.0900	91040
13.00	3.6000	156816
14.00	4.8000	209088

Comment:

Node: B-O-2

Scenario: Post-Development
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 12.00 ft

Stage [ft]	Area [ac]	Area [ft2]
4.98	0.0010	44
11.28	0.0010	44
12.00	1.8000	78408
13.00	3.0600	133294
14.00	3.7500	163350

Comment:

Node: B-O-3

Scenario: Post-Development
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 12.00 ft

Stage [ft]	Area [ac]	Area [ft2]
4.00	0.0010	44
11.99	0.0010	44
12.00	1.6500	71874
13.00	1.8400	80150
14.00	2.3000	100188

Comment:

Node: C-2 Canal

Scenario: Post-Development

Type: Time/Stage
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 7.50 ft

Boundary Stage:

	Year	Month	Day	Hour	Stage [ft]
	0	0	0	0.0000	7.50
Ī	0	0	0	999.0000	7.50

Comment: Boundary

Node: C-3 Cana

Scenario: Post-Development
Type: Time/Stage
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft

Warning Stage: 7.50 ft Boundary Stage:

Year	Month	Day	Hour	Stage [ft]
0	0	0	0.0000	7.50
0	0	0	999.0000	7.50

Comment: Boundary

Node: POND 1

Scenario: Post-Development
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 12.50 ft

Stage [ft]	Area [ac]	Area [ft2]
7.50	4.1362	180173
8.50	4.2968	187169
9.50	4.4603	194291
10.50	4.6268	201543
11.50	4.7962	208922
12.50	4.9685	216428
13.50	5.1437	224060

Comment:

Node: POND 2

Scenario: Post-Development
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 7.50 ft
Warning Stage: 12.50 ft

Stage [ft]	Area [ac]	Area [ft2]
7.50	9.6635	420942
8.50	9.9081	431597
9.50	10.1556	442378
10.50	10.4061	453290
11.50	10.6596	464332
12.50	10.9159	475497
13.50	11.1753	486796

Comment:

Pipe Link: P_O-1_C-2	2	Upst	ream	Dowi	nstream
	Post-Development	Invert:	4.04 ft	Invert:	3.50 ft
From Node:	B-O-1	Manning's N:	0.0240	Manning's N:	0.0240
To Node:	C-2 Canal	Geometry	y: Circular	Geomet	ry: Circular
Link Count:	1	Max Depth:	2.00 ft	Max Depth:	2.00 ft
Flow Direction:	Both			Bottom Clip	
Damping:	0.0000 ft	Default:	0.00 ft	Default:	0.00 ft
Length:	200.00 ft	Op Table:		Op Table:	
FHWA Code:	5	Ref Node:		Ref Node:	
Entr Loss Coef:	0.50	Manning's N:	0.0000	Manning's N:	0.0000
Exit Loss Coef:	0.00			Top Clip	
Bend Loss Coef:	0.00	Default:	0.00 ft	Default:	0.00 ft
Bend Location:	0.00 ft	Op Table:		Op Table:	
Energy Switch:	Energy	Ref Node:		Ref Node:	
		Manning's N:	0.0000	Manning's N:	0.0000
Comment:					

Pipe Link: P_O-2_C-2	c: P_O-2_C-2 Upstream		ream	Downstream	
Scenario:	Post-Development	Invert:	4.98 ft	Invert:	3.50 ft
From Node:	B-O-2	Manning's N:	0.0240	Manning's N:	0.0240
To Node:	C-2 Canal	Geometry	: Circular	Geometr	y: Circular
Link Count:	1	Max Depth:	2.00 ft	Max Depth:	2.00 ft
Flow Direction:	Both			Bottom Clip	
Damping:	0.0000 ft	Default:	0.00 ft	Default:	0.00 ft
Length:	223.00 ft	Op Table:		Op Table:	
FHWA Code:	5	Ref Node:		Ref Node:	
Entr Loss Coef:	0.50	Manning's N:	0.0000	Manning's N:	0.0000

Exit Loss Coef:	0.00			Top Clip	
Bend Loss Coef:	0.00	Default:	0.00 ft	Default:	0.00 ft
Bend Location:	0.00 ft	Op Table:		Op Table:	
Energy Switch:	Energy	Ref Node:		Ref Node:	
		Manning's N:	0.0000	Manning's N:	0.0000
Comment:					

Scenario: Post-Development Invert: 4.00 ft Invert: 3.50 ft From Node: B-O-3 Manning's N: 0.0240 Manning's N: 0.0240 To Node: C-2 Canal Link Count: 1 Max Depth: 2.00 ft Max Depth: 2.00 ft Bottom Clip Flow Direction: Both Damping: 0.0000 ft Default: 0.00 ft Default: 0.00 ft Length: 258.00 ft Op Table: Op Table: FHWA Code: 5 Ref Node: Ref Node: Manning's N: Entr Loss Coef: 0.50 0.0000 Manning's N: 0.0000 Exit Loss Coef: 0.00 Bend Loss Coef: 0.00 Default: 0.00 ft Default: 0.00 ft Bend Location: 0.00 ft Op Table: Op Table: Ref Node: Ref Node: Energy Switch: Energy Manning's N: 0.0000 Manning's N: 0.0000 Comment:

Drop Structure Link:	PrCS Pond 1	Upstrea	am Pipe	Downstr	eam Pipe
Scenario:	Post-Development	Invert:	3.20 ft	Invert:	3.20 ft
From Node:	POND 1	Manning's N:	0.0120	Manning's N:	0.0120
To Node:	C-3 Canal	Geometry	y: Circular	Geometr	y: Circular
Link Count:	1	Max Depth:	4.00 ft	Max Depth:	4.00 ft
Flow Direction:	Both			Bottom Clip	
Solution:	Combine	Default:	0.00 ft	Default:	0.00 ft
Increments:	10	Op Table:		Op Table:	
Pipe Count:	1	Ref Node:		Ref Node:	
Damping:	0.0000 ft	Manning's N:	0.0000	Manning's N:	0.0000
Length:	4200.00 ft			Top Clip	
FHWA Code:	0	Default:	0.00 ft	Default:	0.00 ft
Entr Loss Coef:	0.50	Op Table:		Op Table:	
Exit Loss Coef:	1.00	Ref Node:		Ref Node:	
Bend Loss Coef:	0.00	Manning's N:	0.0000	Manning's N:	0.0000
Bend Location:	0.00 ft				
Energy Switch:	Energy				
Pipe Comment:					

Weir Component	
Weir: 1	Bottom Clip

Weir Count: 1

Weir Flow Direction: Both

Damping: 0.0000 ft Weir Type: Horizontal Geometry Type: Rectangular

Invert: 8.50 ft Control Elevation: 8.50 ft Max Depth: 6.58 ft Max Width: 3.00 ft

Fillet: 0.00 ft

Default: 0.00 ft

Op Table: Ref Node:

> Top Clip 0.00 ft

Default: Op Table: Ref Node:

Weir Default: 3.200 Weir Table: Orifice Default: 0.600

Orifice Table:

Weir Comment:

Weir: 2

Weir Count: Weir Flow Direction: Both

Damping: 0.0000 ft

Weir Type: Sharp Crested Vertical Geometry Type: Trapezoidal

Invert: 7.50 ft

Control Elevation: 7.50 ft Max Depth: 1.00 ft

Extrapolation Method: Normal Projection

Bottom Width: 0.00 ft

Left Slope: 0.499 (h:v)

Right Slope: 0.499 (h:v)

Default: 0.00 ft

Op Table: Ref Node:

Default: 0.00 ft

Op Table: Ref Node:

Discharge Coefficients

Weir Default: 3.200

Weir Table:

Orifice Default: 0.600 Orifice Table:

Weir Comment:

Drop Structure Comment:

Upstream Pipe

Scenario: Post-Development Invert: 3.80 ft Invert: 3.80 ft From Node: POND 2 Manning's N: 0.0120 Manning's N: 0.0120 To Node: C-2 Canal

Max Depth:

Link Count: 1 Flow Direction: Both Solution: Combine

> Increments: 10 Pipe Count: 1

Damping: 0.0000 ft Length: 3500.00 ft

FHWA Code: 0 Entr Loss Coef: 0.50 Exit Loss Coef: 1.00

Bottom Clip Default: 0.00 ft Default: 0.00 ft

Op Table: Op Table: Ref Node: Ref Node: Manning's N:

0.0000

2.00 ft

Default: 0.00 ft

Op Table:

Ref Node:

Default: Op Table: Ref Node:

Manning's N:

Max Depth:

2.00 ft

0.0000

0.00 ft

Bend Loss Coef: 0.00 Manning's N: 0.0000 Manning's N: 0.0000

Bend Location: 0.00 ft Energy Switch: Energy

Pipe Comment:

Weir Component

Weir: 1
Weir Count: 1

Weir Flow Direction: Both Op Table:

Damping: 0.0000 ft Ref Node:

Weir Type: Horizontal Top Clip
Geometry Type: Rectangular Default: 0.00 ft

Invert: 8.50 ft Op Table:
Control Elevation: 8.50 ft Ref Node:

Max Depth: 3.08 ft Discharge Coefficients

Max Width: 2.00 ft Weir Default: 3.200

Fillet: 0.00 ft Weir Table:
Orifice Default: 0.600

Orifice Default. 0.60
Orifice Table:

Default: 0.00 ft

Weir Comment:

Weir Component

Weir: 2 Bottom Clip
Weir Count: 2 Default: 0.00 ft

Weir Flow Direction: Both Op Table:
Damping: 0.0000 ft Ref Node:

Weir Type: Sharp Crested Vertical Top Clip

Geometry Type: Trapezoidal Default: 0.00 ft

Invert: 7.50 ft Op Table: Control Elevation: 7.50 ft Ref Node:

Max Depth: 1.00 ft Discharge Coefficients

Extrapolation Method: Normal Projection Weir Default: 3.200

Bottom Width: 0.00 ft Weir Table:

Left Slope: 0.543 (h:v) Orifice Default: 0.600

Right Slope: 0.543 (h:v) Orifice Table:

Weir Comment:

Drop Structure Comment:

Simulation: 100YR-72HR

Scenario: Post-Development
Run Date/Time: 7/23/2018 9:55:00 AM
Program Version: ICPR4 4.03.02.00

Gene

Run Mode: Normal

	Year	Month	Day	Hour [hr]
Start Time:	0	0	0	0.0000
End Time:	0	0	0	96.0000
	Hydrology [sec]	Surface Hydraulics [sec]	Groundwater [sec]	
Min Calculation Time:	60.0000	0.0500	900.0000	
Max Calculation Time:		60.0000		

Output Time Increments

Hydrology

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.0000

Surface Hydraulics

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.0000

Groundwater

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	360.0000

Restart File

Save Restart: False

Resources & Lookup Table

Resources

Reference ET Folder: Unit Hydrograph Folder:

Rainfall Folder:

Lookup Tables

Boundary Stage Set: Extern Hydrograph Set:

Curve Number Set: Soil Storage-SFWMD

Green-Ampt Set: Vertical Layers Set:

Impervious Set: Soil Storage-SFWMD

Roughness Set: Crop Coef Set: Fillable Porosity Set: Conductivity Set: Leakage Set:

Tolerances & Options

Time Marching: SAOR IA Recovery Time: 24.0000 hr
Max Iterations: 6 ET for Manual Basins: False

Over-Relax Weight 0.5 dec

Fact:

(2D):

dZ Tolerance: 0.0010 ft Manual Basin Rain Opt: Global OF Region Rain Opt: Global Max dZ: 1.0000 ft

Link Optimizer Tol: 0.0001 ft Rainfall Name: ~SFWMD-72

Rainfall Amount: 22.00 in

Edge Length Option: Automatic Storm Duration: 72.0000 hr

Dflt Damping (2D): 0.0050 ft Dflt Damping (1D): 0.0050 ft Min Node Srf Area 100 ft2 Min Node Srf Area 100 ft2

(1D):

Energy Switch (1D): Energy Energy Switch (2D): Energy

Comment:

Scenario: Post-Development Run Date/Time: 7/23/2018 10:23:59 AM Program Version: ICPR4 4.03.02.00

Run Mode: Normal

_	Year	Month	Day	Hour [hr]
Start Time:	0	0	0	0.0000
End Time:	0	0	0	48.0000

Hydrology [sec] Surface Hydraulics Groundwater [sec] [sec] 60.0000 0.0500 900.0000

Min Calculation Time:

Max Calculation Time: 60.0000

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	5.0000

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	5.0000

	Year	Month	Day	Hour [hr]	Time Increment [min]
Ì	0	0	0	0.0000	360.0000

Restart File

Save Restart: False

Resources & Lookup Tables

Resource

Rainfall Folder: Reference ET Folder: Unit Hydrograph Folder: Lookup Tables

Boundary Stage Set: Extern Hydrograph Set:

Curve Number Set: Soil Storage-SFWMD

Green-Ampt Set:

Vertical Layers Set:

Impervious Set: Soil Storage-SFWMD

Roughness Set: Crop Coef Set: Fillable Porosity Set: Conductivity Set: Leakage Set:

Tolerances & Options

Time Marching: SAOR IA Recovery Time: 24.0000 hr Max Iterations: 6 ET for Manual Basins: False

Over-Relax Weight 0.5 dec

Fact:

(2D):

dZ Tolerance: 0.0010 ft Manual Basin Rain Opt: Global
Max dZ: 1.0000 ft OF Region Rain Opt: Global

Link Optimizer Tol: 0.0001 ft Rainfall Name: ~SCSIII-24
Rainfall Amount: 10.50 in

Edge Length Option: Automatic Storm Duration: 24.0000 hr

Dflt Damping (2D): 0.0050 ft
Min Node Srf Area 100 ft2

Dflt Damping (1D): 0.0050 ft
Min Node Srf Area 100 ft2

(1D):

Energy Switch (2D): Energy Energy Switch (1D): Energy

Comment:

Simulation: 25YR-72HR

Scenario: Post-Development
Run Date/Time: 7/23/2018 11:06:25 AM
Program Version: ICPR4 4.03.02.00

General

Run Mode: Normal

_	Year	Month	Day	Hour [hr]
Start Time:	0	0	0	0.0000
End Time:	0	0	0	96.0000
_	Hydrology [sec]	Surface Hydraulics [sec]	Groundwater [sec]	
Min Calculation Time:	60.0000	0.0500	900.0000	
Max Calculation Time:		60.0000		

Hydrology

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.0000

Surface Hydraulics

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.0000

Groundwater

	Year	Month	Day	Hour [hr]	Time Increment [min]
Ì	0	0	0	0.0000	360.0000

Save Restart: False

Resources

Reference ET Folder: Unit Hydrograph Folder:

Rainfall Folder:

Lookup Tables

Boundary Stage Set: Extern Hydrograph Set:

Curve Number Set: Soil Storage-SFWMD

Green-Ampt Set: Vertical Layers Set:

Impervious Set: Soil Storage-SFWMD

Roughness Set: Crop Coef Set: Fillable Porosity Set: Conductivity Set: Leakage Set:

Tolerances & Options

Time Marching: SAOR Max Iterations: 6 Over-Relax Weight 0.5 dec

IA Recovery Time: 24.0000 hr ET for Manual Basins: False

Fact:

(2D):

dZ Tolerance: 0.0010 ft Manual Basin Rain Opt: Global

Max dZ: 1.0000 ft OF Region Rain Opt: Global

Link Optimizer Tol: 0.0001 ft Rainfall Name: ~SFWMD-72

Rainfall Amount: 16.00 in

Edge Length Option: Automatic Storm Duration: 72.0000 hr

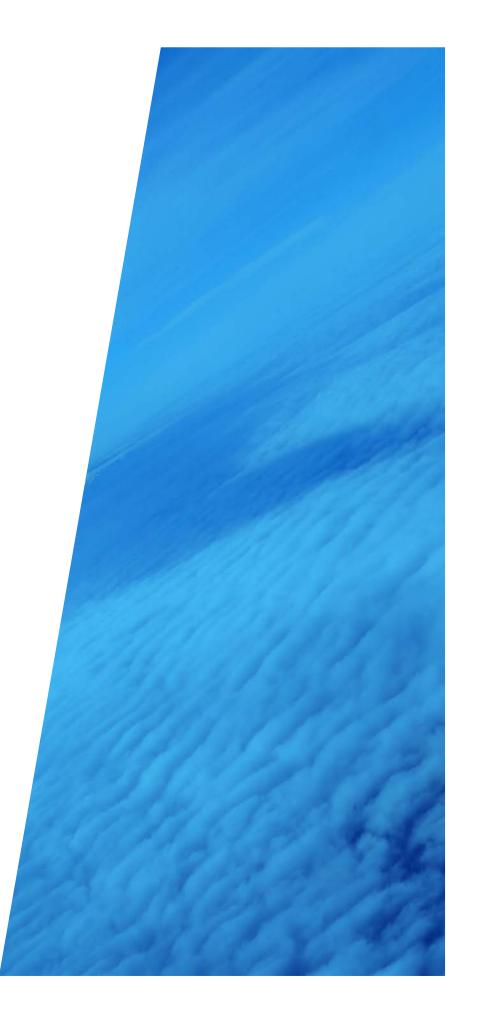
Dflt Damping (2D): 0.0050 ft
Min Node Srf Area 100 ft2

Dflt Damping (1D): 0.0050 ft
Min Node Srf Area 100 ft2

(1D):

Energy Switch (2D): Energy Energy Switch (1D): Energy

Comment:


Node Max Conditions [Post-Development]

Node Name	Sim Name	Warning Stage [ft]	Max Stage [ft]	Min/Max Delta Stage	Max Total Inflow [cfs]	Max Total Outflow [cfs]	Max Surface Area [ft2]
				[ft]			
B-O-1	100YR-72HR	12.50	11.93	0.0056	47.30	17.72	85827
B-O-2	100YR-72HR	12.00	12.03	0.0058	37.39	17.03	80318
B-O-3	100YR-72HR	12.00	12.20	0.0056	27.93	16.17	73510
C-2 Canal	100YR-72HR	7.50	7.50	0.0000	65.84	0.01	0
C-3 Canal	100YR-72HR	7.50	7.50	0.0000	50.04	0.00	0
POND 1	100YR-72HR	12.50	11.16	0.0010	237.78	50.04	206420
POND 2	100YR-72HR	12.50	13.43	0.0010	513.08	16.16	486061
B-O-1	10YR-24HR	12.50	11.27	0.0047	25.65	16.36	38666
B-O-2	10YR-24HR	12.00	11.54	0.0033	20.63	16.07	28244
B-O-3	10YR-24HR	12.00	12.00	0.0012	16.59	15.82	58977
C-2 Canal	10YR-24HR	7.50	7.50	0.0000	57.38	0.01	0
C-3 Canal	10YR-24HR	7.50	7.50	0.0000	39.23	0.00	0
POND 1	10YR-24HR	12.50	9.75	0.0010	145.38	39.23	196104
POND 2	10YR-24HR	12.50	10.47	0.0010	310.05	11.42	452920
B-O-1	25YR-72HR	12.50	11.54	0.0054	33.31	16.93	58079
B-O-2	25YR-72HR	12.00	11.74	0.0051	26.43	16.47	50451
B-O-3	25YR-72HR	12.00	12.04	0.0033	20.05	15.89	72213
C-2 Canal	25YR-72HR	7.50	7.50	0.0000	61.78	0.03	0
C-3 Canal	25YR-72HR	7.50	7.50	0.0000	44.02	0.00	0
POND 1	25YR-72HR	12.50	10.33	0.0010	171.64	44.02	200332
POND 2	25YR-72HR	12.50	11.84	0.0010	369.54	13.82	468137

APPENDIX E

AS-BUILT PLANS:

FPID 424655-1-52-01

ROADWAY PLANS SIGNING AND PAVEMENT MARKING PLANS SIGNALIZATION PLANS LANDSCAPING PLANS

A DETAILED INDEX APPEARS ON THE KEY SHEET OF EACH COMPONENT

INDEX OF ROADWAY PLANS

SHEET NO.	SHEET DESCRIPTION
1	KEY SHEET
2 - 3	SUMMARY OF PAY ITEMS
4 - 6	TYPICAL SECTIONS
7 - 9	SUMMARY OF QUANTITIES
10	GENERAL NOTES AND PAY ITEM NOTES
11 24	PLAN
25 - 27	STORMWATER POLLUTION PREVENTION PLAN
28	TRAFFIC CONTROL GENERAL NOTES
29 - 30	TRAFFIC CONTROL PLAN
31 44	TRAFFIC CONTROL PLAN PHASE I
CTL-1 CTL=3	PROJECT SURVEY CONTROL
UTV - 1	SUMMARY OF VERIFIED UTILITIES

INDEX OF FINAL PLANS COMPUTATION BOOK (1) FIELD BOOK (1)

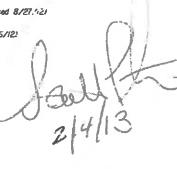
GOVERNING STANDARDS AND SPECIFICATIONS: FLORIDA DEPARTMENT OF TRANSPORTATION. DESIGN STANDARDS DATED 2010, AND STANDARD SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION DATED 2010. AS AMENDED BY CONTRACT DOCUMENTS.

SHOP DRAWINGS (2 SET) SIGNS: EDMS # 671352 SIGNALIZATION: EDMS #'S: 667153 & 667154 LANDSCAPE: EDMS # 683943 IRRIGATION: EDMS # 683939

AS-BUILT SIGNALIZATION & LIGTHING

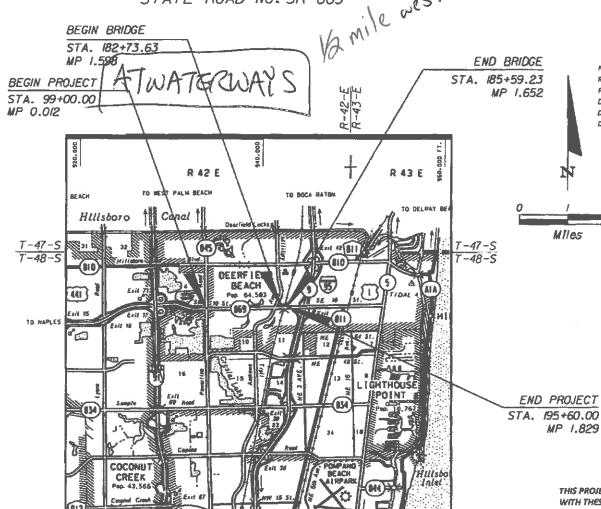
APPLICABLE DESIGN STANDARDS MODIFICATIONS: 01-01-2012 For Design Standards Modifications click on "Design Standards" at the following web site: http://www.dol.state.fl.us/rddesign/

Roadway sheets 1, 2, 3, 7, 18, 21, 41 (revised 8/27/12)


A Signing and Povement Workings sheets 5-3, 5-14 (revised 8/27/12)

▲ Signalization sheels T-2, T-6, T-7, T-8 (revised II/26/12)

A Roadway sheets 1, 3 (revised 11/25/12)


A Landscoping sheet LD-20 (revised 02/01/13)

A Roadway sheet ! (revised 02/01/13)

STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION

FINANCIAL PROJECT ID 424665-1-52-01 BROWARD COUNTY (86012)

ROADWAY SHOP DRAWINGS TO BE SUBMITTED TO:

PROJECT

LOCATION

NAME OF CONTRACTOR: COMMUNITY ASPHALT CORP..

RESIDENT ENGINEER: CLEO MARSH, P.E.

PROJECT ENGINEER: ARTURO CASTRO.

DATE WORK STARTED: June 22, 2012 DATE WORK FINAL ACCEPTANCE: March 22, 2013

DISTRICT SECRETARY: JAMES WOLFE, P.E.

MORAYMA OCHOA DISTRICT 4 STRUCTURES OFFICE 3400 WEST COMMERCIAL BLVD. FORT LAUDERDALE, FL. 33309-3421

KEY WEST

PLANS PREPARED BY:

HUMBERTO ARRIETA, E.I. INES SHAFFER DISTRICT 4 IN-HOUSE DESIGN SECTION 2 3400 WEST COMMERCIAL BLVD. FORT LAUDERDALE, FL. 33309-3421

CONSTRUCTION CONTRACT NO. E4M96

JACKSONVILLE

T PIERCE

LMIDERDALE

HOTE: THE SCALE OF THESE PLANS MAY HAVE CHANGED DUE TO REPRODUCTION.

THIS PROJECT WAS CONSTRUCTED IN SUBSTANCIAL COMPLIANCE WITH THESE PLANS AS PROVIDED BY THE ENGINEER OF RECORD. IF CHANGES WERE MADE, THOSE CHANGES ARE INDICATED BY BLACHINK REVISION AND BEAR THE SEAL, SIGNATURE

KEY SHEET REVISIONS

DESCRIPTION

PENSACOLA

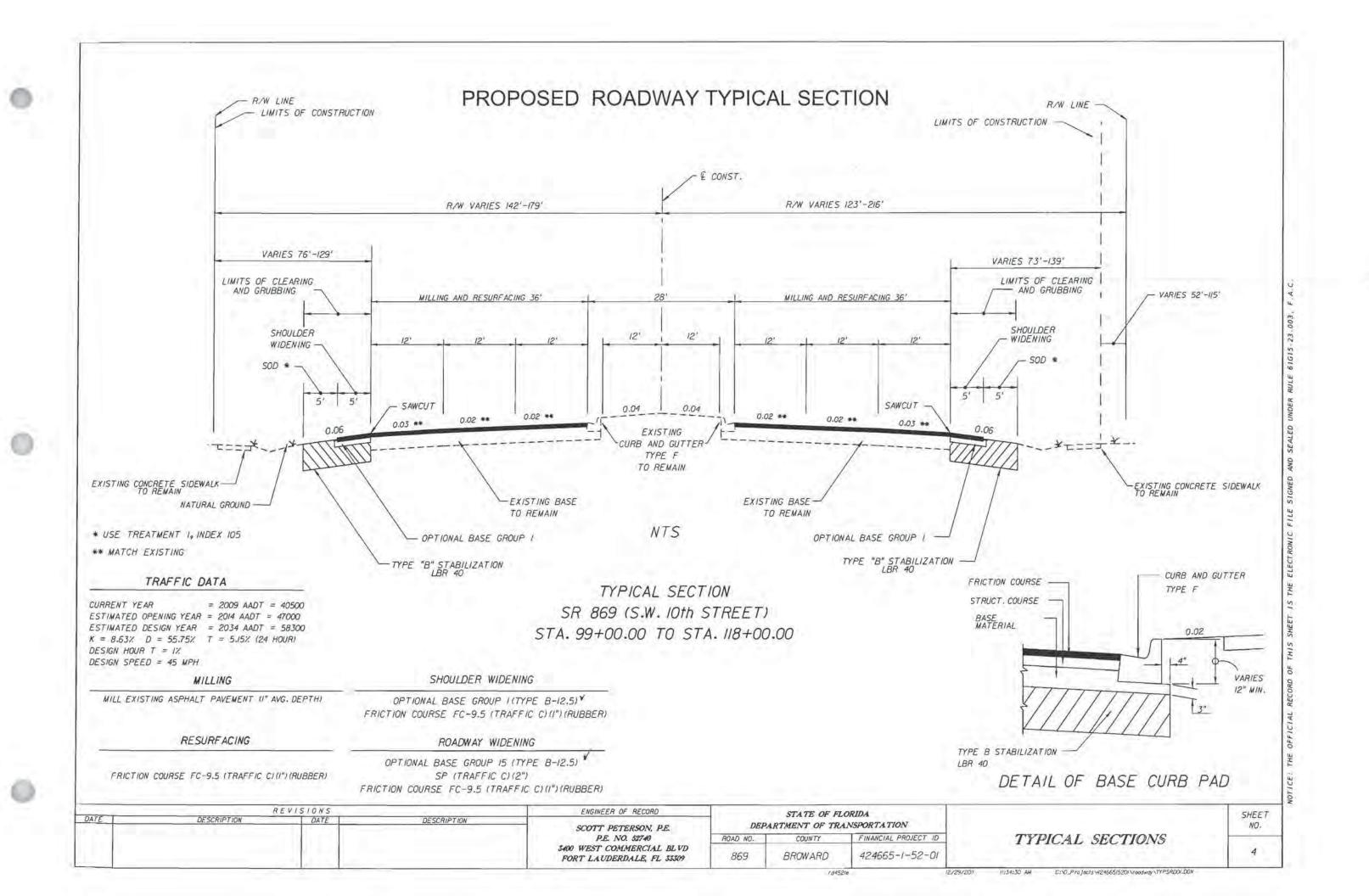
	l	
ES		DATE
.775		
.054		
.829		
N/A		

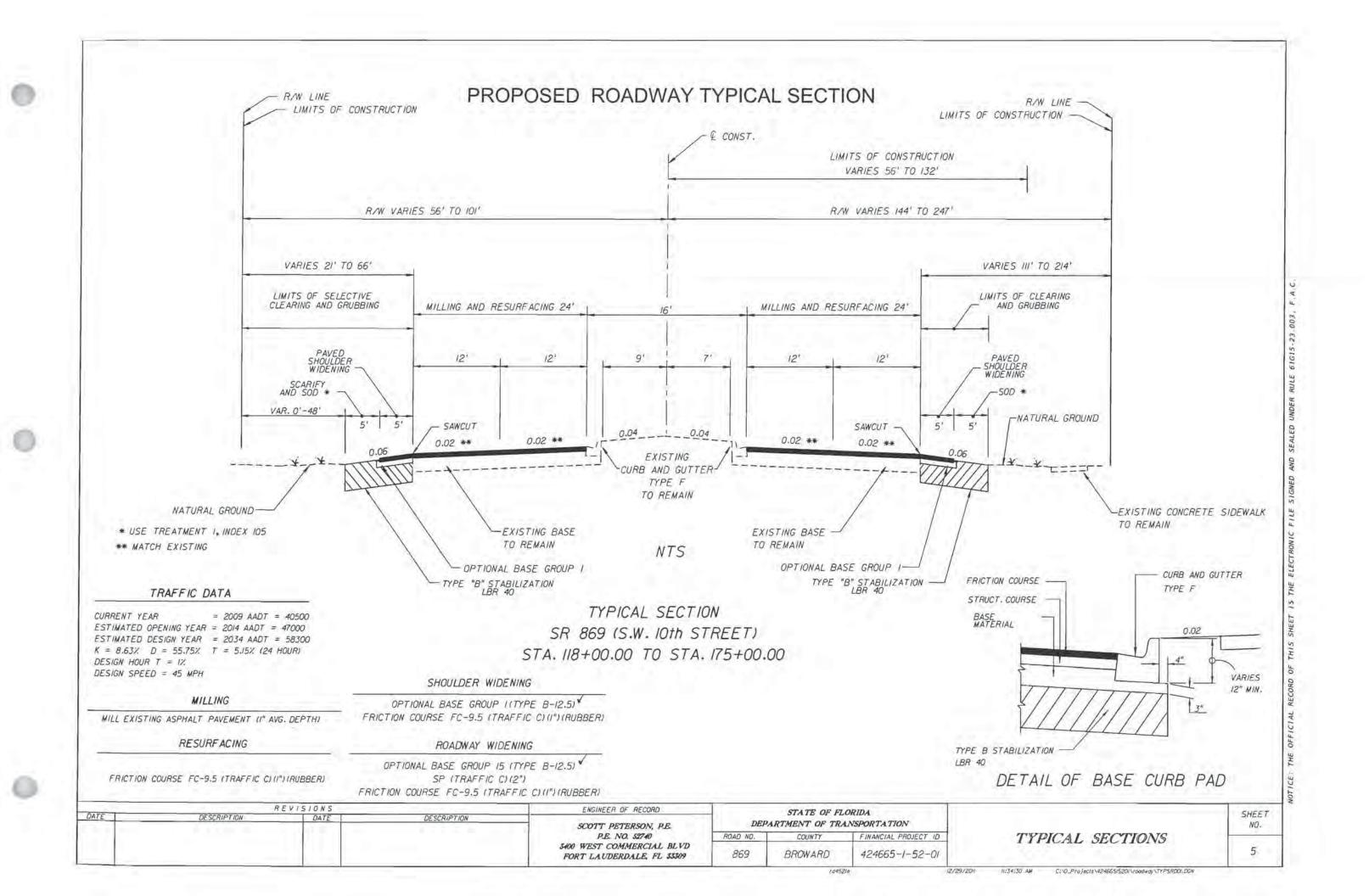
ENGINEER OF RECORD: SCOTT J. PETERSON, P.E.

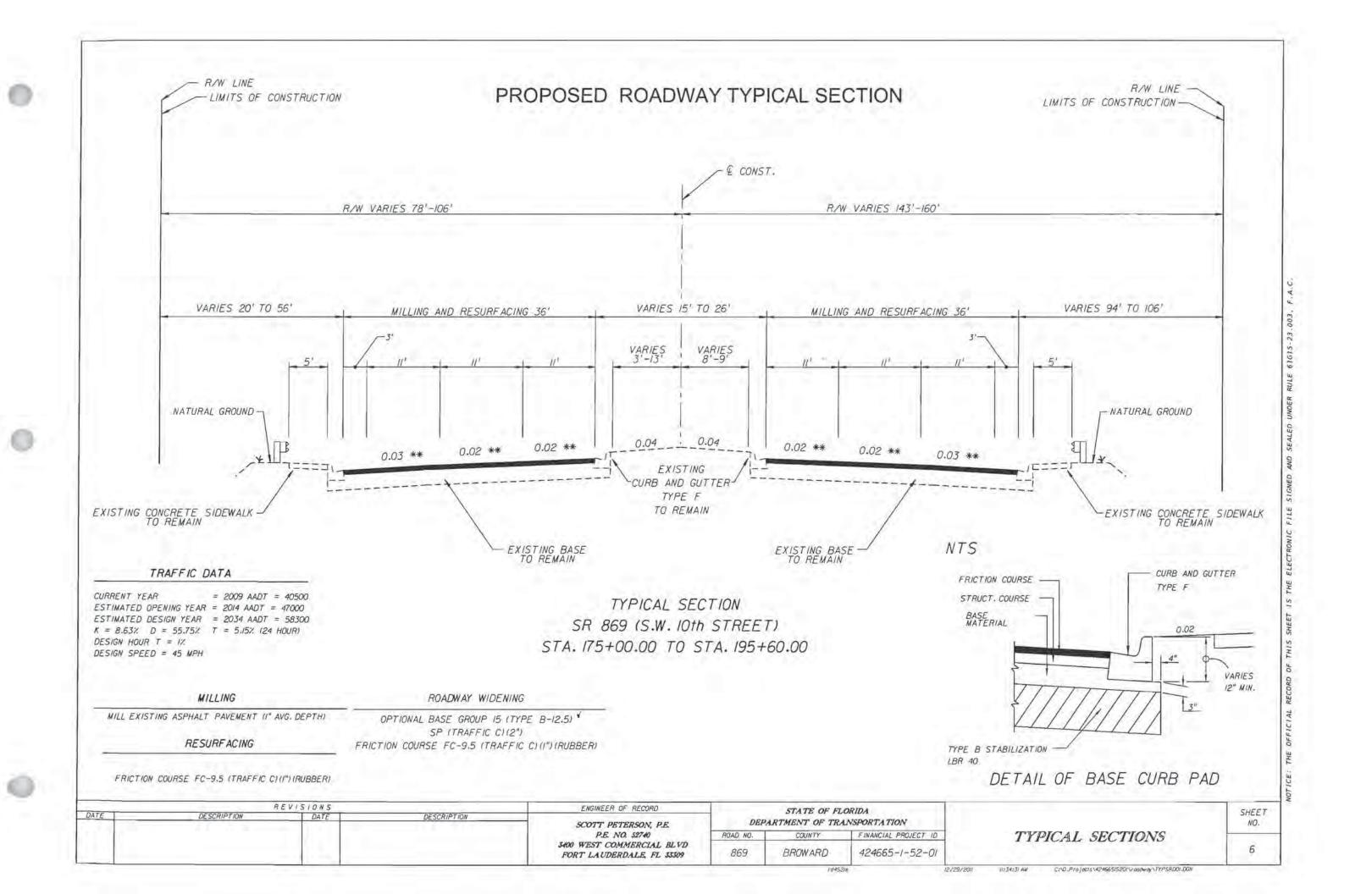
P.E. NO.: 52740

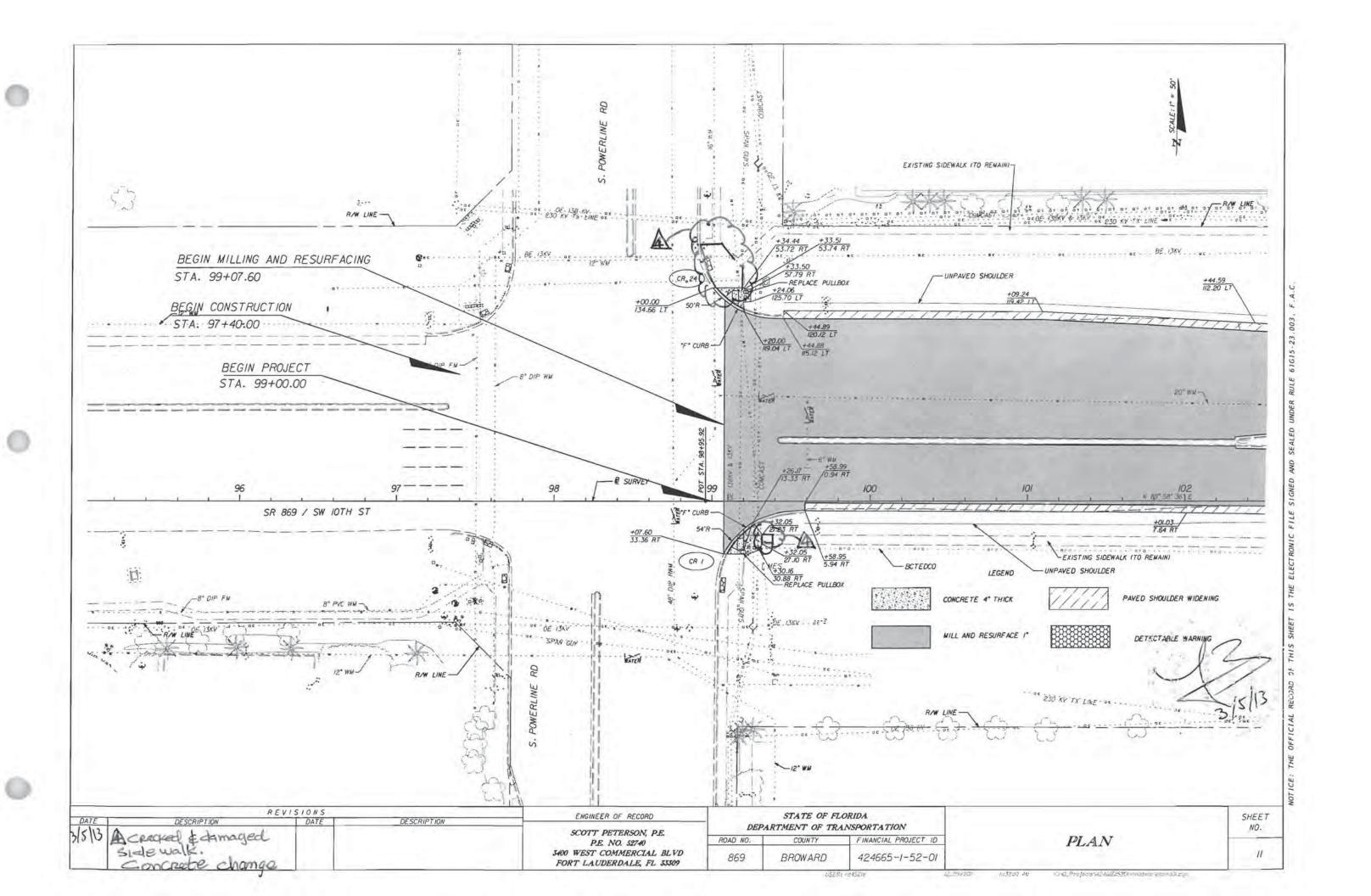
FISCAL YEAR	SHEET NO.
12	1

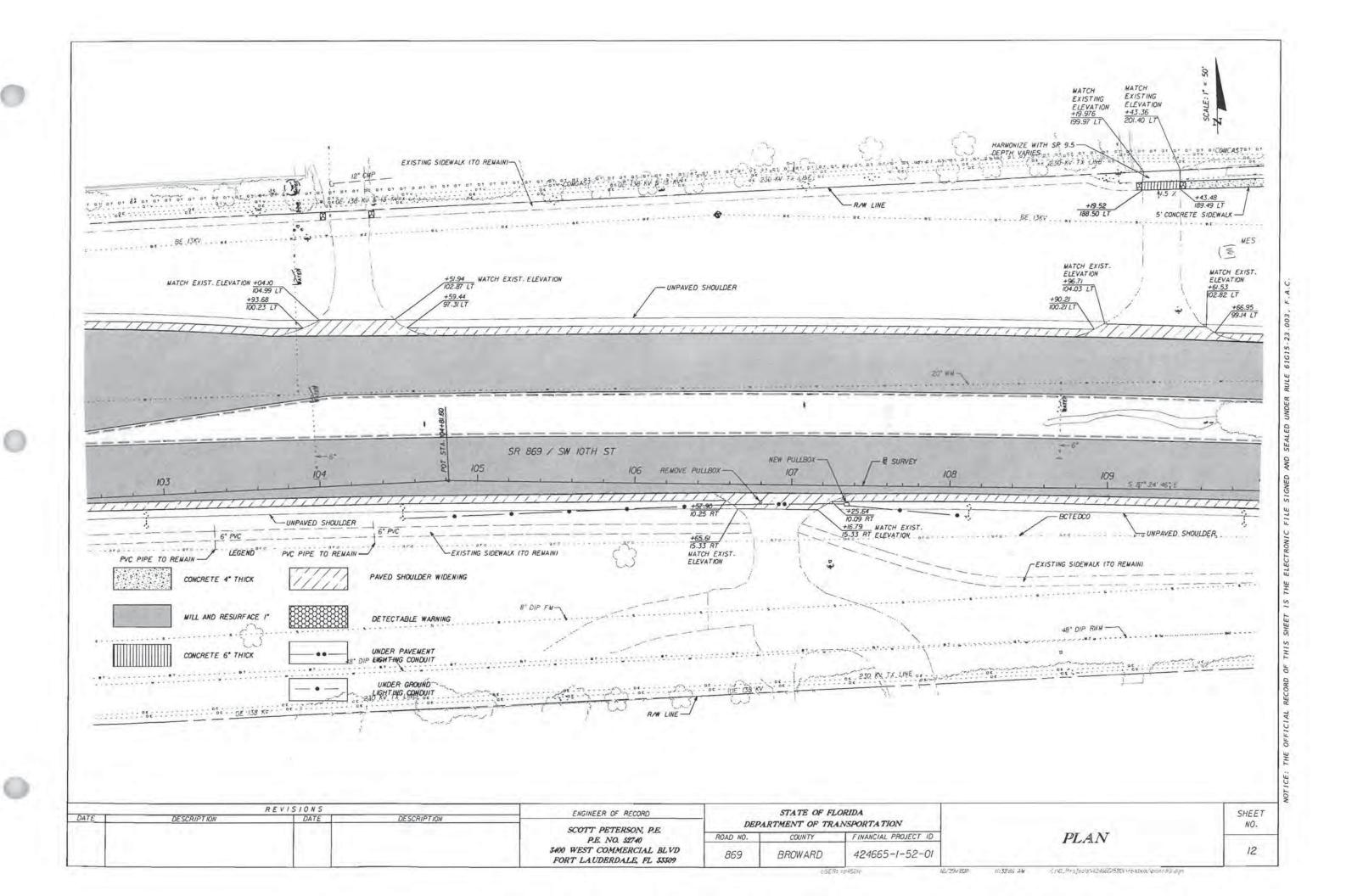
FINAL "AS BUILT" PLANS

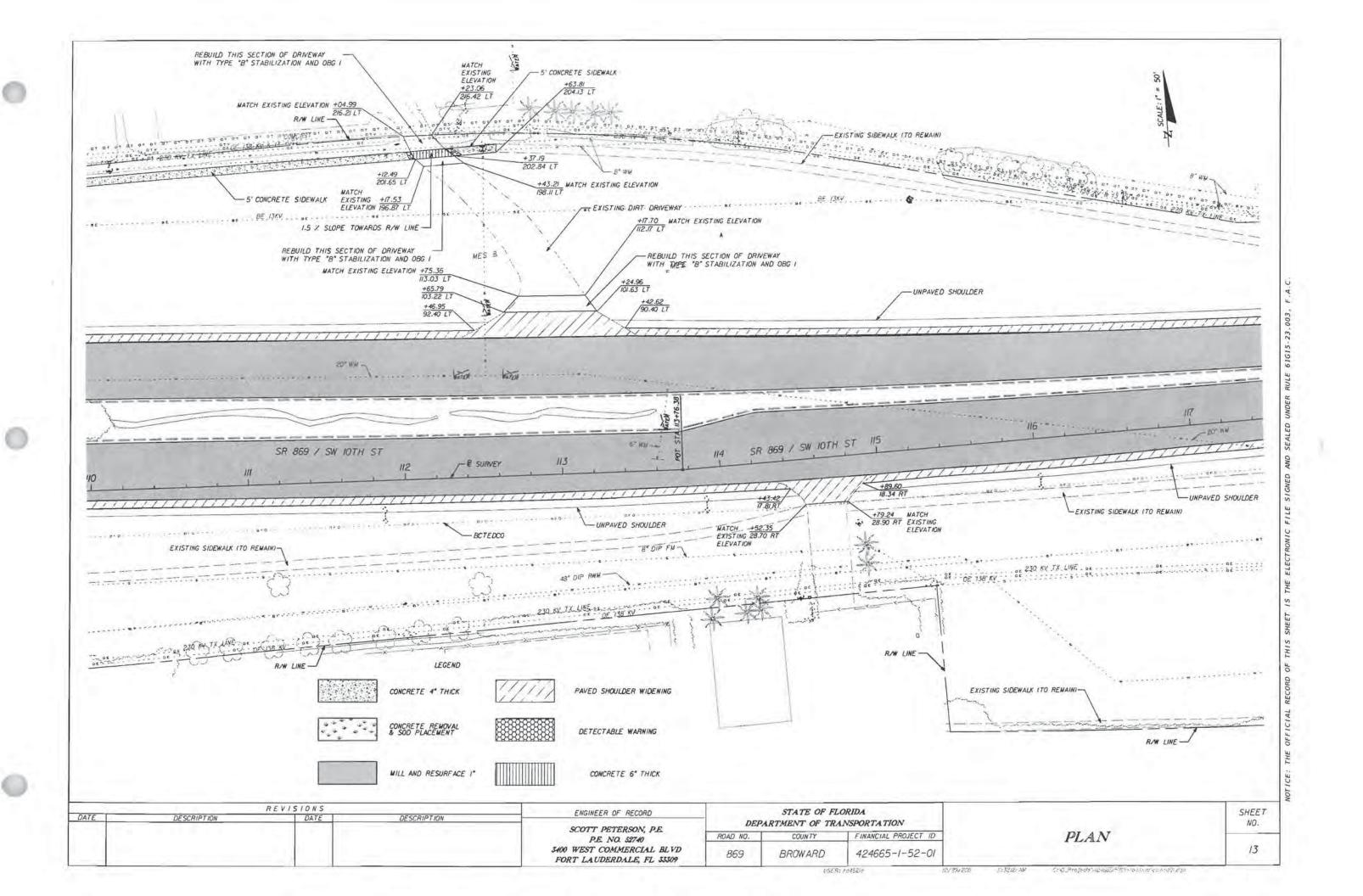

STATE ROAD NO. SR-869

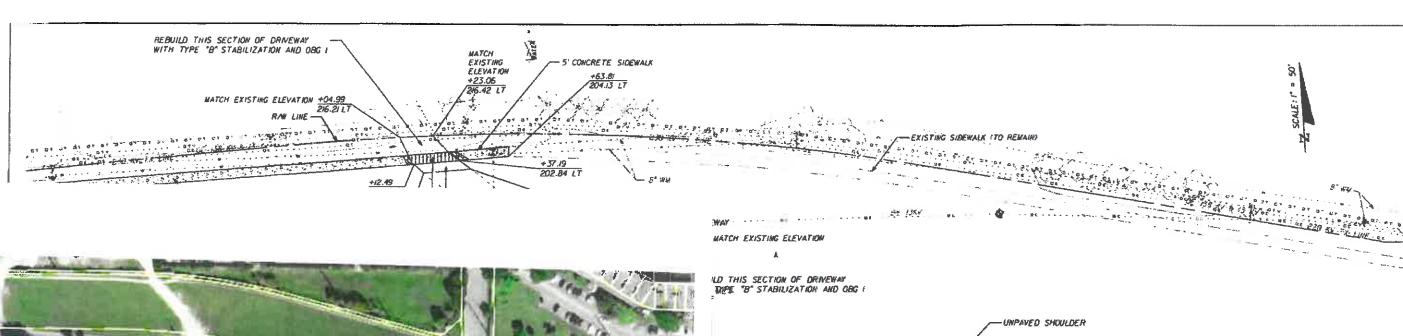

MP 1.829


PROJECT LENGTH IS BASED ON & OF SURVEY


LENGTH	OF PROJEC	T
	LINEAR FEET	MILES
ROADWAY	9374	1.775
BRIDGES	286	0.054
NET LENGTH OF PROJECT	9660	1.829
EXCEPTIONS	N/A	N/A
GROSS LENGTH OF PROJECT	9660	1.829

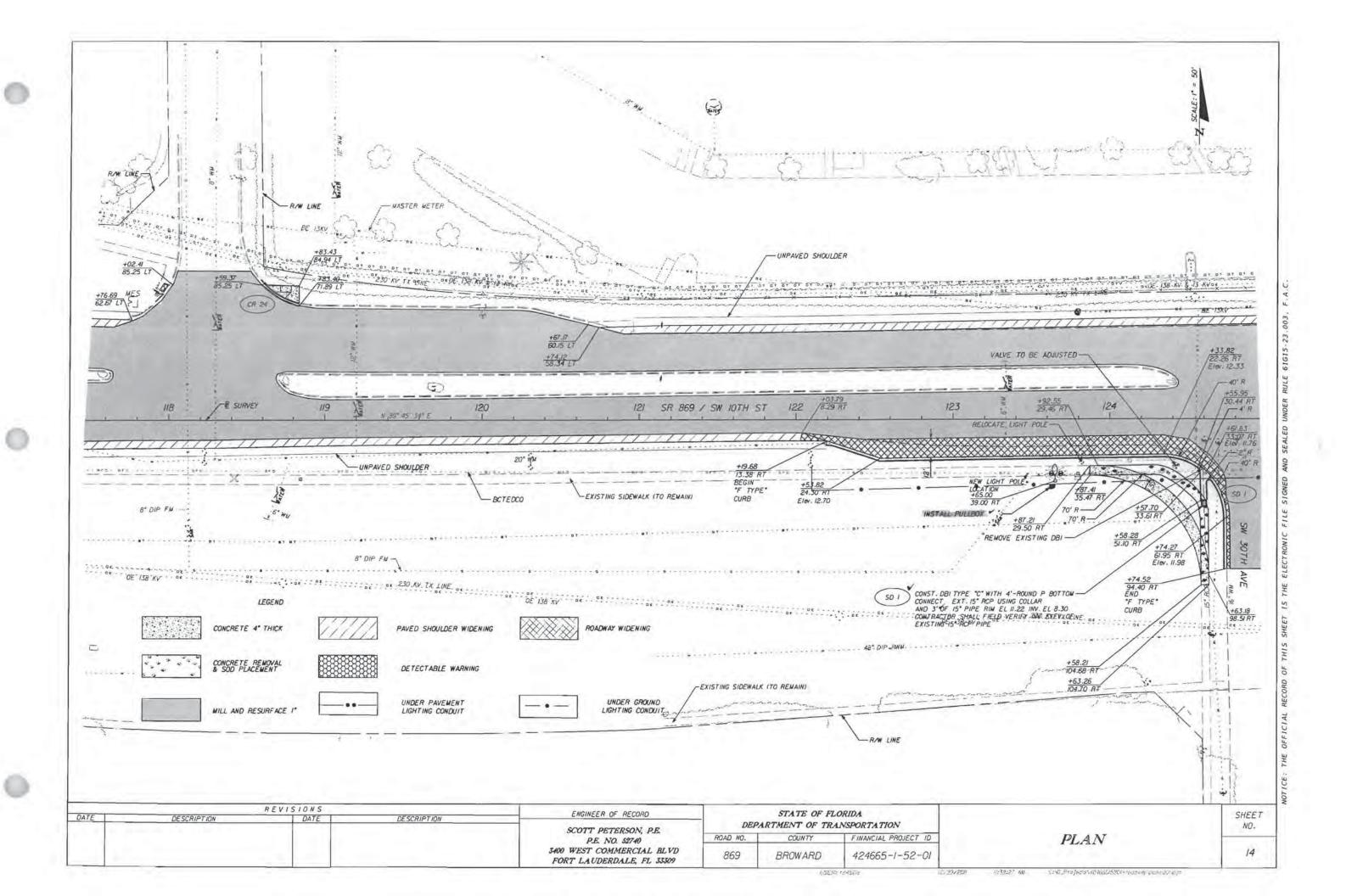

FDOT PROJECT MANAGER: SCOTT J. PETERSON, P.E.

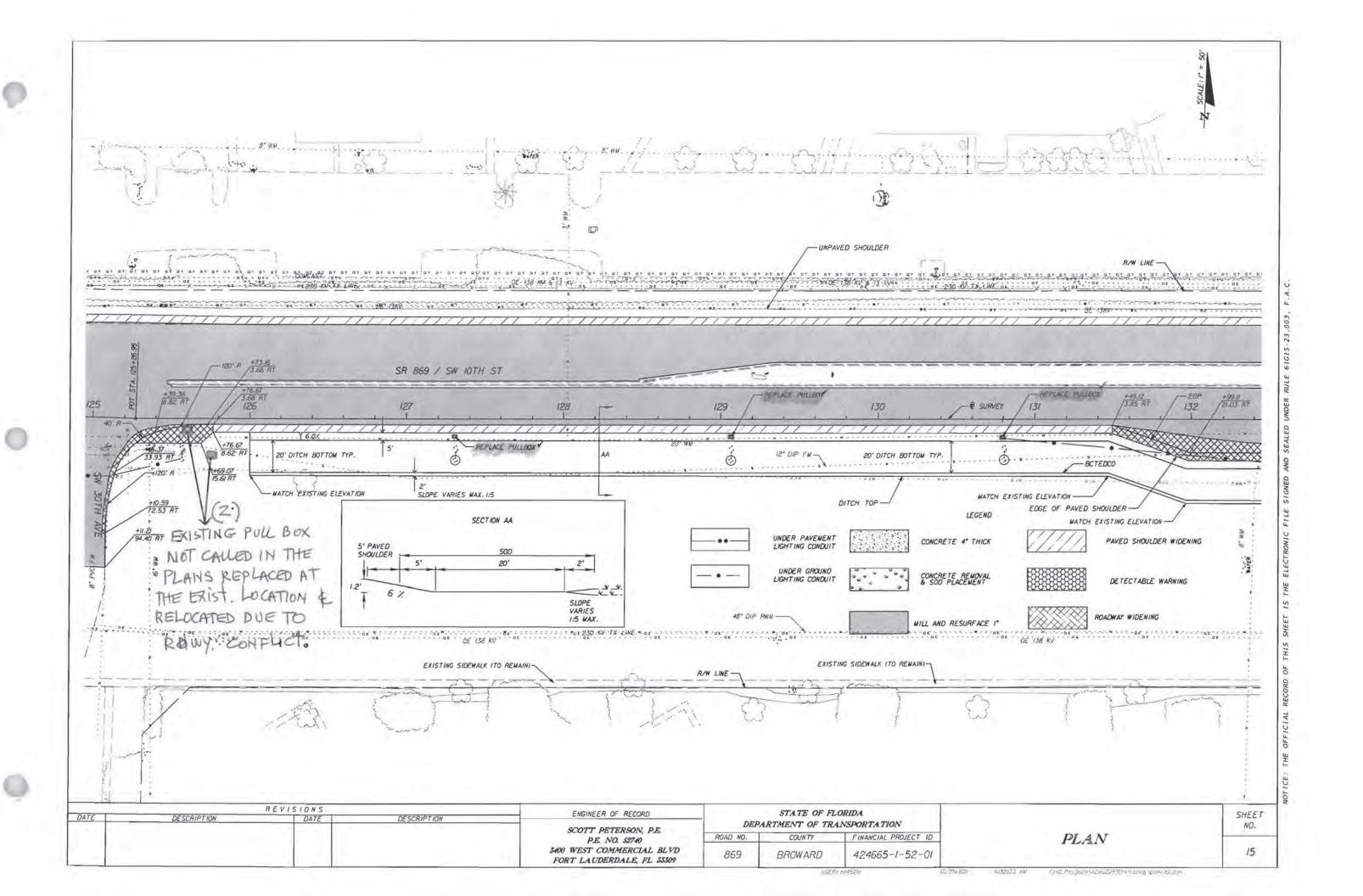


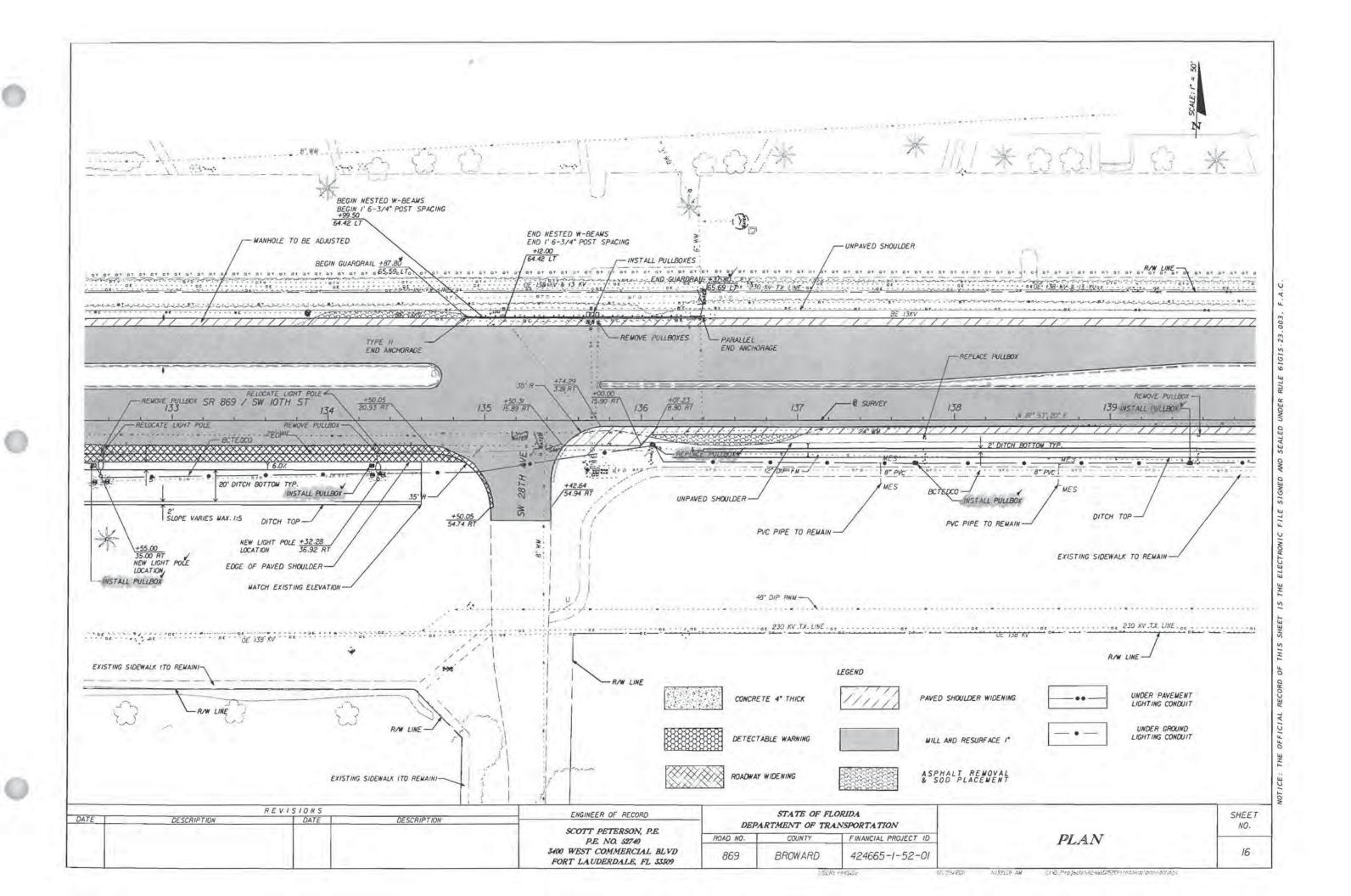


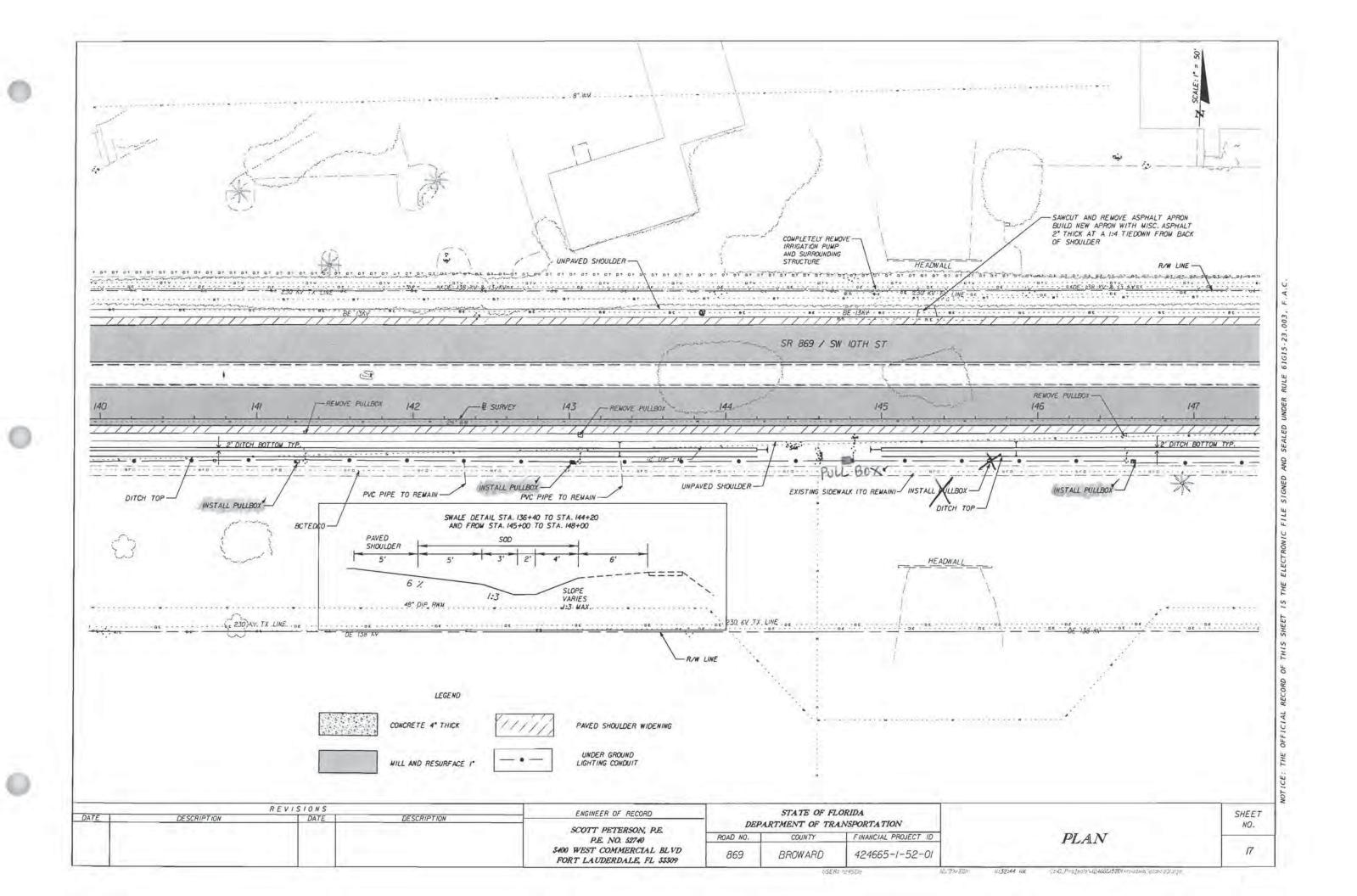
HYPOTH. POND SITE FOR RIW COST ESTIMATE ONLY

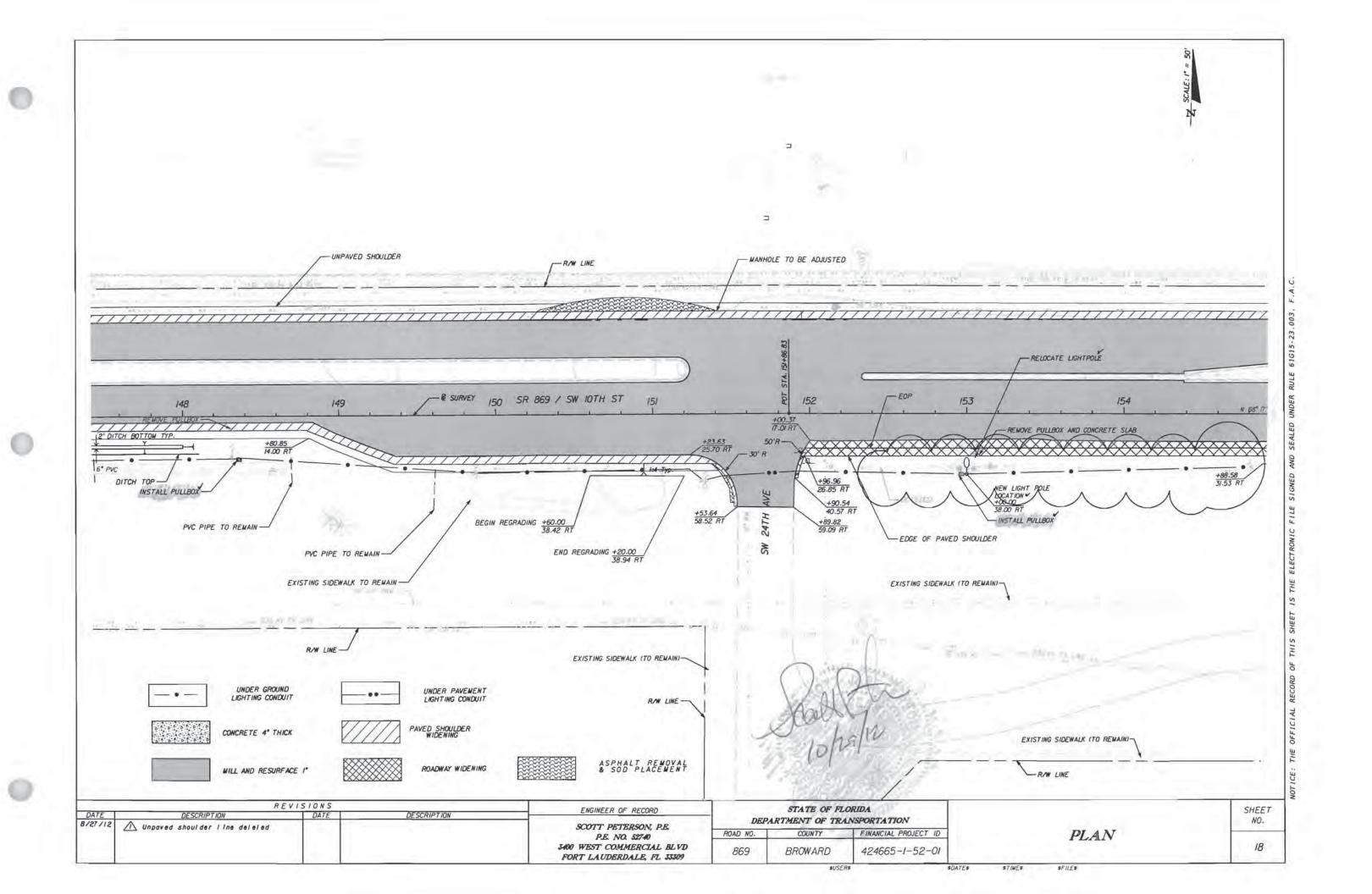
THE SR 848 / SN ROTH ST IIS 183 80 18-38 80 18-38 81 18-38 80
HIS SR 8889 SN NOTH ST 115 +83.60 18.34 RT 19.24 MATCH 22.50 RT EXISTING EXISTING SIDEWALK (TO REMAIN) FILE ELEVATION 81 OF 150 RV 82 230 8V TX LINE 83 80 SN TX LINE 84 85 150 RV 85 86 SN TX LINE 86 86 SN TX LINE 86 86 SN TX LINE 87 86 SN TX LINE 88 8
HIS SR 8889 SN NOTH ST 115 +83.60 18.34 RT 19.24 MATCH 22.50 RT EXISTING EXISTING SIDEWALK (TO REMAIN) FILE ELEVATION 81 OF 150 RV 82 230 8V TX LINE 83 80 SN TX LINE 84 85 150 RV 85 86 SN TX LINE 86 86 SN TX LINE 86 86 SN TX LINE 87 86 SN TX LINE 88 8
THE SE SES SE RETH SE 103 SE SES SE RETH SE 103 SE SES SE RETH SE 104 SE SES SE RETH SE 105 SE
HAS SO HAS SO THE STATE OF THE SELEVATION STA
H3.50 H3
H3.50 H3
HATCH 192.35 EXISTING SIDEWALK (TO REMAIN) WATCH 192.35 EXISTING SIDEWALK (TO REMAIN) EXECUTION ELEVATION ST. C. 150 RV TX 4/1/6
HATCH 192.35 EXISTING SIDEWALK (TO REMAIN) WATCH 192.35 EXISTING SIDEWALK (TO REMAIN) EXECUTION ELEVATION ST. C. 150 RV TX 4/1/6
UNDAVED SHOULDER 17.9.24 MATCH 28.90 RT EXISTING EXISTING SIDEMALK (TO REMAIN)
WATCH S2.35 EXISTING SIDEWALK (TO REMAIN)
WATCH S2.35 EXISTING 28.70 RT ELEVATION ELEVATION SE S
WATCH 192.35 ELEVATION FU ELEVATION ELEVAT
81 OE 188 N
81 OE 188 N
SE OF 150 AV TA CHIEF SE
RAN LINE
R/W LINE -
RIN LINE
The state of the s
NG EXISTING SIDEWALK (TO REMAIN)
RAN LINE

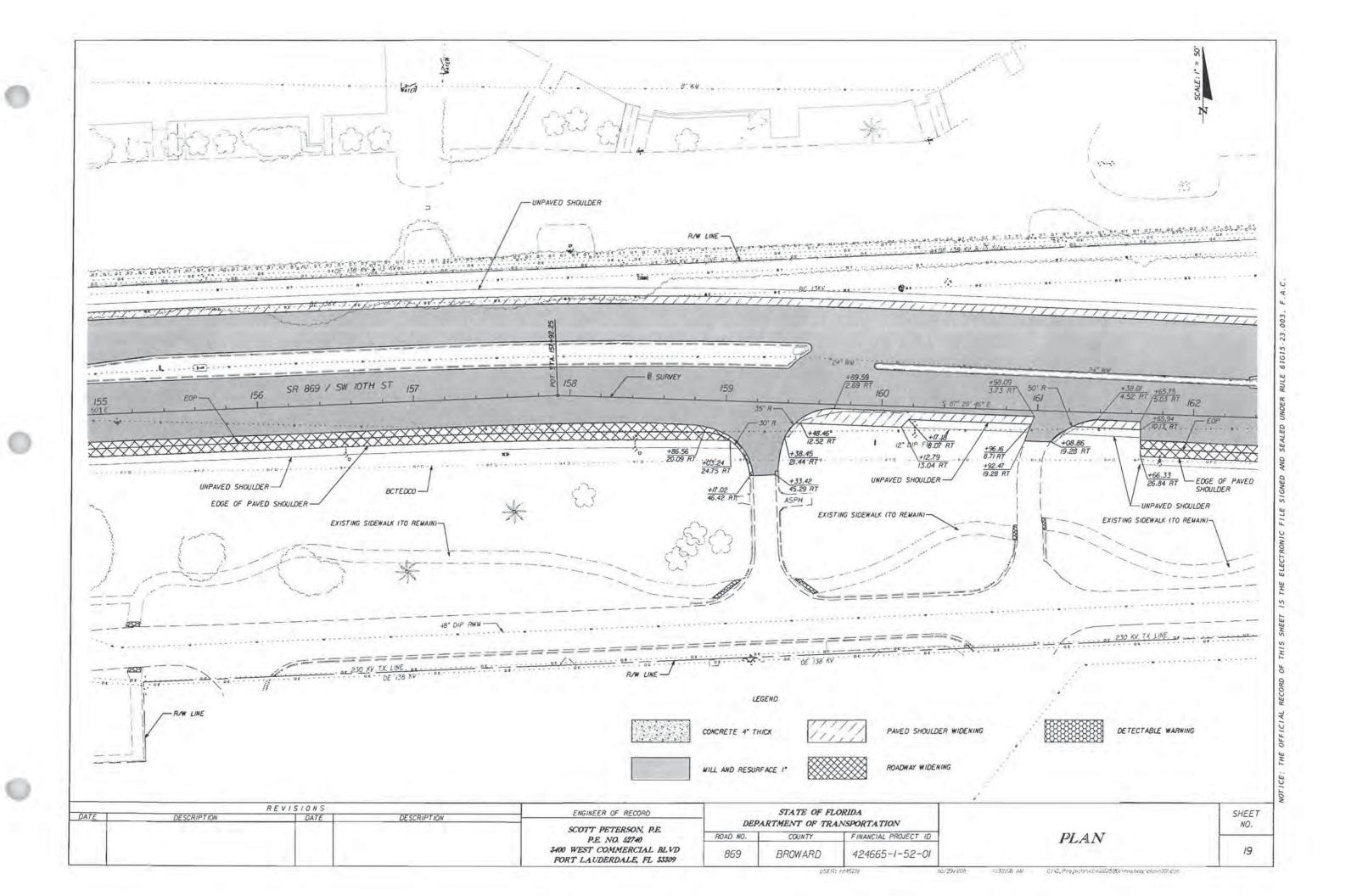

STATE OF FLORIDA

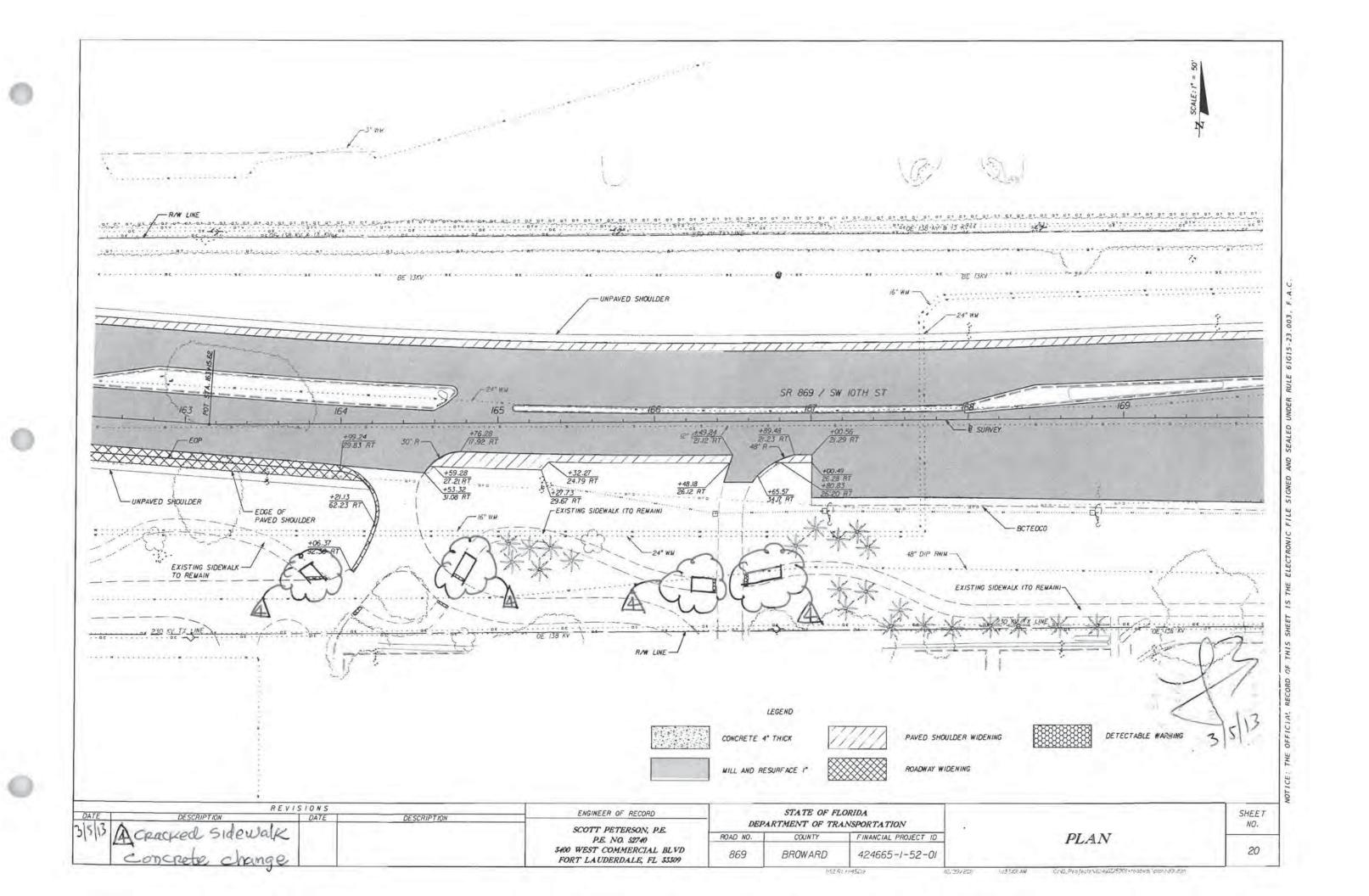

DEPARTMENT OF TRANSPORTATION

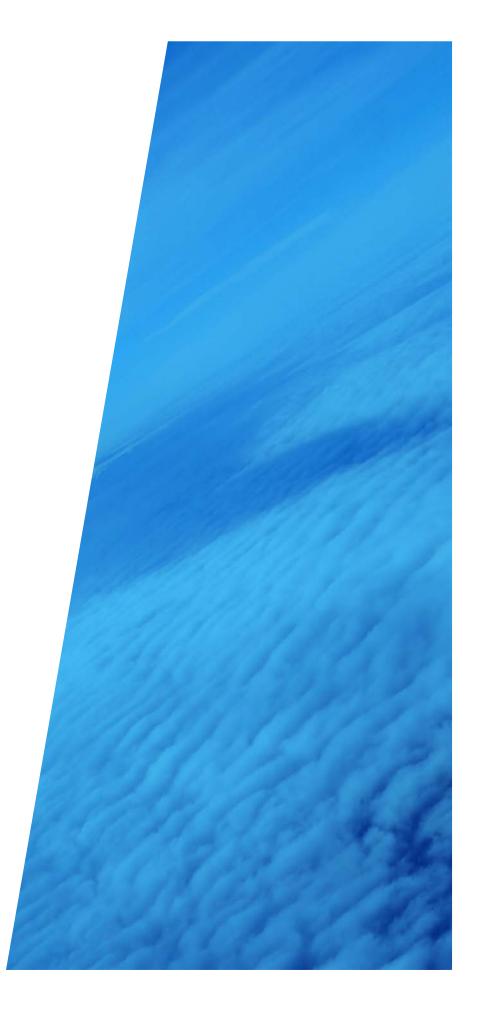

ROAD NO. COUNTY FINANCIAL PROJECT ID


PLAN


13







APPENDIX F

SFWMD DRAINAGE AND PERMIT DOCUMENTATION

TECHNICAL MEMORANDUM

AN ATLAS OF EASTERN BROWARD COUNTY SURFACE WATER MANAGEMENT BASINS

Ву

Richard M. Cooper Jim Lane

DRE 231

November 1987

Water Resources Division Resource Planning Department South Florida Water Management District

HILLSBORO CANAL BASIN

Description of the Basin

The Hillsboro Canal basin has an area of approximately 102 square miles and is located in northeastern Broward County (40 square miles, Figure 2) and southeastern Palm Beach County (62 square miles). The basin boundary in Broward County relative to local roads and landmarks is shown on Map A. A schematic map showing the basin boundary, canals, and control structures is given in Figure 3.

