

Advancements in FRP composite usage for Highway Infrastructure in Florida

Steven Nolan, P.E. Senior Structures Design Engineer Florida Department of Transportation

(February 17, 2021)

Advancements in FRP composite usage for Highway Infrastructure in Florida

Steven Nolan, P.E.

Senior Structures Design Engineer Florida Department of Transportation

Biography:

Steve has worked for the FDOT since 1996 and a registered Professional Engineer in Florida. He currently leads the Advanced Materials for Structures initiatives within the State Structures Design Office and includes FRP composites, High-Strength Stainless Steel strands, Fiber-Reinforced Concrete, and Ultra-High Performance Concrete materials. In his 24 years with FDOT he has worked with in-house bridge design and developed many of the Department's precast and prestressed concrete Standards. He is an active member of the Transportation Research Board's AFF80/AKB10 Committee on Structural Composites/Innovative Highway Structures; the Bridge Engineering Institute's Scientific Advisory Panel; and a reviewer for several engineering journals. Steven has co-authored and presented numerous papers on FRP and prestressed concrete related to bridges and coastal structures.

ABSTRACT

Advancements in FRP composite usage for Highway Infrastructure in Florida

FDOT has been involved in researching composite FRP's since the late 1980's. This research led to successful project applications beginning in the 1990's for bridge structure repair and strengthening typically required due to either corrosion and/or truck impact damage and continues to evolve today.

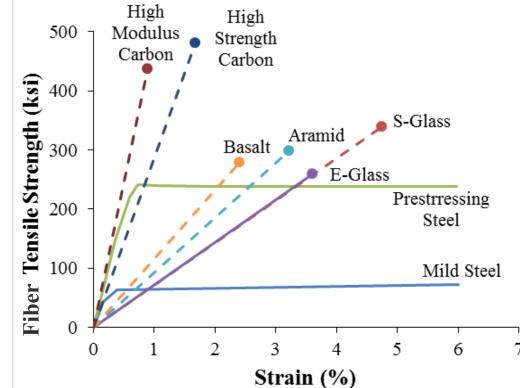
Broad use of composite FRP structures for new construction began in the 2000's with navigational fender systems that are used to guide vessels and protect bridge piers. Later research and demonstration of lightweight applications for bridge deck panel evaluation and other minor structural components. Hybrid composite beams coupling FRP and concrete are now gaining acceptance and have been showcased on a few Florida structures, bolstered by the success of other state DOTs. The broadest implementation for new construction applications is with composite rebar starting in the 2010's and the progressing to prestressed concrete applications by mid-decade. Other ancillary structures find use of composites under new construction in minor applications but the reinforced & prestressed concrete are currently receiving the most attention with broadening of fiber types and resin systems.

A robust framework for manufacturer approval and product verification, coupled with standard specification and design guidance is evolving. Proliferation of design practices and partnering with other state and infrastructure stakeholders is consider key to driving further development of innovation and delivering cost effective solutions that can succeed at an infrastructure scale and within the existing culture of the construction industry. This presentation will walk thru FDOT's journey and provide some insights on what a successful value proposition for the future could entail.

OUTLINE

- 1. The Value Proposition
- 2. Expanding Range of Product Solutions
- 3. Recent Full-Scale Testing Examples
- 4. Implementation Tools for Designers, Contractors, & Owners

Need, Rules


& Tools

- 5. Projects Examples
- 6. Lessons Learned from the Real World
- 7. Forecasting the Future

The Value Proposition – Structural Advancement & Durability

(Resilience & Sustainability)

- 1. High Tensile Strength
- 2. Low Unit Weight
- 3. High Durability (corrosion-free)
- 4. Innovative Technology Development
- 5. Local/Regional Manufacturing Opportunities
- 6. Low Carbon Footprint?

The Value Proposition Durable Solutions and Life Cycle Cost Benefits

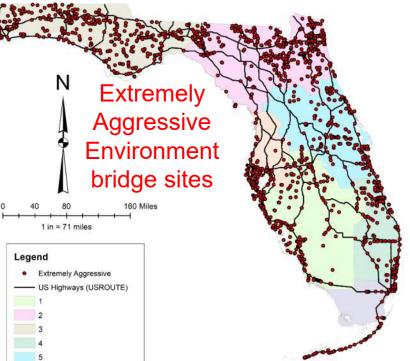
- Service Life Expectations for Structures
- Alternative Design Strategies
- Life Cycle Cost policy and comparisons

GUIDE SPECIFICATION FOR SERVICE LIFE DESIGN OF HIGHWAY BRIDGES, 1sT EDITION Item Code: HBSLD-1 2020

This guide specification is intended to offer design recommendations for agencies wishing to implement service life design principles and detailing recommendations. It was developed to incorporate quantitative approaches, along with proven deemed-to-satisfy provisions, into a single comprehensive design document for implementation on a national level. It also establishes a framework for service life design, while providing opportunities for refinement and expansion, especially as new models capable of simulating deterioration mechanisms become available.

Lower Keys 1976 & 1983

Taking stock of our Bridge & Structures Infrastructure



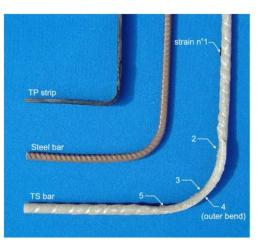
- 12,529 bridges in the State of Florida
- 7,044 bridges maintained by FDOT
- 150,227,048 SF of deck area
- 5,485 maintained by others (County, City, Federal)
- 2,143,163 SY of noise barrier wall
- 379.22 miles of retaining wall
- 72.8 miles of seawall
- FDOT bridges classified in an aggressive environment:
 - 1,534 Bridges
 - 68,857,118 SF Deck

or about 46%

FRP material systems used in FDOT's Highway Bridges & Structures

- 1. FRP-Prestressed Concrete (PC):
 - Prestressed Beams CFRP strands, GFRP/BFRP auxiliary rebar
 - Bearing Piles CFRP strands, spirals, & splice dowels, (GFRP/BFRP? auxiliary rebar)
 - Sheet Piles CFRP strands, GFRP (BFRP ? submerged) stirrups
- 2. FRP-Reinforced Concrete (RC):
 - CIP Decks & Flat-Slab Bridges GFRP (BFRP now allowed)
 - Seawalls GFRP (submerged)
 - Bulkhead Caps GFRP/BFRP
 - Retaining Walls GFRP/BFRP
 - Drainage Structures/Box Culverts (no recent examples)
- 3. FRP Elements (MS):
 - Fenders, Piles, HCBs, Pedestrian Structures
- 4. Maintenance Repair & Rehabilitation (MR&R)
 - Externally Bonded Repairs (CFRP wrap & laminates, GFRP ?)
 - Pile Jackets (Cathodic Protection w/ GFRP shells, FRP dowels & bars)
 Advancements in FRP composite usage for Highway Infrastructure in Florida

