

Workshop W4 – FRP Composite Bridge Materials: Design, Build, Strengthen Organized by ACMA

2018 International Bridge Conference® Gaylord National Resort & Convention Center, National Harbor, MD Tuesday, June 12, 2018 - 1:00 – 4:30 p.m. Room Magnolia 1

Rehabilitation of East Lynn Lake Bridge, WV

Hota GangaRao and Ruifeng Liang West Virginia University Constructed Facilities Center and CICI Morgantown, WV 26506 ghota@wvu.edu; rliang@wvu.edu

US Army Corps of Engineers. NSF INDUSTRY/UNIVERSITY COLLABORATIVE RESEARCH CENTER

CENTER FOR INTEGRATION OF COMPOSTIES INTO INFRASTRUCTURE DURABILITY (AGING) KNOWLEDGE BASE

DESIGN IMPLEMENTATION & EVALUATION

CODES SPECIFICATIONS GUIDANCE

INTERNATIONAL SITES NANJING TECH UNIV. CIDESI

WVU (LEAD)

UT-ARLINGTON

NC STATE MIAMI

> INDUSTRY ADVISORY BOARD

INDUSTRY MEMBERS GOVT. AGENCIES

DEVELOPMENT AND

IN INFRASTRUCTURE

Hota GangaRao, Director

IMPLEMENTATION

Udaya Halabe

Ruifeng Liang

Rakesh Gupta PV Vijay Mark Skidmore MATERIAL AND COMPONENT DEVELOPMENT, **MANUFACTURING &** CHARACTERIZATION

EDUCATION AND TRAINING

WestVirginiaUniversity. BENJAMIN M. STATLER COLLEGE OF ENGINEERING AND MINERAL RESOURCES

RESEARCH MAP

Hota Gangarao hota.gangarao@mail.wvu.edu 304.293.9986

cee.statler.wvu.edu/home/cfc/center-for-the-integration-of-composites-into-infrastructure

Acknowledgement

- This work was carried out under NSF-IUCRC-CICI program as a joint project among WVU-CFC, USACE, NSF and FHWA.
 - ✓ Mark Skidmore, P Vijay and Udaya Halabe, GRA Students- WVU
 - ✓ Richard Lampo, Jeffrey P Ryan, John D. Clarkson USACE
- The project was honored with 2014 USACE Innovation of the Year Award and the 2014 Engineering Excellence Award of the Great Lakes and Ohio River Division of USACE.
- The authors would like to acknowledge the support from US-NSF through Award IIP 1230351.
- Workforce support from East Lynn Lake Management and USACE Huntington District is greatly appreciated.

Introduction to Polymer Composites

• Composite:

- A heterogeneous combination of two or more materials
 - reinforcing elements such as fibers, fillers
 - binders such as resins or polymers
- These materials differ in form or composition on a macroscale
- There exists interface between these materials compatibility

• Fiber:

Load-bearing component

- Resin:
 - Dissipate loads to the fiber network
 - Maintain fiber orientation
 - Protect the fiber network from damaging environmental conditions such as humidity and high temperature
 - Dictates the process and processing conditions

Fiber Reinforced Polymer (FRP) Composite Advantages

- Superior corrosion resistance
- Excellent thermo-mechanical properties
- High strength-to-weight ratio
- Nonmagnetic
- Cost effectiveness
- Greener in terms of embodied energy
- Many others

Overview of East Lynn Lake Bridge, WV - Steel H-pile Rehab with Composites Project

BRIDGE DATA

Built in 1969, Length – 126'6", 5 spans, 2 lanes, continuous reinforced concrete slab, H-15-44 loading.

PROBLEM

Corrosion of H-piles resulted in section loss up to **50%**, load rating of **6 tons**, speed reduction to 10 MPH, and one lane closure.

SOLUTION

Advanced FRP composite materials were used to bring the bridge back to original design capacity at **25%** of conventional construction cost in **3 weeks** (March 2014)

PARTNERSHIP

WVU-CFC, USACE Huntington District and USACE ERDC, NSF, FHWA

Comprehensive Composite Approach

- 1) Polymer concrete as a foundation barrier where FRP shells and SCC concrete rest on;
- Glass fiber reinforced polymer (GFRP) composite shells/jackets of 20" in diameter to enclose steel piles;
- Self-consolidated concrete within the shell surrounding Hpiles;
- 4) Glass FRP fabric wrap over FRP shell.