The Project canals and control structures in the Hillsboro Canal basin have five functions: (1) to provide flood protection and drainage for the basin, (2) to supply water to the basin during periods of low natural flow, (3) to convey excess water from Water Conservation Area (WCA) 1 to tidewater, (4) to intercept and control seepage from WCA 2A, and (5) to maintain a groundwater surface elevation west of Deerfield Lock adequate to prevent saltwater intrusion into local groundwater. Excess water in the basin is discharged to tidewater by way of the Hillsboro Canal and Deerfield Lock. Excess water in WCA 1 is discharged to the Hillsboro Canal by way of S-39 and subsequently to tidewater by way of Deerfield Lock. Deerfield Lock also regulates water surface elevations in the Hillsboro Canal. Water supply to the basin is from WCA 1 by way of S-39, from WCA 2A by way of seepage to the L-36 borrow canal, and from local rainfall. The seepage rate to the L-36 borrow canal is regulated by the stage held in the canal by S-39A and S-38B.

There are two Project canals in the Hillsboro Canal basin: the Hillsboro Canal and the section of the L-36 borrow canal between the Hillsboro Canal and S-38B.

The Hillsboro Canal connects Lake Okeechobee to the Atlantic Ocean. It enters the basin through S-39 at the intersection of L-36 and L-40. Within the Hillsboro Canal basin, the Hillsboro Canal is aligned parallel to and just north of State Road 827 west of State Road 7 and parallel to and one-half mile north of State Road 810 east of State Road 7. Direction of flow in the canal is normally to the east with discharge to the Intracoastal Waterway just west of the intersection of A1A and State Road 810.

The L-36 borrow canal is aligned north-south along the western boundary of the basin and south of the Hillsboro Canal. The canal intercepts seepage from WCA 2A and is tributary to the Hillsboro Canal. Direction of flow in the canal is to the north to the Hillsboro Canal.

There are four Project control structures regulating flow in the Hillsboro Canal basin: S-38B, S-39, S-39A, and Deerfield Locks (G-56). Design criteria for these structures are given in Table 1.

S-38B is a gated culvert located in the alignment of the L-36 borrow canal just north of Wiles Road at the North Springs Improvement District pump station. The structure is always closed and acts as a divide between the Hillsboro Canal basin and the C-14 basin. The pump station discharges up to 110 cfs of water to either side of S-38B. This water is drainage from the southeast corner of the Hillsboro Canal basin.

S-39 is a gated spillway located in the alignment of the Hillsboro Canal at the intersection of L-39 and L-40. This structure regulates discharges from WCA 1 to the

Hillsboro Canal basin. During normal operation S-39 is opened to supply water to the Hillsboro Canal basin as required to maintain the optimum stage at Deerfield Lock. When WCA 1 is over schedule the structure may be opened to discharge excess water in the WCA to tidewater, by way of the Hillsboro Canal, provided two conditions are met: (1) the water is not needed in WCA 2 or WCA 3 and (2) the Hillsboro Canal is not flowing to capacity (i.e., the tailwater stage at S-39 does not exceed 9.0 ft NGVD).

S-39A is a gated culvert located in the alignment in the L-36 borrow canal just south of the Hillsboro Canal. Together with S-38B this structure controls the seepage rate from WCA 2A to the L-36 borrow canal by regulating the water level in the borrow canal. Normally a stage of 7.0 to 7.5 ft NGVD is maintained in the canal. Runoff, pumped drainage, and seepage to the canal are discharged to the Hillsboro Canal by S-39A.

Deerfield Lock (G-56) is a flashboard controlled five-bay spillway and lock structure. A gated spillway has been constructed within the lock. Deerfield Lock is located in the alignment of the Hillsboro Canal about three-quarters of a mile west of I-95. It controls water surface elevations in the upper reach of the Hillsboro Canal, and it controls discharges to tidewater. In so far as is possible the headwater stage at Deerfield Lock is maintained at 7.7 ft NGVD. This is usually adequate to prevent saltwater intrusion into local groundwater.

Comments on Design and Historic Operation

There is no design storm for the Hillsboro Canal. It was built prior to the Project. The District assumed responsibility for the canal and Deerfield Lock from the Everglades Drainage District.

The Hillsboro Canal above Deerfield Lock will pass approximately 1600 cfs without any flooding occurring in the basin. This provides flood protection of approximately three-quarters of an inch of runoff per day; however, allowable runoff into the canal above Deerfield Lock is 1.3 inches of runoff per day (35 cfs per square mile). The total allowable inflow to the canal upstream of Deerfield Lock varies from 2500 to 2700 cfs depending on the drainage area assumed. A hydraulic analysis made in 1974 indicated that if all culverts and pumps discharging into the canal were operated at the allowable runoff discharge, the tailwater stage at S-39 would be approximately 11 ft NGVD. Stages above 9 ft NGVD cause flooding in pasturelands in the southwestern portion of the basin.

To pass the allowable discharge at a stage no higher than 9.0 ft NGVD would require enlarging the Hillsboro Canal from Powerline Road to the west end at 5-39. It would also require a new structure (to replace the spillway at Deerfield Lock) capable of passing approximately 3000 cfs at a difference between headwater and tailwater stages of 0.5 feet.

Most inflows to the Hillsboro Canal are from Lake Worth Drainage District canals in Palm Beach County. Because some of the north-south flowing LWDD canals do not have divide structures between the Hillsboro Canal basin and the C-15 basin (nor between the C-15 basin and the C-16 basin), some interbasin transfer of water may occur. This is especially true in the western portions of the C-15 and C-16 basins. Land in the C-15 and C-16 basins between L-40 and the Florida Turnpike may, under some conditions, drain to the Hillsboro Canal by way of LWDD canal E-1.

The stage held in the LWDD canals determines to some extent whether runoff in the basin enters the Hillsboro Canal upstream or downstream of Deerfield Lock. The drainage area upstream of Deerfield Lock may vary by as much as several square miles as the stages in the LWDD canals, especially E-3, vary. E-3 flows to the south one-half mile to the west of and parallel to Military Trail. It enters the Hillsboro Canal just downstream of Deerfield Lock. LWDD typically operates E-3 at a stage of 10 ft NGVD. At this stage, E-3 drains lands as far west as the Florida Turnpike, subtracting considerably from land that would otherwise drain to the upstream side of Deerfield Lock.

During severe storms the Hillsboro Canal develops flows to the east and to the west. The westward flow usually starts at U. S. Highway 441 and moves west to LWDD canal E1/2W approximately three miles west of U. S. Highway 441. The westward flow has a duration of 36 to 48 hours and causes flooding of pasturelands in the southwestern portion of the basin. The peak stage of the westward flow probably occurs one-half to three-quarters of a mile west of U. S. Highway 441. Owners of new developments in the southwestern portion of the basin are required to hold all of the runoff from their property for 48 hours. If the tailwater stage at S-39 exceeds 12.5 ft NGVD, the developers must also accept inflows of water from outside their property and hold it in their reservoirs.

Peak discharges and headwater stages in the basin occurred during the April 25, 1979 storm. The peak discharge at Deerfield Lock was 3700 cfs with an average flow for the day of 3030 cfs. Discharges above 3000 cfs cause flooding in the Boca Raton area and in the area west of U. S. Highway 441. The peak headwater stage at Deerfield Lock was 10.86 ft NGVD with an average for the day of 8.79 ft NGVD. The average tailwater stage on April 25 was 5.51 ft NGVD, and on April 26, it was 6.95 ft NGVD.

Peak tailwater stages occurred during the October 15, 1965 storm. Peak stage at the west end of the Hillsboro Canal at S-39 was 12.39 ft NGVD. At Deerfield Lock, the peak tailwater stage was 9.2 ft NGVD.

HILLSBORO CANAL BASIN 65.600 ACRES 25.700 ACRES BROWARD

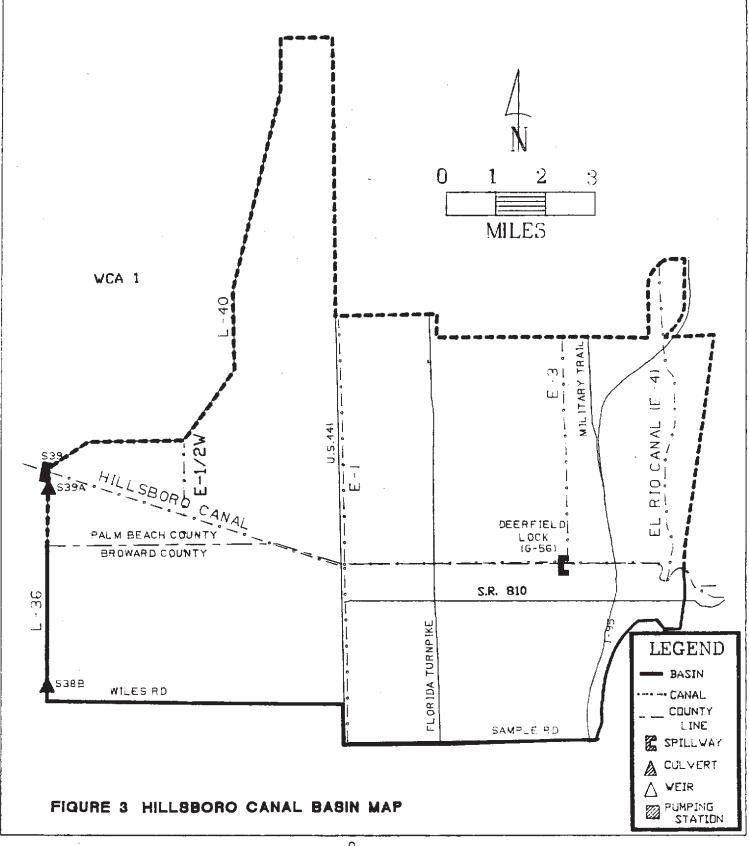


TABLE 1. Hillsboro Canal Basin Structures - Design Criteria

Structure	Type	Design HW Stage (ft NGVD)	Design TW Stage (ft NGVD)		Design Q (cfs)	Peak Stage (ft NGVD) and Q (cfs)	Date of Peak Occurrence
Deerfield Lock (G-56) Stage divide	Weir with flashboards 5-bays, 12ft each Crest lgth = 60ft Crest elev = 1.0ft NGVD Gated spillway Crest lgth = 25 ft Crest elev = -4.5ft NGVD	4.0	3.5	HW = 7.7	1600	HW = 10.86 TW = 9.2 Q = 3700	4/25/79 10/15/65 4/25/79
S-39 Water supply, regulatory releases to Hillsboro Canal from WCA-1	Spillway Taintor Gate 16 ft x 9.2 ft Weir Igth = 15 ft. Crest elev = 2.5ft NGVD	11.0	9.0	TW = 9.0 max. HW = WCA 1 Regulation schedule	800	TW = 12.39	10/15/65
S-39A Stage divide	Culvert with riser and stop logs 3-72 in x 54 ft. CMP			HW = 7.0-7.5			
S-388 Divide C-14 and Hillsboro basins	Gated Culvert 1-66in x 72ft CMP Invert elev = 0ft NGVD	9.0	7.65				
n = inches	igth - Length	CN 15 - C-	unated a second a lac	FIGURE 1 Landon			

in = inches ft = feet elev = elevation lgth = Length TW = Tail water Q = discharge in cfs

ds = downstream ups = upstream

CMP = Corrugated metal pipe HW = Head water
RCP = Reinforced concrete pipe CFS = Cubic feet per second
ft NGVD = Feet relative to National Geodetic Vertical Datum

Appendix A: SFWMD - ALLOWABLE DISCHARGE FORMULAS

<u>Canal</u>	Allowable Runoff	<u>Design</u> Frequency
C-1	$Q = \frac{(112)}{\sqrt{A}} + 31) A$	10 year
	\sqrt{A}	TO year
C-2	Essentially unlimited inflow by gravity connections southeast of Sunset Drive: 54 CSM northwest of Sunset Drive	200 year +
C-4	Essentially unlimited inflow by gravity connections east of S.W. 87 th Avenue	200 year +
C-6	Essentially unlimited inflow by gravity connections east of FEC Railroad	200 year +
C-7	Essentially unlimited inflow by gravity connection	100 year +
C-8 C-9	Essentially unlimited inflow by gravity connection Essentially unlimited inflow by gravity connection east	200 year +
	of Red Road; 20 CSM pumped, unlimited gravity with development limitations west of Red Road or Flamingo Blvd.	100 year +
C-10		200 year +
C-11	20 CSM west of 13A;40 CSM east of 13A	
C-12	90.6 CSM	25 year
C-13	75.9 CSM	25 year
C-14	69.2 CSM	25 year
C-15	70.0 CSM	25 year
C-16	62.6 CSM	25 year
C-17	62.7 CSM	25 year
C-18	41.6 CSM	25 year
C-19	57.8 CSM	
C-23	31.5 CSM	10 year
C-24	30.25 CSM	10 year
C-25	$Q = \frac{(47)}{\sqrt{A}} + 28$ (Under Review)	10 year
C-38	31.1 CSM (subject to restrictions of Basin Rule)	10 year
C-40, 41, 41A	35.4 CSM	10 year
Hillsboro Canal (east of S-39)	35 CSM	25 year
North New River (east of S-34)	70.8 CSM	25 year
Everglades Ag. Area (all canals)	20 CSM	5 year
L-28	11.8 CSM	
C-51	35 CSM east of Turnpike; 27 CSM west of Turnpike (subject to restrictions of Basin Rule)	10 year
C-100, 100A, 100B,	(subject to restrictions of Basili Rule) $Q = (104 + 43) A$	
100C, 100D;	\sqrt{A}	10 year
C-102	,	
	$Q = \frac{(119)}{\sqrt{A}} + 25) A$	10 year
C-103N, C103-S	Q = (107 + 39) A	10 year

FLORIDA DEPARTMENT OF TRANSPORTATION DISTRICT IV INTERAGENCY MEETING MINUTES

TO: Hui Shi, Florida Department of Transportation (FDOT) District 4

FROM: Justin Freedman, E Sciences, Incorporated

MEETING DATE: February 15, 2018

LOCATION: South Florida Water Management District (SFWMD)

3301 Gun Club Road, West Palm Beach, Florida

SUBJECT: FDOT Interagency Meeting Minutes

Meeting started at 9:10 AM: FM 436894-2-52-01; 436894-3-52-01; 436894-4-52-01; and 436894-5-52-01

Attendees:

Name	Organization	Email Address
Coriann Salas	WGI	coriann.salas@wginc.com
Will Lorentzen	WGI	william.lorentzen@wginc.com
Greg Griffith	WGI	greg.griffith@wginc.com
Claudia Calvo	FDOT D4	claudia.calvo@dot.state.fl.us
Hui Shi	FDOT D4	hui.shi@dot.state.fl.us
Garrett O'Brady	FDOT D4	garrett.obrady@dot.state.fl.us
Margaret Rushmore	FDOT D4	margaret.rushmore@dot.state.fl.us
Carlos de Rojas	SFWMD	cderojas@sfwmd.gov
Barbara Conmy	SFWMD	bconmy@sfwmd.gov
Kenson Coupet	SFWMD	kcoupet@sfwmd.gov
Jennifer Schull	NOAA NMFS	jennifer.schull@noaa.gov
Justin Freedman	E Sciences	jfreedman@esciencesinc.com

District: Four

FPID/FM Number: 436894-2-52-01; 436894-3-52-01; 436894-4-52-01; and 436894-5-52-01

FDOT Project Manager: Maria Formoso, PE, PMP

Consultant/Company Name: WGI

SR/Local Name: El Clair Ranch Road: New England Boulevard: Seminole Drive: and Sandalfoot

Boulevard

Project Limits: El Clair Ranch Road/L-30 Canal; New England Boulevard/E-1 Canal; Seminole

Drive/L-16 Canal; and Sandalfoot Boulevard/E-1E Canal

General Scope: Bridge replacements

Requested Attendees: SFWMD (ERP and SWM), USACE

Discussion Items:

- Greg Griffith and Coriann Salas (WGI) provided a brief project overview:
 - Four separate bridges in Palm Beach County (on Palm Beach County roads).
 - All over Lake Worth Drainage District (LWDD) Canals (non-tidal).
 - All in kind replacements no widening proposed.
 - Not a capacity improvements bridges will be widened to add bigger shoulders and ADA sidewalks (5-foot bike lanes and 6-foot shoulders to be added to each side of road at each bridge).
 - Only bridge with protected resources present is Seminole Drive tapegrass present at this location.

- Project team has coordinated with LWDD to ensure cross canal sections will be maintained in designs.
- Regarding USACE permitting, Seminole Drive bridge should qualify for a Nationwide Permit 14 (NWP 14) without pre-construction notification (PCN); the other bridges should qualify for NWP 14 but will require PCNs.
- Carlos de Rojas (SFWMD) stated that the project (four bridges) appears to qualify for a
 general permit; Coriann added that four separate ERP applications will be submitted to
 SFWMD for the four bridge projects. Carlos added that Palm Beach County should be coapplicants on the permit applications.
- Barbara Conmy (SFWMD) stated that the presence of tape grass should not push the project beyond the SFWMD general permit criteria, as the proposed impacts are below 0.5 acres.
 Barb added that fill impacts to tapegrass should be documented in the general permit application.

Meeting started at 9:20 AM: FM 437847-1-52-01

Attendees:

Name	Organization	Email Address
Claudia Calvo	FDOT D4	claudia.calvo@dot.state.fl.us
Hui Shi	FDOT D4	hui.shi@dot.state.fl.us
Garrett O'Brady	FDOT D4	garrett.obrady@dot.state.fl.us
Margaret Rushmore	FDOT D4	margaret.rushmore@dot.state.fl.us
Carlos de Rojas	SFWMD	cderojas@sfwmd.gov
Barbara Conmy	SFWMD	bconmy@sfwmd.gov
Kenson Coupet	SFWMD	kcoupet@sfwmd.gov
Jennifer Schull	NOAA NMFS	jennifer.schull@noaa.gov
Justin Freedman	E Sciences	jfreedman@esciencesinc.com

District: Four

FPID/FM Number: 437847-1-52-01

FDOT Project Manager: Brad Salisbury, PE
Consultant/Company Name: In-house FDOT
SR/Local Name: SR A1A/Dania Beach Boulevard
Project Limits: From Ocean Drive to Gulfstream Road

General Scope: Design Phase. Project will construct a sidewalk on the south side, widening for

bike lanes on both sides of the roadway.

Requested Attendees: SFWMD (ERP and SWM)

Discussion Items:

- Garrett O'Brady and Margaret Rushmore (FDOT) provided a brief project overview:
 - Total project length is 1.27 miles.
 - Widening ±3 feet for bike lanes on northbound side or road, widening ±5 feet for sidewalks on southbound side of road.
 - o Encroaching into the existing median by 2 feet.
 - All work is proposed within existing FDOT ROW.
 - o There are wetlands adjacent to the project limits, but proposed improvements will not encroach into wetlands.
 - Existing SFWMD ERP for west end of project.
- Carlos de Rojas (SFWMD) stated the project could qualify for an ERP exemption for "minor roadway safety improvements"; ERP application should not be required.

Meeting started at 9:30 AM: FM 439891-1-22-02

Attendees:

Name	Organization	Email Address
Claudia Calvo	FDOT D4	claudia.calvo@dot.state.fl.us
Hui Shi	FDOT D4	hui.shi@dot.state.fl.us
Garrett O'Brady	FDOT D4	garrett.obrady@dot.state.fl.us
Margaret Rushmore	FDOT D4	margaret.rushmore@dot.state.fl.us
Chris Jackson	RS&H	chris.jackson@rsandh.com
Vanessa Caycedo	RS&H	vanessa.caycedo@rsandh.com
Cassie Piche	RS&H	cassie.piche@rsandh.com
Denise Palmatier	Kimley Horn	denise.palmatier@kimley-horn.com
Morgan Reins	SFWMD	mreins@sfwmd.gov
Carlos de Rojas	SFWMD	cderojas@sfwmd.gov
Barbara Conmy	SFWMD	bconmy@sfwmd.gov
Kenson Coupet	SFWMD	kcoupet@sfwmd.gov
Jennifer Schull	NOAA NMFS	jennifer.schull@noaa.gov
Justin Freedman	E Sciences	jfreedman@esciencesinc.com

District: Four

FPID/FM Number: 439891-1-22-02

FDOT Project Manager: Anson Sonnett, PE

Consultant/Company Name: RS&H SR/Local Name: SR 869/SW 10th Street

Project Limits: From west of Powerline Road to west of Military Trail

General Scope: PD&E Study to develop and evaluate viable alternatives that increase capacity and eliminate various existing operational and safety deficiencies along SR 869/SW 10th Street between Powerline Road and Military Trail while providing improved connectivity to the regional transportation network. All engineering, environmental, social, physical and natural impacts will be evaluated and compared, resulting in a single preferred alternative. All alternatives will be developed in collaboration with and be compatible with the concepts developed with two adjacent studies, FM 437153.1.22.01 and FM 436964.1.22.02.

Requested Attendees: SFWMD (SWM)

Discussion Items:

See attached meeting minutes prepared by RS&H

Meeting started at 9:55 AM: 437836-1

Attendees:

Name	Organization	Email Address
Damaris Williams	FDOT D4	damaris.williams@dot.state.fl.us
Claudia Calvo	FDOT D4	claudia.calvo@dot.state.fl.us
Hui Shi	FDOT D4	hui.shi@dot.state.fl.us
Garrett O'Brady	FDOT D4	garrett.obrady@dot.state.fl.us
Margaret Rushmore	FDOT D4	margaret.rushmore@dot.state.fl.us
Carlos de Rojas	SFWMD	cderojas@sfwmd.gov
Barbara Conmy	SFWMD	bconmy@sfwmd.gov
Kenson Coupet	SFWMD	kcoupet@sfwmd.gov
Jennifer Schull	NOAA NMFS	jennifer.schull@noaa.gov
Justin Freedman	E Sciences	jfreedman@esciencesinc.com

District: Four

FPID/FM Number: 437836-1

FDOT Project Manager: Mauricio Micolta **Consultant/Company Name:** In-house FDOT

SR/Local Name: SR-7/US-441

Project Limits: From SR-806/Atlantic Ave to SR-804/Boynton Beach Boulevard

General Scope: Milling and resurfacing, adding sidewalk on the northbound, and minor widening to

accommodate buffer bike lanes at both sides. Regrade the swale on the east side.

Requested Attendees: SFWMD (SWM)

Discussion Items:

- Damaris Williams (FDOT) provided a brief project overview:
 - Reiterated general scope items noted above.
 - Proposed widening is for bike lanes and 5-foot wide sidewalk; no additional capacity is proposed; widening will include filling of dry swales.
 - Filling in ditch adjacent to guard rail; ditch had excess storage capacity which will accommodate additional impervious areas associated with this project.
 - No protected natural resources are present.
 - No dewatering is anticipated in association with construction.
- Hui Sui (FDOT) stated that there is an existing SFWMD permit form Glades Road to Boynton Beach Boulevard. This permit documented that the project area had extra 3.63 acre feet of treatment volume. The proposed project reduce this excess treatment volume by 0.85 acrefeet in association with proposed swale filling.
- Carlos de Rojas (SFWMD) pointed out that original ERP permit may have included extra storage capacity in preparation for the eventual expansion of the roadway section from four to six lanes (only a portion is six lanes at present). Hui commented that FDOT will take this into consideration when modifying the roadway permit for the eventual expansion to six lanes
- Carlos added that the project will not qualify for an exemption since there is an existing permit. Rather, this project should qualify for a minor ERP modification.

Meeting started at 10:05 AM: 436869-1-52-01

Attendees:

Name	Organization	Email Address
Wilord Metellus	FDOT D4	wilord.metellus@dot.state.fl.us
May Cheng	FDOT D4	may.cheng@dot.state.fl.us
Claudia Calvo	FDOT D4	claudia.calvo@dot.state.fl.us
Hui Shi	FDOT D4	hui.shi@dot.state.fl.us
Margaret Rushmore	FDOT D4	margaret.rushmore@dot.state.fl.us
Carlos de Rojas	SFWMD	cderojas@sfwmd.gov
Barbara Conmy	SFWMD	bconmy@sfwmd.gov
Kenson Coupet	SFWMD	kcoupet@sfwmd.gov
Jennifer Schull	NOAA NMFS	jennifer.schull@noaa.gov
Justin Freedman	E Sciences	jfreedman@esciencesinc.com

District: Four

FPID/FM Number: 436869-1-52-01 FDOT Project Manager: May Cheng Consultant/Company Name: APCTE

SR/Local Name: SR A1A/NE Ocean Boulevard

Project Limits: From 300 feet east of Lyons Bridge to 300 feet north of SR 732/Jensen Beach

Boulevard

General Scope: Design Phase to provide decorative pedestrian lighting along the corridor and

filling in sidewalk gaps on the west side.

Requested Attendees: SFWMD, USACE

Discussion Items:

- Hui Sui and Margaret Rushmore (FDOT) provided a brief project overview and summary of resource impacts:
 - Project includes 6-foot sidewalk, ADA curb ramps, pedestrian lighting, and pavement markings.
 - Project as designed will incur 0.138 acres of direct impacts to mangrove trees outside tidal areas; project team has not explored secondary wetland impacts at this time.
- Barb Conmy (SFWMD) provided permitting feedback:
 - Stated that there is a SFWMD General Permit (62-330.447) for FDOT minor improvement projects within existing ROWs or easements that should apply for this project; this permit covers roadway safety activities that incur no more than 0.5 acres of wetland impacts. As such, the proposed project may qualify for this permit and would not require mitigation for wetland impacts.
 - Recommended sediment and erosion control measures incorporated and clearly depicted on the project plans, along with all lighting details.
 - Barb stated that SFWMD can issue the General ERP within 30 days assuming all necessary information is included in the application; Barb added that SFWMD can review a draft submittal and provide feedback on completeness prior to receiving the final application – she stated the draft submittal can be emailed to her.
- Jennifer Schull (NOAA NMFS) asked if the project contains Essential Fish Habitat (EFH);
 Margaret stated that the presence of EFH has not been confirmed at this time, but will be verified as part of the permitting process through USACE. Jennifer stated that NMFS will

review the wetland evaluation report to determine if the mangrove impact area is considered EFH, and will look to see if avoidance and minimization measures are proposed for potential EFH impacts; Jennifer added that the wetland evaluation report can be submitted directly to her before the USACE application is submitted to expedite her EFH review.

	Name	Campan	ema.
76	et 1 -4 bridges		
	Coriann Salas	MGI	coniann. Salas @ wginc. com
	Will Lorentzen	WGII	Willram lorentzenawginc.com
	Grea Griffith	WEI	grea criffilh during com
	Barb Conny	SFWMN	sconny askund gov
ndereld odd	Carlos de Rojas	SFWHD	cderojasas fumd, gov
- Male	KENSON COUPET	SFWHD	KCOUPO + @SFWN Dig al
	Him Shi	FOOT	Hui. Shi@dot. State. fl. us
	Claudia Calvo	FDOT	claudia. calvo@dot. state.fl. us
1	Hargaret Rushmore	FDOT	margaret, rushmore @ dot, state. A. us
-17	Garrett O'Brady	FOOT	garrett. Obraly@dit. State. El. US
	Jennifer Schull	NOAA/NMES	jenniter schille noaa gov
7	ned 2 437847-1		
	9		
	Name	Company	ema.
	KENSON COUPET	SFWAD	Kcoupet@SFWND.gon
4	Hui Shi	F-DOT_	Hui. Shi @ dot. Stat-ff. us
	Margaret Rushmore	FPOT	margaret, rushmore @doi. state flus
	Claudia Calvo	FDOT	claudia calvo a dof. stateflu
	Carrett O'Broy	FOOT	gantt Obrat @ distate flie
	Connifer School	NOAA/NMFS	jenniter shull enoug.gov
	Barb Conny	SFWMI	Conny Ostward gov cderojas dsfumd.gov
	Carlos de Rojas	SFWMD	cderojas dsfwmd.gov

		= =	
	<u> </u>		
FA 439811-1-			
FM 437836-1			
Nane Mane	Company	email	
KENSON CONPET	SFWMD	Kcoupet	SFWMD. gov
Hui Shi	FDOT	Hui Shi @	dut. State. H.w
Claudia Calvo.	FDOT	Claudia. Calvo	adot. State fl-us
Margaret Rushmore	FIDOT	margared. NShm	ore Oddin
Garrett O Brady	FD 07	garrett. Obrady	a dot state 41.05
Jennifer Schull	NOAA / NMFS	jennifer. schul	
Barb Conny	SFWMD	beonnyos	
Carlos de Rojas	SFWMD	c devojas Dst	
		3	0
FM 436869=1			
Name	Company	email	
KENSON COUPET	SFWHD	Reoupeto.	SEMMD. BOW
Claudia Calvo	FDOT	claudia. calvo a	
Margaret Rushmore	FDOT	margaret. rushmored	
Hui Shi	FDOT	Hui. Shi@dot.	
Jennifer Schull	NOAA/NMFS	jennifer sulle	
Barb Conny	SEWMIN	becoming \$ 56	umd.gov
Carlos de Rojas	SFWMD	Sconny OSE cderojasas	Fund.gov
M Faire Mark Landers	IV9V-F3-L	V	
		I	П

Project: SW 10th Street Connector FPID No: 439891-1-22-02

> PD&E Study Contract No.: C9V60

SFWMD Headquarters 2/15/18 **Meeting Place: Meeting Date:**

3300 Gun Club Road **Meeting Time:** 9:45 a.m. West Palm Beach, FL

Participants: See sign-in sheet for attendees

FDOT – SFWMD Drainage Coordination Meeting Purpose:

Introductions

Project Overview

1. Cassie Piche, RS&H Project Manager, provided a brief overview of the project, preliminary alignment alternatives, and schedule. She indicated that the project will be procured through a design-build contract, which is currently funded in 2025. She noted, however, that funding is anticipated to be available sooner.

Drainage Overview

- 2. Chris Jackson, RS&H Senior Drainage Engineer, indicated that the project is located within the South Florida Water Management District (SFWMD) Hillsboro Canal Drainage Basin and Broward County Water Control District (BCWCD) C-2 Basin. He added that the project falls under the regulatory jurisdiction of the SFWMD and BCWCD #2.
- 3. Chris provided an overview of the existing drainage. He indicated that portions of the project fall within the FEMA 100-year floodplain, the City of Deerfield Beach Wellfield zone of influence, and within a drainage basin designated by BCWCD as a "water quality basin" which is regulated by the BCWCD control structure (S-4) and outfall to the SFWMD Hillsboro Canal. Therefore, in lieu of new stormwater management facilities within the basin, any of the existing stormwater management facilities within the entire basin could be expanded/modified as needed to provide the required water quality, water quantity, and floodplain compensation volume for the project. He explained this provides additional flexibility from the conventional approach of collecting and conveying project runoff to an adjacent, isolated offsite stormwater management facility for treatment and attenuation prior to discharge to receiving waters.
- 4. Carlos de Rojas, SFWMD, agreed with the "water quality basin" designation but noted that the BCWCD basin and infrastructure was not covered under any existing SFWMD Environmental Resource Permit (ERP). As such, he noted that an ERP application would also need to be submitted by BCWCD for the basin.
- 5. Chris stated that the proposed improvements do not physically impact existing wellfield infrastructure but that dry retention pretreatment may be required for wellfield protection. Carlos clarified that dry pretreatment retention would only be required if the proposed stormwater management facilities were physically located within the respective zone of influence.

- 6. Chris provided an overview of the potential stormwater management options. He indicated that the flexibility provided by the designation of the basin as a "water quality basin" allows for modification/expansion of the existing stormwater management facilities within the vacant golf course at Century Village and within the Deer Creek Golf Course, north of Hillsboro Boulevard. He noted the possibility of shared use drainage, similar to I-595 with the Lago Mar and Pine Island Ridge golf courses. In the event that these golf courses cannot be modified/expanded to accommodate the project, then FDOT would be required to acquire offsite parcels, most likely industrial parcels along the south side of the project. Chris noted that French drain was not a viable option for this project.
- 7. Chris indicated that the proposed Express Lanes depressed section would impact the existing cross drains serving the BCWCD C-2 and C-3 canals. He noted that pump stations or inverted siphons would be required to maintain these conveyances. He also noted that a pump station would be required to collect and convey the roadway runoff from the Express Lanes depressed section.
- 8. Carlos De Rojas inquired about the depth of the Express Lanes depressed section and the associated dewatering activities. Cassie stated the cuts would be 56' deep with the roadbed sitting 18'-20' below grade. Carlos noted that groundwater modeling / calculations would be needed to demonstrate that the proposed Express Lanes depressed section and associated dewatering activities do not adversely impact the wellfield.

Permit Requirements

- 9. Chris indicated that there are no existing ERPs for the project area. He added that there is only a Water Use Permit for the City of Deerfield Beach wellfield.
- Chris indicated that there were no wetlands or listed species impacts, however, dredging
 activities will be required in other surface waters, including the BCWCD C-2 and C-3
 canals.
- 11. Chris identified the anticipated environmental permits as follows: SFWMD Environmental Resource Permit, SFWMD Consumptive Use (Dewatering Modification), and USACE Section 404 Dredge & Fill Permit. In addition, a Surface Water Management License and a Natural Resource License may be required from the Broward County Environmental Protection & Growth Management Department (BCEPGMD) for proposed activities outside of the State Highway System limits.
- 12. Chris indicated that FDOT would be meeting with BCEPGMD on 2/21/18 to discuss the project and to determine any additional requirements and permit criteria.

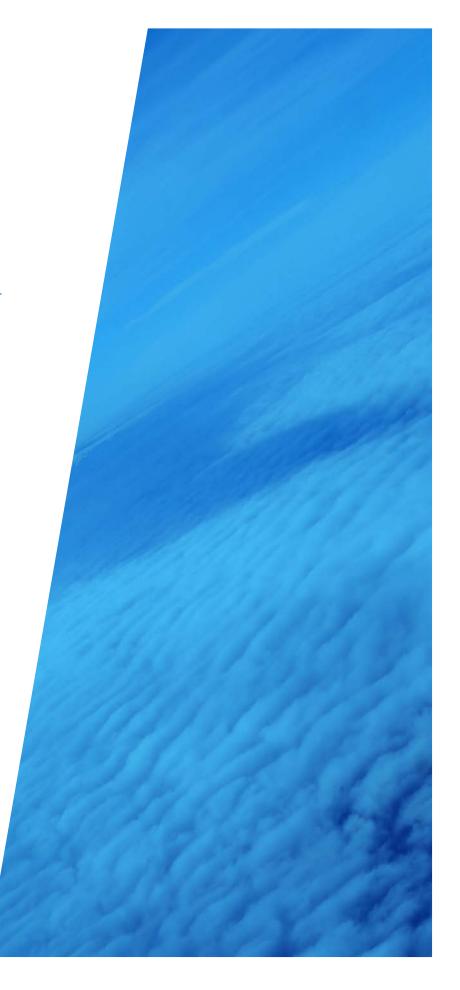
Meeting Sign-In Sheet

SW 10th Street PD&E Study FDOT-SFWMD Drainage-Permit Coordination

Meeting

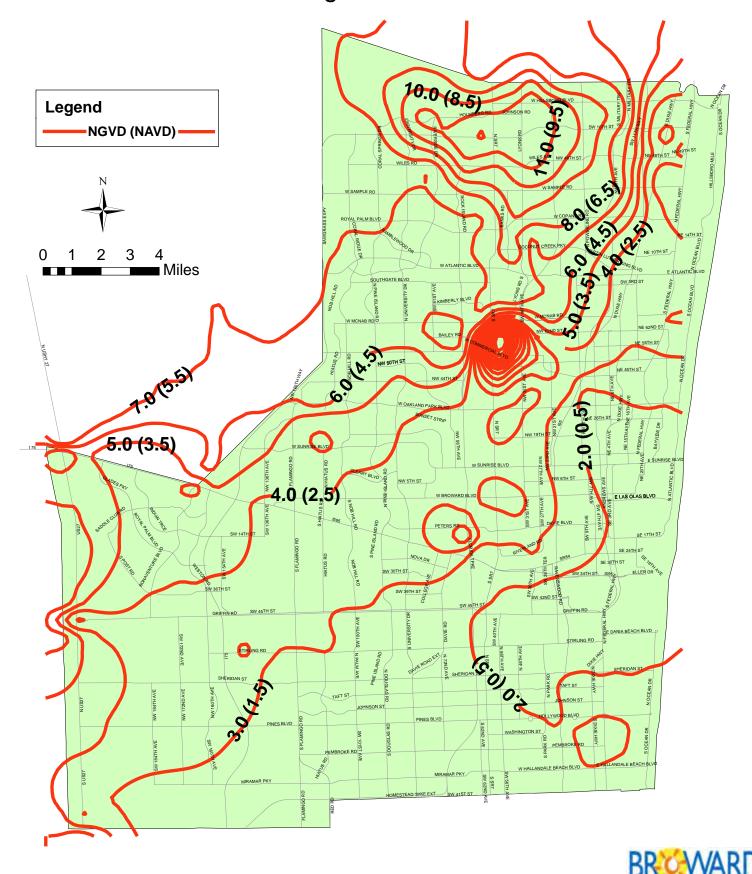
February 15, 2018 @ 9.45 am

Meeting Location: SFWMD, 3300 Gun Club Road,


Name	Company	Phone	e-mail
Anson Sonnett	FDOT	954-777-4474	anson.sonnett@dot.state.fl.us
Claudia Calvo	FDOT	954-777-4476	claudia.calvo@dot.state.fl.us
Cassie Piche	RS&H	954-236-7365	cassie.piche@rsandh.com
Chris Jackson	RS&H	954-236-7375	chris.jackson@rsandh.com
Vanessa Caycedo	RS&H	954-236-7360	vanessa.caycedo@rsandh.com
Jason Lee	KHA		Jason.Lee@kimley-horn.com
Carlos deRojas	SFWMD		cderojas@sfwmd.gov
Morgan Reins			Meirs @ stund sol
Barlo Conny	SFWMID		booning @ Sound. 900
Test Trudy -	E Sirnus		predmin @ escitacesinc.
KENGAN COULE	F 18 11 " .	561-688-2561	Realpota SFWIID. gow
Deris Palmatin	Kimley-Horn	561-723-0402	denisi palmatrica kim ley
Hui Shi	FOOT	974-777-4567	Huissly (adot state Hus
Mondary BASIMANE	FIDIT	754-477-4537	EU. A state to b Dramen a. is apply A
Carrett O'Brady	FD 67	154-777-4396	garret obindy a dot state flus
7			9

APPENDIX G

BROWARD COUNTY


DRAINAGE AND PERMIT

DOCUMENTATION

WATER TABLE MAP

Average Wet Season

This map provided for informational purposes only
Not for legal boundary determination
Elevations Converted from NGVD to NAVD using the FEMA approved conversion factor for Broward County of (-)1.5

Jackson, Chris

From: Jackson, Chris

Sent: Monday, November 28, 2016 7:07 PM

To: 'JPORTILLO@broward.org'
Costa, Aylin; 'Archie, Carl'

Subject: FW: BCWCD #2 - Drainage Records Request

Follow Up Flag: Follow up Flag Status: Flagged

Hello Jose.

I hope your Thanksgiving holiday was good! Have you had a chance to review these items below? I'd greatly appreciate any feedback you can provide.

Regards, Chris

From: Archie, Carl [mailto:CARCHIE@broward.org] **Sent:** Wednesday, November 16, 2016 12:46 PM

To: Jackson, Chris

Subject: RE: BCWCD #2 - Drainage Records Request

- 1. Broward County Groundwater Maps indicate that the area has a SHGWT elevation of approximately 9 ft NGVD (7.5 NAVD). You mention that the C-2 Basin control elevation is 10 ft NGVD. Is the S-4 discharge structure and upstream waterbodies (including C-2 Canal) essentially providing wet retention up to elevation 10 ft NGVD? If the waterbodies are in fact providing wet retention (rather than wet detention) am I only required to expand the facilities to provide half of the required wet detention treatment volume?
 - Consult your permit reviewer in regards to the latest requirements
- 2. For calculation of the required facility expansion area needed for water quality treatment, what is the treatment depth that I should be using (i.e. water quality treatment (weir) elevation SHGWT)?

 Consult your permit reviewer in regards to the latest requirements
- 3. For the water quality treatment volume calculation, should I only consider the additional impervious area from the project? Although the project area is located within the C-2 Basin, it is not clear at this time if the existing impervious area actually ever discharges to the C-2 Canal in the pre-development condition.
 - Consult your permit reviewer in regards to the latest requirements
- 4. For calculation of the required facility expansion area needed for water quantity, what is the attenuation depth that I should be using (i.e. maximum (25-year, 72-hour?) design stage elevation SHGWT)?

 Consult your permit reviewer in regards to the latest requirements
- 5. For the water quantity / attenuation volume calculation, should I only consider the additional impervious area from the project? Although the project area is located within the C-2 Basin, it is not clear at this time if the existing impervious area actually ever discharges to the C-2 Canal in the pre-development condition.

 Consult your permit reviewer in regards to the latest requirements
- 6. Do you have the pump operating schedule for the S-4 discharge structure? I'm looking for pump stage-discharge, turn-on/turn off information. Also, do you have initial stage and maximum stage information for the C-2 Canal for various design storm events?

No, we do not pump on a schedule. We pump in according to a SFWMD Diversion and Impoundment permit to maintain the entire basin at 9.5'-10.0'. The purpose of the district is to protect the wellfield in the area while providing flood protection.

- 7. It appears that portion of the project and downstream receiving waterbodies are located within a Broward County Wellfield Protection Zone 3. If so, is an additional one half inch of dry detention or retention pretreatment required before discharging into the C-2 Canal? Or can we expand the existing facilities to provide an additional half inch of treatment? Alternatively, would one half inch of pretreatment via French drain (exfiltration trench) be acceptable prior to the project discharging into the C-2 Canal? Consult your permit reviewer in regards to the latest requirements
- 8. If the project results in floodplain encroachment, will the expansion of existing facilities need to accommodate the treatment and attenuation requirements, as well as provide compensation for the floodplain encroachment?
 - Consult your permit reviewer in regards to the latest requirements
- 9. Do you have any records or documentation of flooding complaints within Century Village or Deer Creek communities that you can provide?

There have been no canal related flood complaints from either community.

From: Jackson, Chris [mailto:Chris.Jackson@rsandh.com]

Sent: Sunday, November 13, 2016 8:58 PM **To:** Archie, Carl < <u>CARCHIE@broward.org</u>> **Cc:** Costa, Aylin < <u>Aylin.Costa@rsandh.com</u>>

Subject: RE: BCWCD #2 - Drainage Records Request

Hello Carl,

I've reviewed the documents and have some questions that I'd really appreciate if you could review and advise. I hope these are clear but please let me know if I can provide any clarification.

- 1. Broward County Groundwater Maps indicate that the area has a SHGWT elevation of approximately 9 ft NGVD (7.5 NAVD). You mention that the C-2 Basin control elevation is 10 ft NGVD. Is the S-4 discharge structure and upstream waterbodies (including C-2 Canal) essentially providing wet retention up to elevation 10 ft NGVD? If the waterbodies are in fact providing wet retention (rather than wet detention) am I only required to expand the facilities to provide half of the required wet detention treatment volume?
- 2. For calculation of the required facility expansion area needed for water quality treatment, what is the treatment depth that I should be using (i.e. water quality treatment (weir) elevation SHGWT)?
- 3. For the water quality treatment volume calculation, should I only consider the additional impervious area from the project? Although the project area is located within the C-2 Basin, it is not clear at this time if the existing impervious area actually ever discharges to the C-2 Canal in the pre-development condition.
- 4. For calculation of the required facility expansion area needed for water quantity, what is the attenuation depth that I should be using (i.e. maximum (25-year, 72-hour?) design stage elevation SHGWT)?
- 5. For the water quantity / attenuation volume calculation, should I only consider the additional impervious area from the project? Although the project area is located within the C-2 Basin, it is not clear at this time if the existing impervious area actually ever discharges to the C-2 Canal in the predevelopment condition.

- 6. Do you have the pump operating schedule for the S-4 discharge structure? I'm looking for pump stage-discharge, turn-on/turn off information. Also, do you have initial stage and maximum stage information for the C-2 Canal for various design storm events?
- 7. It appears that portion of the project and downstream receiving waterbodies are located within a Broward County Wellfield Protection Zone 3. If so, is an additional one half inch of dry detention or retention pretreatment required before discharging into the C-2 Canal? Or can we expand the existing facilities to provide an additional half inch of treatment? Alternatively, would one half inch of pretreatment via French drain (exfiltration trench) be acceptable prior to the project discharging into the C-2 Canal?
- 8. If the project results in floodplain encroachment, will the expansion of existing facilities need to accommodate the treatment and attenuation requirements, as well as provide compensation for the floodplain encroachment?
- 9. Do you have any records or documentation of flooding complaints within Century Village or Deer Creek communities that you can provide?

Thanks, Chris

Chris Jackson, PE, LEED AP

Vice President, Transportation-Infrastructure 3125 W Commercial Blvd, Suite 130, Fort Lauderdale, FL 33309 O 954-236-7375 | M 954-205-0288 chris.jackson@rsandh.com

Celebrating 75 years!

From: Archie, Carl [mailto:CARCHIE@broward.org]

Sent: Thursday, October 27, 2016 4:45 PM

To: Jackson, Chris **Cc:** Costa, Aylin

Subject: RE: BCWCD #2 - Drainage Records Request

There was never a master permit requested from SFWMD. The District never commissioned a computer model. The entire district is considered a water quality basin. Expanding the existing facilities to treat/attenuate for the additional development is the way it is normally done. Attached is a digital copy of the District's facilities and the Century Village P&D plans. Thanks.

From: Jackson, Chris [mailto:Chris.Jackson@rsandh.com]

Sent: Wednesday, October 26, 2016 5:24 PM **To:** Archie, Carl < CARCHIE@broward.org>

Cc: Costa, Aylin < Aylin.Costa@rsandh.com >

Subject: RE: BCWCD #2 - Drainage Records Request

Thank you Carl. This information is helpful. I guess I was really looking for a "master" plan and/or master permit for the C-2 basin of WCD #2, which would include an updated Drainage Map of the entire basin and updated AdICPR model for the entire basin.

Additionally, I have some questions regarding proposed development within the basin, particularly within the Century Village area. Since the existing ponds within Century Village and the adjoining golf course are directly connected to WCD #2 canals, would new upstream stormwater management facilities with control structures be required to treat and attenuate new development prior to discharge into the existing ponds? Or, since everything in the C-2 basin is controlled by the S-4 structure, could the existing ponds merely be expanded to treat and attenuate the increased runoff from proposed development?

I'd be happy to meet with you and explain in more detail what we are exploring. Look forward to hearing from you.

Regards, Chris

Chris Jackson, PE, LEED AP

Vice President, Transportation-Infrastructure 3125 W Commercial Blvd, Suite 130, Fort Lauderdale, FL 33309 O 954-236-7375 | M 954-205-0288 chris.jackson@rsandh.com

Celebrating 75 years!

From: Archie, Carl [mailto:CARCHIE@broward.org]
Sent: Wednesday, October 26, 2016 1:59 PM

To: Jackson, Chris **Cc:** Costa, Aylin

Subject: FW: BCWCD #2 - Drainage Records Request

I am a little uncertain how to answer your question since your enquiry includes a wide variety of plans and permits. We call the basin in question the "C-2" basin of WCD # 2. Your physical description is accurate with the exception of the southern basin boundary. The southern boundary is Sample Road. Attached is the schematic of our S-4 Structure the discharge structure for that basin. For the purposes of calculation, we use the discharge rate of the Hillsboro Canal discharge rate. Basin control elevation is 10.00' NGVD.

From: Crouse, John

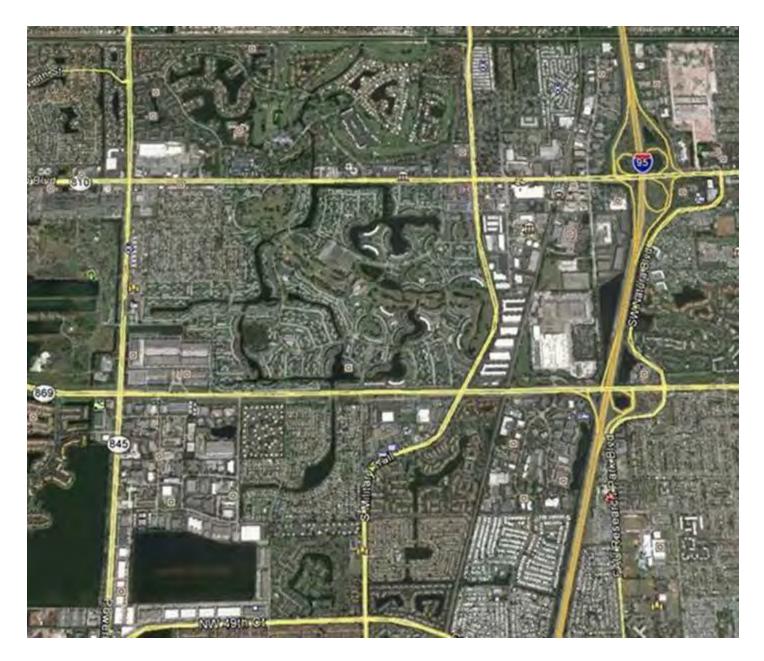
Sent: Wednesday, October 26, 2016 9:01 AM **To:** Archie, Carl < <u>CARCHIE@broward.org</u>>

Subject: FW: BCWCD #2 - Drainage Records Request

Please assist on this request. Tks.

John M. Crouse, P.E. Director of Water Management 2555 W. Copans Road, Pompano Beach, FL 33069

Office: 954-831-0765 www.broward.org


From: Jackson, Chris [mailto:Chris.Jackson@rsandh.com]

Sent: Tuesday, October 25, 2016 11:12 PM
To: Crouse, John < <u>JCROUSE@broward.org</u>>
Cc: Costa, Aylin < <u>Aylin.Costa@rsandh.com</u>>
Subject: BCWCD #2 - Drainage Records Request

Dear Mr. Crouse:

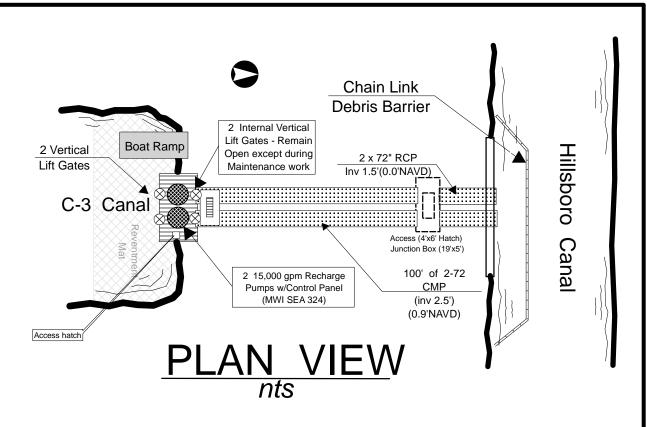
I am assisting the FDOT with a drainage evaluation for a project located within BCWCD #2. I am specifically interested in any existing drainage or permit documentation for the stormwater management system that ultimately discharges into the SFWMD Hillsboro Canal via control structure located at the north side of the Deer Creek community. The watershed for this stormwater management system appears to be the area bounded by the Hillsboro Canal to the north, Military Trail to the east, NW 49th Court to the south, and Powerline Road to the west). I would greatly appreciate any drainage maps, drainage models, calculations, and/or permit/license documents.

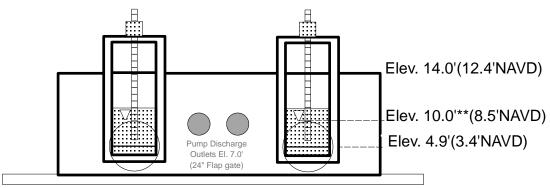
Thanks, Chris

Chris Jackson, PE, LEED AP

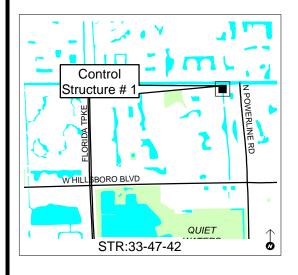
Vice President, Transportation-Infrastructure 3125 W Commercial Blvd, Suite 130, Fort Lauderdale, FL 33309 O 954-236-7375 | M 954-205-0288 chris.jackson@rsandh.com

<u>rsandh.com</u> | <u>Facebook</u> | <u>Twitter</u> | <u>LinkedIn</u>

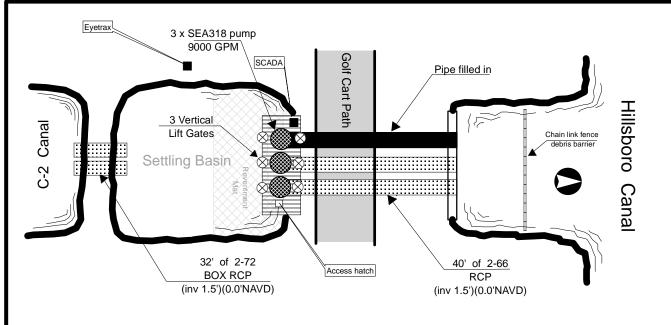

Celebrating 75 years!

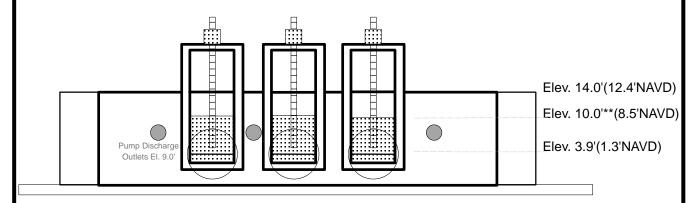


records, available to any person upon request, absent an exemption. Therefore, any e-mail message to or from the County, inclusive of e-mail addresses contained therein, may be subject to public disclosure.


Under Florida law, most e-mail messages to or from Broward County employees or officials are public records, available to any person upon request, absent an exemption. Therefore, any e-mail message to or from the County, inclusive of e-mail addresses contained therein, may be subject to public disclosure.

Under Florida law, most e-mail messages to or from Broward County employees or officials are public records, available to any person upon request, absent an exemption. Therefore, any e-mail message to or from the County, inclusive of e-mail addresses contained therein, may be subject to public disclosure.

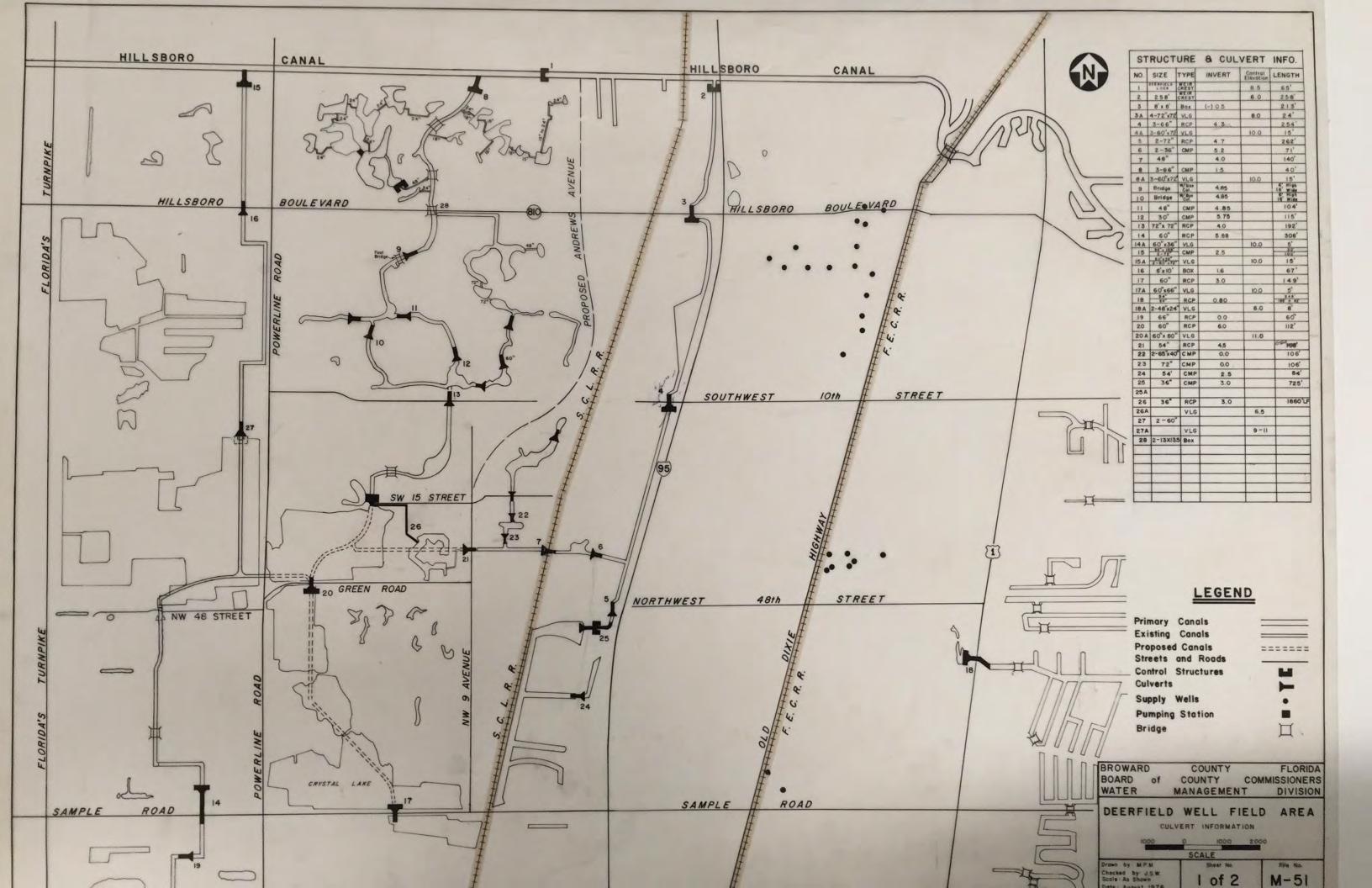

ELEVATION nts

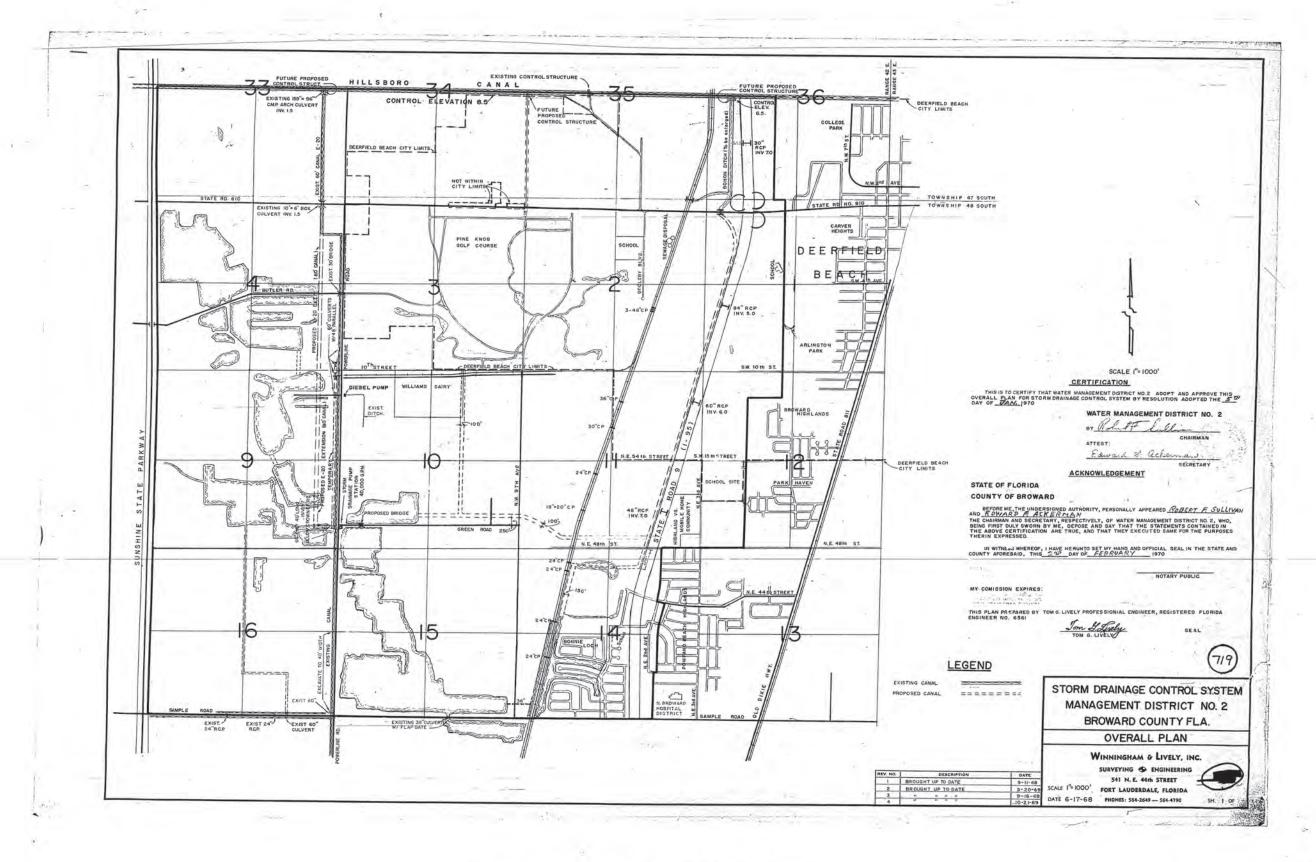

**NOTES:

- Gates adjust between elevations 9.0'(7.5'NAVD) and 11.0'(9.5'NAVD)
- Gates are 66 wide and 80 tall
- -V notches are 12wide at top and 2 wide at bottom.

