TRB ANNUAL MEETING, (WASHINGTON DC.) JANUARY, 2019

Session 1114 - Monday 1/14/2019, 8:00-9:45 am

# Bakers Haulover Cut Bridge: Seawall-Bulkhead Rehabilitation and New GFRP-RC Solutions

Steven Nolan, P.E. (FDOT State Structures Design Office)

Joaquin Perez, P.E. (Bolton Perez & Associates

Dave Hartman (Owens Corning Science and Technology, LLC)

Keith Ellis, P.E. (FDOT District 1 & 7 Geotechnical Office)



## Outline

- 1. Defining the problem... Are Composites the solution?
- 2. Existing BHC Seawall System(s)
- 3. New BHC Seawall-Bulkhead Design
- 4. Construction & Lessons Learned
- 5. New Challenges SLR, Extreme Weather, Sustainability, Increased Durability Expectations
- 6. New Solutions SEACON, GFRP-PC
- 7. Improving of Creep-Rupture limits
- 8. Where do we go from here?

# What is the Problem?

Need for New Solutions for Corrosion Durability and Sustainability

- Avoiding corrosion "concrete cancer"
  - GFRP or SS rebar
  - CFRP or HSSS prestressing strand
- i. Cost-Benefit Analysis Justification, LCA/LCC;
- **ii.** Durability = Long Service Life;
- iii. Challenges & Mitigating Risks
  - Acquisition Cost
  - New material systems;
  - Limited suppliers/competition;
  - Unfamiliar design criteria;
  - Unfamiliar construction practices.







# Are Composites the Solution?

# • Service Life Enhancement thru Durability:



# **FDOT Research Efforts**

| 1992 | Feasibility of Fiberglass Pretensioned Piles in a Marine Environment                   | Sen, R.         | USF          |
|------|----------------------------------------------------------------------------------------|-----------------|--------------|
| 1995 | Active Deformation Control of Bridges with AFRP Cables                                 | Arockiasamy, M. | FAU          |
| 1995 | Durability of CFRP Pretensioned Piles in a Marine Environment – Phase II               | Sen, R.         | USF          |
| 1997 | Mechanical and Microscopy Analysis of CFRP Matrix Composite Materials                  | Garmestani, H.  | FAMU/F<br>SU |
| 1997 | FRP Composite Column and Pile Jacket Splicing                                          | Mirmiran, A.    | UCF          |
| 1997 | An Analytical and Experimental Investigation of Concrete Filled FRP Tubes              | Mirmiran, A.    | UCF          |
| 1997 | Flexural Reliability of RC Bridge Girders Strengthened with CFRP<br>Laminates          | Okeil, A.       | UCF          |
| 1998 | Studies of CFRP Prestressed Concrete Bridge Columns and Piles in Marine<br>Environment | Arockiasamy, M. | FAU          |
| 1999 | LRFD Flexural Provisions for PSC Bridge Girders Strengthened with CFRP<br>Laminates    | El-Tawil, S.    | UCF          |
| 2000 | Investigation of Fender Systems for Vessel Impact                                      | Yazdani, N.     | FAMU/F<br>SU |
| 2001 | Design of Concrete Bridge Girders Strengthened with CFRP Laminates                     | El-Tawil, S.    | UCF          |
| 2003 | Hybrid FRP-Concrete Column                                                             | Mirmiran, A.    | NC State     |
| 2004 | CFRP Repair of Impact Damaged Bridge Girders                                           | Hamilton, T     | UF           |
| 2009 | Thermo-Mechanical Durability of CFRP Strengthened RC Beams                             | Mackie, K       | UCF          |
| 2011 | Testing of Trelleborg Structural Plastics                                              | Wagner, D.      | FDOT         |