- i. GFRP rebar & improved properties
- ii. BFRP rebar implementation
- iii. Improving CFRP strand & bar performance and economy
- iv. Pultruded & Molded Structural Components


Advancements in FRP composite usage for Highway Infrastructure in Florida

Composite Reinforcing Bars for Future Infrastructure

- i. GFRP rebar & improved properties Elastic Tensile Modulus
 - ✓ Smaller bars =
 - Higher strength
 - Better crack control
 - Better fit-up (especially for bent bars bend radius must be ≥ 3 bar diameters)
 - ✓ Less bars (reducing congestion)
 - ✓ Higher allowable shear stresses
 - ✓ Lower deflections

Why is this important for FDOT?

← Improves efficiency in design requiring either

- i. GFRP rebar & improved properties
 - **Tensile Strength:**
 - \checkmark Smaller bars =
 - better fit-up
 - higher stress larger crack widths X
 - higher fatigue stresses X
 - higher sustained loads Χ
 - Less bars reduces congestion \checkmark
 - **Greater deflections?** X
 - Great surface bond stress demands X
 - May need higher bond strength standard (>> 1.1 ksi)

- Ribbed (a)
- Sand Coated (b)
- Wrapped and Sand Coated (c)
 - Deformed (d)
 - Helical (e)
 - Grooved (g)
 - Hollow core (h)

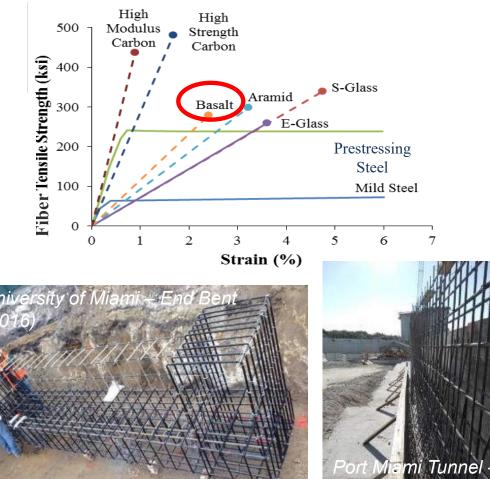


Figure: Different types of FRP [Fu et al. 2019]

i. GFRP rebar & improved propertiesii. BFRP rebar implementation

932-3.2 Bar Sizes and Loads: The sizes and loads of FRP reinforcing bars shall meet the requirements in Table 3-1. The measured cross-sectional area, including any bond enhancing surface treatments, shall be determined according to Table 3-2.

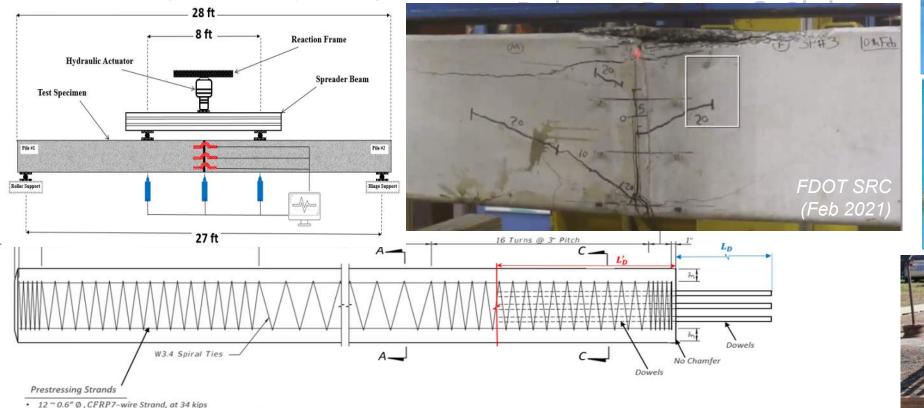
	Table 3-1 Sizes and Tensile Logists Sizes and Tensile Logists								
Bar Size Designation	STIC 2018 BERPARC Seminarianen (New May 2020)	s-Sectional Area n ²)	g Bars Minimum Guaranteed Tensile Load (kips)						
C	21 21	Maximum	BFRP and GFRP Bars	CFRP Bars					
2	This report covers a period of the second se	0.085	6.1	10.3					
3	Description of the proposed provide the second polymer (BFRP) has for the internal reasonable provide polymer (BFRP) has for the provide completely and provide the provide	0.161	13.2	20.9					
4	 Establishing of 440.18 as a design million for GTRP Resigned converting which data with ACT 440.18 as a design million for GTRP Resigned converting which data with ACT 440.18 as a design million for GTRP Resigned converting data with ACT 440.18 as a design million for GTRP Resigned convert data with ACT 440.18 as a design million for GTRP Resigned convert data with ACT 440.18 as a design million for GTRP Resigned convert data with ACT 440.18 as a design million for GTRP Resigned convert data with ACT 440.18 as a design million for GTRP Resigned convert data with ACT 440.18 as a design million for GTRP Resigned convert data with ACT 440.18 as a design million for GTRP Resigned convert data with ACT 440.18 as a design million for GTRP Resigned convert data with ACT 440.18 as a design million for GTRP Resigned convert data with ACT 440.18 as a design million for GTRP Resigned convert data with ACT 440.18 as a design million for GTRP Resigned convert data with ACT 440.18 as a design million for GTRP Resigned convert data with ACT 440.18 as a design million for GTRP Resigned convert data with ACT 440.18 as a design million for GTRP Resigned convert data with ACT 440.18 as a design million for GTRP Resigned convert data with ACT 440.18 as a design million for GTRP Resigned convert data with ACT 440.18 as a design million for GTRP Resigned convert data with ACT 440.18 as a design million for GTRP resigned convert data with ACT 440.18 as a design million for GTRP resigned convert data with ACT 440.18 as a design million for GTRP resigned convert data with ACT 440.18 as a design million for GTRP resigned convert data with ACT 440.18 as a design million for GTRP resigned convert data with ACT 440.18 as a design million for GTRP resigned convert data with ACT 440.18 as a design million for GTRP resigned convert data with ACT 440.18 as a design million for GTRP resigned convert data with ACT 440.18 as a design million for GTRP resigned convert data with ACT 440.18 as a design million for GTRP resigned convert	0.263	21.6	33.3					
5	O (BDGS-2) solutional Decision and Kanew references of BUA's which have been accommodations for decision and fluctures to BEGS-3 for technism which have been accommodation of DOCI decision modifications for secondariabilities benery 2020. No increase in the Decision of the DOCI of DOCI accommodation of the DOCI of D	0.388	29.1	49.1					
6	incorporated into the <u>analysis</u> above those currently that the anyterementation is original under the property design parameters above those currently work for this effort is original under the transmission of the property work for this effort is original under the property work for this effort is original under the property work for this effort is original under the property work for this effort is original under the property of the prop	0.539	40.9	70.7					
7	O	0.713	54.1	-					
8	Concrete Reinforcement 12.1 (see Appendix Generate Section 12.1 (see Appendix 2011) Workholds Sportfleadore	0.913	66.8	-					
9		1.137	82.0	-					
10	1.1 ************************************	1.385	98.2	-					

