

Beyond Halls River Bridge: FRP-RC/PC Infrastructures Solutions

Steven Nolan, Felix Padilla, Sam Fallaha, Chase Knight

Overview

Halls River Bridge progress
 Goals for broader Deployment
 Specifications
 Design Tools
 Project Indentification & Delivery
 Uniform Standards
 Advancement

Halls River Bridge progress

COMPLETED STRUCTURE

THE INTERNATIONAL BRIDGE CONFERENCE

THE INTERNATIONAL BRIDGE CONFERENCE

Halls River Bridge challenges

- **1. Stewardship**
- 2. Confidence
- **3. Competency**
- 4. Consistency
- **5.** Codification

Strategic Workplan items

THE INTERNATIONAL BRIDGE CONFERENCE

- 1. Endurance Limits
- 2. Endurance Characteristic Curves and Testing
- 3. Establishing Consistency
- 4. Increasing Material Property Qualification Thresholds and Design Limits
- 5. Cost Estimating
 - a. OC initiative for ACMA FRP-RMC
 - b. FDOT SDG Chapter 9 update
- 6. Bar Bends
 - a. Complex Shapes
 - b. FDOT Index D21310
- 7. Minimum Bar Sizes for Design Elements
- 8. Life-Cycle Cost Guidance
- 9. Minimum Concrete Class

http://www.fdot.gov/structures/Innovation/FDOT%202018%20Winter%20FRP-RC%20Workshop/Default.shtm

1. Stewardship

- Use FRP where it makes sense;
- Maximize material efficiency;
- Identify resources for exploitation.

- **1. Stewardship**
- 2. Confidence
 - Build Stakeholder confidence;
 - Supply Chain security.

- **1. Stewardship**
- **2.** Confidence
- **3. Competency**
 - Designer qualifications/training;
 - Design Tools
 - Contractor & Inspector guidance

4. Consistency

- Material reliability;
- Encourage improved QC;
- Simplified verification testing;
- Bent Bar improvement and capabilities

- 4. Consistency
- **5.** Codification
 - Establish "Roadmap" for AASHTO adoption;
 - Coordination with **ACI 440**;
 - Coordination with international authoritative committees.

Specifications - GFRP

Support update of 1st Edition on decks and railings to complete Bridge Design Guide Spec. (BDGS-GFRP) 2nd Edition.

 To be voted (06/26/2018) by AASHTO Committee T6 for adoption.

AASHTO LRFD BRIDGE DESIGN GUIDE SPECIFICATIONS FOR GFRP REINFORCED CONCRETE - 2ND EDITION

TABLE OF CONTENTS

Section 1	INTRODUCTION	9
Section		
1.1	SCOPE	9
1.2	DEFINITIONS	9
1.3	LIMITATIONS	10
1.4	DESIGN PHILOSOPHY	10
1.5	REFERENCES	10
Section	CONCRETE STRUCTURES	12
Section 7	CONCRETE STRUCTURES.	
2.1	SCOPE	13
2.2	DEFINITIONS	
2.3	NOTATION	15
2.4	MATERIAL PROPERTIES	
2.4.	l General	17
2.4.	2 GFRP Reinforcing Bars	17
2.	4.2.1 Tensile Strength and Strain	17
2.	4.2.2 Modulus of Elasticity	
2.5	LIMIT STATES AND DESIGN METHODOLOGIES	
2.5.	l General	
2.	5.1.1 Limit-State Applicability	
2.	5.1.2 Design Methodologies	
	2.5.1.2.1 General	
	2.5.1.2.2 B-Regions	
	2.5.1.2.3 D-Regions	19
2.5.	2 Service Limit State	
2.5	3 Creep Rupture Limit State	
2.5	Entimus Limit State	20

Specifications - CFRP

1st Edition for pretressed concrete with FRP strands Bridge Design Guide Specifications (BDGS-CFRP-PC).

 To be voted (06/26/2018) by AASHTO Committee T6 for adoption.

