Development of Spliced Precast U Beam Bridge Construction
HSR
Orlando, FL
November 9, 2010

Gregg Reese, P.E.
Summit Engineering
Littleton, Colorado

William N. Nickas, P.E.
Precast/Prestressed Concrete Institute
Chicago, IL
• History
• Details from Colorado Projects
• CPM Schedule
• PCI Zone 6 Standards
• Some team’s may elect solutions without any deviation from FDOT Practice
• Others may select the need for Innovative Concept Approval from FDOT during procurement
Past Curved PreTensioned Concrete
Why use Precast Concrete for these Types of Bridges?

- DOT Preference for Concrete Structures.
- Alternative to more traditional designs.
- Longer Spans
- Simplified Shoring
- Nominal Setup Costs.
- Speed of Fabrication
- Aesthetics
- Cost
Why use U Girders?

- Less Girder lines
- Stable Cross Section
- Straight and Curved construction
- Flexible shape
- Attractive aesthetics
- Crane was destroyed
- U girder was reset in place and is currently in service.
- Little need for internal bracing, $I_y > I_x$
Spliced girder construction in Colorado

1992 – Buckley Road over IH76 – 185’ span Spliced Bulb Tee
1995 - Park Avenue Ramp – 230’ span, Site Precast, Curved U girders
1999 – SH52 over IH25, 190’ span, Straight Precast U girders
2000 – Parker Road / IH225, 254’ span, Curved CIP U girders

1995-2000 CDOT Develops Standard Precast U Sections
2003 CDOT Designs Ramp Y Project using Curved U Girders
3/2006 – Bijou St. over Monument Creek
7/2006 – E470 / IH40 Ramp H
10/2006 – 270 / IH76 Ramp Y
11/2006 – Austin Bluffs over Union
1/2007 – IH25/Trinidad Phase I
3/2007 – SH58 / IH70 Ramp A
- 1343’ long, 254’ maximum span on 702’ horizontal curve.
- Designed with a mixture of precast and CIP U girders.
- Constructed as a series of segmented CIP girders on falsework.
Plant Manufactured Precast Concrete U Girder Bridge Quantities since 2004, using curved sections

<table>
<thead>
<tr>
<th>Project</th>
<th>Bridge S.F.</th>
<th>L.F. Curved Precast</th>
</tr>
</thead>
<tbody>
<tr>
<td>IH25 / SH270 Ramp K</td>
<td>66,740 s.f.</td>
<td>2,840 l.f.</td>
</tr>
<tr>
<td>IH76 / SH270 Ramp Y</td>
<td>77,248 s.f.</td>
<td>4,544 l.f.</td>
</tr>
<tr>
<td>IH70 / SH58 Ramp A</td>
<td>79,995 s.f.</td>
<td>4,095 l.f.</td>
</tr>
<tr>
<td>Austin Bluffs</td>
<td>57,715 s.f.</td>
<td>2,380 l.f.</td>
</tr>
<tr>
<td>IH25 Trinidad</td>
<td>65,728 s.f.</td>
<td>4,141 l.f.</td>
</tr>
<tr>
<td>IH70 / E470 Ramp H</td>
<td>75,952 s.f.</td>
<td>3,232 l.f.</td>
</tr>
<tr>
<td>Total</td>
<td>414,378 s.f.</td>
<td>21,232 l.f.</td>
</tr>
</tbody>
</table>
270 Ramp K

- Contractor Alternate Design to Steel Base Bid
- 1st Project Constructed with curved, standard Precast U Girders
- Design Concept submitted two weeks after bid.
- Involved Close Cooperation Between DOT, Engineer, Sub Contractors and Contractor, Sema Construction.
- 200’ Spans,
- Completed and Open to traffic December 2005
Bijou St. Bridge

- Open to traffic October 2007, Contractor: Rockrimmon Construction.
- Gateway bridge into downtown Colorado Springs
- Deck width varies from 88’ to 178’, Girders kinked at splices
- 28 – U60 Precast Girders, Seven continuous girder lines.
- Span Lengths from 100’ to 150’.
- Strongbacks used to support girders, no shoring supported from ground.
E470 Ramp H

