Florida Slab Beam (FSB) with Ultra-High Performance Concrete (UHPC) Joint Connections

August 7, 2018

PI: David Garber, PhD, PE
Project Manager: Christina Freeman, PE
GRA: Francisco Chitty Gozalo
Outline

• Background
 • Slab Beams
 • Florida Slab Beam (FSB)
 • Ultra-High Performance Concrete (UHPC)

• Objectives

• Supporting Tasks

• Current Progress
Background

Slab Beams

Slab beams have been used in construction since prestressing began in the US

Prestressed Rectangular Slab Units (1955)
- 10” wide closure pour
- No topping
- Forming required

Prestressed Voided Slab Units – Sonovoids (1959)
- Transverse tie bars in sleeves
- Grouted shear key
- 4” asphalt topping
- Voids reduce weight

Prestressed Keyed Slab Units (1958)
- Transverse tie bars in sleeves
- 4” C.I.P concrete topping
- No forming required

Prestressed Slab Units – PSU (2008)
- Grouted shear key
- 6” C.I.P concrete topping
Background

Slab Beams – Performance

There have been some issues observed with previously used slab beams
Background

Slab Beams

Poor performance of previous systems led to development of alternate systems

Precast Composite Slab Span System – PCSS (2005)

Florida Slab Beam – FSB (2015)

These systems require field placement of large reinforcement
Background

Ultra-High Performance Concrete (UHPC)

<table>
<thead>
<tr>
<th>Property</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive Strength (f'_c)</td>
<td>20 to 30 ksi</td>
</tr>
<tr>
<td>Tensile Cracking Strength (f_r)</td>
<td>0.9 to 1.5 ksi</td>
</tr>
<tr>
<td>Modulus of Elasticity (E_c)</td>
<td>6,000 to 10,000 ksi</td>
</tr>
</tbody>
</table>

Source: https://www.fhwa.dot.gov/research/resources/uhpc/
Research Objectives

• Develop cross-section and joint region detail for short- to medium-span bridges for use with accelerated construction

• Assess strength and fatigue performance of cross-section and joint

• Recommend fabrication procedures, on-site construction practices, and erection tolerances
Methodology

Literature Review
Review all available research and field applications for UHPC joints and short-span bridge solutions.
(Tasks 1 and 2)

Analytical Program
Develop and analyze modified sections/joints and their impact on design through numerical analysis and parametric study.
(Tasks 2, 3 and 6)

Refine Numerical Models
Optimize Developed Section

Experimental Program
Evaluate and refine developed sections through small- and full-scale testing.
(Tasks 4 and 5)
Supporting Tasks

1. Literature Review (short-span bridge options, joint details, current practices)
2. Conceptually and Analytically Develop FSB Design Standards and UHPC Joint Details
3. Conceptually and Analytically Develop FSB for 75-ft. Single Span with UHPC Joints
4. Small-Scale Joint Testing
 a) Develop and Evaluate Alternative FSB and UHPC Connection Details and Testing Protocol
 b) Develop Construction Documents for Beam Fabrication
 c) Fabricate Small-Scale Specimens for Strength and Fatigue Testing
 d) Strength Testing of Small-Scale Specimens
 e) Fatigue Testing of Small-Scale Specimens
Supporting Tasks (continued)

5. Full-Scale Specimen Testing
 a) Develop and Evaluate Alternative FSB Details and Testing Protocol
 b) Develop Construction Documents for Beam Fabrication
 c) Fabricate Full-Scale Specimens for Strength and Fatigue Testing
 d) Strength Testing of Full-Scale Specimens
 e) Fatigue Testing of Full-Scale Specimens

6. Conceptually and Analytically Develop FSB Detail as a Continuous Span

7. Draft Final Report and Closeout Teleconference

8. Final Report
Task 1 – Literature Review

Objectives

• Short-span bridge solutions
• Longitudinal and transverse joints (non-UHPC and UHPC)
• Current practice with UHPC joints
• SDCL in prestressed concrete bridges
Task 1 – Literature Review
Longitudinal and Transverse Joints (UHPC)

Full-Depth Deck Connections

Adjacent Box-Beam Connections

(Aeleti and Sritharan, 2014)

(Graybeal FHWA)
Task 2 – Section and Joint Development

Objectives

• Feasible span lengths for beams without CIP deck
• Preliminary joint and section designs