East Lynn Bridge, WV Before Rehab

>

Selection of Materials and Design of Field Implementation Methodology

- Systematic evaluation
 - Selection and testing of various materials
 - Design computations
 - > Development of a field implementation plan and procedure
- Design/strength computations
 - Tensile strength of the FRP shell both in longitudinal and circumferential directions
 - 28 days compression strength of SCC
 - Consideration of effective areas of H-pile, SCC, and FRP shell to compute column strength by properly accounting for confinement stress of confinement concrete, un-corroded H-pile area and FRP shell area
 - Application of LRFD equations for strength, stiffness and buckling computations

Material Properties Used in East Lynn Bridge Repair

• SCC Concrete:

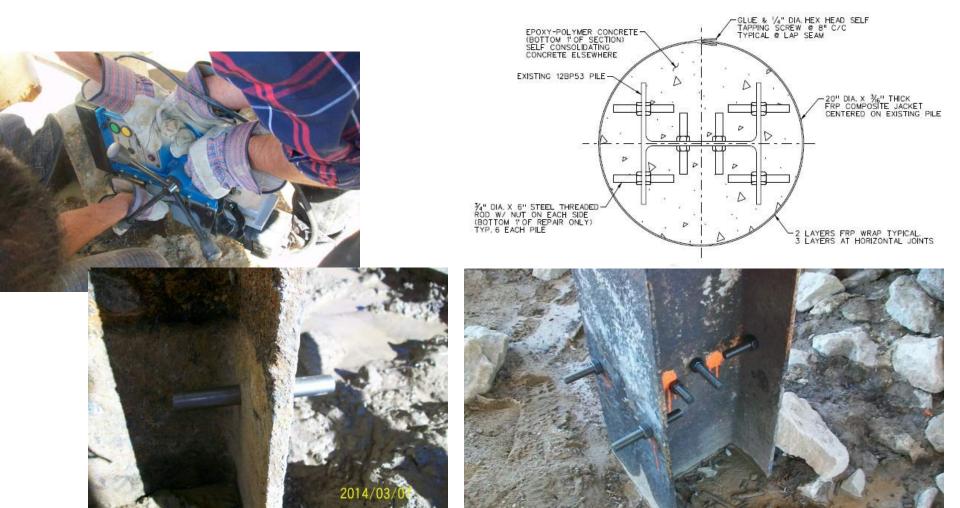
- Concrete Cylinders (14 days strength): 2760 psi, 2800 psi, 2844 psi (Avg. 2801 psi)
- Concrete Cylinders (28 days strength): 3100 psi, 3103 psi, 2948 psi (Avg. 3050 psi)
- FRP Jacket/Shell with Glass Strand Mat (Surrounding/housing SCC Concrete):
 - Tensile stress (hoop direction): 13.7 ksi
 - Tensile stress (longitudinal direction): 15.4 ksi
- AQUAWRAP FRP Wrap with Bi-directional Glass Fabric (Outermost 2 layers):
 - Tensile stress (hoop direction): 40.7 ksi

Step 1: Excavating for Access

 Excavating around steel piles to expose the section underground and level the area

Step 2: Erecting Scaffolding

• Erecting scaffolding around the steel bents


Step 3: Pressure Washing

• Pressure washing of the piles

Step 4: Installing Shear Connectors

• Installation of shear connectors to transfer the load from the strengthened section back to un-corroded steel piles

Step 5: Installing Sensors

• Installation of sensors (strain sensors and corrosion sensors) and conduits for long term performance monitoring