- Contractor Design/Build Project. Open to traffic early 2007.
- Contractor: Lawrence Construction Co, Littleton, CO
- Connector Ramp from E470 Toll Road to Interstate 70.
- 1002’ Horizontal Curve, Spans lengths from 100’ to 200’
- 34 – U84 Girders, 11 Spans
270 Ramp Y

- First bridge designed with standard curved U girders
- Colorado DOT / Contractor VE Design
- Completed in early 2008, Contractor: Edward Kraemer & Sons
- Flyover Connector from EB SH270 to EB Interstate 76
- 40 Precast Girders, 12 Spans.
- Span Lengths from 100’ to 230’.
- 760’ Radius horizontal curve.
IH25 Viaduct, Trinidad

- Alternate Design to precast segmental
- Open to traffic early 2009, Contractor: Lawrence Construction
- Elevated Viaduct through downtown Trinidad. 24 - U85 Precast Girders, Dual Bridges, 4 Spans, 1200’ Horizontal Radius.
- Span Lengths from 100’ to 256’.

McDonald’s

Drive-Thru

Shell
SH 58 Ramp A

- Open to traffic Nov. 2008, Contractor: Ames Construction
- Connector from EB Interstate 70 to WB SH 58 into Golden.
- 38 - U86 Precast Girders, 11 Spans.
- Span Lengths from 150’ to 235’.
- 820’ Horizontal Curvature.
- Numerous traffic crossings and creek crossing.
270 Ramp Y Cost Comparisons

<table>
<thead>
<tr>
<th>Item</th>
<th>Steel Design</th>
<th>Curved Precast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Girder Cost</td>
<td>$5,125,000</td>
<td>$3,086,240</td>
</tr>
<tr>
<td>Erection Costs</td>
<td>$1,025,000</td>
<td>$890,000</td>
</tr>
<tr>
<td>Falsework</td>
<td>$50,000</td>
<td>$250,000</td>
</tr>
<tr>
<td>Post Tensioning</td>
<td>$0</td>
<td>$506,000</td>
</tr>
<tr>
<td>Total</td>
<td>$6,200,000</td>
<td>$4,732,240</td>
</tr>
<tr>
<td>Cost / Ft.</td>
<td>$1393 / lf</td>
<td>$1063</td>
</tr>
</tbody>
</table>
What’s the Catch?

- Shoring Necessary during construction.
- Girders are heavy, up to 200 tons.
- Stability a concern during construction
- Field and Erection Engineering required.
- Complex phased construction.
Precasting of U Girders

- 120’ long, 265 Kip max weight in Colorado
- Curved and Straight Forms
- Curved: Post Tensioned, Straight: Pre-tensioned
- Continuity PT in Webs
- End Diaphragms only
- PT Anchor Blocks: Precast or CIP
- Continuous Reinforcing at Splices
- Precast or CIP Haunches over piers
- Lid Slab after erection
- “Tongue” Section at Expansion Diaphragms
- Substructure Connections
Curved Casting Bed
Typical Girder Cross Section – Ramp K
10” Webs – 18 Strand Web Tendons
Reinforcing Cage in Forms Prior to Casting
Girders in Storage Area
Precast Design Features:
Ramp K, Steel End Diaphragms
Cast in Place Internal Haunch over Piers
Precast Features of Bijou Bridge

Internal Haunch over Piers, Varying Web Thickness
Cantilever PT Anchors in Webs and Shoring Supports
Precast External Haunch for 256’ Clear Span
Notched out Section at end of Girders for CIP Tendon Anchors
Tendon Anchorage in Precast Girder End Diaphragms
Post Tensioning in Girder Forms
“Tongue” Section at Expansion Joints
Foundation Design

