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Unit of Measurement Conversions

SI* (MODERN METRIC) CONVERSION FACTORS
APPROXIMATE CONVERSTQ$SUNITS

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL
LENGTH
in inches 254 millimeters mm
ft feet 0.305 meters m
yd yards 0.914 meters m
mi miles 1.61 kilometers km
AREA
in? square inches 645.2 square millimeters  |mm?
ft? square feet 0.093 square meters m?
yd? square yard 0.836 square meters m?
ac acres 0.405 hectares ha
mi? square miles 2.59 square kilometers km?
VOLUME
fl oz fluid ounces 29.57 milliliters mL
gal gallons 3.785 liters L
fts cubic feet 0.028 cubic meters m?3
yd3 cubic yards 0.765 cubic meters m?3

NOTE: volumes greater than 1000 L shall be shown in m?

MASS
0z ounces 28.35 grams g
Ib pounds 0.454 kilograms kg
T short tons (2000 Ib) 0.907 megagrams Mg (or "t")
TEMPERATURE (exact degrees)
°F Fahrenheit 5(F-32)/9 or (F-32)/1.8 Celsius °C
ILLUMINATION
fc foot-candles 10.76 lux Ix
fl foot-Lamberts 3.426 candela/m? cd/m?
FORCE and PRESSURE or STRESS
kip 1000 pound force 4.45 kilonewtons kN
Ibf pound force 4.45 newtons N
Ibf/in? pound force per square 6.89 kilopascals kPa

*Sl is the symbol for the International System of Units. Appropriate rounding should be madmpty
with Section 4 of ASTM E380.
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Executive Summary

In prestressed bridge girders, end regeinforcement and strand debonding are used to
control cracking caused by high tensile stresses that occur due to prestress transfer. In some
cases, these measures do not effectively control cracking, resulting in construction delays,
potential repairs,dditional costs, and potential compromise of kbagn durability. UltraHigh
Performance Concrete (UHPC) is an attractive solution to prevent end region cracking and
potentially increase girder span lengths. This approach consists of producing ayhgbrich
which UHPC is placed at the end of the girder and conventgeiatonsolidating concrete
(SCC)mixture placed in theemaindeiof the girdeythe higher cost and higher strength material
is placedn the portion of the beam with most extrenmess$ conditions during construction. To
evaluate the effectivenesstbfs use olJHPC, experimental and analyticgalsearch was
conducted theresearchiesults are described in this report.

The experimental programas divided in two phases. In thestiphase, fiv0-ft-long
Floridal 72 beam(FIB 72) mockups made of SC®ere constructed to evaluate end region
behavior. The second phase consisted of constructing@itelong Floridal 54 beam(FIB 54)
UHPG-SCC hybrid girders towvestigate the p&srmance undeload testing

Phase one FIB 72 mockups were constructed to compare end region beéavesn
UHPC and SCC ends. AdditiondHPG-only mockups were constructed with reduced amount
of end region steel reinforcement to investigate the behat/fUHPC. Thesenockupswere
instrumented with linear strain gages and fiber optic sensors (FOS) to measure singin dur
prestress transfer. Additionally, the mockups were monitoreoh®iyeato document changes
in crack widthand characteristicsSCrack width measurements indicated that SCC ends result in
crack widths up to four times greater than those of UHPC. Furthermore, it was found that crack
widths measured on UHPC ends do not exceed (n0@8gardles®f the amount of end region
reinforcement.

Phase two FIB 54 UHRSCC hybrid girdersvere loadtested to determine the capacity
and behavior of the UHRSCC interface under applied shear. A total of four load tests were
performed to investigate the effect of UHPC length from the girdearddmount of end
region reinforcementDue to limiting capacity of the strong floor supporting the frame, the
specimens were not loaded to failure but to a maximum loa@®@®kip. Up to this loadthe
UHPG-SCC interface was able to transfer loads without exhibgiggificantdamage.
Furthermore, the UHRSCC hybrid girder carried at least 25% higher superimposed shear
without reaching failureompared t@past SCC FIB 54 girders.

The analyticaprogram was conducted in three stagesn{dferial model identification
and calibration, (2)levelopment and validation of FIB 72 mockup model for end region
evaluationand (3) development and validation of FIB 54 hybrid girder model under shear loads.
The first stage consisted of calibrating material models available-IDYI$A to approximate
the tensile behavior of UHPC. To accomplish this, finite element models of the Direct Tension
Test (DTT)and ASTM C1609 Flexure Beam test were developed toratdilthe material model
parameters and approximate the experimental behavior. The calibratiosdshatnMAT_84
Winfrith and concrete damage MAT_72R@recapable of approximating UHPC tensile
behavior.