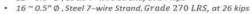
- i. GFRP rebar & improved properties
- ii. BFRP rebar implementation
- iii. Improving CFRP strand & bar performance and economy
- iv. Pultruded & Molded Structural Components

July 2020 & Jan 2021 updates


T 11 1 0

	Table 1-2 Typical Sizes and Loads of CFRP Prestressing Strands and Bars				
CFRP 7-strand (commercial)	Туре		Nominal Cross Sectional Area (in ²)	Nominal Ultimate Load (P _u) (kips)	Nominal Ultimate Tensile Stress (ksi)
	Single Strand - 5.0mm Ø	0.20	0.0 <u>25</u> 30	9 <u>.1</u>	3 <u>64</u> 00
	7-strand - 7. <u>9</u> 5mm Ø	0.3 <u>1</u> 0	0.0 <u>48</u> 50	17 <u>.8</u>	3 <u>7</u> 40
	7-strand - 10. <u>8</u> 5mm Ø	0.4 <u>3</u> 1	0.090	3 <u>3.1</u> 2	3 <u>67</u> 56
GFRP 7-strand	Single Strand - 9.5mm Ø	0.38	0.110	35 <u>.0</u>	318
	7-strand - 12.5mm Ø	0.49	0.11 <u>7</u> 8	4 <u>3.3</u> 1	3 <u>70</u> 47
(prototype)	Single Strand - 12.7mm Ø	0.50	0.196	59 <u>.0</u>	301
	7-strand - 15.2mm Ø	0.60	0.179	6 <u>6.2</u> +	3 <u>69</u> 41
	19 strand 20.5mm Ø	0.81	0.320	71	222
	7-strand - 17.2mm Ø	0.68	0.234	<u>86.6</u> 79	370 338 -


- i. GFRP rebar & improved properties
- ii. BFRP rebar implementation
- iii. Improving CFRP strand & bar performance and
- iv. Pultruded & Molded Structural Components



Recent Full-Scale Testing and Research on Beams and Piles

i. GFRP Pile prestressing, spirals and dowel splicing

Advancements in FRP composite usage for Highway Infrastructure in Florida

Flagler Beach

Recent Full-Scale Testing and Research on Beams and Piles

- i. GFRP Pile prestressing, spirals and splicing
- ii. FRP Shear and Confinement Rebar Beams & Slabs
- iii. Durability Sampling and Testing of Submerged Rebar

Recent Full-Scale Testing and Research on Beams and Piles Ongoing Project: BE694

- GFRP Pile prestressing, spirals and splicing
- FRP Shear and Confinement Rebar Beams & Slabs ii.
- iii. Durability Sampling and Testing in Wet Environments

Materials Research Report **Final Report UNF** Project Contract No. BDK82-977-05

Degradation Assessment of Internal Continuous Fiber Reinforcement in Concrete Environment

Adel ElSafty, Ph.D., P.E. (Principal Investigator) Brahim Benmokrane, Ph.D., P.E. Sami Rizkalla, Ph.D., P.E. Hamdy Mohamed, Ph.D., P.E. Mohamed Hassan, Ph.D.

School of Engineering College of Computing, Engineering, and Construction University of North Florida Jacksonville, Florida 32224

July 2014

Project Number

Project Manager

David P. Wagner

H. R. Hamilton

Principal Investigator

BDV31-977-01

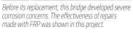
Florida Department of Transportation Research **Durability Evaluation of Florida's Fiber-Reinforced** Polymer (FRP) Composite Reinforcement for Concrete Structures

Current Situation

Fiber-reinforced polymer (FRP) composites, when applied to concrete bridge structures. are proven to increase strength and stiffness. They may also mitigate corrosion of the steel reinforcement in concrete members by reducing diffusion of chlorides into concrete. However, in the past, these repairs have been viewed as a very temporary bandage, and their durability has generally been evaluated using accelerated or theoretical methods. Long-term field exposure data which would help to determine the validity of

accelerated testing are not readily available.

Research Objectives


University of Florida researchers evaluated the long-term effectiveness of FRP repairs on a number of Florida bridges.

Project Activities

The replacement of three Florida bridges previously repaired with FRP provided test specimens with various aged repairs, the oldest being 11 years. The beams represented a range of

exposure conditions and were taken from bridges with different configurations. In two cases, the bridges were over water and regularly exposed to changing water levels by river or ocean tides. In the third case, the bridge was over an interstate highway and had been struck a number of times by overheight trucks and subsequently repaired with FRP composites.

FAMU-FSU

Testing Protocol and Material Specifications for Basalt Fiber Reinforced Polymer Bars

Improving *"Testing*

Bars" ...

Protocol and Material

Specifications for Basalt

Fiber Reinforced Polymer

(2019-2021)

Owners

Projects

E-Updates | FL511 | Site Map | Translate

Search FDOT.

"Higher-Performance Materials"

Office of Design

Office of Design / Design Innovation
Design Innovation

Office of Design

Non-Corrosive

The Florida Department of Transportation (FDOT) continually strives to enhance all areas of its operations. In support of these efforts, the department recently moved into a bold new era for innovative ideas, research and accelerated implementation. Success will depend on our ability to carefully evaluate or implement the products and services provided to the users of Florida's transportation system. Our goal is to utilize newly developed technology or employ creative thinking to generate greater value for every transportation dollar invested.

