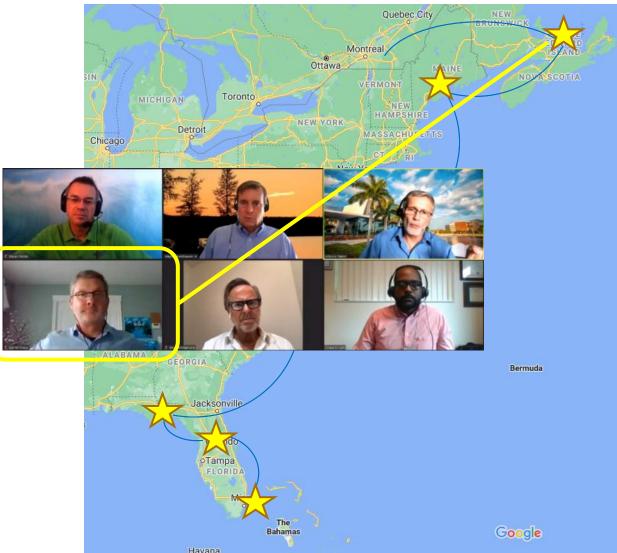


COMBINED STRENGTH. UNSURPASSED INNOVATION

CAMX2020 Featured Panel – Infrastructure "Building Bridges Along the Atlantic"

Wednesday, September 23, 2020


Description: Recent bridge design and construction projects will be highlight showing the willingness of transportation agencies along the east coast of North America to embrace the use of FRP for more than just rehabilitation and strengthening. With a focus on improved Life Cycle Cost and reduced maintenance liability this panel will discuss the needs of the infrastructure community to integrate Composites reliably and economically into their business practices particularly for concrete structures.

September 21-24, 2020 / www.theCAMX.org

OUTLINE

- Moderator: Antonio Nanni, PhD. PE. (University of Miami)
- Speaker 1: Darrell Evans, PE. (*PEI Dept.* of Transportation, Infrastructure & Energy)
- Speaker 2: Wayne Frankhauser Jr., PE (Maine Dept. of Transportation)
- Speaker 3: Steven Nolan, PE. (Florida Dept. of Transportation)
- Speaker 4: Chase Knight, PhD. PE. (Florida Dept. of Transportation)
- Speaker 5: Steve McNamara, (ANZAC CONTRACTORS, INC.)

Building Bridges Along the Atlantic

Using ACM's for Internal Reinforcement in Prince Edward Island, Canada

Darrell Evans, P.Eng. A/Asst. Director, Capital Projects PEI Dept. of Transportation, Infrastructure & Energy

September 21-24, 2020 / www.theCAMX.org

Darrell J. Evans, P.Eng.

- Graduate of the Technical University of Nova Scotia (TUNS) Class of '95.
- Private Sector for 5 years (consulting).
- Public sector for 20 years.
- Transportation structures main focus.
- Instrumental in application of ACM's for transportation infrastructure in PEI.
- Responsible for asset management within PEI.

Prince Edward Island, Canada

- Here we are on the east coast of Canada.
- Smallest Province.
- 5660 km² (2190 mi²) of land area
- 5600 km (3480 mi) natural waterways
- 5600 km of roadway network.

Structures Map

- 1400 "structures"
- 289 bridges
- 1111 buried type.

Island Definition

- Surrounded by salt water (about 34 ppt)
- Florida hovers around 36 ppt

Creates some Issues

Seasonal variations

- Four Seasons
 - Almost Winter
 - Winter
 - Still Winter, and
 - Construction

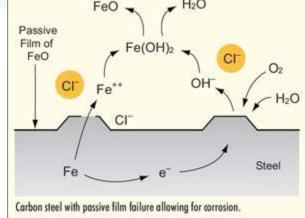
- Or, in layman's speak:
 Fall
 - Winter
 - Spring
 - Summer

Fantastic Summer (Construction)

- Up to 30° C (86° F)
- Humidex up to 40° C (104 ° F)

Fantastic Winter Season too!