Integral Abutments and conventional Abutments
Bearings at Abutments and Expansion Piers
Fixed or “Pinned” Interior Piers, No Bearings
Interior Columns typically on side by side Caissons
Foundation Designs
Ramp K – Pinned Connection between Diaphragm and Pier Cap
Girders supported on falsework on either side of pier
Bottom section of pier cap supports concrete of upper cap
Ramp A - Interior Pier Cap Reinforcing

5’-0” x 12’-6” composite cap w/ 2 rows of 4 – 1 3/8” PT bars
3’-4” lower section of cap supports 8’-9” upper section during casting
Composite cap shown supports Dead Load of Bridge
Full Section w/ top mat of deck reinforcing supports SDL & traffic loads
Post Tensioned, Fixed Interior Pier Cap Integral with Superstructure
Bearings eliminated except at expansion joints
Ramp A - Interior Expansion Pier

13’ x 6’ Column on footing and 4 - 36” Caissons
8’ wide cap to accommodate two rows of bearings
Shallow cap post tensioned to match fixed pier aesthetics
Ramp A - Expansion Pier Cap Reinforcing

8'-0" wide cap, 7'-0" Deep, Post Tensioned w/ 7 – 1 3/8" PT bars

ELEVATION – EXPANSION PIER CAP
(TYPICAL DECK, BOTTOM SLAB, HAUNCH AND DIAPHRAGM STEEL NOT SHOWN)
Precast Girder Erection

- Shipping and Handling
- Temporary Shoring
- Heavy erection loads.
- Variable site conditions
- Maintenance of Traffic
- Stability during construction
- Staged Construction.
Girders shipped to job site on high load, steerable trailers
Girders Set with Hydraulic and Crawler Cranes on Falsework
Construction Engineering
Falsework Design – Ramp K at Pier 5

NOTES:
CABLE BENDING IS REQUIRED AT 02 LOCATIONS, EA.
SEEN AT SPACES 4-1 AND 5-1, FOR A TOTAL OF
6 CABLE BENDS.

SPICE 4-2
(TENSION OPERATIONS)

SPICE 5-1
(LONGER OPERATIONS)
Ramp K on 45’ Falsework Towers @ Pier 5
Maintenance of Traffic
Ramp K - Straddle Bent Design at HOV Lanes
Ramp K – Girders supported on Straddle Bents, HOV lanes open to traffic
Site Conditions are Highly Variable
250 ton Crane Setting Ramp Y Girders
at Braced Retaining Wall
Ramp Y, Unit 2 Erected over IH76 & SH76
Ramp Y Safety Rail protecting Falsework Bents Adjacent to IH76 Traffic
SH 58 Ramp A over IH70
On Temporary Shoring during construction
Ramp K Cantilevered over existing 270 Bridge during erection
Ramp K Erection completed using strongbacks over IH25 and 270 Bridge
Bijou Street Bridge
Span 2 & 4 Girders Cantilever into Rail Yard
Bijou Street Bridge
Erection of Span 3 over Rail Yard
Bijou Street Bridge
Span 3 set over Rail Yard, 148’ Clear Opening
Trinidad IH25 Viaduct Erection
Haunched Pier Girders
Drop In supported on strongbacks
256’ clear span opening
Over Rail Yard
Girders Erected and Stabilized on Falsework
Prepared for Longitudinal PT

- Splices cast
- Pier Diaphragms Cast and stressed
- Expansion Diaphragms cast
- Precast Lid Slabs placed between webs
Curved Girders braced against to bracket attached to pier caps
Girders supported on “tongue” section in notch on permanent bearings
CIP Diaphragms cast at end of each girder.
- Girders set on precast “tongue” section
- CIP Diaphragm cast against end of girder doubles at PT anchorage block
- Diaphragms designed to allow double end stressing with short stroke ram
Expansion Pier Diaphragm cast on one side
End Girders set and at Abutment on “Tongue” Section
Expansion Pier Diaphragm cast at Abutment w/ PT Anchorages
CIP Lid Slab – Ramp K
Precast Girder Lid Slab Details