Home About FDOT Careers Contact Us Maps & Data Offices Performance

Florida Department of TRANSPORTATION

Safety, Innovation, Mobility, Attract, Retain & Train

After researching and evaluating many innovative ideas, the Central Office has developed a list of concepts, products and services that may be the best solution to the project's needs or design challenges. Some items on the list are completely developed, and only need tailoring to your project. We encourage you to propose one or more of these innovations for project specific solutions with confidence of approval by the Districts. Other items are not fully detailed and will require coordination with and approval by the District's Design Office. Many of these innovations have been successfully implemented in other states and countries. Not all projects benefit from these innovations and the Department is not advocating the general use of new products or designs where an economical well proven solution exists and is the most appropriate solution for the situation.

FDOT Transportation Innovation Challenge

Highly Corrosion-Resistant

The Department invites you to share your thoughts on ways we can challenge ourselves to be innovative, efficient and exceptional at our **Invitation to Innovation website**

Structures Design Office

Curved Precast Spliced U-Girder Bridges

Fiber Reinforced Polymer Reinforcing

FRP Members and Structures

Geosynthetic Reinforced Soil Integrated Bridge System

Geosynthetic Reinforced Soil Wall

Prefabricated Bridge Elements and Systems

Segmental Block Walls

Ultra-High Performance Concrete (UHPC)

+ Stainless-Steel Prestressing Strand & Rebar

FRP Designer Training

- ii. **Structural Design and LCC Tools**
- iii. Technology Transfer Participation

https://www.fdot.gov/structures/innovation/FRP.shtm#link7 (2020)

FRP-Reinforced and Prestressed Concrete Designer Training (An Introduction)

GFRP-Reinforced Concrete Design for Bridges

Guest Speaker (1): Prof. Antonio Nanni Inaugural Senior Scholar Professor and Chair Department of Civil, Architectural & Environmental Engineering University of Miami UNIVERSITY

Biography

Prof. Nanni is a structural engineer interested in construction materials and their structural performance and field application, including monitoring and renewal, with a focus on the sustainability of buildings and civil infrastructure. During the past 30+ years, he has studied concrete and advanced composite-based systems as the principal investigator on a number of projects sponsored by federal and state agencies and private industry. Editor-in-chief of the Journal of Materials in Civil Engineering (American Society of Civil Engineers) and serves on the editorial board of other technical journals. He has advised more than 60 graduate students pursuing master's and doctoral degrees in the field, published more than 220 papers in refereed journals, published more than 350 papers in conference proceedings and co-authored two books.

CFRP-Prestressed Concrete Design for Beams and Piles alarhi

Guest Speaker (2): Prof. DJ Belarbi **Distinguished Professor** Department of Civil and Environmental Engineering University of Houston

Biography

Dr. Abdeldjelil (DJ) Belarbi is a Distinguished Professor of Civil Engineering at the University of Houston. He has taught more than 14 different undergraduate and graduate courses on subjects related to civil and structural engineering. His primary research contributions focus on the constitutive modelling, analytical, and experimental investigations of RC and PC structures. A Fellow of ACI, ASCE, and SEI. In addition to his involvement in ACI 440, he is currently the co-Chair of ACI-440-E (professional development); Chair of ACI-ASCE 445 (Shear and Torsion), member of ACI 341 (Earthquake-Resistant Concrete Bridges) and member of ACI 318-E (Section and Member Strength). The recipient of numerous awards and honors including the 1995 Outstanding Paper Award of the Earthquake Engineering Research Institute (Earthquake Spectra Journal) and the Honorable Mention for Outstanding paper from The Masonry Society.

Advancements in FRP composite usage for Highway Infrastructure in Florida

RAINING

- i. FRP Designer Training
- ii. Structural Design and LCC Tools
 - New construction:
 - Glass FRP rebar & Carbon FRP strands with improving mechanical properties
 - Basalt FRP rebar & possible prestressing applications
 - Composite Bridge Beams (Pultruded, VARTM, Molded & Built-up composite members)
 - Hybrid systems (HCB, Concrete-Filled FRP Tubes...)

- **FRP** Designer Training
- ii. Structural Design and LCC Tools
 - New construction:
 - Repair & strengthening.

FIBER REINFORCED POLYMER


GUIDELINES (FRPG)

STRUCTURES MANUAL

FDO'

VOLUME 4 JANUARY 2021

FLORIDA DEPARTMENT OF TRANSPORTATION

International **Standards**

for concrete structures

Externally applied FRP reinforcement

Implementation Tools for Designers, Contractors, & Owners FDOT Design Software

i. FRP Desigi	ner Trainin	ng		Florida Department of TRANSPORTATION E-Updates FL511 Site Map Search FDOT
ii. Structural	Design ar	nd LCC T	Home About FDOT Contact Us Maps & Data Offices Performance Projects	
iii. Technolog	y Transfer	Particip	Structures Design Programs Library	
GFRP-RC in development →	Box Culvert v4.0	11/07/2018	Exe (Zip) (Mathcad 15)	Used with FDOT Standard Plan Index 400-289 (formerly Index 289) to design concrete box culverts, wingwalls, headwalls, and cutoff walls in accordance with the AASHTO LRFD Bridge Design Specification.
CFRP-PC Beta version ** (V6.0 coming 2021) →	Prestressed Beam v5.2	11/07/2018	Exe (Zip) (Mathcad 15)	Used with FDOT Standard Plan Index 450-010 to 450-299 (formerly Index 20010 to 20299) to design simple span prestressed beams (Florida-I, AASHTO, Florida Bulb-T, Florida-U, Florida Double-T, Flat Slab, Inverted-T, FSB) in accordance with the AASHTO LRFD Bridge Design Specification.
GFRP-RC included (Worksheet 3b) →	Bent Cap v1.0	11/07/2018	Exe (Zip) (Mathcad 15)	Analyzes and designs fixed or pinned bent caps, including la loads, in accordance with the AASHTO LRFD Bridge Design Specifications.
GFRP-RC included \rightarrow	Retaining Wall v4.0	06/01/2020	Zip (Exe) (Mathcad 15)	Used with FDOT Standard Plan Index 400-010 (formerly Index 6010) to design and analyze cast-in-place retaining walls in accordance with
** Available on request			(matricad 10)	the AASHTO LRFD Bridge Design Specification.