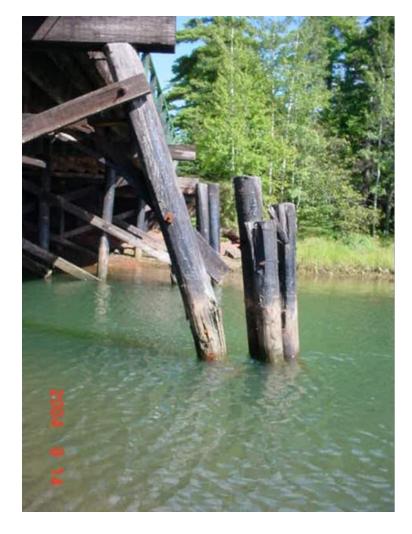
• This is 2015


- Total accumulation of 4.5 metres (≈ 15 ft.)
- Down to 20° C (- 4° F)
- Wind chill down to 40° C (° F)

Winter Maintenance

- Salt.
- Salt brine, salt pellets, salt/sand blend.
- Salt, salt, salt (NaCI).

Leads to more issues.



Use of GFRP in TIE's Infrastructure

- Began in 2002 using GFRP wraps on timber piles to extend the service life of our timber bridge infrastructure.
- To date, over 20 bridge rehabilitations conducted in this fashion.
- We will continue to use this method of repairs as half of our bridge inventory is timber.
- Also used in rehab of AASHTO PCC girder (shear strengthening).

Use of GFRP as Primary Reinforcement

- We were invited to sit on a national committee on ACM's in 2004.
- During this exposure, we developed an interest in GFRP reinforcement.
- Test results seemed very positive based on samples taken from various locations across Canada, with differing applications.
- Initial costs appeared somewhat high; but, should be reviewed against life cycle costing.
- Philosophy was to try it, see how the design and construction community reacts to new methods and monitor over the long term.

Structures with GFRP as Primary Reinforcement

Bridge	No. of Spans	Super structure	Horiz. Align.	Total Length (m)	Ft.
Monatgue Bridge	2	Steel Plate Girder	Curved	60	197
Clarks Mill	1	Steel Plate Girder	Curved	43	141
Montrose Bridge	1	Steel Box Girder	Curved	52	171
Victoria Bridge	1	Steel Plate Girder	Straight	33	108
Kildare Bridge	3	PCC NEBT Girder	Straight	57	187
West River	1	Steel Plate Girder	Straight	48	157
Oak Drive O/P	4	AASHTO Type III	Straight	59	194
Darnley Bridge	4	PCC NEBT Girder	Straight	137	449
Ross' Corner	1	Steel Box Girder	Curved	47	154
St. Peter's	1	PCC NEBT Girder	Straight	28	92
Cardigan	1	Pre-Cast Box Girder	Straight	24	79
Marie	1	PCC NEBT Girder	Skewed	26	85
Huntley	1	PCC NEXT Girder	Skewed	20	66
North Lake	3	PCC NEBT Girder	Curved and Skewed	75	246
Souris	4	PCC NEBT Girder	Straight	128	420
Cornwall Rd O/P	1	PCC NEBT Girder	Skewed	33	108
Clyde River	2	Steel Box Girder	Straight	132	433
Bannockburn Rd. O/P	1	PCC NEBT Girder	Curved and Skewed	35	115
New Haven Interchange	1	PCC NEBT Girder	Skewed	35	115
Hunter River	1	PCC Voided Slab	Straight	15	49
		TOTAL DECK LENGTH		1087	3566

- Shaded areas represent deck and substructure.
- All others are just deck. T&B
- Represents about 7 % of bridge inventory.
- Plan on another 10 structures within the next 4 years.
- Green shaded is full-depth pre-cast deck post-tensioned together (albeit with steel).
- Orange is using GFRP ties for the formworks.

How much GFRP can we stuff into a bridge?

Can't use it everywhere.

