

Wilmington Delaware, USA

AN EVALUATION OF THE PLACEMENT AND FIBER ORIENTATION FACTORS BASED ON EXISTING UHPC CODES AND STANDARDS

Qian Zhang, Ph.D. Md. Mashfiqul Islam, Ph.D. candidate Department of Civil & Environmental Engineering FAMU-FSU College of Engineering Florida State University, FL, USA

Introduction

- UHPC have been increasingly implemented for their superior structural performance
- Fiber dispersion and fiber orientation remain a concern and are shown to influence the mechanical properties
 - Yang et al. (2010) reported that casting from one end of the beam cast showed 5-15% higher bending load capacity compared to the beam cast at midspan
- Very few studies have investigated the fiber orientation in real-scale structures

Different casting methods in UHPC construction (Source: Cor-Tuf, New York DOT)

Introduction

- Fiber orientation of UHPC members are strongly influenced by:
 - Casting flow direction of freshly mixed UHPC
 - Formwork geometry
 - Rebar arrangement
 - Casting device
 - Compaction technique
 - Rheology of the mixtures

Orientation of fibers in different flow patterns (Kang and Kim 2012)

Fiber Orientation Factors in Design Codes

Codes and Guidelines with	AFGC Recommendation on Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) (2002 and
well-defined fiber	2013)
orientation design factors	 French National Standards: NF P18-710, NF P 18-470, NF P 18-451
	 fib Model Code for Concrete Structures (2010 and 2020 under development)
	Canadian Highway Bridge Design Code (2019) (CSA-S6:19)
Codes and Guidelines with	Swiss Institute of Engineers and Architects (SIA), Ultra-high performance fiber reinforced concrete
other fiber orientation	(UHPFRC) –Materials, design and execution (2016) (SIA 2052)
design factor(s)	 Australian Standard of Concrete structures (2018) (AS 3600)
	DAfStb Guideline on Steel fibre reinforced concrete (2012 and 2019)
Codes and Guidelines	AASHTO LRFD guide specification for structural design with ultra-high performance concrete (2021)
without fiber orientation	Canadian Standards Association- Concrete materials and methods of concrete construction/Test
design factors	methods and standard practices for concrete (2019) (CSA A23.1:19)
	JSCE Recommendations for Design and Construction of High Performance Fiber Reinforced Cement
	Composites with Multiple Fine Cracks (HPFRCC) (2008)
	JSCE Recommendations for the Design and Construction of Ultra High Strength Fiber-Reinforced
	Concrete (UHSFRC) of JSCE (2006)
	KICT Design Guideline for K-UHPC (2014)
	KCI-M-19-006, The Structural Design Guidelines of Fiber Reinforced SUPER Concrete (2019)

FAMU-FSU

Engineering

4

K factors from AFGC Recommendations

- AFGC Recommendation, 2002 first introduced two K factors to address the effect of fiber dispersion and orientation
 - Account for the differences between lab cast samples and in-situ samples
 - K_{global} for global effect
 - K_{local} for local effect
- □ K factors are used to modify the post-cracking strength of UHPC in design.

K factors from AFGC Recommendations

75

K factors can be obtained by direct testing of mock-up sections

$$K_{global} = \frac{\overline{M_{m,max,i}}}{\overline{M_{s,max,i}}}$$

$$K_{local} = \frac{\overline{M_{m,max,i}}}{(M_{s,max,i})_{min}}$$

$$Default value: K_{global} = 1.25, K_{local} = 1.25$$

- The approach have been employed productively to enhance casting practices and structural safety
- It is costly to adopt in individual projects
- fib Model Code, Canadian Highway Bridge Design Code introduced similar design factors and offers recommended values in absence of mock-up testing

Sawing of the mock-up from Saint-Pierre la Cour Project (AFGC Recommendation)

Mock-up of one half of a π -shape beam before and after sawing (Simon et al. 2013)

North America Design Codes

AASHTO LRFD guide specification for structural design with UHPC

- No fiber orientation factors considered
- Assumes random fiber orientation
- Appropriate construction methods and the casting processes should apply
- Construction guides are under development

North America Design Codes

- CSA: A23 Concrete materials and methods of concrete construction/Test methods and standard practices for concrete
 - Place UHPC monolithically.
 - If not possible, ensure monolithic interface.
 - Avoid wave front intersection, promote fiber distribution.
 - Apply internal mixing if unavoidable wave front intersection.
 - Prevent fiber flow conflicts with stress orientation.
 - Avoid injurious vibration/shock to prevent fiber issues.
 - Deposit UHPC continuously during section placement.
 - Cast UHPC into plastic form.
 - Pour point should not advance ahead of wave front.
 - Pour UHPC from one end or behind wave front.
 - Consolidate UHPC to prevent segregation and redistribution.
 - Avoid internal vibration, use validated external vibrators.

Perspectives from UHPC Producer

- Interviewed UHPC producers in USA and Canada for casting method of I-beams and H piles
 - A wide range of casting procedures are used:
 - Casting devices: chute, bucket, tuckerbilt
 - From one end/from multiple locations in the middle
 - Few of them apply vibration/tapping/agitation during casting
 - Casting with different molds and in different directions
 - Experience producers have established SOPs
 - New starters are generally more cautious
 - Most producers optimized the casting by optimizing the mixture
 - No evaluation of fiber orientation/distribution

Casting of H-piles in Hdirection (photo courtesy: Cor-Tuf)

Casting of H-piles in Hdirection using closed form (photo courtesy: FACCA Inc.)

Casting H-piles in I-

Smart UP)

direction(photo courtesy:

Ongoing Effort

- Assessment and optimization of the casting procedure for UHPC structural elements
 - Conduct mock-up casting of standard UHPC sections, quantify the fiber orientation/distribution under different casting procedures
 - Develop a casting procedure with a defined confidence level for standard UHPC sections
 - Determine necessary fiber orientation factors to be used in design
 - Remove the necessity of full-scale testing of structural elements and mock-ups for individual projects
 - Maintaining the reliability of UHPC strength properties assumed in design

Summary

- In review of the available design codes, the concept K factors from the AFGC recommendation is the most well-established method to determine the effect of fiber orientation in the structural design, however, the mandatory mock-up testing maybe costly for individual projects
- In the North America, current design guides assume random fiber orientation and require that proper casting procedures to be specified
- Different UHPC producers utilize rather different casting methods even for the same type of elements
- There is lack of quantification on the actual fiber orientation in real-scale structures and the influence of casting procedures
- An ongoing project aims to assess and optimize the casting procedure for standard UHPC sections to improve the reliability and confidence in the design

Acknowledgement

- The authors wish to express their gratitude to the Florida Department of Transportation (FDOT) for funding this research through projects BDV30 977-34 and BED30 977-08.
- The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Florida Department of Transportation or the U.S. Department of Transportation.

Thank you

Qian Zhang, PhD Florida State University qzhang@eng.famu.fsu.edu