Implementation Tools for Designers, Contractors, & Owners US Design Software

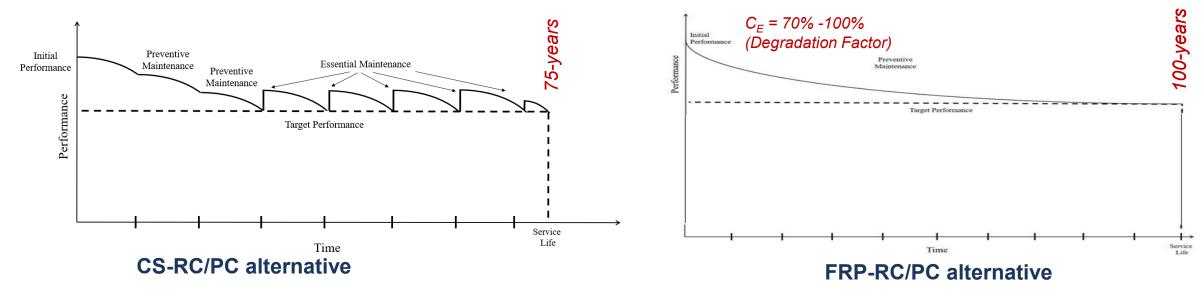
- i. FRP Designer Training
- ii. Structural Design and LCC Tools
- iii. Technology Transfer Participation

Other Design Software:

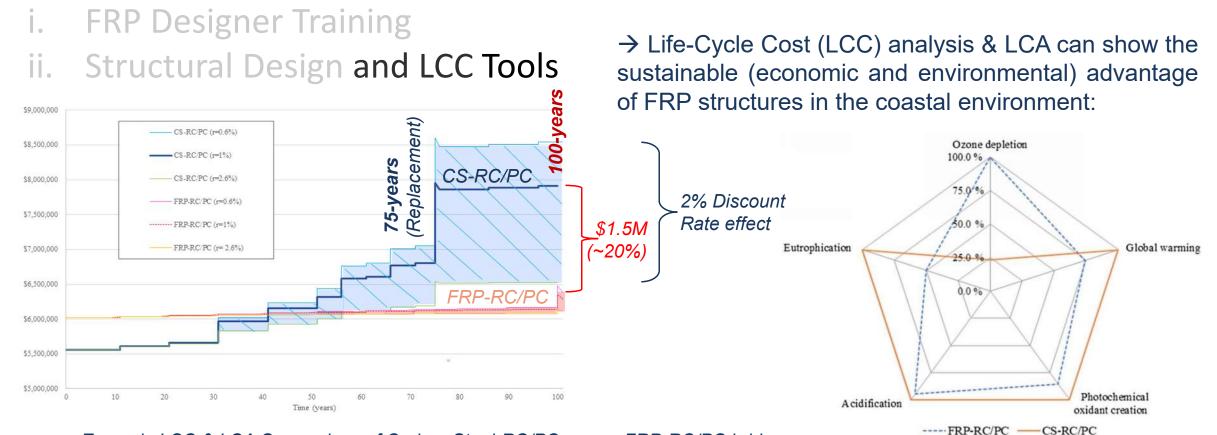
Adaption for FRP analysis or design enhancements:

- FBMP (BSI) added Jan. 2021 (see <u>newsletter</u>)
- DeepEx (Deep Excavation, LLC)
- FRPpro[™] emerging tools
- Michigan DOT/LTU CFRP-Beam Design Mathcad: <u>https://mdotjboss.state.mi.us/SpecProv/trainingmaterials.htm</u> (also see TRB Webinar Dec 3, 2019)

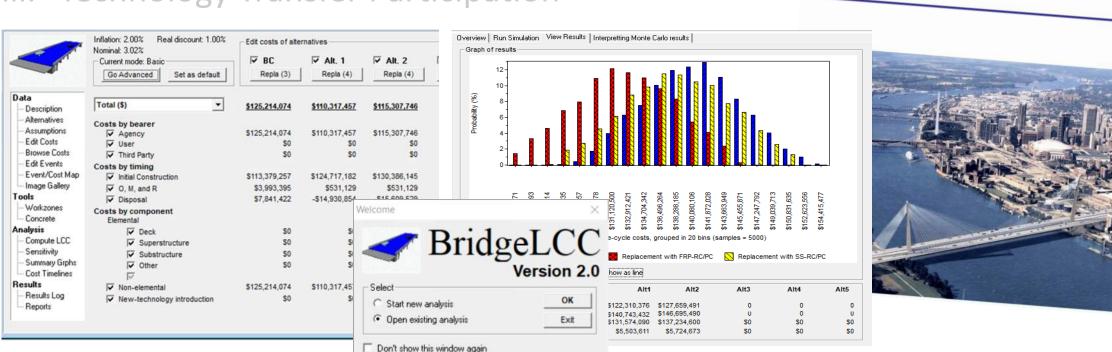
FRPpro™ Manufacturer Private Design Bundle



 99.95 k
 93.95 k
 <t


-2 -1 0 1

- i. FRP Designer Training
- ii. Structural Design and LCC Tools
- iii. Technology Transfer Participation


Charts: Cadenazzi, T., Dotelli, G., Rossini, M., Nolan, S., and A. Nanni. (2019). Cost and Environmental Analyses of Reinforcement Alternatives for a Concrete Bridge. Structure and Infrastructure Engineering.

Example LCC & LCA Comparison of Carbon Steel-RC/PC verses FRP-RC/PC bridge (adapted from Cadenazzi et al. 2019)

- FRP Designer Training
- ii. Structural Design and LCC Tools

iii. Technology Transfer Participation

Advancements in FRP composite usage for Highway Infrastructure in Florida

NIST GCR 03-853

Office of Applied Economics

Gaithersburg, MD 20899

Building and Fire Research Laboratory

U.S. Department of Commerce Technology Administration

BridgeLCC 2.0 Users Manual

Mark A. Ehlen

lational Institute of Standards and Technology

Life-Cycle Costing Software for the Preliminary Design of Bridges

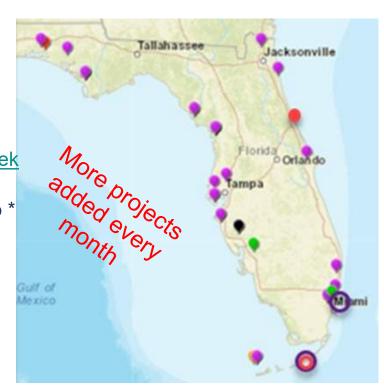
iii. Technology Transfer Participation:

- 1. Research & Bridge Code Development: TRB AKB30 & AASHTO COBS T-6 & T-10
 - GFRP-RC Bridge Guide Spec 2nd Edition: 2018 Task team participation with UM and FDOT staff.
- 2. National Training AASHTO COBS T-6 & TRB ABK10:
 - <u>CFRP-PC Design</u> Under NCHRP 20-44 program for report implementation assistance for CFRP-1, has FHWA & AASHTO T-6 support.
 - <u>GFRP-RC Design</u> not eligible under this program, so *State DOTs* and *FHWA* are working on it.
- 3. AASHTO Guide Specs Review Panels:
 - <u>NCHRP 12-121</u>: Developing Specs for FRP Auxiliary Reinf. in PC Girders. (2020-2022)
- 4. CAMX
 - 2016, 2017, 2018, 2019, 2020 (Featured Speaker/Panel)
- 5. International:
 - International Workshop on GFRP Bars for Concrete Structures (2017, 2019, 2021)
 - Lyon (FR) LMC²/AFGC GFRP-RC workshop (2019)
 - International Bridge Conference (2018 FRP Workshop)

- 6. TRB Annual Meetings:
 - Committee Meeting participation AFF30, AFF80
 - FRP Workshops: 2019 & 2020
 - Technical Sessions: <u>2018</u>, <u>2019</u>, & 2021
- 7. TRB 2019 Webinar <u>Advanced Structural Materials</u> for Concrete Bridges:
 - UHPC, HSSS/CFRP-PC & GFRP-RC (Dec. 3, 2019)
- 8. ACI coordination (informal)
 - 343 & 440 Committees (Bridge & FRP) 2020 Fall Convention
 - Strategic Development Council Forum 46 (2019)
- 9. State Level Engagement:
 - FRP Industry Workshops (2016, 2017, 2018, & 2020)
 - FTBA/Contractors (2017 & 2018)
 - FES/FICE (<u>2017</u>) & ASCE-FL (2018)
 - GFRP-RC & CFRP-PC Training (Aug & Sept 2020)

FRP RC/PC material systems used in Florida's Highway Bridges & Structures

Recent Completed Projects


Arthur Drive over Lynn Haven Bayou ** Bakers Haulover Cut Bulkhead Replacement * Cedar Key Bulkhead Rehab * Key West Bight Ferry Terminal Extension ** Halls River Bridge *** PortMiami Tunnel Retaining Walls South Maydell Dr over Palm River * SR-A1A Flagler Beach Seawall (Segment 3) * SR-5 (US-17) over Trout River Rehab ** SR-5 (US 41)/Morning Star and Sunset link-slabs SR-45 (US 41) over North Creek *** SR-312 over Matanzas River Rehab ** SR-520 over Indian River Bulkhead Rehab * Sunshine Skyway Seawall Rehab & Extension* UM Innovation Bridge *** UM Fate Bridge superstructure UM i-Dock *** US-1 over Cow Key Channel FSB's

Current Projects

4th St at Big Island Gap ** 40th Ave NE over Placido Bayou *** Barracuda Blvd over Canal Bradano ** Bayway Structure-E Seawall Cap * Bimini Dr over Duck Key Canal * CR30A over Western Lake *** Jupiter Federal Observation Platform *** NE 23rd Ave over Ibis Waterway *** S. Maydell Dr/Palm River Bulkhead * SR-A1A over Myrtle Creek and Simpson Creek SR-A1A N. Bridge Observation Platform *** SR 404 & 528 Indian & Banana Rivers Rehab * SR5 over Oyster Creek * SR 5/US 1 over Earman River Canal *** SR-30 over St Joe Inlet * SR-112/I-195 Westshore waterway * Village of North Bay Seawall * West Wilson St over Turkey Creek **

https://www.fdot.gov/structures /innovation/FRP.shtm

- * bulkhead/seawall only
- ** piling/substructure only
- ** complete bridge

FRP Structural Member (MS) systems used in Florida's Highway Bridges & Structures

Recent Completed Projects

Acosta Bridge fender replacement * Bayway Structure-E fender * US-331/Choctawhatchee Bay fender wales <u>Halls-River Bridge - Hybrid Composite Beams</u> Howard Frankland Bridge NB fender * <u>Ocala Water-Recharge Park Boardwalk</u> *** <u>Skyplex Blvd - Composite Arch Bridge</u> ** SR-A1A/Sisters Creek fender * SR-A1A/Blue Heron fender replacement * SR-3 over Barge Canal fender replacement * SR-44 over Indian River fender replacement *

Current & Future Projects

Bimini Dr over Duck Key Canal ? ** CR510 3-Sided Culvert-Bridge ? ** Marco Island Winter Berry Bridge I-10/Apalachicola River Fender replace * Jax. Main St Bridge Fender replace * SR-40 over Halifax River fender replacement * SR-292 Perdido Key/ICWW fender replacement * SR-520 over Indian River fender replacement * US-192 over Indian River fender replacement * SR-401 over Barge Canal fender replacement *

https://www.fdot.gov/structures /innovation/frpms

- * complete fender system
- ** FRP concrete filled arch
- *** FRP pedestrian structure

FRP Maintenance Repairs & Rehabilitation (MR&R) used on Florida's Highway Bridges & Structures

Recent Completed Projects

- Numerous since 1990's.
- We do not actively track

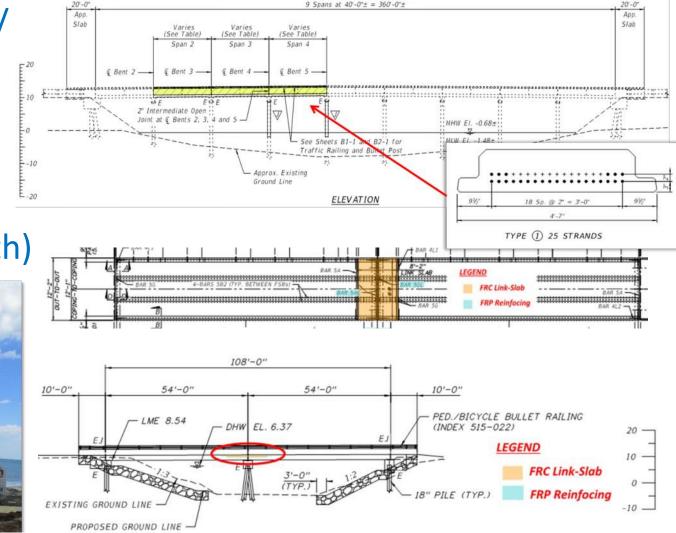
03/24/200

Current & Future Projects

- Identified during the biennial bridge inspection program typically corrosion related.
- Emergency repairs from overheight vehicle impacts