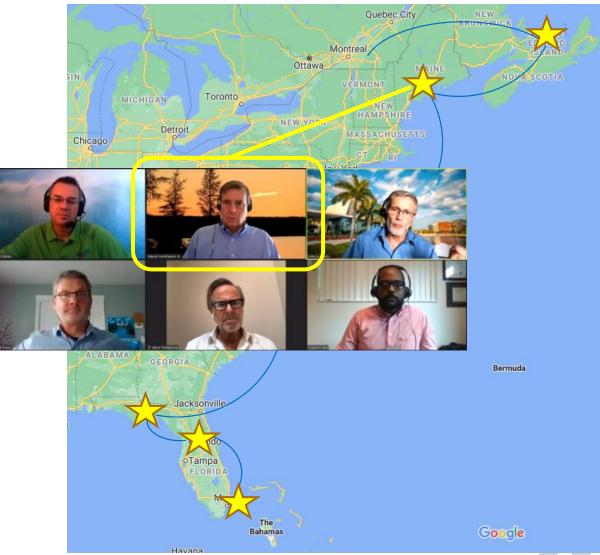
- Recognize that it doesn't fit all scenarios.
- Pre-cast arches for example, use WWM which they can bend into any radius they require.
- Timber bridges (why bother)
- Retrofits or extensions.
- Also, where we require ductility (Diaphragms)

A NEW CAMX FOR A NEW TIME

Issues

- Designer inexperience (know your material detailing code limitations).
- Contractor inexperience (know your limitations placement and cutting- UV degradation).
- Supplier resources (engineering and technical support for the end user competitiveness).
- Repairs due to external damage.
- End of life disposal (sustainability)
- These are all solvable.

Thank you!


A NEW CAMX FOR A NEW TIME

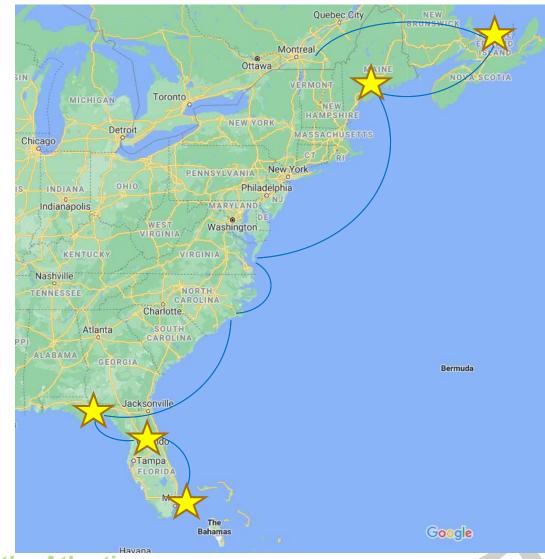
OUTLINE

- Moderator: Antonio Nanni, PhD. PE. (University of Miami)
- Speaker 1: Darrell Evans, PE. (*PEI Dept.* of Transportation, Infrastructure & Energy)
- Speaker 2: Wayne Frankhauser Jr., PE (Maine Dept. of Transportation)
- Speaker 3: Steven Nolan, PE. (Florida Dept. of Transportation)
- Speaker 4: Chase Knight, PhD. PE. (Florida Dept. of Transportation)
- Speaker 5: Steve McNamara, (ANZAC CONTRACTORS, INC.)

Building Bridges Along the Atlantic

Durable Bridges – An Owner's Perspective

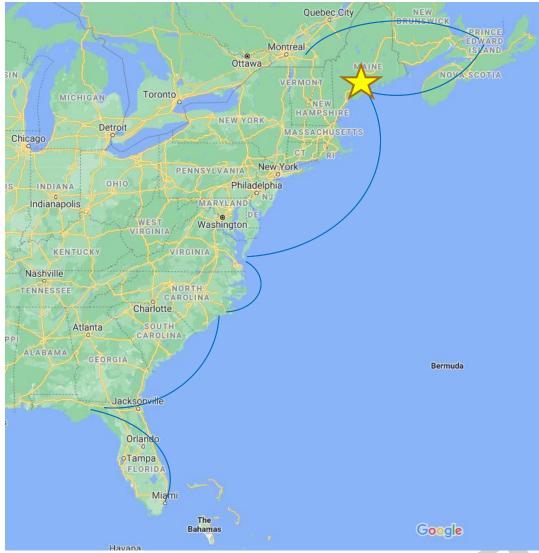
Wayne Frankhauser, PE Bridge Program Manager Maine Department of Transportation


September 21-24, 2020 / www.theCAMX.org

OUTLINE

1. Building better bridges

2. FRP solutions


3. Challenges to the widespread use of composites

Building Bridges Along the Atlantic

Background

- MaineDOT owns and manages 2,750 bridges and minor spans
- 2020-21-22 Work Plan
 - 148 Bridge Projects Estimated Cost: \$545 million
 - Unmet need of \$67 million per year to maintain bridges in good condition
- Can't build our way out need to focus on preservation and building longer lasting bridges
- MaineDOT has been using composites for nearly 20 years
- Strong support from the UMaine Advanced Structures and Composites Center and the composite industry