# Are Composites the Solution?





# FDOT Research Efforts (Cont.)

| 2012 | The Repair of Damaged Bridge Girders with CFRP Laminates                                                           | El-Safty, A.                    | UNF          |
|------|--------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------|
| 2014 | Investigation of CFCC in Prestressed Concrete Piles                                                                | Roddenberry, M.                 | FAMU/FS<br>U |
| 2015 | Repair of Impact Damaged Utility Poles with FRP, Phase II                                                          | Mackie, K.                      | UCF          |
| 2015 | Use of CFRP Cable for Post-Tensioning Applications                                                                 | Mirmiran, A.                    | FIU          |
| 2017 | Durability Evaluation of Florida's FRP Composite Reinforcement for<br>Concrete Structures                          | Hamilton, T.                    | UF           |
| 2018 | Bridge Girder Alternatives for Extremely Aggressive Environments                                                   | Brown, J.                       | ERAU         |
| 2018 | Degradation Mechanisms and Service Life Estimation of FRP<br>Concrete Reinforcements                               | El-Safty, A.                    | UNF          |
| 2018 | Testing, Evaluation, and Specification for Polymeric Materials used for Transportation Structures                  | El-Safty, A.                    | UNF          |
| 2018 | Performance Evaluation of GFRP Reinforcing Bars Embedded in<br>Concrete Under Aggressive Environments              | Kampmann, R.                    | FAMU/<br>FSU |
| 2019 | Inspection and Monitoring of Fabrication and Construction for the West Halls River Road Bridge Replacement         | Roddenberry, M.                 | FAMU/<br>FSU |
| 2021 | Evaluation of GFRP Spirals in Corrosion Resistant Concrete Piles                                                   | Jung, S.                        | famu/<br>FSU |
| 2021 | Development of GFRP Reinforced Single Slope Bridge Rail                                                            | Consolazio, G.                  | UF           |
| 2019 | Performance Evaluation, Material and Specifications for Basalt<br>FRP Reinforcing Bars Embedded in Concrete (STIC) | Kampmann, R.<br>Roddenberry, M. | FAMU/<br>FSU |
| 2021 | Testing Protocol and Material Specifications for Basalt Fiber<br>Reinforced Polymer Bars                           | Kampmann, R.<br>Tang, Y         | FAMU/<br>FSU |
|      |                                                                                                                    |                                 |              |

5

#### for the Built-Environment...









#### Reinforced Concrete: since 1920's











Images from 1945 (Index 1962) & 1946 (Index 2039) Standards. Florida State Road Dept. (FDOT)

Replace corroded RC seawalls Tampa Bay, FDOT (2011)

#### Prestressed Concrete:

- Soldier Piles in the 1950's
- Sheet Piles in the 1970's ...better,



#### Prestressed Concrete (Miami-Dade):

- Soldier Piles in the 1950's & 60's
- Still using RC panels in between...

#### ...similar durability challenges







#### CFRP Prestressing, since 2014 ...best ?

- Design criteria for prestressing <u>Fiber Reinforced</u>
  <u>Polymer Guidelines</u> (FRPG) Chapter 3;
  - Developmental Index D22440 (Nov. 2014)
    - (Halls River Bridge demonstration project);

#### iii. FDOT FY2017-18 Design Standards (Nov. 2016)

- Index 22440 series (now Index 455-100 series FY10-20);
- CFRP prestressing strands & GFRP stirrups;
- Stainless Steel prestressed/reinforced alternative.











## Existing BHC Bulkhead System(s) at BHC Project

#### Pile & Panel (north wall) Prestressed Sheet Pile (south wall): ....both in severely corroded condition



Soldier Pile & Panel System (original 1948): Extensive corrosion damage in splash zone





Bridge site looking Southwest (courtesy: BPA Consulting Eng.)

