Florida Bridges and Structures for 100+ Years' Service with FRP Composites

Bruno Vasconcelos / Steve Nolan Florida DOT

Anaheim Convention Center | Anaheim, CA, USA

Abstract

Recent applications for new construction using Fiber-reinforced Polymer (FRP) composites is expanding in Florida. This presentation will highlight projects from 2018/2019 that utilize a variety of FRP materials for construction of new highway infrastructure applications including: Basalt-FRP & Glass-FRP reinforcing bars for concrete bridge structures; Carbon-FRP prestressed bridge beams; FRP structural shapes and pilings. Recent publication of Glass-FRP and Carbon-FRP Guide Specifications by the American Association of State Highway Officials (AASHTO) have enabled expanded and streamlined deployment of these innovative materials in highway infrastructure. Additional research and evaluation is ongoing to refine these standards and improve the economy of FRP composite structures. Brief case studies on three bridges and three non-bridge infrastructure applications exceeding \$25M construction.

The bridge case-studies involve cast-in-place continuous slabs, prestressed slab and girder bridge applications (including coupling FRP elements with Ultra-High Performance Concrete). The non-bridge applications include: precast and cast-in-place retaining walls and seawalls; and thermoset piling and structural shape elements for various in-water structures.

Life-Cycle Cost (LCC) analysis can range from simple to complex depending on the desired level of precision and effort. Three levels of analysis are presented for use by designers during the Bridge Alternatives Development process for selecting the final design option:

- Level 1 Basic (Average Acquisition Cost per Year);
- Level 2 Intermediate (Stepwise LCC for discrete construction and maintenance);
- Level 3 Advanced (Probabilistic analysis of stepwise methodology).

WEFORM THE

These strategies for a tiered LCC approach using increasing levels of complexity will be presented with selected application to some of the case study projects

Key Topics

- The Value Proposition of FRP for Bridges and Marine Structures;
- Authoritative resources, guidelines, and specifications;
- Example Projects from Florida 2018-2020;
- Ongoing Applied Research and Future Opportunities;
- Challenges to the Manufacturing Industry.

The Value Proposition of FRP for Bridges and Marine Structures

- Durability vs. Cost (repair and replacement);
- Extended Service-Life vs. Cost (LCC & LCA);
- Reliability vs. Cost. (Quality is an investment);
- Embracing the competition (and taking a larger piece of the pie).

• Mostly motivated by corrosion durability concerns...

http://impact.nace.org/documents/ccsupp.pdf

http://floridafirstbudget.com/web%20forms/Budget/BudgetAgency.aspx

Florida is ranked 2nd behind Alaska in the longest US

• Extended Service-Life vs. cost (LCC & LCA);

Charts: Cadenazzi, T., Dotelli, G., Rossini, M., Nolan, S., and A. Nanni. (2019). Life-Cycle Cost and Life-Cycle Assessment Analysis at the Design Stage of a Fiber-Reinforced Polymer-Reinforced Concrete Bridge in Florida. Advances in Civil Engineering Materials. ASTM.

• Embracing the competition (and taking a larger piece of the pie).

Charts: Cadenazzi, T., Dotelli, G., Rossini, M., Nolan, S., and A. Nanni. (2019). Cost and Environmental Analyses of Reinforcement Alternatives for a Concrete Bridge. Structure and Infrastructure Engineering.

• Environmental implications (LCA);

Charts: Cadenazzi, T., Dotelli, G., Rossini, M., Nolan, S., and A. Nanni. (2019). Cost and Environmental Analyses of Reinforcement Alternatives for a Concrete Bridge. Structure and Infrastructure Engineering.