Building Bridges Along the Atlantic

Building Better Bridges

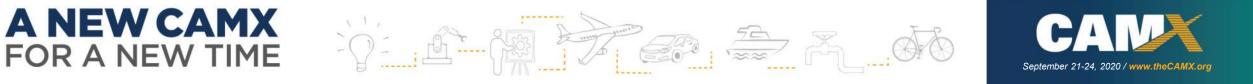
Harsh conditions cause reoccurring deterioration – Coastal environment, deicing chemicals, and freeze-thaw cycles.

- Piers deteriorate in splash zone and from leaky joints
- Decks deteriorate and spall
- Backwalls and bridge seats crumble
- Bridge bearings freeze up
- Bridge drains corrode

A NEW CAMX

FOR A NEW TIME

Painted steel beams rust and are expensive to paint



Building Better Bridges

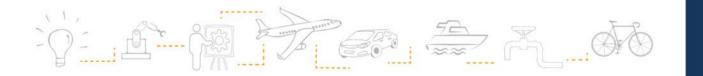
Can we do better?

- Better maintenance and preservation
- Better bridge detailing and construction practices
- Bridge type selection
- The use corrosion resistant materials

Some of these solutions will have a higher upfront costs

FRP Bridge Systems

- Composite Arch Bridge System
- HC Beams
- CT Girder System

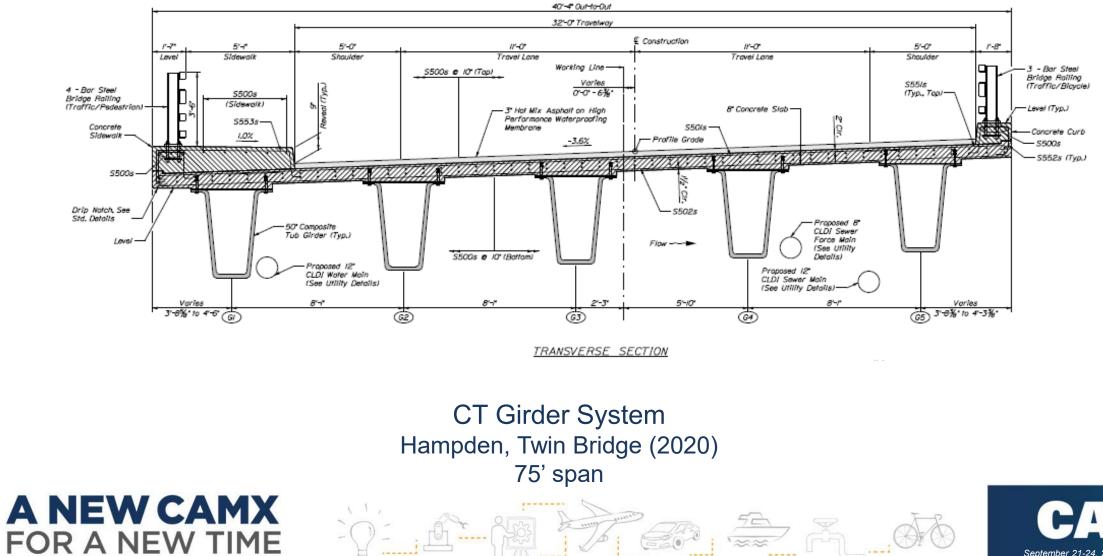

A NEW CAMX

FOR A NEW TIME

Composite Arch System

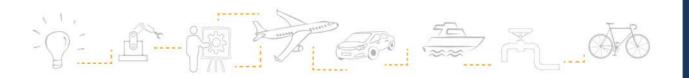
on the Caribou Connector (2011) 54' 2" span x 12' rise Standard practice to include as an option on projects where appropriate





HC Beams Boothbay, Barters Island Bridge (2012) 8 spans, 540' long

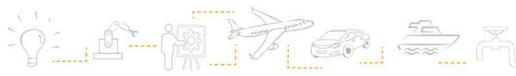
CT Girder System


GFRP Reinforcing

- MaineDOT has used nearly 500,000 LF of GFRP in the last 3 years
- Standard practice to use GFRP straight bars, and stainless bent bars, in our bridge decks
- Average cost for GFRP close to black bar

