2017 International Bridge Conference Technical Workshop W-06: FRP Composites

Halls River Bridge Replacement Project Corrosion Free Design with FRP Composites

Prepared by: Felix Padilla, P.E. FDOT State Structures Design Office Felix.Padilla@dot.state.fl.us (850) 414-4306

Outline:

- 1. Project Overview
- 2. FRP Materials
- 3. References, Codes and Specifications
- 4. Challenges
- 5. Lessons Learned

Designer: FDOT District 7 Structures Design Office Bridge EOR: Mamunur Siddiqui, P.E. Bulkhead/Seawall EOR: Richard Hunter, P.E. (ACE) FDOT Developmental Standards EOR: Steven Nolan, P.E.

Owner & Maintaining Agency

Design & Bi-Annual Inspection

Collaboration Research

U.S. Department of Transportation Federal Highway

Glass Fiber Reinforced (GFRP) Bars

Carbon Fiber Composite Cable (CFCC)

Hybrid Composite Beam (HCB)

HCB Components

- i. Wings vs. No Wings
- ii. Concrete Compression Arch
- iii. Shell
- iv. Strands
- v. Shear connectors

HCB Plan details:

HCB Plan details (cont.):

Projects with HCB

Source: HCB, Inc.

Design – Glass Fiber Reinforced Polymer Rebar:

- i. General
 - a. Modulus of elasticity: $E_f = 6500$ ksi
 - b. Resistance factors:
 - Flexure and Tension: $\phi_f = 0.55$ to 0.65
 - Shear and Torsion: $\phi_v = 0.75$

- ii. Principles
 - a. Equilibrium, Compatibility of Strains, Stress-Strain characteristics.
 - b. Crack width, Bond factor, Minimum reinforcement.

Design – Glass Fiber Reinforced Polymer Rebar (cont.):

- iii. Failure Mode
 - a. Catastrophic Failure.
 - b. Margin of Safety.
- iv. Challenges
 - a. Crack Control.
 - b. Deck Shear.
 - c. Traffic Railing.
 - d. Bar Detailing.

Bent Cap Plan Sheet Details:

Source: University of Miami

Projects with GFRP Reinforcement

3. References, Codes and Specifications

References, Codes and Specifications

Hybrid-Composite Beam (HCB[®]) Design and Maintenance Manual

RTE 205 (RIDGE RD.) Over Tide Mill Stream, Westmoreland Co. State Project No.: 0205-096-101, B601 Federal Aid Project No.: BR-096-6(015) NBIS No. 27818

Prepared for The Virginia Department of Transportation

> John R. Hillman, PE, SE HCB, Inc.

References, Codes and Specifications

References, Codes and Specifications

4. Challenges

Challenges

A. HCB

- i. Proprietary product
- ii. Design Criteria
- iii. Inspection for closed system
- iv. Durability verification
- v. Fabrication QA/QC

B. GFRP Reinforced Concrete

- i. Lap Splice: deck, cap, and diaphragm
- ii. Rebar unit price
- iii. Reinforcing Bar List

C. Funding and Costs

i. FHWA and County

REINFORCING BAR LAPS	
SIZE	LENGTH
4	1'-10"
5	1'-10''
6	2'-3"
8	2'-6"

5. Lessons Learned

Lessons Learned

Standard details and specifications

Rebar arrangement – no mechanical coupler

Lead time, Sole source of CFCC (Tokyo Rope)

HCB QA/QC plan

Sheet pile wall driving

Pile capacity

Summary

Experimental Project with Innovative Materials – First in Florida

- Superstructure: Hybrid Composite Beams; GFRP Bars: Deck, Barriers & Approach Slabs
- Substructure: CFRP Pre-stressed Piles; Bent Caps: GFRP Bars
- Sheet Pile Walls: CFRP Sheet Piles; Wall Cap: GFRP Bars

Contractor Bid Cost - \$6.016 Million (Structures = \$4.06 Million)

Bridge Cost = \$218 / sq. ft.
(Conventional Construction = \$166 / sq. ft.)

Accelerated Construction

- Lighter Materials Beams and Rebar
- Faster Transportation and Delivery reduced construction time

Questions ?