Feasible span lengths

Modified section and joint
Task 2 – Section and Joint Development

Feasible Span Lengths

Current Design

- $h_{topped} = 24''$
- $t_{slab} = 6''$

Modified for ABC

- $h_{untopped} = 18''$
- $t_{slab} = 0''$

$L_{max, topped} = 61'$

$L_{max, untopped} = 55'$

Using FDOT Design MathCAD Program
Task 2 – Section and Joint Development

Development of Joint Details

Option 1 – Box Beam Joint Integration

Joint 1 – Integrated Box Beam Joint:
Task 2 – Section and Joint Development

Development of Joint Details

Options 2 and 3 – FDOT Joints

Original FSB Section:

FDOT 1

FDOT 2

Joint 2 – No Shear Key
(4” lip)

Joint 3 – No Shear Key
(2” lip)
Task 2 – Section and Joint Development
Development of Joint Details

Options 4 – Modified Box Beam Joint

Joint 1 – Integrated Box Beam Joint

Joint 4 – Modified Box Beam Joint

(Note this joint was developed after some testing in Task 4)
Task 2 – Section and Joint Development

Development of Joint Details

Joint 1 – Integrated Box Beam Joint:

Joint 2 – No Shear Key (4” lip):

Joint 3 – No Shear Key (2” lip):

Joint 4 – Modified Box Beam Joint:
Task 2 – Section and Joint Development
Numerical Modeling of Joint Details

Experimental Setup

- 84"
- 12"
- 53"
- 53"

wheel path (20”x10”)

Numerical Model
Task 3 – FSB for 75-ft. Span

Objectives

Determine options for 75-ft. span
• No CIP deck
• Adaptable for ABC projects (UHPC Joint)
• High notoriety
Task 3 – FSB for 75-ft. Span

Section Options

- **Box Beam**
 - Height: 28”
 - Strands: 18

- **Inverted-T Beam**
 - Height: 28”
 - Strands: 20

- **NEXT D Beam**
 - Height: 36”
 - Strands: 40

- **Pre-Topped Florida**
 - Height: 28”
 - Strands: 20

- **Modified Florida Slab Beam**
 - Height: 27”
 - Strands: 39
Task 3 – FSB

Section Options

<table>
<thead>
<tr>
<th>Section Type:</th>
<th>Texas 4B28</th>
<th>NEXT D 96</th>
<th>Pre-Topped FIT</th>
<th>FSB 27x53</th>
</tr>
</thead>
<tbody>
<tr>
<td>depth [in]</td>
<td>28</td>
<td>36</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td>width [in]</td>
<td>48</td>
<td>96</td>
<td>48</td>
<td>53</td>
</tr>
<tr>
<td>0.6” diameter strands for 75’ length</td>
<td>18</td>
<td>40</td>
<td>20 (4*)</td>
<td>39 (3**)</td>
</tr>
<tr>
<td>A [in²]</td>
<td>678.8</td>
<td>1,562</td>
<td>635.4</td>
<td>1,176</td>
</tr>
<tr>
<td>Iₓₓ [in⁴]</td>
<td>68,745</td>
<td>176,674</td>
<td>77,574</td>
<td>74,098</td>
</tr>
<tr>
<td>yₜ [in]</td>
<td>14.38</td>
<td>12.97</td>
<td>11.02</td>
<td>13.99</td>
</tr>
<tr>
<td>yₚ [in]</td>
<td>13.62</td>
<td>23.03</td>
<td>16.98</td>
<td>13.01</td>
</tr>
<tr>
<td>weight [k/ft]</td>
<td>0.707</td>
<td>1.627</td>
<td>0.661</td>
<td>1.225</td>
</tr>
<tr>
<td>ρ (efficiency)</td>
<td>0.517</td>
<td>0.379</td>
<td>0.652</td>
<td>0.351</td>
</tr>
</tbody>
</table>

Box Beam and Pre-Topped Florida Inverted-T are the most efficient sections.

$$\rho = \frac{I}{Ay_byss} = \frac{r^2}{ybyss}$$
Task 4 – Joint Testing Program

Preliminary Test Specimens

Slab Beam w/CIP Deck:

Joint 1 – Integrated Box Beam Joint:

Joint 2 – No Shear Key (4’ Lip):