Using the calibrated MAT_84 material model, tee@dstageof the analytical work
included simulation of the FIB 72 mockups during prestress transfer. Concrete aisteslild
reinforcement strains measured during prestress transfer were used to validate the analytical
model. After validation of theralytical model, a parametric studgpthe FIB 96 was performed
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to determine potential benefits of UHPC on larger girder sections. The analytical models
showed that SCC develops crack widths at least 3.75 times greater than those of UHPC.

Stage 3 of thanalytical work used the calibrated MAT_72R®delto perform
simulations of the FIB 54 hybrid girders during prestress transfer and load tests. Good
agreement was found between the experimental and anatgtcdtis;however, the model will
need furthecalibration once the experimental failure strengths are available.
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1 Introduction

Ultra-high performance concrete (UHPC) is an emerging class of concretenkihced
mechanical properties combined with improwedlability. These properties make UHBR
attractive material to besed to fabricatbridgecomponents. UHPC is associated with high
costs, whicthasimpededts wide implementatiomn the United Sttes. This has typically been
due to the proprietary nature of the UHPC mixtures develwpestent years.

More interest has been expressegitscast concrete producers in Florida@veloping
their own UHPC mixtures that can be used to produceteatgeoductsn a costcompetitive
mannerfor such areas dsghway bridge components.

The researchoveredn this reporiis anexample of one such application of UHPGhe
production of precadiridge componest the focus is on the use of UHPC at the end of precast
bridge girders tamprove crack control in the end region caused by the prestressing forces
During prestress transfer, the girder end regsasubjected to bursting, spallirand splitting
stresses #it result in concrete crackingh past research project sponsored by the FDOT (Diaz
and Hamilton, 2020) evaluated the effectiveness ofibefforced concrete (FRC) to control
end region cracking in prestressed girders. The study found that FRC w#s mdgluce end
region crack widthswhich improves the serviceability and durability as well as reduce the need
for crack repair

These findings motivated the execution of this project to evaluate the effectiveness of
using UHPC tdoetter controtrackingthan is possible with the use of setinsolidating
concrete (SCC) that is currently used to produce bridge girders in Flétigh UHPC cost
motivatesefficient use of the materiaio take full advantage of the improved UHPC mechanical
propertiesthe concept of a UHRSCC hybrid girder was developedhe UHPCSCC hybrid
girder concepstrategically places the higher cost and higher strength material in the portion of
thegirder that is subjected to tin@ost extreme stress conditions during consimac

This report presents results from experimental and analytical investgtitadiwere
conducted to evaluate the effectiveness of UHPC to control end region cracking and the
performance of the UHRSCC interface under superimposed shear. Alsaded inthisreport
are examples of possible span length increabéevablaevith the UHPCGSCC hybrid girder.

Experimental work includefive 20-ft-long Floridal 72 beam (FIB 72jnockups made
of SCC and UHPC anavo 50-ft-long Floridal 72 beam (FIB72) UHPGSCC hybrid girders
used to evaluate end region behavior and strength under applied shear. Cracking and strain data
were collected during prestress transfer fmdip toone yeaafter transfer. Variables
considered in these specimens includétP@ length from the girder end and amount of end
region reinforcement.

Analytical work in this project utilizethefinite element analysiFEA) method FEA
models were validated using the data collected from the experimental program and then were
used to investigate end region behavior in a FIB 96.

This report presents the resulfsesearch conducted twybrid prestressed concrete
bridge girders usg UHPC. The literature review in Chapter 2 provides background of current
knowledge of end region behavior, UHPC material properties, UHPC tensile testing, UHPC
shear strengtfand UHPC modeling. Chapter 3 covers the FIB 72 mockup design, construction,
material testing, strain measured during prestress traasféend region crack monitoring.
Chapter 4oversthe FIB 54 hybrid girder design, construction process, and sheprdestiures
andresults. Chapter covers direct tensiotest results thavere conducted on a number of
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different componentsChapter 6 covers thearametricstudy conducted to determine the
possible increases in girder span that might be possible with the use of &GP Gybrid
girders, andChapter7 describes the analyticalork that was conducted in support of the
experimental testingThis report closes withverall summary and conclusions of the research
and suggestions for implementation of the results.