Authoritative resources, guidelines, and specifications

- AASHTO for Concrete Structures (GFRP-RC & CFRP-PC Guide Specs);
- AASHTO & ASCE FRP Composite Structures (various Guide Specs);
- CSA for Concrete Structures (S807 & S6)
- National & International harmonization;
- FDOT's Implementation Strategy (Design, Manufacturer Approval, Construction);

 AASHTO for Concrete Structures (GFRP-RC & CFRP-PC Guide Specs)

Document	Doc Ballot by Sub	Doc Ballot by 440 Main	Resolve Negative 440 Main Ballot	Doc to ACI for TAC Review	TAC Review	440 Reply to TAC Comments Ballot	Return to ACI for Layout	In Print	
440-H CODE	Complete Fall 2019	Complete Spring 2020	Complete Fall 2020	Spring 2021					
Bar Const. Spec	Done	Done	Done	Done	Done	Spring 2018			

 AASHTO & ASCE FRP Composite Structures (various Guide Specs)

• CSA for Concrete Structures (S806, S807 & S6)

• National Harmonization (Example GFRP-RC):

		AASHTO 2 nd 2018	AASHTO 1 st 2009	ACI 440 Code 2020?	ACI 440.1R 2015	CSA 2014
f_{fu}^{*}	Strength percentile	99.73	99.73	99.73	99.73	95.0
$\boldsymbol{\Phi}_{C}$	Res. Fact. concr. failure	0.75	0.65	0.65**	0.65	0.75
$\phi_{_T}$	Res. Fact. FRP failure	0.55	0.55	0.55**	0.55	0.55
$\boldsymbol{\Phi}_{\mathcal{S}}$	Res. Fact. shear failure	0.75	0.75	0.75**	0.75	0.75
C _E	Environmental reduction	0.70	0.70	0.9**	0.70	1.0
C _C	Creep rupture reduction	0.30	0.20	0.3	0.20	0.25
C_{f}	Fatigue reduction	0.25	0.20	0.3	0.20	0.25
	Bond reduction	0.83	0.70	0.70 to 0.83	0.70	1.0
w	Crack width limit [mm]	0.70	0.50	0.70	0.7 to 0.5	0.50
C _{c.stirrup}	Clear cover [mm]	40	40	50	50 ⁽¹⁾	40
C _{c,slab}	Clear cover [mm]	25	20 to 50	20 to 50	20 to 50 ⁽¹⁾	40
<i>E</i> f,shear	Strain limit in shear reinf.	0.004	0.004	0.004	0.004	0.005

**To be finalized

Authoritative resources, guidelines, and specifications

• Development Worldwide of major FRP-RC/PC Guidelines:

Authoritative resources, guidelines, and specifications

 FDOT's Implementation Strategy (Design, Manufacturer Approval, Construction);

STRUCTURES MANUAL

Volume 1 - Structures Design Guidelines Volume 2 - Structures Detailing Manual Volume 3 - FDOT Modifications to LRFDLTS-1 Volume 4 - Fiber Reinforced Polymer Guidelines

> Frequently Asked Questions 2018 Revision History Archived Structures Manuals Additional Links

Materials Acceptance and Certification System

elect Report to View

Prod	uction	Facili

L		
l	Aggregate Production Facility Listing	Lists all Aggregate Production Facilities
l	All Producers (Excel)	Lists all non-expired Production Facilities in an Excel file
l	Approved Aggregate Products For Friction Course	Lists all Aggregate Friction Course Products by Geological
l	Approved Aggregate Products From Mines or Terminals Listing	Lists Approved Aggregate Products for Mines or Terminals
l	Approved Products at Expired Mines or Terminals	A summary report to identify Approved Products at Expired
l		Terminals Expired at Mine
l	Asphalt Production Facility Listing	Lists all Asphalt Production Facilities
l	Asphalt Recycled Products	Approved Asphalt Recycled Products Report by Plant
l	Asphalt Targets	A listing of the asphalt gradation and gravity (Gsb) data for
l	Cementitious Materials Production Facility Listing	Lists Cementitious Materials Production Facilities
l	Coatings Production Facility Listing	Lists all Coatings Production Facilities
l	Fiber Reinforced Polymer Production Facility Listing	Lists all Fiber Reinforced Polymer Production Facilities

Authoritative resources, guidelines, and specifications

 FDOT's Implementation Strategy (Design, Manufacturer Approval, Construction);