- Precast Panel set between webs and closure cast and cured prior to post tensioning.
- Lid Slab closes the cross section and greatly increases the torsional strength and stiffness of the cross section.
Austin Bluffs
Erected Girders w/ Precast Lid Slab and CIP PT anchor block
Post Tensioning Stressed
Falsework Removed
No intermediate dipahragms
Replaceable Deck cast in unshored condition
Ramp K - Precast Deck Panels between Girders
Ramp K - Completed December 2005
Ramp A - Completed November 2008
Spliced and Curved Precast U Girder Bridges

- Result of Colorado DOT’s vision of establishing precast concrete as a viable design option for complex, long span interchange projects.
- Established a sustainable technology that utilizes standard, commercially available precast concrete products and construction methods.
- Created aesthetically pleasing, durable, cost effective structures.
Opportunities for Future Development

- Seismic Design
- Lightweight Concrete for Longer Spans
- Applications to Larger and more Complex Projects
- Extrados or Cable Stayed applications
• Southeast details are different thus the PCI Zone 6 standards
• Present Optional Details
• Robust Post-Tensioning systems required in corrosive climates
INDEX OF DRAWINGS

U-1	GENERAL INFORMATION
U-2	TYPICAL BRIDGE CROSS SECTIONS
U-3	TYPICAL BRIDGE CROSS SECTION WITH PRECAST PANELS
U-4	MAXIMUM DESIGN SPANS – THREE SPAN CONSTANT DEPTH GIRDERS
U-5	MAXIMUM DESIGN SPANS – SIMPLE SPAN CONSTANT DEPTH GIRDERS
U-6	MAXIMUM DESIGN SPANS – THREE SPAN HAUNCHED GIRDERS
U-7	GIRDER DIMENSIONS & REINFORCEMENT
U-8	GIRDER END AND SLICE DETAILS
U-9	TYPICAL THREE SPAN CONSTANT DEPTH GIRDERS
U-10	END DIAPHRAGM AT ABUTMENT
U-11	TYPICAL EXPANSION PIER
U-12	TYPICAL INTERIOR PIER WITH BEARINGS
U-13	TYPICAL INTEGRAL INTERIOR PIER
U-14	PRECAST PANEL DETAILS
U-15	BOTTOM SLAB ACCESS HATCH
U-16	CONSTANT DEPTH GIRDER CONSTRUCTION SEQUENCE
U-17	SIMPLE SPAN CONSTANT DEPTH GIRDER CONSTRUCTION SEQUENCE
U-18	HAUNCHED GIRDER CONSTRUCTION SEQUENCE
U-19	ERECTION BRACING
U-20	EXAMPLE ERECTION PLAN DETAILS
The Schedule

- Multiple Plants to deliver products
- CPM Showing full CIP Deck and substructure
- Based on standard work week
- Presented Schedule generates an appropriately conservative worst case sequencing
15 mile Viaduct in 20 months part1

Orlando Airport Viaduct
U-Beam Girder Schedule
Precast/Prestressed Concrete Institute
15 mile Viaduct in 20 months part 2