Date: 5/12/2015

PLAN VIEW

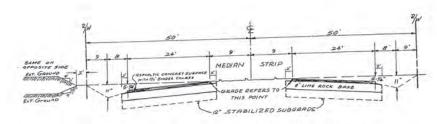

ELEVATION nts

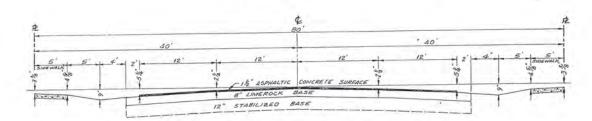


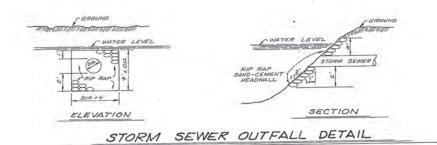
**NOTES:

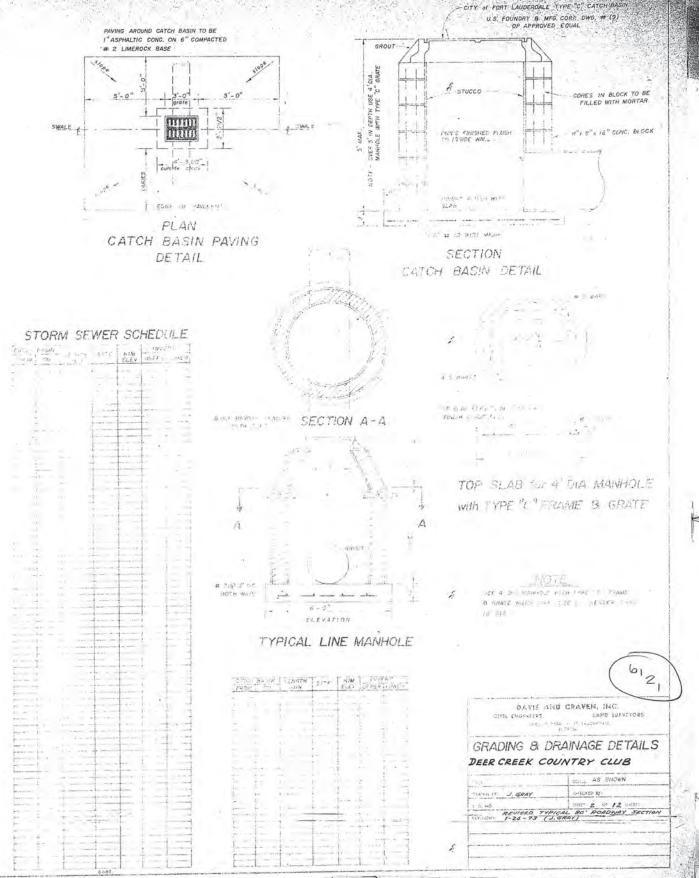
- Gates adjust between elevations 9.0' and 10.0' (7.5' AND 8.5' NAVD)
- Gates are 60"wide by 60" tall

Date: 5/12/2015

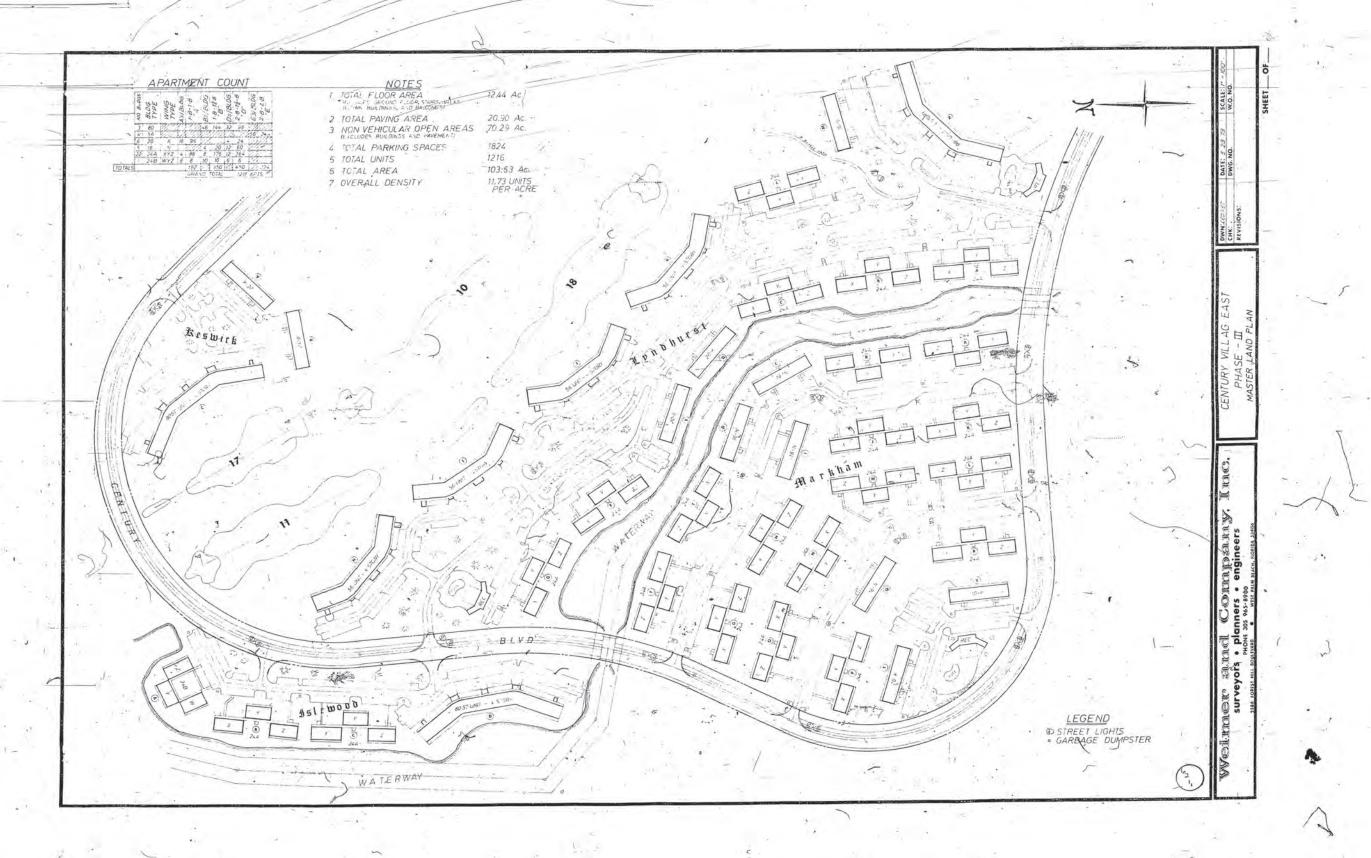


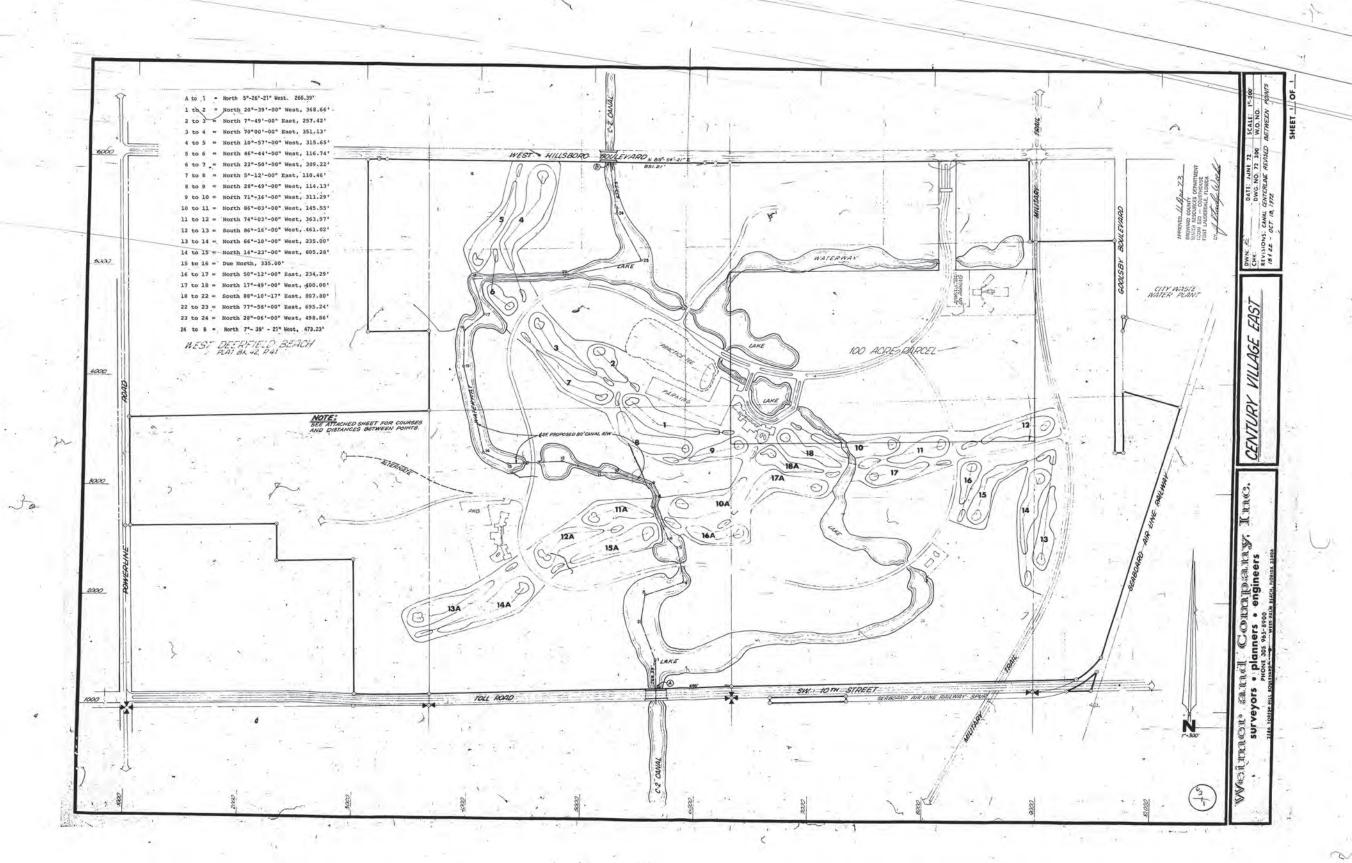

5-719

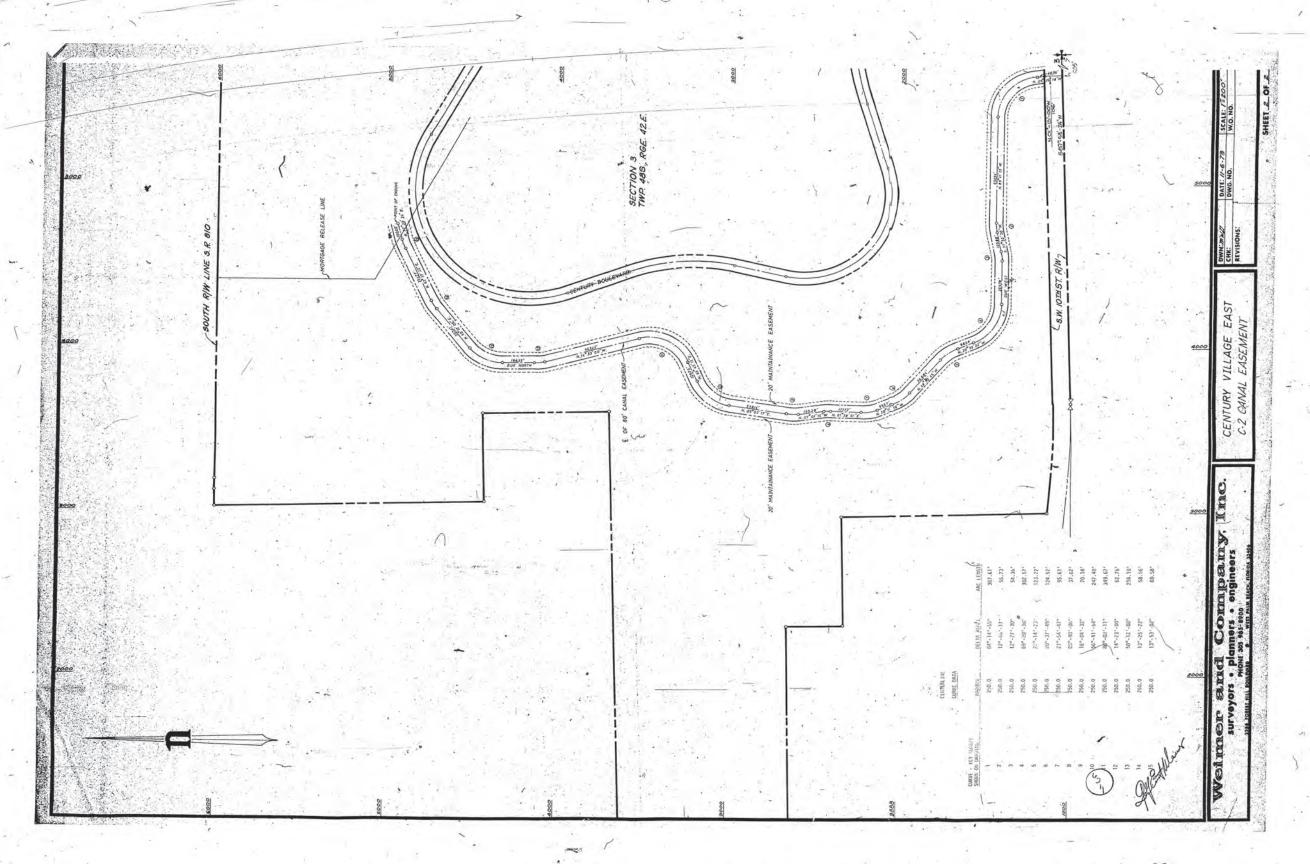

80 WIDE CANAL SECTION

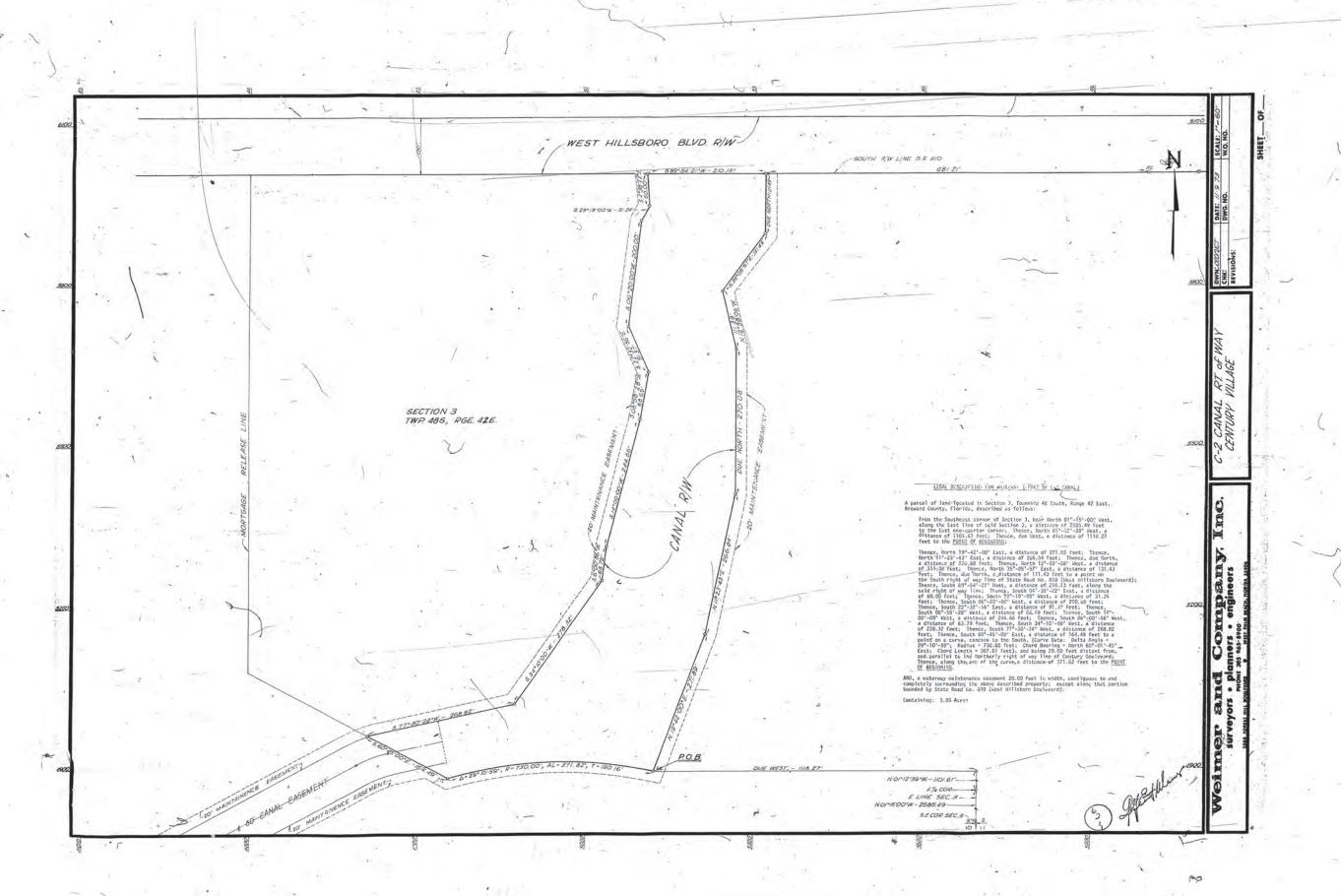


TYPICAL 100' RORD WAY SECTION

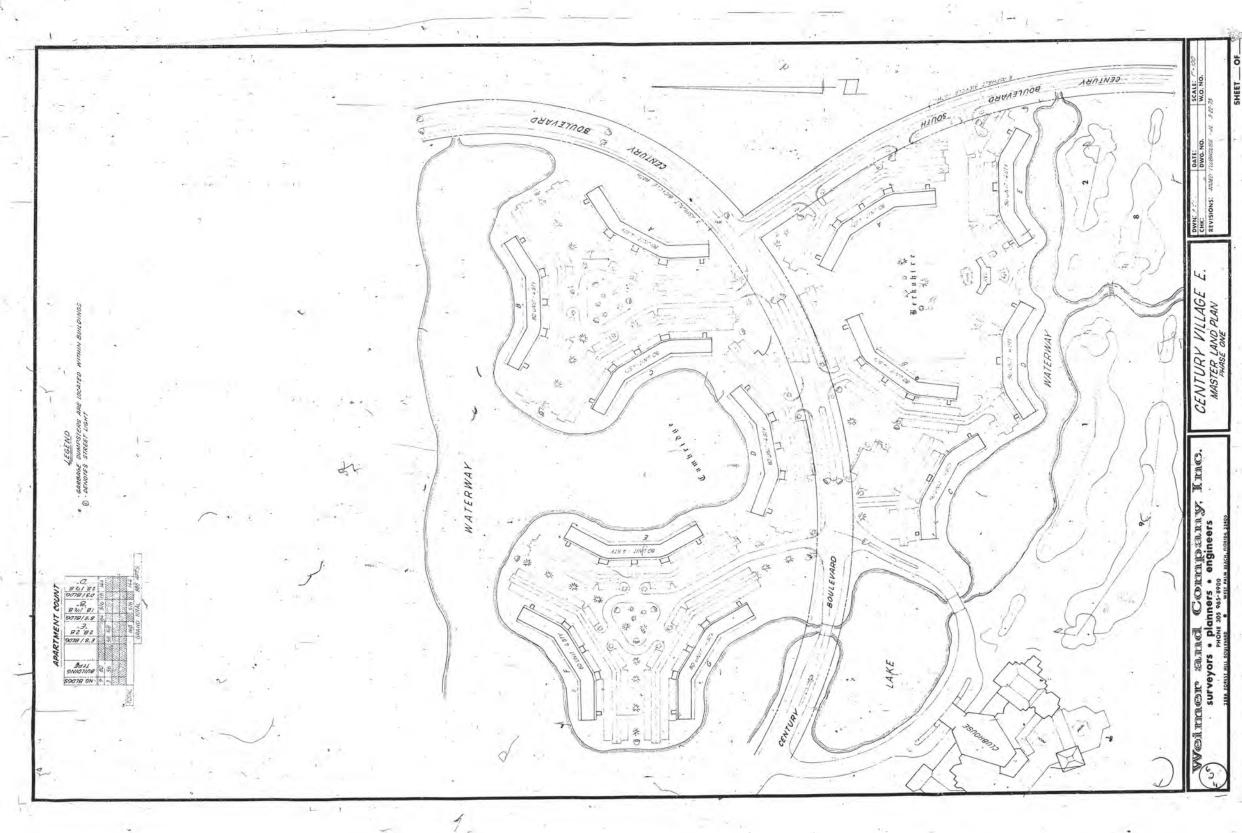


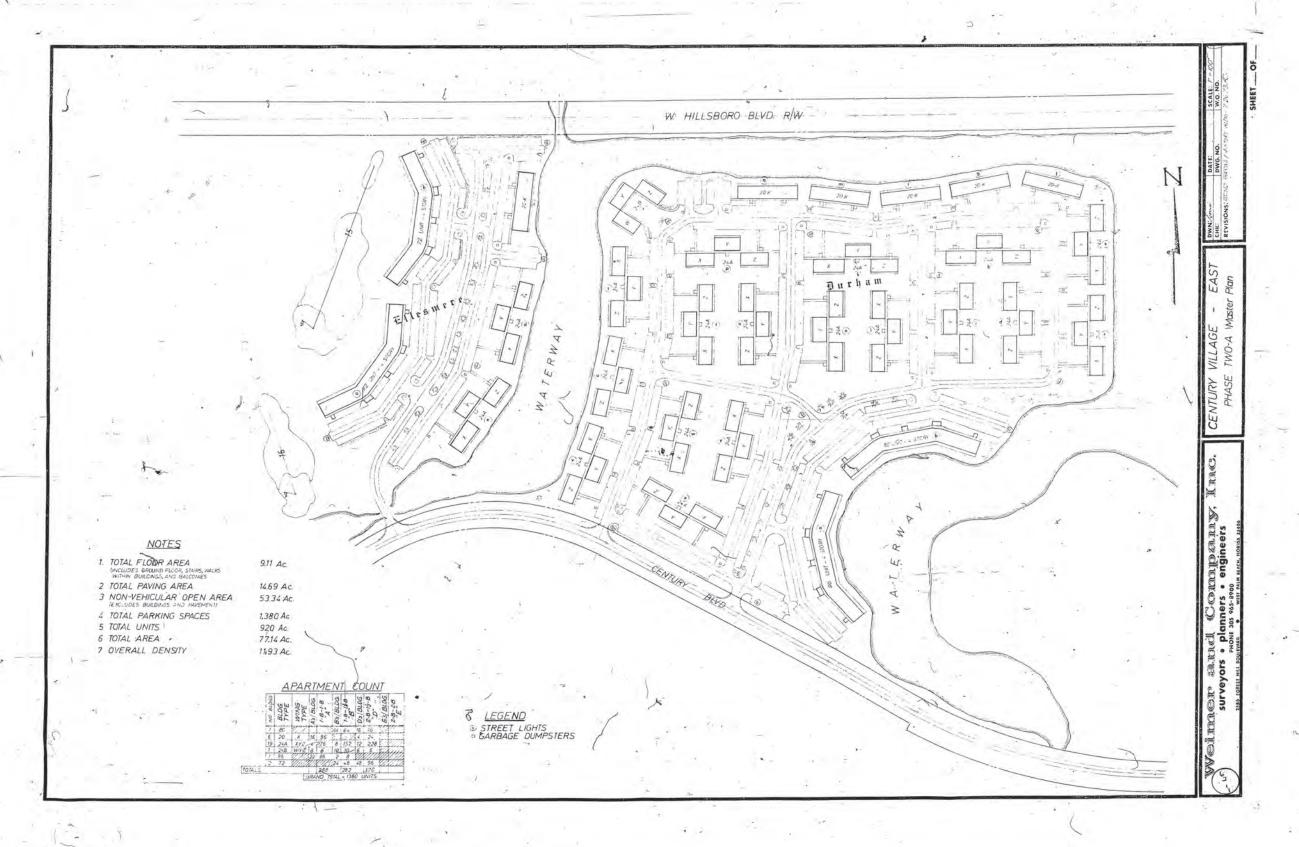

TYPICAL 80' ROADWAY SECTION

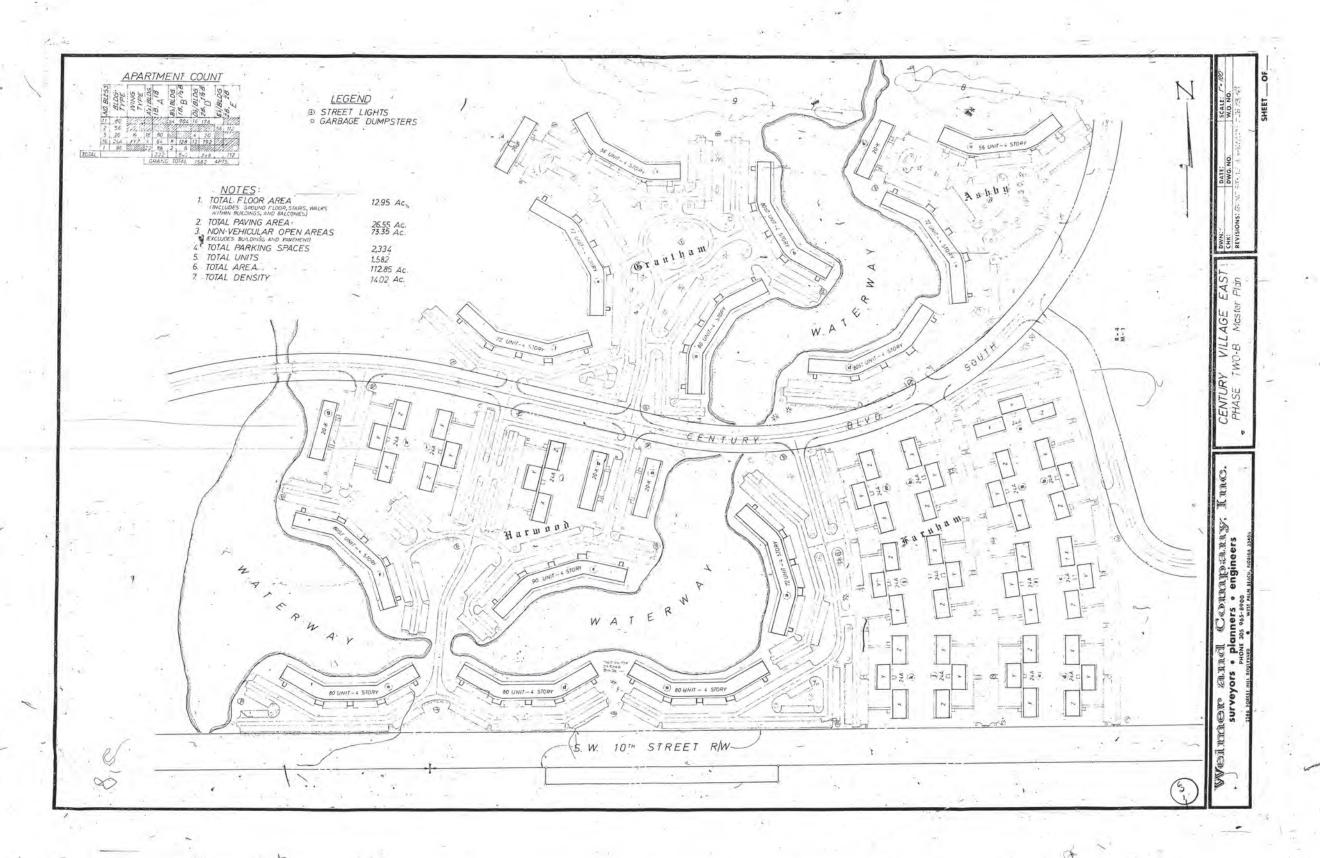


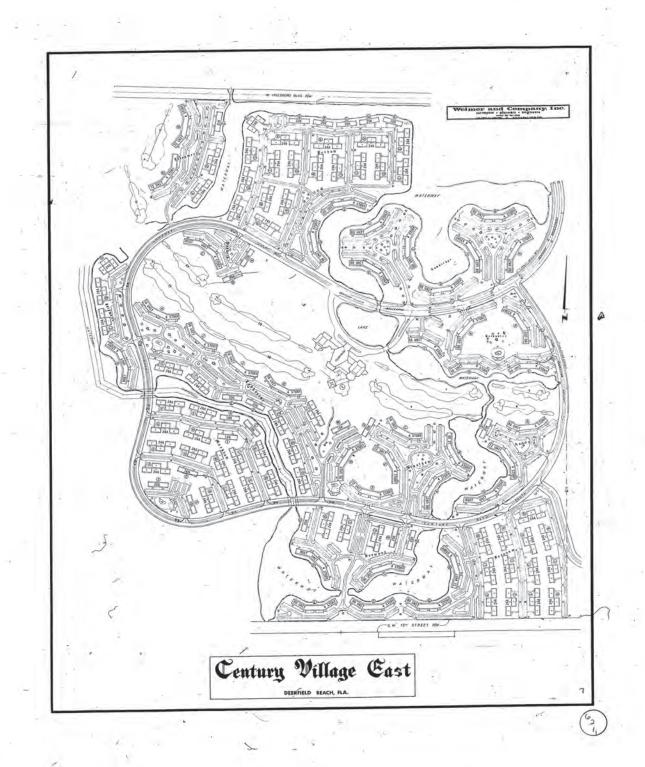


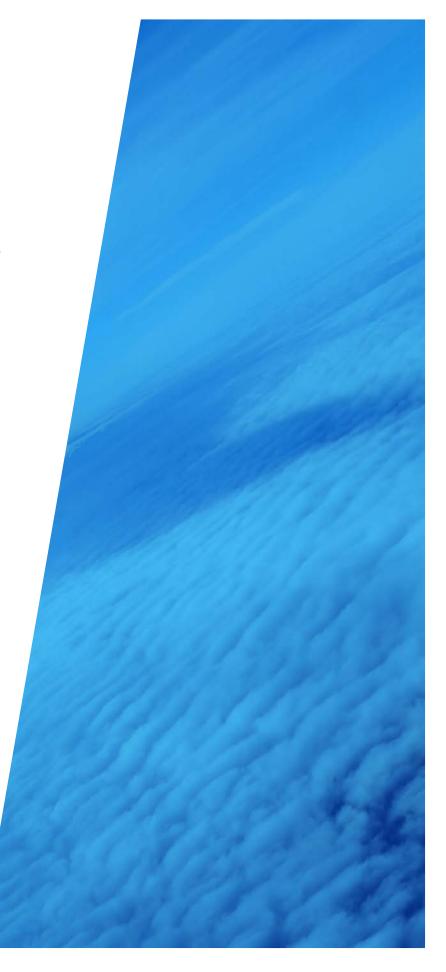
6121-1











APPENDIX H

GEOTECHNICAL REPORT

GCME

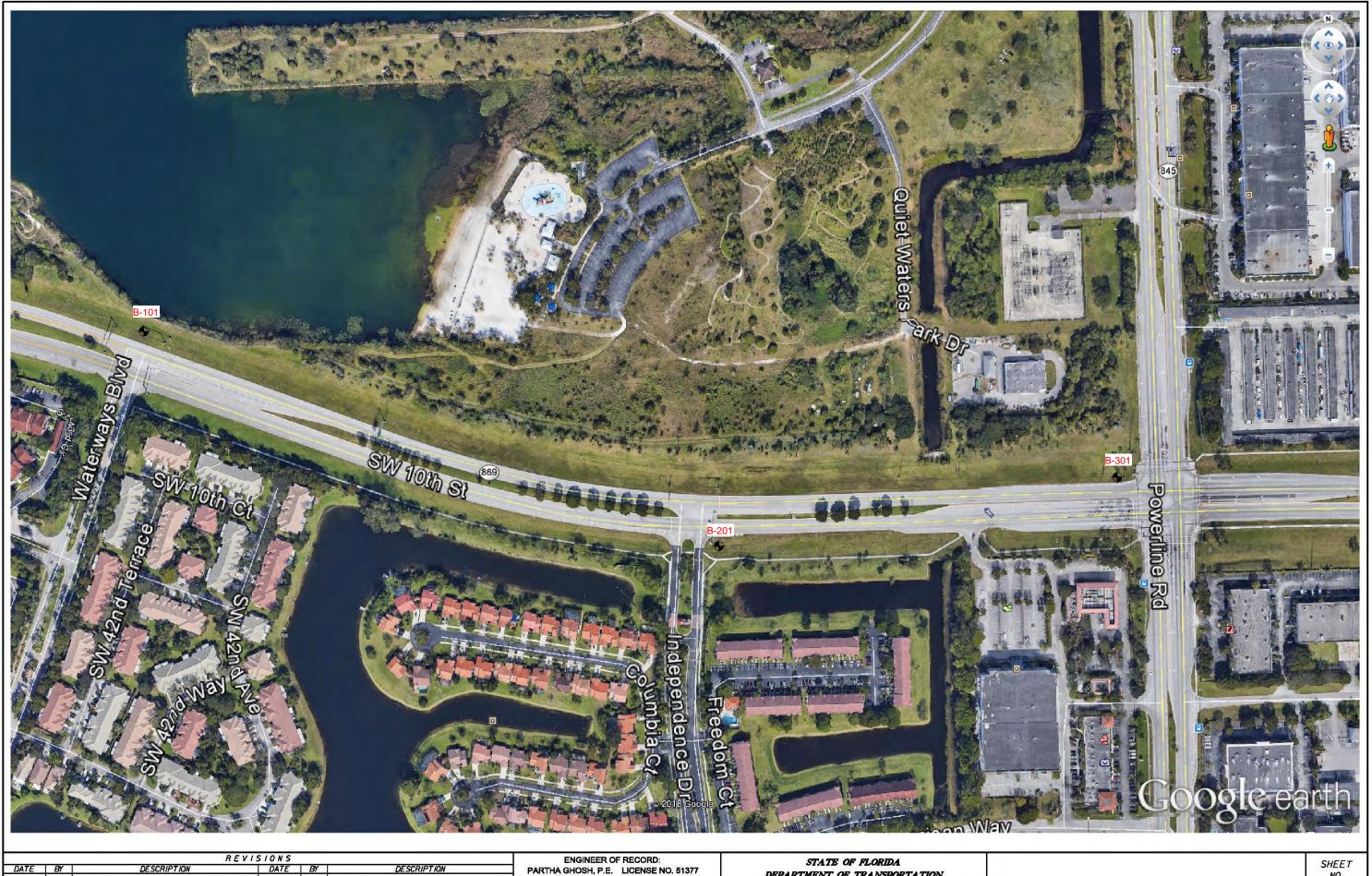
Memo

To: Ms. Cassie Piché, P.E.

From: Partha Ghosh, P.E.

Date: **February 16, 2018**

Re: SW 10th St. PD&E Soil Boring Info.; FPID No.: 439891-1-22-01


The following preliminary information are attached for your immediate use:

- 1. Boring Location Plan
- 2. Soil Profiles Preliminary
- 3. 18 and 24 inch PSC Piles Capacity, tables and graphs
- 4. 48 and 60 inch Drilled Shaft Capacity, tables and graphs
- 5. Soil FB-Pier parameters for all borings

Note: The above information are provided for your immediate needs. A formal PD&E report will be provided at a later date.

Thank you.

Partha

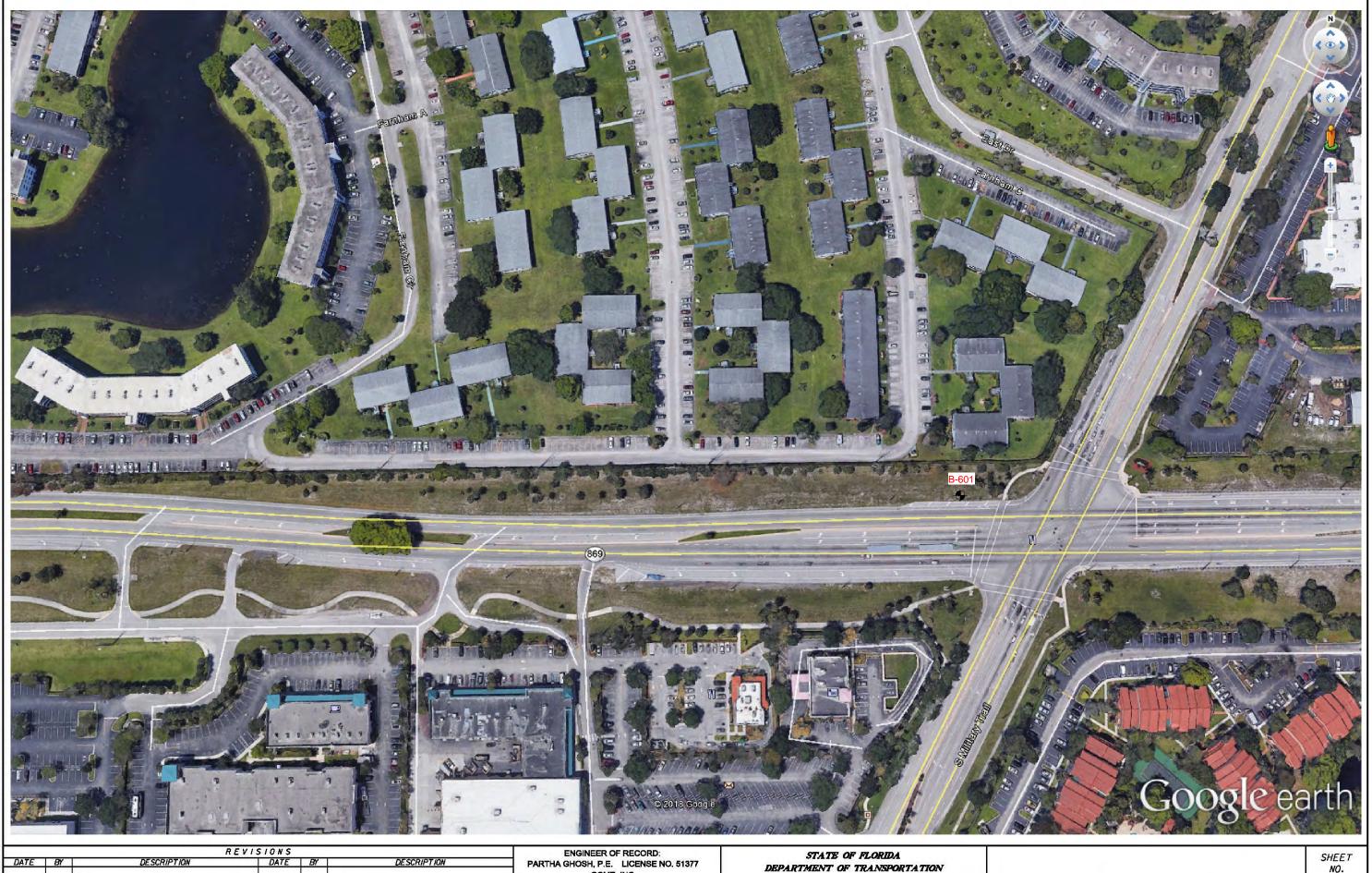


LEGEND:
B- SPT Boring (100')

ENGINEER OF RECORD:
PARTHA GHOSH, P.E. LICENSE NO. 51377
GCME, INC.
1730 W. 10TH STREET
RIVIERA BEACH, FLORIDA 33404
CERTIFICATE OF AUTHORIZATION NO. 9076

DEPARTMENT OF TRANSPORTATION ROAD NO. FINANCIAL PROJECT ID BROWARD 439891-1-22-02

APPROXIMATE BORING LOCATION PLAN PLATE-1

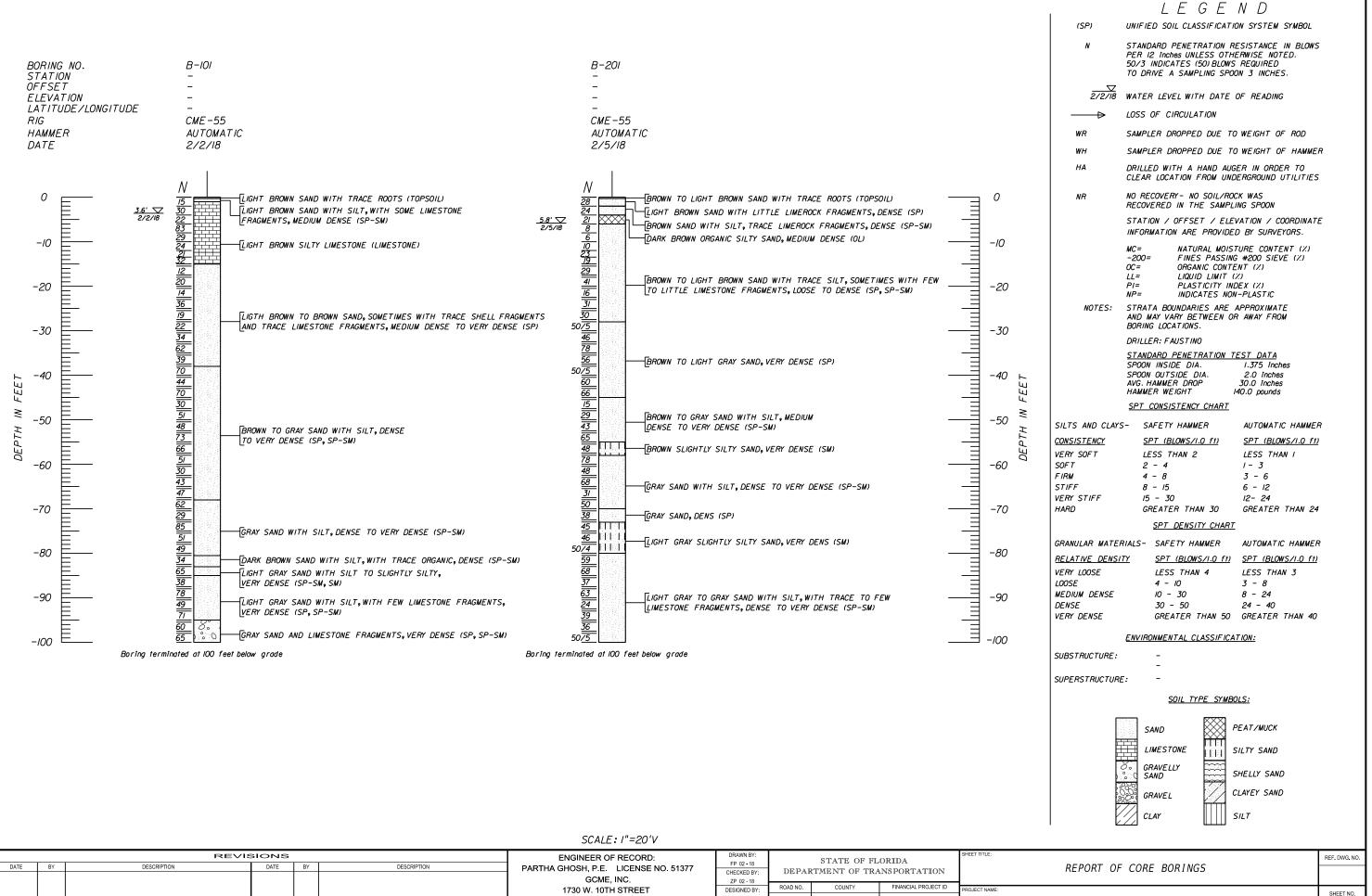


LEGEND: B- SPT Boring (100')

GCME, INC. 1730 W. 10TH STREET RIVIERA BEACH, FLORIDA 33404 CERTIFICATE OF AUTHORIZATION NO. 9076

COUNTY FINANCIAL PROJECT ID BROWARD 439891-1-22-02

APPROXIMATE BORING LOCATION PLAN PLATE-2



LEGEND:
B- SPT Boring (100')

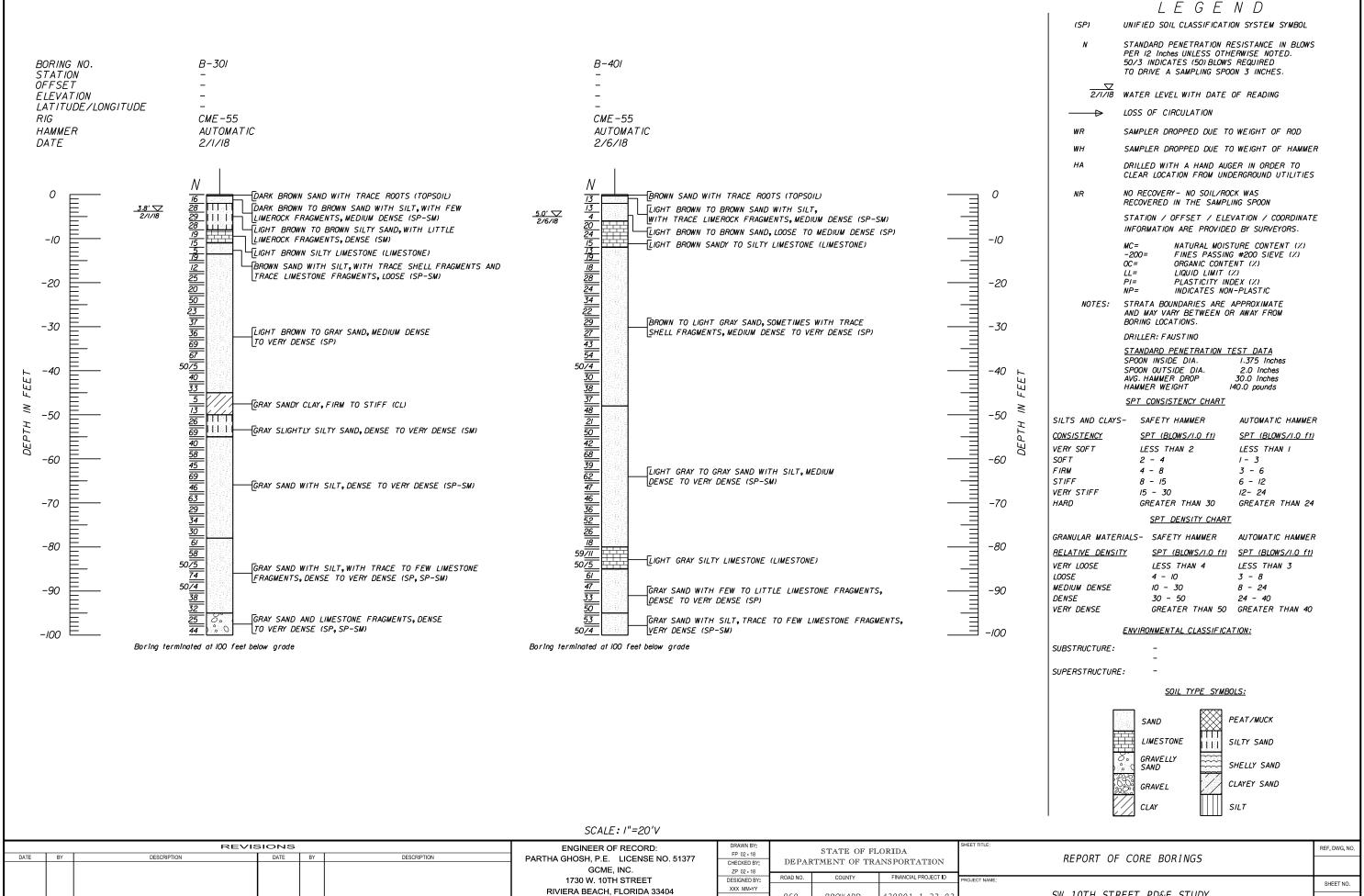
ENGINEER OF RECORD: PARTHA GHOSH, P.E. LICENSE NO. 51377 GCME, INC. 1730 W. 10TH STREET RIVIERA BEACH, FLORIDA 33404 CERTIFICATE OF AUTHORIZATION NO. 9076

DEPARTMENT OF TRANSPORTATION ROAD NO. COUNTY FINANCIAL PROJECT ID BROWARD 439891-1-22-02

APPROXIMATE BORING LOCATION PLAN PLATE-3

RIVIERA BEACH, FLORIDA 33404

CERTIFICATE OF AUTHORIZATION NO. 9076

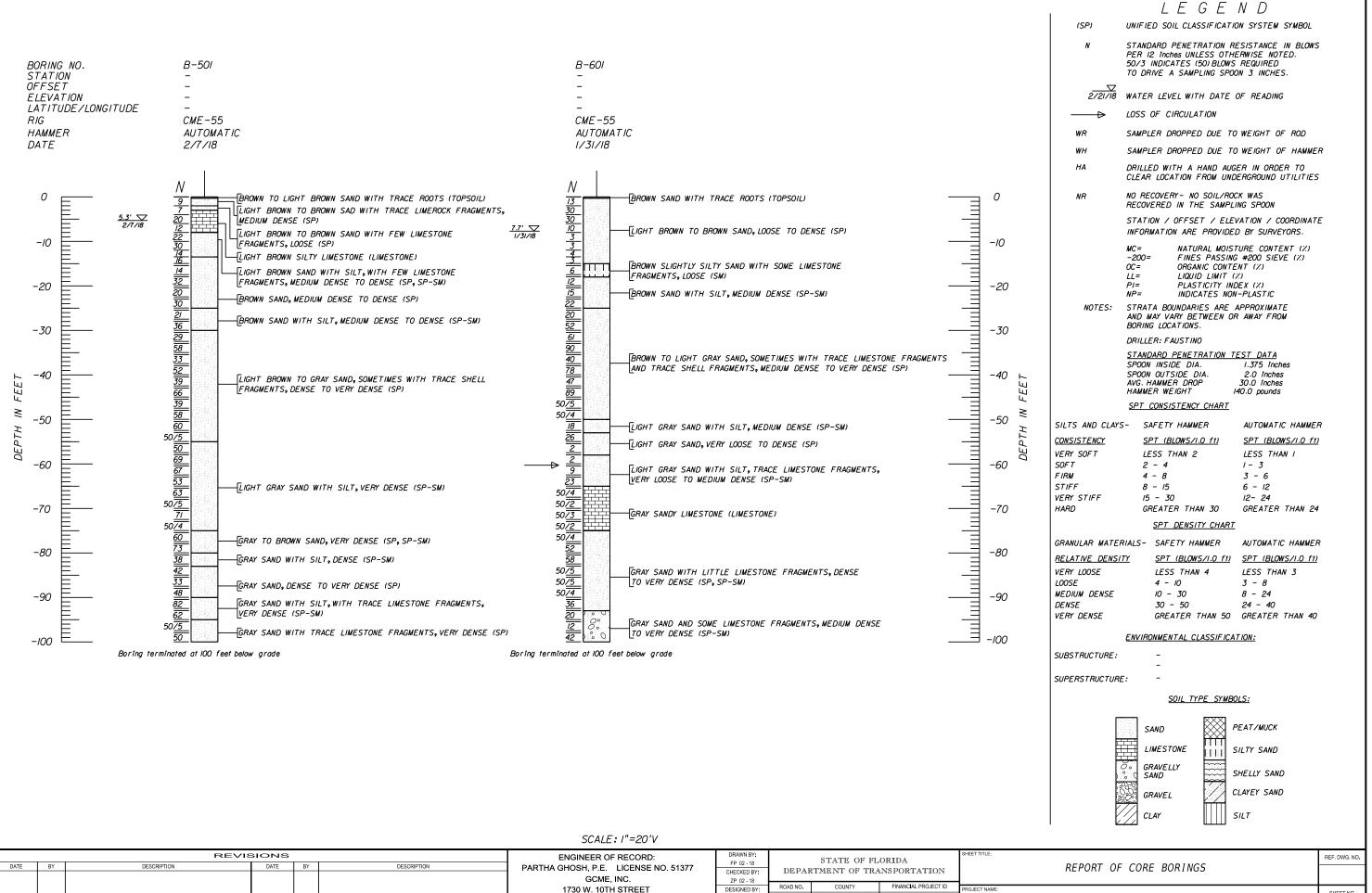

439891-1-22-0.

BROWARD

869

CHECKED BY

SW 10TH STREET PD&E STUDY


CERTIFICATE OF AUTHORIZATION NO. 9076

439891 - 1 - 22 - 02

BROWARD

869

SW 10TH STREET PD&E STUDY

XXX MM-YY

CHECKED BY

869

RIVIERA BEACH, FLORIDA 33404

CERTIFICATE OF AUTHORIZATION NO. 9076

SHEET NO.

BROWARD

SW 10TH STREET PD&E STUDY

General Information:

Input file: tary_RS&H)\Analysis_Structure\FB-Deep\Pile\B-101_Void-10ft.spc
Project number: 2000-01-17003

Job name: SW 10th Street, from Powerline Rd. to Military Trail
Engineer: JB Henry
Units: English

Analysis Information: Analysis Type: SPT

Soil Information:

Boring date: 2/2/2018, Boring Number: B-101 Station number: Offset:

Ground Elevation: 0.000(ft)

Hammer type: Automatic Hammer, Correction factor = 1.24

I D	Depth (ft)	No. of Blows (Blows/ft)	Soi I Type
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29 30 31 33 33 34 36 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 37 37 37 37 37 37 37 37 37 37 37 37	0. 00 2. 00 4. 00 6. 00 8. 00 10. 00 12. 00 13. 50 15. 50 18. 00 20. 50 23. 00 25. 50 28. 00 30. 50 33. 00 35. 50 43. 00 45. 50 48. 00 60. 50 63. 00 65. 50 68. 00 70. 50 73. 00 75. 50 78. 00 80. 50 88. 00 90. 50 88. 00 90. 50 93. 00 95. 50 98. 00 100. 00	15. 00 30. 00 22. 00 83. 00 22. 00 24. 00 21. 00 32. 00 12. 00 12. 00 20. 00 14. 00 36. 00 39. 00 34. 00 62. 00 39. 00 41. 00 30. 00 41. 00 42. 00 31. 00 42. 00 31. 00 43. 00 44. 00 45. 00 49. 00 49. 00 38. 00 49. 00 49. 00 38. 00 49. 00 65. 00 65. 00 65. 00 65. 00	5- Cavi ty layer 4- Lime Stone/Very shelly sand 4- Lime Stone/Very shelly sand 4- Lime Stone/Very shelly sand 3- Clean sand

Blowcount Average Per Soil Layer

10.00

-10.00

Layer Starting Bottom Thickness Average Soil Type Blowcount Elevation Elevation Núm. (ft) (ft) (ft) (Blows/ft)

5-Voi d

35.80

2 -10.00 -15.50 5.50 26.09 4-Limestone, Very Shelly Sand 3 -15.50 -100.00 84.50 47.46 3-Clean Sand

Driven Pile Data:

Pile unit weight = 150.00(pcf), Section Type: Square

Pile Geometry:

Length (ft) Tip Elev. (ft) Wi dth (i n) 25. 00 26. 00 27. 00 28. 00 29. 00 30. 00 31. 00 32. 00 33. 00 35. 00 36. 00 37. 00 38. 00 39. 00 40. 00 41. 00 -25.00 18.00 18. 00 18. 00 -26. 00 -27. 00 18. 00 18. 00 18. 00 18. 00 18. 00 18. 00 18. 00 18. 00 18. 00 18. 00 18. 00 18. 00 -28. 00 -29. 00 -30. 00 -31. 00 -32. 00 -34. 00 -35. 00 -36. 00 -37. 00 -38. 00 -39. 00 -40. 00 -41. 00 -42. 00 -43. 00 41.00 42.00 43.00 44.00 45.00 46.00 47.00 48.00 18. 00 18. 00 18. 00 18. 00 -44. 00 -45. 00 -46. 00 -47. 00 18.00 18.00 18.00 -48.00 49. 00 50. 00 51. 00 52. 00 53. 00 54. 00 55. 00 56. 00 57. 00 58. 00 59. 00 60. 00 18.00 -49.00 -49.00 -50.00 -51.00 -52.00 -53.00 -54.00 18. 00 18. 00 18.00 18. 00 18. 00 18.00 -56. 00 -57. 00 -58. 00 -59. 00 18.00 18.00 18.00 18.00 18.00 -60.00 18. 00 18. 00 -61. 00 -62. 00 61. 00 62. 00 63. 00 64. 00 65. 00 66. 00 67. 00 68. 00 70. 00 71. 00 72. 00 73. 00 74. 00 75. 00 76. 00 77. 00 77. 00 78. 00 79. 00 -63. 00 -64. 00 18.00 18. 00 18. 00 -65. 00 -66. 00 -67. 00 -68. 00 -70. 00 -71. 00 -73. 00 -74. 00 -75. 00 -76. 00 -77. 00 -78. 00 -79. 00 -79. 00 18. 00 18. 00 18. 00 18. 00 18. 00 18. 00 18. 00 18. 00 18. 00 18. 00 18. 00 18. 00 18. 00 18. 00 18. 00 18. 00 18. 00 18. 00 81. 00 82. 00 83. 00 84. 00 85. 00 -81. 00 -82. 00 -83. 00 -84. 00 -85. 00 86. 00 87. 00 88. 00 89. 00 90. 00 18. 00 18. 00 -86. 00 -87. 00 18.00 -88.00 -89. 00 -90. 00 18.00 18.00 18.00 91.00 -91.00 92. 00 93. 00 -92. 00 -93. 00 18.00 18.00 18.00 94.00 -94.00 25.00 -25.00 24.00 24.00 26.00 -26.00

B-101_Voi d-10ft. out

24. 00	-31. 00 -32. 00 -33. 00 -34. 00 -35. 00 -36. 00 -37. 00 -38. 00 -40. 00 -41. 00 -41. 00 -45. 00 -46. 00 -47. 00 -51. 00 -51. 00 -51. 00 -55. 00 -54. 00 -55. 00 -56. 00 -57. 00 -58. 00 -60. 00 -61. 00 -62. 00 -63. 00 -64. 00 -67. 00 -67. 00 -67. 00 -77. 00 -77. 00 -78. 00 -77. 00 -78. 00 -79. 00 -71. 00 -71. 00 -71. 00 -71. 00 -71. 00 -71. 00 -71. 00 -71. 00 -71. 00 -71. 00 -71. 00 -71. 00 -71. 00 -71. 00 -71. 00 -72. 00 -73. 00 -74. 00 -75. 00 -79. 00
--------	---

Driven Pile Capacity:

Section Type: Square Pile Width: 18.00 (in)

Test	Pile	UItimate	Mobilized	Estimated	Allowable	Ultimate
Pile	Wi dth	Si de	End	Davi sson	Pile	Pile
Length		Friction	Beari ng	Capaci ty	Capaci ty	Capaci ty
(ft)	(i n)	(tons)	(tons)	(tons)	(tons)	(tons)
					Page 3	

				B-	101_voi d-10t	t. out
25. 00 26. 00 27. 00 28. 00 29. 00 30. 00 31. 00 32. 00 33. 00 34. 00 35. 00 36. 00 37. 00 40. 00 41. 00 42. 00 43. 00 45. 00 51. 00 55. 00 56. 00 57. 00 55. 00 56. 00 57. 00 58. 00 60. 00 61. 00 62. 00 64. 00 65. 00 66. 00 67. 00 67. 00 77. 00	18. 0 0 0 1 18. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	32. 59 34. 23 35. 57 36. 87 36. 78 41. 56 45. 09 49. 12 59. 56 64. 92 70. 64 81. 47 87. 55 93. 55 105. 37 111. 62 117. 75 122. 27 132. 44 138. 47 144. 94 151. 41 157. 89 164. 39 170. 94 177. 50 184. 08 190. 68 197. 28 203. 90 210. 07 215. 35 219. 91 224. 91 236. 64 242. 92 249. 40 255. 66 268. 79 274. 01 278. 48 283. 69 274. 01 278. 48 289. 89 296. 59 303. 29 316. 70 323. 42 329. 76 335. 37 340. 43 352. 39 356. 77 370. 29 376. 21 382. 42 329. 76 335. 37 340. 43 352. 39 356. 77 370. 29 376. 64 402. 61 402. 64 402. 64 403. 16	54. 22 57. 85 63. 63 91. 82 85. 63 91. 86 106. 52 111. 51 113. 62 115. 83 118. 91 122. 52 124. 60 124. 71 123. 76 123. 75 126. 89 131. 71 134. 11 135. 73 136. 45 137. 64 137. 64 137. 63 128. 63 126. 65 127. 52 129. 00 131. 33 133. 24 137. 64 132. 90 131. 33 134. 47 133. 58 134. 46 122. 46 123. 08 124. 71 134. 11 135. 73 136. 88 137. 62 127. 52 129. 00 131. 33 133. 26 127. 52 129. 00 131. 33 133. 26 127. 62 127. 62 127. 97 130. 26 127. 97 130. 26 135. 30 135. 30 135. 30 135. 30 135. 30 135. 30 135. 30	86. 82 92. 08 98. 93 107. 88 117. 60 127. 19 136. 95 148. 11 160. 64 171. 07 178. 54 185. 90 124. 49 251. 82 223. 11 229. 32 236. 90 244. 49 251. 82 258. 99 266. 55 274. 20 281. 38 288. 12 294. 77 301. 64 308. 62 313. 95 316. 99 319. 30 323. 91 330. 65 337. 59 344. 35 358. 18 365. 03 370. 22 373. 14 375. 05 379. 00 385. 06 391. 87 398. 94 406. 66 415. 09 423. 94 431. 05 435. 88 447. 04 457. 04 474. 00 482. 88 491. 94 406. 66 415. 09 423. 94 431. 05 435. 89 444. 63 451. 04 457. 04 474. 00 482. 88 498. 28 505. 28 512. 20 519. 70 525. 74 532. 48 539. 58 547. 40 555. 78	43. 41 46. 04 49. 46 53. 94 58. 80 63. 60 68. 47 74. 05 80. 32 85. 54 89. 27 92. 95 97. 23 102. 00 106. 08 109. 11 111. 55 114. 66 118. 45 122. 24 125. 84 129. 49 133. 28 137. 10 140. 66 147. 38 150. 82 154. 31 156. 97 158. 49 159. 65 161. 92 154. 31 156. 97 158. 49 159. 65 161. 92 172. 17 175. 62 179. 09 185. 11 186. 57 187. 50 192. 53 195. 94 199. 47 203. 33 207. 54 211. 97 215. 52 217. 94 219. 80 222. 32 225. 52 228. 51 237. 00 241. 34 249. 14 252. 64 256. 10 259. 50 266. 24 269. 79 277. 88 281. 79	195. 26 207. 77 225. 44 249. 92 275. 25 298. 45 320. 67 345. 83 373. 68 394. 09 405. 77 417. 56 432. 27 449. 04 461. 34 467. 65 470. 62 477. 23 487. 44 498. 28 509. 55 522. 41 534. 78 545. 67 554. 27 561. 55 568. 52 576. 12 583. 98 586. 83 582. 79 576. 56 577. 16 584. 15 592. 63 602. 35 613. 89 624. 70 633. 58 626. 37 633. 58 626. 37 629. 99 638. 04 648. 81 663. 00 677. 88 692. 04 699. 97 701. 08 698. 78 701. 0

Section Type: Square Pile Width: 24.00 (in)

Test Pile	Pile Width	UI ti mate Si de	Mobilized End	Estimated	Allowable Pile	UItimate Pile
Length		Friction	Beari ng	Davi sson Capaci ty	Capaci ty	Capaci ty
(ft)	(i n)	(tons)	(tons)	(tons)	(tons)	(tons)
25. 00 26. 00	24. 0	41. 05 42. 45	92. 19	133. 24 141. 54	66. 62 70. 77	317. 62 339. 72

				B-10	01 Void-10ft.	out
27.00	24. 0	44. 03	106. 69	150. 71	75. 36	364. 09
28. 00 29. 00	24. 0 24. 0	46. 01 48. 65	114. 37 121. 57	160. 39 170. 23	80. 19 85. 11	389. 13 413. 37
30.00	24.0	52.00	128. 84	180. 85	90.42	438. 53
31.00	24. 0	55. 87	137. 45	193. 32	96. 66 103. 63	468. 22
32. 00 33. 00	24. 0 24. 0	60. 47 66. 09	146. 80 155. 15	207. 26 221. 24	110. 62	500. 85 531. 55
34.00	24.0	72. 14	162. 98	235. 12	117. 56	561.07
35.00	24. 0	77. 82	172. 12	249. 94	124. 97	594. 18
36. 00 37. 00	24. 0 24. 0	83. 17 89. 22	183. 11 193. 32	266. 28 282. 55	133. 14 141. 27	632. 50 669. 19
38.00	24.0	96. 45	199. 47	295. 92	147. 96	694.86
39. 00 40. 00	24. 0 24. 0	104. 45 112. 22	201. 99 203. 79	306. 44 316. 01	153. 22 158. 00	710. 41 723. 59
41.00	24. 0	119. 79	206. 97	326. 76	163. 38	740. 71
42.00	24. 0	127. 60	212. 20	339. 79	169. 90	764. 19
43.00 44.00	24. 0 24. 0	135. 70 143. 48	216. 96 222. 07	352. 66 365. 55	176. 33 182. 77	786. 57 809. 68
45. 00	24. 0	150. 29	228. 29	378. 58	189. 29	835. 16
46.00	24. 0	156. 34	234. 95	391. 29	195. 65	861. 19
47. 00 48. 00	24. 0 24. 0	163. 17 171. 06	239. 66 241. 87	402. 82 412. 92	201. 41 206. 46	882. 13 896. 65
49.00	24.0	179. 50	242. 36	421. 86	210. 93	906. 57
50.00	24. 0 24. 0	187. 96 196. 44	242.72	430. 68	215. 34	916. 11 927. 61
51. 00 52. 00	24. 0	204. 96	243. 72 243. 78	440. 16 448. 74	220. 08 224. 37	936. 30
53.00	24.0	213. 54	240. 56	454. 10	227. 05	935. 21
54. 00 55. 00	24. 0 24. 0	222. 16 230. 80	234. 51 229. 67	456. 67 460. 48	228. 34 230. 24	925. 70 919. 82
56.00	24. 0	239. 47	227. 09	466. 56	233. 28	920. 74
57.00	24. 0	248. 16	226. 01	474. 17	237. 08	926. 19
58. 00 59. 00	24. 0 24. 0	256. 86 265. 02	225. 32 225. 67	482. 18 490. 69	241. 09 245. 35	932. 81 942. 03
60.00	24.0	272.05	228. 31	500.36	250. 18	956. 98
61. 00 62. 00	24. 0 24. 0	278. 18 284. 87	233. 60 237. 68	511. 79 522. 55	255. 89 261. 27	978. 99 997. 90
63.00	24. 0	292. 38	236. 80	529. 18	264. 59	1002. 78
64.00	24. 0	300. 42	231. 79	532. 22	266. 11	995. 80
65. 00 66. 00	24. 0 24. 0	308. 73 317. 28	228. 04 226. 94	536. 78 544. 22	268. 39 272. 11	992. 86 998. 10
67.00	24.0	325. 96	227. 17	553. 13	276. 57	1007. 48
68. 00 69. 00	24. 0 24. 0	334. 73 342. 94	227. 27 228. 11	562. 00 571. 04	281. 00 285. 52	1016. 54 1027. 26
70.00	24. 0	349. 90	230. 58	580. 48	290. 24	1041. 64
71.00	24.0	355. 91	234. 29	590. 20	295. 10	1058. 78
72. 00 73. 00	24. 0 24. 0	362. 87 371. 09	235. 68 233. 24	598. 55 604. 32	299. 27 302. 16	1069. 90 1070. 80
74.00	24.0	379. 94	228. 34	608. 29	304.14	1064. 97
75. 00 76. 00	24. 0 24. 0	388. 81 397. 68	225. 69 226. 43	614. 50 624. 10	307. 25 312. 05	1065. 87 1076. 96
77. 00	24. 0	406. 56	228. 42	634. 98	317. 49	1070. 90
78.00	24. 0	415. 45	228. 25	643. 69	321. 85	1100. 19
79. 00 80. 00	24. 0 24. 0	423. 87 431. 34	226. 65 226. 88	650. 51 658. 22	325. 26 329. 11	1103. 81 1111. 99
81.00	24.0	438. 10	229. 35	667. 44	333.72	1126. 13
82.00	24. 0 24. 0	445. 57	231. 43 232. 18	677. 00 686. 18	338.50	1139.86
83. 00 84. 00	24. 0	454. 00 462. 57	232. 16	695. 24	343. 09 347. 62	1150. 54 1160. 58
85.00	24.0	470. 45	234. 63	705. 08	352. 54	1174. 35
86. 00 87. 00	24. 0 24. 0	477. 81 485. 69	238. 54 242. 75	716. 35 728. 45	358. 18 364. 22	1193. 44 1213. 95
88.00	24.0	494. 27	245. 12	739. 39	369. 70	1229. 63
89.00	24. 0 24. 0	503. 21 512. 15	245. 76 245. 76	748. 97 757. 91	374.48	1240. 49
90. 00 91. 00	24. 0 24. 0	512. 15 521. 09	245. 76 245. 76	757. 91 766. 85	378. 95 383. 43	1249. 43 1258. 37
92.00	24.0	530.04	245. 76	775. 80	387. 90	1267. 32
93. 00 94. 00	24. 0 24. 0 Soi	539.00 L Flevation	245.76 s Must Exte	784.76 nd At or	392.38 Below Contri	1276.28 bution Zone
	_ 1. 5 501	. Li Svati Oli	S MAST EXTO	/ 01	231 011 00111111	~ ZOIIC

NOTES

- 1. MOBILIZED END BEARING IS 1/3 OF THE ORIGINAL RB-121 VALUES.
- 2. DAVISSON PILE CAPACITY IS AN ESTIMATE BASED ON FAILURE CRITERIA, AND EQUALS ULTIMATE SIDE FRICTION PLUS MOBILIZED END BEARING.
- 3. ALLOWABLE PILE CAPACITY IS 1/2 THE DAVISSON PILE CAPACITY.
- 4. ULTIMATE PILE CAPACITY IS ULTIMATE SIDE FRICTION PLUS 3 x THE MOBILIZED END BEARING. EXCEPTION: FOR H-PILES TIPPED IN SAND OR LIMESTONE, THE ULTIMATE PILE CAPACITY IS ULTIMATE SIDE FRICTION PLUS 2 x THE MOBILIZED END BEARING.

Florida Bridge Software Institute Shaft and Pile Analysis (FB-Deep v. 2.05)

General Information: -----

Input file:tary_RS&H)\Analysis_Structure\FB-Deep\Pile\B-201_Void-10ft.spc
Project number: 2000-01-17003
Job name: SW 10th Street, from Powerline Rd. to Military Trail
Engineer: JB Henry
Units: English

Analysis Information: Analysis Type: SPT

Soil Information:

Boring date: 2/5/2018, Station number: Offset: Boring Number: B-201

Ground Elevation: 0.000(ft)

Hammer type: Automatic Hammer, Correction factor = 1.24

I D	Depth (ft)	No. of Blows (Blows/ft)	Soi I Type
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 22 22 22 22 22 22 22 22 23 33 33 33 33	0.00 2.00 4.00 6.00 8.00 10.00 112.00 13.50 15.50 23.00 25.50 28.00 35.50 38.00 45.50 48.00 65.50 68.00 65.50 68.00 70.50 88.00 90.50 98.00 90.50	24. 00 21. 00 8. 00 6. 00 10. 00 23. 00 19. 00 29. 00 41. 00 16. 00 31. 00 60. 00 60. 00 66. 00 66. 00 15. 00 48. 00 78. 00 48. 00 78. 00 65. 00 48. 00 78. 00 66. 00 67. 00 68. 00 68. 00 31. 00 69. 00 60. 00 60. 00 60. 00 60. 00 60. 00 60. 00 60. 00 60. 00 60. 00 60. 00 60. 00 60. 00 60. 00 60. 00 60. 00	5- Cavi ty layer 3- Clean sand

Blowcount Average Per Soil Layer

Layer Num.	Starting Elevation (ft)			Average Blowcount (Blows/ft)	Soi I Type
1	0. 00	-8. 00	8. 00	20. 25	5-Voi d
2	-8. 00	-100. 00	92. 00	44. 91	3-Cl ean Sand

Driven Pile Data:

Pile unit weight = 150.00(pcf), Section Type: Square

Pile Geometry:

Pire Geometry	у.	
Wi dth (i n)	Length (ft)	Tip Elev. (ft)
18. 00 18	25. 00 26. 00 27. 00 28. 00 27. 00 30. 00 31. 00 31. 00 32. 00 33. 00 34. 00 35. 00 37. 00 38. 00 40. 00 41. 00 42. 00 43. 00 44. 00 45. 00 46. 00 47. 00 55. 00 51. 00 52. 00 53. 00 54. 00 55. 00 56. 00 57. 00 60. 00 61. 00 62. 00 63. 00 64. 00 65. 00 67. 00 68. 00 69. 00 71. 00 72. 00 73. 00 74. 00 75. 00 77. 00	-25. 00 -26. 00 -27. 00 -28. 00 -29. 00 -30. 00 -31. 00 -32. 00 -33. 00 -34. 00 -35. 00 -36. 00 -37. 00 -41. 00 -42. 00 -43. 00 -44. 00 -45. 00 -47. 00 -48. 00 -49. 00 -51. 00 -51. 00 -52. 00 -53. 00 -54. 00 -57. 00 -58. 00 -57. 00 -58. 00 -60. 00 -61. 00 -62. 00 -63. 00 -64. 00 -65. 00 -67. 00 -68. 00 -67. 00 -70. 00 -71. 00 -72. 00 -73. 00 -74. 00 -75. 00 -75. 00 -76. 00 -77. 00 -77. 00 -77. 00 -77. 00 -79. 00 -71. 00 -72. 00 -73. 00 -74. 00 -75. 00 -75. 00 -75. 00 -75. 00 -76. 00 -77. 00 -79. 00 -71. 00 -71. 00 -72. 00 -73. 00 -74. 00 -75. 00 -75. 00 -76. 00 -77. 00 -79. 00 -71. 00 -72. 00 -73. 00 -74. 00 -75. 00 -75. 00 -75. 00 -75. 00 -75. 00 -76. 00 -77. 00 -77. 00 -78. 00 -79. 00 -71. 00 -71. 00 -72. 00 -73. 00 -74. 00 -75. 00 -75. 00 -75. 00 -76. 00 -77. 00 -79. 00 -71. 00 -72. 00 -73. 00 -74. 00 -75. 00 -75. 00 -75. 00 -75. 00 -76. 00 -77. 00 -77. 00 -78. 00 -79. 0

Driven Pile Capacity:

Section Type: Square Pile Width: 18.00 (in)

Test Pile Length (ft)	Pile Width (in)	UI ti mate Si de Fri cti on (tons)	Mobilized End Bearing (tons)	Estimated Davisson Capacity (tons)	Allowable Pile Capacity (tons)	UItimate Pile Capacity (tons)
25. 00 26. 00 27. 00 28. 00 29. 00 30. 00 31. 00 32. 00 33. 00	18. 0 18. 0 18. 0 18. 0 18. 0 18. 0 18. 0 18. 0	34. 62 38. 19 42. 78 48. 10 53. 82 59. 55 65. 28 71. 15 77. 18	99. 42 109. 65 114. 09 117. 01 118. 90 120. 34 122. 22 125. 22 129. 07	134. 04 147. 84 156. 87 165. 12 172. 72 179. 89 187. 50 196. 37 206. 25	67. 02 73. 92 78. 44 82. 56 86. 36 89. 93. 75 98. 19 103. 12	332. 88 367. 14 385. 06 399. 14 410. 51 420. 56 431. 93 446. 81 464. 38

24.00	10.0	02.22	122 24		i d-10ft. out	400 22
34. 00	18. 0	83. 32	132. 34	215. 65	107. 83	480. 33
35. 00	18. 0	89. 50	134. 87	224. 37	112. 18	494. 10
36. 00	18. 0	95. 74	137. 05	232. 78	116. 39	506. 87
37. 00 38. 00	18. 0 18. 0 18. 0	102. 01 108. 33	137. 03 139. 28 141. 32	241. 29 249. 64	120. 64 124. 82	519. 84 532. 28
39. 00	18. 0	114. 67	139. 85	254. 52	127. 26	534. 21
40. 00	18. 0	121. 05	133. 68	254. 73	127. 36	522. 09
41. 00	18. 0	127. 46	124. 84	252. 30	126. 15	501. 98
42. 00	18. 0	133. 89	117. 54	251. 43	125. 71	486. 50
43. 00	18. 0	140. 34	111. 91	252. 26	126. 13	476. 08
44. 00	18. 0	146. 06	108. 85	254. 91	127. 46	472. 62
45. 00	18. 0	150. 27	109. 39	259. 66	129. 83	478. 43
46. 00	18. 0	153. 20	112. 93	266. 13	133. 07	491. 99
47. 00	18. 0	156. 49	116. 59	273. 08	136. 54	506. 27
48. 00	18. 0	160. 40	119. 96	280. 36	140. 18	520. 28
49. 00	18. 0	164. 96	122. 57	287. 53	143. 77	532. 67
50. 00	18. 0	170. 17	124. 24	294. 42	147. 21	542. 91
51. 00	18. 0	176. 00	125. 08	301. 07	150. 54	551. 23
52. 00	18. 0	182. 14	125. 54	307. 67	153. 84	558. 75
53. 00	18. 0	188. 55	125. 69	314. 24	157. 12	565. 63
54. 00	18. 0	195. 08	125. 67	320. 76	160. 38	572. 10
55. 00	18. 0	201. 62	125. 63	327. 25	163. 62	578. 52
56. 00	18. 0	208. 15	126. 42	334. 57	167. 28	587. 41
57. 00	18. 0	214. 70	128. 89	343. 59	171. 79	601. 36
58. 00	18. 0	221. 28	132. 67	353. 96	176. 98	619. 30
59. 00	18. 0	227. 88	134. 65	362. 53	181. 26	631. 83
60. 00	18. 0	234. 46	133. 99	368. 45	184. 22	636. 43
61. 00	18. 0	241. 04	131. 79	372. 83	186. 41	636. 41
62. 00	18. 0	247. 64	130. 73	378. 36	189. 18	639. 81
63. 00	18. 0	254. 26	130. 87	385. 13	192. 57	646. 87
64. 00	18. 0	260. 48	130. 94	391. 42	195. 71	653. 30
65. 00	18. 0	265. 84	130. 68	396. 51	198. 26	657. 87
66. 00	18. 0	270. 55	130. 50	401. 04	200. 52	662. 04
67. 00 68. 00	18. 0 18. 0 18. 0	275. 91 282. 13	130. 50 130. 24 129. 66	406. 14 411. 78	200. 52 203. 07 205. 89	666. 62 671. 10
69. 00	18. 0	288. 53	129. 14	417. 67	208. 84	675. 95
70. 00	18. 0	294. 42	129. 38	423. 80	211. 90	682. 57
71. 00	18. 0	299. 90	130. 30	430. 20	215. 10	690. 81
72. 00	18. 0	305. 62	131. 20	436. 83	218. 41	699. 23
73. 00	18. 0	311. 70	131. 94	443. 63	221. 82	707. 50
74. 00	18. 0	317. 97	132. 47	450. 45	225. 22	715. 39
75. 00	18. 0	324. 31	132. 93	457. 23	228. 62	723. 09
76. 00	18. 0	330. 70	133. 73	464. 43	232. 22	731. 88
77. 00	18. 0	337. 22	135. 25	472. 46	236. 23	742. 96
78. 00	18. 0	343. 85	137. 22	481. 08	240. 54	755. 53
79. 00	18. 0	350. 55	137. 55	488. 10	244. 05	763. 20
80. 00	18. 0	357. 26	135. 72	492. 98	246. 49	764. 42
81. 00	18. 0	363. 97	133. 16	497. 12	248. 56	763. 43
82. 00	18. 0	370. 68	132. 31	502. 99	251. 50	767. 62
83. 00	18. 0	377. 39	133. 05	510. 44	255. 22	776. 53
84. 00	18. 0	383. 82	132. 28	516. 10	258. 05	780. 65
85. 00	18. 0	389. 66	129. 12	518. 79	259. 39	777. 03
86. 00	18. 0	395. 07	124. 80	519. 87	259. 94	769. 48
87. 00	18. 0	400. 92	121. 45	522. 37	261. 18	765. 27
88. 00	18. 0	407. 35	118. 95	526. 30	263. 15	764. 21
89. 00	18. 0	413. 45	116. 99	530. 44	265. 22	764. 43
90. 00	18. 0	418. 29	116. 13	534. 42	267. 21	766. 68
91. 00	18. 0	422. 13	116. 60	538. 73	269. 36	771. 92
92. 00	18. 0	426. 48	117. 77	544. 25	272. 13	779. 80
93. 00	18. 0	431. 61	119. 35	550. 96	275. 48	789. 67
94. 00	18. 0	437. 05	120. 94	557. 99	279. 00	799. 88
74.00	10.0	407.00	120. /4	331.77	217.00	, , , . 00

Section Type: Square Pile Width: 24.00 (in)

Test Pile Length (ft)	Pile Width (in)	UI ti mate Si de Fri cti on (tons)	Mobilized End Bearing (tons)	Estimated Davisson Capacity (tons)	Allowable Pile Capacity (tons)	UItimate Pile Capacity (tons)
25. 00 26. 00 27. 00 28. 00 29. 00 30. 00 31. 00 32. 00 33. 00 35. 00 36. 00 37. 00 38. 00 39. 00	24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0	40. 79 44. 41 48. 99 54. 71 61. 09 67. 61 74. 37 81. 55 89. 26 97. 12 105. 08 113. 12 121. 24 129. 42 137. 66	140. 68 153. 81 166. 30 177. 26 187. 82 199. 19 210. 49 221. 18 223. 70 225. 31 227. 36 231. 06 233. 36 230. 36	181. 47 198. 22 215. 29 231. 97 248. 90 266. 80 284. 86 302. 73 312. 95 322. 44 334. 19 354. 80 359. 67	90. 73 99. 11 107. 64 115. 99 124. 45 133. 40 142. 43 151. 37 156. 48 161. 22 166. 22 172. 09 177. 40 179. 83	462. 82 505. 85 547. 88 586. 50 624. 53 665. 18 705. 83 745. 10 760. 34 773. 06 787. 17 806. 31 821. 93 820. 49 803. 68

				B-201 Vo	i d-10ft. out	-
40.00	24.0	145. 96	214. 41	360. 37	180. 19	789. 20
41. 00	24.0	154. 31	209. 00	363. 31	181. 66	781. 31
42.00	24.0	162. 70	205. 61	368. 31	184. 16	779. 54
43.00	24.0	171. 14	203. 28	374. 42	187. 21	780. 99
44. 00 45. 00	24. 0 24. 0	178. 68 184. 38	203. 11 206. 23	381. 80 390. 61	190. 90 195. 31	788. 02 803. 07
46. 00	24.0	188. 51	212. 65	401. 16	200. 58	826. 46
47. 00	24. 0	193. 05	218. 88	411. 94	205. 97	849. 71
48. 00	24. 0	198. 37	223. 75	422. 12	211. 06	869. 62
49.00	24.0	204. 47	227. 22	431. 70	215. 85	886. 14
50.00	24.0	211. 39	229. 47	440. 86	220. 43	899. 80
51.00	24.0	219. 07	230. 68	449. 75	224. 87 229. 24	911. 10
52. 00 53. 00	24. 0 24. 0	227. 15 235. 56	231. 34 231. 48	458. 48 467. 04	229. 24 233. 52	921. 16 930. 00
54. 00	24.0	244. 15	231. 36	475. 51	237. 76	938. 24
55. 00	24. 0	252. 74	231. 32	484. 06	242. 03	946. 71
56.00	24.0	261. 33	231. 37	492. 70	246. 35	955. 43
57.00	24.0	269. 96	230. 10	500. 06	250. 03	960. 27
58. 00	24.0	278. 62	226. 18	504. 80	252. 40	957. 16
59. 00 60. 00	24. 0 24. 0	287. 31 295. 99	220. 28 217. 49	507. 59 513. 48	253. 79 256. 74	948. 15 948. 46
61. 00	24.0	304.66	217. 49	524. 22	262. 11	963. 35
62. 00	24. 0	313. 37	223. 96	537. 32	268. 66	985. 24
63.00	24.0	322. 11	226. 21	548. 32	274. 16	1000. 75
64.00	24.0	330. 34	227. 02	557. 36	278. 68	1011. 40
65.00	24.0	337. 48	229. 11	566. 59	283. 30	1024. 82
66. 00 67. 00	24. 0 24. 0	343. 80 350. 94	232. 45 234. 42	576. 25 585. 36	288. 12 292. 68	1041. 15 1054. 21
68. 00	24. 0	359. 18	234. 64	593. 83	296. 91	1063. 12
69.00	24. 0	367. 66	234. 39	602. 05	301. 02	1070. 82
70.00	24.0	375. 48	235. 18	610. 66	305. 33	1081. 03
71. 00	24.0	382. 77	237. 07	619. 84	309. 92	1093. 97
72. 00 73. 00	24.0	390. 38 398. 44	238. 74 239. 79	629. 12	314. 56 319. 12	1106. 59
74.00	24. 0 24. 0	406. 77	240. 48	638. 23 647. 25	319. 12	1117. 82 1128. 21
75. 00	24. 0	415. 16	241. 09	656. 25	328. 12	1138. 42
76. 00	24. 0	423. 63	241. 62	665. 25	332. 63	1148. 49
77. 00	24. 0	432. 26	241. 12	673. 38	336. 69	1155. 62
78.00	24.0	441. 05	238. 68	679. 73	339. 86	1157. 08
79. 00 80. 00	24. 0 24. 0	449. 92 458. 80	234. 82 232. 81	684. 74 691. 61	342. 37 345. 81	1154. 37 1157. 23
81. 00	24. 0	467. 69	233. 67	701. 36	350. 68	1168. 71
82. 00	24. 0	476. 58	234. 42	711. 00	355. 50	1179. 83
83.00	24.0	485. 48	230. 61	716. 09	358. 04	1177. 32
84. 00	24.0	494.00	223. 20	717. 21	358. 60	1163. 61
85.00	24. 0 24. 0	501. 78 509. 00	218. 05 216. 58	719. 83 725. 58	359. 92 362. 79	1155. 93 1158. 73
86. 00 87. 00	24. 0	516. 78	215. 83	732. 61	366. 31	1164. 27
88. 00	24. 0	525. 32	213. 34	738. 66	369. 33	1165. 34
89.00	24.0	533. 43	210. 78	744. 21	372. 11	1165. 77
90.00	24.0	539. 92	211. 61	751. 53	375. 76	1174. 74
91. 00 92. 00	24. 0 24. 0	545. 11 550. 06	215. 90 220. 19	761. 01 771. 15	380. 50 385. 58	1192. 80 1211. 53
92. 00 93. 00	24. 0 24. 0	550. 96 557. 82	220. 19 223. 06	771. 15 780. 87	385. 58 390. 44	1211.53
94.00			s Must Exte			

NOTES

- 1. MOBILIZED END BEARING IS 1/3 OF THE ORIGINAL RB-121 VALUES.
- 2. DAVISSON PILE CAPACITY IS AN ESTIMATE BASED ON FAILURE CRITERIA, AND EQUALS ULTIMATE SIDE FRICTION PLUS MOBILIZED END BEARING.
- 3. ALLOWABLE PILE CAPACITY IS 1/2 THE DAVISSON PILE CAPACITY.
- 4. ULTIMATE PILE CAPACITY IS ULTIMATE SIDE FRICTION PLUS 3 x THE MOBILIZED END BEARING.
 EXCEPTION: FOR H-PILES TIPPED IN SAND OR LIMESTONE, THE ULTIMATE PILE CAPACITY IS ULTIMATE SIDE FRICTION PLUS 2 x THE MOBILIZED END BEARING.