1.1 Research Objectives

The main objective of this researngioject was to evaluate the effectiveness of using
UHPC in the reduction or elimination of visible end region cracking after prestress transfer. This
objective was achieved by conducting experimental and analytical work designed with the
following subobjectives:

Investigate, evaluate, and implement construction methods that can be used by
precast plants to construct UHEBTC hybrid girders

Test the tensile properties of UHPC specimens to assess the quality of the UHPC mix
Evaluate the effectiveness of B@ concrete at controlling end region cracking

Test the structural performance of the UHBCC interface under superimposed

shear

Evaluate the potential benefits of UHPC on larger girder esessons

Determine possible contribution of UHPC to the strradtperformance of prestressed
bridge girder, in terms of longer span lengths

1.2 Research Organization
The report is divided in three major components:

Design, construction, testing and monitoring the FIB 72 mockups for end region
evaluation. End region elmtion consisted of measuring strains in the concrete and
mild-steel reinforcement during prestress transfer, and characterizing end region
crack growth overtime.

Design, construction, and load testing of the FIB 54 hybrid 3RC girders.
Analytical investigation focused on evaluating the effectiveness of UHPC at
controlling end region cracking in ends with reduced reinforcemenbraiadger

FIBs crosssection
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2 Literature Review

2.1 Background

Ultra-high-performance concrete (UHPC) is a relative néags of concrete that began to
develop in the late 1990s. This new class of concrete is able to provide high strength, enhanced
ductility and durability. The Federal Highway Administration has been one of the pioneers for
the implementation in the Unitestates defining UHPC as a cementitidaased composite with
discontinuous fiber that exhibits a compressive strength above 21.7 ksingneostcracking
tensile strength above 0.72 ksi, and enhanced durability via its discontinuous pore structure
(Rusell and Graybea2013) These enhanced properties have steered the application of UHPC
to structural components such as joints between deck p&ingplsg2-1), prestressed girders
(Figure2-2), deck slabs, deck overlay, and precast pfegufe2-3).

UHPC has generally been available only in the form of proprietary commercially
available mixturesince early 2000s (Graybeal 201Due to the propriett UHPC mixesthe
cost of UHPC is well above that of conventional reatdyed concrete and has been reserved
only for relatively small volume application$his has been somewhat of an impediment to the
widespread use of UHPC.

Figure2-1 UHPC used for joints of deck panels
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Figure2-3 Precast piles made of UHPC

In Florida, the application of UHPC has been limited to repair between existing precast
slab units, closure between beanmflas, and prestressedbdam repair (FHWA, 2017).

Recently, however, precast concrete produiceForidahave become interested in producing
their own version of UHPC and employing the mixtures in targeted or specialized applications,
which may includénighway bridge components.

One such application is the end region of prestressed concrete giferapproach i®
produce a hybrid girder in which UHPC would be placed at the end of the girder and
conventional FDOT SCC concrete girder mixture plaodtie remainder of the girdeihis
approach strategically places the higher cost and higher performance material in the portion of
the beam that has the most extreme stress conditions during constrticiwever, this
approach raises questions thag¢chéo be considered during the construction process in terms of
SCGUHPC joint. Up through the conclusion of this research project no studies addressing the
SCGUHPC hybrid girder approach from an experimental perspective were found.

Ronankiet al.(2017) evaluated the concept of UHRNIC (normal concrete) hybrid girder with a
series of Finite Element models developed in ATENA. The study aimed to address end region
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cracking and performance of the UHINC interface subjected to shear stresses. The study
reported that maximum stresses in the end region reinforcement were 17.5 ksi and that no
cracking is expected to occur during prestress transfer. Additionally, the authors did not expect
for separation between the NC and UHPC to occur, because thetstesgssat the interface

during dead loads and H23 loading were less than the shear capacities obtained experimentally
from pushoff tests.

2.2 End Region

In prestressed concrete girders, end region is typically understood to be the end of the
girder overa length approximately equal to their height. During prestress transfer, the girder end
regions are subjected to bursting, spalling and splitting stresses that result in concrete cracking
(Figure2-4).

Bursting and spalling stresses form due to the eccentricity between the centroid of the
strands and the girder center of gravity. The eccentricity during prestress transfer creates a
moment in the girder crossectionwhich generates tensile forces from the location of the
prestressing strands to the top flange. Concrete cracking occurs when the generated tensile
stresses exceed the strength of concrete. In general, these cracks form at the interface between
the bottan flange and the well-{gure2-5). Splitting stresses are generated as a resHibypér
expansion of strands, which can result in splitting cracks in the bottom flange.