FRP-02 OWEN	S CORNING (SEWARD NE)	Fiber Reinforced Polymer	Generated: 5/28/2019 6:08:38 PM Production Facility Listing wenue, Gainesville, FL 32609 (352) 955-6600	<u>rts</u>
Contact: Company: FRP-06 Phone: Company: Physical Add Contact: 210 North 131 Seward, NE 6 Physical A	PULTRALL Putrall Inc Ri (4 FRP-12 TUF-BAR INC (EDMON (4 Company: Tuf-Bar Inc.	ITON CANADA)	FRP-14 TUF-BAR INC (ONTARIO CANADA) Company: Tuf-Bar Inc. Contact: FRP-07 PULTRON (DUBAI) Phone: Company: Pultron Composites Ltd Physical Contact: FRP-08 ATP	
QC Plan Stat 700 9eme 1 Thetford M #04 G #05 G #06 G #07 G #08 G #09 #08 G	rue Contact: Nathan Sim Phone: (780) 448-9338 Physical Address: tatu 5715-76 Avenue 3 G CANADA 5 G QC Plan Status: Quality Control Plan ACC 5 G #03 GFRP BAR	Email: nathan@tuf-bar.com Fax: Mailing Address: 5715-76 Avenue CANADA CEPTED 3/19/2019 Glass Fiber Reinforced Polymer Reinforcing for Concrete, #3	Penne Phone: Company: ATP CANADA Physical Company: ATP OC Plant S404 Stree Building 10 Contact: Aniello Giamundo Email: a.giamundo@atp.sa.it DC Plant S404 Stree Building 10 Phone: (811) 948-7131 Fax: UNITED A Physical Address: Mailing Address: via Campa 34 via Campa 34 via Campa 34 TALY ITALY ITALY	
<u></u> #08	#04 GFRP BAR #05 GFRP BAR #06 GFRP BAR #07 GFRP BAR #08 GFRP BAR	Glass Fiber Reinforced Polymer Reinforcing for Concrete, #4 Glass Fiber Reinforced Polymer Reinforcing for Concrete, #5 Glass Fiber Reinforced Polymer Reinforcing for Concrete, #6 Glass Fiber Reinforced Polymer Reinforcing for Concrete, #7 Glass Fiber Reinforced Polymer Reinforcing for Concrete, #8	#0: QC Plan Status: Quality Control Plan ACCEPTED 11/4/2016 #0: #03 GFRP BAR Glass Fiber Reinforced Polymer Reinforcing for Concrete, #3 #0: #04 GFRP BAR Glass Fiber Reinforced Polymer Reinforcing for Concrete, #4 #0: #05 GFRP BAR Glass Fiber Reinforced Polymer Reinforcing for Concrete, #4 #0: #06 GFRP BAR Glass Fiber Reinforced Polymer Reinforcing for Concrete, #5 #06 GFRP BAR Glass Fiber Reinforced Polymer Reinforcing for Concrete, #6 #08 GFRP BAR Glass Fiber Reinforced Polymer Reinforcing for Concrete, #8	18

Example Projects from Florida 2018-2020

- 1) NE 23rd Ave over Ibis Waterway
- 2) US1 over Cow Key Channel
- 3) US41 Pedestrian Bridge Link-Slabs
- 4) SR-A1A Secant-Pile Seawall
- 5) I-dock Biscayne Bay
- 6) Recharge-Water Park Boardwalks
- 7) Skyplex Composite Arch Bridge

Example Project 1: NE 23rd Ave/Ibis Waterway

Historical Hurricanes Passing within 50 nmi of the project site (1842-2015) (Source: <u>https://coast.noaa.gov/hurricanes/</u>)

NE 23rd Ave/Ibis Waterway

 First GFRP-RC 3-span continuous flat-slab bridge in Florida. First soldier pile bulkhead-seawall with GFRP-RC precast panels.

Example Project 2: US1/Cow Key Channel

Figure 2: Deterioration on Underside of Slab Units of Spans 3 and 4 (Bridge No 900086)

US1/Cow Key Channel

- FRP eliminates need for additional concrete cover, additives, and waterproofing.
- CFRP Prestressing and GFRP Reinforcing with no reduction in AASHTO tensile stresses.