THE INTERNATIONAL BRIDGE CONFERENCE

Specifications – BFRP

STIC Incentive Project – BFRP-RC Standardization Fed. Project: STIC-004-A, (April 2018 - Dec 2019) FDOT #443377-1; Research Project BDV30 986-01

• Develop standard specifications for basalt fiber-reinforced polymer (BFRP) bars for the internal reinforcement of structural concrete.

https://www.fhwa.dot.gov/innovation/stic/state_innovation.cfm

- 2. Construction <u>Specs</u>. (Division II)
- **3. Materials Specs**. (Division III)
- 4. Production Facility Approvals
- 5. Standard Plans (SP)
 - SP Instructions (SPI)

16

FLORIDA DEPARTMENT OF TRANSPORTATIO

STRUCTURES MANUAL

olume 1 - Structures Design Guidelines lolume 2 - Structures Detailing Manual lolume 3 - FDOT Modifications to LRFDLTS-1 /olume 4 - Fiber Reinforced Polymer Guidelines

> Frequently Asked Questions 2018 Revision History Archived Structures Matricals Additional Links

Design Tools - FDOT stuff

1. Design Programs

- CFRP-PC Beams
- GFRP-RC Flat-Slab
- GFRP-RC Bent Cap
- Retaining Walls soon!
- 2. SPI "Design Aids"
- **3. Project GIS-Map App.**
- 4. Under development
 - LCC Analysis Guidance
 - Cost Estimating Guidance

Design Tools – GIS-Mapping

1. Currently includes:

 Active and Completed FRP-RC/PC projects;

2. Plans to add:

- Bridge beam repair/ strengthening projects (20+ year history of wetlayup repairs)
- FRP-Fender Systems
- HSSS projects

Project Identification & Delivery

- **1. Environment Driven**
 - Durability/Magnetic Transparency/LCC
- **2. Optional precast alternatives**
 - Encourage stakeholder buy-in
- **3. Desire for multiple suppliers**
 - Redundancy & Supply chain security
- 4. Simplify design process/workflow
- **5. Minimize change for Contractors**
 - Business as usual...almost

BDGS-GFRP 2nd Ed. refers to ASTM

D7957-17 for material specifications

- Only vinylester GFRP / epoxy GFRP round bars allowed
- Role separation and eased certification
- Design of GFRP-RC bridge elements follows structure of Bridge Design Specifications for steel-RC/PC (AASHTO-BDS-17, 8th Ed.).
 - Same language and integration
 - Familiar environment for the practitioner

Uniform Standards (cont.)

- **Inputs** from existing guidelines/codes:
 - ACI 440.1R-15 "Guide for the Design and Construction of Structural Concrete Reinforced with Fiber Reinforced Polymer Bars"
 - **CSA S6-14 Section 16** "Canadian Highway Bridge Design Code: Fibre-Reinforced Structures"

- **<u>Coordination</u>** with next-edition (where possible)
 - ACI 440-19 "Building Code Requirements for Structural Concrete Reinforced with GFRP Bars" (under dev.)
 - CSA S6-19 Section 16 "Canadian Highway Bridge Design Code: Fibre Reinforced Structures" (under dev.)

Uniform Advancement

	AASHTO 2 nd 2018	AASHTO 1 st 2009	ACI 440.1R 2015	CSA 2014	
f_{fu}^{*}	99.73	99.73	99.73	95.0 (2)	Strength percentile
$\Phi_{\rm C}$	0.75	0.65	0.65	0.75	Res. Fact. concr. failure
Φ_{T}	0.55	0.55	0.55	0.55	Res. Fact. FRP failure
Φ_{s}	0.75	0.75	0.75	0.75	Res. Fact. shear failure
C_E	0.70	0.70	0.70	1.0	Environmental reduction
C _C	0.25	0.20	0.20	0.25	Creep rupture reduction
C_{f}	0.25	0.20	0.20	0.25	Fatigue reduction
C_{b}	0.80	0.70	0.70	1.0	Bond reduction
W	0.28	0.20/0.28	0.28 to 0.20	0.2?	Crack width limit [in.]
C _{c,stirrups}	1.5	1.50	2.0 (1)	40	Clear cover [in.]
C _{c,slab}	1.0	0.75 to 2.0	0.75 to 2.0 ⁽¹⁾	40	Clear cover [in.]

⁽¹⁾ ACI 440.5-08 Table 3.1; ⁽²⁾ Characteristic Strength

Advancement

- Rationally defined creep rupture and fatigue load demands
- Separated Creep C_c and Fatigue C_f and aligned to CSA-14 (0.20 to 0.25) – Now we need to additional study to improve these still conservative limits!

Advancement (cont.)

2nd Ed. updates reflect:

Performances of ASTM-certified materials and increase
 Compression-Controlled Flexural Resistance Φ_c aligned to
 AASHTO BDS-17 (0.65 to 0.75);

Now need to:

1. Rationally increase **Tension-Controlled** Flexural Resistance Φ_t (0.55 to 0.75 ?), and

Advancement (cont.) - Elastic Modulus

- **1.** Elastic modulus is a game-changer.
- 2. Increment shall not come from mere sectional area enlargement.
- 3. Need to operate within ASTM D7957-17 boundaries.
- 4. Improve quality of the manufacturing process to answer market demand: stiffness, bond performances, durability.