Joint 3 – No Shear Key (2’ Lip):

Joint 4 – Modified Box Beam Joint:
Task 4 – Joint Testing Program

Preliminary Test Specimens – Naming Convention

FSB:

A1:

F1:

F2:

A2:

18F1

Note: 2 tests were performed on each specimen
Task 4 – Joint Testing Program

Test Setup

- Support (5” width)
- Wheel path (20” x 10”)
- 104”
- 56”
- 60”
- 60”
Task 4 – Joint Testing Program

Instrumentation Schedule

Legend
- Concrete surface gauge
- Rebar strain gauge
- Crack opening gauge
- Laser displacement transducer
Task 4 – Joint Testing Program
Numerical Modeling
Task 4 – Joint Testing Program
Specimen Fabrication

Specimen Reinforcement
Concrete Pour
Finished Cast
Surface Raked Finish
Task 4 – Joint Testing Program

Specimen Fabrication

Delivered Specimens

Beam w/CIP Deck Cast

UHPC Mixing

UHPC Joint Cast
Task 4 – Joint Testing Program

Specimen in Test Setup

Side View

Bottom View

Top View
Task 4 – Joint Testing Program

Experimental Results

![Bar chart showing ultimate capacity (kips) for different samples (18FSB, 18A1, 18F1, 18F2, 12A1, 12F1, 12F2, 12A2) under Tests 1, 2, 2 (After cyclic), and Software.](chart.jpg)
Task 4 – Joint Testing Program

Experimental Results

Ultimate Capacity (kips)

18-inch deep specimens

- FSB
- 18F1
- 18F2
- 18A1

Test 1 Test 2 Test 2 (After cyclic) Software
Task 4 – Joint Testing Program

Experimental Results

![Bar chart showing Ultimate Capacity (kips) for different specimens: 18FSB, 18A1, 18F1, 18F2. The chart compares Test 1, Test 2, Test 2 (After cyclic), and Software.]

- **18-inch deep specimens**
- **FSB**
- **UHPC Joints**
Task 4 – Joint Testing Program

Experimental Testing – 18” Specimens
Task 4 – Joint Testing Program

Experimental Results

18-inch deep specimens

- Current FSB joint failed much lower than expected

Ultimate Capacity (kips)

- 18FSB
- 18A1
- 18F1
- 18F2

Test 1
Test 2
Test 2 (After cyclic)
Software
Task 4 – Joint Testing Program

Experimental Results

18-inch deep specimens

- Current FSB joint failed much lower than expected
- Modified UHPC joints had similar ultimate capacities to current FSB
Task 4 – Joint Testing Program

Experimental Results

18-inch deep specimens

- Current FSB joint failed much lower than expected
- Modified UHPC joints had similar ultimate capacities to current FSB
- Joint 18A1 had the largest ductility among all the joints
Task 4 – Joint Testing Program

Experimental Results

- Load (kips) vs. Deflection (in.)
- Lines representing different control and software configurations:
 - FSB Control-1
 - FSB Control-2
 - FSB Control-Software
 - 18F1-1
 - 18F1-2
 - 18F2-1
 - 18F2-2
 - 18A1-1
 - 18A1-2
Task 4 – Joint Testing Program

Experimental Results

18-inch deep specimens

- Current FSB joint failed much lower than expected
- Modified UHPC joints had similar ultimate capacities to current FSB
- Joint 18A1 had the largest ductility among all the joints
- Sandblasted joint finish was not sufficient for achieving desired bond
Task 4 – Joint Testing Program

Experimental Results

18-inch deep specimens

- Current FSB joint failed much lower than expected
- Modified UHPC joints had similar ultimate capacities to current FSB
- Joint 18A1 had the largest ductility among all the joints
- Sandblasted joint finish was not sufficient for achieving desired bond

Best Performance 18A1
Task 4 – Joint Testing Program

Experimental Results

12-inch deep specimens

Ultimate Capacity (kips)

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 2 (After cyclic)</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>12F1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12F2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12A1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12A2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Task 4 – Joint Testing Program

Experimental Results

12-inch deep specimens

Failure mechanism 1

Failure mechanism 2

Ultimate Capacity (kips)

