Design and Construction of Curved Precast Girder Bridge Projects in Colorado

Colorado Bridge Projects using Curved Precast Girders

290

1. IH25 / SH270 Ramp K, Denver - Complete 2. SH270 / IH76 Ramp Y, Denver - Complete 3. E470 / IH70, Ramp H, Denver - Complete 4. SH58 / IH70, Ramp A, Golden - Complete 5. Austin Bluffs, Colorado Springs - Complete 6. IH25 Viaduct Phase I, Trinidad - Complete 7. IH25 Viaduct Phase II, Trinidad - Design

IH70 / E470 Ramp H

- Contractor Design/Build Project.
- 100 to 195' Spans
- 1400' Horizontal Curve
- Designed by DMJM Harris, Denver
- Built by Lawrence Construction Co, Littleton, CO

IH76 / SH270 Ramp Y

Span Lengths from 100' to 2 760' Radius horizontal curve rado DOT Design. le Englineering by Summit Englineering Bu

y Edward Kraemer & Sons, Castle Rock \mathbf{C}

IH70 / SH 58 Ramp A

VE Design
Span Lengths from 150' to 235'.
820' Horizontal Curvature.
CH2M Hill Design.
Value Engineering by Summit Engineering
Built by Ames Construction Co. Denver, CO

Austin Bluffs Overpass

VE Design.

- Span Lengths from 110' to 210'.
- 700' Radius Curve (2 = 900' Compound)
- CH2M Hill Design.
- Value Engineering by Summit Engineering
 Lawrence Construction Co, Littleton, CO

IH25 Viaduct, Trinidad

 Contractor Alternate Design
 Base design, precast segmental.
 Elevated Viaduct through downtown Trinidad:
 Span Lengths from 100' to 27,5'.
 Value Engineering by TSH Engineers and Summit Engineering

Lawrence Construction Co, Littleton, CO

Curved Girder Bridge Quantities

Project	Bridge S.F.	L.F. Curved Precast	
IH25 / SH270 Ramp K	66,740 s.f.	2,840 l.f.	
IH76 / SH270 Ramp Y	77,248 s.f.	4,544 l.f.	
IH70 / SH58 Ramp A	79,995 s.f.	4,095 l.f.	
Austin Bluffs	57,715 s.f.	2,380 l.f.	
IH25 Trinidad, Phase I	65,728 s.f.	4,141 l.f.	
IH70 / E470 Ramp H	75,952 s.f.	3,232 l.f.	
Total	414,378 s.f.	21,232 l.f.	

270 Ramp Y Cost Comparisons

	Item	Steel Design	Curved Precast
	Girder Cost	\$5,125,000	\$3,086,240
E	rection Costs	\$1,025,000	\$890,000
	Falsework	\$50,000	\$250,000
Pc	ost Tensioning	\$0	\$506,000
	Total	\$6,200,000	\$4,732,240
	Cost / Ft.	\$1393 / If	\$1063

Advantages

Economy of Construction. Speed of Fabrication. Setup Costs amortized in initial projects. Vertical Shoring for temporary support. Design uses established techniques on new application. Pleasing Aesthetics. Low maintenance.

Challenges

- Engineered Temporary Works essential.
- Girclers are heavy.
- Engineering support during construction a requirement.
- Girder Stability and Alignment.
- Torsional cracking must be avoided.
- Slower construction cycle during Erection.
- More complex multiple phase construction
- Site conditions must be considered during design

Typical Girder Cross Section – U84 Grider

Precast Panel Lid Slab Installed after Girder Erection

Erection of Girders with Hydraulic and Crawler Cranes

Deck slab and barriers cast

Solutions to Site Conditions Straddle bents at Traffic Openings

Cantilevered Girders over existing bridges

196

Strong back support from previously erected girders

-

In the second

275' Clear Opening over Rail Line

Integral Diaphragms at Interior Piers No manufactured bearings

Notched Ends at Expansion Piers allow for double end stressing

CIP Diaphragm/Anchor Blocks at End of Unit

Summary

- Six Completed Projects currently under traffic
 Designs successfully used as alternates to steel and segmental bridges
- Two more projects under design.
 Opportunity for future applications is unlimited.