Florida Bridge Software Institute Shaft and Pile Analysis (FB-Deep v. 2.05)

General Information: -----

Input file:tary_RS&H)\Analysis_Structure\FB-Deep\Pile\B-301_Void-10ft.spc
Project number: 2000-01-17003
Job name: SW 10th Street, from Powerline Rd. to Military Trail
Engineer: JB Henry
Units: English

Analysis Information: Analysis Type: SPT

Soil Information:

Boring date: 2/1/2018, Station number: Offset: Boring Number: B-301

Ground Elevation: 0.000(ft)

Hammer type: Automatic Hammer, Correction factor = 1.24

I D	Depth (ft)	No. of Blows (Blows/ft)	Soil Type
1 2 3 4 5 6 7 8 9 10 11 2 13 4 15 16 7 18 9 20 1 22 22 4 25 6 27 8 9 33 33 4 5 6 37 8 9 4 1 2 2 2 2 4 2 5 6 7 8 9 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.00 2.00 4.00 6.00 8.00 10.00 112.00 13.50 18.00 20.50 23.00 25.50 38.00 35.50 38.00 45.50 48.00 50.55.50 68.00 60.50 68.00 70.50 80.55 88.00 80.55 88.00 90.50 93.00	28. 00 29. 00 28. 00 19. 00 15. 00 15. 00 19. 00 25. 00 20. 00 50. 00 23. 00 69. 00 67. 00 40. 00 33. 00 69. 00 40. 00 58. 00 69. 00 46. 00 63. 00 29. 00 34. 00 30. 00 61. 00 62. 00 63. 00 63. 00 64. 00 65. 00 67. 00 60. 00 60. 00 60. 00 61. 00 62. 00 63. 00 63. 00 64. 00 65. 00 65. 00 66. 00 67. 00 67. 00 68. 00 69. 00 69. 00 69. 00 69. 00 69. 00 69. 00 60. 00 61. 00 61. 00 62. 00 63. 00 64. 00 65. 00 65. 00 66. 00 66. 00 67. 00 67. 00 67. 00 67. 00 68. 00 69. 00 69. 00 60. 00 61. 00 61. 00 62. 00 63. 00 65. 00 65. 00 66. 00 66. 00 67. 00 66. 00 67. 00	5- Cavity layer 3- Clean sand

Blowcount Average Per Soil Layer

Layer Num.	Starting Elevation (ft)	Bottom Elevation (ft)	Thi ckness (ft)	Average Blowcount (Blows/ft)	Soi I Type
1 2 3 4	0.00 -10.00 -45.50 -50.50	-10. 00 -45. 50 -50. 50	5. 00	24. 00 35. 37 9. 00	5-Void 3-Clean Sand 2-Clay and Silty Sand 3-Clean Sand
4	-50.50	-100. 00	49. 50	48. 09 Page	

Driven Pile Data:

Pile unit weight = 150.00(pcf), Section Type: Square

Pile Geometry:

Pile	Geometry:		
	Wi dth (i n)	Length (ft)	Tip Elev. (ft)
	18. 00 18. 00	25. 00 26. 00 27. 00 28. 00 29. 00 30. 00 31. 00 33. 00 34. 00 35. 00 36. 00 37. 00 38. 00 41. 00 42. 00 41. 00 42. 00 43. 00 45. 00 46. 00 47. 00 50. 00 51. 00 52. 00 53. 00 54. 00 55. 00 66. 00 67. 00 68. 00 67. 00 68. 00 67. 00 68. 00 67. 00 68. 00 67. 00 68. 00 67. 00 68. 00 69. 00 71. 00 72. 00 73. 00 75. 00 76. 00 77. 00 78. 00 79. 00 80. 00 81. 00 82. 00 83. 00 84. 00 85. 00 86. 00 87. 00 88. 00 89. 00 91. 00 92. 00 93. 00 94. 00 93. 00 93. 00 94. 00 95. 00 96. 00 97. 00	-25. 00 -26. 00 -27. 00 -28. 00 -29. 00 -30. 00 -31. 00 -33. 00 -34. 00 -35. 00 -37. 00 -38. 00 -40. 00 -41. 00 -42. 00 -43. 00 -44. 00 -45. 00 -46. 00 -47. 00 -48. 00 -55. 00 -56. 00 -57. 00 -56. 00 -57. 00 -58. 00 -60. 00 -61. 00 -62. 00 -63. 00 -64. 00 -65. 00 -67. 00 -68. 00 -67. 00 -77. 00 -78. 00 -77. 00

B-301_Voi d-10ft. out

Driven Pile Capacity:

Section Type: Square Pile Width: 18.00 (in)

Pile Length Width End Length Side Friction (tons) End Capacity (tons) Davisson Capacity (tons) Pile Capacity (tons) Pile Capacity (tons) 25.00 18.0 28.46 75.03 103.49 51.74 253.54 26.00 18.0 31.15 82.61 113.76 56.88 278.97 27.00 18.0 34.26 91.63 125.89 62.95 309.16 28.00 18.0 37.99 102.04 140.03 70.02 344.11 29.00 18.0 42.48 107.75 150.23 75.12 365.74 30.00 18.0 47.00 112.89 159.89 79.95 385.67							
26.00 18.0 31.15 82.61 113.76 56.88 278.97 27.00 18.0 34.26 91.63 125.89 62.95 309.16 28.00 18.0 37.99 102.04 140.03 70.02 344.11 29.00 18.0 42.48 107.75 150.23 75.12 365.74 30.00 18.0 47.00 112.89 159.89 79.95 385.67	Pile Length	Width	Si de Fri cti on	End Beari ng	Davi sson Capaci ty	Pile Capacity	UItimate Pile Capacity (tons)
	26. 00 27. 00 28. 00 29. 00 30. 00	18. 0 18. 0 18. 0 18. 0 18. 0	31. 15 34. 26 37. 99 42. 48 47. 00	82. 61 91. 63 102. 04 107. 75 112. 89	113. 76 125. 89 140. 03 150. 23 159. 89	56. 88 62. 95 70. 02 75. 12 79. 95	253. 54 278. 97 309. 16 344. 11 365. 74 385. 67 404. 95

				B_301 \	Voi d-10ft. out	
32. 00	18. 0	56. 68	122. 24	178. 92	89. 46	423. 39
33. 00	18. 0	62. 30	125. 91	188. 21	94. 11	440. 04
34.00	18.0	68. 23	127. 31	195. 54	97. 77	450.17
35. 00	18. 0	74. 23	126. 35	200. 59	100. 29	453. 29
36. 00	18. 0	80. 30	124. 41	204. 72	102. 36	453. 54
37. 00	18. 0	86. 43	122. 93	209. 36	104. 68	455. 23
38. 00	18. 0	92. 61	121. 59	214. 20	107. 10	
39.00	18.0	98. 65	117. 36	216. 01	108.00	457. 38 450. 72
40. 00	18. 0	104. 37	109. 51	213. 88	106. 94	432. 89
41. 00	18. 0	109. 76	99. 50	209. 26	104. 63	408. 26
42. 00	18. 0	114. 86	90. 33	205. 19	102. 59	385. 84
43. 00	18. 0	119. 65	82. 08	201. 73	100. 87	365. 89
44. 00 45. 00	18. 0 18. 0	123.82	76. 21	200.03	100. 02 100. 46	352.46
46.00	18.0	127. 03 161. 08	73. 89 24. 85	200. 92 185. 93	92. 97	348. 70 235. 63
47. 00	18. 0	163. 49	33. 79	197. 28	98. 64	264. 86
48. 00	18. 0	165. 47	39. 38	204. 85	102. 43	283. 61
49. 00	18. 0	167. 59	49. 16	216. 75	108. 38	315. 07
50. 00	18. 0	169. 96	61. 85	231. 81	115. 91	355. 52
51. 00	18. 0	178. 71	94.56	273. 27	136. 64	462.38
52. 00	18. 0	183. 51	94. 73	278. 24	139. 12	467. 71
53. 00	18. 0	189. 40	95. 07	284. 47	142. 23	474. 61
54. 00	18. 0	195. 55	95. 55	291. 10	145. 55	482. 20
55. 00	18. 0	201. 03	96. 31	297. 34	148. 67	489. 95
56. 00	18. 0	205. 79	97. 62	303. 42	151. 71	498. 67
57. 00	18. 0	210. 37	99. 81	310. 18	155. 09	509. 80
58.00	18.0	214. 92	102. 97	317. 89	158. 94	523.82
59. 00	18. 0	219. 53	106. 64	326. 17	163. 08	539. 45
60. 00	18. 0	223. 98	110. 78	334. 76	167. 38	556. 32
61. 00	18. 0	228. 46	115. 18	343. 63	171. 82	573. 98
62. 00	18. 0	233. 30	119. 52	352. 83	176. 41	591. 87
63. 00	18. 0	238. 62	123. 59	362. 21	181. 10	609. 38
64. 00	18. 0	244. 73	125. 98	370. 71	185. 36	622. 67
65.00	18. 0	251. 73	125.84	377. 57	188. 79	629. 26
66. 00	18. 0	259. 36	123. 94	383. 30	191. 65	631. 18
67. 00	18. 0	267. 06	122. 23	389. 29	194. 65	633. 76
68. 00	18. 0	274. 84	120. 76	395. 60	197. 80	637. 12
69. 00	18. 0	281. 73	118. 33	400. 06	200. 03	636. 73
70. 00	18. 0	287. 04	115. 53	402. 56	201. 28	633. 61
71. 00	18. 0	291. 49	113. 90	405. 39	202. 69	633. 18
72. 00	18. 0	296.03	114. 31	410. 35	205. 17	638. 97
73. 00	18. 0	300. 82	116. 56	417. 38	208. 69	650. 49
74. 00	18. 0	305. 62	119. 23	424. 85	212. 43	663. 31
75. 00	18. 0	310. 20	121. 99	432. 20	216. 10	676. 18
76. 00	18. 0	314. 71	124. 80	439. 52	219. 76	689. 13
77. 00	18. 0 18. 0	320.04	126. 74	446. 78	223. 39 226. 96	700. 26
78. 00 79. 00	18.0	326. 32 333. 10	127. 59 127. 77	453. 91 460. 87	230. 43	709. 10 716. 41
80. 00	18. 0	339. 87	127. 83	467. 70	233. 85	723. 36
81. 00	18. 0	346. 66	128. 31	474. 97	237. 48	731. 59
82. 00 83. 00	18. 0 18. 0	353. 44 360. 23	128. 31 129. 75 131. 97	483. 19 492. 20	241. 60 246. 10	742. 70 756. 14
84.00	18. 0	367. 02	133. 24	500. 26	250. 13	766. 75
85. 00	18. 0	373. 82	133. 09	506. 91	253. 45	773. 08
86. 00	18. 0	380. 61	131. 87	512. 49	256. 24	776. 24
87. 00	18. 0	387. 41	130. 16	517. 58	258. 79	777. 90
88. 00	18. 0	394. 22	127. 82	522. 04	261. 02	777. 69
89. 00	18. 0	400. 74	124. 28	525. 02	262. 51	773. 59
90. 00	18. 0	406. 71	119. 70	526. 41	263. 20	765. 81
91.00	18.0	412. 14	115. 32	527.47	263. 73	758. 11
92. 00	18. 0	417. 23	113. 43	530. 65	265. 33	757. 50
93. 00	18. 0	421. 98	114. 00	535. 98	267. 99	763. 97
94. 00	18. 0	426. 38	115. 59	541. 97	270. 99	773. 15

Section Type: Square Pile Width: 24.00 (in)

Test Pile Length (ft)	Pile Width (in)	UI timate Side Friction (tons)	Mobilized End Bearing (tons)	Estimated Davisson Capacity (tons)	Allowable Pile Capacity (tons)	UItimate Pile Capacity (tons)
25. 00 26. 00 27. 00 28. 00 29. 00 30. 00 31. 00 32. 00 34. 00 35. 00 36. 00 37. 00	24. 0 24. 0	33. 94 36. 52 39. 65 43. 53 47. 94 52. 61 57. 52 63. 18 69. 80 77. 11 84. 71 92. 42	106. 62 117. 91 130. 02 142. 70 155. 48 168. 00 181. 39 194. 38 205. 06 213. 43 213. 24 212. 32 208. 61	140. 55 154. 44 169. 67 186. 24 203. 42 220. 61 238. 91 257. 56 274. 86 290. 55 297. 95 304. 74 308. 85	70. 28 77. 22 84. 83 93. 12 101. 71 110. 31 119. 45 128. 78 137. 43 145. 27 148. 97 152. 37	353. 79 390. 26 429. 71 471. 64 514. 38 556. 61 601. 68 646. 32 684. 99 717. 42 724. 43 729. 37 726. 08

8. 00 24.0 108. 15 198. 70 306. 85 153. 42 704. 24 39. 00 24.0 115. 93 183. 30 299. 24 149. 62 665. 85 41. 00 24.0 130. 41 156. 63 287. 04 143. 52 600. 31 42. 00 24.0 130. 41 156. 63 287. 04 143. 52 600. 31 43. 00 24.0 143. 47 143. 36 286. 84 143. 42 573. 56 44. 00 24.0 149. 08 141. 87 290. 95 145. 48 574. 70 45. 00 24.0 149. 08 141. 87 290. 95 145. 48 574. 70 45. 00 24.0 153. 54 145. 87 290. 95 145. 48 574. 70 46. 00 24.0 214. 78 61. 87 276. 65 138. 32 400. 38 48. 00 24.0 222. 56 93. 42 315. 97 157. 99 502. 80 49. 00 24.0 222. 56 93. 42 315. 97 157. 99 502. 80 49. 00 24.0 229. 13 112. 81 341. 94 170. 97 567. 56 51. 00 24.0 229. 13 112. 81 341. 94 170. 97 567. 56 51. 00 24.0 244. 68 187. 21 431. 89 215. 95 806. 32 55. 00 24.0 240. 261. 47 187. 51 448. 97 224. 49 823. 98 55. 00 24.0 261. 47 187. 51 448. 97 224. 49 823. 98 55. 00 24.0 260. 40 187. 78 455. 18. 449. 92 55. 00 24.0 261. 47 187. 51 448. 97 224. 49 823. 98 55. 00 24.0 260. 40 187. 78 455. 18. 489. 72 57. 00 24.0 261. 47 187. 51 448. 97 224. 49 823. 98 55. 00 24.0 269. 40 187. 78 455. 18. 288. 59 832. 74 56. 00 24.0 261. 47 187. 51 448. 97 224. 49 823. 98 55. 00 24.0 269. 40 187. 78 455. 18. 288. 59 832. 74 56. 00 24.0 307. 76 193. 16. 500. 92 250. 46 887. 23 58. 00 24.0 307. 76 193. 16. 500. 92 250. 46 887. 23 59. 00 24.0 307. 76 193. 16. 500. 92 250. 46 887. 23 61. 00 24.0 307. 76 193. 16. 500. 92 250. 46 68. 00 24.0 307. 76 193. 16. 500. 92 250. 46 68. 00 24.0 307. 76 193. 16. 500. 92 250. 46 68. 00 24.0 307. 76 193. 16. 500. 92 250. 46 68. 00 24.0 307. 76 193. 16. 500. 92 250. 46 68. 00 24.0 307. 76 193. 16. 500. 92 250. 46 68. 00 24.0 307. 76 193. 16. 500. 92 250. 46 68. 00 24.0 307. 76 193. 16. 500. 92 250. 46 68. 00 24.0 344. 54 205. 92 550. 46 68. 00 24.0 361. 31. 31. 31. 31. 32. 32. 34 69. 00 24.0 361. 31. 31. 31. 32. 34 69. 00 24.0 361. 31. 31. 31. 32. 32. 34 69. 00 24.0 361. 31. 31. 31. 32. 34 69. 00 24.0 361. 31. 31. 31. 32. 32. 34 60. 00 24.0 361. 31. 31. 31. 32. 33. 34 60. 00 24.0 361. 31. 31. 31. 32. 32. 34 60. 00 24.0 361. 31. 31. 31. 3							
39, 00	38 00	24 0	108 15	198 70			
41.00 24.0 130.41 156.63 287.04 143.52 600.31 42.20 24.0 137.12 148.53 285.65 142.82 573.56 44.00 24.0 143.47 143.36 286.84 143.42 573.56 44.00 24.0 149.08 141.87 290.95 145.48 574.70 145.00 24.0 216.55 4 145.87 299.41 149.70 149.70 155.54 145.87 299.41 149.70 149.70 140.21 151.55 141.58 17 299.41 149.70 149.70 140.20 218.24 80.09 288.33 149.16 458.50 48.00 24.0 222.56 93.42 315.97 157.99 502.80 140.00 24.0 222.56 93.42 315.97 157.99 502.80 150.00 24.0 229.13 112.81 341.94 170.97 567.56 150.00 24.0 229.13 112.81 341.94 170.97 567.56 150.00 24.0 229.13 112.81 341.94 170.97 567.56 150.00 24.0 225.76 187.42 440.18 220.09 815.03 155.00 24.0 252.76 187.42 440.18 220.09 815.03 155.00 24.0 261.47 187.51 448.97 224.49 823.98 155.00 24.0 261.47 187.51 488.97 224.49 823.98 155.00 24.0 269.40 187.78 457.18 228.59 822.74 156.00 24.0 264.0 276.55 188.47 465.01 232.51 18.25 19.55 180.24 0 226.06 187.78 457.18 228.59 832.74 156.00 24.0 276.55 188.47 465.01 232.51 18.26 19.55 19.							
42. 00 24. 0 137. 12 148. 53 285. 65 142. 82 582. 70 43. 00 24. 0 143. 47 143. 36 286. 84 143. 42 573. 56 44. 00 24. 0 149. 08 141. 87 290. 95 145. 48 574. 70 45. 00 24. 0 153. 54 145. 87 299. 41 149. 70 591. 15 46. 00 24. 0 214. 78 61. 87 276. 65 138. 32 400. 38 47. 00 24. 0 218. 24 80. 09 298. 33 149. 16 458. 50 48. 00 24. 0 222. 56 93. 42 315. 97 157. 99 502. 80 49. 00 24. 0 226. 06 100. 95 327. 00 163. 50 528. 90 50. 00 24. 0 229. 13 112. 81 341. 94 170. 97 567. 56 51. 00 24. 0 238. 28 186. 97 425. 25 212. 62 799. 18 52. 00 24. 0 244. 68 187. 21 431. 89 215. 95 806. 32 53. 00 24. 0 252. 76 187. 42 440. 18 220. 09 815. 03 54. 00 24. 0 252. 76 187. 42 440. 18 220. 09 815. 03 54. 00 24. 0 269. 40 187. 78 457. 18 228. 59 832. 74 56. 00 24. 0 269. 40 187. 78 457. 18 228. 59 832. 74 56. 00 24. 0 292. 13 190. 26 482. 38 241. 19 862. 90 58. 00 24. 0 300. 35 191. 28 491. 63 245. 82. 59 59. 00 24. 0 300. 35 191. 28 491. 63 245. 82. 874. 20 60. 00 24. 0 300. 35 191. 28 491. 63 245. 82. 874. 20 60. 00 24. 0 332. 49 200. 37 520. 85 200. 40 60. 00 24. 0 332. 49 200. 37 520. 85 260. 43 61. 00 24. 0 332. 49 200. 37 520. 85 260. 43 62. 00 24. 0 344. 54 205. 92 63. 00 24. 0 344. 54 205. 92 64. 00 24. 0 364. 54 205. 92 65. 00 24. 0 364. 54 205. 92 66. 00 24. 0 37. 76 67. 193. 16 68. 00 24. 0 320. 49 200. 37 68. 00 24. 0 320. 49 200. 37 68. 00 24. 0 320. 49 200. 37 69. 00 24. 0 332. 93 67. 00 24. 0 344. 54 205. 92 68. 00 24. 0 362. 82 67. 00 24. 0 382. 88 68. 202. 9 550. 46 68. 00 24. 0 382. 88 68. 202. 9 590. 9 599. 99 67. 00 24. 0 382. 88 68. 202. 9 590. 9 599. 99 71. 00 24. 0 389. 33 72. 10 366. 23 73. 30 74. 00 24. 0 387. 33 75. 36 76. 56 77. 40 386. 30 77. 41. 12. 12. 12. 12. 12. 12. 12. 12. 12. 1							
43. 00 24. 0 143. 47 143. 36 286. 84 143. 42 573. 56 44. 00 24. 0 153. 54 145. 87 299. 41 149. 70 591. 15 46. 00 24. 0 214. 78 61. 87 299. 41 149. 70 591. 15 46. 00 24. 0 218. 24 80. 09 298. 33 149. 16 458. 50 48. 00 24. 0 222. 56 93. 42 315. 97 157. 99 502. 80 48. 00 24. 0 222. 56 93. 42 315. 97 157. 99 502. 80 50. 00 24. 0 222. 60. 60 100. 95 327. 00 163. 50 528. 90 50. 00 24. 0 229. 13 112. 81 341. 94 170. 97 567. 56 1. 00 24. 0 238. 28 186. 97 425. 25 212. 62 799. 18 52. 00 24. 0 244. 68 187. 21 431. 89 215. 95 806. 32 53. 00 24. 0 252. 76 187. 42 440. 18 220. 09 815. 03 54. 00 24. 0 250. 40 187. 78 457. 18 228. 59 832. 74 55. 00 24. 0 269. 40 187. 78 457. 18 228. 59 832. 74 56. 00 24. 0 240. 284. 02 189. 36 473. 38 236. 69 852. 10 57. 00 24. 0 284. 02 189. 36 473. 38 236. 69 852. 10 58. 00 24. 0 300. 35 191. 28 491. 63 245. 82 60. 00 24. 0 300. 35 191. 28 491. 63 245. 82 61. 00 24. 0 314. 13 196. 46 510. 58 255. 29 903. 50 62. 00 24. 0 327. 93 203. 14 531. 07 265. 53 97. 34 64. 00 24. 0 332. 49 200. 37 520. 85 260. 43 921. 59 66. 00 24. 0 332. 39. 203. 14 531. 07 265. 53 937. 34 64. 00 24. 0 344. 54 65. 00 24. 0 369. 36. 59 66. 00 24. 0 332. 39. 203. 14 531. 07 265. 53 937. 34 64. 00 24. 0 344. 54 65. 00 24. 0 369. 36. 99 659. 00 24. 0 360. 35. 99 660. 00 24. 0 37. 76 67. 00 24. 0 360. 55 67. 00 24. 0 360. 55 68. 00 24. 0 37. 76 69. 00 24. 0 360. 55 69. 00 24. 0 360. 55 60. 00 260. 55 60. 00 260. 55 60. 00 260. 55 60. 00 260. 55 60. 00 260. 55 60. 00							
44. 00 24. 0 149. 08 141. 87 290. 95 145. 48 574. 70 450. 024. 0 153. 54 145. 87 299. 41 149. 70 591. 15 46. 00 24. 0 214. 78 61. 87 296. 65 138. 32 400. 38 47. 00 24. 0 218. 24 80. 09 298. 33 149. 16 458. 50 50. 80 49. 00 24. 0 222. 56 693. 42 315. 97 157. 99 502. 80 49. 00 24. 0 226. 06 100. 95 327. 00 163. 50 528. 90 50. 00 24. 0 229. 13 112. 81 341. 94 170. 97 567. 56 51. 00 24. 0 238. 28 186. 97 425. 25 212. 62 799. 18 52. 00 24. 0 226. 04 88. 187. 21 431. 89 215. 95 806. 32 53. 00 24. 0 226. 04 187. 78 457. 18 228. 59 832. 74 56. 00 24. 0 269. 40 187. 78 457. 18 228. 59 832. 74 56. 00 24. 0 269. 40 187. 78 457. 18 228. 59 832. 74 56. 00 24. 0 284. 0 284. 0 284. 0 284. 0 284. 0 292. 13 190. 26 482. 38 241. 19 862. 90 59. 00 24. 0 292. 13 190. 26 482. 38 241. 19 862. 90 59. 00 24. 0 303. 35 191. 28 491. 65. 00 22. 0 307. 76 193. 16 500. 92 250. 46 887. 23 61. 00 24. 0 320. 40 292. 13 190. 26 482. 38 241. 19 862. 90 63. 00 24. 0 320. 40 292. 13 190. 26 482. 38 241. 19 862. 90 63. 00 24. 0 320. 40 292. 13 190. 26 482. 38 241. 19 862. 90 65. 00 24. 0 330. 35 191. 28 491. 63 245. 82 874. 20 61. 00 24. 0 330. 35 191. 28 491. 63 245. 82 874. 20 62. 00 24. 0 330. 35 191. 28 491. 63 245. 82 874. 20 66. 00 24. 0 330. 36. 25 204. 60 540. 85 270. 42 950. 46 887. 23 61. 00 24. 0 330. 36. 25 204. 60 540. 85 270. 42 950. 46 867. 23 61. 00 24. 0 330. 36. 25 204. 60 540. 85 270. 42 950. 46 867. 00 24. 0 330. 36. 25 204. 60 540. 85 270. 42 950. 46 867. 00 24. 0 330. 36. 25 204. 60 540. 85 270. 42 950. 46 867. 00 24. 0 330. 36. 25 204. 60 540. 85 270. 42 950. 46 867. 00 24. 0 344. 54 205. 92 550. 46 877. 23 960. 29 66. 00 24. 0 336. 37. 93 203. 14 531. 07 265. 53 937. 34 668. 00 24. 0 336. 97. 93 203. 14 531. 07 265. 53 937. 34 668. 00 24. 0 336. 97. 93 203. 14 50. 94. 94. 94. 94. 94. 94. 94. 94. 94. 94							
45. 00							
46. 00							
48.00 24.0 224.56 93.42 315.97 157.99 502.80 49.00 24.0 226.06 100.95 327.00 163.50 528.90 50.00 24.0 229.13 112.81 341.94 170.97 567.56 51.00 24.0 238.28 186.97 425.25 212.62 799.18 52.00 24.0 252.76 187.42 440.18 220.09 815.03 54.00 24.0 252.76 187.42 440.18 220.09 815.03 54.00 24.0 269.40 187.78 457.18 228.59 832.74 56.00 24.0 269.40 187.78 457.18 228.59 832.74 56.00 24.0 276.55 188.47 465.01 232.51 841.95 57.00 24.0 292.13 190.26 482.38 241.19 862.90 59.00 24.0 307.76 193.16 500.92 250.46 887.23 61.00 24.0 307.76 193.16 500.92 250.46 887.23 61.00 24.0 314.13 196.46 510.58 255.29 903.50 62.00 24.0 320.49 200.37 520.85 260.43 921.59 63.00 24.0 327.93 203.14 531.07 265.53 937.34 64.00 24.0 327.93 203.14 531.07 265.53 937.34 64.00 24.0 361.94 207.07 569.01 284.51 983.16 65.00 24.0 320.49 200.37 520.85 260.43 921.59 63.00 24.0 330.35 204.9 200.37 520.85 260.43 921.59 63.00 24.0 320.49 200.37 520.85 260.43 921.59 63.00 24.0 320.49 200.37 520.85 260.43 921.59 63.00 24.0 336.25 204.60 540.85 270.42 973.86 67.00 24.0 336.25 204.60 540.85 270.42 973.86 67.00 24.0 336.25 204.60 540.85 270.42 973.86 67.00 24.0 361.94 207.07 569.01 284.51 983.16 68.00 24.0 362.90 266.99 559.89 279.94 973.86 67.00 24.0 389.73 202.29 584.88 292.44 990.06 69.00 24.0 389.73 202.29 584.88 292.44 990.06 67.00 24.0 389.73 202.29 584.88 292.44 990.06 67.00 24.0 389.73 202.29 584.88 292.44 990.06 67.00 24.0 389.73 202.29 584.88 292.44 990.06 67.00 24.0 389.73 202.29 584.88 292.44 990.06 67.00 24.0 389.73 202.29 584.88 292.44 990.06 67.00 24.0 389.73 202.29 584.88 329.24 1122.93 385.69 113.46 62 29.37 648.53 349.45 202.59 584.88 329.44 1122.93 385.69 113.46 62 29.37 648.53 349.45 202.59 584.88 329.24 1122.93 385.60 1170.88 330.24 0 470.78 233.34 667.98 333.99 1134.66 239.37 648.53 339.91 134.66 239.37 648.53 339.91 134.66 239.37 648.53 339.91 134.66 239.37 648.53 339.91 134.66 239.37 648.53 339.91 134.66 239.37 648.53 339.91 134.66 239.37 648.53 339.91 134.66 239.37 648.53 339.91 134.66 239.37 648.53 339.91 134.60 24.0 470.78 233.37 648.53 339.91							
49.00 24.0 226.06 100.95 327.00 163.50 528.90 50.00 24.0 229.13 112.81 341.94 170.97 567.56 51.00 24.0 238.28 186.97 425.25 212.62 799.18 52.00 24.0 244.68 187.21 431.89 215.95 806.32 53.00 24.0 261.47 187.51 448.97 224.49 823.98 55.00 24.0 269.40 187.78 457.18 228.59 832.74 56.00 24.0 266.55 188.47 465.01 232.51 841.95 57.00 24.0 292.13 190.26 482.38 245.19 862.90 59.00 24.0 300.35 191.28 491.63 245.82 874.20 60.00 24.0 307.76 193.16 500.92 250.46 887.23 61.00 24.0 314.13 196.46 510.58 255.29 903.50 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
50. 00							
51. 00							
52. 00							
54. 00 24. 0 261. 47 187. 78 448. 97 224. 49 823. 98 55. 00 24. 0 269. 40 187. 78 457. 18 228. 59 832. 74 56. 00 24. 0 284. 02 189. 36 473. 38 236. 69 852. 10 58. 00 24. 0 292. 13 190. 26 482. 38 241. 19 862. 90 59. 00 24. 0 307. 76 193. 16 500. 92 250. 46 887. 23 60. 00 24. 0 307. 76 193. 16 500. 92 250. 46 887. 23 61. 00 24. 0 327. 93 203. 14 531. 07 265. 53 903. 50 62. 00 24. 0 327. 93 203. 14 531. 07 265. 53 937. 34 64. 00 24. 0 344. 54 205. 92 550. 46 275. 23 962. 29 65. 00 24. 0 344. 54 205. 92 550. 46 275. 23 962. 29 66. 00 24. 0 361. 94 207. 07 569. 01							
55. 00 24. 0 269. 40 187. 78 457. 18 228. 59 832. 74 56. 00 24. 0 276. 55 188. 47 465. 01 232. 51 841. 95 57. 00 24. 0 284. 02 189. 36 473. 38 236. 69 852. 10 58. 00 24. 0 292. 13 190. 26 482. 38 241. 19 862. 90 59. 00 24. 0 307. 76 193. 16 500. 92 250. 46 887. 23 61. 00 24. 0 314. 13 196. 46 510. 58 255. 29 903. 50 62. 00 24. 0 320. 49 200. 37 520. 85 260. 43 921. 59 63. 00 24. 0 327. 93 203. 14 531. 07 265. 53 937. 34 64. 00 24. 0 336. 25 204. 60 540. 85 270. 42 990. 04 65. 00 24. 0 352. 90 206. 99 559. 89 279. 94 973. 86 67. 00 24. 0 361. 94 207. 07 569. 01							
56. 00 24. 0 276. 55 188. 47 465. 01 232. 51 841. 95 57. 00 24. 0 284. 02 189. 36 473. 38 236. 69 852. 10 58. 00 24. 0 292. 13 190. 26 482. 38 241. 19 862. 90 59. 00 24. 0 300. 35 191. 28 491. 63 245. 82 874. 20 60. 00 24. 0 307. 76 193. 16 500. 92 250. 46 887. 23 61. 00 24. 0 314. 13 196. 46 510. 58 255. 29 903. 50 62. 00 24. 0 320. 49 200. 37 520. 85 260. 43 921. 59 63. 00 24. 0 336. 25 204. 60 540. 85 270. 42 950. 04 65. 00 24. 0 344. 54 205. 92 550. 46 275. 23 962. 29 66. 00 24. 0 361. 94 207. 07 569. 01 284. 51 983. 16 68. 00 24. 0 367. 92 205. 96 599. 89							
57. 00 24. 0 284. 02 189. 36 473. 38 236. 69 852. 10 58. 00 24. 0 292. 13 190. 26 482. 38 241. 19 862. 90 59. 00 24. 0 300. 35 191. 28 491. 63 245. 82 874. 20 60. 00 24. 0 307. 76 193. 16 500. 92 250. 46 887. 23 61. 00 24. 0 314. 13 196. 46 510. 58 255. 29 903. 50 62. 00 24. 0 320. 49 200. 37 520. 85 260. 43 921. 59 63. 00 24. 0 336. 25 204. 60 540. 85 270. 42 950. 04 65. 00 24. 0 336. 25 204. 60 540. 85 270. 42 950. 04 65. 00 24. 0 352. 90 206. 99 559. 89 279. 94 973. 86 67. 00 24. 0 361. 94 207. 07 569. 01 284. 51 983. 16 68. 00 24. 0 382. 28 202. 59 584. 88							
58. 00 24. 0 292. 13 190. 26 482. 38 241. 19 862. 90 59. 00 24. 0 307. 76 193. 16 500. 92 250. 46 887. 23 61. 00 24. 0 314. 13 196. 46 510. 58 255. 29 903. 50 62. 00 24. 0 327. 93 203. 14 531. 07 265. 53 937. 34 64. 00 24. 0 336. 25 204. 60 540. 85 270. 42 950. 04 65. 00 24. 0 352. 90 206. 99 559. 89 279. 94 973. 86 67. 00 24. 0 361. 94 207. 07 569. 01 284. 51 983. 16 68. 00 24. 0 382. 28 202. 59 584. 88 292. 44 990. 06 69. 00 24. 0 382. 28 202. 59 584. 88 292. 44 990. 06 67. 00 24. 0 382. 28 202. 59 584. 88 292. 44 990. 06 70. 00 24. 0 389. 73 202. 29 592. 01							
59. 00 24. 0 300. 35 191. 28 491. 63 245. 82 874. 20 60. 00 24. 0 314. 13 196. 46 510. 58 255. 29 903. 50 62. 00 24. 0 320. 49 200. 37 520. 85 260. 43 921. 59 63. 00 24. 0 327. 93 203. 14 531. 07 265. 53 937. 34 64. 00 24. 0 336. 25 204. 60 540. 85 270. 42 950. 04 65. 00 24. 0 352. 90 206. 99 559. 89 279. 94 973. 86 67. 00 24. 0 361. 94 207. 07 569. 01 284. 51 983. 16 68. 00 24. 0 372. 12 205. 36 577. 48 288. 74 988. 21 69. 00 24. 0 389. 28 202. 59 584. 88 292. 44 990. 06 70. 00 24. 0 389. 73 202. 29 592. 01 296. 01 996. 59 71. 00 24. 0 397. 93 211. 25 609. 18							
60. 00			300. 35	191. 28			
62. 00			307. 76				
63. 00							
64. 00							
66. 00							
67. 00							
68. 00							
69. 00							
70. 00 24. 0 389. 73 202. 29 592. 01 296. 01 996. 59 71. 00 24. 0 394. 05 205. 90 599. 95 299. 97 1011. 74 72. 00 24. 0 397. 93 211. 25 609. 18 304. 59 1031. 69 73. 00 24. 0 402. 62 216. 23 618. 85 309. 42 1051. 30 74. 00 24. 0 407. 67 220. 96 628. 63 314. 31 1070. 56 75. 00 24. 0 413. 14 225. 37 638. 51 319. 25 1089. 24 76. 00 24. 0 419. 16 229. 37 648. 53 324. 27 1107. 28 77. 00 24. 0 426. 25 232. 22 658. 48 329. 24 1122. 93 78. 00 24. 0 434. 63 233. 34 667. 12 338. 56 1144. 02 80. 00 24. 0 443. 66 233. 45 677. 12 338. 56 1144. 02 81. 00 24. 0 452. 70 233. 53 686. 23							
72. 00 24. 0 397. 93 211. 25 609. 18 304. 59 1031. 69 73. 00 24. 0 402. 62 216. 23 618. 85 309. 42 1051. 30 74. 00 24. 0 407. 67 220. 96 628. 63 314. 31 1070. 56 75. 00 24. 0 413. 14 225. 37 638. 51 319. 25 1089. 24 76. 00 24. 0 419. 16 229. 37 648. 53 324. 27 1107. 28 77. 00 24. 0 426. 25 232. 22 658. 48 329. 24 1122. 93 78. 00 24. 0 434. 63 233. 34 667. 98 333. 99 1134. 66 79. 00 24. 0 443. 66 233. 45 677. 12 338. 56 1144. 02 80. 00 24. 0 452. 70 233. 53 686. 23 343. 12 1153. 29 81. 00 24. 0 461. 74 233. 77 695. 51 347. 75 1163. 05 82. 00 24. 0 470. 78 233. 34 704. 1							
73. 00 24. 0 402. 62 216. 23 618. 85 309. 42 1051. 30 74. 00 24. 0 407. 67 220. 96 628. 63 314. 31 1070. 56 75. 00 24. 0 413. 14 225. 37 638. 51 319. 25 1089. 24 76. 00 24. 0 419. 16 229. 37 648. 53 324. 27 1107. 28 77. 00 24. 0 426. 25 232. 22 658. 48 329. 24 1122. 93 78. 00 24. 0 434. 63 233. 34 667. 98 333. 99 1134. 66 79. 00 24. 0 443. 66 233. 45 677. 12 338. 56 1144. 02 80. 00 24. 0 452. 70 233. 53 686. 23 343. 12 1153. 29 81. 00 24. 0 461. 74 233. 77 695. 51 347. 75 1163. 05 82. 00 24. 0 479. 83 231. 22 711. 05 355. 53 1173. 50 84. 00 24. 0 479. 83 231. 22 711. 0							
74. 00 24. 0 407. 67 220. 96 628. 63 314. 31 1070. 56 75. 00 24. 0 413. 14 225. 37 638. 51 319. 25 1089. 24 76. 00 24. 0 419. 16 229. 37 648. 53 324. 27 1107. 28 77. 00 24. 0 426. 25 232. 22 658. 48 329. 24 1122. 93 78. 00 24. 0 434. 63 233. 34 667. 98 333. 99 1134. 66 79. 00 24. 0 443. 66 233. 45 677. 12 338. 56 1144. 02 80. 00 24. 0 452. 70 233. 53 686. 23 343. 12 1153. 29 81. 00 24. 0 461. 74 233. 77 695. 51 347. 75 1163. 05 82. 00 24. 0 470. 78 233. 34 704. 12 352. 06 1170. 80 83. 00 24. 0 479. 83 231. 22 711. 05 355. 53 1173. 50 84. 00 24. 0 479. 83 231. 22 711. 0							
75. 00 24. 0 413. 14 225. 37 638. 51 319. 25 1089. 24 76. 00 24. 0 419. 16 229. 37 648. 53 324. 27 1107. 28 77. 00 24. 0 426. 25 232. 22 658. 48 329. 24 1122. 93 78. 00 24. 0 434. 63 233. 34 667. 98 333. 99 1134. 66 79. 00 24. 0 443. 66 233. 45 677. 12 338. 56 1144. 02 80. 00 24. 0 452. 70 233. 53 686. 23 343. 12 1153. 29 81. 00 24. 0 461. 74 233. 77 695. 51 347. 75 1163. 05 82. 00 24. 0 470. 78 233. 34 704. 12 352. 06 1170. 80 83. 00 24. 0 479. 83 231. 22 711. 05 355. 53 1173. 50 84. 00 24. 0 497. 95 223. 27 721. 21 360. 61 1167. 74 85. 00 24. 0 507. 01 219. 45 726. 4							
76. 00 24. 0 419. 16 229. 37 648. 53 324. 27 1107. 28 77. 00 24. 0 426. 25 232. 22 658. 48 329. 24 1122. 93 78. 00 24. 0 434. 63 233. 34 667. 98 333. 99 1134. 66 79. 00 24. 0 443. 66 233. 45 677. 12 338. 56 1144. 02 80. 00 24. 0 452. 70 233. 53 686. 23 343. 12 1153. 29 81. 00 24. 0 461. 74 233. 77 695. 51 347. 75 1163. 05 82. 00 24. 0 470. 78 233. 34 704. 12 352. 06 1170. 80 83. 00 24. 0 479. 83 231. 22 711. 05 355. 53 1173. 50 84. 00 24. 0 488. 89 227. 46 716. 35 358. 17 1171. 26 85. 00 24. 0 497. 95 223. 27 721. 21 360. 61 1167. 74 86. 00 24. 0 516. 07 215. 73 731. 8							
78. 00 24. 0 434. 63 233. 34 667. 98 333. 99 1134. 66 79. 00 24. 0 443. 66 233. 45 677. 12 338. 56 1144. 02 80. 00 24. 0 452. 70 233. 53 686. 23 343. 12 1153. 29 81. 00 24. 0 461. 74 233. 77 695. 51 347. 75 1163. 05 82. 00 24. 0 470. 78 233. 34 704. 12 352. 06 1170. 80 83. 00 24. 0 479. 83 231. 22 711. 05 355. 53 1173. 50 84. 00 24. 0 488. 89 227. 46 716. 35 358. 17 1171. 26 85. 00 24. 0 497. 95 223. 27 721. 21 360. 61 1167. 74 86. 00 24. 0 507. 01 219. 45 726. 46 363. 23 1165. 36 87. 00 24. 0 516. 07 215. 73 731. 80 365. 90 1163. 27 88. 00 24. 0 525. 14 210. 83 735. 97 367. 98 1157. 62 89. 00 24. 0 533. 84						324. 27	
79. 00 24. 0 443. 66 233. 45 677. 12 338. 56 1144. 02 80. 00 24. 0 452. 70 233. 53 686. 23 343. 12 1153. 29 81. 00 24. 0 461. 74 233. 77 695. 51 347. 75 1163. 05 82. 00 24. 0 470. 78 233. 34 704. 12 352. 06 1170. 80 83. 00 24. 0 479. 83 231. 22 711. 05 355. 53 1173. 50 84. 00 24. 0 488. 89 227. 46 716. 35 358. 17 1171. 26 85. 00 24. 0 497. 95 223. 27 721. 21 360. 61 1167. 74 86. 00 24. 0 507. 01 219. 45 726. 46 363. 23 1165. 36 87. 00 24. 0 516. 07 215. 73 731. 80 365. 90 1163. 27 88. 00 24. 0 525. 14 210. 83 735. 97 367. 98 1157. 62 89. 00 24. 0 533. 84 205. 47 739. 3							
80. 00 24. 0 452. 70 233. 53 686. 23 343. 12 1153. 29 81. 00 24. 0 461. 74 233. 77 695. 51 347. 75 1163. 05 82. 00 24. 0 470. 78 233. 34 704. 12 352. 06 1170. 80 83. 00 24. 0 479. 83 231. 22 711. 05 355. 53 1173. 50 84. 00 24. 0 488. 89 227. 46 716. 35 358. 17 1171. 26 85. 00 24. 0 497. 95 223. 27 721. 21 360. 61 1167. 74 86. 00 24. 0 507. 01 219. 45 726. 46 363. 23 1165. 36 87. 00 24. 0 516. 07 215. 73 731. 80 365. 90 1163. 27 88. 00 24. 0 525. 14 210. 83 735. 97 367. 98 1157. 62 89. 00 24. 0 533. 84 205. 47 739. 30 369. 65 1150. 23 90. 00 24. 0 541. 79 203. 34 745. 13 372. 56 1151. 80 91. 00 24. 0 549. 04							
81. 00 24. 0 461. 74 233. 77 695. 51 347. 75 1163. 05 82. 00 24. 0 470. 78 233. 34 704. 12 352. 06 1170. 80 83. 00 24. 0 479. 83 231. 22 711. 05 355. 53 1173. 50 84. 00 24. 0 488. 89 227. 46 716. 35 358. 17 1171. 26 85. 00 24. 0 497. 95 223. 27 721. 21 360. 61 1167. 74 86. 00 24. 0 507. 01 219. 45 726. 46 363. 23 1165. 36 87. 00 24. 0 516. 07 215. 73 731. 80 365. 90 1163. 27 88. 00 24. 0 525. 14 210. 83 735. 97 367. 98 1157. 62 89. 00 24. 0 533. 84 205. 47 739. 30 369. 65 1150. 23 90. 00 24. 0 541. 79 203. 34 745. 13 372. 56 1151. 80 91. 00 24. 0 555. 82 209. 09 764. 22 377. 11 1164. 58 92. 00 24. 0 555. 82							
82. 00 24. 0 470. 78 233. 34 704. 12 352. 06 1170. 80 83. 00 24. 0 479. 83 231. 22 711. 05 355. 53 1173. 50 84. 00 24. 0 488. 89 227. 46 716. 35 358. 17 1171. 26 85. 00 24. 0 497. 95 223. 27 721. 21 360. 61 1167. 74 86. 00 24. 0 507. 01 219. 45 726. 46 363. 23 1165. 36 87. 00 24. 0 516. 07 215. 73 731. 80 365. 90 1163. 27 88. 00 24. 0 525. 14 210. 83 735. 97 367. 98 1157. 62 89. 00 24. 0 533. 84 205. 47 739. 30 369. 65 1150. 23 90. 00 24. 0 541. 79 203. 34 745. 13 372. 56 1151. 80 91. 00 24. 0 549. 04 205. 18 754. 22 377. 11 1164. 58 92. 00 24. 0 555. 82 209. 09 764. 91 382. 46 1183. 10 93. 00 24. 0 562. 16							
84. 00 24. 0 488. 89 227. 46 716. 35 358. 17 1171. 26 85. 00 24. 0 497. 95 223. 27 721. 21 360. 61 1167. 74 86. 00 24. 0 507. 01 219. 45 726. 46 363. 23 1165. 36 87. 00 24. 0 516. 07 215. 73 731. 80 365. 90 1163. 27 88. 00 24. 0 525. 14 210. 83 735. 97 367. 98 1157. 62 89. 00 24. 0 533. 84 205. 47 739. 30 369. 65 1150. 23 90. 00 24. 0 541. 79 203. 34 745. 13 372. 56 1151. 80 91. 00 24. 0 549. 04 205. 18 754. 22 377. 11 1164. 58 92. 00 24. 0 555. 82 209. 09 764. 91 382. 46 1183. 10 93. 00 24. 0 562. 16 212. 49 774. 65 387. 33 1199. 63							
85. 00 24. 0 497. 95 223. 27 721. 21 360. 61 1167. 74 86. 00 24. 0 507. 01 219. 45 726. 46 363. 23 1165. 36 87. 00 24. 0 516. 07 215. 73 731. 80 365. 90 1163. 27 88. 00 24. 0 525. 14 210. 83 735. 97 367. 98 1157. 62 89. 00 24. 0 533. 84 205. 47 739. 30 369. 65 1150. 23 90. 00 24. 0 541. 79 203. 34 745. 13 372. 56 1151. 80 91. 00 24. 0 549. 04 205. 18 754. 22 377. 11 1164. 58 92. 00 24. 0 555. 82 209. 09 764. 91 382. 46 1183. 10 93. 00 24. 0 562. 16 212. 49 774. 65 387. 33 1199. 63							
86. 00 24. 0 507. 01 219. 45 726. 46 363. 23 1165. 36 87. 00 24. 0 516. 07 215. 73 731. 80 365. 90 1163. 27 88. 00 24. 0 525. 14 210. 83 735. 97 367. 98 1157. 62 89. 00 24. 0 533. 84 205. 47 739. 30 369. 65 1150. 23 90. 00 24. 0 541. 79 203. 34 745. 13 372. 56 1151. 80 91. 00 24. 0 549. 04 205. 18 754. 22 377. 11 1164. 58 92. 00 24. 0 555. 82 209. 09 764. 91 382. 46 1183. 10 93. 00 24. 0 562. 16 212. 49 774. 65 387. 33 1199. 63							
87. 00 24. 0 516. 07 215. 73 731. 80 365. 90 1163. 27 88. 00 24. 0 525. 14 210. 83 735. 97 367. 98 1157. 62 89. 00 24. 0 533. 84 205. 47 739. 30 369. 65 1150. 23 90. 00 24. 0 541. 79 203. 34 745. 13 372. 56 1151. 80 91. 00 24. 0 549. 04 205. 18 754. 22 377. 11 1164. 58 92. 00 24. 0 555. 82 209. 09 764. 91 382. 46 1183. 10 93. 00 24. 0 562. 16 212. 49 774. 65 387. 33 1199. 63							
88. 00 24. 0 525. 14 210. 83 735. 97 367. 98 1157. 62 89. 00 24. 0 533. 84 205. 47 739. 30 369. 65 1150. 23 90. 00 24. 0 541. 79 203. 34 745. 13 372. 56 1151. 80 91. 00 24. 0 549. 04 205. 18 754. 22 377. 11 1164. 58 92. 00 24. 0 555. 82 209. 09 764. 91 382. 46 1183. 10 93. 00 24. 0 562. 16 212. 49 774. 65 387. 33 1199. 63				215. 73			
90. 00 24. 0 541. 79 203. 34 745. 13 372. 56 1151. 80 91. 00 24. 0 549. 04 205. 18 754. 22 377. 11 1164. 58 92. 00 24. 0 555. 82 209. 09 764. 91 382. 46 1183. 10 93. 00 24. 0 562. 16 212. 49 774. 65 387. 33 1199. 63				210.83			
91. 00 24. 0 549. 04 205. 18 754. 22 377. 11 1164. 58 92. 00 24. 0 555. 82 209. 09 764. 91 382. 46 1183. 10 93. 00 24. 0 562. 16 212. 49 774. 65 387. 33 1199. 63							
92. 00 24. 0 555. 82 209. 09 764. 91 382. 46 1183. 10 93. 00 24. 0 562. 16 212. 49 774. 65 387. 33 1199. 63							
93. 00 24. 0 562. 16 212. 49 774. 65 387. 33 1199. 63							
	94.00	24.0		ons Must Exte	end At or		ibution Zone

NOTES

- 1. MOBILIZED END BEARING IS 1/3 OF THE ORIGINAL RB-121 VALUES.
- 2. DAVISSON PILE CAPACITY IS AN ESTIMATE BASED ON FAILURE CRITERIA, AND EQUALS ULTIMATE SIDE FRICTION PLUS MOBILIZED END BEARING.
- 3. ALLOWABLE PILE CAPACITY IS 1/2 THE DAVISSON PILE CAPACITY.
- 4. ULTIMATE PILE CAPACITY IS ULTIMATE SIDE FRICTION PLUS 3 x THE MOBILIZED END BEARING.
 EXCEPTION: FOR H-PILES TIPPED IN SAND OR LIMESTONE, THE ULTIMATE PILE CAPACITY IS ULTIMATE SIDE FRICTION PLUS 2 x THE MOBILIZED END BEARING.

Florida Bridge Software Institute Shaft and Pile Analysis (FB-Deep v. 2.05)

General Information:

_____ Input file:tary_RS&H)\Analysis_Structure\FB-Deep\Pile\B-401_Void-10ft.spc
Project number: 2000-01-17003
Job name: SW 10th Street, from Powerline Rd. to Military Trail
Engineer: JB Henry
Units: English

Analysis Information: Analysis Type: SPT

Soil Information:

Boring date: 2/6/2018, Station number: Offse Boring Number: B-401

Offset: Ground Elevation: 0.000(ft)

Hammer type: Automatic Hammer, Correction factor = 1.24

I D	Depth (ft)	No. of Blows (Blows/ft)	Soi I Type
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 24 22 22 22 23 33 33 33 33 33 33 33 33 33	0.00 2.00 4.00 6.00 8.00 10.00 112.00 13.50 15.50 28.00 25.50 28.00 40.50 43.00 45.50 48.00 55.50 68.00 60.50 68.00 773.00 75.50 78.00 80.50 83.00 80.50 83.00	13. 00 4. 00 20. 00 24. 00 15. 00 13. 00 19. 00 28. 00 24. 00 34. 00 22. 00 29. 00 27. 00 43. 00 54. 00 30. 00 38. 00 37. 00 48. 00 21. 00 68. 00 39. 00 62. 00 47. 00 46. 00 36. 00 52. 00 26. 00 18. 00 59. 00 61. 00 47. 00 33. 00 50. 00 53. 00 60. 00 61. 00 50. 00 61. 00 61. 00 61. 00 60. 00	5- Cavity layer 5- Cavity layer 5- Cavity layer 5- Cavity layer 4- Lime Stone/Very shelly sand 3- Clean sand

Blowcount Average Per Soil Layer

Layer Num.	Starting Elevation (ft)	Bottom Elevation (ft)	Thi ckness (ft)	Average Blowcount (Blows/ft)	Soi I Type
1	0. 00	-10. 00	2. 00	14. 20	5-Void
2	-10. 00	-12. 00		15. 00	4-Limestone, Very Shelly Sand
3	-12. 00	-100. 00		40. 71	3-Clean Sand

Driven Pile Data:

Pile unit weight = 150.00(pcf), Section Type: Square

Pile Geometry:

Pile Geometry:		
Wi dth (i n)	Length (ft)	Tip Elev. (ft)
18. 00 18. 00	25. 00 26. 00 27. 00 28. 00 29. 00 30. 00 31. 00 32. 00 33. 00 34. 00 35. 00 36. 00 37. 00 41. 00 42. 00 43. 00 45. 00 46. 00 47. 00 50. 00 51. 00 52. 00 53. 00 55. 00 60. 00 57. 00 60. 00 61. 00 62. 00 63. 00 64. 00 65. 00 66. 00 67. 00 68. 00 67. 00 68. 00 67. 00 68. 00 69. 00 71. 00 72. 00 73. 00 75. 00	-25. 00 -26. 00 -27. 00 -28. 00 -29. 00 -30. 00 -31. 00 -32. 00 -33. 00 -34. 00 -35. 00 -36. 00 -37. 00 -40. 00 -41. 00 -42. 00 -43. 00 -44. 00 -45. 00 -46. 00 -47. 00 -55. 00 -50. 00 -51. 00 -52. 00 -53. 00 -54. 00 -57. 00 -57. 00 -57. 00 -57. 00 -57. 00 -57. 00 -57. 00 -57. 00 -57. 00 -57. 00 -57. 00 -57. 00 -57. 00 -57. 00 -57. 00 -57. 00 -57. 00 -79. 00 -81. 00 -82. 00 -91. 00 -92. 00 -93. 00 -94. 00 -94. 00 -92. 00 -93. 00 -94. 00 -94. 00 -94. 00 -97. 0

33. 00 34. 00 35. 00 36. 00 37. 00 38. 00 40. 00 41. 00 42. 00 43. 00 45. 00 46. 00 47. 00 48. 00 50. 00 51. 00 52. 00 53. 00 54. 00 55. 00 56. 00 57. 00 58. 00 59. 00 61. 00 62. 00 63. 00 64. 00 65. 00 66. 00 67. 00 68. 00 67. 00 68. 00 67. 00 71. 00 72. 00 73. 00 74. 00 75. 00 75. 00 76. 00 77. 00 77. 00 78. 00 79. 00 80. 00 81. 00 82. 00 83. 00 84. 00 85. 00 87. 00 88. 00 89. 00 89. 00 89. 00 89. 00	-33. 00 -34. 00 -35. 00 -36. 00 -37. 00 -38. 00 -40. 00 -41. 00 -42. 00 -44. 00 -45. 00 -46. 00 -47. 00 -51. 00 -52. 00 -51. 00 -52. 00 -53. 00 -54. 00 -55. 00 -56. 00 -57. 00 -60. 00 -61. 00 -63. 00 -64. 00 -67. 00 -67. 00 -67. 00 -77. 00 -78. 00 -71. 00 -71. 00 -71. 00 -71. 00 -71. 00 -72. 00 -73. 00 -74. 00 -75. 00 -77. 00 -78. 00 -79. 00 -71. 00
87. 00 88. 00 89. 00 90. 00 91. 00 92. 00 93. 00 94. 00	-87. 00 -88. 00 -89. 00 -90. 00 -91. 00 -92. 00 -93. 00 -94. 00
	34.00 35.00

Driven Pile Capacity:

Section Type: Square Pile Width: 18.00 (in)

Test Pile Length (ft)	Pile Width (in)	UI ti mate Si de Fri cti on (tons)	Mobilized End Bearing (tons)	Estimated Davisson Capacity (tons)	Allowable Pile Capacity (tons)	UItimate Pile Capacity (tons)
25. 00	18. 0	32. 19	64. 20	96. 40	48. 20	224. 81
26. 00	18. 0	34. 66	68. 37	103. 03	51. 52	239. 78
27. 00	18. 0	37. 19	74. 00	111. 19	55. 59	259. 18
28. 00	18. 0	39. 95	81. 20	121. 15	60. 58	283. 56
29. 00	18. 0	42. 94	89. 31	132. 25	66. 13	310. 87
30. 00	18. 0	46. 03	98. 25	144. 28	72. 14	340. 78
31. 00	18. 0	49. 84	104. 13	153. 96	76. 98	362. 21
32. 00	18. 0	54. 20	109. 34	163. 54	81. 77	382. 22

Section Type: Square Pile Width: 24.00 (in)

Test Pile Length (ft)	Pile Width (in)	UI ti mate Si de Fri cti on (tons)	Mobilized End Bearing (tons)	Estimated Davisson Capacity (tons)	Allowable Pile Capacity (tons)	UItimate Pile Capacity (tons)
25. 00 26. 00 27. 00 28. 00 29. 00 30. 00 31. 00 32. 00 34. 00 35. 00	24. 0 24. 0	42. 38 44. 40 46. 70 49. 47 52. 52 55. 70 59. 08 63. 52 69. 33 76. 23 83. 64 91. 43	99. 62 107. 50 116. 54 126. 43 137. 21 148. 56 160. 67 171. 41 178. 59 182. 41 186. 12	142. 00 151. 90 163. 23 175. 90 189. 73 204. 26 219. 75 234. 93 247. 92 258. 64 269. 77 282. 19	71. 00 75. 95 81. 62 87. 95 94. 86 102. 13 109. 87 117. 46 123. 96 129. 32 134. 88	341. 24 366. 90 396. 31 428. 77 464. 15 501. 39 541. 09 577. 74 605. 09 623. 45 642. 01 663. 73
37. 00 38. 00	24. 0 24. 0 24. 0	99. 35 107. 36	190. 77 190. 68 189. 90	290. 03 297. 26	141. 10 145. 01 148. 63	671. 39 677. 06

				D 401 Va	: - 106+	_
39. 00	24.0	114. 97	189. 31	304. 28	i d-10ft. ou 152. 14	໌ 682. 91
40. 00	24.0	121. 65	191. 79	313. 44	156. 72	697. 03
41. 00	24. 0	127. 53	198. 01	325. 54	162. 77	721. 57
42. 00	24. 0	133. 67	203. 26	336. 93	168. 46	743. 45
43. 00	24. 0	140. 26	203. 44	343. 70	171. 85	750. 58
44. 00	24. 0	147. 07	199. 81	346. 88	173. 44	746. 49
45. 00	24. 0	153. 84	199. 20	353. 05	176. 52	751. 45
46. 00	24. 0	160. 66	202. 83	363. 49	181. 75	769. 15
47.00	24.0	168. 05	207. 22	375. 26	187. 63	789. 70
48.00	24.0	176. 10	208.80	384. 90	192. 45	802.49
49. 00	24.0	183. 71	209. 28	392. 98	196. 49	811. 54
50. 00	24.0	189. 74	212. 07	401. 80	200. 90	825. 94
51. 00	24.0	194. 55	217. 18	411. 74	205. 87	846. 10
52.00	24.0	200. 59	220. 01	420. 60	210. 30	860. 63
53.00	24.0	208. 29	219. 05	427. 34	213. 67	865. 43
54.00	24.0	216. 65	216. 13	432. 78	216. 39	865. 03
55. 00 56. 00	24. 0 24. 0	224. 64 232. 35	215. 42 217. 76	440. 06 450. 11	220. 03 225. 06	870. 90 885. 63
57. 00	24.0	240. 38	217. 76	461. 67	230. 83	904. 25
58. 00	24.0	248. 82	223.76	472.57	236. 29	920. 09
59. 00	24. 0	257. 18	225. 62	482. 80	241. 40	934. 04
60.00	24. 0	264. 97	227. 89	492.87	246. 43	948. 65
61. 00	24. 0	272. 33	230. 68	503. 01	251. 50	964. 37
62.00	24.0	280. 14	232.00	512. 14	256. 07	976. 15
63.00	24.0	288. 56	230. 39	518. 94	259. 47	979. 72
64.00	24.0	297. 24	226. 62	523. 86	261. 93	977. 09
65. 00	24.0	305. 85	224. 94	530. 79	265. 40	980. 67
66.00	24.0	314. 39	227. 04	541. 43	270. 71	995. 50
67. 00 68. 00	24. 0 24. 0	322. 87 331. 30	229. 80 227. 91	552. 68 559. 21	276. 34 279. 61	1012. 28 1015. 03
69. 00	24.0	339. 38	221. 56	560. 94	280. 47	1004.06
70. 00	24. 0	346. 82	213. 88	560. 71	280. 35	988. 47
71. 00	24. 0	353. 80	206. 03	559. 83	279. 91	971. 90
72.00	24.0	361. 40	199. 38	560. 77	280. 39	959. 53
73.00	24.0	369. 81	195. 94	565. 76	282. 88	957. 64
74. 00	24.0	377. 91	196. 53	574. 44	287. 22	967. 51
75. 00	24.0	384. 54	199. 70	584. 23	292. 12	983. 63
76.00	24.0	389. 81	205. 24	595. 04	297. 52	1005. 51
77. 00 78. 00	24. 0 24. 0	394. 42 398. 50	212. 07 219. 12	606. 49 617. 62	303. 25 308. 81	1030. 63 1055. 86
79. 00	24. 0	403. 30	224. 57	627. 88	313. 94	1077. 02
80.00	24. 0	410. 12	226. 99	637. 12	318. 56	1091. 10
81. 00	24. 0	418. 71	227. 03	645. 75	322. 87	1099. 82
82.00	24.0	427. 56	225. 68	653. 24	326. 62	1104.60
83.00	24.0	436. 42	222. 28	658. 70	329. 35	1103. 25
84. 00	24.0	445. 29	217. 38	662. 67	331. 33	1097. 42
85.00	24.0	454. 16	214. 61	668. 78	334. 39	1098. 01
86.00	24.0	463. 03	214. 85	677. 88	338. 94	1107. 59
87.00	24. 0 24. 0	471. 82	216.83	688.66	344. 33 349. 41	1122. 32 1135. 42
88. 00 89. 00	24. 0 24. 0	480. 53 488. 72	218. 30 219. 60	698. 83 708. 32	349. 41 354. 16	1135. 42 1147. 51
90.00	24. 0	495. 97	222. 42	718. 39	359. 19	1163. 22
91. 00	24. 0	502. 52	227. 60	730. 11	365.06	1185. 31
92.00	24. 0	509. 86	233. 14	743. 00	371. 50	1209. 29
93.00	24.0	518. 25	238. 03	756. 27	378. 14	1232. 33
94. 00	24.0 Soi	I Elevation	s Must Exte	nd At or Be	Iow Contri	bution Zone

NOTES

- 1. MOBILIZED END BEARING IS 1/3 OF THE ORIGINAL RB-121 VALUES.
- 2. DAVISSON PILE CAPACITY IS AN ESTIMATE BASED ON FAILURE CRITERIA, AND EQUALS ULTIMATE SIDE FRICTION PLUS MOBILIZED END BEARING.
- 3. ALLOWABLE PILE CAPACITY IS 1/2 THE DAVISSON PILE CAPACITY.
- 4. ULTIMATE PILE CAPACITY IS ULTIMATE SIDE FRICTION PLUS 3 x THE MOBILIZED END BEARING. EXCEPTION: FOR H-PILES TIPPED IN SAND OR LIMESTONE, THE ULTIMATE PILE CAPACITY IS ULTIMATE SIDE FRICTION PLUS 2 x THE MOBILIZED END BEARING.