Compatibility and Longitudinal Edge Tensile
Eccentric Spalling Stress Stress from Eccentricity

J [

meriiier Bursting Stress

Compatibility and
Multiple-Anchor
Spalling Stress s

—— Bursting Stress

Corn'patibility
Spalling Stress

Figure2-4 Stresses in the end region (Dunknedrl.,2010)
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Figure2-5 End region cracks

2.2.1 End Regqion Design

Provisions for end region design were developed from research conducted by Marshall
and Mattock (1962). This study proposed to calculate the amount of transverse reinforcement
usingEquation2-1.

. 0 Q .
0 T8t G “?25 Equation2-1

where A s the required area of transverse reinforcemeid, tRe total prestress forcejg the
design stress in the reinforcement, h is the depth of the membeisatingt Istrand transfer
length.

End region design required by AASHTO LRFD Bridge DesigacHications (2017) and
t he FDOT Structures Design Guidelines (2018)
proposed equation (1962), by replacing thepufition of the equation with a factor between 2
and 2.3.

Both design guidelines follow a similapproach, although the FDOT approach is more
conservative due to environmental conditions in the state of Florida. The amount of
reinforcement in both design guidelines is quantified uBipgation2-2 for the specified end
region location. Both design guidelines are summarized below:

AASHTO LRFD 5.9.4.4.11 (2017):

- 4% R from the end of the beam to h/4
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FDOT (2018)

- 3% R from the endf the beam to h/8

- 5% R from the end of the beam to h/4
- 6% R from the end of the beam to 3h/8

0 D Equation2-2

where R s the total prestress force (without losses) in k$s, the stress in the steel not to

exceed 20 ksi, &he total area of reinforcement located within the specified distance from the
end of the girder, and h is the overall dimension of precast memther direction in which
resistance is being evaluated. In addition, the FDOT Index 20010 (2012) provides limits for the
maximum bonded prestress force for all FIBS as listéichble2-1.

Table2-1 Maximum bonded prestress force

Beam Type Max. Bonded Prestress

Force at Beam End (kip)
FIB 36 1,450
FIB 45 1,670
FIB 54 1,740
FIB 63 1,740
FIB 72 1,980
FIB 78 2,230
FIB 84 2,375
FIB 96 2,375

2.2.2 End Region Crack Control and Repair

Crack control is partly addressed during design by placing stélel reinforcement at
strategic locations where tensile stresses are developed during prestress transfer. Another
common apprach is to debond prestressing strands at the end to reduce end region stresses.
Tadroset al.(2010) summarizes additional measures that can improve crack control:

a. Adjust method of detensioning from flame cutting to hydraulic release

b. Adjust detensioningequence to release top straight or draped strands before bottom

strands

c. Both ends of the same prestressing strand should be cut simultaneously to prevent

uneven forces.

d. Minimize free strand length between abutment and first prestressed member and

between prestress members

e. Apply lubricant to the precast bed to reduce frico@merated by member shortening

during detensioning

f. Increase the length over which the strand is heated during-fiathieg to increase

elongation before rupture

g. Design member with low concrete release strength

Recent innovative options for crack comtnave been developed by (Diaz and Hamilton
2020, and Alireza and Rafic 2020). Diaz and Hamilton (2020) usedréb¥orced concrete
(FRC) for girder fabrication. The study reported that FRC reduced maximum crack widths and
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effective crack widths by 86 and 40% respectively. Also, it was found that hooked end fibers
were the most effective by maintaining crack widths under 0.006 in.

Alireza and Rafic (2020) evaluated the end region behavior of UHPC prestressed girders
with varying depths and web witf. The study estimated that the stresses in the rebar were
under the 20 ksi limit based on the strain measured in the concrete surface. Finally, the study
recommended that the current design practice in AASHTO LRFD (2017) can be applicable for
girder erds made of UHPC, where the benefits of UHPC can be engaged in the &egighan
2-3). For instance, Alireza and Rafic (2020) specified a UHPC contributibksif which was
a conservative approximation of the cracking strength obtained from DTTSs.

™Mo d®» Qb Equation2-3
where'Q is the UHPC contribution (ksi) and A is the concret area of the web thickness by
the distance from the girder end to H/4.