Adjacent properties to Southwest with one section recently repaired (2014 county approval) Google

### New Seawall-Bulkhead System at BHC

Selected Alternative: ... Steel Sheet Piles with GFRP-RC facia

914-415-104 FIBER REINFORCED POLYMER BAR #4

914-415-105 FIBER REINFORCED POLYMER BAR #5





BULKHEAD CAP, PARAPET & FASCIA PANEL

### New Seawall-Bulkhead System at BHC

#### Selected Alternative: ... Steel Sheet Piles with GFRP-RC facia



| 914-415-104 | FIBER REINFORCED POLYMER BAR #4 | BULKHEAD CAP, PARAPET & FASCIA PANEL | LF) | 12,199.32 |
|-------------|---------------------------------|--------------------------------------|-----|-----------|
|             |                                 |                                      |     |           |
| 914-415-105 | FIBER REINFORCED POLYMER BAR #5 | BULKHEAD CAP, PARAPET & FASCIA PANEL | LF) | 7,071.14  |

# **New Challenges**

### SLR, Extreme Weather, Sustainability, Increased Durability Expectations





Photos from Hurricane Matthew (2016)



# **New Challenges**

SLR, Extreme Weather, Sustainability, Increased Durability Expectations







972

(d)

- (a) Hurricane Damage along A1A (2008)
- (b) Hurricane Sandy damage along A1A in Fort Lauderdale (Photo: Susan Stocker, Sun Sentinel, 2012).
- (c) Hurricane Mathew damage along A1A Flagler Beach, (2016)
- (d) Brickell Ave under water during Hurricane Irma (2017)

# **New Solutions**

### Reviving an old system with new material - Post and Panel with FRP-RC/PC





SEACON...

Sustainable concrete using seawater, salt-contaminated aggregates, and non-corrosive reinforcement







U.S.Department of Transportation Federal Highway Administration







# **New Solutions**

#### IDEA Project - MILDGLASS



(a) & (b) CFRP strand failed during tensioning;(c) cracking following strands release.



(a) GFRP strand prototype cross section;(b) compared to a CFRP alternative.



(a) GFRP-PC sheet pile concept (b) CFRP-PC sheet pile design for Halls River Bridge



(a) & (b) Tensioning apparatus for CFRP; versus (c) standard steel HSCS chucks, for GFRP.

# **New Solutions**

- Affordable higher modulus GFRP ≥ 65 GPa (9,000+ ksi)
- Adhoc continuous stirrups;
- STIC 2018 Incentive Project
  - Basalt-FRP Rebar Standardization





"Develop standard (guide) design specification, and standard material and construction specifications for basalt fiber-reinforced polymer (BFRP) bars for the internal reinforcement of structural concrete"



# Why Improve Creep-Rupture Limits?

### Enhance AASHTO Specifications and Extend Bridge Service Life

ACI 440.3R B.8 GFRP Creep Rupture Accelerated Testing

- ACI 440.1R limits the allowable sustained stress for traditional GFRP;
- 2. Creep rupture limit recently improved  $C_c = 0.2$  to 0.3 in AASHTO BDGS-2;
- 3. ASTM D7957 GFRP rebar of ECR glass fiber in vinyl ester shows improved creep rupture limit.



# Why Improve Endurance Limits?

### Validate With Bridge Service Life

Bridge Core Extraction of 15+ Year GFRP Rebar Samples

- Negligible impact in mechanical properties and chemical composition of GFRP fiber and matrix SEM/EDX (300x image fiber, Ca, Si, Al, C, O)
- 2. GFRP rebar durability in corrosive environments better than predicted by accelerated test methods  $0.85 C_{\rm F}$





# Where do we go from here?

Recommend Endurance Limits to Meet AASHTO LRFD Bridge Design Specification Reliability Requirements

- 1. Design Limit Refinements
- 2. Durability Model Refinements
- 3. GFRP Service Life Design for Tidal and Submerged Concrete Structures
- 4. Life-Cycle Cost Guidance





2018



Micro-Exposure Zones proposed under NCHRP Project 12-108 for Service Life Design

Proposal to improve endurance limits for 125-year service life and also develop a simple short duration QA verification test method

22

# QUESTIONS ??

**Contact Information:** 

FLORIDA DEPT. OF TRANSPORATION Structures Design Office: Steven Nolan, P.E. (850) 414-4272 Steven.Nolan@dot.state.fl.us

#### FDOT's Fiber-Reinforced Polymer Deployment Train





FDOT