Florida Bridge Software Institute Shaft and Pile Analysis (FB-Deep v. 2.05)

General Information: -----

Input file:tary_RS&H)\Analysis_Structure\FB-Deep\Pile\B-501_Void-10ft.spc
Project number: 2000-01-17003
Job name: SW 10th Street, from Powerline Rd. to Military Trail
Engineer: JB Henry
Units: English

Analysis Information: Analysis Type: SPT

Soil Information:

Boring date: 2/7/2018, Station number: Offset: Boring Number: B-501

Ground Elevation: 0.000(ft)

Hammer type: Automatic Hammer, Correction factor = 1.24

I D	Depth (ft)	No. of Blows (Blows/ft)	Soi I Type
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 22 23 24 25 26 27 28 29 30 31 33 33 33 33 33 33 33 33 33 33 33 33	0. 00 2. 00 4. 00 8. 00 8. 00 10. 00 112. 00 13. 50 18. 00 20. 50 23. 00 25. 50 28. 00 35. 50 38. 00 45. 50 48. 00 65. 50 68. 00 67. 50 78. 00 88. 00 90. 50 98. 00 95. 50 98. 00 100. 00	7. 00 20. 00 12. 00 22. 00 30. 00 14. 00 16. 00 32. 00 20. 00 30. 00 21. 00 36. 00 29. 00 58. 00 39. 00 66. 00 59. 00 67. 00 67. 00 69. 00 67. 00 60. 00 71. 00 60. 00 73. 00	5- Cavity layer 3- Clean sand

Blowcount Average Per Soil Layer

Layer Num.	Starting Elevation (ft)		Thi ckness (ft)	Average Blowcount (Blows/ft)	Soi I Type
1 2	0. 00 -10. 00	-10. 00 -100. 00		14. 00 47. 87	5-Voi d 3-Cl ean Sand

Driven Pile Data:

Pile unit weight = 150.00(pcf), Section Type: Square

Pile Geometry:

Pile	Geometry:		
	Width (in)	Length (ft)	Tip Elev. (ft)
	18. 00 18. 00	25. 00 26. 00 27. 00 28. 00 29. 00 30. 00 31. 00 32. 00 33. 00 34. 00 35. 00 36. 00 37. 00 38. 00 41. 00 42. 00 41. 00 45. 00 46. 00 47. 00 50. 00 51. 00 52. 00 53. 00 54. 00 55. 00 66. 00 67. 00 68. 00 67. 00 68. 00 67. 00 68. 00 67. 00 68. 00 67. 00 68. 00 67. 00 68. 00 69. 00 71. 00 72. 00 73. 00 74. 00 75. 00 75. 00 76. 00 77. 00 78. 00 79. 00 80. 00 81. 00 82. 00 83. 00 84. 00 85. 00 86. 00 87. 00 88. 00 99. 00 91. 00 92. 00 93. 00 93. 00 94. 00 95. 00 96. 00 97. 00	-25. 00 -26. 00 -27. 00 -28. 00 -29. 00 -30. 00 -31. 00 -33. 00 -34. 00 -35. 00 -36. 00 -37. 00 -38. 00 -40. 00 -41. 00 -42. 00 -43. 00 -44. 00 -45. 00 -46. 00 -47. 00 -48. 00 -55. 00 -56. 00 -57. 00 -56. 00 -57. 00 -56. 00 -67. 00 -68. 00 -67. 00 -68. 00 -67. 00 -67. 00 -77. 00 -78. 00 -77. 00 -70. 00 -70. 00 -70. 00 -70. 00 -70. 00 -70. 00 -70. 0

24. 00	-46. 00 -47. 00 -48. 00 -49. 00 -50. 00 -51. 00 -51. 00 -52. 00 -53. 00 -55. 00 -56. 00 -57. 00 -60. 00 -61. 00 -62. 00 -64. 00 -64. 00 -65. 00 -67. 00 -71. 00 -71. 00 -72. 00 -71. 00 -72. 00 -73. 00 -74. 00 -74. 00 -75. 00 -77. 00 -78. 00 -79. 00 -80. 00 -81. 00 -81. 00 -82. 00 -83. 00 -84. 00 -90. 00 -81. 00 -82. 00 -83. 00 -84. 00 -90. 00 -81. 00 -82. 00 -83. 00 -84. 00 -90. 00 -91. 00 -92. 00 -93. 00
--------	---

Driven Pile Capacity:

Section Type: Square Pile Width: 18.00 (in)

L	Test Pile ength (ft)	Pile Width (in)	UI ti mate Si de Fri cti on (tons)	Mobilized End Bearing (tons)	Estimated Davisson Capacity (tons)	Allowable Pile Capacity (tons)	UItimate Pile Capacity (tons)
	25. 00 26. 00 27. 00 28. 00 29. 00 30. 00 31. 00 32. 00 33. 00	18. 0 18. 0 18. 0 18. 0 18. 0 18. 0 18. 0 18. 0	34. 76 37. 18 40. 02 43. 48 47. 86 52. 02 56. 05 60. 77 66. 35	70. 49 76. 14 83. 50 92. 52 96. 78 98. 85 100. 25 102. 84 106. 32	105. 25 113. 32 123. 52 136. 00 144. 64 150. 87 156. 30 163. 62 172. 67	52. 63 56. 66 61. 76 68. 00 72. 32 75. 43 78. 15 81. 81 86. 33	246. 23 265. 59 290. 53 321. 04 338. 21 348. 57 356. 79 369. 31 385. 31
						Dama 2	

					
18.0	77. 17	111. 18	188. 35	94. 17	399. 18 410. 70
18.0	86. 98	116. 65	203. 63	101. 82	422. 49 436. 93
18. 0	98. 91	122. 21	221. 11	110. 56	453. 02 465. 53
18. 0	109. 93	123.88	233. 81	116. 90	474. 02 481. 57
18.0	121. 79	127. 75	249. 53	124. 77	492. 14 505. 02
18.0	133. 73	130.87	264.60	132. 30	516. 43 526. 33
18.0	144. 98	134.64	279. 61	139. 81	536. 97 548. 89
18. 0	157. 72	137.80	295. 52	147. 76	561. 19 571. 12
18. 0	170. 76	138. 41	309. 18	154. 59	578. 78 586. 00
18. 0	183. 86	140. 16	324. 02	162. 01	594. 64 604. 34
18. 0	197. 01	141.09	338. 10	169. 05	613. 00 620. 28
18.0	210. 21	142.02	352. 23	176. 11	627. 57 636. 27
18. 0	223.44	143.77	367. 21	183. 61	646. 03 654. 74 662. 07
18.0	236. 71	144.00	380. 71	190. 36	668. 71 675. 36
18.0	250. 01	144.00	394.01	197. 01	682. 01 688. 68
18. 0	263. 34	144.00	407. 34	203. 67	695. 34 702. 02
18.0	276. 70	144.00	420. 70	210. 35	708. 70 715. 38
18.0	290. 07	144.00	434.07	217. 04	722. 07 728. 77
18.0	303.47	144.00	447. 47	223. 73	735. 47 742. 17
18. 0	316.88	143. 96	460.84	230. 42	748. 77 752. 83
18.0	330. 31	141.02	471. 33	235. 66	753. 37 751. 75
18.0	343.75	135.86	479. 62	239. 81	751. 34 752. 16
18.0	356. 94	131. 65	488. 59	244. 30	751. 89 750. 01
18.0	368. 36	126. 74	495.09	247. 55	748. 57 751. 66
18. 0 18. 0	379. 76	126. 46 127. 69	506. 22 513. 13	253. 11 256. 56	759. 14 768. 51
18. 0 18. 0	390. 65 395. 54	129. 54 131. 80	520. 18 527. 34	260. 09 263. 67	779. 25 790. 93
18. 0 18. 0	401. 06 407. 36	133. 29 133. 83	534. 35 541. 19	267. 18 270. 60	800. 94 808. 86
18. 0 18. 0	414. 07 420. 79	133. 88 133. 91	547. 95 554. 70	273. 97 277. 35	815. 71 822. 52
18. 0 18. 0	427. 54 434. 29	134. 17 134. 94	561. 71 569. 24	280. 85 284. 62	830. 05 839. 12
18. 0 18. 0	441. 05 447. 81	136. 14 137. 23	577. 19 585. 03	288. 59 292. 52	849. 47 859. 49
	18. 0 18. 0 18	18. 0 77. 17 18. 0 81. 81 18. 0 92. 86 18. 0 92. 86 18. 0 92. 91 18. 0 104. 56 18. 0 109. 93 18. 0 121. 79 18. 0 127. 97 18. 0 133. 73 18. 0 139. 18 18. 0 151. 23 18. 0 157. 72 18. 0 157. 72 18. 0 170. 76 18. 0 177. 31 18. 0 197. 41 18. 0 197. 31 18. 0 197. 31 18. 0 210. 21 18. 0 210. 21 18. 0 223. 44 18. 0 230. 07 18. 0 236. 71 18. 0 250. 01 18. 0 250. 01 18. 0 270. 02 18. 0 270. 02 18. 0 270. 02 18. 0 290. 07 18. 0 303. 47 18. 0 303. 47 18.	18. 0 77. 17 111. 18 18. 0 81. 81 113. 56 18. 0 86. 98 116. 65 18. 0 92. 86 120. 06 18. 0 194. 56 123. 15 18. 0 109. 93 123. 88 18. 0 115. 63 125. 50 18. 0 121. 79 129. 49 18. 0 137. 97 129. 49 18. 0 133. 73 130. 87 18. 0 137. 97 129. 49 18. 0 137. 72 137. 80 18. 0 134. 98 134. 64 18. 0 151. 23 136. 65 18. 0 157. 72 137. 80 18. 0 157. 72 137. 80 18. 0 177. 31 138. 41 18. 0 177. 31 139. 11 18. 0 177. 31 139. 11 18. 0 190. 43 140. 86 18. 0 197. 01 141. 32 18. 0 216. 82 143. 07 18. 0 223. 47 144. 00 18. 0 236. 71 <	18. 0 72. 06 109. 04 181. 10 18. 0 81. 81 113. 56 195. 37 18. 0 86. 98 116. 65 203. 63 18. 0 92. 86 120. 06 212. 91 18. 0 98. 91 122. 21 221. 11 18. 0 104. 56 123. 15 227. 72 18. 0 109. 93 123. 88 233. 81 18. 0 121. 79 127. 75 249. 53 18. 0 121. 79 127. 75 249. 53 18. 0 127. 97 129. 49 257. 46 18. 0 139. 18 132. 59 271. 78 18. 0 139. 18 132. 59 271. 78 18. 0 144. 98 134. 64 279. 61 18. 0 151. 23 136. 65 287. 88 18. 0 157. 72 137. 80 295. 52 18. 0 164. 24 138. 18 302. 42 18. 0 170. 76 138. 41 309. 18 18. 0 197. 01	18. 0 77, 17 111, 18 188, 35 94, 17 18. 0 86, 98 116, 65 203, 63 101, 82 18. 0 92, 86 120, 06 212, 91 106, 46 18. 0 98, 91 122, 21 221, 11 110, 56 18. 0 104, 56 123, 15 227, 72 113, 86 18. 0 109, 93 123, 88 233, 81 116, 90 18. 0 115, 63 125, 50 241, 13 120, 57 18. 0 121, 79 129, 49 257, 46 128, 73 18. 0 127, 97 129, 49 257, 46 128, 73 18. 0 133, 73 130, 87 264, 60 132, 30 18. 0 144, 98 134, 64 279, 61 139, 81 18. 0 151, 23 136, 65 287, 88 143, 94 18. 0 157, 72 137, 80 295, 52 147, 76 18. 0 170, 76 138, 41 309, 18 154, 59 18. 0 170, 76

Section Type: Square Pile Width: 24.00 (in)

Test Pile Length (ft)	Pile Width (in)	UI ti mate Si de Fri cti on (tons)	Mobilized End Bearing (tons)	Estimated Davisson Capacity (tons)	Allowable Pile Capacity (tons)	UItimate Pile Capacity (tons)
25. 00 26. 00 27. 00 28. 00 29. 00 30. 00 31. 00 32. 00 34. 00 35. 00 36. 00 37. 00 39. 00	24. 0 24. 0	42. 43 44. 72 47. 84 52. 00 56. 66 60. 93 64. 94 69. 98 76. 53 83. 63 90. 21 96. 27 102. 95 110. 50 118. 27	108. 58 117. 72 126. 63 134. 43 141. 41 150. 47 162. 39 174. 16 182. 62 188. 91 191. 85 197. 99 203. 75 206. 31 206. 89	151. 01 162. 44 174. 47 186. 43 198. 06 211. 40 227. 33 244. 14 259. 14 272. 54 282. 06 294. 25 306. 71 316. 81	75. 51 81. 22 87. 23 93. 21 99. 03 105. 70 113. 67 122. 07 129. 07 129. 57 136. 27 141. 03 147. 13 153. 35 158. 40 162. 58	368. 18 397. 88 427. 73 455. 28 480. 88 512. 33 552. 12 592. 46 624. 38 650. 37 665. 77 690. 23 714. 21 729. 43 738. 93

				D E01 Vo	: d 10f+ au-	L
40.00	24.0	125. 60	209. 29	334. 90	i d-10ft. ou [.] 167. 45	753. 48
41. 00	24. 0	132. 60	214. 31	346. 91	173. 45	775. 53
42.00	24.0	140. 01	219.84	359. 85	179. 93	799. 53
43.00	24.0	148. 00	223. 77	371. 77	185. 88	819. 32
44. 00	24.0	156. 02	226. 72	382. 74	191. 37	836. 17
45.00	24.0	163. 56	230. 19	393. 75	196. 88	854. 14
46. 00 47. 00	24. 0 24. 0	170. 71 178. 30	234. 73 238. 92	405. 45 417. 22	202. 72 208. 61	874. 91 895. 05
48. 00	24. 0	186. 46	241. 24	427. 70	213. 85	910. 18
49. 00	24. 0	194. 93	241. 88	436. 81	218. 40	920. 57
50.00	24.0	203. 43	242. 39	445. 82	222. 91	930. 60
51.00	24.0	211. 96	243. 92	455. 88	227. 94	943. 71
52.00	24.0	220. 52	246. 20	466. 73	233. 36	959. 14
53. 00 54. 00	24. 0 24. 0	229. 11 237. 72	247. 73 248. 24	476. 84 485. 96	238. 42 242. 98	972. 30 982. 44
55. 00	24. 0	246. 35	248. 55	494. 90	247. 45	992.00
56. 00	24. 0	255. 00	249. 48	504. 48	252. 24	1003. 45
57.00	24.0	263. 68	250.88	514. 55	257. 28	1016. 31
58. 00	24.0	272. 37	251. 81	524. 18	262. 09	1027. 80
59. 00 60. 00	24. 0 24. 0	281. 08 289. 80	252. 12 252. 43	533. 20 542. 23	266. 60 271. 12	1037. 44 1047. 10
61. 00	24. 0	298. 55	253. 36	551. 91	271. 12	1058. 63
62. 00	24. 0	307. 30	254. 76	562. 06	281. 03	1071. 58
63.00	24.0	316. 07	255. 69	571. 76	285. 88	1083. 14
64. 00	24.0	324. 85	256. 00	580. 85	290. 43	1092. 85
65. 00 66. 00	24. 0 24. 0	333. 65 342. 46	256. 00 256. 00	589. 65 598. 46	294. 82 299. 23	1101. 65 1110. 46
67. 00	24. 0	351. 27	256.00	607. 27	303.64	1110. 40
68. 00	24. 0	360. 10	256. 00	616. 10	308. 05	1128. 10
69.00	24.0	368. 94	256.00	624. 94	312. 47	1136. 94
70.00	24.0	377. 79	256. 00	633. 79	316. 89	1145. 79
71. 00 72. 00	24. 0 24. 0	386. 64 395. 51	256. 00 255. 21	642. 64 650. 72	321. 32 325. 36	1154. 64 1161. 15
73. 00	24. 0	404. 38	252. 86	657. 24	328. 62	1162. 96
74. 00	24. 0	413. 26	249. 21	662. 47	331. 23	1160. 88
75.00	24.0	422. 15	245.89	668. 04	334. 02	1159. 81
76.00	24.0	431. 04	243. 17	674. 21	337. 11	1160. 55
77. 00 78. 00	24. 0 24. 0	439. 95 448. 85	240. 08 235. 62	680. 02 684. 48	340. 01 342. 24	1160. 17 1155. 72
76. 00 79. 00	24.0	457. 43	230. 70	688. 13	342. 24 344. 06	1149. 53
80.00	24. 0	465. 31	228. 48	693. 79	346. 90	1150. 75
81.00	24.0	472.63	229. 25	701. 88	350. 94	1160. 39
82.00	24.0	480. 10	231.00	711. 10	355. 55	1173. 11
83. 00 84. 00	24. 0 24. 0	487. 83 495. 39	232. 47 234. 21	720. 30 729. 60	360. 15 364. 80	1185. 25 1198. 01
85. 00	24. 0	502. 36	236. 71	739. 07	369. 53	1212. 49
86.00	24. 0	508. 92	239. 73	748. 64	374. 32	1228. 10
87.00	24.0	516. 28	241.72	758. 00	379.00	1241. 45
88. 00	24. 0	524. 65	242. 44	767. 09	383. 55	1251. 98
89. 00 90. 00	24. 0 24. 0	533. 54 542. 46	242. 51 242. 54	776. 05 785. 00	388. 02 392. 50	1261. 07 1270. 09
90.00	24. 0 24. 0	542. 46 551. 41	242. 54 242. 55	785. 00 793. 95	392. 50 396. 98	1270.09
92. 00	24. 0	560. 36	242. 55	802. 91	401. 45	1288. 00
93.00	24.0	569. 32	242.55	811. 87	405. 93	1296. 96
94. 00	24.0 Soi	I Elevation	s Must Exte	nd At or Be	low Contril	oution Zone

NOTES

- 1. MOBILIZED END BEARING IS 1/3 OF THE ORIGINAL RB-121 VALUES.
- 2. DAVISSON PILE CAPACITY IS AN ESTIMATE BASED ON FAILURE CRITERIA, AND EQUALS ULTIMATE SIDE FRICTION PLUS MOBILIZED END BEARING.
- 3. ALLOWABLE PILE CAPACITY IS 1/2 THE DAVISSON PILE CAPACITY.
- 4. ULTIMATE PILE CAPACITY IS ULTIMATE SIDE FRICTION PLUS 3 x THE MOBILIZED END BEARING.
 EXCEPTION: FOR H-PILES TIPPED IN SAND OR LIMESTONE, THE ULTIMATE PILE CAPACITY IS ULTIMATE SIDE FRICTION PLUS 2 x THE MOBILIZED END BEARING.

Florida Bridge Software Institute Shaft and Pile Analysis (FB-Deep v. 2.05)

General Information:

______ Input file:tary_RS&H)\Analysis_Structure\FB-Deep\Pile\B-601_Void-10ft.spc
Project number: 2000-01-17003
Job name: SW 10th Street, from Powerline Rd. to Military Trail
Engineer: JB Henry
Units: English

Analysis Information: Analysis Type: SPT

Soil Information:

Boring Number: B-601

Boring date: 1/31/2018, Station number: Offset:

Ground Elevation: 0.000(ft)

Hammer type: Automatic Hammer, Correction factor = 1.24

I D	Depth (ft)	No. of Blows (Blows/ft)	Soi I Type	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28 30 31 33 33 43 33 43 33 43 33 43 33 33 43 33 3	0.00 2.00 4.00 6.00 8.00 10.00 112.00 13.50 18.00 20.50 23.00 25.50 33.00 35.50 38.00 45.50 48.00 55.50 68.00 60.50 68.00 70.50 88.00 80.50 83.00 80.50 83.00	30. 00 30. 00 30. 00 11. 00 3. 00 3. 00 4. 00 3. 00 6. 00 12. 00 22. 00 20. 00 52. 00 61. 00 90. 00 47. 00 89. 00 60. 00	5- Cavi ty layer 3- Clean sand	shelly sand shelly sand

Blowcount Average Per Soil Layer

Layer Num.	Starting Elevation (ft)	Bottom Elevation (ft)	Thi ckness (ft)	Average Blowcount (Blows/ft)	Soi I Type
1	0.00	-10.00	10.00	17. 20	5-Voi d
2	-10.00	-65. 50	55. 50	33. 30	3-Cl ean Sand
3	-65. 50	-75. 50	10.00	60.00	4-Limestone, Very Shelly Sand
4	-75.50	-100.00	24.50	46. 08	3-Cl ean Sand

Driven Pile Data:

Pile unit weight = 150.00(pcf), Section Type: Square

Pile Geometry:

Pile	Geometry:					
	Wi dth (i n)	Length (ft)	Tip Elev. (ft)			
	18. 00 18. 00	25. 00 26. 00 27. 00 28. 00 29. 00 30. 00 31. 00 33. 00 34. 00 35. 00 36. 00 37. 00 38. 00 41. 00 42. 00 41. 00 42. 00 43. 00 45. 00 46. 00 47. 00 50. 00 51. 00 52. 00 53. 00 54. 00 55. 00 66. 00 67. 00 68. 00 67. 00 68. 00 67. 00 68. 00 67. 00 68. 00 67. 00 68. 00 67. 00 68. 00 69. 00 71. 00 72. 00 73. 00 75. 00 76. 00 77. 00 78. 00 79. 00 80. 00 81. 00 82. 00 83. 00 84. 00 85. 00 87. 00 88. 00 89. 00 91. 00 92. 00 93. 00	-25. 00 -26. 00 -27. 00 -28. 00 -29. 00 -30. 00 -31. 00 -31. 00 -33. 00 -34. 00 -35. 00 -36. 00 -37. 00 -40. 00 -41. 00 -42. 00 -43. 00 -44. 00 -45. 00 -46. 00 -47. 00 -52. 00 -51. 00 -52. 00 -53. 00 -54. 00 -57. 00 -58. 00 -56. 00 -57. 00 -57. 00 -58. 00 -60. 00 -61. 00 -62. 00 -63. 00 -64. 00 -65. 00 -67. 00 -68. 00 -67. 00 -77. 00 -78. 00 -77. 00 -79. 00 -71. 00 -72. 00 -73. 00 -74. 00 -75. 00 -75. 00 -76. 00 -77. 00 -77. 00 -79. 0			

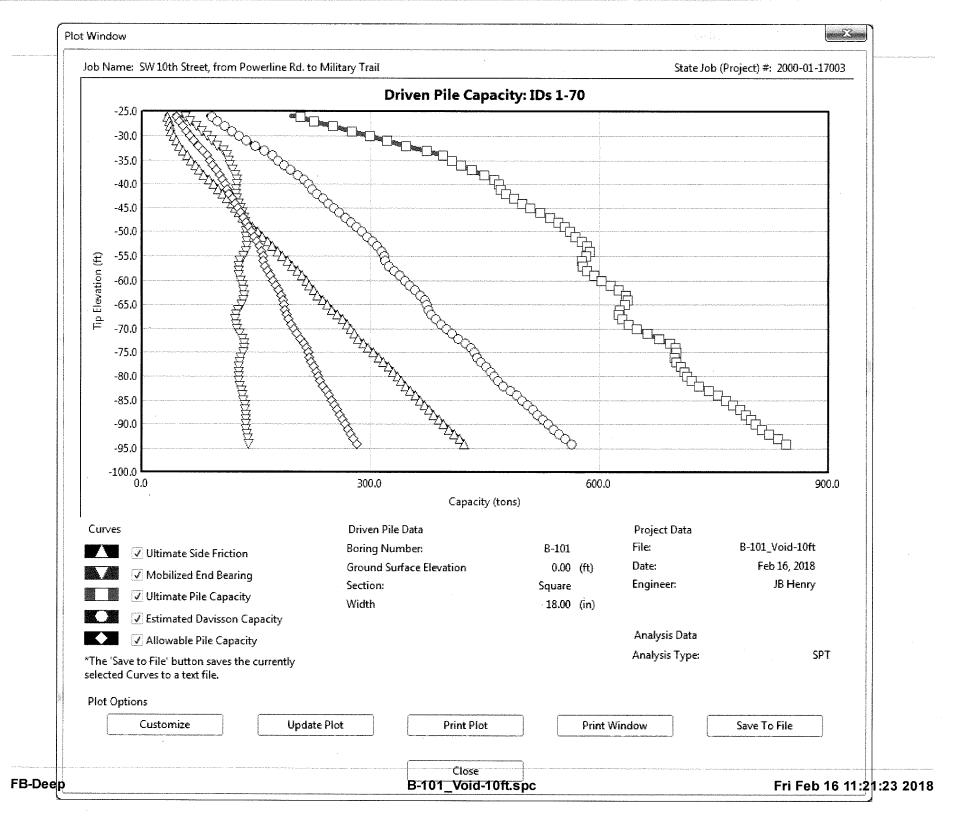
B-601_Voi d-10ft.out

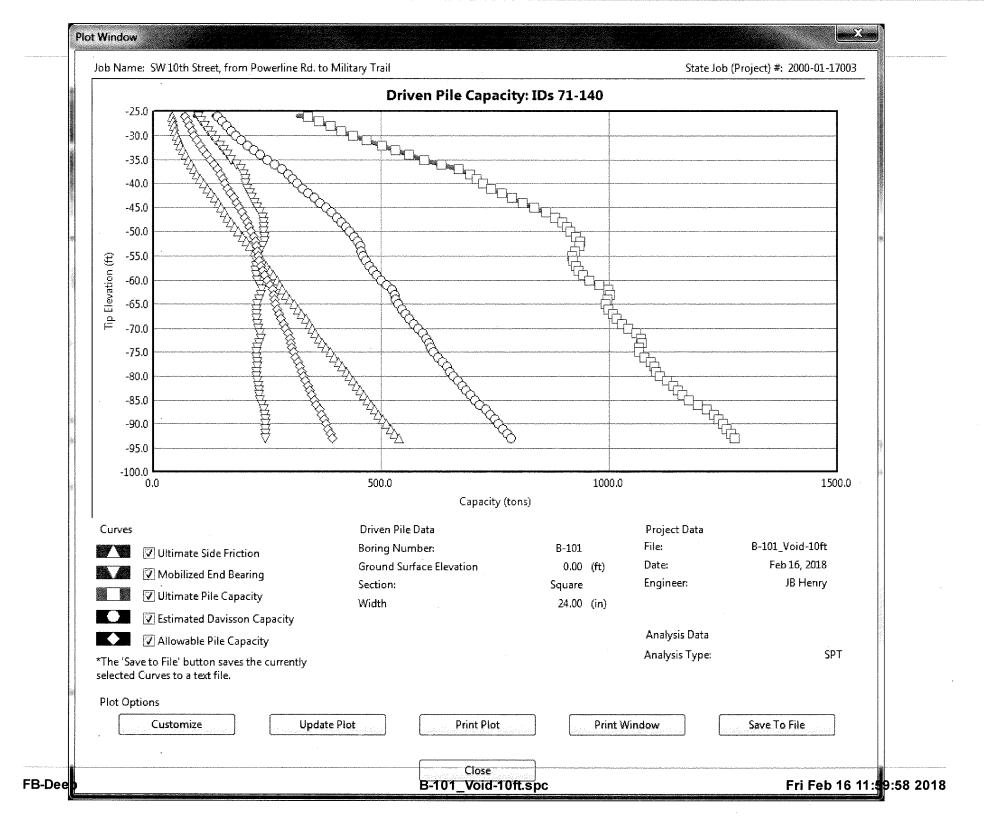
Driven Pile Capacity:

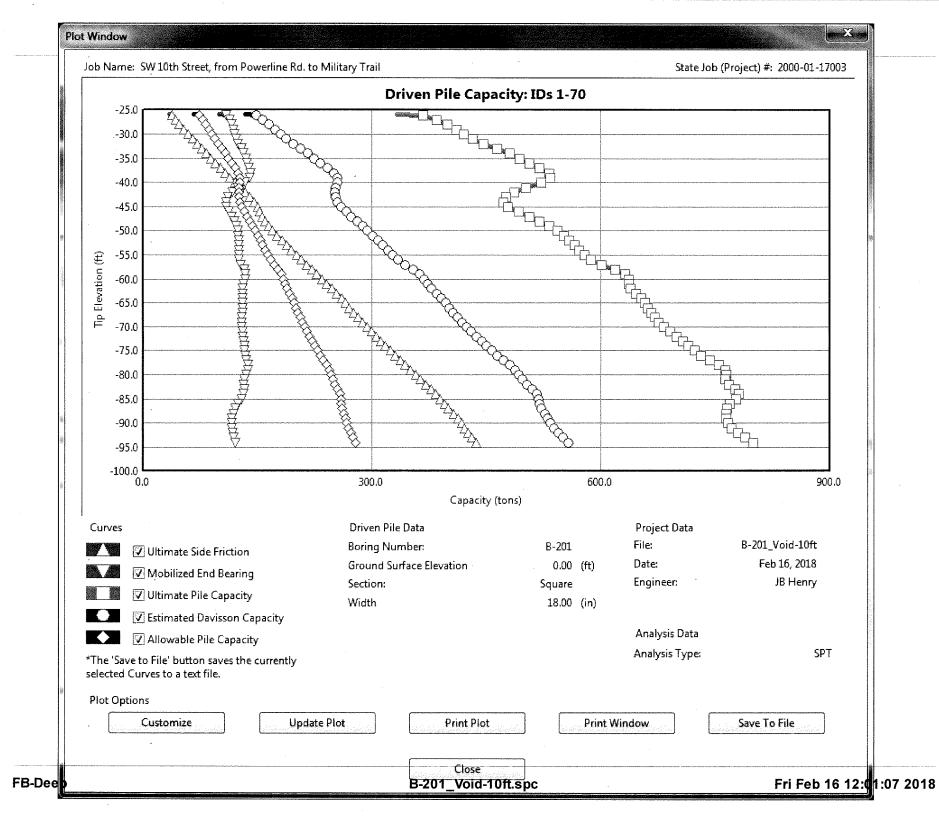
Section Type: Square Pile Width: 18.00 (in)

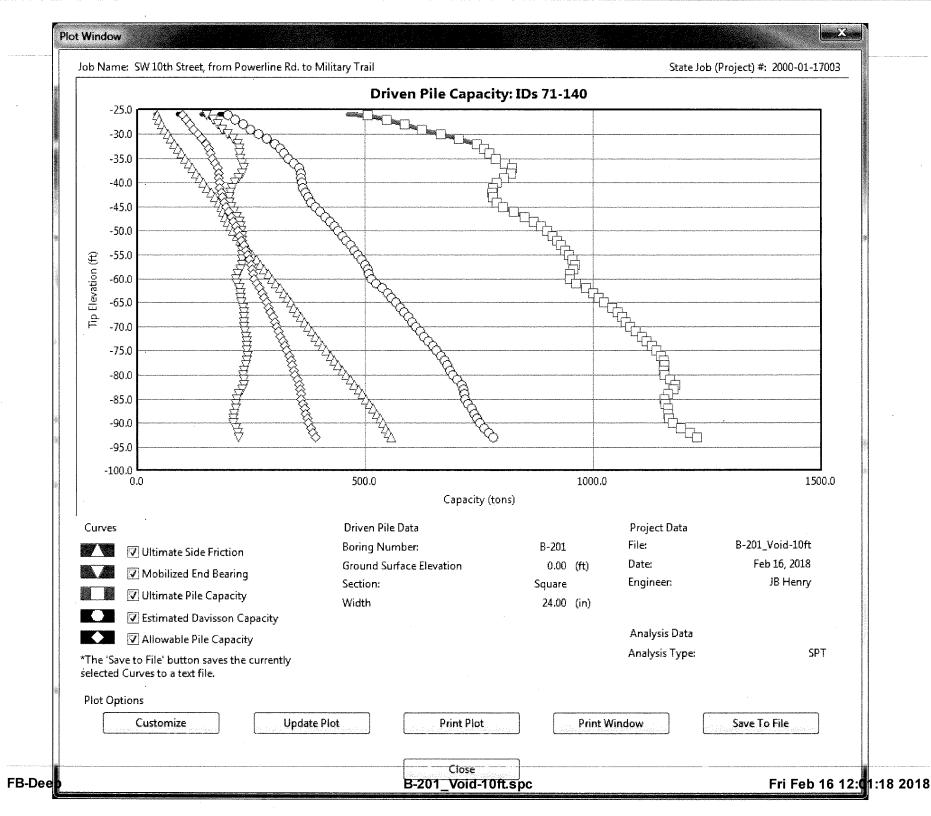
Test Pile Length (ft)	Pile Width (in)	UI ti mate Si de Fri cti on (tons)	Mobilized End Bearing (tons)	Estimated Davisson Capacity (tons)	Allowable Pile Capacity (tons)	UItimate Pile Capacity (tons)
25. 00 26. 00 27. 00 28. 00 29. 00 30. 00 31. 00	18. 0 18. 0 18. 0 18. 0 18. 0 18. 0	11. 28 13. 24 16. 08 20. 03 24. 74 29. 66 34. 76	65. 37 78. 10 90. 31 101. 38 105. 63 108. 62 110. 98	76. 65 91. 34 106. 39 121. 41 130. 36 138. 28 145. 75	38. 33 45. 67 53. 20 60. 70 65. 18 69. 14 72. 87	207. 38 247. 54 287. 01 324. 17 341. 62 355. 53 367. 71

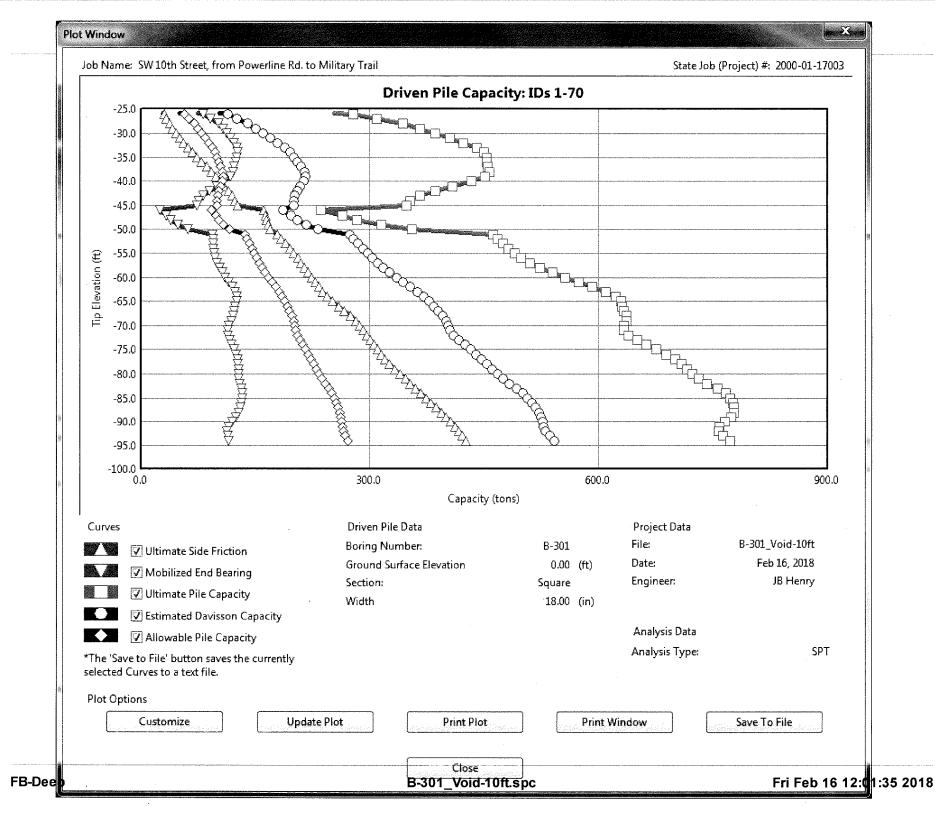
				B-601_Vo	i d-10ft. out	
32. 00	18. 0	40. 03	114.08	154. 11	77. 05	382. 27
33. 00	18. 0	45. 43	117.92	163. 35	81. 68	399. 20
34. 00	18. 0	50. 79	121.87	172. 66	86. 33	416. 39
35. 00	18. 0	55. 94	125. 84	181. 78	90. 89	433. 46
36. 00	18. 0	60. 93	130. 02	190. 95	95. 48	450. 99
37. 00	18. 0	66. 22	134. 05	200. 27	100. 13	468. 36
38. 00	18. 0	71. 90	137. 60	209. 50	104. 75	484. 70
39. 00	18. 0	77. 78	139. 76	217. 54	108. 77	497. 06
40. 00	18. 0	83. 67	140. 59	224. 27	112. 13	505. 46
41. 00	18. 0	89. 57	140. 79	230. 37	115. 18	511. 95
42. 00	18. 0	95. 56	140. 93	236. 49	118. 24	518. 34
43. 00	18. 0	101. 66	140. 86	242. 52	121. 26	524. 24
44. 00	18. 0	107. 82	138. 28	246. 10	123. 05	522. 66
45. 00	18. 0	114. 02	132. 25	246. 27	123. 14	510. 77
46. 00	18. 0	120. 26	124. 21	244. 47	122. 24	492. 89
47. 00	18. 0	126. 53	117. 35	243. 89	121. 94	478. 59
48. 00	18. 0	132. 83	111. 60	244. 43	122. 22	467. 62
49. 00	18. 0	138. 49	104. 63	243. 12	121. 56	452. 39
50. 00	18. 0	142. 81	96. 24	239. 05	119. 53	431. 54
51. 00	18. 0	145. 97	87. 20	233. 17	116. 58	407. 56
52. 00	18. 0	149. 27	77. 92	227. 19	113. 59	383. 03
53. 00	18. 0	152. 91	68. 22	221. 13	110. 56	357. 56
54. 00	18. 0	156. 14	59. 77	215. 90	107. 95	335. 44
55. 00	18. 0	158. 15	53. 93	212. 08	106. 04	319. 94
56. 00	18. 0	159. 10	50. 69	209. 79	104. 89	311. 16
57. 00	18. 0	159. 86	49. 22	209. 08	104. 54	307. 53
58. 00	18. 0	160. 59	49. 42	210. 01	105. 00	308. 85
59. 00	18. 0	161. 50	52. 65	214. 15	107. 08	319. 45
60. 00	18. 0	162. 80	59. 31	222. 11	111. 06	340. 73
61. 00	18. 0	164. 54	68. 98	233. 53	116. 76	371. 49
62. 00	18. 0	166. 90	79. 43	246. 33	123. 17	405. 20
63. 00	18. 0	169. 91	90. 26	260. 17	130. 09	440. 69
64. 00	18. 0	173. 45	99. 36	272. 81	136. 41	471. 53
65. 00	18. 0	177. 40	105. 81	283. 21	141. 61	494. 83
66. 00	18. 0	213. 99	173. 44	387. 43	193. 72	734. 32
67. 00	18. 0	218. 45	173. 44	391. 90	195. 95	738. 78
68. 00	18. 0	222. 92	172. 46	395. 38	197. 69	740. 30
69. 00	18. 0	227. 38	169. 52	396. 90	198. 45	735. 93
70. 00	18. 0	231. 84	164. 85	396. 70	198. 35	726. 41
71. 00	18. 0	236. 31	159. 95	396. 26	198. 13	716. 15
72. 00	18. 0	240. 77	155. 04	395. 81	197. 91	705. 90
73. 00	18. 0	245. 24	150. 13	395. 37	197. 69	695. 64
74. 00	18. 0	250. 18	146. 21	396. 38	198. 19	688. 80
75. 00	18. 0	256. 07	144. 25	400. 31	200. 16	688. 80
76. 00	18. 0	262. 79	144. 00	406. 79	203. 39	694. 79
77. 00	18. 0	269. 63	144. 00	413. 63	206. 81	701. 63
78. 00	18. 0	276. 47	144. 00	420. 47	210. 23	708. 47
79. 00	18. 0	283. 31	144. 00	427. 31	213. 65	715. 31
80. 00	18. 0	290. 15	144. 00	434. 15	217. 07	722. 15
81. 00	18. 0	296. 99	144. 00	440. 99	220. 49	728. 99
82. 00	18. 0	303. 83	144. 00	447. 83	223. 91	735. 83
83. 00	18. 0	310. 67	143. 96	454. 62	227. 31	742. 54
84. 00	18. 0	317. 51	142. 90	460. 41	230. 20	746. 22
85. 00	18. 0	324. 35	140. 45	464. 79	232. 40	745. 68
86. 00	18. 0	331. 19	136. 47	467. 66	233. 83	740. 59
87. 00	18. 0	338. 03	130. 69	468. 72	234. 36	730. 10
88. 00	18. 0	344. 87	123. 13	467. 99	234. 00	714. 24
89. 00	18. 0	351. 36	114. 79	466. 15	233. 08	695. 74
90. 00	18. 0	357. 15	106. 35	463. 49	231. 75	676. 19
91. 00	18. 0	362. 21	99. 02	461. 23	230. 62	659. 28
92. 00	18. 0	366. 39	95. 96	462. 35	231. 17	654. 26
93. 00	18. 0	369. 67	97. 20	466. 88	233. 44	661. 29
94. 00	18. 0	372. 27	100. 18	472. 45	236. 22	672. 80
, 1. 00		J, Z. Z,	. 50. 10	., 2. 10	_50	5,2.50

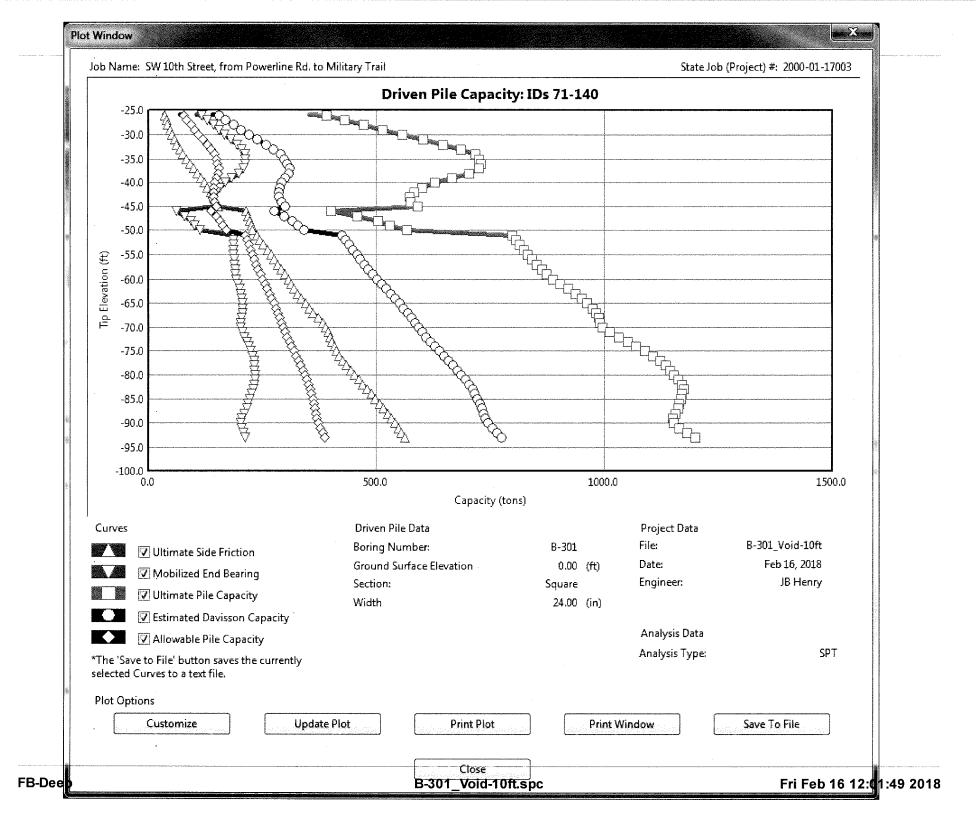

Section Type: Square Pile Width: 24.00 (in)

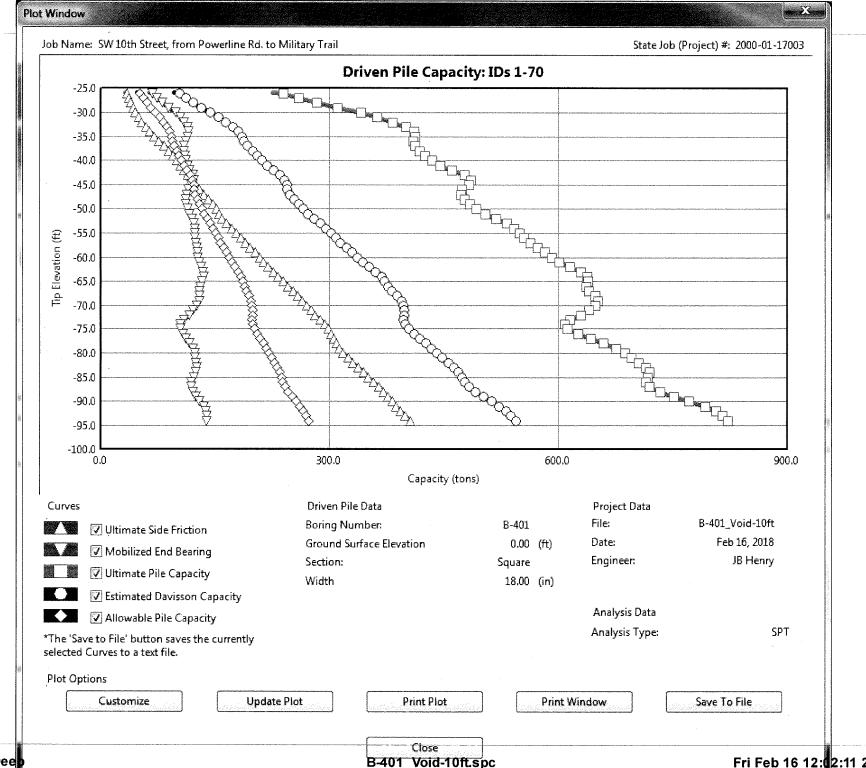

Test Pile Length (ft)	Pile Width (in)	UI ti mate Si de Fri cti on (tons)	Mobilized End Bearing (tons)	Estimated Davisson Capacity (tons)	Allowable Pile Capacity (tons)	UItimate Pile Capacity (tons)
25. 00 26. 00 27. 00 28. 00 29. 00 30. 00 31. 00 32. 00 34. 00 35. 00 36. 00 37. 00	24. 0 24. 0	12. 43 14. 43 17. 38 21. 50 26. 42 31. 66 37. 22 49. 37 55. 81 62. 25 68. 56 75. 25	90. 66 104. 71 117. 83 129. 00 139. 02 150. 27 162. 92 176. 36 189. 81 203. 58 210. 25 217. 47 224. 03	103. 09 119. 14 135. 21 150. 50 165. 44 181. 93 200. 14 219. 47 239. 18 259. 39 272. 51 286. 03 299. 28	51. 55 59. 57 67. 61 75. 25 82. 72 90. 97 100. 07 109. 74 119. 59 129. 69 136. 25 143. 02	284. 41 328. 57 370. 87 408. 49 443. 49 482. 48 525. 98 572. 19 618. 79 666. 55 693. 01 720. 97 747. 33

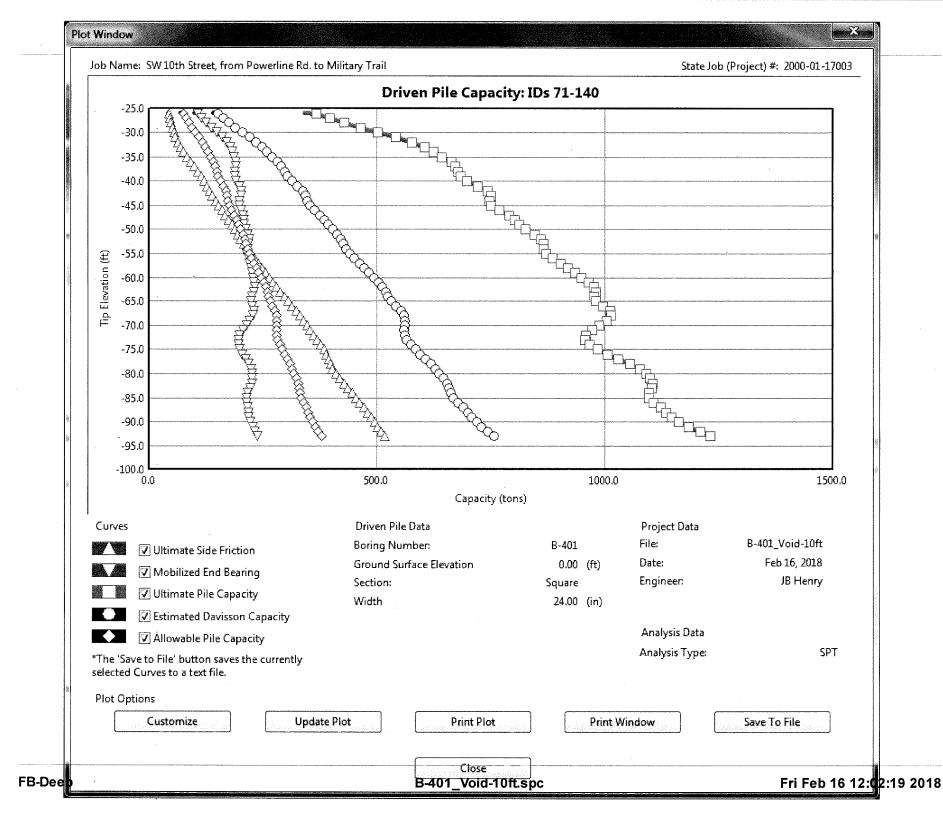

				R_601 Voi	d-10ft.out	+
38.00	24.0	82. 42	229. 44	311. 86	155. 93	770. 75
39.00	24.0	89. 87	234. 10	323. 96	161. 98	792. 15
40.00	24.0	97. 36	238. 70	336. 06	168. 03	813. 46
41. 00	24.0	104. 89	243. 53	348. 42	174. 21	835. 47
42.00	24.0	112. 56	245. 85	358. 41	179. 20	850. 11
43. 00 44. 00	24. 0 24. 0	120. 38 128. 30	241. 83 232. 02	362. 21 360. 32	181. 11 180. 16	845. 88 824. 35
45. 00	24.0	136. 30	232.02	358. 04	179. 02	801. 52
46. 00	24.0	144. 35	212. 68	357. 03	178. 51	782. 38
47. 00	24. 0	152. 47	202. 25	354. 72	177. 36	759. 22
48.00	24.0	160. 63	187. 90	348. 53	174. 26	724. 32
49. 00	24.0	168. 03	171. 39	339. 43	169. 71	682. 21
50.00	24.0	173. 81	157. 26	331. 07	165. 54	645. 59
51. 00 52. 00	24. 0 24. 0	178. 19 182. 71	145. 86 135. 28	324. 05 317. 99	162. 02 158. 99	615. 76 588. 55
53. 00	24.0	187. 65	124. 97	312. 62	156. 31	562. 55
54. 00	24. 0	192. 07	116. 32	308. 39	154. 20	541. 03
55. 00	24. 0	195. 00	111. 67	306. 67	153. 34	530. 01
56.00	24.0	196. 59	111. 16	307. 76	153. 88	530. 09
57. 00	24.0	197. 94	114. 73	312. 67	156. 33	542. 12
58.00	24. 0 24. 0	199. 23	123. 56	322. 78	161. 39 168. 65	569. 90
59. 00 60. 00	24.0	200. 72 202. 70	136. 58 149. 46	337. 30 352. 16	176. 08	610. 46 651. 07
61. 00	24.0	205. 21	161. 51	366. 72	183. 36	689. 75
62. 00	24. 0	208. 48	172. 43	380. 91	190. 46	725. 78
63.00	24.0	212. 56	182. 17	394. 72	197. 36	759. 05
64.00	24.0	217. 30	189. 80	407. 10	203. 55	786. 70
65.00	24. 0 24. 0	222. 56	195. 44 307. 03	418. 00 592. 35	209. 00 296. 18	808.88
66. 00 67. 00	24.0	285. 32 291. 27	303. 11	594. 38	297. 19	1206. 42 1200. 59
68. 00	24.0	297. 22	296. 89	594. 11	297. 06	1187. 90
69. 00	24. 0	303. 17	290. 35	593. 52	296. 76	1174. 22
70.00	24.0	309. 13	283. 81	592. 93	296. 47	1160. 55
71.00	24.0	315. 08	277. 26	592. 34	296. 17	1146. 87
72. 00 73. 00	24. 0 24. 0	321. 03 326. 98	270. 72 264. 18	591. 75 591. 16	295. 88 295. 58	1133. 19 1119. 52
74. 00	24.0	333. 57	258. 94	592. 51	296. 26	1119. 32
75. 00	24. 0	341. 42	256. 33	597. 75	298. 87	1110. 40
76.00	24.0	350. 38	256.00	606. 38	303. 19	1118. 38
77. 00	24.0	359. 50	256.00	615. 50	307. 75	1127. 50
78.00	24.0	368. 62	256. 00	624. 62	312. 31	1136.62
79. 00 80. 00	24. 0 24. 0	377. 74 386. 86	256. 00 256. 00	633. 74 642. 86	316. 87 321. 43	1145. 74 1154. 86
81. 00	24.0	395. 98	256. 00	651. 98	325. 99	1163. 98
82. 00	24. 0	405. 10	255. 06	660. 17	330. 08	1170. 29
83.00	24.0	414. 22	252. 26	666. 48	333. 24	1170. 99
84.00	24.0	423. 34	247. 51	670. 85	335. 42	1165. 86
85. 00 86. 00	24. 0 24. 0	432. 46 441. 58	240. 41 230. 89	672. 87 672. 47	336. 43 336. 24	1153. 68 1134. 25
87. 00	24.0	450. 70	219. 56	670. 26	335. 13	1109. 37
88. 00	24. 0	459. 82	207. 01	666. 84	333. 42	1080. 86
89. 00	24. 0	468. 48	194. 43	662. 91	331. 45	1051. 77
90.00	24.0	476. 19	186. 70	662. 90	331. 45	1036.30
91.00	24.0	482. 95	184. 74	667. 69	333. 84	1037. 17
92. 00 93. 00	24. 0 24. 0	488. 53 492. 90	186. 44 189. 38	674. 97 682. 28	337. 48 341. 14	1047. 85 1061. 04
94. 00				nd At or Bel		
	5 5511					

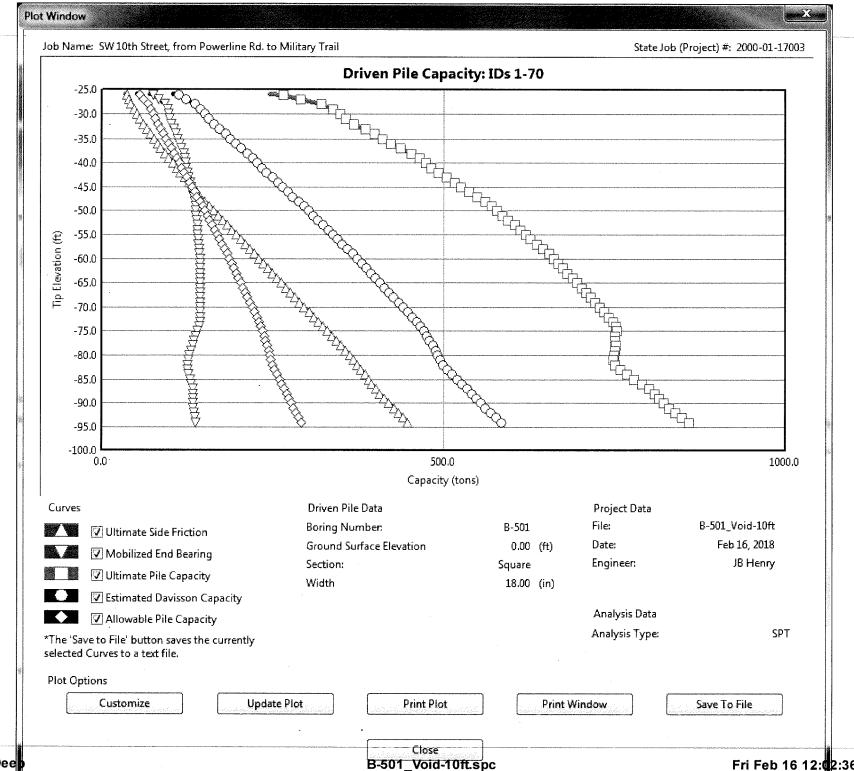

NOTES

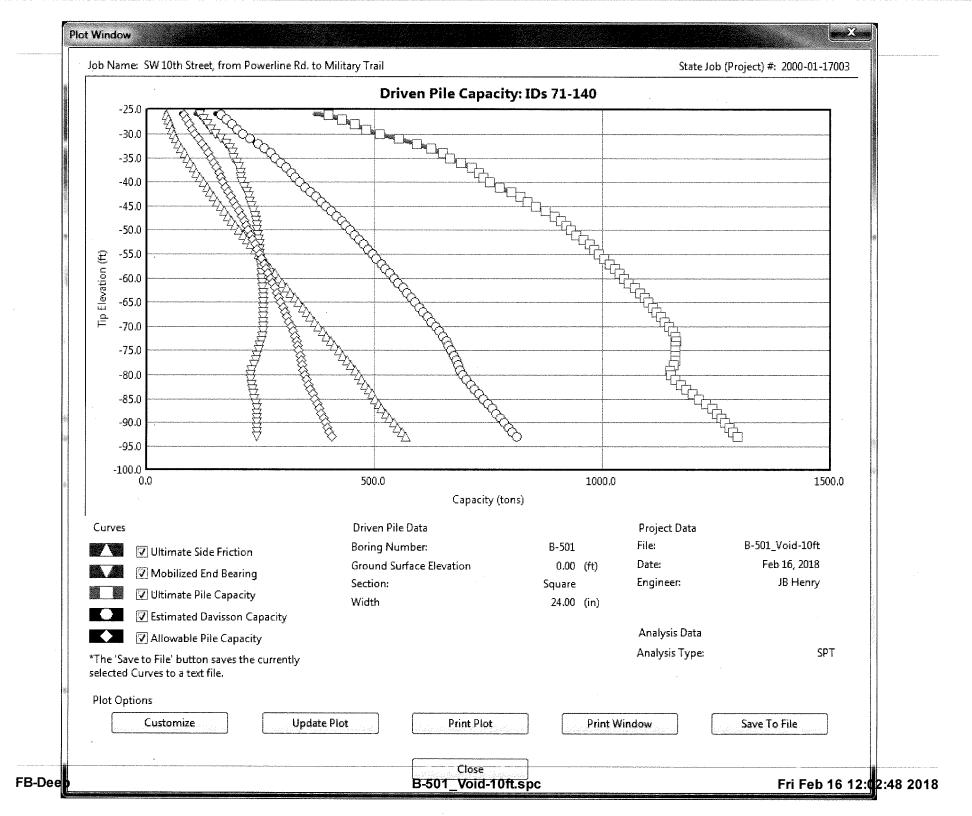

- 1. MOBILIZED END BEARING IS 1/3 OF THE ORIGINAL RB-121 VALUES.
- 2. DAVISSON PILE CAPACITY IS AN ESTIMATE BASED ON FAILURE CRITERIA, AND EQUALS ULTIMATE SIDE FRICTION PLUS MOBILIZED END BEARING.
- 3. ALLOWABLE PILE CAPACITY IS 1/2 THE DAVISSON PILE CAPACITY.
- 4. ULTIMATE PILE CAPACITY IS ULTIMATE SIDE FRICTION PLUS 3 x THE MOBILIZED END BEARING.
 EXCEPTION: FOR H-PILES TIPPED IN SAND OR LIMESTONE, THE ULTIMATE PILE CAPACITY IS ULTIMATE SIDE FRICTION PLUS 2 x THE MOBILIZED END BEARING.

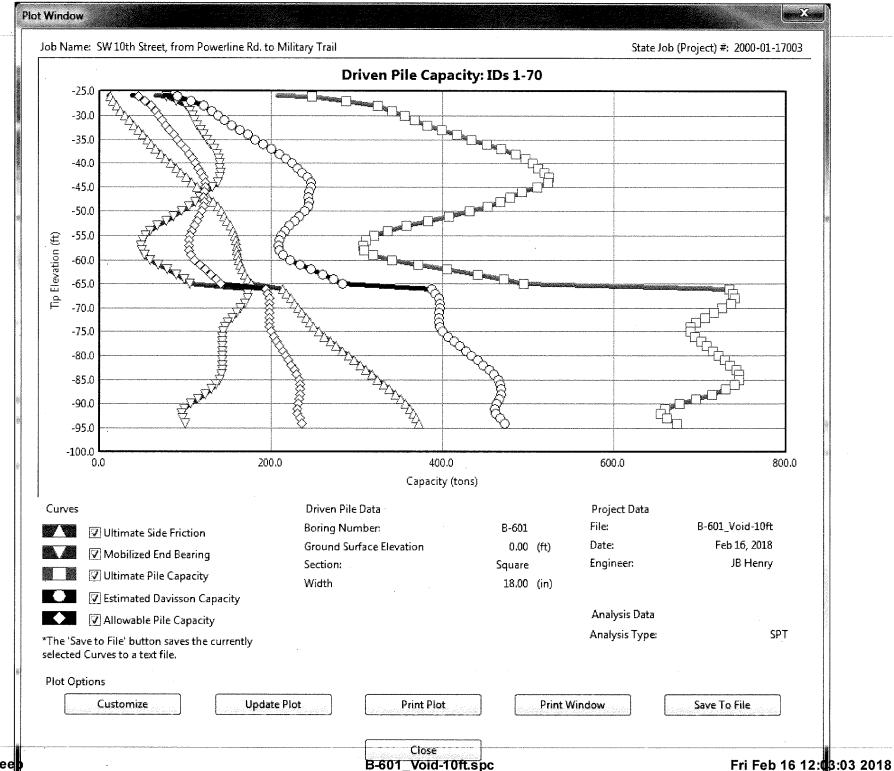


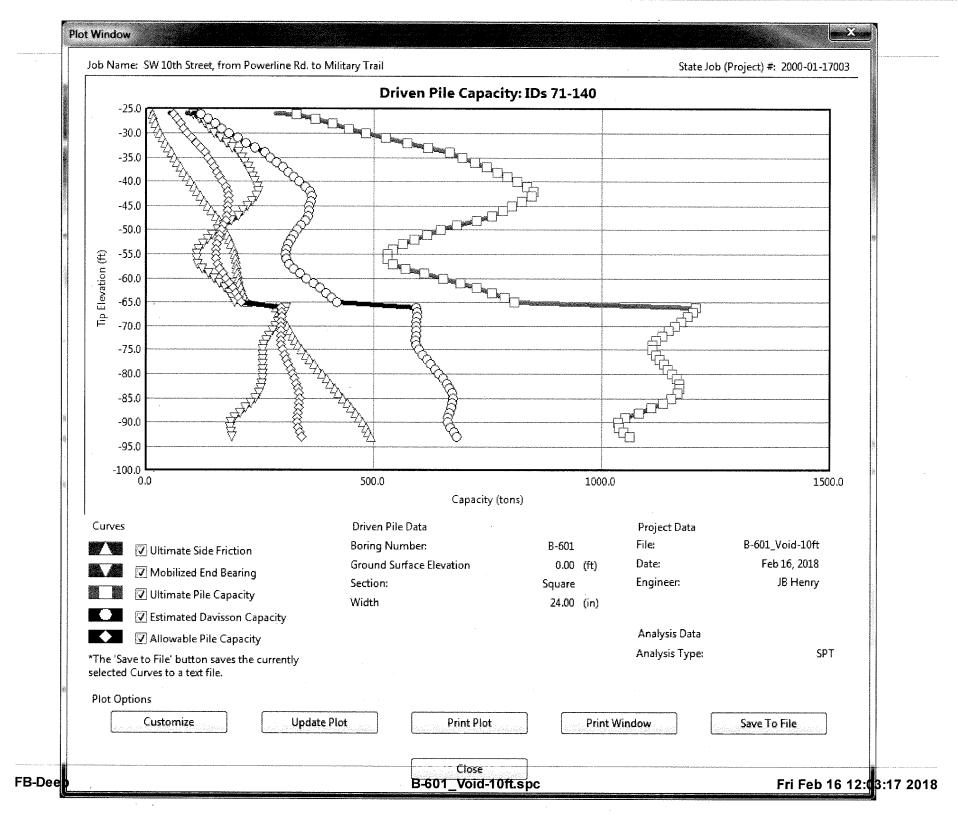












B-101Shaft48in.out Date: February 16, 2018 Time: 11:41:02

General Information: _____

Input file:H)\Analysis_Structure\FB-Deep\Drilled Shaft\B-101Shaft48in.spc Project number: 2000-01-17003 Job name: SW 10th Street, from Powerline Rd. to Military Trail Engineer: JB Henry Units: English

Analysis Information:

Analysis Type: Drilled Shaft Analysis

Soil Information:

Boring date: 2/2/2018
Boring number: B-101
Station number: Offset:

Ground Elevation: 0.00(ft) Water table Elevation = 0.00(ft)

Hammer type: Automatic Hammer, Correction factor = 1.24

паншен	type. Au	tolliatic naili	ller, correcti	on ractor =	1. 24	
I D	Depth (ft)	El evati on (ft)	SPT Blows (Blows/ft)	Unit Weight (pcf)	Soi I Type	е
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 38 39 40 40 40 40 40 40 40 40 40 40 40 40 40	0. 00 2. 00 4. 00 6. 00 8. 00 10. 00 11. 00 12. 00 13. 50 18. 00 20. 50 23. 00 23. 00 25. 50 28. 00 30. 50 33. 00 40. 50 43. 00 45. 50 48. 00 50. 50 53. 00 65. 50 68. 00 70. 50 73. 00 75. 50 88. 00 90. 50 93. 00 95. 50 93. 00 95. 50	-0. 00 -2. 00 -4. 00 -6. 00 -8. 00 -10. 00 -11. 00 -13. 50 -15. 50 -18. 00 -20. 50 -23. 00 -25. 50 -28. 00 -30. 50 -33. 50 -35. 50 -38. 00 -40. 50 -43. 00 -45. 50 -48. 00 -50. 50 -53. 00 -65. 50 -68. 00 -67. 50 -73. 00 -75. 50 -78. 00 -75. 50 -78. 00 -80. 50 -83. 00 -85. 50 -88. 00 -90. 50 -93. 00 -95. 50 -93. 00 -95. 50 -98. 00 -100. 00	N/A N/A N/A N/A N/A N/A N/A N/A 24. 00 21. 00 32. 00 12. 00 14. 00 36. 00 19. 00 37. 00 44. 00 70. 00 44. 00 71. 00 48. 00 73. 00 66. 00 62. 00 29. 00 47. 00 48. 00 71. 00 48. 00 73. 00 66. 00 67. 00 60. 00 65. 00 71. 00 60. 00 65. 00 65. 00	0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 115. 00 115. 00 110. 00 115. 00 115. 00 115. 00 115. 00 115. 00 115. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 130. 00 130. 00 130. 00 130. 00 130. 00 130. 00 130. 00 130. 00	Soil Type 5- Cavity layer 6- Cavity layer 6- Cavity layer 6- Cavity layer 6- Clean sand 7- Clean sand	
I D	Cu-DIR (tsf)	qu (tsf) 	qt (tsf) 	Em (ksi)	qb (tsf) 	
1 2 3 4 5 6 7 8	N/ N/ N/ N/ N/ N/	A N/A	A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	Em (ksi) N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 33 33 34 35 37 38 39 40 41 42 43 41 42 43 44 44 44 44 44 44 44 44 44 44 44 44	N/A	N/A	N/A	B-101Shaft4	8i n. out
1 2 3 4	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	N N N N	I/A I/A I/A I/A I/A	
5 6 7 8 9 10 11 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 31 33 33 43 33 44 42 43 44 43	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A	N N N N N N N N N N N N N N N N N N N	I/A I/A I/A I/A I/A I/A I/A I/A I/A I/A	

I D	Length	Tip Elev.	Case Len.	Di ameter	Base Diam.	Bell Len.
	(ft)	(ft)	(ft)	(i n)	(in)	(ft)
ID 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 6 17 18 19 20 1 22 23 42 25 6 27 28 29 3 31 2 23 33 4 4 4 4 5 6 6 7 8 4 9 5 5 1 5 2 5 3 4 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Length (ft) 15. 00 16. 00 17. 00 18. 00 19. 00 20. 00 21. 00 22. 00 23. 00 24. 00 25. 00 26. 00 27. 00 28. 00 31. 00 32. 00 33. 00 34. 00 35. 00 36. 00 37. 00 40. 00 41. 00 42. 00 44. 00 45. 00 46. 00 47. 00 66. 00 57. 00 58. 00 59. 00 61. 00 62. 00 63. 00 64. 00 65. 00 67. 00 68. 00 67. 00 68. 00 67. 00 68. 00 67. 00 68. 00 67. 00 68. 00 67. 00 68. 00 69. 00 77. 00	Ti p El ev. (ft)	6. 00 6. 00	48. 00 48. 00	48. 00 48. 00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

ID Diameter (in)	Length Ski (ft)	n Fric. Er (tons)	nd Bearing C (tons)	Capaci ty (tons)	
1 48.00 2 48.00 3 48.00 4 48.00 5 48.00 7 48.00 8 48.00 9 48.00 10 48.00 11 48.00 12 48.00 13 48.00 14 48.00 15 48.00 16 48.00 17 48.00 18 48.00 17 48.00 20 48.00 21 48.00 22 48.00 23 48.00 24 48.00 25 48.00 25 48.00 26 48.00 27 48.00 28 48.00 29 48.00 29 48.00 21 48.00 21 48.00 22 48.00 23 48.00 24 48.00 25 48.00 26 48.00 27 48.00 28 48.00 29 48.00 31 48.00 32 48.00 33 48.00 34 48.00 35 48.00 36 48.00 37 48.00 38 48.00 39 48.00 39 48.00	Length (ft) 15. 00 16. 00 17. 00 18. 00 19. 00 20. 00 21. 00 22. 00 23. 00 24. 00 25. 00 26. 00 27. 00 28. 00 29. 00 30. 00 31. 00 32. 00 33. 00 34. 00 35. 00 36. 00 37. 00 38. 00 39. 00 41. 00 42. 00 41. 00 42. 00 43. 00 44. 00 44. 00 45. 00 46. 00 47. 00 50. 00 51. 00 52. 00 53. 00 53. 00 54. 00	4. 205 6. 013 8. 071 10. 375 12. 943 15. 769 18. 839 22. 120 25. 607 29. 327 33. 315 37. 555 41. 996 46. 630 51. 444 56. 971 72. 543 78. 317 84. 299 90. 478 96. 828 103. 342 110. 018 116. 863 123. 866 131. 003 138. 269 145. 660 153. 184 160. 827 168. 555 176. 359 184. 248 192. 236 200. 313 208. 458 216. 668 224. 938	88. 965 205. 336 205. 258 203. 583 199. 830 192. 286 192. 402 203. 271 217. 285 230. 644 243. 845 258. 371 273. 405 282. 676 285. 907 289. 603 299. 631 314. 725 330. 157 344. 848 357. 299. 631 314. 725 330. 157 344. 848 357. 365. 700 363. 176 360. 542 359. 541 360. 160 361. 087 361. 705 361. 509 360. 303 358. 493 357. 287 356. 885 358. 493 357. 287 356. 885 358. 493 362. 113 365. 732 365. 128	93. 170 211. 349 213. 329 213. 958 212. 773 208. 055 211. 241 225. 391 242. 892 259. 971 277. 161 295. 926 315. 401 329. 306 337. 351 346. 038 361. 233 381. 696 402. 700 423. 165 441. 398 454. 805 462. 528 466. 518 470. 559 476. 405 484. 026 492. 090 499. 974 507. 169 513. 487 519. 321 525. 842 533. 244 541. 133 550. 729 562. 425 574. 190 581. 796 588. 056	
38 48. 00 39 48. 00	52.00 53.00	208. 458 216. 668 224. 938 233. 276 241. 673 250. 122 258. 620 267. 156	365. 732 365. 128	574. 190 581. 796	

User-Defined Settlement = 1.04%

I D	Diameter (in)	Length (ft)	Skin Fric. (tons)	End Bearing (tons)	Capaci ty (tons)
123345678911121314567891112222222222222333333333444234444555555555	(in) 48.00	(ft)	(tons)	(tons)	Capaci ty (tons)
51 52 53 54 55 56 57 58 60 61 62 63 65 66	48. 00 48. 00	65. 00 66. 00 67. 00 68. 00 69. 00 70. 00 71. 00 73. 00 74. 00 75. 00 76. 00 77. 00 78. 00 79. 00 80. 00	303. 288 311. 668 320. 037 328. 388 336. 718 345. 025 353. 312 361. 571 369. 777 377. 928 386. 024 394. 075 402. 075 410. 017 417. 899 425. 711	108. 616 108. 707 110. 241 112. 542 114. 076 114. 447 114. 026 113. 161 112. 035 110. 838 110. 133 110. 459 112. 056 114. 321 115. 615	42 43 44 45 46 47 48 49 50 52 52 52

B-101Shaft48i n. out

			D-	TO I SHALL TOLLI.	. ou	L	
78	48.00	92.00	522. 912	119. 385		642. 297	
79	48. 00	93. 00 Soi I	El evati ons	Must Extend	Αt	or Below Contribution Zone	ķ
80	48. 00	94. 00 Soi I	El evati ons	Must Extend	Αt	or Below Contribution Zone	ķ
81	48. 00	95.00 Soi I	El evati ons	Must Extend	Αt	or Below Contribution Zone	į

B-101Shaft60in.out Date: February 16, 2018 Time: 11:41:34

General Information: _____

Input file:H)\Analysis_Structure\FB-Deep\Drilled Shaft\B-101Shaft60in.spc Project number: 2000-01-17003 Job name: SW 10th Street, from Powerline Rd. to Military Trail Engineer: JB Henry Units: English

Analysis Information:

Analysis Type: Drilled Shaft Analysis

Soil Information:

Boring date: 2/2/2018
Boring number: B-101
Station number: Offset:

Ground Elevation: 0.00(ft) Water table Elevation = 0.00(ft)

Hammer type: Automatic Hammer, Correction factor = 1.24

Hammer	type. At	Itoliiati C Halli	iller, correcti	on ractor =	1. 24	
I D	Depth (ft)	El evati on (ft)	SPT Blows (Blows/ft)	Unit Weight (pcf)	Soi I Type	e
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 38 39 40 40 40 40 40 40 40 40 40 40 40 40 40	0. 00 2. 00 4. 00 4. 00 6. 00 8. 00 10. 00 13. 50 15. 50 18. 00 20. 50 23. 00 25. 50 28. 00 30. 50 33. 00 35. 50 38. 00 40. 50 43. 00 45. 50 63. 00 65. 50 63. 00 70. 50 73. 00 75. 50 78. 00 80. 50 83. 00 90. 50 93. 00 90. 50 93. 00 90. 50 93. 00 90. 50 93. 00	-0. 00 -2. 00 -4. 00 -4. 00 -8. 00 -10. 00 -112. 00 -13. 50 -15. 50 -18. 00 -20. 50 -23. 00 -25. 50 -28. 00 -30. 50 -43. 00 -45. 50 -48. 00 -50. 50 -53. 00 -65. 50 -65. 50 -65. 50 -65. 50 -75. 50	N/A N/A N/A N/A N/A N/A N/A N/A 24. 00 21. 00 32. 00 12. 00 20. 00 14. 00 36. 00 19. 00 22. 00 34. 00 62. 00 39. 00 70. 00 44. 00 70. 00 48. 00 73. 00 66. 00 43. 00 47. 00 62. 00 29. 00 85. 00 51. 00 34. 00 65. 00 38. 00 71. 00 65. 00 65. 00	0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 115. 00 115. 00 116. 00 115. 00 115. 00 115. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 130. 00 130. 00 130. 00 130. 00 130. 00 130. 00 130. 00 130. 00 130. 00 130. 00 130. 00 130. 00	Soil Type 5- Cavity layer 6- Cavity layer 6- Clean sand 3- Clean sand	
ιυ 	Cu-มิโห (tsf) 	< qu (tsf)	qτ (tsf) 	EM (ksi)	qp (tsf) 	
1 2 3 4 5 6 7 8	N/ N/ N/ N/ N/ N/	'A N/'A N/'A N/'A N/'A N/'A N/'A N/'A N/	qt (tsf) A N/A A N/A A N/A A N/A A N/A A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	

9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 40 41 42 43	N/A	N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	3-101Shafto N/A N/A N/A N/A N/A N/A N/A N/A	50i n. out
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 31 32 32 32 32 32 32 32 32 32 32 32 32 32	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A	N N N N N N N N N N N N N N N N N N N	 /A //A //A //A //A //A //A //A //A //	
33 34 35 36 37 38 39 40 41 42 43	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A	N N N N N N N	/A /A /A //A //A //A //A //A	