Test 1 Test 2 Test 2 (After cyclic) Software

12A1 12F1 12F2 12A2

FIU FLORIDA INTERNATIONAL UNIVERSITY

FDOT
Task 4 – Joint Testing Program

Experimental Testing – 12” Specimens

12F1-1
$P_{\text{max}} = 70.0 \text{ kips}$
(8x speed)

12F2-1
$P_{\text{max}} = 98.1 \text{ kips}$
(8x speed)

12A1-1
$P_{\text{max}} = 61.0 \text{ kips}$
(10x speed)

12A2-1
$P_{\text{max}} = 98 \text{ kips}$
(12x speed)
Task 4 – Joint Testing Program

Experimental Results

12-inch deep specimens

- Reinforcement lever arm has greater impact on strength (12F2 had highest strength)

![Bar chart showing ultimate capacity in kips for 12-inch deep specimens.]

- Test 1
- Test 2
- Test 2 (After cyclic)
- Software

12A1 12F1 12F2 12A2
Task 4 – Joint Testing Program

Experimental Results

12-inch deep specimens

- Reinforcement lever arm has greater impact on strength (12F2 had highest strength)
- Ledge was too shallow in 12F2

![Chart showing ultimate capacity (kips) for different tests and specimens.](image-url)
Task 4 – Joint Testing Program

Experimental Results

12-inch deep specimens

- Reinforcement lever arm has greater impact on strength (12F2 had highest strength)
- Ledge was too shallow in 12F2
- Joint 12A2 had largest ductility
Task 4 – Joint Testing Program

Experimental Results

![Graph showing experimental results with load vs. deflection for different materials and specimens.](image)
Task 4 – Joint Testing Program

Experimental Results

12-inch deep specimens

- Reinforcement lever arm has greater impact on strength (12F2 had highest strength)
- Ledge was too shallow in 12F2
- Joint 12A2 had largest ductility
- Better finish with paste retarder

Sandblasting

Paste Retarder
Task 4 – Joint Testing Program

Experimental Results

12-inch deep specimens

- Reinforcement lever arm has greater impact on strength (12F2 had highest strength)
- Ledge was too shallow in 12F2
- Joint 12A2 had largest ductility
- Better finish with paste retarder

Best Performance

- **12A2**
Task 4 – Joint Testing Program

Fatigue Testing

<table>
<thead>
<tr>
<th>Loading type</th>
<th>Load Range Steps</th>
<th>Lower Limit Load</th>
<th>Upper Limit Load</th>
<th>Frequency</th>
<th># Cycles</th>
<th>Testing Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatigue</td>
<td>1 - Calibration</td>
<td>2 kip</td>
<td>12.64 kip</td>
<td>1 Hz</td>
<td>200,000</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2 – Under Cracking Performance</td>
<td>2 kip</td>
<td>12.64 kip</td>
<td>1 Hz</td>
<td>900,000</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>3 – After Cracking Performance</td>
<td>19 kip</td>
<td>31 kip</td>
<td>1 Hz</td>
<td>900,000</td>
<td>11</td>
</tr>
<tr>
<td>Strength</td>
<td>4 – Overload Performance</td>
<td>0 kip</td>
<td>100% Failure Load</td>
<td>N/A</td>
<td>N/A</td>
<td>1</td>
</tr>
</tbody>
</table>
Task 4 – Joint Testing Program

Fatigue Testing

![Graph showing normalized stiffness vs. millions of cycles before and after cracking, with load vs. deflection curves for two samples labeled 12F1-1 and 12F1-2.](image)

- **Normalized Stiffness**
 - Before Cracking
 - After Cracking

- **Load (kips)** vs. **Deflection (in.)**
 - 66.9 k
 - 70.0 k
 - 12F1-1

Cal.
Task 4 – Joint Testing Program

Experimental Results

12-inch deep specimens

- Reinforcement lever arm has greater impact on strength (12F2 had highest strength)
- Ledge was too shallow in 12F2
- Joint 12A2 had largest ductility
- Better finish with paste retarder
- Fatigue loading did not impact the strength of the joint
Future Work

- **Task 5** - Full-Scale Beam Testing
- **Task 6** - Conceptually and Analytically Develop FSB Detail as a Continuous Span
- **Task 7** - Draft Final Report and Closeout Teleconference
- **Task 8** - Final Report
Thank You

David Garber, PhD, PE
dgarber@fiu.edu
Assistant Professor
Florida International University