Step 6: Load Testing prior to Rehabilitation

Step 7: Installing 3' Footers

• Installation of a 3-foot long bottom shell

Step 8: Filling Bottom Shell with Polymer Concrete

• Filling bottom shell with polymer concrete as a barrier

Step 9: Building Upper Shells

Step 10: Installing Concrete Pouring Port

Step 11: Wrapping Shell with FRPs

Step 12: Pumping SCC Concrete

Step 13: Painting FRP Wraps

• Painting of the FRP wraps using water resistant UV coating

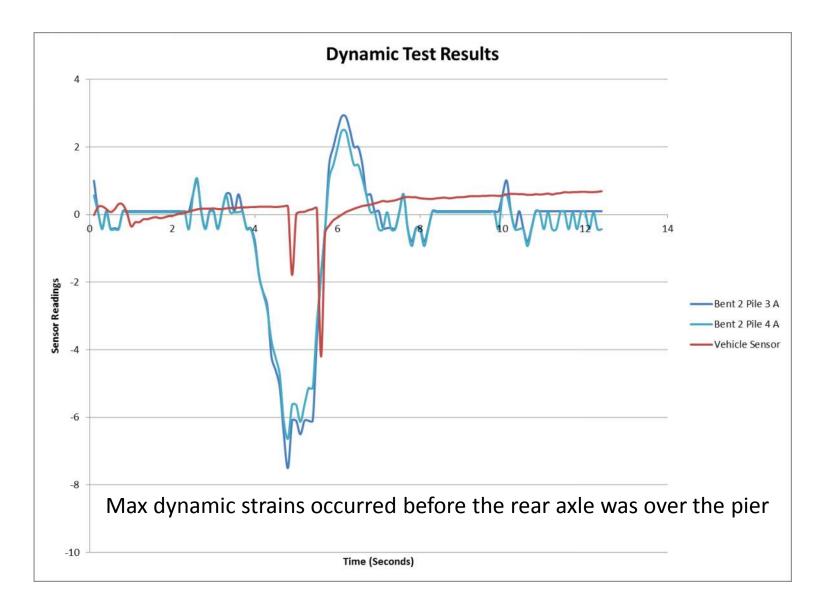
Step 14: Finishing Headers

 Removal of concrete pouring port, finish the top section wrap and painting

Step 15: Installing External Sensors

Step 16: Load Testing after Rehabilitation

Step 17: Finish up


• Removal of scaffolding, cleanup site, and backfill of gravel

East Lynn Bridge, WV After Rehab

THE REAL PROPERTY OF

Sensor Readings as a Function of Time during a Dynamic Load Test

Pre- and Post- Repair Load Testing of East Lynn Lake Bridge

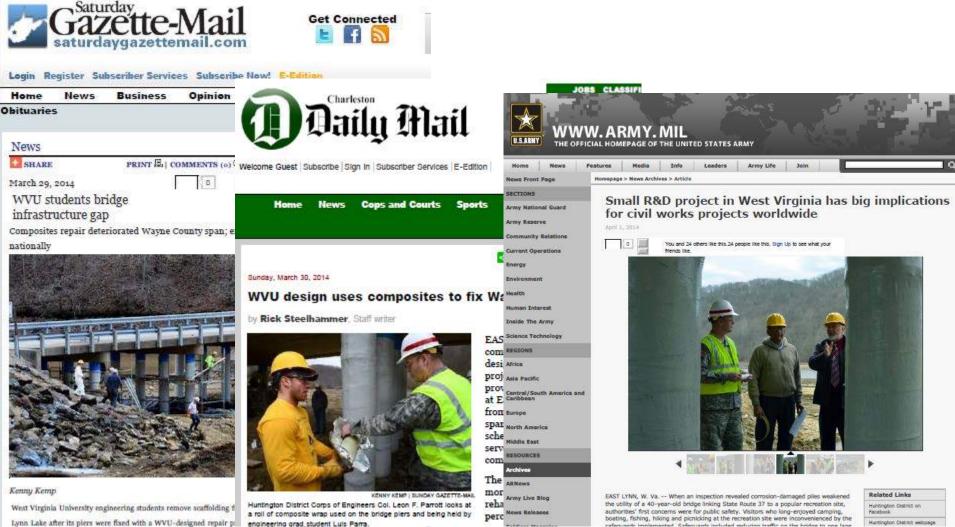
			Normalized Stresses (psi/kip of truck load)				Reduction	
			Static T	festing	Dynamic Testing			
			Pre-	Post-	Pre-	Post-	Static	Dynamic
Sensor	Location	Туре	repair	repair	repair	repair		
		Beam -						
Strain 1	Bent 2 Pile 3	Axial	-19.3	-1.9	-20.6	-5.7	10%	28%
		Beam -						
Strain 2	Bent 2 Pile 3	Axial	-20.6	-2.0	-22.8	-6.2	10%	27%
Strain 3	Bent 2 Pile 4	Beam -	-16.5	-1.2	-15.1	-5.1	7%	34%
Strain S	Defit 2 Pile 4	Axial	-10.5	-1.2	-15.1	-5.1	/ %	34%
Strain 4	Bent 2 Pile 4	Beam - Axial	-17.3	-1.7	-15.8	-5.3	10%	33%
Juanty	Dont 2 File 4	Beam -	-17.5	-1.7	-10.0	-0.0	10.70	5576
Strain 5	Bent 1 Pile 3	Axial	-11.0	-2.0	-13.1	-4.3	18%	33%
		Beam -						
Strain 6	Bent 1 Pile 3	Axial	-11.0	-1.9	-13.1	-4.2	17%	32%
		Wrap -						
Strain 7	Bent 2 Pile 3	Axial	N/A	-0.1	N/A	0.7	N/A	N/A
		Wrap -						
Strain 8	Bent 2 Pile 3	Ноор	N/A	0.3	N/A	-2.7	N/A	N/A
		Concrete						
Strain 9	Bent 2 Upstream	Сар	ND	0.4	ND	0.4	N/A	N/A
	Bent 2	Concrete						
Strain 10	Downstream	Сар	ND	0.6	ND	0.7	N/A	N/A

• ND: Concrete cap sensors were not operational during pre-wrap test.

• Stresses computed by multiplying the averaged strains with modulus for each material.

• Normalized stresses are defined as the stresses per kip of truck load.

Before and After Repair



Conclusions

- Advanced composites were successfully used to retrofit heavily corroded steel piles and have transformed a deteriorated bridge into a new structure.
- The load tests revealed that the load carrying capacity was enhanced 10 times higher under static loads and 3 times higher under dynamic loads.
- For the past four years, the bridge has been monitored extensively for any corrosion activity of H-piles and also for its static and dynamic responses: no more corrosion.
- This work demonstrated several composite advantages: 1) design flexibility, 2) innovative, 3) rapid deployment, 4) cost-effective, 5) outstanding performance.
- Composite rehab approach offers great potential for strengthening a wide range of timber, steel, concrete structures and will play an important role in sustaining existing constructed facilities.

Questions and Discussions

engineering grad student Luis Parra.