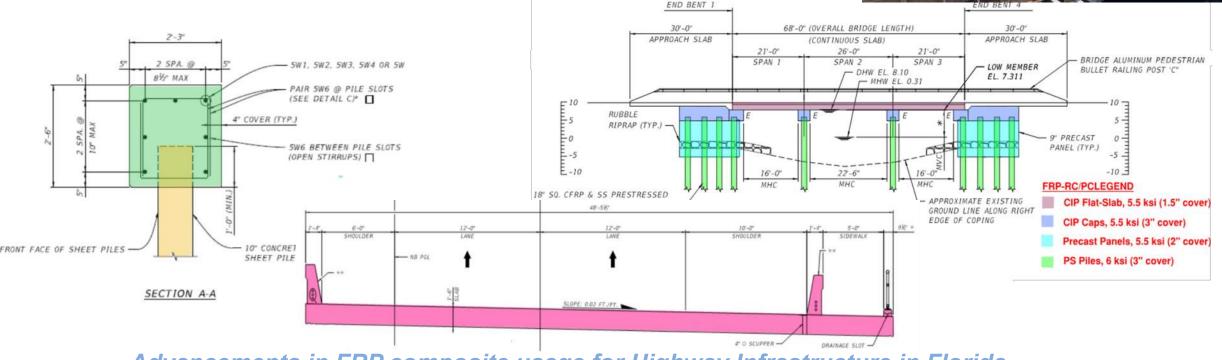
Figure 220-Corroded steel reinforcement in the north end of Girder 3-1

Figure 227-Girder damage from vehicle impact in July of 2001

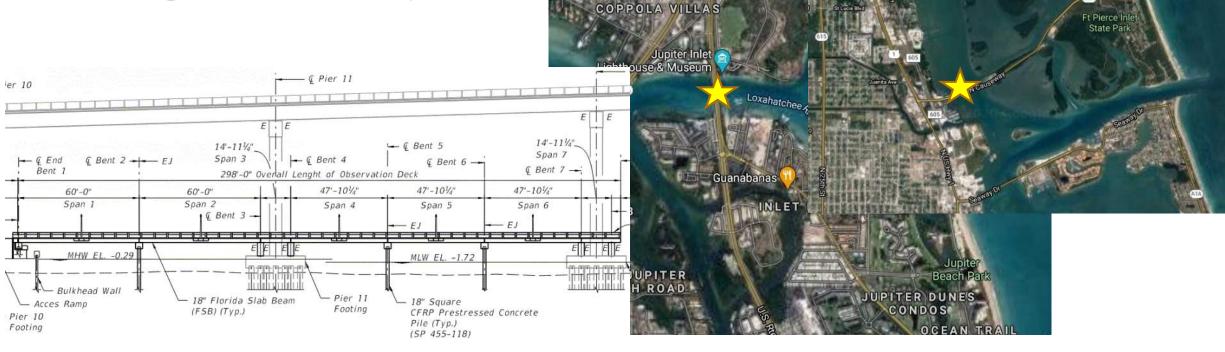

Figure 136—High tide inundation of (a) spans

Recently Completed Projects (RC/PC)

- i. Bridge Superstructures (US-1/ Cow Key, US-41 Link-Slabs)
- ii. Bridge Foundations (NE23rd Ave/Ibis)
- iii. Seawalls (SR-A1A@Flagler Beach, Sunshine Skyway South)



Projects Under Construction (RC/PC)


- i. Bridge Superstructures (US41/North Creek, SR-105 Link-Slabs, 40th Ave NE/Placido Bayou)
- ii. Bridge Foundations (NE23rd Ave, Maydell Dr.)
- iii. Seawalls (SR30/St Joe Bay Inlet, Pinellas Bayway E)

New Projects in Design (RC/PC & MS)

- i. Pedestrian Piers & Fenders (North Bridge, Jupiter Beach)
- ii. Prestressed Bridges (Earman Canal, Barracuda,
- iii. CIP Bridges (Turkey Creek)
- iv. Bridge Foundations (4th St ov

Advancements in FRP composite usage for Highway Infrastructure in Florida

The National Navy

EAL Museum

Fort Pierce

Inlet State Park

Fort Pierce Inlet State

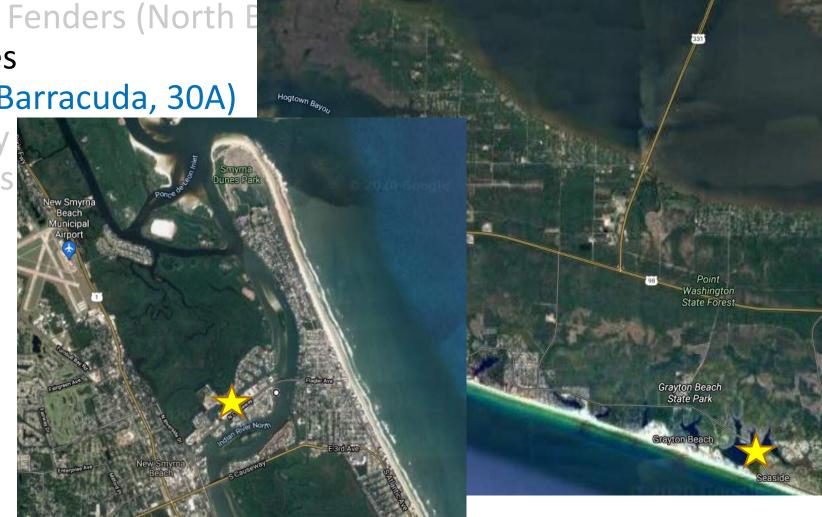
Recreation Area...

New Projects in Design (RC/PC)

- i. Pedestrian Piers & Fenders (North E
- ii. Prestressed Bridges

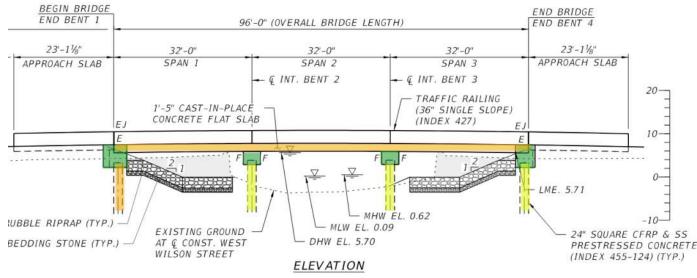
(Earman Canal, Barracuda, 30A)