I D	Length	Tip Elev.	Case Len.	Diameter	Base Diam.	Bell Len.
	(ft)	(ft)	(ft)	(in)	(in)	(ft)
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 22 23 4 25 6 27 8 29 3 3 1 3 2 3 3 3 4 4 5 5 6 7 8 5 5 6 6 6 6 6 6 6 6 7 7 1 7 2 3 7 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6	15. 00 16. 00 17. 00 18. 00 20. 00 21. 00 22. 00 23. 00 24. 00 25. 00 26. 00 27. 00 28. 00 31. 00 33. 00 34. 00 35. 00 36. 00 37. 00 38. 00 40. 00 41. 00 42. 00 43. 00 44. 00 45. 00 60. 00 51. 00 51. 00 52. 00 53. 00 54. 00 55. 00 56. 00 67. 00 68. 00 67. 00 68. 00 67. 00 68. 00 67. 00 68. 00 69. 00 61. 00 62. 00 63. 00 64. 00 65. 00 67. 00 68. 00 69. 00 60. 00 61. 00 62. 00 63. 00 64. 00 65. 00 65. 00 67. 00 68. 00 69. 00 69. 00 60. 00 60. 00 61. 00 62. 00 63. 00 64. 00 65. 00 65. 00 65. 00 67. 00 68. 00 69. 00 69. 00 71. 00 72. 00 73. 00 74. 00 75. 00 75. 00 75. 00 76. 00 77. 00 77. 00 78. 00 79. 00	-15. 00 -16. 00 -17. 00 -18. 00 -19. 00 -20. 00 -21. 00 -22. 00 -22. 00 -23. 00 -24. 00 -25. 00 -26. 00 -27. 00 -28. 00 -31. 00 -31. 00 -31. 00 -31. 00 -35. 00 -36. 00 -37. 00 -36. 00 -37. 00 -44. 00 -44. 00 -44. 00 -44. 00 -44. 00 -44. 00 -45. 00 -50. 00 -51. 00 -51. 00 -52. 00 -53. 00 -55. 00 -57. 00 -58. 00 -57. 00 -59. 00 -61. 00 -63. 00 -64. 00 -65. 00 -67. 00 -68. 00 -67. 00 -77. 00 -77. 00 -77. 00 -77. 00 -77. 00 -77. 00 -77. 00 -77. 00 -79. 0	6. 00 6. 00	60. 00 60. 00	60. 00 60. 00	0.00 0.00

ID	Diameter		kin Fric. En		Capaci ty	
	(i n)	(ft)	(tons)	(tons)	(tons)	
1D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	60. 00 60. 00	(ft)	(tons)	128. 219 132. 084 135. 128 264. 321 264. 727 267. 888 268. 541 273. 489 289. 877 309. 837 325. 498 337. 711 351. 587 367. 975 382. 537 390. 930 394. 680 402. 937 417. 226 432. 734 444. 647	133. 475 139. 601 145. 217 277. 290 280. 906 287. 600 292. 089 301. 139 321. 886 346. 495 367. 142 384. 655 404. 082 426. 263 446. 842 461. 474 471. 683 486. 651 507. 906 530. 630 550. 021	
21 223 24 25 26 27 28 30 31 33 34 35 36 37 38 39 40 41 42 44 45 46 47 48 49 51 55 55 55 57 57 59	60. 00 60. 00	35. 00 36. 00 37. 00 38. 00 40. 00 41. 00 41. 00 43. 00 44. 00 45. 00 46. 00 47. 00 50. 00 51. 00 52. 00 53. 00 54. 00 55. 00 57. 00 58. 00 57. 00 58. 00 57. 00 60. 00 61. 00 62. 00 63. 00 64. 00 65. 00 66. 00 67. 00 68. 00 67. 00 68. 00 67. 00 68. 00 70. 00 71. 00 72. 00 73. 00	105. 3/4 113. 098 121. 035 129. 177 137. 522 146. 079 154. 833 163. 754 172. 836 182. 075 191. 480 201. 034 210. 694 220. 449 230. 310 240. 294 250. 391 260. 573 270. 835 281. 173 291. 595 302. 092 312. 653 323. 275 333. 944 344. 658 355. 404 366. 145 376. 876 387. 593 398. 303 408. 998 419. 670 430. 317 440. 932 451. 523 462. 078 472. 565 482. 981	444. 647 453. 256 460. 300 466. 068 470. 173 472. 226 472. 536 472. 965 473. 824 474. 264 473. 437 471. 605 470. 349 469. 930 468. 67 459. 248 464. 694 471. 396 474. 747 475. 166 475. 16	550. 021 566. 354 581. 334 595. 246 607. 695 618. 369 636. 720 646. 660 656. 339 664. 369 667. 640 681. 042 690. 379 698. 383 705. 198 710. 058 719. 821 735. 529 752. 569 766. 342 777. 258 787. 819 798. 441 807. 313 812. 635 815. 293 820. 643 829. 576 840. 293 851. 004 862. 118 876. 141 893. 489 909. 578 919. 832 925. 274 931. 261	
60 61 62 63 64 65 66 67 71 72 73 74 75 77 78 80 81	60. 00 60. 00	74. 00 75. 00 76. 00 77. 00 78. 00 79. 00 80. 00 81. 00 82. 00 83. 00 84. 00 85. 00 86. 00 87. 00 88. 00 89. 00 90. 00 91. 00 92. 00 93. 00 94. 00 Sc	493. 328 503. 617 513. 840 523. 990 534. 063 544. 047 553. 941 563. 735 573. 413 582. 971 592. 404 601. 715 610. 898 620. 139 629. 503 638. 995 648. 619 il El evati ons il El evati ons il El evati ons	457. 997 457. 149 456. 366 459. 163 466. 232 473. 327 476. 233 475. 538 474. 768 474. 511 474. 417 474. 134 473. 967 475. 737 479. 747 483. 852 485. 905 Must Extend Must Extend Must Extend Must Extend Must Extend	951. 325 960. 766 970. 176 983. 154 1000. 295 1017. 374 1030. 174 1039. 272 1048. 181 1057. 482 1066. 821 1075. 850 1084. 865 1095. 876 1109. 251 1122. 847 1134. 524 d At or Below d At or Below	Contribution Zone Contribution Zone Contribution Zone Contribution Zone Contribution Zone Contribution Zone

User-Defined Settlement = 0.83%

I D	Diameter (in)	Length S	Skin Fric. E (tons)	ind Bearing ((tons)	Capaci ty (tons)	
10 				(tons) 33. 477 34. 486 35. 281 69. 012 69. 118 69. 944 70. 114 71. 406	Capaci ty (tons)	

B-101Shaft60i n. out

78	60.00	92.00 Soi I	El evations Must	Extend At	t or	Bel ow	Contribution	Zone
79	60.00	93. 00 Soi I	Elevations Must	Extend At	t or	Bel ow	Contribution	Zone
80	60.00	94.00 Soi I	Elevations Must	Extend At	t or	Bel ow	Contribution	Zone
81	60.00	95. 00. Soi I	Flevations Must	Extend At	t or	Bel ow	Contribution	7one

B-201Shaft48in.out Date: February 16, 2018 Time: 11:43:12

General Information:

_____ Input file:H)\Analysis_Structure\FB-Deep\Drilled Shaft\B-201Shaft48in.spc Project number: 2000-01-17003 Job name: SW 10th Street, from Powerline Rd. to Military Trail Engineer: JB Henry Units: English

Analysis Information:

Analysis Type: Drilled Shaft Analysis

Soil Information:

Boring date: 2/5/2018
Boring number: B-201
Station number: Offset:

Ground Elevation: 0.00(ft) Water table Elevation = 0.00(ft)

Hammer type: Automatic Hammer Correction factor = 1 24

Hammer	type: Auto	omatic Hamme	r, Correcti	on factor =	1. 24	
I D	Depth El	levation S (ft) (PT Blows Blows/ft)	Unit Weight (pcf)	Soi I Type	·
1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 6 17 18 19 22 12 22 24 25 6 27 28 29 30 1 32 33 34 5 36 37 38 9 41 42 43	0. 00 2. 00 4. 00 6. 00 8. 00 10. 00 12. 00 13. 50 15. 50 18. 00 20. 50 23. 00 25. 50 28. 00 30. 50 33. 00 40. 50 43. 00 45. 50 48. 00 55. 50 68. 00 65. 50 68. 00 70. 50 73. 00 75. 50 78. 00 80. 50 83. 00 85. 50 88. 00 90. 50 93. 00 90. 50 93. 00 90. 50 93. 00 95. 50 98. 00 100. 00	-0. 00 -2. 00 -4. 00 -6. 00 -8. 00 -10. 00 -13. 50 -15. 50 -18. 00 -20. 50 -23. 00 -25. 50 -28. 00 -35. 50 -38. 00 -40. 50 -43. 00 -45. 50 -48. 00 -55. 50 -58. 00 -60. 50 -63. 00 -65. 50 -68. 00 -70. 50 -73. 00 -75. 50 -78. 00 -79. 50 -78. 00 -79. 50 -78. 00 -79. 50	N/A N/A N/A N/A 10. 00 23. 00 19. 00 29. 00 41. 00 31. 00 60. 00 66. 00 66. 00 66. 00 15. 00 66. 00 48. 00 78. 00 48. 00 48. 00 31. 00 65. 00 66. 00 67. 00 68. 00 68. 00 31. 00 69. 00 60. 00	0. 00 0. 00 0. 00 0. 00 0. 00 110. 00 115. 00 115. 00 120. 00 120. 00 130. 00 130. 00 130. 00 125. 00 130. 00	5- Cavi ty layer 3- Clean sand	
1 2 3 4 5 6 7 8	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 42 43 44 44 45 46 46 47 47 47 47 47 47 47 47 47 47 47 47 47	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	3-201Shaft2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	18i n. out
1 D 1 2 3 4 5	RQD F. M N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	 N. N. N.	 /A /A /A /A /A	
6 7 8 9 10 11	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	N. N. N. N. N.	/A /A /A /A /A	
12 13 14 15 16 17	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	N. N. N. N.	/A /A /A /A /A /A	
19 20 21 22 23 24	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	N. N. N. N. N.	/A /A /A /A /A	
25 26 27 28 29 30 31	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	N. N. N. N.	/A /A /A /A /A /A	
32 33 34 35 36 37	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	N. N. N. N. N.	/A /A /A /A /A	
38 39 40 41 42 43	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	N. N. N. N.	/A /A /A /A /A	

I D	Length	Tip Elev.	Case Len.	Di ameter	Base Diam.	Bell Len.
	(ft)	(ft)	(ft)	(i n)	(in)	(ft)
ID 10 10 10 10 10 10 10 10 10 1		Ti p El ev. (ft)	6. 00 6. 00	48. 00 48. 00	48. 00 48. 00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

ID	Diameter (in)	Length (ft)	Skin Fric. E (tons)	nd Bearing (tons)	Capaci ty (tons)	
1D	48. 00 48. 00 48. 00 48. 00 48. 00 48. 00 48. 00 48. 00	Length (ft) 15. 00 16. 00 17. 00 18. 00 20. 00 21. 00 22. 00 23. 00 24. 00 25. 00 26. 00 27. 00 28. 00 30. 00 31. 00 32. 00 33. 00 34. 00 35. 00 36. 00 37. 00 38. 00 39. 00 41. 00 42. 00 41. 00 42. 00 43. 00 44. 00 45. 00 46. 00 47. 00 48. 00 49. 00 51. 00 52. 00 53. 00 54. 00 55. 00 56. 00 57. 00 58. 00 60. 00 61. 00 62. 00 63. 00 64. 00 65. 00 66. 00 67. 00 77. 00 78. 00 79. 00 71. 00 71. 00 72. 00 73. 00 74. 00 75. 00 68. 00 69. 00 61. 00 62. 00 63. 00 64. 00 65. 00 66. 00 67. 00 77. 00 78. 00 79. 00 71. 00 77. 00 77. 00 77. 00 77. 00 77. 00 77. 00 77. 00 78. 00 88. 00 89. 00 89. 00 89. 00	29. 607 33. 712 38. 048 42. 603 47. 375 52. 375 57. 617 63. 095 68. 779 74. 661 80. 739 87. 022 93. 499 100. 160 107. 002 114. 011 121. 184 128. 512 135. 985 143. 602 151. 347 159. 219 167. 201 175. 228 183. 292 191. 400 199. 569 207. 794 216. 082 224. 431 232. 838 241. 310 249. 838 258. 401 266. 996 275. 619	nd Beari ng (tons) 134. 211 234. 686 248. 657 258. 544 268. 512 280. 329 288. 692 293. 991 296. 883 296. 793 298. 650 308. 120 324. 332 338. 205 347. 806 355. 225 362. 956 370. 557 375. 383 376. 991 374. 032 365. 154 351. 589 374. 932 365. 154 351. 729 326. 436 339. 981 331. 729 326. 436 323. 789 323. 458 322. 472 319. 513 314. 963 321. 122 308. 371 306. 607 309. 670 321. 397 339. 595 354. 961 365. 964 373. 021 375. 461 372. 633 367. 730 364. 507 375. 461 372. 633 367. 730 364. 507 375. 461 372. 633 365. 964 373. 021 375. 461 375. 461 372. 633 367. 730 364. 507 375. 467 372. 829 373. 527 373. 329 372. 526 372. 137 370. 230 364. 507 355. 884 349. 735. 829 373. 529 372. 526 372. 137 370. 230 364. 507 355. 884 349. 737 370. 230 364. 507 355. 884 349. 737 370. 230 345. 103 342. 890 345. 103 342. 890 345. 103 342. 890 340. 497 336. 402	Capaci ty (tons)	

User-Defined Settlement = 1.04%

B-201Shaft48i n. out

				201011	ai taoi ii	. ou				
78	48. 00	92.00	533. 975	106	6. 624		640	0. 599		
79	48.00	93. 00 Soi I	El evati ons	Must	Extend	Αt	or	Bel ow	Contribution	Zone
80	48.00	94. 00 Soi I	El evati ons	Must	Extend	Αt	or	Bel ow	Contribution	Zone
81	48. 00	95. 00 Soi I	El evati ons	Must	Extend	Αt	or	Bel ow	Contribution	Zone

Date: February 16, 2018 Time: 11:44:03

General Information: -----

Input file:H)\Analysis_Structure\FB-Deep\Drilled Shaft\B-201Shaft60in.spc Project number: 2000-01-17003 Job name: SW 10th Street, from Powerline Rd. to Military Trail Engineer: JB Henry Units: English

Analysis Information:

Analysis Type: Drilled Shaft Analysis

Soil Information:

Boring date: 2/5/2018
Boring number: B-201
Station number: Offset:

Ground Elevation: 0.00(ft) Water table Elevation = 0.00(ft)

Hammer type: Automatic Hammer, Correction factor = 1.24

Hammer	type: Auto	omatic Hammer,	Correcti	on factor =	1. 24	
I D	Depth El (ft)	evation SP (BI	F BLows ows/ft)	Unit Weight (pcf)	Soi I Type)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 33 34 35 36 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 37 37 37 37 37 37 37 37 37 37 37 37	0. 00 2. 00 4. 00 6. 00 8. 00 10. 00 12. 00 13. 50 15. 50 18. 00 20. 50 23. 00 25. 50 28. 00 30. 50 33. 00 40. 50 43. 00 45. 50 48. 00 50. 50 53. 00 65. 50 68. 00 70. 50 73. 00 75. 50 78. 00 88. 50 88. 00 90. 50 93. 00 95. 50 98. 00 91. 00	-0. 00 -2. 00 -4. 00 -4. 00 -8. 00 -10. 00 -112. 00 -13. 50 -15. 50 -18. 00 -20. 50 -23. 00 -25. 50 -28. 00 -30. 50 -33. 00 -35. 50 -38. 00 -40. 50 -48. 00 -45. 50 -48. 00 -50. 50 -58. 00 -63. 00 -65. 50 -68. 00 -70. 50 -78. 00 -75. 50 -78. 00 -75. 50 -78. 00 -75. 50 -78. 00 -79. 50 -7	N/A N/A N/A N/A N/A N/A 10. 00 23. 00 19. 00 29. 00 41. 00 30. 00 60. 00 60. 00 66. 00 66. 00 15. 00 65. 00 65. 00 48. 00 78. 00 48. 00 56. 00 65. 00 66. 00 66. 00 67. 00 68. 00 69. 00 69. 00 69. 00 60. 00 60. 00 60. 00	0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 110. 00 115. 00 125. 00 120. 00 130. 00 130. 00 130. 00 130. 00 125. 00 130. 00 130. 00 130. 00 130. 00 130. 00 130. 00 130. 00 130. 00 130. 00 130. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 135. 00 135. 00 135. 00 135. 00 135. 00 135. 00 135. 00 135. 00 135. 00 135. 00 135. 00 135. 00 135. 00 135. 00 135. 00 135. 00	Soil Type 5- Cavity layer 6- Clean sand	
I D	Cu-DIR (tsf)	qu (tsf)	qt (tsf)	Em (ksi)	qb (tsf)	
1 2 3 4 5 6 7 8	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 40 41 42 43	N/A	N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	8-201Shafte N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	50i n. out
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 33 34 35 36 37 38 37 38 38 39 39 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A	N. N	 //A //A //A //A //A //A //A //A //A /	

				D-2013116	ii tooiii. out	
I D	Length (ft)	Tip Elev. (ft)	Case Len. (ft)	Diameter (in)	Base Diam. (in)	Bell Len. (ft)
1 2 3 4 5 6 7 8 9 10 11 2 13 14 5 16 7 8 9 10 11 2 2 2 2 2 2 2 2 2 2 3 3 3 2 3 3 3 3	15. 00 16. 00 17. 00 18. 00 20. 00 21. 00 22. 00 23. 00 24. 00 25. 00 26. 00 27. 00 28. 00 31. 00 32. 00 31. 00 32. 00 31. 00 32. 00 34. 00 35. 00 36. 00 37. 00 38. 00 37. 00 40. 00 41. 00 42. 00 43. 00 44. 00 45. 00 47. 00 48. 00 49. 00 50. 00 51. 00 55. 00 56. 00 57. 00 58. 00 60. 00 61. 00 62. 00 63. 00 64. 00 65. 00 66. 00 67. 00 68. 00 69. 00 71. 00 72. 00 73. 00 74. 00 75. 00 75. 00 75. 00 77. 00 78. 00 79. 00 71. 00 71. 00 72. 00 73. 00 74. 00 75. 00 75. 00 75. 00 76. 00 68. 00 69. 00 69. 00 71. 00 71. 00 72. 00 73. 00 74. 00 75. 00 75. 00 75. 00 75. 00 75. 00 76. 00 69. 00 69. 00 69. 00 69. 00 79. 00 91. 00 92. 00 93. 00 94. 00 95. 00	-15.00	6. 00 6. 00	60. 00 60. 00	60. 00 60. 00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

User-Defined Settlement = 0.83%

I D	Diameter (in)	Length S (ft)	kin Fric. (tons)	End Bearing (tons)	Capaci ty (tons)
1 12344567899011121341561789901112222222222222333333333344142344445555555555	(in) 60.00	(ft) 15.00 16.00 17.00 18.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 37.00 38.00 40.00 41.00 42.00 43.00 44.00 45.00 45.00 60.00 61.00 62.00 63.00 64.00 65.00 66.00 67.00 68.00 67.00 68.00 67.00 68.00 67.00 68.00 67.00 68.00 67.00 68.00 67.00 68.00 69.00 71.00 72.00 73.00 74.00 75.00 75.00 75.00 76.00 77.00 78.00 77.00 78.00 79.00 79.00 79.00 79.00 79.00	(tons)	(tons)	50. 863 53. 198 55. 749 99. 579 107. 568 114. 290 121. 276 128. 492 135. 315. 317 146. 772 151. 915 159. 195 169. 023 179. 628 189. 264 198. 083 207. 066 216. 376 224. 725 230. 839 235. 126 240. 106 246. 196 253. 294 261. 312 270. 148 279. 252 288. 530 297. 696 306. 481 314. 966 323. 700 332. 774 342. 171 351. 883 362. 140 374. 382 388. 562 416. 579 428. 061 439. 042 449. 696 460. 126 470. 451 480. 696 491. 060 501. 576 512. 068 522. 368 532. 514 549. 069 649. 196 669. 055 677. 405
64 65 66 67 68 69 70 71 72	60. 00 60. 00 60. 00 60. 00 60. 00 60. 00 60. 00 60. 00	78. 00 79. 00 80. 00 81. 00 82. 00 83. 00 84. 00 85. 00 86. 00	533. 153 542. 952 552. 662 562. 273 571. 780 581. 179 590. 456 599. 616 608. 647	126. 228 126. 103 124. 743 122. 423 120. 782 120. 095 119. 153 118. 366	659. 381 669. 055 677. 405 684. 696 692. 562 701. 274 710. 213 718. 769 727. 013
73 74 75 76 77	60. 00 60. 00 60. 00 60. 00	87. 00 88. 00 89. 00 90. 00 91. 00 So	617.734 626.940 636.271 645.732 sil Elevatio	117.848 117.675 117.502 116.984 ns Must Extend	735. 581 744. 615 753. 774 762. 715 At or Below

Contribution Zone

B-201Shaft60i n. out

78	60.00	92.00 Soi I	Elevations Must	Extend At	or	Below Contribution Zone
79	60.00	93. 00 Soi I	Elevations Must	Extend At	or	Below Contribution Zone
80	60.00	94.00 Soi I	Elevations Must	Extend At	or	Below Contribution Zone
81	60.00	95. 00 Soi I	Elevations Must	Extend At	or	Below Contribution Zone

B-301Shaft48in.out Date: February 16, 2018 Time: 11:44:56

General Information:

_____ Input file:H)\Analysis_Structure\FB-Deep\Drilled Shaft\B-301Shaft48in.spc Project number: 2000-01-17003 Job name: SW 10th Street, from Powerline Rd. to Military Trail Engineer: JB Henry Units: English

Analysis Information:

Analysis Type: Drilled Shaft Analysis

Soil Information:

Boring date: 2/1/2018
Boring number: B-301
Station number: Offs Offset:

Ground Elevation: 0.00(ft) Water table Elevation = 0.00(ft)

Hammer type: Automatic Hammer, Correction factor = 1.24

паншен	type. At	ILUIIIALI C HAIII	mer, correcti	on ractor =	1. 24	
ID	Depth (ft)	El evati on (ft)	SPT Blows (Blows/ft)	Unit Weight (pcf)	Soi I Type	е
1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 1 22 22 24 25 6 27 28 29 30 3 3 3 3 3 5 6 3 7 3 8 9 4 1 4 2 4 3 I D	0. 00 2. 00 4. 00 4. 00 6. 00 8. 00 10. 00 12. 50 18. 00 20. 50 23. 00 25. 50 28. 00 30. 50 33. 00 35. 50 38. 00 40. 50 43. 00 45. 50 48. 00 50. 55. 50 58. 00 60. 50 63. 00 70. 50 73. 00 75. 50 78. 00 80. 50 83. 00 90. 50 83. 00 90. 50 93. 00 95. 50 98. 00 100. 00	-0. 00 -2. 00 -4. 00 -4. 00 -8. 00 -10. 00 -112. 00 -13. 50 -13. 50 -15. 50 -18. 00 -20. 50 -23. 00 -25. 50 -28. 00 -30. 50 -33. 00 -40. 50 -43. 00 -45. 50 -48. 00 -50. 50 -58. 00 -60. 50 -63. 00 -65. 50 -68. 00 -70. 50 -73. 00 -75. 50 -78. 00 -78. 00 -78. 00 -88. 50 -88. 00 -90. 50 -93. 00 -95. 50 -98. 00 -90. 50 -98. 00 -100. 00	N/A N/A N/A N/A N/A N/A 15. 00 5. 00 19. 00 12. 00 25. 00 20. 00 50. 00 67. 00 67. 00 67. 00 68. 00 40. 00 58. 00 45. 00 69. 00 46. 00 69. 00 46. 00 69. 00 60. 00 74. 00 60. 00 74. 00 60. 00 74. 00 60. 00 74. 00 60. 00 74. 00 60. 00 74. 00 60. 00 74. 00 60. 00 74. 00 60. 00 74. 00 60. 00 74. 00 60. 00 74. 00 60. 00 74. 00 60. 00 74. 00 60. 00 74. 00 60. 00 74. 00 60. 00 74. 00 60. 00 74. 00 60. 00 74. 00	0. 00 0. 00 0. 00 0. 00 0. 00 10. 00 110. 00 115. 00 115. 00 115. 00 125. 00 130. 00 130. 00 125. 00 130. 00 125. 00 130. 00 130. 00 130. 00 130. 00 130. 00 130. 00 130. 00 130. 00 130. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 125. 00 125. 00 125. 00 125. 00 125. 00 125. 00 125. 00 125. 00 125. 00 125. 00	Soil Type 5- Cavity layer 6- Cavity layer 6- Cavity layer 6- Cavity layer 6- Clean sand 7- Clean sand	
	(tsf)	(tsf)	(tsf)	(ksi)	(tsf)	
1 2 3 4 5 6 7 8	N/ N/ N/ N/ N/ N/	'A N/.	qt (tsf) A N/A A N/A A N/A A N/A A N/A A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 40 41 42 43	N/A	N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	3-301Shaft N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	48i n. out
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43		N/A	N. N	/A /A /A /A /A /A /A /A /A /A	

I D	Length	Tip Elev.	Case Len.	Di ameter	Base Diam.	Bell Len.
	(ft)	(ft)	(ft)	(i n)	(in)	(ft)
123 456789101123345678910112334567891011233456789011223244566777233455678901123345555555555555555555555555555555555	15. 00 16. 00 17. 00 18. 00 20. 00 21. 00 22. 00 23. 00 24. 00 25. 00 26. 00 27. 00 28. 00 30. 00 31. 00 32. 00 33. 00 34. 00 35. 00 36. 00 41. 00 42. 00 43. 00 44. 00 45. 00 46. 00 47. 00 55. 00 56. 00 57. 00 58. 00 59. 00 60. 00 61. 00 62. 00 63. 00 64. 00 65. 00 66. 00 67. 00 68. 00 67. 00 68. 00 69. 00 70. 00 71. 00 72. 00 73. 00 74. 00 75. 00 75. 00 76. 00 77. 00	-15.00	6. 00 6. 00	48. 00 48. 00	48. 00 48. 00	0.00 0.00

(in) (ft) (tons) (tons) (tons) 1	
2 48. 00 16. 00 4. 586 180. 547 185. 134 3 48. 00 17. 00 6. 437 191. 647 198. 084 4 48. 00 18. 00 8. 537 204. 521 213. 059 5 48. 00 19. 00 10. 918 218. 377 229. 294 6 48. 00 20. 00 13. 588 229. 093 242. 680 7 48. 00 21. 00 16. 531 242. 662 259. 194 8 48. 00 22. 00 19. 717 259. 214 278. 931 9 48. 00 23. 00 23. 137 274. 068 297. 205 10 48. 00 24. 00 26. 817 285. 841 312. 658 11 48. 00 25. 00 30. 792 296. 029 326. 821 12 48. 00 26. 00 35. 042 307. 235 342. 277 13 48. 00 28. 00 44. 142 328. 106 372. 249 14 48. 00 30. 00 54. 069 332. 522 386. 591 17 48. 00 31. 00 <td></td>	
36	

User-Defined Settlement = 1.04%

I D	Di ameter (i n)	(ft)	Skin Fric. (tons)	(tons)	Capaci ty (tons)
1234567890111213415617892122222222223333333334444555555555555555	(in) 48.00	(ft)	(tons)	(tons) 34. 243 57. 396 60. 925 65. 017 69. 422 72. 829 77. 142 82. 404 87. 126 90. 869 94. 108 97. 670 101. 664 104. 305 105. 094 105. 709 108. 020 111. 726 114. 454 115. 390 115. 163 113. 734 110. 257 104. 673 98. 916 93. 531 88. 898 85. 078 82. 063 79. 666 77. 657 75. 617 73. 754 72. 683 74. 563 79. 655 87. 426 95. 205 102. 364 113. 293 116. 812 118. 936 119. 646 119.	Capaci ty (tons)
62 63 64 65 66 67 68 69 70	48. 00 48. 00 48. 00 48. 00 48. 00 48. 00 48. 00 48. 00	76. 00 77. 00 78. 00 79. 00 80. 00 81. 00 82. 00 83. 00 84. 00	386. 183 393. 963 401. 668 409. 298 416. 862 424. 354 431. 767 439. 099 446. 341	105. 283 107. 501 109. 683 111. 496 113. 260 115. 335 117. 455 118. 523 118. 158	491. 4 501. 4 511. 3 520. 7 530. 1 539. 6 549. 2 557. 6 564. 4 570. 3

B-301Shaft48i n. out

				JO I JII L TOI II	. ou	· ·	
78	48.00	92.00	504.745	107. 223		611. 968	
79	48.00	93. 00 Soi I	El evati ons	Must Extend	Αt	or Below Contribution 2	Zone
80	48.00	94.00 Soi I	El evati ons	Must Extend	Αt	or Below Contribution 2	Zone
81	48. 00	95. 00 Soi I	El evati ons	Must Extend	Αt	or Below Contribution 2	Zone

Date: February 16, 2018 Time: 11: 45: 25

General Information: -----

Input file:H)\Analysis_Structure\FB-Deep\Drilled Shaft\B-301Shaft60in.spc Project number: 2000-01-17003 Job name: SW 10th Street, from Powerline Rd. to Military Trail Engineer: JB Henry Units: English

Analysis Information:

Analysis Type: Drilled Shaft Analysis

Soil Information:

Boring date: 2/1/2018
Boring number: B-301
Station number: Offs Offset:

Ground Elevation: 0.00(ft) Water table Elevation = 0.00(ft)

Hammer type: Automatic Hammer, Correction factor = 1.24

Hammer	type: Auto	omatic Hammer,	Correcti	on factor =	1. 24	
I D	Depth El (ft)	evation SP (ft) (BI	F Blows ows/ft)	Unit Weight (pcf)	Soi I Type	;
1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 6 17 18 19 0 21 22 32 42 52 62 7 28 9 30 31 32 33 34 35 36 37 38 39 40 41 42 43 43	0. 00 2. 00 4. 00 6. 00 8. 00 10. 00 12. 00 13. 50 15. 50 18. 00 20. 50 23. 00 25. 50 28. 00 30. 50 33. 00 45. 50 43. 00 45. 50 48. 00 50. 50 53. 00 65. 50 63. 00 65. 50 68. 00 70. 50 73. 00 75. 50 78. 00 88. 50 88. 00 90. 50 93. 00 95. 50 93. 00 95. 50 93. 00	-0. 00 -2. 00 -4. 00 -4. 00 -6. 00 -8. 00 -10. 00 -12. 00 -13. 50 -15. 50 -18. 00 -20. 50 -23. 00 -25. 50 -28. 00 -30. 50 -33. 00 -40. 50 -43. 00 -45. 50 -48. 00 -50. 50 -58. 00 -63. 00 -63. 00 -65. 50 -68. 00 -70. 50 -73. 00 -75. 50 -78. 00 -75. 50 -78. 00 -79. 50 -78. 00 -79. 50 -79.	N/A N/A N/A N/A N/A N/A N/A 15. 00 19. 00 12. 00 25. 00 20. 00 37. 00 36. 00 67. 00 67. 00 69. 00 40. 00 26. 00 40. 00 26. 00 40. 00 27. 00 69. 00 69. 00 40. 00 69	0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 110. 00 115. 00 115. 00 115. 00 125. 00 125. 00 130. 00 125. 00 125. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00	Soil Type 5- Cavity layer 3- Clean sand	
I D	Cu-DIR (tsf)	qu (tsf)	qt (tsf)	Em (ksi)	qb (tsf) 	
1 2 3 4 5 6 7 8	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	

Page 1

9 10 11 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 29 30 31 33 33 34 35 37 38 39 40 41 42 43	N/A	N/A	N/A	B-301Shaft6	Oi n. out
 1 2 3 4 5 6 7	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	N N N N N N		
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 31 32 33 34 35 36 37 38 39 39 39 39 39 39 39 39 39 39 39 39 39	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A	N N N N N N N N N N N N N N N N N N N	I/A I/A I/A I/A I/A I/A I/A I/A I/A I/A	
40 41 42 43	N/A N/A N/A N/A	N/A N/A N/A N/A	N N	I/A I/A I/A I/A	

ID	Diameter (in)	Length (ft)	Skin Fric. Er (tons)	nd Bearing (tons)	Capaci ty (tons)	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20	60. 00 60. 00	15. 00 16. 00 17. 00 18. 00 19. 00 20. 00 21. 00 22. 00 23. 00 24. 00 25. 00 26. 00 27. 00 28. 00 29. 00 30. 00 31. 00	3. 734 5. 733 8. 047 10. 671 13. 647 16. 984 20. 664 24. 646 28. 921 33. 521 38. 490 43. 802 49. 370 55. 178 61. 241 67. 586 74. 201	152. 857 159. 844 166. 783 261. 920 281. 074 302. 182 316. 938 331. 611 351. 826 371. 999	156. 591 165. 577 174. 830 272. 592 294. 721 319. 166 337. 603 356. 257 380. 747 405. 520	
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 40 41 42	60. 00 60. 00	35. 00 36. 00 37. 00 38. 00 39. 00 40. 00 41. 00 42. 00 43. 00 44. 00 45. 00 46. 00 47. 00 48. 00 50. 00 51. 00 52. 00 53. 00 54. 00 55. 00 56. 00	198. 064	386. 545 396. 514 408. 195 422. 634 435. 075 441. 064 444. 260 451. 727 455. 647 48. 205 431. 106 414. 575 400. 316 388. 061 377. 542 368. 906 363. 042 360. 097 357. 436 352. 424 345. 458 338. 228 333. 223 346. 512 370. 053 397. 409 422. 141 444. 054 461. 969 475. 689 483. 610 484. 1254	543. 522	
43 44 45 46 47 48 49 51 52 53 55 57 59 60 61 63	60. 00 60. 00	57. 00 58. 00 59. 00 60. 00 61. 00 62. 00 63. 00 64. 00 65. 00 66. 00 67. 00 70. 00 71. 00 72. 00 73. 00 74. 00 75. 00 76. 00 77. 00	296. 510 306. 823 317. 180 327. 588 338. 035 348. 499 358. 976 369. 460 379. 958 390. 459 400. 943 411. 405 421. 840 432. 255 442. 636 452. 955 463. 206 473. 384 483. 496 493. 531 503. 474	461. 969 475. 689 483. 610 484. 125 478. 324 472. 754 468. 506 464. 380 459. 176 453. 342 449. 572 448. 315 447. 856 446. 477 444. 346 442. 454 440. 968 439. 523 437. 753 436. 264 438. 683	758. 478 782. 512 800. 790 811. 713 816. 359 821. 253 827. 482 833. 840 839. 1515 859. 720 869. 696 878. 732 886. 982 895. 409 904. 174 912. 907 921. 249 929. 795	
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81	60. 00 60. 00	78. 00 79. 00 80. 00 81. 00 82. 00 83. 00 84. 00 85. 00 86. 00 87. 00 88. 00 90. 00 91. 00 92. 00 93. 00 94. 00 94. 00 95. 00	513. 320 523. 072 532. 739 542. 313 551. 786 561. 156 570. 412 579. 550 588. 566 597. 650 606. 867 616. 216 625. 698 bil El evati ons bil El evati ons bil El evati ons	445. 615 453. 710 459. 616 463. 587 467. 142 470. 535 471. 319 467. 048 458. 820 453. 224 451. 359 451. 264 450. 982 6 Must Extend 6 Must Extend 6 Must Extend 6 Must Extend	958. 936 976. 782 992. 355 1005. 900 1018. 929 1031. 692 1041. 731 1046. 598 1047. 386 1050. 874 1058. 225 1067. 481 1076. 680 At or Bel ow At or Bel ow At or Bel ow	Contribution Zone Contribution Zone Contribution Zone Contribution Zone Contribution Zone Contribution Zone

User-Defined Settlement = 0.83%

ID	Di ameter (i n)	Length (ft)	(tons)	(tons)	Capaci ty (tons)	
ID1234567890111213145617892122322222223333333334442567890111213145666666667772334556789011223222222222222222222222222222222222		(ft) 15. 00 17. 00 18. 00 19. 00 20. 00 21. 00 22. 00 23. 00 24. 00 25. 00 26. 00 27. 00 28. 00 31. 00 32. 00 31. 00 33. 00 34. 00 35. 00 36. 00 41. 00 45. 00 41. 00 45. 00 45. 00 55. 00 55. 00 56. 00 57. 00 58. 00 56. 00 57. 00 58. 00 60. 00 61. 00 62. 00 63. 00 64. 00 65. 00 66. 00 67. 00 68. 00 67. 00 68. 00 67. 00 77. 00 78. 00 79. 00 71. 00	(tons) 3. 638 5. 587 7. 842 10. 399 13. 299 14. 651 20. 138 24. 018 28. 184 32. 666 37. 509 42. 685 48. 111 53. 771 59. 680 65. 863 72. 309 79. 005 85. 947 93. 131 100. 567 108. 244 116. 149 124. 277 132. 612 141. 150 149. 877 158. 764 167. 804 176. 982 186. 296 193. 014 197. 099 201. 266 210. 789 220. 351 229. 948 239. 606 249. 327 259. 174 268. 994 278. 947 288. 951 299. 0094 319. 237 329. 418 339. 615 349. 824 340. 041 370. 271 380. 505 390. 094 319. 237 329. 418 339. 615 349. 824 341. 408 451. 397 461. 316 471. 170 480. 639 500. 234 509. 737 519. 137 519. 137 546. 851 555. 377 573. 562 582. 414 591. 396 600. 507 609. 747	(tons)	(tons)	Contribution Zone
				Page 5		

B-301Shaft60i n. out

78	60.00	92. 00 Soi I	Elevations Must	Extend At	or	Below Contribution Zone
79	60.00	93. 00 Soi I	Elevations Must	Extend At	or	Below Contribution Zone
80	60.00	94.00 Soi I	Elevations Must	Extend At	or	Below Contribution Zone
81	60.00	95. 00 Soi I	Elevations Must	Extend At	or	Below Contribution Zone

B-401Shaft48in.out Date: February 16, 2018 Time: 11:45:53

General Information: -----

Input file:H)\Analysis_Structure\FB-Deep\Drilled Shaft\B-401Shaft48in.spc Project number: 2000-01-17003 Job name: SW 10th Street, from Powerline Rd. to Military Trail Engineer: JB Henry Units: English

Analysis Information:

Analysis Type: Drilled Shaft Analysis

Soil Information:

Boring date: 2/6/2018
Boring number: B-401
Station number: Offset:

Ground Elevation: 0.00(ft) Water table Elevation = 0.00(ft)

Hammer type: Automatic Hammer, Correction factor = 1.24

Hammer	type: Auto	omatic Hammer	Correcti	on factor =	1. 24	
ΙD	Depth El (ft)	evation SP (ft) (B	T Blows (Unit Weight (pcf)	Soil Type	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 6 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 4 35 36 37 38 39 40 41 42 43	0. 00 2. 00 4. 00 6. 00 8. 00 10. 00 13. 50 15. 50 18. 00 20. 50 23. 00 25. 50 28. 00 30. 50 33. 00 40. 50 43. 00 45. 50 48. 00 50. 50 53. 00 65. 50 68. 00 67. 50 78. 00 88. 50 88. 00 90. 50 93. 00 95. 50 93. 00 95. 50 96. 50 97.	-0. 00 -2. 00 -4. 00 -4. 00 -6. 00 -8. 00 -10. 00 -12. 00 -13. 50 -15. 50 -18. 00 -20. 50 -23. 00 -25. 50 -28. 00 -30. 50 -33. 50 -35. 50 -38. 00 -40. 50 -43. 00 -45. 50 -55. 50 -58. 00 -60. 50 -63. 00 -65. 50 -68. 00 -70. 50 -73. 00 -75. 50 -78. 00 -75. 50 -78. 00 -79. 50 -78. 00 -90. 50 -93. 00 -90. 50 -93. 00 -95. 50 -93. 00 -95. 50 -93. 00 -95. 50 -93. 00 -95. 50 -93. 00 -95. 50 -93. 00 -95. 50 -93. 00 -95. 50 -93. 00 -95. 50 -93. 00 -95. 50 -93. 00 -95. 50 -93. 00 -95. 50 -93. 00 -95. 50 -93. 00 -95. 50 -93. 00 -95. 50 -93. 00 -95. 50 -93. 00 -95. 50 -93. 00 -95. 50 -93. 00 -95. 50 -93. 00 -95. 50 -93. 00	N/A N/A N/A N/A N/A N/A N/A N/A 15. 00 13. 00 19. 00 18. 00 24. 00 24. 00 25. 00 27. 00 43. 00 27. 00 43. 00 21. 00 54. 00 60. 00 37. 00 48. 00 60. 00 48. 00 60. 00 61. 00 61. 00 61. 00 61. 00 61. 00 61. 00 61. 00 61. 00 60. 00 60. 00 60. 00 60. 00 60. 00 60. 00 60. 00 60. 00	0. 00 0. 00 0. 00 0. 00 0. 00 110. 00 110. 00 115. 00 120. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 130. 00 130. 00 130. 00 130. 00 130. 00 130. 00 130. 00	Soil Type 5- Cavity layer 3- Clean sand	
1 2 3 4 5 6 7 8	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	

Page 1

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 44 44 44 45 46 46 47 47 47 47 47 47 47 47 47 47 47 47 47	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	8-401Shaft4	8i n. out
1 D 1 2 3	RQD F. M. N/A N/A N/A	S. R. I . N/A N/A N/A	 N. N.	ry /A /A /A	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 31 32 33 34 35 36 37 38 39 40 41 42 43 44 44 44 44 44 44 44 44 44 44 44 44	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A	N. N	/A /A /A /A /A /A /A /A	

I D	Length	Tip Elev.	Case Len.	Di ameter	Base Diam.	Bell Len.
	(ft)	(ft)	(ft)	(i n)	(in)	(ft)
ID 10 10 10 10 10 10 10 10 10 1		Ti p El ev. (ft)	6. 00 6. 00	48. 00 48. 00	48. 00 48. 00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

User-Defined Settlement = 1.04%

(in) (fť	gth Skin Fric. t) (tons)	End Bearing (tons)	Capaci ty (tons)
1			Capaci ty (tons) 41. 632 70. 066 74. 684 79. 327 84. 274 89. 072 94. 256 99. 740 104. 868 110. 081 115. 951 122. 719 130. 020 136. 866 142. 970 149. 320 156. 660 164. 649 172. 087 179. 595 187. 633 196. 304 205. 092 212. 898 219. 630 225. 859 231. 445 235. 851 239. 483 244. 384 251. 319 260. 087 269. 816 279. 158 287. 586 279. 788 310. 508 318. 458 326. 439 335. 379 346. 340 358. 777 369. 814 378. 952 387. 139 395. 169 402. 915 410. 460 418. 266 426. 462 441. 414 447. 273 452. 266 461. 075 467. 386 475. 210 483. 071 483. 071 483. 071 490. 748 498. 465 506. 212 513. 362 513. 362 527. 932 537. 227 547. 306 557. 767 569. 338 580. 651 589. 930 597. 326

B-401Shaft48i n. out

				TO I SHULL TOL	11. 00	<i>a</i> t		
78	48.00	92.00	517. 975	115. 402		633. 377		
79	48.00	93. 00 Soi I	El evati ons	Must Exten	d At	or Below	Contri buti on	Zone
80	48.00	94.00 Soi I	El evati ons	Must Exten	d At	or Below	Contri buti on	Zone
81	48. 00	95.00 Soi I	El evati ons	Must Exten	d At	or Below	Contribution	Zone

B-401Shaft60i n. out Date: February 16, 2018 Ti me: 11: 46: 20

General Information: _____

Input file:H)\Analysis_Structure\FB-Deep\Drilled Shaft\B-401Shaft60in.spc Project number: 2000-01-17003 Job name: SW 10th Street, from Powerline Rd. to Military Trail Engineer: JB Henry Units: English

Analysis Information:

Analysis Type: Drilled Shaft Analysis

Soil Information:

Boring date: 2/6/2018
Boring number: B-401
Station number: Offset:

Ground Elevation: 0.00(ft) Water table Elevation = 0.00(ft)

Hammer type: Automatic Hammer, Correction factor = 1.24

паншен	type. At	ILUIIIALI C HAIII	mer, correcti	on ractor =	1. 24	
ΙD	Depth (ft)	El evati on (ft)	SPT Blows (Blows/ft)	Unit Weight (pcf)	Soi I Type	e
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 22 26 27 28 29 30 31 33 33 33 33 33 33 33 33 33 33 33 33	0. 00 2. 00 4. 00 6. 00 8. 00 10. 00 13. 50 15. 50 18. 00 20. 50 23. 00 25. 50 28. 00 30. 50 33. 00 35. 50 38. 00 40. 50 43. 00 55. 50 60. 50 63. 00 70. 50 73. 00 75. 50 78. 00 80. 50 83. 00 90. 50 93. 00 95. 50 93. 00 95. 50	-0. 00 -2. 00 -4. 00 -4. 00 -8. 00 -10. 00 -13. 50 -13. 50 -15. 50 -18. 00 -20. 50 -23. 00 -25. 50 -28. 00 -30. 50 -33. 00 -40. 50 -43. 00 -45. 50 -48. 00 -55. 50 -58. 00 -66. 50 -63. 00 -65. 50 -63. 00 -70. 50 -73. 00 -75. 50	N/A N/A N/A N/A N/A N/A N/A 15. 00 13. 00 19. 00 28. 00 24. 00 34. 00 22. 00 29. 00 27. 00 43. 00 60. 00 38. 00 37. 00 48. 00 21. 00 68. 00 39. 00 62. 00 47. 00 46. 00 36. 00 52. 00 67. 00 68. 00 59. 00 61. 00 61. 00 61. 00 61. 00 60. 00 60. 00 60. 00	0. 00 0. 00 0. 00 0. 00 0. 00 110. 00 110. 00 115. 00 120. 00 125. 00 130. 00 125. 00 130. 00 125. 00 130. 00 130. 00 130. 00 130. 00 130. 00	Soil Type 5- Cavity layer 6- Cavity layer 6- Cavity layer 6- Clean sand 3- Clean sand	
I D	เน-มไห (tsf) 	(qu (tsf)	qt (tsf) 	EM (ksi)	qp (tsf) 	
1 2 3 4 5 6 7 8	N/ N/ N/ N/ N/ N/	(A N/.	qt (tsf) A N/A A N/A A N/A A N/A A N/A A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	

Page 1

9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 40 41 42 43	N/A	N/A	N/A	-401Shaft6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Oi n. out
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 37 37 38 37 37 37 37 37 37 37 37 37 37 37 37 37		N/A	N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N	(A)	

	Diameter (in)	Length S (ft)	Skin Fric. E (tons)	nd Bearing (tons)	Capaci ty (tons)	
1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 6 17 18 19 20 1 22 23 24 2 26 27 28 29 20 31 32 33 34 35 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Di ameter (in) 60.00	Length (ft) 15. 00 16. 00 17. 00 18. 00 20. 00 21. 00 22. 00 23. 00 24. 00 25. 00 26. 00 27. 00 28. 00 29. 00 30. 00 31. 00 32. 00 34. 00 35. 00 36. 00 37. 00 38. 00 37. 00 38. 00 40. 00 41. 00 42. 00 43. 00 44. 00 45. 00 47. 00 48. 00 49. 00 50. 00 51. 00 52. 00 53. 00 54. 00 55. 00 56. 00 57. 00 58. 00 57. 00 58. 00 69. 00 61. 00 62. 00 63. 00 64. 00 65. 00 67. 00 68. 00 67. 00 78. 00 79. 00 71. 00 72. 00 73. 00 74. 00 75. 00 76. 00 77. 00 78. 00 77. 00 78. 00 79. 00 81. 00 82. 00 83. 00 84. 00 85. 00 86. 00 87. 00 88. 00	4. /61 6. 926	162. 427	Capaci ty (tons)	

User-Defined Settlement = 0.83%

B-401Shaft60i n. out

78	60.00	92. 00 Soi I	Elevations Must	Extend At	or	Bel ow	Contribution	Zone
79	60.00	93. 00 Soi I	Elevations Must	Extend At	or	Bel ow	Contribution	Zone
80	60.00	94. 00 Soi I	Elevations Must	Extend At	or	Bel ow	Contribution	Zone
81	60.00	95. 00 Soi I	Elevations Must	Extend At	or	Bel ow	Contribution	Zone

Date: February 16, 2018 Time: 11: 46: 58

General Information: -----

Input file:H)\Analysis_Structure\FB-Deep\Drilled Shaft\B-501Shaft48in.spc Project number: 2000-01-17003 Job name: SW 10th Street, from Powerline Rd. to Military Trail Engineer: JB Henry Units: English

Analysis Information:

Analysis Type: Drilled Shaft Analysis

Soil Information:

Boring date: 2/7/2018
Boring number: B-501
Station number: Offset:

Ground Elevation: 0.00(ft) Water table Elevation = 0.00(ft)

Hammer type: Automatic Hammer, Correction factor = 1.24

Hammer	type: Auto	omatic Hammer,	Correcti	on factor =	1. 24	
ΙD	Depth El (ft)	evation SP (BI	T Blows (Unit Weight (pcf)	Soil Type	
1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 6 17 18 19 0 21 22 3 4 2 5 6 27 28 9 30 31 32 33 34 5 36 7 38 39 40 14 2 43 15 6 17 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10	0. 00 2. 00 4. 00 6. 00 8. 00 10. 00 13. 50 15. 50 18. 00 20. 50 23. 00 25. 50 28. 00 30. 50 33. 00 40. 50 43. 00 45. 50 48. 00 50. 50 53. 00 65. 50 68. 00 67. 50 68. 00 70. 50 73. 00 75. 50 88. 00 90. 50 88. 00 90. 50 91. 00 92. 50 93. 00 95. 50 96. 50 97. 00 97. 00 97. 00 97. 50 98. 00 99. 50 99. 50 99. 50 99. 50 99. 50 99. 50 90. 50	-0. 00 -2. 00 -4. 00 -6. 00 -8. 00 -10. 00 -112. 00 -13. 50 -15. 50 -18. 00 -20. 50 -23. 00 -25. 50 -28. 00 -30. 50 -33. 00 -40. 50 -43. 00 -45. 50 -48. 00 -50. 50 -53. 00 -60. 50 -63. 00 -65. 50 -68. 00 -70. 50 -73. 00 -75. 50 -78. 00 -75. 50 -78. 00 -88. 00 -99. 50 -93. 00 -95. 50 -98. 00 -100. 00	N/A N/A N/A N/A N/A N/A N/A 30. 00 14. 00 14. 00 32. 00 20. 00 30. 00 21. 00 36. 00 29. 00 38. 00 39. 00 60. 00 60. 00 67. 00 53. 00 67. 00 63. 00 60. 00 67. 00 53. 00 60. 00 67. 00 53. 00 60. 00	0.00 0.00 0.00 0.00 0.00 1.00 0.00 1	Soil Type 5- Cavity layer 3- Clean sand	
1 2 3 4 5 6 7 8	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	

Page 1

9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 40 41 42 43	N/A	N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	3-501Shaft N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	48i n. out
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 22 6 27 28 29 31 32 33 34 35 36 37 38 39 40 41 42 43		N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N. N	-/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	

I D	Length	Tip Elev.	Case Len.	Di ameter	Base Diam.	Bell Len.
	(ft)	(ft)	(ft)	(i n)	(in)	(ft)
12345678901123445678901123345678901123345678901123345678901123345678901123345678901123345678901123456789001123456789000000000000000000000000000000000000	(ft)	-15. 00 -16. 00 -17. 00 -18. 00 -19. 00 -20. 00 -21. 00 -22. 00 -23. 00 -24. 00 -25. 00 -26. 00 -27. 00 -30. 00 -31. 00 -31. 00 -31. 00 -35. 00 -36. 00 -37. 00 -38. 00 -37. 00 -38. 00 -37. 00 -38. 00 -37. 00 -38. 00 -37. 00 -38. 00 -37. 00 -55. 00 -50. 00 -51. 00 -52. 00 -53. 00 -55. 00 -55. 00 -55. 00 -55. 00 -55. 00 -57. 00 -58. 00 -59. 00 -59. 00 -60. 00 -61. 00 -62. 00 -63. 00 -64. 00	(ft)	(in)	48. 00 48	0. 00 0. 00 00 00 00 00 00 00 00 00 00 00 00 00

I D	Diameter	Length S		nd Bearing	Capaci ty	. 55
<u>-</u> 1	(i n) 48. 00	(ft) 15.00	(tons) 4. 284	(tons) 112.266	(tons) 116. 550	
2	48. 00 48. 00	16. 00 17. 00	6. 001 7. 971	201. 304 199. 551	207. 305 207. 522	
4	48. 00	18. 00	10. 191	204. 031	214. 221	
5	48. 00	19. 00	12. 672	214. 146	226. 818	
6	48. 00	20. 00	15. 442	226. 021	241. 463	
7	48. 00	21. 00	18. 483	238. 662	257. 146	
8	48. 00	22. 00	21. 765	250. 213	271. 977	
9	48. 00	23. 00	25. 279	256. 630	281. 910	
10	48. 00	24. 00	29. 025	259. 589	288. 614	
11	48. 00	25. 00	33. 014	263. 557	296. 571	
12	48. 00	26. 00	37. 230	271. 265	308. 496	
13	48. 00	27. 00	41. 646	281. 080	322. 726	
14	48. 00	28. 00	46. 256	288. 519	334. 775	
15	48. 00	29. 00	51. 069	294. 438	345. 508	
16	48. 00	30. 00	56. 109	301. 367	357. 477	
17	48. 00	31. 00	61. 362	311. 436	372. 798	
18	48. 00	32. 00	66. 801	323. 768	390. 569	
19	48. 00	33. 00	72. 419	333. 011	405. 431	
20	48. 00	34. 00	78. 226	337. 968	416. 194	
21	48. 00	35. 00	84. 242	341. 416	425. 658	
22	48. 00	36. 00	90. 454	346. 618	437. 072	
23	48. 00	37. 00	96. 836	353. 406	450. 242	
24	48. 00	38. 00	103. 382	357. 718	461. 100	
25	48. 00	39. 00	110. 089	358. 967	469. 056	
26	48. 00	40. 00	116. 965	359. 799	476. 764	
27	48. 00	41. 00	123. 998	362. 990	486. 989	
28	48. 00	42. 00	131. 165	367. 970	499. 135	
29	48. 00	43. 00	138. 460	371. 342	509. 802	
30	48. 00	44. 00	145. 879	372. 431	518. 311	
31	48. 00	45. 00	153. 432	372. 483	525. 915	
32	48. 00	46. 00	161. 105	372. 869	533. 975	
33	48. 00	47. 00	168. 878	373. 642	542. 520	
34	48. 00	48. 00	176. 746	374. 209	550. 955	
35	48. 00	49. 00	184. 704	374. 415	559. 119	
36	48. 00	50. 00	192. 761	374. 621	567. 383	
37	48. 00	51. 00	200. 909	375. 239	576. 148	
38	48. 00	52. 00	209. 138	376. 167	585. 304	
39	48. 00	53. 00	217. 446	376. 785	594. 231	
40	48. 00	54. 00	225. 821	376. 991	602. 812	
41	48. 00	55. 00	234. 262	376. 991	611. 253	
42	48. 00	56. 00	242. 760	376. 991	619. 751	
43	48. 00	57. 00	251. 308	376. 991	628. 299	
44	48. 00	58. 00	259. 903	376. 991	636. 894	
45	48. 00	59. 00	268. 534	376. 991	645. 525	
46	48. 00	60. 00	277. 199	376. 991	654. 190	
47	48. 00	61. 00	285. 890	376. 991	662. 881	
48	48. 00	62. 00	294. 601	376. 991	671. 592	
49	48. 00	63. 00	303. 329	376. 991	680. 320	
50	48. 00	64. 00	312. 063	376. 991	689. 054	
51 52	48. 00 48. 00 48. 00	65. 00 66. 00	320. 801 329. 536	376. 991 376. 991	697. 792 706. 528	
53	48. 00	67. 00	338. 262	376. 991	715. 253	
54	48. 00	68. 00	346. 976	376. 991	723. 967	
55	48. 00	69. 00	355. 667	376. 991	732. 658	
56	48. 00	70. 00	364. 334	376. 991	741. 325	
57	48. 00	71. 00	372. 970	376. 720	749. 690	
58	48. 00	72. 00	381. 568	375. 905	757. 474	
59	48. 00	73. 00	390. 127	374. 684	764. 811	
60	48. 00	74. 00	398. 636	373. 870	772. 506	
61	48. 00	75. 00	407. 094	373. 598	780. 692	
62	48. 00	76. 00	415. 493	372. 742	788. 236	
63	48. 00	77. 00	423. 829	370. 175	794. 004	
64	48. 00	78. 00	432. 097	366. 324	798. 422	
65	48. 00	79. 00	440. 290	363. 666	803. 956	
66	48. 00	80. 00	448. 405	362. 539	810. 944	
67	48. 00	81. 00	456. 435	362. 132	818. 567	
68	48. 00	82. 00	464. 367	361. 861	826. 228	
69	48. 00	83. 00	472. 199	361. 770	833. 969	
70	48. 00	84. 00	479. 921	361. 485	841. 406	
71	48. 00	85. 00	487. 533	360. 991	848. 524	
72	48. 00	86. 00	495. 030	360. 793	855. 823	
73	48. 00	87. 00	502. 572	361. 566	864. 138	
74	48. 00	88. 00	510. 213	362. 366	872. 579	
75	48. 00	89. 00	517. 951	362. 728	880. 680	
76	48. 00	90. 00	525. 788	363. 869	889. 658	
77	48. 00	91. 00	533. 725	367. 292	901. 017	
78 79	48. 00 48. 00 48. 00	92.00 93.00 So	541.766 I Elevations	372.427 s Must Extend	914.193 d At or Below	Contribution Zone
80 81	48. 00 48. 00	94.00 So	I Elevations	s Must Extend	d At or Below	Contribution Zone Contribution Zone

User-Defined Settlement = 1.04%

B-501Shaft48i n. out

				JO I JII L TOI II	. ou		
78	48.00	92.00	529. 908	118. 395		648. 303	
79	48.00	93. 00 Soi I	El evati ons	Must Extend	Αt	or Below Contribution 2	Zone
80	48.00	94.00 Soi I	El evati ons	Must Extend	Αt	or Below Contribution 2	Zone
81	48. 00	95. 00 Soi I	El evati ons	Must Extend	Αt	or Below Contribution 2	Zone

B-501Shaft60in.out Date: February 16, 2018 Time: 11:48:08

General Information: _____

Input file:H)\Analysis_Structure\FB-Deep\Drilled Shaft\B-501Shaft60in.spc Project number: 2000-01-17003 Job name: SW 10th Street, from Powerline Rd. to Military Trail Engineer: JB Henry Units: English

Analysis Information:

Analysis Type: Drilled Shaft Analysis

Soil Information:

Boring date: 2/7/2018
Boring number: B-501
Station number: Offset:

Ground Elevation: 0.00(ft) Water table Elevation = 0.00(ft)

Hammer type: Automatic Hammer, Correction factor = 1.24

паншен	type. Au	tollatic naili	ilei, correcti	on ractor =	1. 24	
I D	Depth (ft)	El evati on (ft)	SPT Blows (Blows/ft)	Unit Weight (pcf)	Soi I Type	e
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 38 39 40 40 40 40 40 40 40 40 40 40 40 40 40	0.00 2.00 4.00 6.00 8.00 10.00 112.00 13.50 18.00 20.50 23.00 25.50 28.00 30.50 33.00 40.50 43.00 45.50 48.00 55.50 58.00 68.00 70.50 78.00 88.00 90.50 93.00 95.50 93.00 90.50	-0. 00 -2. 00 -4. 00 -6. 00 -8. 00 -10. 00 -112. 00 -13. 50 -15. 50 -18. 00 -20. 50 -23. 00 -25. 50 -28. 00 -30. 50 -33. 00 -35. 50 -38. 00 -40. 50 -43. 00 -45. 50 -48. 00 -55. 50 -68. 00 -65. 50 -68. 00 -70. 50 -73. 00 -75. 50 -78. 00 -75. 50 -78. 00 -80. 50 -88. 00 -90. 50 -93. 00 -90. 50 -93. 00 -90. 50 -93. 00 -90. 50 -93. 00 -90. 50 -93. 00 -90. 50 -93. 00 -90. 50 -93. 00 -90. 50 -93. 00 -90. 50 -93. 00 -90. 50 -93. 00 -90. 50 -93. 00 -90. 50 -93. 00 -90. 50 -93. 00 -90. 50 -93. 00 -90. 50 -93. 00 -90. 50 -93. 00	N/A N/A N/A N/A N/A N/A N/A N/A 30. 00 14. 00 16. 00 32. 00 20. 00 30. 00 21. 00 36. 00 29. 00 39. 00 58. 00 66. 00 59. 00 66. 00 60. 00 67. 00 63. 00 67. 00 60. 00 67. 00 60. 00	0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 120. 00 110. 00 110. 00 115. 00 125. 00 125. 00 130. 00	Soil Type 5- Cavity layer 6- Cavity layer 6- Cean sand 3- Clean sand	
I D	tsf) (tsf)	qu (tsf)	qt (tsf) 	EM (ksi)	qp (tsf) 	
1 2 3 4 5 6 7 8	N/ N/ N/ N/ N/ N/	A N/A A N//A	qt (tsf) A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	

Page 1

9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 40 41 42 43	N/A	N/A	N/A	8-501Shafte N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	50i n. out
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 30 31 33 34 35 36 37 38 38 39 39 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A	N. N	A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A	

I D	Length	Tip Elev.	Case Len.	Diameter	Base Diam.	Bell Len.
	(ft)	(ft)	(ft)	(in)	(in)	(ft)
1 2 3 4 5 6 7 8 9 10 11 2 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2	15. 00 16. 00 17. 00 18. 00 19. 00 20. 00 21. 00 22. 00 23. 00 24. 00 25. 00 26. 00 27. 00 28. 00 31. 00 33. 00 34. 00 35. 00 36. 00 37. 00 38. 00 40. 00 41. 00 42. 00 43. 00 44. 00 45. 00 46. 00 47. 00 48. 00 50. 00 51. 00 52. 00 53. 00 55. 00 56. 00 57. 00 58. 00 57. 00 60. 00 61. 00 62. 00 63. 00 64. 00 65. 00 67. 00 68. 00 67. 00 68. 00 67. 00 68. 00 69. 00 71. 00 72. 00 73. 00 74. 00 75. 00 76. 00 77	-15. 00 -16. 00 -17. 00 -18. 00 -19. 00 -20. 00 -21. 00 -22. 00 -22. 00 -24. 00 -25. 00 -26. 00 -27. 00 -28. 00 -31. 00 -31. 00 -31. 00 -35. 00 -36. 00 -37. 00 -38. 00 -37. 00 -44. 00 -44. 00 -44. 00 -44. 00 -44. 00 -44. 00 -45. 00 -46. 00 -47. 00 -48. 00 -51. 00 -51. 00 -52. 00 -53. 00 -51. 0	6. 00 6. 00	60. 00 60. 00	60. 00 60. 00	0.00 0.00

I D	Diameter		Skin Fric. En	d Bearing	Capacity	
	(i n)	(ft)	(tons)	(tons)	(tons)	
1 2 3 4 5 6 7 8 9 10 11 12	60. 00 60. 00	15. 00 16. 00 17. 00 18. 00 19. 00 20. 00 21. 00 22. 00 23. 00 24. 00 25. 00 26. 00 27. 00	5. 355 7. 501 9. 964 12. 738 15. 840 19. 302 23. 104 27. 206 31. 599 36. 282 41. 267 46. 538 52. 058	149. 082 153. 449 156. 979 273. 400 282. 612 294. 691 304. 737 317. 436 334. 514 349. 604 356. 338 356. 621 361. 894	154. 437 160. 950 166. 943 286. 139 298. 452 313. 993 327. 841 344. 642 366. 113 385. 886 397. 605 403. 159 413. 993	
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	60. 00 60. 00	28. 00 29. 00 30. 00 31. 00 32. 00 34. 00 35. 00 36. 00 37. 00 38. 00 39. 00 40. 00 41. 00 42. 00 43. 00	57. 820 63. 837 70. 137 76. 703 83. 501 90. 524 97. 783 105. 303 113. 068 121. 045 129. 227 137. 611 146. 206 154. 998 163. 956 173. 075	374. 062 387. 610 397. 022 403. 335 412. 773 426. 373 439. 162 446. 165 448. 504 452. 910 460. 505 467. 803 471. 317 471. 833 474. 049 478. 749	431. 882 451. 447 467. 159 480. 038 496. 274 516. 897 536. 945 551. 468 561. 572 573. 955 589. 732 605. 414 617. 524 626. 830 638. 005 651. 824	
30 31 32 33 34 35 36 37 38 39 40 41 42 43	60. 00 60. 00	44. 00 45. 00 46. 00 47. 00 48. 00 50. 00 51. 00 52. 00 53. 00 54. 00 55. 00 56. 00 57. 00	182. 349 191. 789 201. 382 211. 098 220. 932 230. 880 240. 952 251. 136 261. 422 271. 807 282. 276 292. 827 303. 450 314. 135	483. 450 485. 666 485. 775 486. 044 486. 849 487. 707 488. 137 488. 244 488. 673 489. 532 490. 391 490. 820 490. 874	665. 799 677. 455 687. 157 697. 142 707. 781 718. 588 729. 089 739. 389 750. 096 761. 339 772. 667 783. 647 794. 324 805. 009	
44 45 46 47 48 49 50 51 52 53 54 55 57 58	60. 00 60. 00	58. 00 59. 00 60. 00 61. 00 62. 00 63. 00 64. 00 65. 00 66. 00 67. 00 68. 00 69. 00 71. 00 72. 00	324. 879 335. 667 346. 498 357. 363 368. 252 379. 161 390. 079 401. 001 411. 921 422. 828 433. 720 444. 583 455. 417 466. 212 476. 961	490. 874 490. 874 490. 874 490. 874 490. 874 490. 874 490. 874 490. 874 490. 874 490. 591 489. 743 488. 471 487. 622	815. 752 826. 541 837. 372 848. 237 859. 126 870. 035 880. 953 891. 875 902. 794 913. 702 924. 594 935. 176 954. 683 964. 583	
59 60 61 62 63 64 65 66 67 70 71 72 73 74	60. 00 60. 00	73. 00 74. 00 75. 00 75. 00 76. 00 77. 00 78. 00 80. 00 81. 00 82. 00 83. 00 84. 00 85. 00 86. 00 87. 00 88. 00 88. 00 89. 00	487. 659 498. 295 508. 867 519. 366 529. 786 540. 122 550. 363 560. 506 570. 544 580. 459 590. 249 599. 901 609. 416 618. 788 628. 215 637. 766 647. 439	487. 340 486. 448 483. 774 479. 762 477. 088 476. 197 475. 820 475. 396 475. 113 475. 019 474. 721 473. 830 472. 587 472. 450 473. 661 475. 169	974. 999 984. 743 992. 641 999. 129 1006. 874 1016. 318 1026. 465 1036. 326 1045. 940 1055. 572 1065. 263 1083. 246 1091. 375 1100. 665 1111. 426 1122. 608	
76 77 78 79 80 81	60. 00 60. 00 60. 00 60. 00 60. 00 60. 00	90. 00 91. 00 Sc 92. 00 Sc 93. 00 Sc 94. 00 Sc	657.235 bil Elevations bil Elevations bil Elevations bil Elevations	475.922 Must Extend Must Extend Must Extend Must Extend	1133.158 d At or Below	Contribution Zone Contribution Zone Contribution Zone Contribution Zone Contribution Zone

User-Defined Settlement = 0.83%

I D	Di ameter (i n)	Length (ft)	Skin Fric. [(tons)	End Bearing (tons)	Capaci ty (tons)		
TD12345678910111113141561789910111111111111111111111111111111111		Length (ft) 15.00 16.00 17.00 18.00 20.00 21.00 22.00 24.00 25.00 26.00 27.00 28.00 27.00 28.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 40.00 41.00 42.00 43.00 44.00 45.00 65.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 57.00 58.00 57.00 68.00 61.00 66.00 66.00 66.00 66.00 67.00 68.00 67.00 68.00 67.00 68.00 67.00 68.00 67.00 68.00 67.00 68.00 67.00 68.00 69.00 70.00 71.00 72.00 73.00 74.00 75.00 76.00 77.00 78.00 77.00 78.00 77.00 78.00 77.00 78.00 79.00 88.00					
71 72 73 74 75 76 77	60. 00 60. 00 60. 00 60. 00 60. 00	85. 00 86. 00 87. 00 88. 00 89. 00 90. 00	593. 880 603. 013 612. 200 621. 507 630. 934 640. 480	123. 713 123. 389 123. 353 123. 669 124. 063 124. 260	717. 593 726. 402 735. 553 745. 176 754. 996 764. 740	Contri buti on	

B-501Shaft60i n. out

78	60.00	92.00 Soi I	Elevations Must	Extend At	or	Bel ow	Contribution	Zone
79	60.00	93. 00 Soi I	Elevations Must	Extend At	or	Bel ow	Contribution	Zone
80	60.00	94.00 Soi I	Elevations Must	Extend At	or	Bel ow	Contribution	Zone
81	60.00	95. 00 Soi I	Flevations Must	Extend At	or	Bel ow	Contribution	7one

B-601Shaft48in.out Date: February 16, 2018 Time: 11:48:50

General Information:

_____ Input file:H)\Analysis_Structure\FB-Deep\Drilled Shaft\B-601Shaft48in.spc Project number: 2000-01-17003 Job name: SW 10th Street, from Powerline Rd. to Military Trail Engineer: JB Henry Units: English

Analysis Information:

Analysis Type: Drilled Shaft Analysis

Soil Information:

Boring date: 1/31/2018
Boring number: B-601
Station number: Offse

Offset: Ground Elevation: 0.00(ft) Water table Elevation = 0.00(ft)

N/A

N/A

8

N/A

N/A

N/A

N/A

Hammer type: Automatic Hammer, Correction factor = 1.24

на	mmer	type: Aut	comatic Hamn	ner, Correcti	on factor =	1. 24	
	I D	Depth E (ft)	Elevation (ft)	SPT Blows (Blows/ft)	Unit Weight (pcf)	Soil Type	
	1 2 3 4 5 6 7 8 9 101 12 13 4 15 6 17 8 9 101 12 13 4 15 16 17 8 19 22 12 22 24 25 26 27 28 29 30 31 32 33 34 35 6 37 38 39 40 42 43	0. 00 2. 00 4. 00 8. 00 10. 00 112. 00 13. 50 18. 00 20. 50 23. 00 25. 50 28. 00 30. 50 33. 00 45. 50 48. 00 40. 50 45. 50 48. 00 50. 50 53. 00 65. 50 68. 00 70. 50 73. 00 75. 50 78. 00 88. 50 88. 00 90. 50 93. 00 95. 50 93. 00 95. 50	-0. 00 -2. 00 -4. 00 -6. 00 -8. 00 -10. 00 -13. 50 -15. 50 -18. 00 -20. 50 -23. 00 -25. 50 -28. 00 -30. 50 -33. 00 -45. 50 -48. 00 -40. 50 -43. 00 -45. 50 -58. 00 -60. 50 -53. 00 -65. 50 -68. 00 -70. 50 -73. 00 -73. 00 -73. 50 -78. 00 -73. 50 -78. 00 -73. 50 -78. 00 -83. 50 -88. 50 -88. 50 -88. 00 -90. 50 -93. 00	N/A N/A N/A N/A N/A N/A 3. 00 4. 00 3. 00 12. 00 15. 00 22. 00 20. 00 61. 00 61. 00 40. 00 78. 00 47. 00 20. 00 60. 00	0. 00 0. 00 0. 00 0. 00 0. 00 100. 00 105. 00 110. 00 115. 00 115. 00 130. 00	Soil Type 5- Cavity layer 6- Clean sand	
	1 2 3 4 5	N/A N/A N/A N/A N/A	N / / N / M / M	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	

N/A

N/A

N/A

N/A

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	8-601Shaft4	8i n. out
1D 1 2 3 4	RQD F. M N/A N/A N/A N/A N/A	S. R. I . N/A N/A N/A N/A	 N. N. N.	ry /A /A /A /A	
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 38 39 40 41 42 43 44 44 44 45 46 47 47 47 47 47 47 47 47 47 47 47 47 47	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	N. N	/A /A /A /A /A /A /A /A	

Drilled Shaft Data:

Shaft Geometry:

I D	Length	Tip Elev.	Case Len.	Di ameter	Base Diam.	Bell Len.
	(ft)	(ft)	(ft)	(i n)	(in)	(ft)
123 45678910112334567891011123345678910111233456789101122323456677733333333333333333333333333333333	15. 00 16. 00 17. 00 18. 00 20. 00 21. 00 22. 00 23. 00 24. 00 25. 00 26. 00 27. 00 28. 00 30. 00 31. 00 32. 00 33. 00 34. 00 35. 00 36. 00 37. 00 38. 00 37. 00 38. 00 37. 00 38. 00 37. 00 55. 00 56. 00 57. 00 58. 00 59. 00 51. 00 52. 00 53. 00 54. 00 55. 00 56. 00 67. 00 68. 00 69. 00 61. 00 62. 00 63. 00 64. 00 65. 00 66. 00 67. 00 68. 00 67. 00 68. 00 69. 00 70. 00 71. 00 72. 00 73. 00 74. 00 75. 00 75. 00 75. 00 76. 00 77. 00	-15.00	6. 00 6. 00	48. 00 48. 00	48. 00 48	0.00 0.00

Strength reduction factors: Skin-friction = 1.00, End-bearing = 1.00

User-Defined Settlement = 1.04%

I D	Di ameter (i n)	(ft)	Skin Fric. (tons)	(tons)	Capaci ty (tons)
TD123456789011121314516171122222422222223333344442555555555555555		Length (ft) 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 37.00 40.00 41.00 42.00 43.00 41.00 45.00 55.00 56.00 57.00 58.00 55.00 56.00 57.00 58.00 60.00 61.00 62.00 63.00 64.00 65.00 66.00 67.00 68.00 67.00 68.00 69.00 71.00 72.00 73.00 74.00 75.00 76.00 77.00 76.00 77.00 76.00 77.00 76.00 77.00 76.00 77.00 76.00 77.00 76.00 80.00 81.00 82.00 83.00	(tons)	(tons) 19. 563 28. 520 32. 099 35. 762 40. 859 47. 639 54. 956 62. 034 68. 720 74. 873 80. 530 85. 898 91. 330 96. 602 101. 451 106. 077 110. 912 115. 669 118. 689 119. 662 119. 662 119. 662 119. 646	(tons)
61 62 63 64 65 66 67 68 69 70	48. 00 48. 00 48. 00 48. 00 48. 00 48. 00 48. 00 48. 00 48. 00	75. 00 76. 00 77. 00 78. 00 79. 00 80. 00 81. 00 82. 00 83. 00 84. 00	335. 566 343. 019 350. 426 357. 786 365. 090 372. 335 379. 517 386. 627 393. 665 400. 620	119. 846 119. 846 119. 846 119. 846 119. 846 119. 685 119. 203 118. 292 116. 300	455. 4' 462. 8' 470. 2' 477. 6' 484. 9' 492. 1' 499. 2' 505. 8' 511. 9'