When endegion cracking does occur, it is typically necessary to evaluate the cracking
and determine if repair or some other treatment is necestabje2-2 lists the NCHRP 654
(2010) published crack treatments from a national survey, and recommended treatment from the
study. Table2-3 shows the FDOT Standard Specifications for Road and Bridge Construction
(2018) crack repair specifications.

Table2-2 NCHRP 654 (Tadrost al.2010) crack treatment during production
National Survey Recommended Crack Treatment

Crack Width (in.) Repair Method Crack Width (in.) Repair Method
<0.007 Surface Sealing <0.012 No action
0.0077 0.025 Epoxy Injection 0.012i 0.025 Apply Sealant
>0.025 Reject Beam 0.025-0.050 Inject epoxy
>0.05 Reject Girder

Table2-3 Crack Treatments specified by Standard Specifications for Road and Bridge
Construction (FDOT 2018)

Crack Width (in.)

Repair Method

O 0.006 Penetrant Sealer*
0.0061 0.012 Penetrant Sealer or epoxy injecti
>0.012 Engineering evaluation

*Only for extreme environment conditions; otherwise, not treatment needed

2.3 UHPC Material Composition

UHPC is composed of portland cement, supplementaéngnous materials (silica
fume), fine sand, highange water reducing admixtures (HRWR), fibers, and water. Each
constituent is carefully selected and proportioned to obtain optimal particle packing and high
strength. In addition, to obtain compressstengths above 20 ksi, the mixture is designed using
low watercement ratios ranging from 0-0722, which is accompanied with high dosages of
HRWR.

Steel fibers are the most common fiber type used for UHPC, with fiber dosages ranging
from 1% to 3% othe total volume by weightWu et al.(2016)studied the effect of steel fibers
at varying dsage and shape. The study found that the flowability of UHPC decreases with an
increase in fiber volume or when deformed fibers were used {#iodk The compressive and
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flexural strength was higher for the mixtures having high volume of steel fiberg, \aas
higher for mixtures having hoeénd or corrugated fibers as opposed to straight fibers. Finally, it
was concluded that the volume or shape of the fibers did not have an effect on the first crack
during compressive or flexural loading.

The flowability of UHPC is measured using ASTM C1487Standard Test Method for
Flow of Hydraulic Cement Mortar. This test method provides a measure of the flowability of
fresh UHPC as well as a visual indication of the distribution of the fibers throughout ttze.mor
Depending of the application, flow tests may be performed before adding the fibers, which
allows verification that the mortar flowability is adequdtg(ire2-6). Consider that while
UHPC does not have coarse aggregate, the steel fibers can clump or segregate if the mortar has
low viscosity as shown iRigure2-7a.

A UHPC mixwith well distributed fibers is shown iigure2-7b. ASTM C18563
Standard Practice for Fabricating and Testing Specimens of Higtaperformance Concrete
provides procedures for the fabrication and testing of UHPC specimens. This standard suggests
that UHPC should have a flow varying from 7.8 in. to 9.8 in.

Figure2-7 Fiber distribution in UHPC(a) fiber uneven distributed during spread test (Photo
credit: Torres)(b) fibers well distributed (Photo credit: Torres)
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2.4 UHPC Mechanical Properties

2.4.1 Compressive Strength

UHPC compressive strength test is performed using ASTMYCSgandard Test Method
for Compressive Strength of Cylindrical Concrete Specimaonag with some modifications
specified in ASTM C1858 Standard Practice for Fabating and Testing Specimens of Ultra
High performance ConcreteASTM C1856 is applicable to any UHPC with a compressive
strength above 17,000 psi. The modifications to the ASTM C39 include:

1. Only use 3 inx 6 in. cylinder specimens for compressive tesgti

2. The ends of the cylinders shall be ground plane to within 0.002 in.
3. The load shall be applied at a rate of 1025 + 50 psi/s.

Typical compressive stressrain behavior of UHPC is shown kiigure2-8a (Singhet
al., 2017. At peak strength, compressive strength tests of high strength concrete cylinders often
result in an explosive brittle failure. However, in UHRIG@ steel fibers prevent the concrete
from spalling as shown iRigure2-8b. Haber et al. (2018) investigated the compressive strength
of six commercially available HPC mixtures. The study reported that the peak
compressive stresgrain relationships was similar among all mixtures. However, at peak
strength a wide range of strains varying from 0.002701Q0524(Figure2-9) were reported

among the tested UHPC mixtures.
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Figure2-8 UHPC compressive strengtta) experimental results (Singhal.2017), andb)
tested cylinder (Photo credit: Torres)
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Figure2-9 Axial compressive strains measured at peak stress (Haber et al. 2018)