Advancement (cont.) - Piles

Bridge Bearing Pile Standards

455-101	Square CFRP and SS Prestressed Concrete Piles - Typical Details and Notes
455-102	Square CFRP and SS Prestressed Concrete Pile Splices
455-112	12" Square CFRP and SS Prestressed Concrete Pile
455-114	14" Square CFRP and SS Prestressed Concrete Pile
455-118	18" Square CFRP and SS Prestressed Concrete Pile
455-124	24" Square CFRP and SS Prestressed Concrete Pile
455-130	30" Square CFRP and SS Prestressed Concrete Pile
455-154	54" Precast/Post-Tensioned CFRP and SS Concrete
	Cylinder Pile
455-160	60" Prestressed CFRP and SS Concrete Cylinder Pile

Advancement (cont.) - Seawall-Bulkheads

Concrete Sheet Pile Bulkhead Standards

Advancement (cont.) - Seawall-Bulkheads

ELEVATION SECANT WALL

TYPICAL SECTION AT SECANT WALL

Advancement (cont.) - Footings

Waterline footings in saltwater – need big bars!

Advancement (cont.) - Bent Cap

Projects:

- Halls River Bridge Replacement (Homosassa)
- NE 23rd Ave/Ibis Waterway (City of Lighthouse Point)
- Barracuda Blvd (New Smyrna)
- Maydell Dr. (Tampa)
- 40th Ave. N (St Petersburg)
- iDock (Miami)

Advancement (cont.) - Girders

HCB's set on GFRP-RC Pile Caps

Projects:

- Halls River Bridge = **HCB's** (Homosassa)
- NE 23rd Ave/Ibis Waterway =
 Flat-Slab (City of Lighthouse Point)
- US1 over Cow Key Channel = FSB hybrid (Key West)
- Maydell Dr. = **FSB's ?** (Tampa)
- 40^{th} Ave. N = **FSB's** (St Pete.)

Advancement (cont.) – GFRP-PC

1. FHWA's Innovations Deserving of Exploratory Analysis (IDEA)

GFRP Prestressing - MILDGLASS (University of Miami);

(a) & (b) CFRP strand failed during tensioning; (c) cracking following strands release.

(a) GFRP strand prototype cross section; (b) compared to a CFRP alternative.

(a) GFRP-PC sheet pile concept (b) CFRP-PC sheet pile design for Halls River Bridge

Advancement – GFRP-PC (cont.)

1. FHWA's Innovations Deserving of Exploratory Analysis (IDEA)

• GFRP Prestressing - MILDGLASS (University of Miami);

Advancement (cont.) – Next

2. Next Innovation Deserving of Exploratory Analysis...

• BFRP Prestressing (perhaps)

Advancement (cont.) – SAM-TAG

Structural Advance Materials - TAG Mission:

 Advance the <u>safe</u> implementation and broad deployment of innovative structural materials through <u>advisement to</u> <u>the Structures Technical Advisor Group (TAG) and</u> coordination with national and international specification development organization representatives...

Members are to support District Structures Design Engineers make informed choices:

- 1 ~ Champion & 1 ~ Backup from each District Structures Office
- 2 ~ Consultants structures design community
- 2 ~ State Materials Office materials experts
- 2 ~ State SDO facilitators & coordinators
- **1 ~ Structures Research Center representative**
 - ~ Friends of the TAG (Collaborators)

... future Construction and Maintenance representatives?

???	BFRP	Composit Bridge Girders	e GFRP-RC	CFRP-PC	Fender Systems	External FRP Laminate Repairs	FDOT	
	2019?	2016	2016	2015	2000's	1990's	antina	

11-

FDOT Contact Information:

Structures Design Office:

Steven Nolan, P.E. (FRP Coordinator) (850) 414-4272 <u>Steven.Nolan@dot.state.fl.us</u>

Structures Design Office:

Felix Padilla, P.E. (FRP Assist. Coord.) (850) 414-4290 *Felix.Padilla@dot.state.fl.us*

State Materials Office: Chase C. Knight, PhD.

(352) 955-6642 Chase.Knight@dot.state.fl.us

FDOT's Fiber-Reinforced Polymer Deployment Train