B-601Shaft48i n. out

78	48.00	92.00	456. 861	94	. 065		550. 927		
79	48. 00	93.00 Soi I	El evati ons	Must	Extend	Αt	or Belo	w Contribution	Zone
80	48.00	94.00 Soi I	El evati ons	Must	Extend	Αt	or Belo	w Contribution	Zone
81	48. 00	95.00 Soi I	El evati ons	Must	Extend	Αt	or Belo	w Contribution	Zone

B-601Shaft60in.out Date: February 16, 2018 Time: 11:49:21

General Information: _____

Input file:H)\Analysis_Structure\FB-Deep\Drilled Shaft\B-601Shaft60in.spc Project number: 2000-01-17003 Job name: SW 10th Street, from Powerline Rd. to Military Trail Engineer: JB Henry Units: English

Analysis Information:

Analysis Type: Drilled Shaft Analysis

Soil Information:

Boring date: 1/31/2018
Boring number: B-601
Station number: Offse Offset:

Ground Elevation: 0.00(ft) Water table Elevation = 0.00(ft)

Hammer type: Automatic Hammer, Correction factor = 1.24

паншен	type. At	ILUIIIALI C HAIII	mer, correcti	on ractor =	1. 24	
ID	Depth (ft)	El evati on (ft)	SPT Blows (Blows/ft)	Unit Weight (pcf)	Soi I Type	e
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 22 25 27 28 29 30 31 33 33 33 33 33 33 33 33 33 33 33 33	0. 00 2. 00 4. 00 6. 00 8. 00 10. 00 12. 00 13. 50 15. 50 18. 00 25. 50 28. 00 35. 50 38. 00 40. 50 43. 00 55. 50 58. 00 60. 50 63. 00 70. 50 73. 00 75. 50 78. 00 88. 50 88. 00 90. 50 93. 00 95. 50 93. 00 95. 50	-0. 00 -2. 00 -4. 00 -4. 00 -8. 00 -10. 00 -12. 00 -13. 50 -15. 50 -18. 00 -20. 50 -23. 00 -25. 50 -28. 00 -30. 50 -33. 00 -40. 50 -43. 00 -45. 50 -48. 00 -55. 50 -58. 00 -60. 50 -63. 00 -65. 50 -63. 00 -65. 50 -63. 00 -75. 50 -73. 00 -75. 50	N/A N/A N/A N/A N/A N/A N/A 3. 00 4. 00 3. 00 6. 00 12. 00 15. 00 22. 00 61. 00 90. 00 40. 00 47. 00 89. 00 60. 00 18. 00 26. 00 2. 00 2. 00 23. 00 60. 00	0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 100. 00 105. 00 110. 00 115. 00 130. 00	Soil Type 5- Cavity layer 6- Cavity layer 6- Clean sand 3- Clean sand	
I D	(tsf)	(qu (tsf)	qt (tsf) 	Em (ksi)	qb (tsf) 	
1 2 3 4 5 6 7 8	N/ N/ N/ N/ N/ N/	'A N/.	qt (tsf) A N/A A N/A A N/A A N/A A N/A A N/A A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	

Page 1

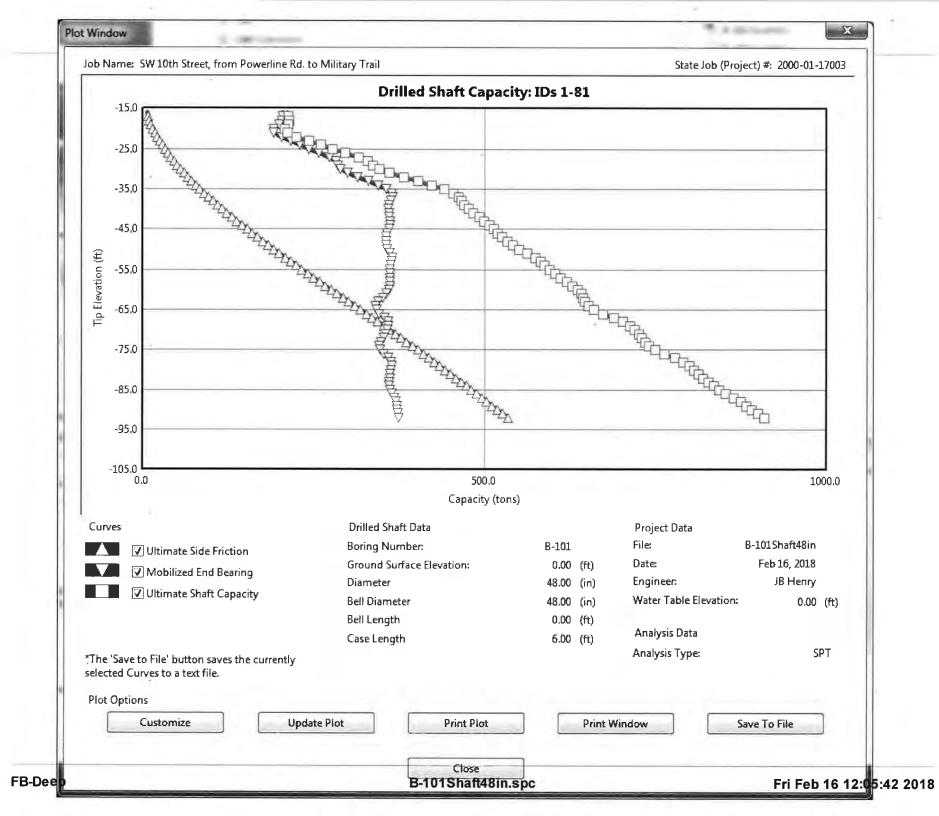
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 31 32 33 33 34 35 36 37 38 39 40 41 42 43 44 44 44 45 46 46 47 47 47 47 47 47 47 47 47 47 47 47 47	N/A	N/A	N/A	B-601Shaft6	Oi n. out N/A
I D			Rock Recove		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 23 24 25 26 27 28 29 30 31 33 33 43 33 33 43 33 33 33 33 33 33 33	N/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	N/A		N/A	

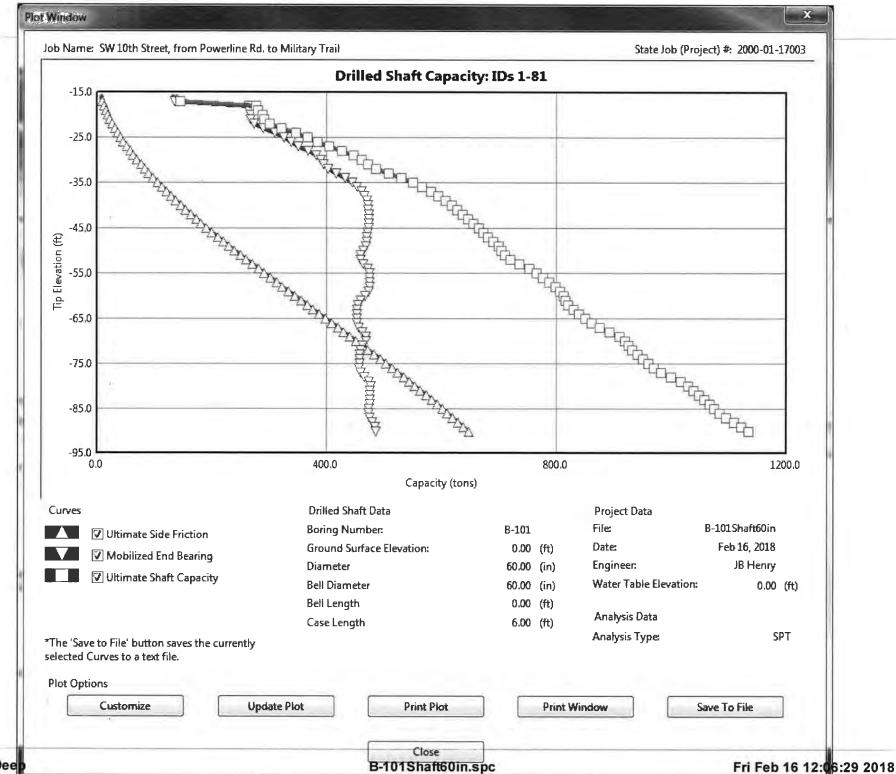
Drilled Shaft Data:

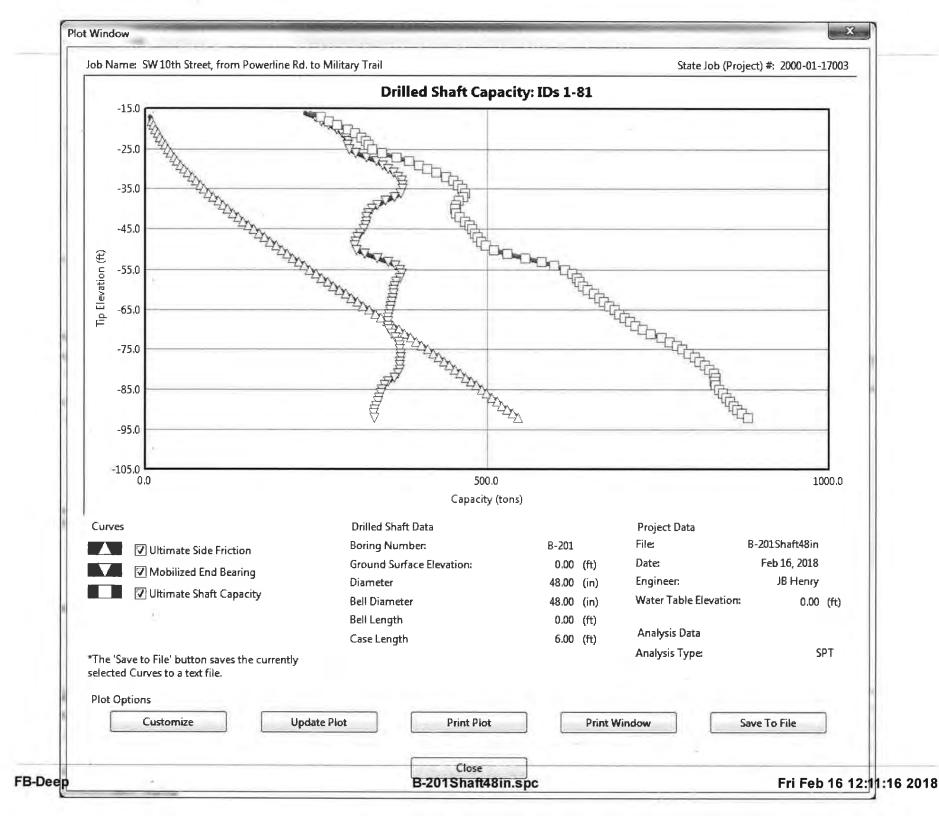
Shaft Geometry:

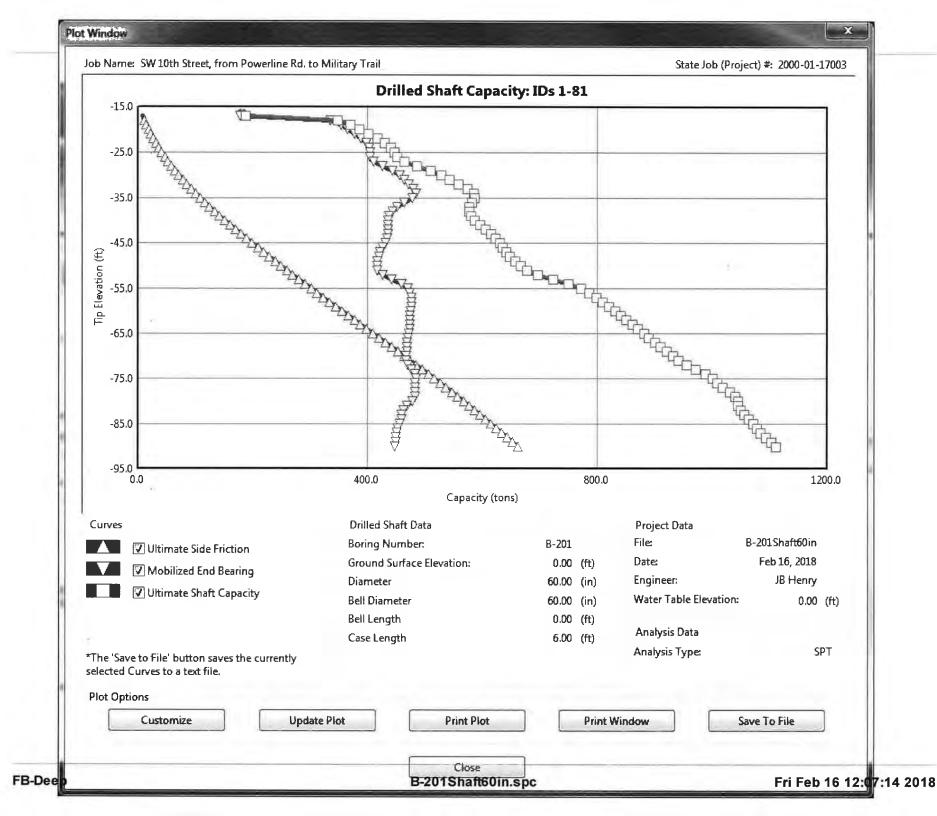
					ar toorn. out	
I D	Length (ft)	Tip Elev. (ft)	Case Len. (ft)	Diameter (in)	Base Diam. (in)	Bell Len. (ft)
1 2 3 4 5 6 7 8 9 10 11 21 13 14 15 16 17 18 19 20 12 22 23 23 23 23 33 33 33 33 44 44 45 55 55 55 55 55 66 66 66 67 77 77 77 77 77 77 77 77 77	15. 00 16. 00 17. 00 18. 00 19. 00 20. 00 21. 00 22. 00 24. 00 25. 00 26. 00 27. 00 28. 00 31. 00 32. 00 33. 00 34. 00 35. 00 37. 00 38. 00 37. 00 40. 00 41. 00 42. 00 43. 00 45. 00 46. 00 47. 00 50. 00 51. 00 52. 00 53. 00 54. 00 60. 00 61. 00 62. 00 63. 00 64. 00 65. 00 67. 00 68. 00 67. 00 68. 00 67. 00 68. 00 67. 00 68. 00 67. 00 68. 00 69. 00 61. 00 62. 00 63. 00 64. 00 65. 00 67. 00 68. 00 69. 00 69. 00 71. 00 72. 00 73. 00 74. 00 75. 00 75. 00 75. 00 76. 00 77	Ti p El ev. (ft)	6. 00 6. 00	60. 00 60. 00	60.00 60.00	0. 00 0. 00

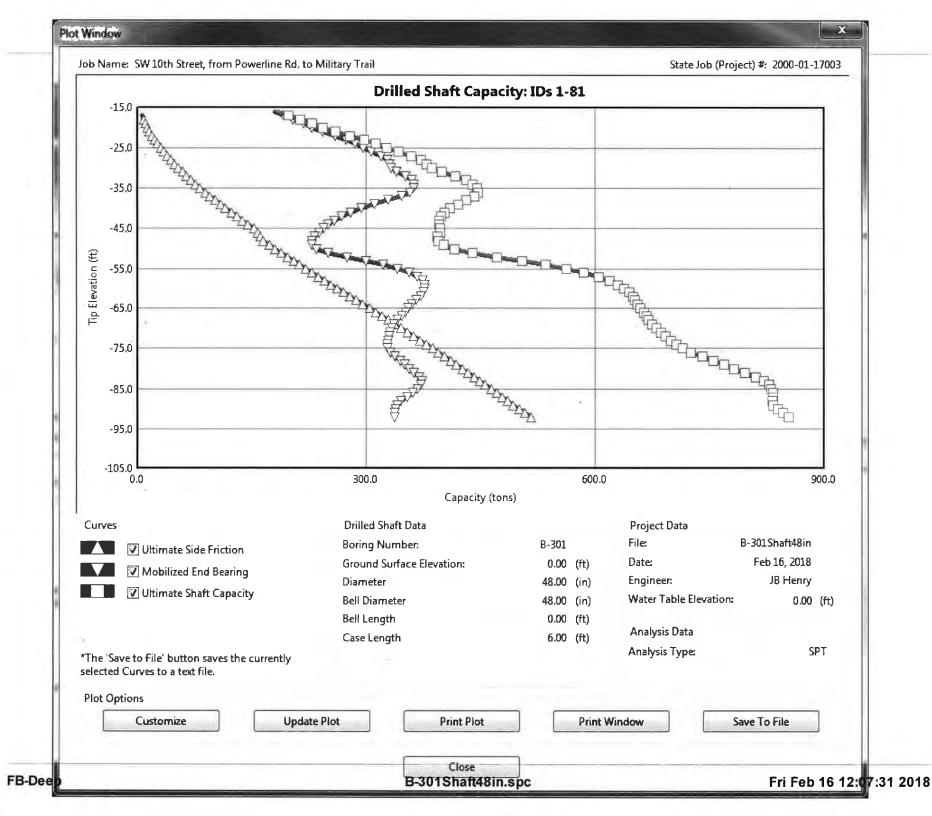
Strength reduction factors: Skin-friction = 1.00, End-bearing = 1.00

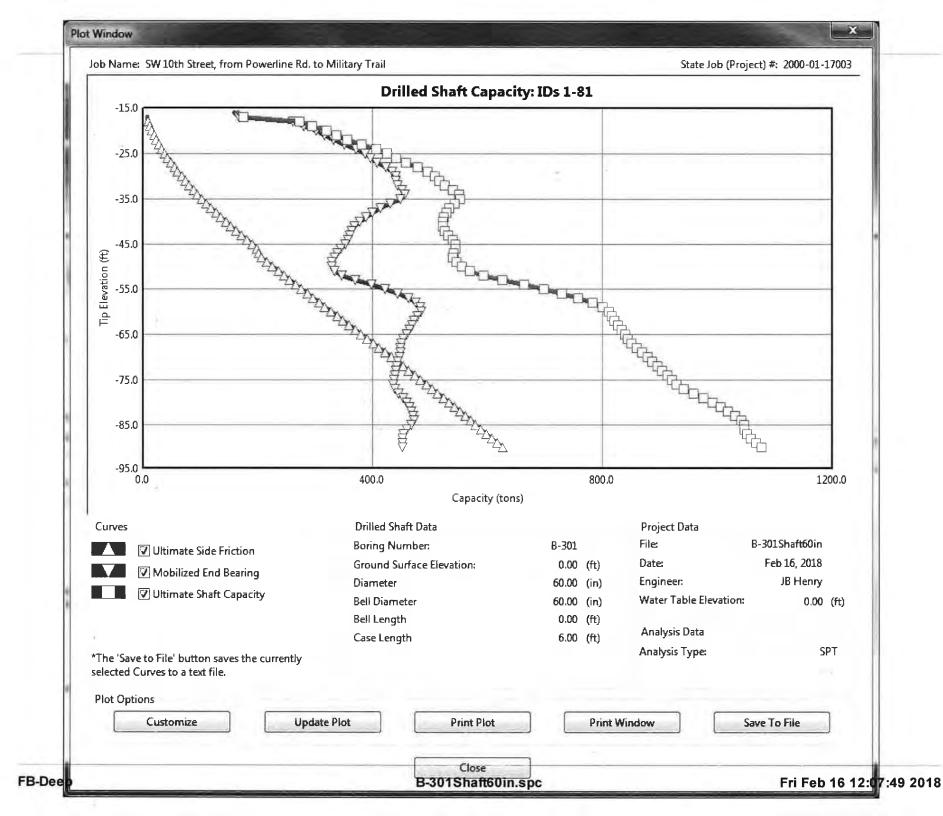

I D	Diameter		kin Fric. En	,	Capaci ty	. 55
	(i n)	(ft)	(tons)	(tons)	(tons)	
ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	60. 00 60. 00	Length (ft) 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 27.00 28.00 31.00 31.00 33.00 31.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00	kin Fric. En (tons) 1. 072 1. 695 2. 648 3. 742 6. 210 8. 975 12. 035 15. 382 18. 999 22. 884 27. 053 31. 492 36. 190 41. 143 46. 380 51. 942 57. 817 63. 988 70. 453 77. 189 84. 196 91. 455 98. 935 106. 628 114. 531 122. 653	d Beari ng (tons) 89. 910 99. 043 111. 051 160. 786 185. 045 209. 261 234. 183 259. 295 283. 758 306. 801 327. 656 346. 690 366. 111 386. 285 405. 700 422. 843 438. 078 453. 598 469. 766 482. 948 489. 506 490. 272 490. 232 490. 219 487. 502 479. 349	Capaci ty (tons) 90. 982 100. 738 113. 707 164. 527 191. 255 218. 236 246. 219 274. 677 302. 756 329. 686 354. 709 378. 182 402. 301 427. 428 452. 080 474. 785 517. 586 540. 219 560. 137 573. 702 581. 727 589. 168 596. 848 602. 033 602. 002	
27 28 29 31 32 334 35 36 37 38 40 41 44 45 44 45 55 55 55 57 58 60 61	60. 00 60. 00	41. 00 42. 00 43. 00 44. 00 45. 00 46. 00 47. 00 50. 00 51. 00 52. 00 53. 00 54. 00 55. 00 56. 00 67. 00 63. 00 64. 00 63. 00 64. 00 65. 00 66. 00 67. 00 68. 00 67. 00 68. 00 67. 00 70. 00 71. 00 72. 00 73. 00 74. 00 75. 00	130. 979 139. 479 148. 147 156. 979 165. 984 175. 151 184. 469 193. 934 203. 531 213. 257 223. 093 232. 983 242. 916 252. 892 262. 919 270. 505 275. 671 280. 910 286. 224 291. 611 297. 986 305. 282 312. 557 322. 308 332. 308 3341. 747 351. 463 361. 188 370. 327 400. 006 409. 658 419. 272 428. 845	466. 698 455. 163 445. 637 445. 687 394. 290 370. 963 347. 637 324. 257 300. 770 277. 696 258. 159 242. 680 230. 365 220. 320 213. 166 212. 637 219. 355 228. 682 235. 979 242. 618 256. 814 279. 937 308. 227 337. 394 423. 951 447. 103 479. 627 488. 062 490. 874 490. 874	602. 002 597. 677 594. 643 593. 828 591. 230 582. 856. 450 569. 440 555. 432 541. 571 527. 788 514. 026 500. 789 491. 142 485. 596 483. 257 483. 238 483. 671 488. 308 500. 265 514. 905 527. 590 540. 604 562. 095 592. 494 630. 535 669. 961 710. 312 748. 857 785. 140 818. 010 846. 329 869. 954 888. 068 900. 532 910. 146 919. 718	
62 63 64 65 66 67 68 69 70 71 72 73 74 75 77 78 80 81	60. 00 60. 00	92. 00 Sc 93. 00 Sc 94. 00 Sc	il Elevations il Elevations il Elevations	Must Extend Must Extend Must Extend	938. 709 948. 115 956. 962 964. 603 970. 794 973. 354 971. 926 967. 471 960. 962 953. 498 951. 895 957. 320 966. 150 974. 763 d At or Below d At or Below	Contribution Zone Contribution Zone Contribution Zone Contribution Zone Contribution Zone Contribution Zone

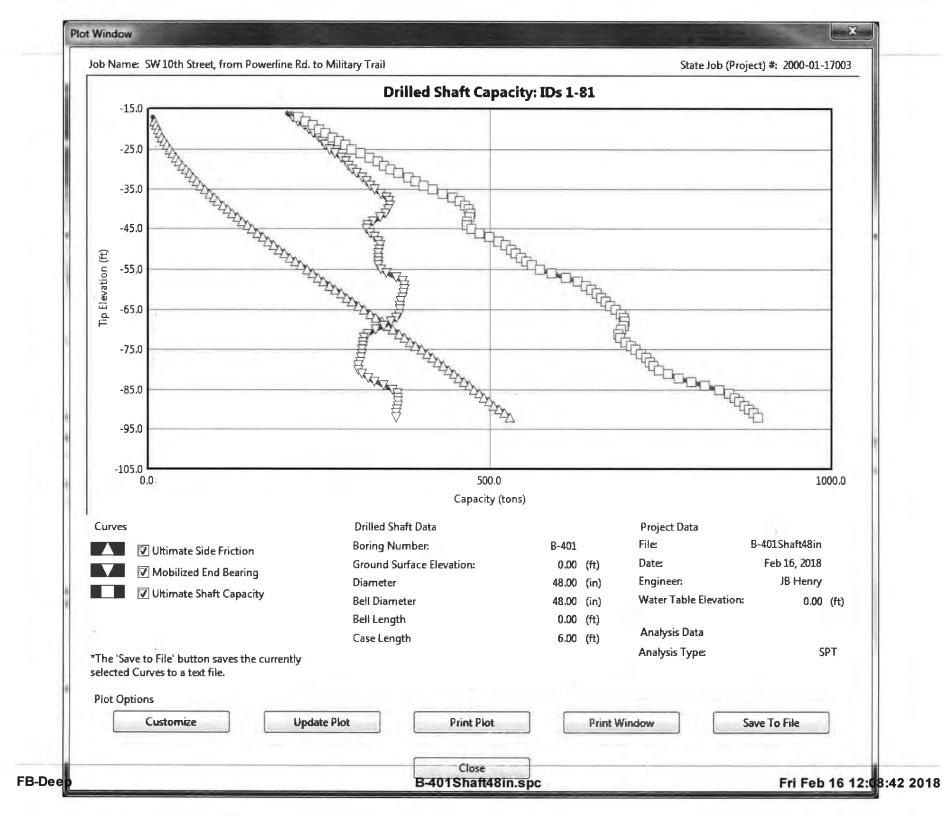

User-Defined Settlement = 0.83%

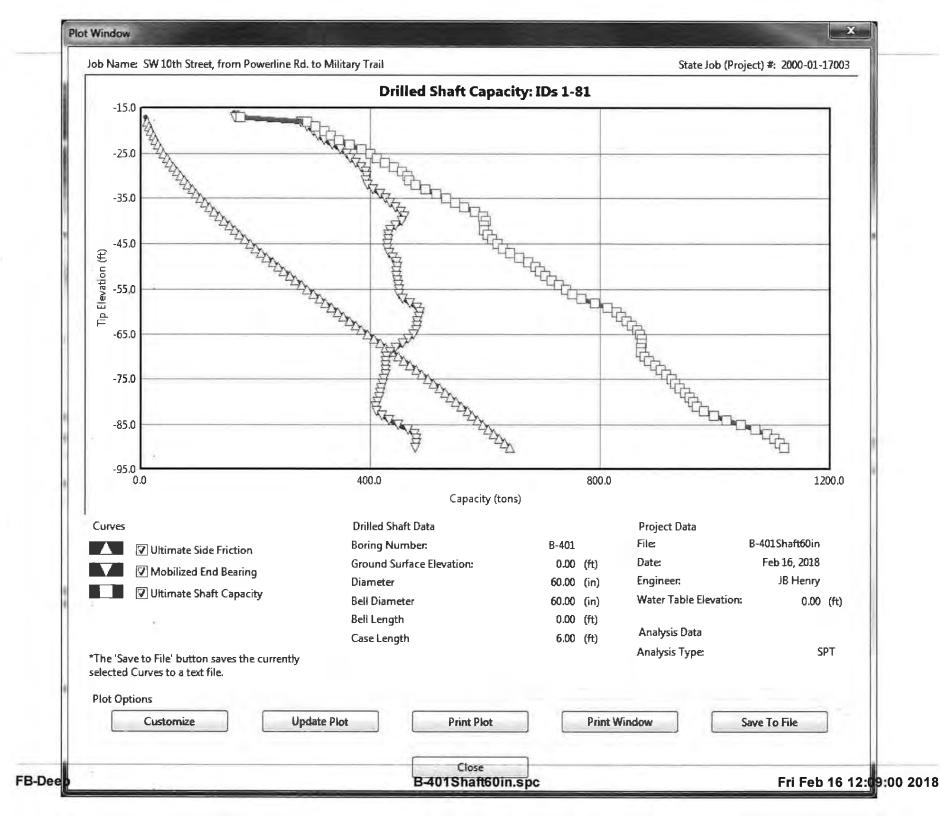

I D	Di ameter (i n)		Skin Fric. (tons)	End Bearing (tons)	Capaci ty (tons)	
123456789011123145167112222222222222222222222222222222222		15. 00 16. 00 17. 00 18. 00 19. 00 20. 00 21. 00 22. 00 23. 00 24. 00 25. 00 26. 00 27. 00 28. 00 31. 00 32. 00 31. 00 33. 00 31. 00 35. 00 36. 00 41. 00 41. 00 44. 00 44. 00 45. 00 55. 00 56. 00 57. 00 58. 00 57. 00 58. 00 59. 00 51. 00 51. 00 52. 00 53. 00 54. 00 55. 00 56. 00 57. 00 58. 00 67. 00	1. 044 1. 652 2. 581 3. 646 6. 052 8. 746 11. 729 14. 990 18. 514 22. 301 26. 363 30. 689 35. 267 40. 094 45. 197 50. 618 56. 343 62. 357 68. 656 75. 222 82. 049 89. 124 96. 413 103. 910 111. 611 119. 526 127. 640 127. 640 127. 640 127. 640 128. 924 144. 371 152. 977 161. 766 188. 990 198. 342 207. 820 217. 406 227. 043 236. 724 246. 445 256. 216 263. 609 268. 643 273. 749 278. 927 284. 177 290. 390 297. 499 304. 589 314. 091 323. 573 333. 035 3421. 980 361. 454 370. 922 380. 377 399. 215 408. 583 417. 193 426. 418 445. 584 454. 680 467. 047 481. 502 490. 267 498. 928 515. 937 524. 455 533. 1878 550. 783	(tons)	(tons)	Contribution Zone
				Page 5		

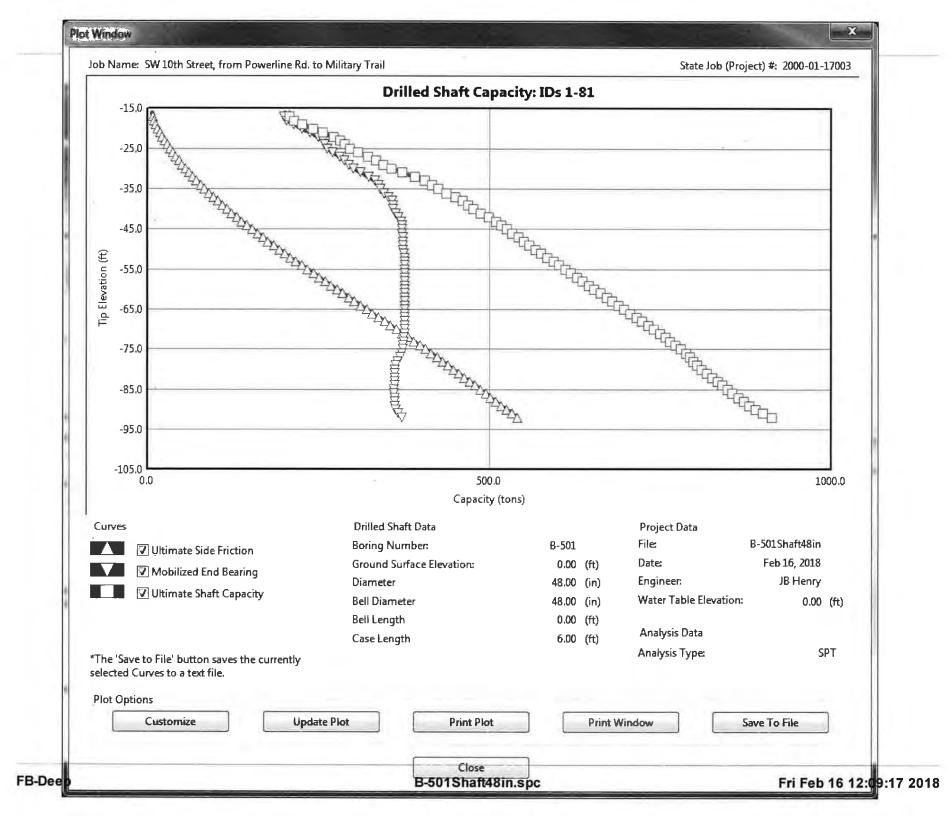

B-601Shaft60i n. out

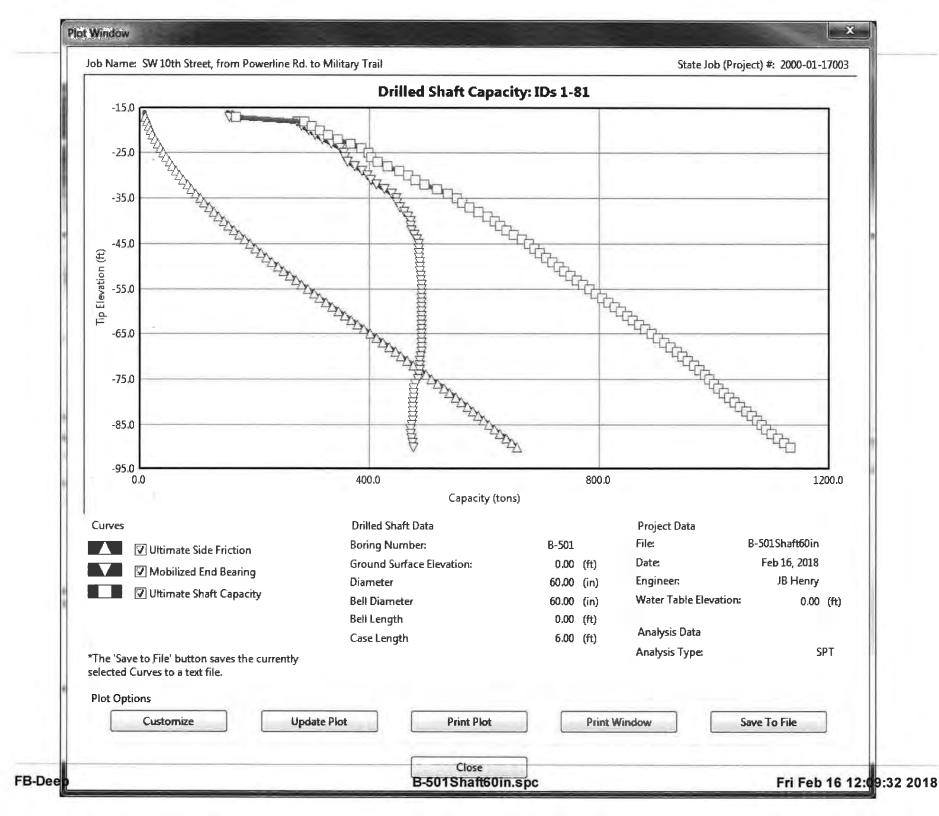

78	60.00	92.00 Soi I	Elevations Must	Extend At	or	Below Contribution Zon	ne
79	60.00	93. 00 Soi I	Elevations Must	Extend At	or	Below Contribution Zon	ne
80	60.00	94.00 Soi I	Elevations Must	Extend At	or	Below Contribution Zon	ne
81	60.00	95, 00 Soi I	Flevations Must	Extend At	or	Below Contribution 70	ne

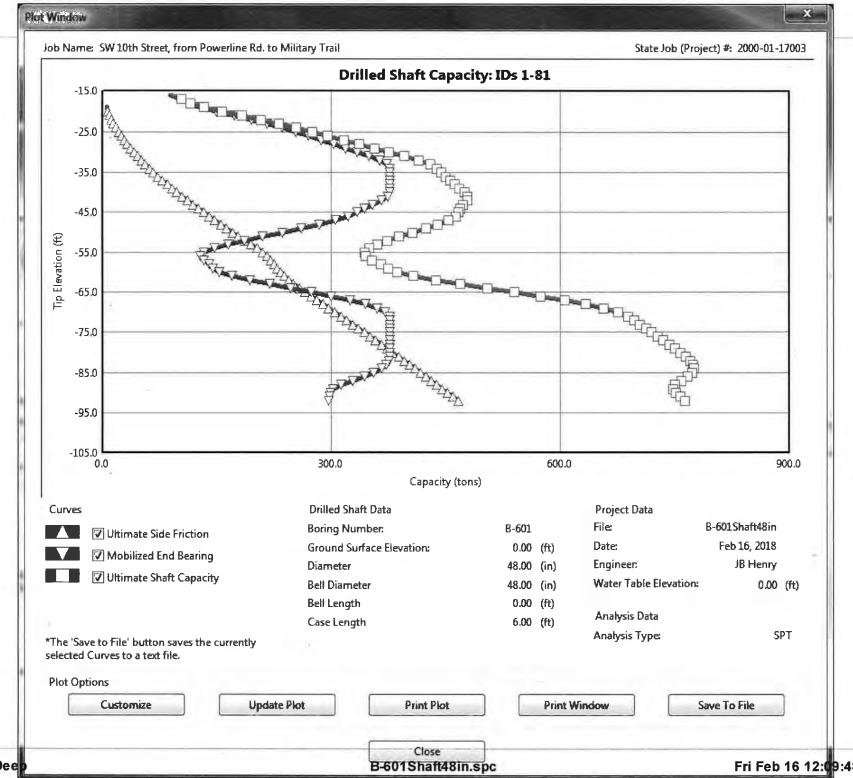












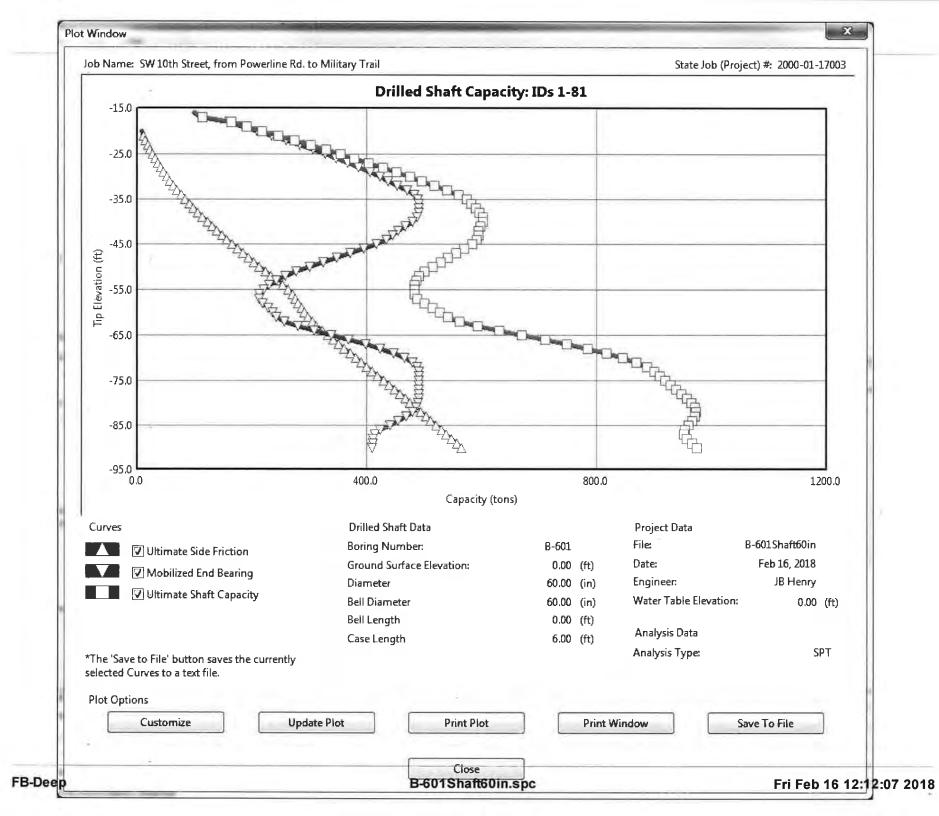


TABLE - 3

Project: SW 10th St

From Powerline to Military Trail [Reference Borings: B-101]

Summary of Recommended Soil Parameters for FB-Pier Analysis for Driven Piles (18&24in)

Note: Reduction of N-Values is applied for soil in	1		1 2	1 2	1 4	I avan E	1 C	1 7	1 0	1 0	Lauran 40
Elevations and Soil Type:	Layer 0	Layer 1	Layer 2	Layer 3	Layer 4	Layer 5	Layer 6	Layer 7	Layer 8	Layer 9	Layer 10
Depth at top of layer (ft) Ground Level		0	1	15	20	35	45	53	63	70	95
Depth at bottom of layer (ft)		1	15	20	35	45	53	63	70	95	100
Depth at water table (ft)		3.6									
Elevation at top of layer (ft, NAVD)		0	-1	-15	-20	-35	-45	-53	-63	-70	-95
Elevation at bottom of layer (ft, NAVD)		-1	-15	-20	-35	-45	-53	-63	-70	-95	-100
Water Table Elevation (ft, NAVD)		-3.6									
Soil Layer Type (Cohesionless, Rock)	Cohesionless	Cohesionless	Rock	Cohesionless							
USCS Soil Layer Type	Fill	SP-SM	LS	SP-SM	SP	SP, SP-SM	SP, SP-SM	SP-SM	SP, SP-SM	SP-SM	SP, SP-SM+LS (Modele as Sandy Gravel)
Average SPT N value (Blows/ft) (Safety)		18.6	42.7	19.8	38.7	69.1	53.3	68.2	62.8	68.1	77.5
Soil Properties for Lateral Soil Model:											
Lateral Soil Model		1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)
Internal Friction Angle, Φ (degrees)		33	40	33	38	38	38	38	38	38	40
Subgrade Soil Modulus, RK (pci)		52	119	55	107	125	125	125	125	125	125
Total Unit Weight, γ (pcf)		110	135	110	120	125	125	125	125	125	130
Soil Properties for Axial Soil Model:											
Axial Soil Model		1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)
Poisson's Ratio, µ		0.25	0.23	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.30
Young's Modulus, Eem (psf)		370,000	4,260,000	390,000	770,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000
Shear Modulus, Gem (ksi)		1.0	12.1	1.1	2.1	2.7	2.7	2.7	2.7	2.7	2.7
Vertical Failure Shear Stress (psf)		707	854	754	1469	2627	2026	2592	2388	2587	2945
Soil Properties for Torsional Soil Model:	1										
Torsional Soil Model		Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic
Torsional Shear Stress (psf)		707	854	754	1469	2627	2026	2592	2388	2587	2945
Torsional Stream Stress (psr)		707	004	754	1409	2021	2020	2592	2300	2307	2945
Soil Properties for Tip Soil Model:											-
Tip Soil Model		1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)
Shear Modulus, G (ksi)		1.03	12.05	1.10	2.06	2.67	2.67	2.67	2.67	2.67	2.67
Poisson's Ratio, μ		0.25	0.23	0.25	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Axial Bearing Failure Load, Qult (kip), 18" Pile		268	692	286	557	995	768	982	905	980	1116
Axial Bearing Failure Load, Qult (kip), 24" Pile		476	1229	508	989	1770	1365	1746	1608	1743	1984
Table 1. P-Y Curves for Rock	1			l		l					
Unconfined Compressive Strength, q _u (psf)	+		42000								
Undrained Strength, S _u (psi) =	+	<u> </u>	148		<u> </u>		<u> </u>		<u> </u>	<u> </u>	
ondianica onengin, o _u (pai) -			140								

TABLE - 3

Project: SW 10th St

From Powerline to Military Trail [Reference Borings: B-201]

Summary of Recommended Soil Parameters for FB-Pier Analysis for Driven Piles (18&24in)

Note: Reduction of N-values is applied for soil in t	ine preaming zoi	ne (0 to 10).											
Elevations and Soil Type:	Layer 0	Layer 1	Layer 2	Layer 3	Layer 4	Layer 5	Layer 6	Layer 7	Layer 8	Layer 9	Layer 10	Layer 11	Layer 12
Depth at top of layer (ft) Ground Level		0	4	6	12	20	23	45	50	70	75	90	93
Depth at bottom of layer (ft)		4	6	12	20	23	45	50	70	75	90	93	100
Depth at water table (ft)		5.8											
Elevation at top of layer (ft, NAVD)		0	0	-4	-12	-20	-23	-45	-50	-70	-75	-90	-93
Elevation at bottom of layer (ft, NAVD)		-4	-6	-12	-20	-23	-45	-50	-70	-75	-90	-93	-100
Water Table Elevation (ft, NAVD)		-5.8											
Soil Layer Type (Cohesionless, Rock)	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless
USCS Soil Layer Type	Fill	SP, SP-SM	OL (Muck)	SP, SP-SM	SP-SM	SP	SP	SP-SM	SP-SM	SP, SP-SM	SP-SM	SP	SP-SM
Average SPT N value (Blows/ft) (Safety)		32.2	1.0	9.9	34.7	19.8	67.1	27.3	66.8	51.5	68.8	29.8	55.8
Soil Properties for Lateral Soil Model:													
Lateral Soil Model		1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)
Internal Friction Angle, Φ (degrees)		36	24	30	37	33	38	35	38	38	38	35	38
Subgrade Soil Modulus, RK (pci)		90	3	28	96	55	125	76	125	125	125	83	125
Total Unit Weight, γ (pcf)		120	100	105	120	110	125	115	125	125	125	115	125
		_											
Soil Properties for Axial Soil Model:			_	_	_	_		_	_	_	_	_	
Axial Soil Model		1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)
Poisson's Ratio, μ		0.30	0.20	0.20	0.30	0.25	0.30	0.25	0.30	0.30	0.30	0.25	0.30
Young's Modulus, Eem (psf)		640,000	20,000	190,000	690,000	390,000	1,000,000	540,000	1,000,000	1,000,000	1,000,000	590,000	1,000,000
Shear Modulus, Gem (ksi)		1.7	0.1	0.6	1.9	1.1	2.7	1.5	2.7	2.7	2.7	1.7	2.7
Vertical Failure Shear Stress (psf)		1225	38	377	1319	754	2550	1037	2539	1955	2615	1131	2120
	•												
Soil Properties for Torsional Soil Model:				1	1							1	•
Torsional Soil Model		Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic
Torsional Shear Stress (psf)		1225	38	377	1319	754	2550	1037	2539	1955	2615	1131	2120
Soil Properties for Tip Soil Model:												ı	
Tip Soil Model		1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	2 (McVay)
Shear Modulus, G (ksi)		1.72	0.06	0.57	1.85	1.10	2.67	1.52	2.67	2.67	2.67	1.65	2.67
Poisson's Ratio, μ		0.3	0.2	0.2	0.3	0.25	0.3	0.25	0.3	0.3	0.3	0.25	0.3
Axial Bearing Failure Load, Qult (kip), 18" Pile		464	14	143	500	286	966	393	962	741	991	429	804
Axial Bearing Failure Load, Qult (kip), 24" Pile		825	26	254	889	508	1718	698	1710	1317	1762	762	1428
			_			_		_	_	_	_		
Table 1. P-Y Curves for Rock													
Unconfined Compressive Strength, q _u (psf)													
Undrained Strength, S _u (psi) =													

TABLE - 3

Project: SW 10th St

From Powerline to Military Trail [Reference Borings: B-301]

Summary of Recommended Soil Parameters for FB-Pier Analysis for Driven Piles (18&24in)

Note: Reduction of N-values is applied for soil in	ine predming zor	ne (0 to 10).										
Elevations and Soil Type:	Layer 0	Layer 1	Layer 2	Layer 3	Layer 4	Layer 5	Layer 6	Layer 7	Layer 8	Layer 9	Layer 10	Layer 11
Depth at top of layer (ft) Ground Level		0	2	6	8	10	13.5	18	45	50	85	90
Depth at bottom of layer (ft)		2	6	8	10	13.5	18	45	50	85	90	100
Depth at water table (ft)		3.8										
Elevation at top of layer (ft, NAVD)		0	-2	-6	-8	-10	-13.5	-18	-45	-50	-85	-90
Elevation at bottom of layer (ft, NAVD)		-2	-6	-8	-10	-13.5	-18	-45	-50	-85	-90	-100
Water Table Elevation (ft, NAVD)		-3.8										
Soil Layer Type (Cohesionless, Rock)	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Rock	Cohesionless						
USCS Soil Layer Type	Fill	SP, SP-SM	SM	SM, SP-SM	LS	SM, SP-SM	SP, SP-SM	SP	SC	SP-SM	SP, SP-SM	SP-SM
Average SPT N value (Blows/ft) (Safety)		19.8	36.0	34.7	23.6	12.4	19.2	51.9	11.2	60.9	83.1	43.1
Soil Properties for Lateral Soil Model:			1	1		1	1		ı			
Lateral Soil Model		1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)
Internal Friction Angle, Φ (degrees)		33	35	37	39	31	33	38	31	38	38	38
Subgrade Soil Modulus, RK (pci)		55	100	96	65	34	53	125	31	125	125	120
Total Unit Weight, γ (pcf)		110	120	120	125	110	110	125	110	125	125	125
Soil Properties for Axial Soil Model:		I										
Axial Soil Model		1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)
Poisson's Ratio, µ		0.25	0.30	0.30	0.23	0.25	0.25	0.30	0.25	0.30	0.30	0.30
Young's Modulus, Eem (psf)		390,000	710,000	690,000	2,350,000	240,000	380,000	1,000,000	220,000	1,000,000	1,000,000	860,000
Shear Modulus, Gem (ksi)		1.1	1.9	1.9	6.7	0.7	1.1	2.7	0.6	2.7	2.7	2.3
Vertical Failure Shear Stress (psf)		754	1366	1319	471	471	730	1970	424	2316	3157	1637
vertical i aliare official offices (psi)		704	1000	1010	7/1	771	700	1370	727	2010	0101	1007
Soil Properties for Torsional Soil Model:												
Torsional Soil Model		Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic
Torsional Shear Stress (psf)		754	1366	1319	471	471	730	1970	424	2316	3157	1637
Soil Properties for Tip Soil Model:												
Tip Soil Model		1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	2 (McVay)
Shear Modulus, G (ksi)		1.10	1.92	1.85	6.65	0.69	1.07	2.67	0.62	2.67	2.67	2.30
Poisson's Ratio, μ		0.25	0.3	0.3	0.23	0.25	0.25	0.3	0.25	0.3	0.3	0.3
Axial Bearing Failure Load, Qult (kip), 18" Pile		286	518	500	382	179	277	747	161	878	1196	620
Axial Bearing Failure Load, Qult (kip), 24" Pile		508	921	889	679	317	492	1327	286	1560	2127	1103
	•	1										
Table 1. P-Y Curves for Rock						•				•	•	
Unconfined Compressive Strength, q _u (psf)					23000							
Undrained Strength, S _u (psi) =					82							

TABLE - 3 Project: SW 10th St

From Powerline to Military Trail [Reference Borings: B-401]

Summary of Recommended Soil Parameters for FB-Pier Analysis for Driven Piles (18&24in)

Note: Reduction of N-Values is applied for soil in	the predrilling zo	ne (0 to 10').	1	1		1			1	1	1	
Elevations and Soil Type:	Layer 0	Layer 1	Layer 2	Layer 3	Layer 4	Layer 5	Layer 6	Layer 7	Layer 8	Layer 9	Layer 10	Layer 11
Depth at top of layer (ft) Ground Level		0	6	8	10	12	33	48	53	75	80	83
Depth at bottom of layer (ft)		6	8	10	12	33	48	53	75	80	83	100
Depth at water table (ft)		5.0										
Elevation at top of layer (ft, NAVD)		0	-6	-8	-10	-12	-33	-48	-53	-75	-80	-83
Elevation at bottom of layer (ft, NAVD)		-6	-8	-10	-12	-33	-48	-53	-75	-80	-83	-100
Water Table Elevation (ft, NAVD)		-5.0										
Soil Layer Type (Cohesionless, Rock)	Cohesionless	Cohesionless	Rock	Cohesionless	Rock	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Rock	Cohesionless
USCS Soil Layer Type	Fill	SP, SP-SM	LS	SP-SM	LS	SP	SP	SP, SP-SM	SP-SM	SM, SP-SM	LS	SP, SP-SM
Average SPT N value (Blows/ft) (Safety)		11.2	24.8	29.8	18.6	33.2	54.2	42.8	60.9	27.3	74.4	62.8
Soil Properties for Lateral Soil Model:												
Lateral Soil Model		1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)
Internal Friction Angle, Φ (degrees)		31	39	35	38	36	38	38	38	35	40	38
Subgrade Soil Modulus, RK (pci)		31	69	83	52	92	125	119	125	76	125	125
Total Unit Weight, γ (pcf)		110	125	115	120	120	125	125	125	115	135	125
Soil Properties for Axial Soil Model:	1											
Axial Soil Model		1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)
Poisson's Ratio, μ		0.25	0.23	0.25	0.23	0.30	0.30	0.30	0.30	0.25	3.23	0.30
Young's Modulus, Eem (psf)		220,000	2,480,000	590,000	1,860,000	660,000	1,000,000	850,000	1,000,000	540,000	7,440,000	1,000,000
Shear Modulus, Gem (ksi)		0.6	7.0	1.7	5.3	1.8	2.7	2.3	2.7	1.5	6.1	2.7
Vertical Failure Shear Stress (psf)		424	496	1131	372	1260	2058	1626	2314	1037	1488	2388
Soil Properties for Torsional Soil Model:												
Torsional Soil Model		Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic
Torsional Shear Stress (psf)		424	496	1131	372	1260	2058	1626	2314	1037	1488	2388
Soil Properties for Tip Soil Model:												
Tip Soil Model		1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	3 (McVay)
Shear Modulus, G (ksi)		0.62	7.00	1.65	5.25	1.77	2.67	2.29	2.67	1.52	6.11	2.67
Poisson's Ratio, µ		0.25	0.23	0.25	0.23	0.3	0.3	0.3	0.3	0.25	3.23	0.3
Axial Bearing Failure Load, Qult (kip), 18" Pile		161	402	429	301	478	780	616	877	393	1205	905
Axial Bearing Failure Load, Qult (kip), 24" Pile		286	714	762	536	849	1386	1095	1559	698	2143	1608
Table 1. P-Y Curves for Rock	1]										
Unconfined Compressive Strength, q _u (psf)			24000		18000						50000	
Undrained Strength, S _u (psi) =	1		86	1	65						174	

TABLE - 3 Project: SW 10th St

From Powerline to Military Trail [Reference Borings: B-501]

Summary of Recommended Soil Parameters for FB-Pier Analysis for Driven Piles (18&24in)

Note. Reduction of N-values is applied for soil in t	ne predming zoi	ne (0 to 10).											
Elevations and Soil Type:	Layer 0	Layer 1	Layer 2	Layer 3	Layer 4	Layer 5	Layer 6	Layer 7	Layer 8	Layer 9	Layer 10	Layer 11	Layer 12
Depth at top of layer (ft) Ground Level		0	3	8	12	18	25	30	55	78	80	83	90
Depth at bottom of layer (ft)		3	8	12	18	25	30	55	78	80	83	90	100
Depth at water table (ft)		5.3											
Elevation at top of layer (ft, NAVD)		0	-3	-8	-12	-18	-25	-30	-55	-78	-80	-83	-90
Elevation at bottom of layer (ft, NAVD)		-3	-8	-12	-18	-25	-30	-55	-78	-80	-83	-90	-100
Water Table Elevation (ft, NAVD)		-5.3											
Soil Layer Type (Cohesionless, Rock)	Cohesionless	Cohesionless	Rock	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless
USCS Soil Layer Type	Fill	SP, SP-SM	LS	SP-SM	SP	SP	SP, SP-SM	SP	SP-SM	SP	SP-SM	SP	SP, SP-SM
Average SPT N value (Blows/ft) (Safety)		9.9	19.8	32.2	18.2	33.9	35.3	61.3	76.2	90.5	47.1	50.8	78.7
Soil Properties for Lateral Soil Model:				<u> </u>				<u> </u>			<u> </u>		
Lateral Soil Model		1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)
Internal Friction Angle, Φ (degrees)		30	38	36	33	36	37	38	38	38	38	38	38
Subgrade Soil Modulus, RK (pci)		28	55	90	51	94	98	125	125	125	125	125	125
Total Unit Weight, γ (pcf)		105	120	120	110	120	120	125	125	125	125	125	125
					•	•	•		•			•	•
Soil Properties for Axial Soil Model:													
Axial Soil Model		1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)
Poisson's Ratio, μ		0.20	0.23	0.30	0.25	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30
Young's Modulus, Eem (psf)		190,000	1,980,000	640,000	360,000	670,000	700,000	1,000,000	1,000,000	1,000,000	940,000	1,000,000	1,000,000
Shear Modulus, Gem (ksi)		0.6	5.6	1.7	1.0	1.8	1.9	2.7	2.7	2.7	2.5	2.7	2.7
Vertical Failure Shear Stress (psf)		377	397	1225	691	1288	1343	2328	2895	3440	1791	1932	2992
Soil Properties for Torsional Soil Model:		I											
Torsional Soil Model:		Llymarhalia	Umarhalia	Llymarhalia	Llymarhalia	Llymarhalia	Llymarhalia	Llymarhalia	Umarhalia	Umarhalia	Umarhalia	Umarhalia	Umarhalia
		Hyperbolic 377	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic 2895	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic
Torsional Shear Stress (psf)		3//	397	1225	691	1288	1343	2328	2895	3440	1791	1932	2992
Soil Properties for Tip Soil Model:											l		
Tip Soil Model		1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	2 (McVay)	3 (McVay)
Shear Modulus, G (ksi)		0.57	5.60	1.72	1.01	1.81	1.89	2.67	2.67	2.67	2.52	2.67	2.67
Poisson's Ratio, µ		0.2	0.23	0.3	0.25	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Axial Bearing Failure Load, Qult (kip), 18" Pile		143	321	464	262	488	509	882	1097	1303	679	732	1134
Axial Bearing Failure Load, Qult (kip), 24" Pile		254	571	825	466	868	905	1568	1950	2317	1206	1302	2016
Table 1. P-Y Curves for Rock													
Unconfined Compressive Strength, q _{ii} (psf)			19000										
												+	
Undrained Strength, S _u (psi) =			69										

TABLE - 3 Project: SW 10th St

From Powerline to Military Trail [Reference Borings: B-601]

Summary of Recommended Soil Parameters for FB-Pier Analysis for Driven Piles (18&24in)

Note: Reduction of N-Values is applied for soil in t	he predrilling zor	ne (0 to 10').											
Elevations and Soil Type:	Layer 0	Layer 1	Layer 2	Layer 3	Layer 4	Layer 5	Layer 6	Layer 7	Layer 8	Layer 9	Layer 10	Layer 11	Layer 12
Depth at top of layer (ft) Ground Level		0	6	15	18	28	50	55	63	67	75	93	98
Depth at bottom of layer (ft)		6	15	18	28	50	55	63	67	75	93	98	100
Depth at water table (ft)		7.7											
Elevation at top of layer (ft, NAVD)		0	-6	-15	-18	-28	-50	-55	-63	-67	-75	-93	-98
Elevation at bottom of layer (ft, NAVD)		-6	-15	-18	-28	-50	-55	-63	-67	-75	-93	-98	-100
Water Table Elevation (ft, NAVD)		-7.7											
Soil Layer Type (Cohesionless, Rock)	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Rock	Cohesionless	Cohesionless	Cohesionless
USCS Soil Layer Type	Fill	SP	SP	SM	SP, SP-SM	SP	SP, SP-SM	SP, SP-SM	SP-SM	LS	SP-SM	SP, SP-SM	SP, SP-SM
Average SPT N value (Blows/ft) (Safety)		30.2	5.7	7.4	21.4	79.5	27.3	5.4	28.5	74.4	68.4	19.8	52.1
Soil Properties for Lateral Soil Model:													<u> </u>
Lateral Soil Model		1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)	1 (O'Neill)
Internal Friction Angle, Φ (degrees)		36	29	30	33	38	35	29	35	40	38	33	38
Subgrade Soil Modulus, RK (pci)		84	16	21	59	125	76	15	79	125	125	55	125
Total Unit Weight, γ (pcf)		120	105	105	115	125	115	105	115	135	125	110	125
Soil Properties for Axial Soil Model:													
Axial Soil Model		1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)
Poisson's Ratio, μ		0.30	0.20	0.20	0.25	0.30	0.25	0.20	0.25	1.23	0.30	0.25	0.30
Young's Modulus, Eem (psf)		600,000	110,000	140,000	420,000	1,000,000	540,000	100,000	570,000	7,440,000	1,000,000	390,000	1,000,000
Shear Modulus, Gem (ksi)		1.6	0.3	0.4	1.2	2.7	1.5	0.3	1.6	11.6	2.7	1.1	2.7
Vertical Failure Shear Stress (psf)		1146	217	283	813	3021	1037	204	1084	1488	2598	754	1979
Soil Properties for Torsional Soil Model:													
Torsional Soil Model		Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic
Torsional Shear Stress (psf)		1146	217	283	813	3021	1037	204	1084	1488	2598	754	1979
Soil Properties for Tip Soil Model:													
Tip Soil Model		1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	1 (McVay)	2 (McVay)
Shear Modulus, G (ksi)		1.61	0.33	0.43	1.19	2.67	1.52	0.31	1.58	11.58	2.67	1.10	2.67
Poisson's Ratio, µ		0.3	0.2	0.2	0.25	0.3	0.25	0.2	0.25	1.23	0.3	0.25	0.3
Axial Bearing Failure Load, Qult (kip), 18" Pile		434	82	107	308	1145	393	77	411	1205	985	286	750
Axial Bearing Failure Load, Qult (kip), 24" Pile		772	146	190	548	2035	698	137	730	2143	1751	508	1333
Table 1. P-Y Curves for Rock													
Unconfined Compressive Strength, q _u (psf)										50000			†
Undrained Strength, S _{II} (psi) =	+				1	1	1	1	1	-	1	1	+

SR-869

BROWARD

439891-1-22-02

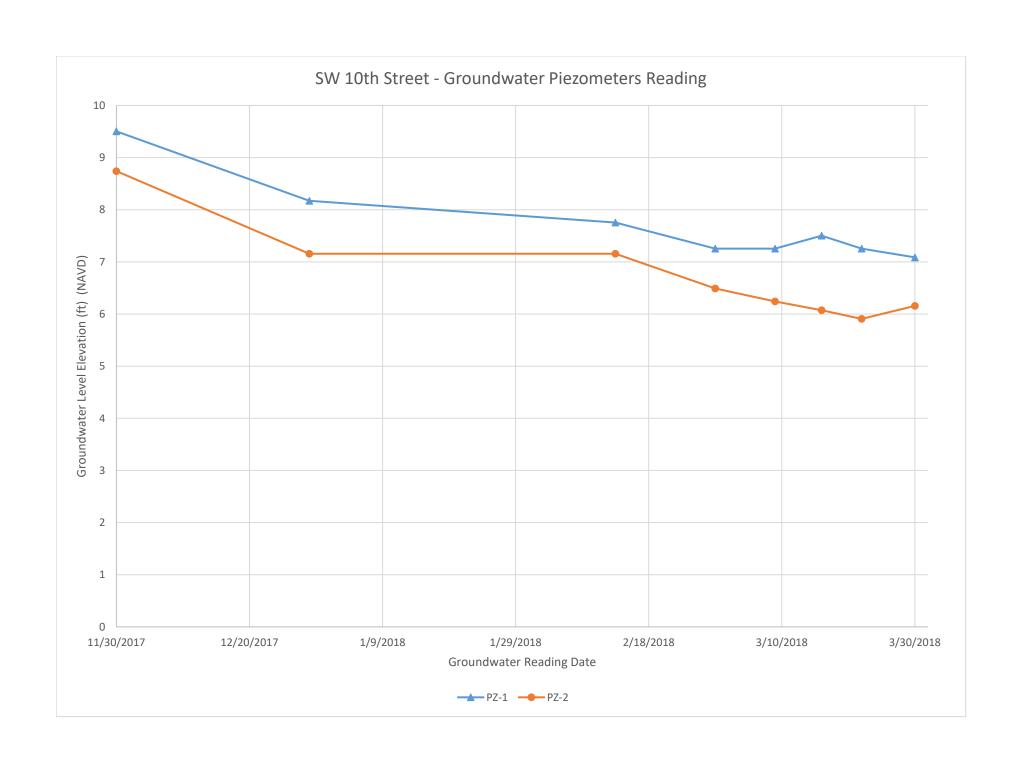
GCME, INC. 1730 W. 10TH STREET RIVIERA BEACH, FLORIDA 33404 CERTIFICATE OF AUTHORIZATION NO. 9076

MONITORING WELL PLAN PLATE-2

Project: PD&E SW 10th St from Powerline Rd to Military Trail

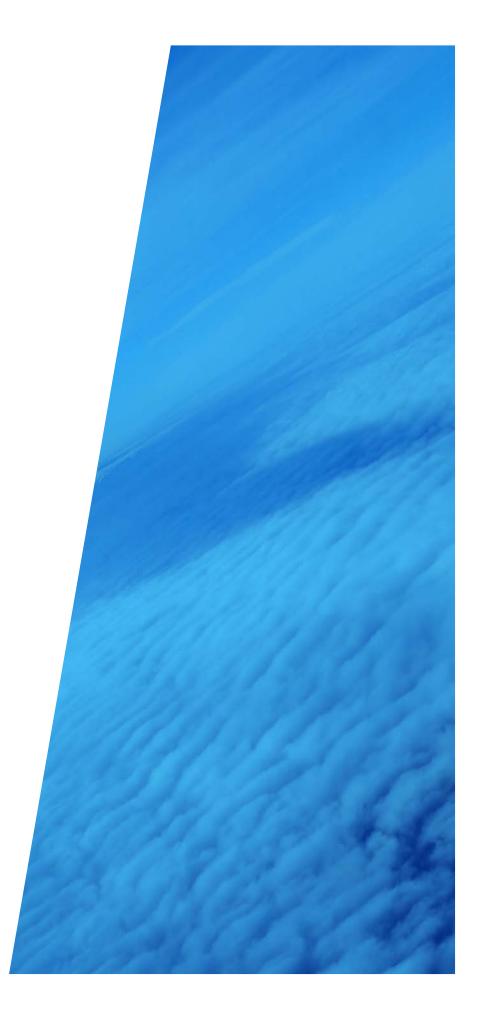
FPID #: 439891-1-22-01

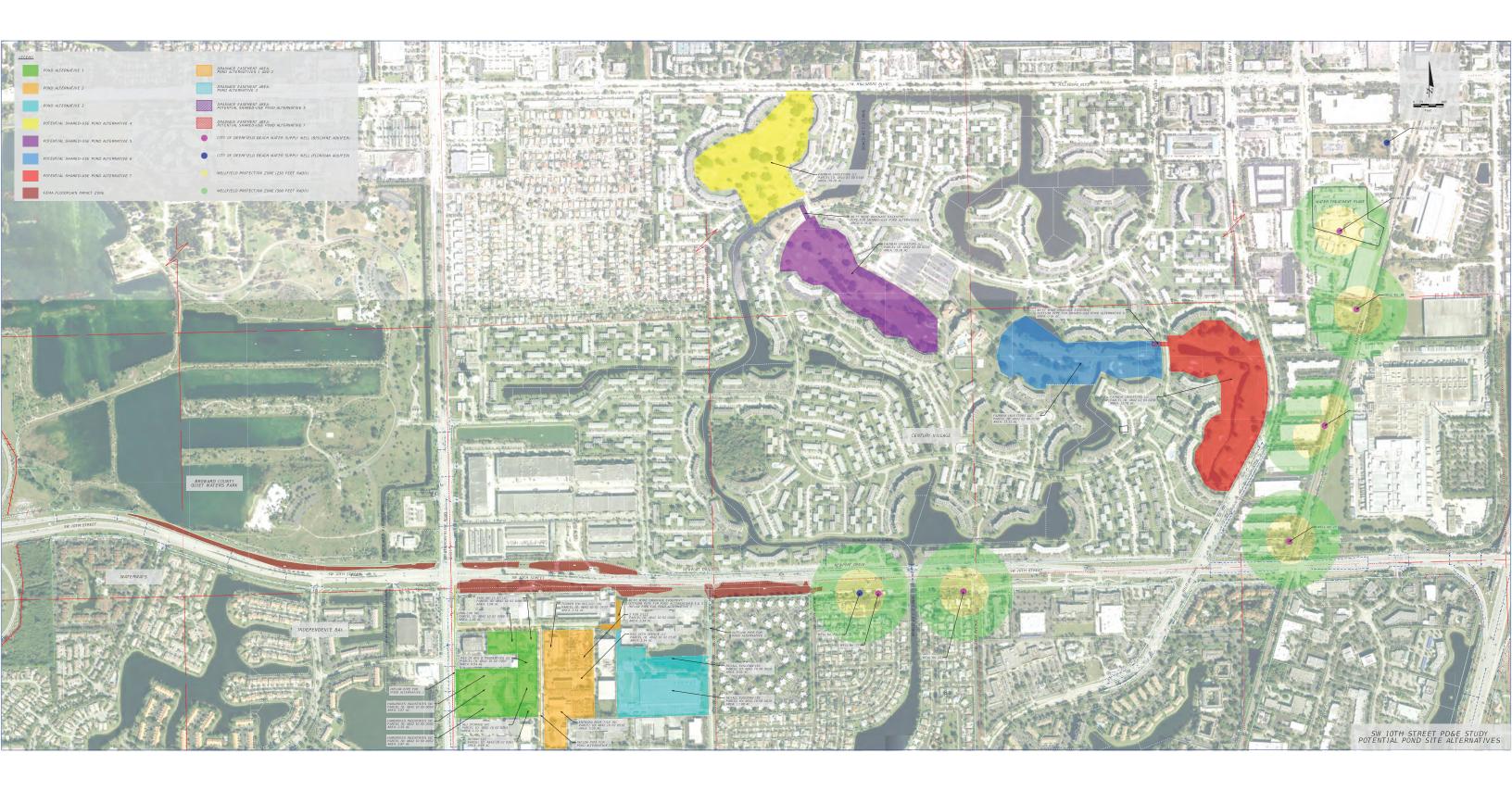
GCME Project #: 2000-01-17003


ID	Latitude	Longitude	Top of PVC Pipe (Elevation)	GWT_Depth (From Top of Pipe to Groundwater)	Date	GWT (Elevation)	Comment (Wether, etc.)
PZ-1	26°18'14.06"N	80° 8'34.07"W	12.42	2.92	11/30/2017	9.50	Sunny
PZ-1	26°18'14.06"N	80° 8'34.07"W	12.42	4.25	12/29/2017	8.17	Sunny
PZ-1	26°18'14.06"N	80° 8'34.07"W	12.42	4.67	2/13/2018	7.75	Sunny
PZ-1	26°18'14.06"N	80° 8'34.07"W	12.42	5.17	2/28/2018	7.25	Sunny
PZ-1	26°18'14.06"N	80° 8'34.07"W	12.42	5.17	3/9/2018	7.25	Sunny
PZ-1	26°18'14.06"N	80° 8'34.07"W	12.42	4.92	3/16/2018	7.50	Sunny
PZ-1	26°18'14.06"N	80° 8'34.07"W	12.42	5.17	3/22/2018	7.25	Sunny
PZ-1	26°18'14.06"N	80° 8'34.07"W	12.42	5.33	3/30/2018	7.09	Sunny

Project : PD&E SW 10th St from Powerline Rd to Military Trail

FPID #: 439891-1-22-01


GCME Project #: 2000-01-17003


ID	Latitude	Longitude	Top of PVC Pipe (Elevation)	GWT_Depth (From Top of Pipe to Groundwater)	Date	GWT (Elevation)	Comment (Wether, etc.)
PZ-2	26°18'14.91"N	80° 7'58.37"W	14.49	5.75	11/30/2017	8.74	Sunny
PZ-2	26°18'14.91"N	80° 7'58.37"W	14.49	7.33	12/29/2017	7.16	Sunny
PZ-2	26°18'14.91"N	80° 7'58.37"W	14.49	7.33	2/13/2018	7.16	Sunny
PZ-2	26°18'14.91"N	80° 7'58.37"W	14.49	8.00	2/28/2018	6.49	Sunny
PZ-2	26°18'14.91"N	80° 7'58.37"W	14.49	8.25	3/9/2018	6.24	Sunny
PZ-2	26°18'14.91"N	80° 7'58.37"W	14.49	8.42	3/16/2018	6.07	Sunny
PZ-2	26°18'14.91"N	80° 7'58.37"W	14.49	8.58	3/22/2018	5.91	Sunny
PZ-2	26°18'14.91"N	80° 7'58.37"W	14.49	8.33	3/30/2018	6.16	Sunny

APPENDIX I

POND SITING
DOCUMENTATION

		Conventional Por	nd Site Alter	natives Evalu	ıation Matri	<u>x</u>		[Uncon	ventional Pond Site Asse	<u>sment</u>
	Weight of Factor	Factor	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score	Century Village Potential 'SHARED USE' Pond Alternatives Assessment Summary		
	1-10		1-10		1-10		1-10		1-10	1-10	1-10
		Alternative Number		1		2		3	4	5	6
		Brief Description of Alternative	Pond Site A	Iternative #1	Pond Site A	lternative #2	Pond Site /	Alternative #3	Potential Shared-Use Pond Alternative 4	Potential Shared-Use Pond Alternative 5	Potential Shared-Use Pond Alternative 6
		Parcel Number(s) - Pond Site(s)	4842 10 02 0260 4842 10 00 0052	the state of the s		4842 10 02 0430, 4842 10 02 0500 4842 10 02 0530, 4842 10 02 0510		0 06 0010 0 06 0020	4842 03 00 0140	4842 03 00 0233	4842 02 00 0238
		Parcel Size (Acres) - Pond Site(s)	12	.82	12	2.07	1	3.54	19.26	19.18	17.11
		Parcel Number(s) - Easement(s)		, 4842 10 06 0070 0 06 0080), 4842 10 06 0070 0 06 0080		.0 06 0070 .0 06 0080	-	4242 03 00 0234 4242 03 00 0146	-
		Parcel Size (Acres) - Easement(s)	0.	.42	0	.42	(0.45	0*	0.14*	0*
		Total Parcel Costs	\$	14,478,590.00	\$	28,761,820.00	\$	35,676,032.00	14033884*	14089743*	TBD*
1.00	7.00	Zoning (Right of Way)	1.00	7.00	2.00	14.00	3.00	21.00	Pond Construction falls within zoning for	parcels	
2.00	7.00	Land Use	1.00	7.00	2.00	14.00	3.00	21.00	If mutual agreement is reached with CV w	ill fall within their land use plans	
3.00	10.00	Right of Way	1.00	10.00	2.00	20.00	3.00	30.00	Right of Way is currently Vacant		
4.00	8.00	Drainage considerations	4.00	32.00	4.00	32.00	6.00	48.00	Parcels are adjacent to C-2 and adjacent of	anal system making connectivity of syster	n straight forward
5.00	6.00	Flood Zone FEMA	3.00	18.00	9.00	54.00	7.00	42.00	Majority of the pond areas are outside the benefits	e 100-year floodplain so pond excavation	will provide floodplain compensation
6.00	10.00	Contamination and Hazardous Materials	4.00	40.00	1.00	10.00	4.00	40.00	Excavation for ponds will be tested and tre	eated as required by permitting agencies,	arsenic levels are expected
7.00	4.00	Utilities	2.00	8.00	2.00	8.00	3.00	12.00	No major utility impacts are anticipated w	ith these parcels	
8.00	2.00	Threatened and Endangered Species and Associated Costs	2.00	4.00	2.00	4.00	2.00	4.00	No threatened or endangered species con	cerns	
9.00	2.00	Noise	0.00	0.00	0.00	0.00	0.00	0.00	No permanent noise impacts, there will be	e disruptions during construction that can	be mitigated and restricted to certain
10.00	1.00	Wetlands and protected Uplands and Associated Costs	1.00	1.00	1.00	1.00	1.00	1.00	No wetland or protected uplands with the	se parcels	
11.00	1.00	Cultural Resources Involvement and Associated Costs	6.00	6.00	6.00	6.00	10.00	10.00	No cultural resource involvement		
12.00		Section 4(f)	0.00	0.00	0.00	0.00	0.00	0.00	No Section 4(f) involvement		
13.00	6.00	Public Wellfield	10.00	60.00	10.00	60.00	10.00	60.00	Outside of protected influence area of any	public wellfields	
14.00	5.00	Construction	6.00	30.00	3.00	15.00	5.00	25.00	Construction disruption can be restricted	to specific hours and haul routes can be m	nitigated to minimize impacts to
15.00	5.00	Maintenance	5.00	25.00	7.00	35.00	3.00	15.00	Maintenance should be minimal		
16.00	3.00	Aesthetics	5.00	15.00	5.00	15.00	3.00	9.00	Pond system can fit within park scheme a	nd provide aesthetic enhancements to the	e area
17.00	7.00	Public Opinion and Adjacent Residency Concerns	5.00	35.00	5.00	35.00	5.00	35.00	This most likely could vary among residen	ts as opinion of the road project can influ	ence attitudes to a 'shared use'
18.00	0.00	Other	8.00	0.00	8.00	0.00	8.00	0.00	These 'unconventional' pond alternatives	have potential to provide mutual benefits	to the Department's overall storm water
		Comments							A 'Shared Use' agreement must be mutua	l for the 'unconventional' pond alternativ	es to move forward.
		Score	298	8.00	32	3.00	37	73.00			
		Ranking		7		6		5			

^{*} Parcel Size for Pond area is anticipated to be approximately 12 Acres that can vary between one or all three Century Village Parcels with an estimated Cost of approximately \$14M.