<table>
<thead>
<tr>
<th>Function</th>
<th>Period</th>
<th>Activity Name</th>
<th>Original Date</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIT #3</td>
<td></td>
<td>Expansion Joint</td>
<td>5/15/11-5/31/11</td>
<td>6/1/11-6/30/11</td>
<td></td>
</tr>
<tr>
<td>FOUNDATION</td>
<td></td>
<td>Foundation Crew</td>
<td>5/25/11-6/15/11</td>
<td>6/16/11-7/15/11</td>
<td></td>
</tr>
<tr>
<td>SUBSTRUCTURE</td>
<td></td>
<td>Footing/Column</td>
<td>6/1/11-6/30/11</td>
<td>7/1/11-7/30/11</td>
<td></td>
</tr>
<tr>
<td>UNIT #4-22</td>
<td></td>
<td>Pre-Cap Crew</td>
<td>7/1/11-7/30/11</td>
<td>8/1/11-8/30/11</td>
<td></td>
</tr>
<tr>
<td>FOUNDATION</td>
<td></td>
<td>Foundation Crew</td>
<td>8/1/11-8/30/11</td>
<td>9/1/11-9/30/11</td>
<td></td>
</tr>
<tr>
<td>SUBSTRUCTURE</td>
<td></td>
<td>Substructure</td>
<td>9/1/11-9/30/11</td>
<td>10/1/11-10/30/11</td>
<td></td>
</tr>
<tr>
<td>SUBSTRUCTURE</td>
<td></td>
<td>Superstructure</td>
<td>10/1/11-10/30/11</td>
<td>11/1/11-11/30/11</td>
<td></td>
</tr>
<tr>
<td>UNIT #23-44</td>
<td></td>
<td>Pre-Cap Crew</td>
<td>11/1/11-11/30/11</td>
<td>12/1/11-12/30/11</td>
<td></td>
</tr>
<tr>
<td>FOUNDATION</td>
<td></td>
<td>Foundation Crew</td>
<td>12/1/11-12/30/11</td>
<td>1/1/12-1/31/12</td>
<td></td>
</tr>
<tr>
<td>SUBSTRUCTURE</td>
<td></td>
<td>Substructure</td>
<td>1/1/12-1/31/12</td>
<td>2/1/12-2/29/12</td>
<td></td>
</tr>
<tr>
<td>SUBSTRUCTURE</td>
<td></td>
<td>Superstructure</td>
<td>2/1/12-2/29/12</td>
<td>3/1/12-3/31/12</td>
<td></td>
</tr>
<tr>
<td>UNIT #25-56</td>
<td></td>
<td>Pre-Cap Crew</td>
<td>3/1/12-3/31/12</td>
<td>4/1/12-4/30/12</td>
<td></td>
</tr>
<tr>
<td>FOUNDATION</td>
<td></td>
<td>Foundation Crew</td>
<td>4/1/12-4/30/12</td>
<td>5/1/12-5/31/12</td>
<td></td>
</tr>
</tbody>
</table>

Orlando Airport Viaduct

U-Beam Girder Schedule

Precast/Prestressed Concrete Institute
15 mile Viaduct in 20 months part 3

<table>
<thead>
<tr>
<th>Activity ID</th>
<th>Activity Name</th>
<th>Original (Actual)</th>
<th>Early Start</th>
<th>Early Finish</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUB1030</td>
<td>Substructure Fix 133-199</td>
<td>490</td>
<td>13Jan-11</td>
<td>11Jan-11</td>
<td>Jan</td>
<td>Jan</td>
<td>Jan</td>
</tr>
<tr>
<td>SUP1030</td>
<td>Substructure Fix 150-390</td>
<td>490</td>
<td>13Jan-11</td>
<td>11Jan-11</td>
<td>Jan</td>
<td>Jan</td>
<td>Jan</td>
</tr>
<tr>
<td>MISC-1030</td>
<td>Miscellaneous Work 150-390</td>
<td>490</td>
<td>13Jan-11</td>
<td>11Jan-11</td>
<td>Jan</td>
<td>Jan</td>
<td>Jan</td>
</tr>
</tbody>
</table>

Orlando Airport Viaduct

U-Beam Girder Schedule

Precast/Prestressed Concrete Institute
• This example uses average of 200 foot spans in three span units.
• Example did not look at all rail superstructure interaction design criteria
• Seven crews (per heading) from 6 headings can deliver 15 miles in 20 months
• Precast Pretension Deck would expedite construction even faster (Requires a spec change)
• Precast Substructure could also expedite the schedule
• How the PCI Zone 6 Go-Bys work
• Quantity Estimates
• Special Details
• Conventional Details
• Considerations for Innovative Concepts approval
• Light Weight Aggregates
Proven Technology from Colorado DOT

Harry H. Edwards Industry Advancement Award
SH 58, Ramp A Flyover Bridge Golden, Colo.

JUDGES’ COMMENTS
Thank you!