Example Project 3: SR-A1A Secant-Pile Seawall

Project Background:

- Historical erosion issues due to hurricane impacts
- Provide a long term, permanent solution to protect A1A roadway. A wall design was needed to protect roadway in the most vulnerable areas
- Governor's commitment accelerated acquisition, design, & construction schedule

SR-A1A Secant-Pile Seawall

- N. 18th St. to Osprey Dr.
- 4920 ft of beach along E. Flagler Beach
- Wall constructed along entire limits of segment 3

SR-A1A Secant-Pile Seawall

Concept and Design

SR-A1A Secant-Pile Seawall

Construction Process:

Example 4: Ocala Water-Recharge Park Boardwalks

- Ocala's water recharge park to have 'cutting edge' technology
 - 1,700 Linear Feet of boardwalk and viewing platforms spanning over 3 reclaimed water filtration ponds. Creating a city park and learning center.

Ocala Water-Recharge Park Boardwalks

Installation Process

Pile Driving 5"x 5" Composite Sections

Installing the Bonded Stringer Sections

Ocala Water-Recharge Park Boardwalks

Installation Process

Installing the Bonded Bearers and Stringer Sections

Ocala Water-Recharge Park Boardwalks

A completed pond walk-over. Waiting to flood the cell

Example Project 5: I-Dock on Biscayne Bay

Project Background:

- 2018 Condition:
 - Existing dock damaged by Hurricane Irma (2017)

I-Dock on Biscayne Bay

I-Dock on Biscayne Bay

Installation Process

Example Project 6: US41 Pedestrian Bridges Link-Slabs

- SR-5 (US 41) over Morning Star (FRP rebar FRC)
- SR-5 (US 41) over Sunset Waterways (FRP rebar UHPC)

US41 Pedestrian Bridge Link-Slabs

- Elimination of expansion joint maintenance, and better transfer of lateral load
- Utilization of low modulus GFRP bars and fibers in concrete

Plan view of Morning Star bridge

Example 7: Skyplex Composite Arch

• Easy to built, innovative solution

- Mild Prestressing for Concrete applications of low-cost FRP-PC elements;
- Refined Durability and Endurance Modeling;
- Ultra-High Performance Concrete (UHPC) and FRP; rebar/prestressing;
- Hybrid systems and Other synergistic combinations.

MILDGLASS: NCHRP-IDEA #207

Possible Benefits:

- Concept: GFRP Mild Prestressing
- Limits cracking and splitting at release
- Safe pulling with traditional techniques
- Targets Coastal Structures
- Experience Highest corrosion
- Requires Lowest prestress

MILDGLASS: NCHRP-IDEA #207

Structural Tests at U-Houston

- Cross Section 10x30 inches
- Length: 20 feet
- Prestress: 36-41% GTS
- Conf. A: 16 GFRP No.4 at 10-kip
- Conf. B: 16 GFRP No.5 at 13-kip
- Conf. C: 8 GFRP No.5 at 13-kip

• Refined Durability and Endurance Modeling;

- Refined Durability and Endurance Modeling
 - Creep rupture knock-down factor = 0.46
 - ~50% more than 0.30 recommended by AASHTO

Fig. 10. Sustained load versus logarithmic time-to-failure for batch M13(1).

42

 Ultra-High Performance Concrete (UHPC) and FRP; rebar/prestressing;

Application of GFRP Bars to Ultra-High Performance Concrete Jun Wang and Yail J. Kim (University of Colorado Denver), 2019. https://fdotwww.blob.core.windows.net/sitefinity/docs/default-source/structures/innovation-docs/iw-gfrpcs2-casestudypapers.pdf?sfvrsn=57afb4e3_2

 Ultra-High Performance Concrete (UHPC) and FRP; rebar/prestressing;

Challenges to the Manufacturing Industry

- Product Certification
- Instilling Asset Owner Confidence in Quality
- Scalability for Mainstream Infrastructure?

QUESTIONS?

https://www.fdot.gov/structures/innovation/frp.shtm

FDOT Design Contacts:

Steven Nolan, P.E.

FDOT State Structures Design Office,

Tallahassee, FL.

Steven.Nolan@dot.state.fl.us

Bruno Vasconcelos, P.E.

FDOT State Structures Design Office, Tallahassee, FL.

Bruno.Vasconcelos@dot.state.fl.us

FDOT Materials Contacts:

Chase Knight, Ph.D, P.E.

State Materials Office, Gainesville, FL. Chase.Knight@dot.state.fl.us