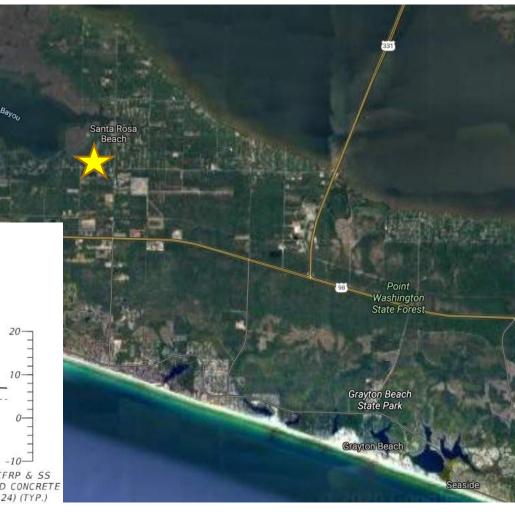
Portion of U.S. 1 bridge collapses in North Palm


The section side water, etc. and the section at the

spectors examine the U.S. I bridge over the C-17 Canal in No. of the next few days, con-

By Sarah Peters Daim Beach Pool StaTWiner NORTH ORLM BEACH— Yun failing cables caused a chanik of a bury U.S. I bridge just north of Northlake Bouleward to phange into the canab beneath it Wedneday morning, according to North Plan masch officials.


and the other, only one method lanes will be open, the "herehalt, Sar eight lane his "herehalt, Sar eight lane his "herehalt, Sar eight lane his sound will be dewalls of the herefare lane. This and here and here and here and lanes will be applied to the second department is working on an object of the second lanes will be applied to the department is working on an


ou Pearson said there he water, as many pass-Bridge continued o

New Projects in Design (RC/PC)

- i. Pedestrian Piers & Fenders (North E
- ii. Prestressed Bridges (Earman Canal,
- iii. CIP Bridges (Turkey Creek)
- iv. Bridge Foundations (4th St over Big

New Projects in Design (RC/PC)

- **Pedestrian Piers & Fenders (Nort** i.
- ii. Prestressed Bridges (Earman Car
- iii. CIP Bridges (Turkey Creek)

87'-8"

SPAN 1

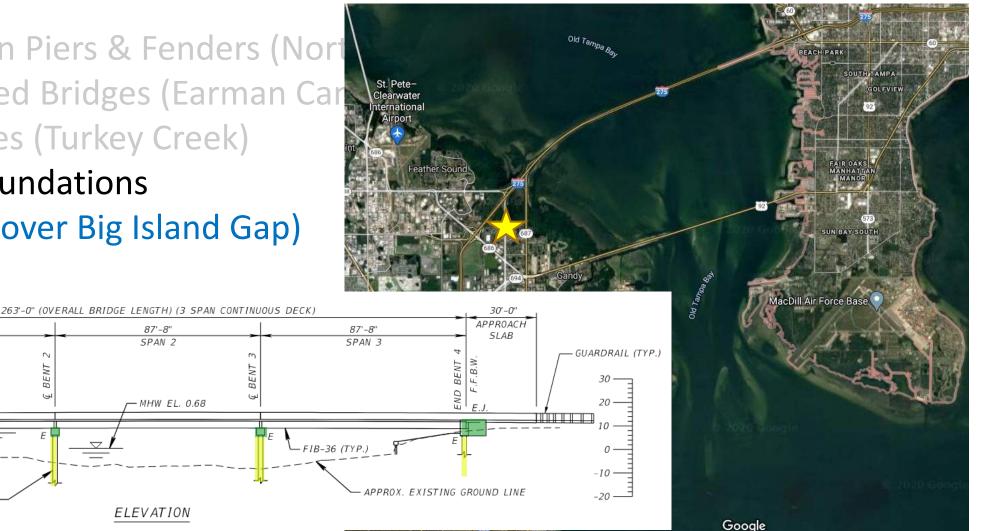
24" SO. PREST CONC. PILE (TYP.)

DHW EL. 7.20 -

30'-0"

APPROACE

SLAB


iv. Bridge Foundations (4th St over Big Island Gap)

87'-8"

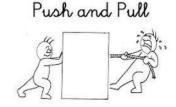
SPAN 2

ELEVATION

MHW EL. 0.68

Lessons Learned from the Real World

- i. Designer Issues
 - Lack of designer training, software tools, and national consensus design codes.
- ii. Material & Testing Issues
 - Costs for FRP rebar supply to public agencies are typically higher since no centralized certification standards for manufacturers, so additional testing and approvals are invoked by individual agencies.


iii. Constructability Issue

- 1. Unit costs for FRP rebar are very high for small quantities due to the project testing requirements.
- 2. Many construction contractors do not understand the lead times involved for FRP rebar.
- 3. Higher modulus of elasticity can improve competitiveness of GFRP vs. other corrosion-resistant solutions.
- 4. Stirrup bends and closed shapes or multiple bends still not standardized.
- 5. Tie-wire (plastic ties are slower, more expensive, and less secure)
- 6. Coupling of bars for phased construction is essential for broader deployment or will rely on SS solutions.
- 7. Adhesive anchors are often needed, but not codified for FRP rebar. Field proof testing/gripping is a challenge, especially for bent bars.
- 8. Shear reinforcing requires much closer spacings and often multiple legs overlapping causing rebar congestion
- 9. Non-metallic lifting devices for heavy civil components are not available
- 10. Replacement of easily damaged bars in the field is a common need

Forecasting the Future ???

TRANSITION

President-Elect Vice President-Elect Nominees and Appointees

new Federal "Push Factor"

https://buildbackbetter.gov/priorities/

President-elect Biden is working to make far-reaching investments in:

- Infrastructure: Create millions of good, union jobs rebuilding
 America's crumbling infrastructure from roads and bridges to green
 spaces and water systems to electricity grids and universal broadband
 to lay a new foundation for sustainable growth, compete in the global
 economy, withstand the impacts of climate change, and improve
 public health, including access to clean air and clean water.
- Innovation: Drive dramatic cost reductions in critical clean energy technologies, including battery storage, negative emissions technologies, the next generation of building materials, renewable hydrogen, and advanced nuclear and rapidly commercialize them, ensuring that those new technologies are made in America.

nfrastructure Needs

- Industry "Push Factors"
 - Closing the infrastructure Gap: Shared goal of reducing infrastructure life cycle costs by 50% by 2025
 - Sustainability

SE

STRUCTURAL

ENGINEERING

- State/Owner "Pull Factors"
 - **Reducing Asset Management Risk:** limit need for corrosion related repairs, MOT, etc.
 - Benefits from Enlarging the Market: increase supply chain security, regional manufacturing opportunity, etc.

QUESTIONS ?

Contact Information:

Steven Nolan, P.E.

Senior Structures Design Engineer

Florida Department of Transportation

(850) 414-4272 | <u>steven.nolan@dot.state.fl,us</u>

Website: <u>https://www.fdot.gov/design/Innovation/</u>