2.4.2 Tensile Strength

One of the fundanrgal assumptions in the strength design of reinforced concrete
sections is to ignore the concrete strength in tension. Under service load conditions in
prestressed concrete, the tensile strength of concrete is considered when checking service
stresses; ASBHTO LRFD C5.4.2.7 allowable stress for Service Il limit states check is specified
based on the modulus of rupturerss T "@@ Qi ."QUHPC, however, generally exhibits tensile
strengths 23 times higher than that of conventional concréterthermore, the fibers present in
UHPC mixtures provide crack control under service conditions and tensile ductility under
strength conditionsThe enhanced tensile strength and ductility provide an opportunity to
optimize structural design of structurimponents beyond what is typically possible for
conventional structural concrete. If the tensile strength is to be considered in the design,
however, a convenient and effective method to measure the tensile strength is needed.

Several test methods hebeen proposed in the literature (Yana@l, 2010, Graybeal
and Baby 2014, Voit and Kirnbauer 2014, Yuliarti et 2015, Kang et al2016, Haber et al.

2018, Graybeal and Baby 2019, Zhou and Qiao 2019) to test for the tensile strength of fiber
reinforced concrete and UHPC; these include splitting tensile test, direct tension test (DTT),
flexural beam tests, Barcelona test, among others. One particular challenge thataétest
methods faces the preferential fiber alignment that can occuemwhasting test specimens.
Preferential fiber alignment can result in undmaroverestimation of the tensile strength. The

mold for casting specimens is typically much smaller and more confined than the formwork used
to cast the structural member thabeing constructed. Casting of the test specimens may result
in very different UHPC flow patterns than that experienced in the formwork used to cast the
structural member.

Thedirecttensiontest and flexural beam test (ASTM C16089 methodsusedto
determine the tensile strength of UHPC. The DTT test requires sophisticated equipment that is
only available irafew laboratories in the US. This test has the potential to be implemented by
agencies as a qualification requirement to approve a UHPCThien, a test with a much
simpler setup such as flexural beam tests can be required to be performed on a daily basis as
guality control at UHPC production facilities.

In general, the direct tension test is a complicated by the difficulty in obtainintyeve
distributed stresses throughout the cross section and controlling a stable load versus displacement
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response (Wille et al2014). While currently no testing standards are available, the FHWA
(Graybeal and Baby 20LAFGCGSETRA (2002), and JSCE (200@ave provided
recommendations on how to perform an uniaxial tensile test.

The Federal Highway Administration (FHWA) performed a large research project to
review tensile strength test methd@aybeal and Baby 2019From this project, the FHWA
developed guidelines for a direct uniditension test known as the direct tension test (DTT).
The DTT consists of directly relating the uniaxial tensile properties of UHPC from global elastic
behavior through localization of strain within an individual cré@kaybeal and Baby 2019)

The study considered specimens of diffetengths, different shapes and the effect of adding a
notch in the middle. A sample strestsain curve obtained from a DTT is showrFigure2-10.
The figure showshe different stages observed during uniaxial tensile loading of UHPC. The
initial part of the curve displays the elastic portion of the curve until first crack occurs. The
second portion of the curve shows multacking occurring in the middle regioRigure2-11).
Finally, the last region is denoted as crack localization, which consists of the localization of
strain in a discrete crackigure2-12).
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Figure2-10 Tensile response obtained from Direct Tension Test
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Figure2-11 Multi-cracking duriig uniaxial tensile loading (Photo credit: Torres)

Figure2-12 Crack localization during tensile loading (Photo credit: Torres)

Other test setups and sample geometries have been used to perform uniaxial tests o
UHPC specimens (Tran and Kim 2013, Ngugerl, 2014, Wille et al.2014, Zhou and Qiao
2019). Zhou and Qiao (2019) used finite element analysis (FEA) to assist in the design-of a dog
boneshaped specimeifrigure2-13) capable of characterizing tensile response by displaying
linear elastic, strain hardening, and strsdftening behaviors.

The shape of the developed specimen avoided the necessity of attachaugtbd t
aluminum plate® needed on the FHWA DTT methddon the side of the specimens.
Nevertheless, fabricating specimens with the specified curvature to transition from the thicker
section to the thinned middle region can be challenging. In the midyiaye¢he specimen has
the same cross section area as the specimens from the FHWA study, but the gage length
increases from 4 in. to 6 in.
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