Project: SW 10th Street Connector **FPID No:** 439891-1-22-02

> PD&E Study Contract No.: C9V60

Meeting Place: Broward County Meeting Date: 2/21/18

1 N. University Drive **Meeting Time:** 2:00 p.m.

Plantation, FL

Participants: See sign-in sheet for attendees

FDOT-BCEPGMD Drainage Coordination Meeting Purpose:

Introductions

Project Overview

- 1. After introductions, Chris Jackson, RS&H Senior Drainage Engineer, provided a brief project overview and indicated the purpose of the meeting was to discuss potential impacts to Broward County Water Control District (BCWCD) #2 surface water management infrastructure. He discussed the preliminary alignments that were currently under evaluation as part of the Florida Department of Transportation (FDOT) SW 10th Street Project Development & Environment (PD&E) study.
- 2. Chris presented a stacked exhibit illustrating a northern alignment and a center alignment, both consisting of typical sections with four managed lanes within a depressed open cut section primarily serving traffic to/from the Sawgrass, Turnpike, and I-95, along with four at-grade, local general purpose lanes serving local SW 10th Street traffic.
- 3. Chris stated that the project is under a fast-track schedule since FDOT is planning to move directly from the PD&E study phase into the Design-Build phase, allowing for the proposed managed lanes to connect with the I-95 express lanes, which are currently under construction. He stated that the project is currently funded in 2025, however, funding is expected to become available sooner.

Drainage Overview

- 4. Chris indicated that the project is located within the South Florida Water Management District (SFWMD) Hillsboro Canal drainage basin and the BCWCD C-2 basin. He noted the project falls under the regulatory jurisdiction of SFWMD, as well as BCEPGMD since existing BCWCD #2 infrastructure and right-of-way is proposed to be impacted.
- 5. Chris indicated that portions of the project fall within the FEMA 100-year floodplain and the City of Deerfield Beach Wellfield zone of influence.
- 6. Chris provided an overview of the existing drainage. He indicated that the C-2 basin is controlled by one structure (S-4) at the north end of the C-2 Canal which discharges to the SFWMD Hillsboro Canal. He also indicated that, per prior correspondence with Carl Archie, BCWCD #2, the C-2 basin is designated as a "water quality basin" which provides storage, treatment, and groundwater control necessary to protect the wellfields from saltwater intrusion.

- 7. Chris acknowledged that stormwater treatment and attenuation would be required for the project. He also indicated that the project would likely impact the existing cross drains serving the BCWCD C-2 and C-3 canals.
- 8. Chris provided an overview of the potential stormwater management options. He stated that drainage and permit criteria could be achieved with the conventional approach of collecting and conveying project runoff to an adjacent, isolated offsite stormwater management facility for treatment and attenuation prior to discharge to receiving waters. Alternatively, he noted that the "water quality basin" designation provides additional flexibility by allowing for the potential of expanding/modifying any of the existing stormwater management facilities within the entire C-2 basin as needed to provide the required water quality, water quantity, and floodplain compensation volume for the project.
- 9. Chris indicated that the flexibility provided by the designation of the basin as a "water quality basin" would allow for modification/expansion of the existing stormwater management facilities such as the vacant golf course at Century Village and within the Deer Creek Golf Course, north of Hillsboro Boulevard. He noted that if these golf courses cannot be modified/expanded to accommodate the project, then FDOT would have very limited stormwater management options and would most likely need to acquire large offsite industrial parcels along the south side of the project.
- 10. Jose Portillo, BCEPGMD, agreed with the "water quality basin" designation but noted that FDOT would need to demonstrate no adverse impacts to conveyance at or near the point of inflow. Chris agreed with this concern and stated that FDOT would certainly evaluate any potential for adverse impacts.
- 11. Chris indicated that this "water quality basin" approach was also discussed at a meeting with SFWMD on February 15, 2018. He noted that SFWMD supported the approach but mentioned that there is no existing Environmental Resource Permit (ERP) for the C-2 basin and therefore a new ERP application would have to be submitted by Broward County if FDOT pursues this approach. The ERP application would require a model of the entire basin to demonstrate how it functions today. Carl and Jose stated there was no concern with this, but were unsure if this would require a new permit versus a modification to an existing permit, previously issued to Broward County for a project to the west of the SW 10th Street project.
- 12. Susan Juncosa, BCEPGMD, expressed concern with direct discharge of stormwater runoff to the C-2 Canal which is near the wellfields. She noted potential impacts to the wellfield and suggested that homeowners would be concerned that their ponds wouldn't be degraded. Chris stated that similar concerns were encountered with the I-595 project in which there was direct discharge to the Lago Mar and Pine Island Ridge golf courses, and explained that the Department committed to providing sumps and baffles on every inlet throughout the project along with pollution control box just upstream of the discharge point into the golf course pond systems. He noted a similar approach could be taken for this project.
- 13. Chris indicated that at the recent SFWMD meeting, Carlos de Rojas clarified that dry pretreatment retention is only required when the proposed stormwater management facilities are physically located within the wellfield zone of influence. Chris noted that while portions of the project falls within the wellfield zone of influence, none of the proposed stormwater management facilities do. He added that the proposed modifications/expansions to the stormwater management system could be limited to areas outside the wellfield zone of influence as well. Susan indicated that existing stormwater management facilities within the wellfield zone of influence could also become a concern since everything is interconnected.

- 14. Jose indicated that nutrient loading, particularly for nitrogen, could be a concern and inquired about the possibility of providing dry pre-treatment before discharging into the existing stormwater management system. Chris stated that it wouldn't be possible to provide dry pre-treatment within the existing corridor due to insufficient right-of-way width. However, he noted dry retention pre-treatment could be provided if roadway runoff was collected and conveyed by pipe to the offsite parcel located within the vacant golf course at Century Village, adjacent to Military Trail. Chris also stated that French drain might be able to be used along SW 10th Street to provide a limited amount of pre-treatment prior to discharge through a weir to the C-2 Canal. However, he had reservations since the need for pump stations to drain the depressed managed lanes section could make the use of French drain with weirs an unviable option. Susan and Jose also reaffirmed that French drains wouldn't be allowed within the wellfield zone of influence.
- 15. Susan inquired about the status of the Century Village golf course ownership, as she recalled a permit recently being submitted for a residential development. Chris stated that it is his understanding that there is a Memorandum of Agreement between the property owner, Fairway Investors LLC, and Toll Brothers for the three eastern vacant golf course parcels. However, he was unsure if the actual closing had yet gone through. Anson Sonnett, FDOT Project Manager, stated that Toll Brothers presented the City of Deerfield with plans to develop one parcel and turn the other two over to Century Village as passive parks but no approval has yet been given.
- 16. Chris stated that before putting too much effort into coordinating with Fairway Investors, Toll Brothers, or Deer Creek, FDOT needed to confirm the viability of the "water quality basin" approach. Otherwise, he noted, the focus would need to shift to traditional offsite pond siting and acquisition. Jose and Carl indicated that the "water quality basin" approach should be acceptable as long as the nutrient loading and pre-treatment concerns were properly addressed.
- 17. Chris indicated that the managed lanes depressed section would impact existing cross drains serving the BCWCD C-2 and C-3 canals. He noted that inverted siphons below the managed lanes depressed section, pipes on structure spanning over the managed lanes, and/or pump stations would be required to maintain these conveyances. He also noted that a pump station would be required for FDOT to collect and convey the roadway runoff from the managed lanes depressed section.
- 18. Carl stated they do not use stormwater pump stations since they have the advantage of gravity head within this area. He emphasized that maintenance and accessibility of the infrastructure would be a concern. He stated that while he would not prefer pump stations, he would not immediately rule them out. Carl asked that the options be sent to him so that he could evaluate them further. Jason Lee, Kimley-Horn, will prepare and distribute exhibits illustrating the three concepts.

Permit Requirements

- 19. Chris indicated that there are no existing Broward County or SFWMD stormwater management permits for the project or C-2 basin. He added that there is only a SFWMD Consumptive Use permit for the City of Deerfield Beach Wellfield.
- 20. Chris envisioned SFWMD would require submittal of an ERP application from Broward County to address the existing conditions of the BCWCD C-2 drainage basin, followed by a subsequent ERP application from FDOT for the SW 10th Street project that would build upon the permit to be issued to Broward County. He noted that the Broward County application would need to include drainage maps and ICPR model based on existing plans, atlas', as-builts, etc. and that the FDOT application would essentially modify the Broward

- County drainage maps and ICPR model to reflect the additional impervious area and modified/expanded stormwater management facilities associated with the SW 10th Street project.
- 21. Carl mentioned that the County had similarly permitted one of its regional basins with SFWMD. He stated that this was done primarily to turn the entire area into a wellfield recharge basin and to facilitate large scale development.
- 22. Chris stated that while the proposed improvements do not physically impact or encroach existing wellfield infrastructure, SFWMD also requested that groundwater modeling be performed to ensure that the wellfields are not impacted by the managed lanes depressed section. He also mentioned that SFWMD requested additional analysis to ensure that dewatering activities do not adversely impact wellfields.
- 23. Chris noted that there were no wetlands within the project limits but that dredging activities would be required within other surface waters, including the BCWCD C-2 and C-3 canals.
- 24. Chris identified the anticipated environmental permits, as follows: SFWMD Environmental Resource Permit, SFWMD Consumptive Use (Dewatering), and USACE Section 404 Dredge & Fill Permit. In addition, he noted that a Surface Water Management License and a Natural Resource License would be required from BCEPGMD. Jose indicated that a Dewatering Approval may also be needed from BCEPGMD if dewatering is required within 500 feet of a contamination site.
- 25. Chris inquired about the new Broward County codes pertaining to sea level rise and antecedent (groundwater) conditions. Jose stated that the project is too far west to be affected by these new codes.

SW 10th Street PD&E Study FDOT-BCEPGMD Drainage-Permit

Coordination Meeting

February 21, 2018 @ 2:00 pm

Meeting Location: Broward County, 1 N. University Drive,

Plantation, FL

Name	Company	Phone	e-mail
Anson Sonnett	FDOT	954-777-4474	anson.sonnett@dot.state.fl.us
Hui Shi	FDOT	954-777-4476	hui.shi@dot.state.fl.us
Cassie Piche	RS&H	954-236-7365	cassie.piche@rsandh.com
Chris Jackson	RS&H	954-236-7375	chris.jackson@rsandh.com
Vanessa Caycedo	RS&H	954-236-7360	vanessa.caycedo@rsandh.com
Jason Lee	КНА	561-317-0206	Jason.Lee@kimley-horn.com
Carlos Adorisio	BCEPGMD		CADORISIO@broward.org
Jose Portillo	BCEPGMD		JPORTILLO@broward.org
Johana Narvaez	BCEPGMD	954-519-0318	JNARVAEZ@broward.org
Carl Archie	BCWCD #2	954-831-0753	CARCHIE@broward.org
Claudia Calvo	FDOT	954-777-4476	claudia-carro @ dot-state-fl-us
ANAILY PAPRON	HDR	305-728-7459	anaily padeon Ohdrine con
Rum Solis-Pio	Canadino	954-777-0044	vsols-more wording com
Susan Juncosa	BC-WMD	954-831-0778	Sjuncosa @ broward.org
	Anson Sonnett Hui Shi Cassie Piche Chris Jackson Vanessa Caycedo Jason Lee Carlos Adorisio Jose Portillo Johana Narvaez Carl Archie	Anson Sonnett Hui Shi FDOT Cassie Piche Chris Jackson RS&H Vanessa Caycedo RS&H Jason Lee KHA Carlos Adorisio BCEPGMD Jose Portillo Johana Narvaez Carl Archie BCWCD #2 Claudia Calvo AMAILY PADRON HDR	Anson Sonnett FDOT 954-777-4474 Hui Shi FDOT 954-777-4476 Cassie Piche RS&H 954-236-7365 Chris Jackson RS&H 954-236-7375 Vanessa Caycedo RS&H 954-236-7360 Jason Lee KHA SU-317-0306 Carlos Adorisio BCEPGMD Jose Portillo BCEPGMD Johana Narvaez BCEPGMD Garl Archie BCWCD #2 ASU-717-4476 ANAILY PADRON HDR 305-728-7459

Project: SW 10th Street Connector PD&E **FPID No:** 439891-1-22-02

> Contract No.: C9V60 Study

Meeting Place: FDOT 1/03/2018 **Meeting Date:**

Meeting Time: 3400 West Commercial Blvd. 2:00 p.m. Ft. Lauderdale, FL

Participants: See sign in sheet for attendees

Pond Siting Kick-Off Meeting Purpose:

Pond Siting Team

1. The team went around the table / room and introduced themselves and stated their role.

Project Overview

- 2. FM 436964-1, I-95, SW 10th to Hillsboro PD&E: A brief project overview was given by Vilma Croft. In particular to this meeting, the HNTB team stated that proposed drainage can be accommodated along Hillsboro but that the interchange evaluation was on-going.
- 3. FM 439891-1, SW 10th Street Connector PD&E: A brief project overview was given by Cassie Piche. One item to note is that the managed lanes alternatives being evaluated are below grade for a segment of SW 10th Street and involves 2 perpendicular canals. The treatment of those canals is still being evaluated. Chris Jackson gave an overview of the pre-scope and Drainage Technical Memo that was prepared for the portion of SW 10th Street from Powerline Road and Military Trail. All land south of the existing SW 10th Street pavement encroaches into the 100-year flood plain. Broward County Water Control District #2 (BCWCD) is the governing entity. Area canals and ponds are owned by BCWCD and able to be modified to handle the projected runoff that will require 15 acres of additional pond area. This area is also a well field and as such, requires a dry, pre-treatment pond equivalent to 5 acres (included in the total 15 acres above). Traditional method of piping proposed water to a pond would require residential acquisition, which is undesirable. Shared use sites should be evaluated with Century Village, Toll Brothers (proposed developer of a section of the Century Village golf course, MOA filed but no deed) and Deer Creek to the north. It was noted that if the pod was wet, access and maintenance challenges need to be considered. A discussion of easements for shared use ponds was discussed. Laurice Mays stated that an easement provision could be included in the deed requiring that the private owner maintain the pond but if they defaulted on the maintenance of the pond, the FDOT would have the right to access private property in order to maintain the site. However, this would be a perpetual easement and introduces risk to the schedule due to the negotiations process. It was explained that the eminent domain process was invoked and FDOT was negotiating with 3 different sellers and they all refuse, engineering necessity needs to be proven for the best option for the drainage pond site.

Verification of Guidelines and Criteria

- 4. Broward County needs to be met with to establish their guidelines and discuss the topic of construction in a well field and any additional requirements that may carry.
- 5. District 4 preferences Ann Broadwell indicated that Maria Salgado needs to be added to the pond siting team. Anson stated that team members should be ranking each of the sites in regard to their specific discipline from a fatal flaw standpoint. Materials (pond sites with numbers, criteria, ranking instructions) will be prepared and distributed to team members. There will be an additional meeting schedules to discuss the rankings and criteria as a group.

Potential Pond Sites

6. Tech Memo – see above

Potential Joint Use Pond Sites

7. Tech Memo – see above

Summary of Decisions / Action Items

- 1. **ACTION:** Schedule meeting with Broward County for drainage / permitting requirements. *Due date: in progress*
- 2. **ACTION:** Invite the City of Deerfield to participate in the pond siting process. *Due date: in progress, prior to next pond siting team meeting.*
- 3. **ACTION:** () Prepare packages with pond site numbers, blank matrix for distribution to pond siting team. *Due date: in progress*
- 4. **ACTION:** (FDOT) Maria Salgado to be added to pond siting team. *Due date: in progress, prior to next pond siting meeting*
- 5. **ACTION:** (FDOT) Initiate contact with Deer Creek to explore shared use. **Due date: in progress**

SW 10th Street PD&E

Pond Siting Meeting

January 3, 2018 @ 2:00 pm Meeting Location: FDOT, District 4

	Name	Company	Phone	e-mail
S	Anson Sonnett	FDOT	954-777-4474	anson.sonnett@dot.state.fl.us
8	Scott Peterson	FDOT	954-777-4416	scott.peterson@dot.state.fl.us
M	Laurice Mays 5	FDOT		
0	Christian Rojas	FDOT		
1	Sean Wydner	FDOT		
My	Josh Miller	FDOT		
	Georgi Celusnek	FDOT		georgi.celusnek@dot.state.fl.us
2K	Lynn Kelley	FDOT		lynn.kelley@dot.state.fl.us
Sue	Scott Clark	FDOT		scott.clark@dot.state.fl.us
	James Poole	FDOT		
	Jorge Corrales	FDOT		jorge.corrales@dot.state.fl.us
NS	Hui Shui	FDOT		
0.0.	Claudia Calvo	FDOT		
MA	Morteza Alian	FDOT		
hove	Kelley Hall	FDOT		

SW 10th Street PD&E

Pond Siting Meeting

January 3, 2018 @ 2:00 pm

Meeting Location: FDOT, District 4

	Name	Company	Phone	e-mail
DC	Vilma Croft	HNTB		
	James Ford	НИТВ		
P.	Cassie Piche	RS&H	954-236-7365	cassie.piche@rsandh.com
V	Paul Heeg	RS&H	904-256-2163	paul.heeg@rsandh.com
VC	Vanessa Caycedo	RS&H	954-236-7360	vanessa.caycedo@rsandh.com
BJ	Chris Jackson	RS&H		Chris.jackson@rsandh.com
TM	TODO MGEE	FDOT	954-777-4188	TODD.MCGEE Q, DOT, STOTE.FL, US.
CIB	Christina Brown	FDOT	9547774457	Christina brownedot states.
82	Sarah Earls	FOOT R/W	954-777-4243	sarah-earls Cdot-stake.fl.us
1.00	1 1. P. 1.	14470		
phone		HNTB		
nore	Brian McCarthy	HNTB		

Project: SW 10th Street Connector **FPID No:** 439891-1-22-02

PD&E Study Contract No.: C9V60

Meeting Place: FDOT District 4, 3rd Floor Exec. **Meeting Date:** 07/02/18

3400 W. Commercial Blvd. **Meeting Time:** 3:00 pm Fort Lauderdale, FL 33309

Participants: See sign-in sheet for attendees

Purpose: Pond Siting Meeting #2

Pond Siting Team

1. Attendees went around the room and introduced themselves and their role.

Project Status Update

- 2. HNTB: FM 436964-1, I-95 from SW 10th to Hillsboro PD&E: a brief project update was given by Vilma Croft. She stated the Alternatives workshop and the VE meeting were held in April, and that the suggestions from the VE team were being evaluated, as well as an alternative that is compatible with the RS&H at-grade option. Traffic analysis and interagency meeting were completed.
- 3. RS&H: FM 439891-1, SW 10th Street Connector PD&E: a brief update was given by Cassie Piche. She stated the Alternatives workshop was held in April and based on feedback, other alternatives will be evaluated. She stated that the overall additional impervious area of the project isn't going to change, but that a shorter depressed section and different ramp configurations will be assessed. The second alternatives workshop is scheduled for November and the public hearing is scheduled for February of 2019.

Drainage Status Update

- 4. HNTB: FM 436964-1, I-95 from SW 10th to Hillsboro PD&E: Brian McCarthy stated that their current approach is to place the stormwater management facilities within existing right-of-way. For compensatory treatment and attenuation, they are evaluating the expansion of the existing facilities within the interchange as well as the conversion from dry to wet facilities. He stated they have completed pre and post development drainage maps, calculations and that their facilities meet stormwater requirements. They are waiting on the execution of the Supplemental Agreement to begin floodplain analysis, but he is anticipating that offsite floodplain compensation sites will be needed.
- 5. RS&H: FM 439891-1, SW 10th Street Connector PD&E: Chris Jackson stated that Pre-Development and Post-Development analysis for the base project limits (i.e. SW 10th Street from Powerline to Military Trail) has been completed, including Drainage Maps, Calculations and Models. The analysis has resulted in the required parcel sizes for the stormwater management facilities that will be needed to meet permitting requirements as well FDOT drainage design criteria. This information will be packaged into a Conceptual Drainage / Pond Siting Report to be submitted to the Department.

- 6. Chris stated that additional work needs to be completed in the future as the project limits have changed over the last months. Pre- and Post-Development Drainage Maps, calculations and models associated with the extended limits to the west of Powerline Road is still pending NTP from the Department.
- 7. Chris referenced recent permitting agency meetings with Broward County Water Control District (BCWCD) #2 and South Florida Water Management District (SFWMD). He indicated that both agencies are amenable to expanding the overall BCWCD #2 drainage system (via existing pond expansion throughout the entire water quality basin) in lieu of providing the traditional offsite stormwater management facilities with conveyance from the roadway corridor and discharge to the receiving waters. However, both agencies noted that venturing into those any further would require regional modeling and permits. Chris stated that the regional modeling efforts have been included in previous supplemental agreement submitted to the Department and is still pending NTP.
- 8. Chris explained that the base project limits discharge to the BCWCD #2 C-2 Canal Basin, while the extended limits discharge to the C-3 Canal Basin. Preliminary calculations on the extended project limits indicate approximately 4 acres are required for stormwater management and these can be achieved by expanding the infield areas within the Turnpike/Sawgrass interchange. This avoids offsite right-of-way acquisition and more efficiently utilizes existing State-owned right-of-way located adjacent to the northeast and southeast quadrants of the interchange. Scott Peterson and Robert Bostian brought up concerns that the Turnpike may need all of this area for their project. Chris mentioned that there is over 30 acres of undeveloped State-owned right-of-way available and that all of their drainage correspondence provided to date reflects all SW 10th Street runoff, west of Powerline Road, being accommodated within their project. Chris added that the only other alternatives are acquiring / relocating single family homes or acquiring property within Quiet Water Park, a 4(f) resource.

Potential Offsite Ponds

- 9. Chris stated that for the base project limits, there are no undeveloped parcels within or directly adjacent to the existing right-of-way. He mentioned that three "conventional" alternatives were identified for stormwater management facilities and defined conventional as pond site alternatives located relatively close to the corridor which receive untreated stormwater runoff via piping from the roadway corridor and then contain control structures which discharge the treated overflow into the receiving waters (C-2 Canal). He noted that all three alternatives were located off-frontage within the industrial area located south of SW 10th Street, just east of Powerline Road, and would require permanent easements for inflow and/or outflow. He added that the three alternatives avoid residential or commercial relocations.
- 10. Chris stated that calculations indicate approximately 12 acres are required for stormwater management of the base project limits, and that includes the area for the perimeter berms and slopes around the pond.
- 11. Chris explained the four identified alternatives:
 - The first pond site alternative consists of a combination of 8 different parcels; industrial business and unimproved sites; easement required for outflow.
 - The second pond site alternative consists of a combination of 4 different parcels; industrial business and unimproved sites; easement required for outflow.
 - The third pond site alternative consists of a combination of 2 parcels; currently functional business and fully developed parcel; easement required for inflow.
- 12. Scott Peterson inquired about the storage facility on the north side of the corridor as a potential parcel, but it was discussed that the storage facility nature of the business entails

- having to coordinate/relocate all different owners rather than one business as a whole. The VE team had considered this parcel as a potential, but determined the cost too high (approximately \$22M).
- 13. Chris also mentioned that one "shared use" alternative was identified for stormwater management facilities, which would essentially involve expansion of the existing BCWCD #2 stormwater management facilities within the overall C-2 water quality basin in order to offset the new treatment and runoff volumes for the proposed roadway corridor. He clarified that he was only calling it shared use because the pond would be contiguous with the BCWCD #2 C-2 Canal. He noted that the pond site alternative was located within an abandoned golf course property owned by Fairway Investors LLC within the Century Village community just south of Hillsboro Blvd. Scott Peterson inquired about the other pond site alternatives within the golf courses that were identified in Pond Siting Meeting #1 (January 2018). Chris explained that since the last meeting, these choices were narrowed down based on findings that the other three Fairway Investors LLC golf course parcels had been purchased by Toll Brothers for residential development and park space, and one of the pond site alternatives within a parcel owned by CVE Management was found to be a preserve.
- 14. Scott Clark indicated that he read in the newspaper that the Toll Brothers purchase included all four parcels, rather than just three of the four. After long discussion, but the group ultimately acknowledged that no one in the meeting had actually seen any purchase documents to confirm one way or another.
- 15. Scott Peterson also inquired about the recent Toll Brothers purchase and whether or not that ruled out the possibility of acquisition, over acquiring functional businesses or relocating homes. FDOT D4 Right-of-Way and Legal attendees responded that the parcels should still be included as alternatives and further analysis would then determine whether or not these were viable or not.
- 16. Chris explained that while all four golf parcels were certainly viable alternatives, he felt it was very obvious that one stood out above the rest due to better access for construction and maintenance, and the planned residential development by Toll Brothers. Chris also noted that all 18-hole golf courses within this water quality basin are all options, but that there has to be stopping point as to how far we expand upon these. Nevertheless, Chris and Scott agreed to include at least two "shared use" pond site alternatives along with the three "conventional" alternatives.
- 17. Cassie stated that contamination of these sites would have to be considered. Chris stated that the golf courses are likely to be contaminated with arsenic, while the other (industrial) pond site alternatives would likely be contaminated with petroleum-based contaminants.
- 18. Chris expressed scheduling risk concerns with the "shared use" approach. He explained that because it is a water quality basin, a SFWMD master permit for the basin has to be obtained, and then the SW 10th Street project will have to obtain a permit modification to the master permit. Chris mentioned that there is a certain uncertainty in moving forward without the guarantee of a permit. A regional permit for the basin means that every pond, canal, structure, and pipe within the entire BCWCD #2 local drainage district needs to be modeled. Scott asked how long it has been estimated for the modeling efforts to be completed. Chris stated that he anticipated 2-3 months after NTP has been given. Scott inquired on the timeline for the permitting efforts, and Chris stated that it could take 6 months to get the master permit, followed by another 3 months or so for the SW 10th Street permit. He mentioned that construction cannot begin until the permits and right-of-way are obtained.
- 19. Chris stated that RS&H has moved forward as much as possible on the conceptual drainage and pond siting efforts, but in order to keep moving forward, the regional modeling has to be done immediately. He also noted that communication needed to commence with Florida's Turnpike Enterprise to coordinate the (potentially interim) pond expansion needs within the

- interchange to accommodate SW 10th Street project runoff west of Powerline Road. Scott noted that right-of-way funding is scheduled for 2020 so there should be time.
- 20. The team moved on to discuss the pond siting matrix and review Chris's example. While a higher weight factor means more importance, a lower score is favorable. Scott requested that the scoring system be reversed so that 10 is most favorable and 1 is least favorable. Chris agreed to make the change to the matrix.
- 21. Scott Peterson asked for the Pond Siting Evaluation Matrix to be updated to include the date, "Pond Siting Meeting #2" and "DRAFT" watermark.
- 22. Scott inquired about rearranging or evaluating the weight factor criteria a little further on some of the categories, for public perception. Cassie noted that some items can be qualitative vs quantitative.
- 23. Scott asked if the City of Deerfield needs to be involved in the pond siting process. Cassie responded that they just asked to be kept in the loop but would not be required to fill out/participate in completing the evaluation matrix.
- 24. Some team members requested clarity on some of the scoring categories (factors) within the evaluation matrix. Chris discussed at length some of the factors and his logic in scoring contrast between pond siting alternatives. Chris stated that each meeting attendee (or their designee) will be provided the matrix, and asked to evaluate the alternative pond sites for their specific area of expertise. Once all members complete their evaluations and provide spreadsheets back to Chris, he will compile and schedule Pond Siting Meeting #3 to review the results.
- 25. Robert Bostian asked if Chris could hold another meeting with team members who needed additional clarity or help completing the matrix. Chris indicated he would prepare and distribute instructions for completion of the matrix and that he would certainly meet with any team members who required additional assistance.

Next Steps / Action Items

- 1. **ACTION:** (Prepare 1-2 additional "shared use" pond site alternatives. *Due date:* 7/6/18
- 2. **ACTION:** () Prepare and distribute updated Pond Siting Matrix and Exhibit, Meeting Minutes, and instructions to complete the Pond Siting Matrix. *Due date: 7/6/18*
- 3. **ACTION:** (FDOT D4 Right-of-Way) Obtain and distribute right-of-way, permit, and/or zoning documents for Fairway Investors LLC Toll Brothers. *Due date: 7/20/18*
- 4. **ACTION:** (FDOT All Attendees) Evaluate and provide weights/scores for Pond Siting Matrix and distribute to Chris. *Due date: 7/20/18*
- 5. ACTION: () Compile Pond Siting Matrices and schedule Pond Siting Meeting #3. *Due* date: 7/27/18

SW 10th Street PD&E Study

Pond Siting Meeting#2

July 2, 2018 @ 3:00 pm Meeting Location: FDOT, District 4

Name /	Company	Phone	e-mail
Al Lynn Kelley	FOOT	777-4334	lynn. Kelley
are Scott Clark	FOOT	777-4342	Soft. clare dotistate. fl. us
DC VILLA CROET	@ HUTB	305-222-1457	VCROFT @ HATB - COM
REB Rob Bostlan	FDOT	954-777-4427	Robert. Bostierg dot stole- Floor
No Hui Shi	FDOT	954-777-4557	Hui. Shi @ dot. state fl. us
G.C. Claudia Carvo	FDOT	954-777-4476	Claudia Calvo @ dot State flu
V Seun Wy oner	FDOT	×4501	Sean wy mer @ dot
55 Jared Silver	FDOT	×4501	jured silver as doz.
M Sarah Earls	FOOT	954-777-4243	Sigh-earls @ dot state. Fl. uj
CB Christina Brown	FDOT	954 777-4457	christma. brown @dot.state.fl. w
In Sosh Millar	FOOT NW	954-777-4237	Losh where
CRJ CHRISTIAN B. JACKSON	RSAH	934.474.3005	CHRIS. JACKSON @ RSANDH. COM
ten Aylin Costa	RSEH	954236 7398	Aylin costa@vsaNH.com
CB Christina Borello	RSaH	954.292.4603	tina. borello arsandh. con
VC VANESSA CAYCEDO	RS&H	(954) 236 7360	VANESSA . CAYCEDO @ RSANDH . COM
TAM TODO MEGEE	FOOT	954-777-4188	TODD. MCGEE Q DOT, STATE, FL. US
CP Christie Pirtcharo	Prot En/PLEME	954-777-4147	Christine P. Henge to dot state f.
	in-homes, son		/

FDOT District 4

SW 10th Street PD&E Study

Pond Siting Meeting#2

July 2, 2018 @ 3:00 pm

Meeting Location: FDOT, District 4

	Name		Company	Phone	e-mail		
1	Anson Sonn	cH	FDOT	954777 4474	anson, sonn Hodot st.		
VR	VICTOR RAMO	5	FDOT	9547714257	VICTOR. DAMOSE DOT. STATE. CL. U		
Phon	ne:						
	Paul Heeg		RS&H	(904) 256-2163	Paul.Heeg@rsandh.com		
-							

SW 10th Street Connector **Project: FPID No:** 439891-1-22-02

> PD&E Study Contract No.: C9V60

FDOT District 4 Meeting Place: Meeting Date: 10/15/18

3400 West Commercial Blvd. **Meeting Time:** 3:00 pm Fort Lauderdale, FL 33309

Participants: See sign in sheet for attendees

Purpose: Pond Siting Meeting #3

Project Status Update

Robert Bostian stated that the second Alternatives Public Workshop is scheduled for November 29, 2018. At the conclusion of that workshop, the preferred alternative will be determined and taken to the Public Hearing. The Public Hearing date has not been set as of yet, but it is anticipated to be between March and April of 2019.

Drainage Status Update - RS&H: FM 439891-1, SW 10th Street Connector PD&E

- Robert provided a brief summary of the FDOT-Century Village Drainage Coordination Meeting conducted on October 12, 2018.
- Chris Jackson indicated that Century Village, Toll Brothers, and Fairway Investors signed threeparty agreement a month ago for the four parcels that constitute the vacant golf course property. As part of the agreement, Fairway Investors will sell Toll Brothers the entire golf course property, then Toll Brothers will transfer the two westernmost parcels to Century Village, along with a third parcel (located just east of the Century Village clubhouse) upon construction of the Toll Brother's stormwater management facility. The easternmost parcel (abutting Military Trail) will be developed by Toll Brothers into a multi-family residential community with 201 townhomes. Once those parcels are transferred, Century Village plans to develop those into a park for its residents, which will include bike trails and walking paths.
- Chris stated that there is still 40 more days of the Due Diligence period for the three-party agreement. He added that the transfers and closing is anticipated for November 2019 for the two westernmost parcels. The third parcel being donated to Century Village (east of the clubhouse) is not expected to be transferred until Toll Brothers construction is completed in
- Chris explained that the 2019 closing allows Toll Brothers to obtain permits for their site plan before acquiring the four parcels from Fairway Investors.
- Robert stated that Century Village expressed preference for the Department to focus SW 10th Street project stormwater management needs on the third parcel (east of the clubhouse) since they have no plans for their recreational facilities, walking paths, and amenities on such parcel.
- Robert also added, nevertheless, that the Department could still possibly coordinate the stormwater management needs for the project with Century Village park so that both stormwater management and park needs are provided within the two westernmost parcels.

- Chris stated that Century Village expressed concerns about possibly having to go back to their residents with modifications to the planned park improvements, regardless if the stormwater management improvements added aesthetic value.
- James Poole stated that if the Department was to enter into the three-party agreement, there
 would need to be some rights to access the property and build the required pond site
 regardless of whether or not the deal goes through or is stalled in any way.
- Chris mentioned RS&H Drainage team has already reached out to Toll Brothers and is attempting to set up a meeting with them to discuss the project further.
- Robert discussed how testing the potential sites could be beneficial to the process, in order to determine if the options are feasible in moving forward before having to condemn.

Drainage Status Update - HNTB: FM 436964-1, I-95 from SW 10th to Hillsboro PD&E

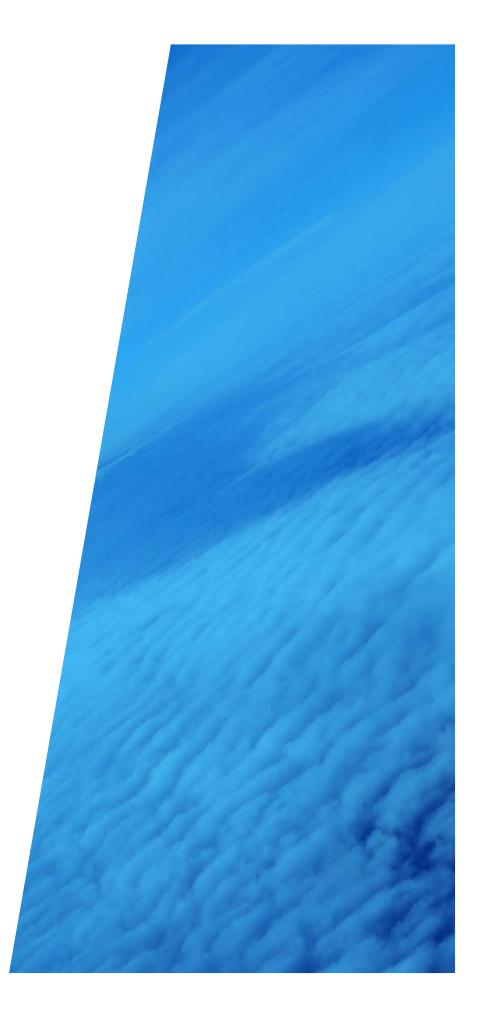
- Vilma Croft and Brian (HNTB Drainage) stated that there were no offsite pond site requirements for stormwater treatment and attenuation, however, an offsite pond was required for floodplain encroachment.
- Vilma and Brian identified a City of Deerfield Beach owned parcel located just east of the SW 10th Street interchange (southeast quadrant) that could potentially be utilized.
- Josh Miller indicated that the subject parcel was previously transferred from FDOT to the City, and that commitments have recently been made to the City by the Secretary on this parcel.
- James mentioned that HNTB would need to identify a minimum of three alternative parcels, since offsite drainage acquisition is required.

Next Steps / Action Items

- FDOT to issue NTP on Regional Stormwater Modeling/Calculations/Maps. Note these efforts
 were previously approved under Optional Services only and therefore a Letter of
 Authorization is required.
- RS&H to prepare Regional Stormwater Model/Calculations/Maps.
- RS&H to update Conceptual Drainage Report/Pond Siting Report per completed Regional Stormwater Model/Calculations/Maps.
- RS&H to coordinate findings with FDOT, BCEPGMD, and SFWMD.
- RS&H/FDOT to coordinate permit requirements, including SFWMD Individual (Master)
 Environmental Resource Permit (ERP) for BCWCD #2 Regional System.
- RS&H/FDOT to coordinate BCEPGMD Surface Water Management License, BCEPGMD Environmental Resource License, SFWMD Individual ERP Modification, and USACE Section 404 Dredge & Fill permits for SW 10th Street improvements, while coordinating with KHA and D4 EMO/AECOM re: SFWMD Consumptive Use (Dewatering), BCEPGMD Dewatering Approval, and related groundwater modeling and contamination issues

SW 10th Street PD&E Study

Pond Siting Meeting#3


October 15, 2018 @ 3:00 pm

Name	Company	Phone	e-mail
Deborah Ihsan	FDot	957 777-4387	deborah. Insa edot stet
ELISABETH HASSETT	FOOT	954-777-4219	FLISABETH HASSEHE DOT, STATE.
GEOFF CAMPBELL	FDOT-LAU	561-747-6336	gramphell Ocotlear- begring, co
Scott Clark	FDOT PLEMO	954-777-4342	Scott. Clark@ dot. State. fl. us
Kelley Hall	FOOT - MAINT	954-777-4205	Kelley.hall@dot.state.fl. w
Ann Broadwell	POOT-PLEMO	954-77-4325	J
Christina Brown	FDOT- RIW	954-777-4457	christina brow@dot.state.fl.us
Sarah Earls	FDOT-RIW	954-777-4243	sarah-earls edot .state.fl.w
Hui Shi	FDOT- Draingle	954-777-4057	Hui. Shi @dot. state. fl. us
Josh Miller	FOOT-RIW	954 277-4237	Josh Ailler edot
James Poole	11 Drange	11 4204	james, poole @ dot
Marin Salgado	FOOT SLENO		
VILMA CROST	HNTB	305-222-1457	VCROFT @ HNTB. COM
RS&H:			
Chris Jackson Cassie Piche Vanessa Caycedo			

APPENDIX J

PROJECT CORRESPONDENCE

Project: SW 10th Street Connector FPID No: 439891-1-22-02

PD&E Study Contract No.: C9V60

Meeting Place: Conference Call Meeting Date: 10/4/2018

Meeting Time: 3:00 PM

Participants: Chris Jackson, Vanessa Caycedo,

Tina Borello, Ryan Solis-Rios,

Mohammad Pervez

Purpose: FDOT-Turnpike Drainage Coordination Meeting

Ryan Solis-Rios (Corradino), consultant to Florida's Turnpike Enterprise (FTE), opened the
meeting expressing a desire to coordinate drainage between the FTE Sawgrass Interchange
PD&E Study and FDOT D4 SW 10th Street PD&E Study projects, and requesting an overview of
the drainage for the FDOT D4 SW 10th Street PD&E Study project.

- Chris Jackson (RS&H), consultant to FDOT D4, provided an overview of the SW 10th Street PD&E Study drainage approach.
- Chris stated that good progress has been made in the Pre-Development and Post-Development drainage analysis o and that the team has already developed a draft Conceptual Drainage Report/Pond Siting Report. The report includes Drainage Maps, Calculations and Models, and the analysis has resulted in the required parcel sizes for the stormwater management facilities that will be needed to meet permitting requirements as well FDOT drainage design criteria.
- Chris indicated that the original project limits extended from Powerline Road to Military Trail, within the South Florida Water Management District (SFWMD) Hillsboro Canal Drainage Basin and Broward County Water Control District (BCWCD) C-2 Basin. For the base limits, he noted the drainage analysis indicates approximately 11 acres are required for stormwater management of the SW 10th Street project limits from Powerline Road to the FEC railroad, including pump stations for conveyance of roadway runoff to the receiving pond/canal. Chris stated that right-of-way acquisition for offsite ponds will be required to accommodate the 11 acres and mentioned there are no undeveloped parcels within or directly adjacent to the existing right-of-way. Chris presented a Drainage Overview exhibit illustrating the proposed drainage concept and alternative pond sites.
- Chris noted that FDOT D4 recently authorized additional drainage analysis scope to RS&H for evaluation of extended SW 10th Street project limits west of Powerline Road (towards the Sawgrass Expressway). Chris indicated that approximately 5 acres would be required within the Turnpike interchange for accommodation of SW 10th Street drainage west of Powerline Road. Chris presented the Drainage Maps, prepared by FTE/Corradino/HDR and presented to Broward County Environmental Protection and Growth Management Department (BCEPGMD), which illustrated that the portion of SW 10th Street west of Powerline Road (i.e.

Basins 5/6, now partially within the SW 10TH Street PD&E Study project limits) was proposed to convey to the Sawgrass interchange for treatment and attenuation.

- Rayan and Mohammed Pervez (HDR) acknowledged that their drainage maps and permit documentation for the proposed Sawgrass interchange drainage system already included the portion of SW 10th Street, west of Powerline Road. Mohammed confirmed that the Sawgrass interchange could accommodate SW 10th Street west of Powerline Road but was wary of any proposed convey of runoff generated along SW 10th Street east of Powerline Road. Chris assured Ryan and Mohammed that was not the case and showed pre- and post-development drainage maps confirming the pre-development and post-development drainage divides.
- Mohammed agreed that the expanded Sawgrass interchange drainage ponds could accommodate water quality and water quantity for both projects, but suggested that peak stages in the interchange ponds could require that D4 raise the profile of SW 10th Street to provide HGL clearance for the final collection/conveyance system. Chris responded that the proposed SW 10th Street profile could certainly be raised some if necessary to meet HGL clearance, or alternatively, just larger pipes could be required.
- Chris inquired as to the level of detail and completion of the drainage analysis performed by TCG/HDR. Ryan and Mohammed responded no progress has been made beyond the preliminary drainage evaluation that had been shared previously. Mohammed indicated that HDR had not performed, and was not planning, to model the Sawgrass interchange drainage system to accurately design the ponds and control structures. Therefore, Chris requested from Corradino/HDR their roadway, survey, and drainage files so that RS&H could model their project system for them.
- Subsequent to the meeting, Chris provided the Drainage Overview Exhibit in response to request from Corradino/HDR on 10/9/18.

Project: SW 10th Street Connector **FPID No:** 439891-1-22-02

> PD&E Study **Contract No.:** C9V60

Meeting Place: Century Village Community 10/12/2018 **Meeting Date:**

Meeting Time: 3501 West Drive 3:00 PM Deerfield Beach, FL

Participants: See sign-in sheet for attendees

FDOT-Century Village Drainage Coordination Meeting Purpose:

Project Overview

1. Robert Bostian, FDOT Project Manager, provided a brief overview and description of the project, alternatives and schedule. He indicated that the first Alternatives Workshop held in April was an opportunity for the team to show the residents and locals what the plans for the corridor are. He indicated that while FDOT owns most of the corridor right-of-way (approximately 250 feet in width), there are a few, localized areas where some right-of-way will need to be acquired. He indicated that the following alternatives workshop will be held in November and that the PD&E process will be wrapped up by next summer, moving on to final design. The project will be procured through a design-build contract and is currently funded for 2022.

Drainage Overview

- 2. Chris Jackson, RS&H Senior Drainage Engineer, indicated that the project extends from just east of the Sawgrass Interchange to Military Trail. He indicated that the project is located and falls under the jurisdiction of the South Florida Water Management District (SFWMD) Hillsboro Canal Drainage Basin and Broward County Water Control District (BCWCD) C-2 and C-3 Basins. He added that Century Village Community is located within the C-2 Basin.
- 3. Chris mentioned that the project is in the PD&E Study phase, and as part of the drainage phase for that process, is developing a conceptual drainage design and defining any offsite pond requirements in order to select the best site for the project.
- 4. Chris stated that good progress has been made in the Pre-Development and Post-Development analysis of the area within the project limits and that the team has already developed a draft Conceptual Drainage Report/Pond Siting Report. The report includes Drainage Maps, Calculations and Models, and the analysis has resulted in the required parcel sizes for the stormwater management facilities that will be needed to meet permitting requirements as well FDOT drainage design criteria.
- 5. Chris stated that drainage analysis indicates approximately 11 acres are required for stormwater management of the SW 10th Street project limits from Powerline Road to the FEC railroad, including pump stations for conveyance of roadway runoff to the receiving pond/canal.
- 6. Chris stated that right-of-way acquisition for offsite ponds will be required to accommodate the 11 acres and mentioned there are no undeveloped parcels within or directly adjacent to the existing right-of-way.

- 7. Chris mentioned that the conventional approach for stormwater management facilities are pond site alternatives located relatively close to the corridor which receive untreated stormwater runoff via piping from the roadway corridor and then contain control structures which discharge the treated overflow into the receiving waters (C-2 Canal in this case). He added that BCWCD C-2 Basin is a little different, as it is designated as a "water quality basin" which provides storage, treatment, and groundwater control for the entire basin draining to it and is controlled by one structure (S-4) at the north end of the C-2 Canal which discharges to the SFWMD Hillsboro Canal. Therefore, in lieu of new stormwater management facilities within the basin, any of the existing stormwater management facilities within the entire basin could be expanded/modified as needed to provide the required water quality, water quantity, and floodplain compensation volume for the project. He explained this provides additional flexibility from the conventional approach of collecting and conveying project runoff to an adjacent, isolated offsite stormwater management facility for treatment and attenuation prior to discharge to receiving waters.
- 8. Chris explained the six identified alternatives depicted on the meeting exhibit:
 - Three conventional alternatives were identified for stormwater management facilities and defined conventional as pond site alternatives located relatively close to the corridor which receive untreated stormwater runoff via piping from the roadway corridor and then contain control structures which discharge the treated overflow into the receiving waters (C-2 Canal). He noted that all three alternatives were developed, and located off-frontage within the industrial area located south of SW 10th Street, just east of Powerline Road, and would require permanent easements for inflow and/or outflow. He added that the three alternatives avoid residential relocations but impacted existing businesses.
 - Three non-conventional (water quality basin) alternatives were identified for stormwater management facilities to the north of SW 10th Street. He noted that these were located within the vacant golf course property owned by Fairway Investors LLC within the Century Village community just south of Hillsboro Blvd. Chris noted that the golf course parcels were planned to be purchased by Toll Brothers for residential development and park space.
 - Chris explained that while all of the golf parcels were certainly viable alternatives, the
 westernmost (19.26-acre) parcel stood out above the rest due to better access for
 construction and maintenance, hydraulic connectivity, and avoidance of the planned
 residential development by Toll Brothers.
- 9. Dan Johnson, Master Management Executive Director, indicated that Century Village, Toll Brothers, and Fairway Investors signed a tri-party agreement a month ago, for the four parcels that constitute the golf course property. As part of the agreement, Fairway Investors will sell Toll Brothers the entire golf course property, then Toll Brothers will transfer the two westernmost parcels to Century Village, along with a third parcel (located just east of the Century Village clubhouse) upon construction of the Toll Brother's stormwater management facility. The easternmost parcel (abutting Military Trail) will be developed by Toll Brothers into a multi-family residential community with 201 townhomes. He added that once those parcels are turned over, Master Management plans to develop those into a park for the residents at Century Village, which will include bike trails and walkways/sidewalks. He mentioned he was unsure how the residents would react to a pond in the site rather than their anticipated park.
- 10. Dan inquired about the possible benefits from turning one of those parcels into a pond. Chris stated that greatest benefit to the residents adjacent to the parcel in question, would be turning their homes into waterfront sites, and compensating Century Village for the right-of-way, essentially paying for the bike trails and walkways/sidewalks improvements.

- 11. Chris also added that the vacant golf course parcels are known to be contaminated and that FDOT would remediate them prior to construction. Dan stated that as part of the agreement, Toll Brothers will be fully remediating the four parcels.
- 12. Chris mentioned that if the Department were to acquire the parcel in question, Toll Brothers would have less acreage to remediate and that whoever owns the parcel would have the right to fair market value compensation.
- 13. Cassie inquired about the types of contaminants that the sites will be remediated for, and whether or not any testing had been done. Dan stated that the site will be remediated per the FDEP 5.5 ppm for arsenic criteria, and that much of the site will not be built on.
- 14. Cassie asked Dan if they could provide the contaminants' test results reports.
- 15. Dan stated that Toll Brothers has to turn over those reports within the next 30 days, as part of the agreement. However, FDEP does have them on record. Dan stated that they are on their due diligence period under their agreement, in which case if Toll Brothers does not remediate the site, the agreement is void.
- 16. Robert stated that the required stormwater acreage could be provided within any of the parcels and still incorporate the planned aesthetic features of the park.
- 17. Dan inquired about the Department's proposed pond site being located in the same parcel that Toll Brothers will be using for their retention pond. Chris explained that from a right-of-way acquisition perspective, the other parcels would have been cleaner since hydraulically connected with public right-of-way (i.e. C-2 Canal right-of-way). The only hydraulic connection to the subject parcel is through property owned in fee by several different private parties. Nonetheless, further analysis will have to done on it, to ensure that permitting requirements are met within the area that Toll Brothers will not be using for their pond.
- 18. Chris explained that the viability of any of these parcels is contingent upon forthcoming regional modeling, contamination assessment/mitigation, and SFWMD and BCEPGMD permit requirements. He noted that they will require that the soil is remediated to avoid exacerbating the plume.
- 19. Dan mentioned that onsite and offsite testing has been underway, and the results indicate that contamination was low. Testing company was encouraged with the results, as they anticipated higher contamination levels.
- 20. Dan stated that the Due Diligence period for the tri-party agreement still has 40 more days on it. Property transfers/closing is anticipated for November 2019 for the two westernmost parcels. The third parcel being donated to Century Village (minus the Toll Brothers pond area) is not expected to be transferred until 2021 once Toll Brothers construction is completed.
- 21. Chris stated that the Department's timeline is more expeditious. The Department will need to know Century Village input to move forward on any of the options that are feasible. He noted that the two westernmost parcels combined are approximately 40 acres, and the ponds could meander and be designed in conjunction with the park plans.
- 22. Cassie asked if current site plans/renderings/figures could be shared with the Department to be further analyzed and work in conjunction with the park design.
- 23. Dan inquired on the impact on maintenance as a result from the additional stormwater runoff on their site. Chris explained that no additional maintenance would be required, as the acreage required for the pond site is enough to offset the runoff volume being generated by the additional travel lanes.
- 24. Vallen Smikle, Master Management Director of Planned Projects, stated that Toll Brothers plans/documents were already filed/submitted to City of Deerfield Beach for approval.
- 25. Dan mentioned Century Village prefers the Department to focus the stormwater management facility plans for the third parcel (east of the clubhouse) since they have no plans for the park or walking paths and amenities on such parcel.

26. Dan inquired on the project's anticipated date for construction of stormwater management facilities. Robert explained that it is anticipated for spring of 2022, and he added that the Department could work on advanced right of-way acquisition to build the ponds ahead of roadway construction if it is advantageous for all parties.

Next Steps / Action Items

- 1. RS&H to setup Drainage Coordination Meeting with Toll Brothers.
- 2. RS&H to obtain any available plans and documents from Toll Brothers and City of Deerfield Beach.

Project: SW 10th Street Connector FPID No: 439891-1-22-02

PD&E Study Contract No.: C9V60

Meeting Place: Conference Call Meeting Date: 10/24/2018

Meeting Time: 1:00 PM

Participants: Robert Bostian, Cassie Piche, Chris Jackson, Vanessa Caycedo, Tina

Borello, Zane Beard, Lisa Stone

Purpose: FDOT-Toll Brothers Drainage Coordination Meeting

1. Introductions

Project Overview

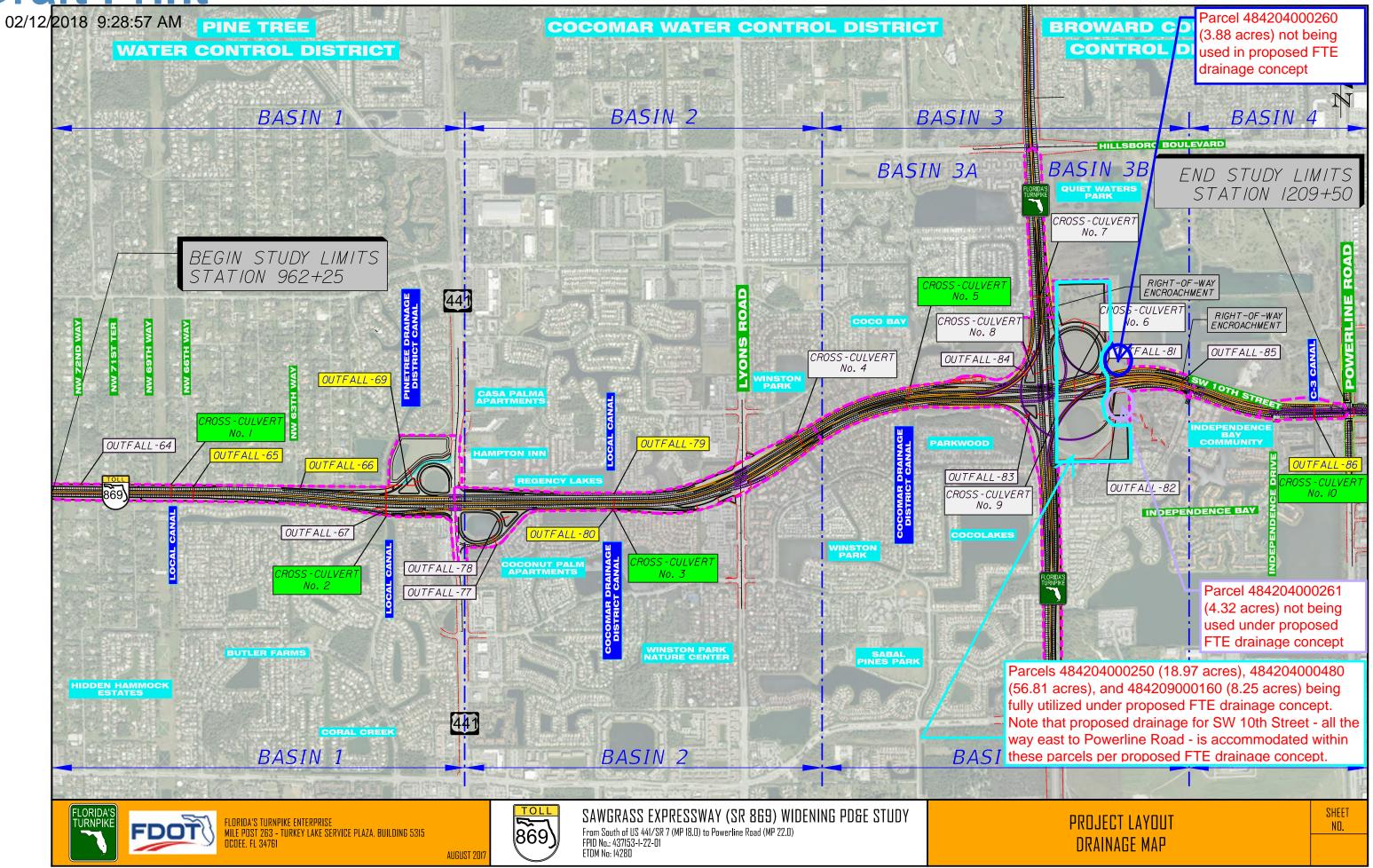
Chris Jackson, RS&H Senior Drainage Engineer, provided a brief overview and description of the project, alternatives and schedule.

3. Drainage Overview

- Chris discussed the pre-development and post-development drainage conditions for the project. He
 indicated that the project extends from just east of the Sawgrass Interchange to Military Trail, and that
 the project is located and falls under the jurisdiction of the South Florida Water Management District
 (SFWMD) Hillsboro Canal Drainage Basin and Broward County Water Control District (BCWCD) C-2 and
 C-3 Basins. He added that Century Village Community and future Toll Brothers properties are located
 within the C-2 Basin.
- 2. Chris mentioned that the project is in the PD&E Study phase, and as part of the drainage phase for that process, is developing a conceptual drainage design and defining any offsite pond requirements in order to select the best site for the project. He stated that good progress has been made in the Pre-Development and Post-Development analysis of the area within the project limits and that the team has already developed a draft Conceptual Drainage Report/Pond Siting Report. The report includes Drainage Maps, Calculations and Models, and the analysis has resulted in the required parcel sizes for the stormwater management facilities that will be needed to meet permitting requirements as well FDOT drainage design criteria.
- 3. Chris stated that the drainage analysis indicates approximately 11 acres are required for stormwater management of the SW 10th Street project limits from Powerline Road to the FEC railroad, including pump stations for conveyance of roadway runoff to the receiving pond/canal. Chris stated that right-of-way acquisition for offsite ponds will be required to accommodate the 11 acres.
- 4. Chris briefly discussed the conventional approach for stormwater management facilities (a pond site located near the corridor which receives untreated stormwater runoff via piping from the roadway corridor and then contain control structures which discharge the treated overflow into the receiving waters (C-2 Canal in this case)). He then mentioned that BCWCD C-2 Basin is designated as a "water quality basin" which provides storage, treatment, and groundwater control for the entire basin draining to it and is controlled by one structure (S-4) at the north end of the C-2 Canal which discharges to the SFWMD Hillsboro Canal. Therefore, pond site alternatives within existing stormwater management facilities in the C-2 basin have also been evaluated to expand/modify as needed to provide the required water quality, water quantity, and floodplain compensation volume for the project.

- 5. Chris discussed that pond siting analysis has been completed, identifying three conventional offsite pond alternatives, along with four additional non-conventional offsite pond alternatives identified within the vacant Century Village golf course parcels owned by Fairway Investors LLC (soon to be Toll Brothers) for accommodation of stormwater management needs.
- 6. Chris stated that from the recent meeting with Century Village, it was discussed that, of the non-conventional alternatives, Century Village prefers Alternative 6 (the parcel just east of the clubhouse). They currently have development plans for Alternatives 4 and 5 that have already been vetted through the community.
- Zane Beard, Land Development Manager for Toll Brothers, stated that the parcel just east of the clubhouse (Alternative 6) is the location of their stormwater management facility. He stated that they will need approximately 4 acres of the total 17.11 acres for construction of their stormwater management facility.
- 8. Zane asked what the project schedule was for the FDOT SW 10th Street Connector project, particularly for right-of-way acquisition, concerned that the project schedule would interfere with their development plans. Robert stated that construction is currently planned for spring of 2022, and he added that the Department could work on advanced right of-way acquisition to build the ponds ahead of roadway construction if it is advantageous for all parties.
- 9. Zane stated that Toll Brothers will be breaking ground in February 2019 and that they do not have a closing date for parcel acquisition, as it is contingent upon permit approvals.
- 10. Chris asked if Toll Brothers was using conventional stormwater management facility design or if they were expanding the existing lake/canal system within the parcel for volume compensation of the C-2 basin. Zane stated that they are expanding the existing facilities for their pond construction.
- 11. Cassie Piche, RS&H Project Manager, mentioned concerns over the presence of arsenic within the vacant golf course parcels and asked if any testing has been done for these parcels by Toll Brothers. Zane stated that they have done contamination testing, and although the reports were not yet available, results indicated lower contamination than originally anticipated.
- 12. Cassie asked if Toll Brothers could provide any of their development plans, reports, etc. Zane stated that their Site Assessment Report is to be submitted Friday, October 26th, and that he will send it over to RS&H once it has been submitted.

4. Next Steps / Action Items


1. Continued coordination with Toll Brothers as regional modeling progresses.

APPENDIX K

FTE DRAINAGE MAP AND BCPA PARCEL INFORMATION

Draft Print

January 14, 2019

Site Address	4651 SW 10 STREET, DEERFIELD BEACH FL 33442	ID#	4842 04 00 0260		
Property Owner	FLORIDA TURNPIKE ENTERPRISE	Millage	1112		
Mailing Address	PO BOX 613069 OCOEE FL 34761-3069	Use	80		
Abbr Legal Description 4-48-42 SW1/4 OF SW1/4 LESS PT DESC IN PARCEL 343.A OF CA 84-23805 FOR EXPRESSWAY ALSO LESS PT LYING INSIDE LIMITS OF CITY OF DEERFIELD BEACH					

The just values displayed below were set in compliance with Sec. 193.011, Fla. Stat., and include a

		or costs of sale ar						
		Prop	erty Asse	essment Values	3			
Year	Land	d Building / Improvement			Just / Market Value		sessed / OH Value	Tax
2019	\$337,790				90	\$1	36,080	
2018	\$337,790				\$337,790		\$123,710	
2017	\$337,790			\$337,7	90	\$1	12,470	
	20)19 Exemptions a	nd Taxab	le Values by Ta	axing Autho	ority		
		School Board Mui		icipal	Indep	endent		
Just Value	9	\$337,790	\$337,790		\$33	7,790	\$:	337,790
Portability		0		0		0	·	0
		1		****				

	County	School Board	Municipal	Independent
Just Value	\$337,790	\$337,790	\$337,790	\$337,790
Portability	0	0	0	0
Assessed/SOH	\$136,080	\$337,790	\$136,080	\$136,080
Homestead	0	0	0	0
Add. Homestead	0	0	0	0
Wid/Vet/Dis	0	0	0	0
Senior	0	0	0	0
Exempt Type 10	\$136,080	\$337,790	\$136,080	\$136,080
Taxable	0	0	0	0

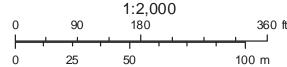
Sales History							
Date	Type Price		Book/Page or CIN				
11/30/1990	QC*	\$127	28788 / 421				
11/30/1990	QC*	\$127	28788 / 419				

L		
Price	Factor	Туре
\$2.00	168,896	SF
Adj.		

^{*} Denotes Multi-Parcel Sale (See Deed)

	Special Assessments									
Fire	Garb	Light	Drain	Impr	Safe	Storm	Clean	Misc		
11			2							
Х			2							
1										

January 14, 2019



Site Address	4500 SW 10 STREET, DEERFIELD BEACH FL 33442	ID#	4842 04 00 0261
Property Owner	FLORIDA TURNPIKE ENTERPRISE	Millage	1112
Mailing Address	PO BOX 613069 OCOEE FL 34761-3069	Use	94
Abbr Legal Description	4-48-42 SW1/4 OF SW1/4 LESS PT DESC IN PARCEL 343.A O EXPRESSWAY ALSO LESS PT LYING OUTSIDE LIMITS OF C		

The j	ust values	s displaye	ed below were	set in com	pliance v	vith S	Sec. 193.01	l, Fla. S	Stat., and ir		
	redu	ction for	costs of sale a		•		• •	Sec. 193	3.011(8).		
				perty Asse	î						
Year	Laı	nd	•			st / M Valu	arket ie		ssessed / OH Value	Tax	
2019	\$94,0)90			\$	94,09	90	\$	94,090		
2018	\$94,0)90			\$	94,09	90	9	94,090		
2017	\$94,0)90			\$	94,09	90	\$	94,090		
		201	9 Exemptions	and Taxab	le Values	by T	Γaxing Auth	ority			
			County	5	School Bo	oard	Mui	nicipal	In	ndependent	
Just Valu	ie		\$94,090		\$94	,090	\$	94,090		\$94,090	
Portabilit	: y		0			0		0		0	
Assessed	HOS/k		\$94,090	\$94,090			_			\$94,090	
Homeste	ad		0	0				0		0	
Add. Hon	nestead		0	(0		0	
Wid/Vet/E)is		0			0	ļ	0	0		
Senior			0			0	ļ	0	0		
Exempt T	ype 10		\$94,090		\$94	,090	\$	94,090		\$94,090	
Taxable			0			0	<u></u>	0		0	
		Sale	s History				Li	and Cal	culations		
Date	Type	Price	Book/	Page or Cl	IN		Price		Factor	Туре	
		<u> </u>					\$21,780		4.32	AC	
<u> </u>		<u> </u>									
<u> </u>		<u> </u>									
							Adj. E	Bldg. S.	F.		
				Special As	sessmen	ts					
				· .	1 -		1			1	

	Special Assessments									
Fire	Garb	Light	Drain	Impr	Safe	Storm	Clean	Misc		
11			2							
Х			2							
1										

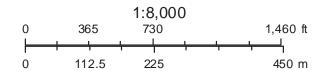
Site Address	4701 SW 10 STREET, DEERFIELD BEACH FL 33442	ID#	4842 04 00 0250
Property Owner	FLORIDA TURNPIKE ENTERPRISE	Millage	1112
Mailing Address	PO BOX 613069 OCOEE FL 34761-3069	Use	80
Abbr Legal Description	4-48-42 W3/4 OF NW1/4 OF SW1/4 LESS PT DESC IN PARCE FOR EXPRESSWAY	L 343.A OI	F CA 84-23805

The just values displayed below were set in compliance with Sec. 193.011, Fla. Stat., and include a reduction for costs of sale and other adjustments required by Sec. 193.011(8).

	Property Assessment Values								
Year	Land	Building / Improvement	Just / Market Value	Assessed / SOH Value	Tax				
2019	\$1,652,560		\$1,652,560	\$665,390					
2018	\$1,652,560		\$1,652,560	\$604,900					
2017	\$1,652,560		\$1,652,560	\$549,910					

	2019 Exemptions and Taxable Values by Taxing Authority								
County School Board Municipal									
Just Value	\$1,652,560	\$1,652,560	\$1,652,560	\$1,652,560					
Portability	0	0	0	0					
Assessed/SOH	\$665,390	\$1,652,560	\$665,390	\$665,390					
Homestead	0	0	0	0					
Add. Homestead	0	0	0	0					
Wid/Vet/Dis	0	0	0	0					
Senior	0	0	0	0					
Exempt Type 10	\$665,390	\$1,652,560	\$665,390	\$665,390					
Taxable	0	0	0	0					

	Sales History							
Date	Type Price Book/Page or CI							
11/30/1990	QC*	\$127	28788 / 421					
11/30/1990	QC*	\$127	28788 / 419					


L	Land Calculations					
Price	Factor	Type				
\$2.00	826,279	SF				
Adj.	Bldg. S.F.					

^{*} Denotes Multi-Parcel Sale (See Deed)

	Special Assessments									
Fire	Garb	Light	Drain	Impr	Safe	Storm	Clean	Misc		
11			2							
Х			2							
1										

January 14, 2019

Exempt Type 10

Taxable

Site Address	FLORIDA TURNPIKE, DEERFIELD BEACH FL 33064	ID#	4842 04 00 0480
Property Owner	FLORIDA DEPT OF TRANSPORTATION	Millage	1112
	OFFICE OF RIGHT OF WAY	Use	94
Mailing Address	3400 W COMMERCIAL BLVD FORT LAUDERDALE FL 33309-3421		
Abbr Legal Description	4-48-42 POR OF W1/2 OF SW1/4 SEC 4 & POR N1/2 OF NW1/AS:BEG AT SW COR SEC 4,N 1817.01 NE 404.03,SE 462.38,S 450.68,ELY 439.58, S 302.86, WLY 352.72, SE 372.44, SW 466 607.57 TO POB AKA: PARCEL 343.A CA 84.23805	E 407.79,	S 159.48,SW

The just values displayed below were set in compliance with Sec. 193.011, Fla. Stat., and include a reduction for costs of sale and other adjustments required by Sec. 193.011(8).

		Prop	erty Asse	ssment Values	5					
Year	Land		Building / Improvement		Just / Market Value		ssessed / OH Value	Tax		
2019	\$742,430			\$742,4	30	\$7	742,430			
2018	\$742,430			\$742,4	30	\$7	742,430			
2017	\$742,430			\$742,4	30	\$7	742,430			
	2019 Exemptions and Taxable Values by Taxing Authority									
		County	School Board		Municipal		Independent			
Just Value	9	\$742,430		\$742,430	\$74	12,430	\$7	742,430		
Portability	1	0		0		0		0		
Assessed	/SOH	\$742,430		\$742,430	\$74	12,430	\$7	742,430		
Homestea	d	0		0		0		0		
Add. Hom	estead	0	0		0			0		
Wid/Vet/D	is	0	0		0			0		
Senior		0		0		0		0		

	Sales History				Land Calculations			
Date	Type	Price	Book/Page or CIN		Price	Factor	Type	
				ЦĽ	\$0.30	2,474,752	SF	
					Ad	j. Bldg. S.F.	ĺ	

\$742,430

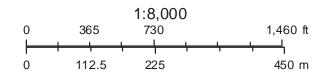
0

\$742,430

0

\$742,430

0


\$742,430

0

	Special Assessments								
Fire	Garb	Light	Drain	Impr	Safe	Storm	Clean	Misc	
11			2						
Х			2						
1									

January 14, 2019

Site Address	4460 SW 10 STREET, DEERFIELD BEACH FL 33442	ID#	4842 09 00 0160	
Property Owner	FLORIDA TURNPIKE ENTERPRISE	Millage	1112	
Mailing Address	PO BOX 613069 OCOEE FL 34761-3069	Use	94	
Abbr Legal 9-48-42 N1/2 OF NW1/4 OF NW1/4 LESS PT DESC IN PARCEL 343.A OF CA 84-23805 FOR EXPRESSWAY				

The just values displayed below were set in compliance with Sec. 193.011, Fla. Stat., and include a reduction for costs of sale and other adjustments required by Sec. 193.011(8).

Property Assessment Values								
Year	Land	Building / Improvement	Just / Market Value	Assessed / SOH Value	Tax			
2019	\$183,280		\$183,280	\$183,280				
2018	\$183,280		\$183,280	\$183,280				
2017	\$183,280		\$183,280	\$183,280				

2019 Exemptions and Taxable Values by Taxing Authority								
County School Board Municipal Indep								
Just Value	\$183,280	\$183,280	\$183,280	\$183,280				
Portability	0	0	0	0				
Assessed/SOH	\$183,280	\$183,280	\$183,280	\$183,280				
Homestead	0	0	0	0				
Add. Homestead	0	0	0	0				
Wid/Vet/Dis	0	0	0	0				
Senior	0	0	0	0				
Exempt Type 10	\$183,280	\$183,280	\$183,280	\$183,280				
Taxable	0	0	0	0				

Sales History						
Date Type Price Book/Page or CI						
11/30/1990	QC*	\$127	28788 / 421			
11/30/1990	QC*	\$127	28788 / 419			

Land Calculations					
Price	Type				
\$22,216	8.25	AC			
Adj. Bldg					

^{*} Denotes Multi-Parcel Sale (See Deed)

	Special Assessments								
Fire	Garb	Light	Drain	Impr	Safe	Storm	Clean	Misc	
11			2						
Х			2						
1									