A NEW CAMX

FOR A NEW TIME



Composite Drains

Standard practice for new bridges

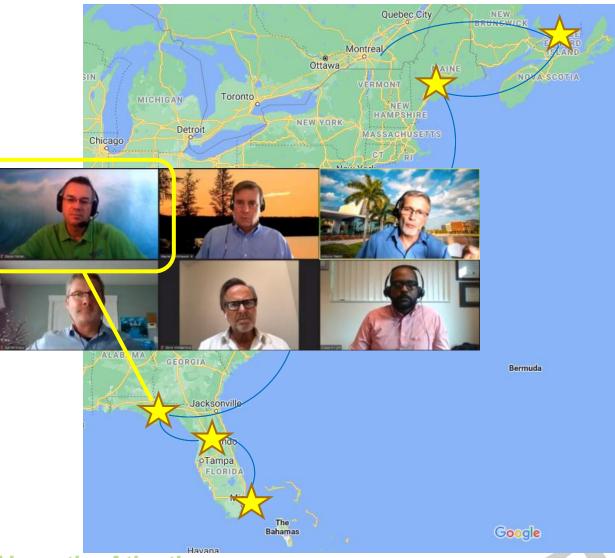
FRP Solutions

FRP Pile Wrap

York, Rices Bridge Repair of the epoxy coated pipe pile bent piers built in 2005

Other FRP Applications

- FRP pile
- FRP culvert invert lining
- FRP fenders
- FRP fairing
- CFCC prestressing and post-tensioning
- Carbon fiber strand in cable stay


Challenges

- Education
- Specifications
- Industry support

OUTLINE

- Moderator: Antonio Nanni, PhD. PE. (University of Miami)
- Speaker 1: Darrell Evans, PE. (*PEI Dept.* of Transportation, Infrastructure & Energy)
- Speaker 2: Wayne Frankhauser Jr., PE (Maine Dept. of Transportation)
- Speaker 3: Steven Nolan, PE. (Florida Dept. of Transportation)
- Speaker 4: Chase Knight, PhD. PE. (Florida Dept. of Transportation)
- Speaker 5: Steve McNamara, (ANZAC CONTRACTORS, INC.)

INFRASTRUCTURE FEATURED PANEL DISCUSSION

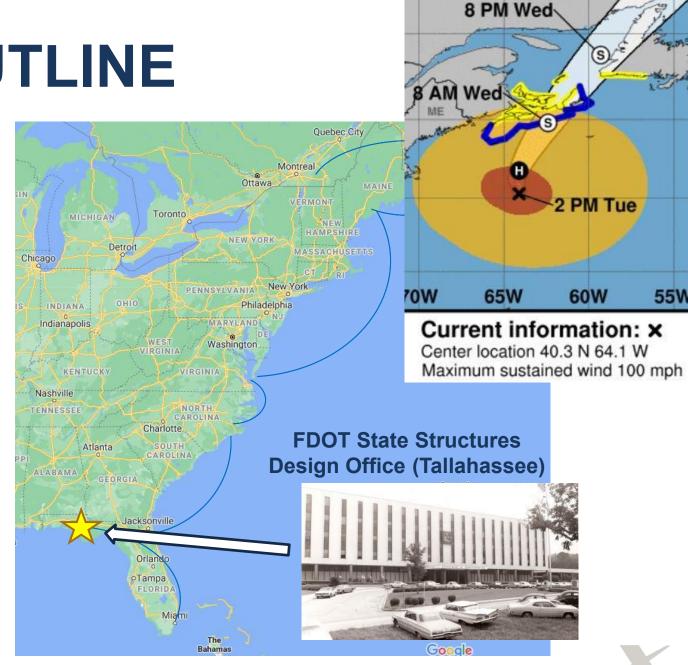
Wednesday, September 23, 2020 2:25 pm – 3:40 pm EDT

Building Bridges Along the Atlantic - A Florida Structural Perspective

Steven Nolan, P.E.

Senior Structures Design Engineer

Lead: Advanced Materials for Structural Durability & Resiliency



September 21-24, 2020 / www.theCAMX.org

OUTLINE

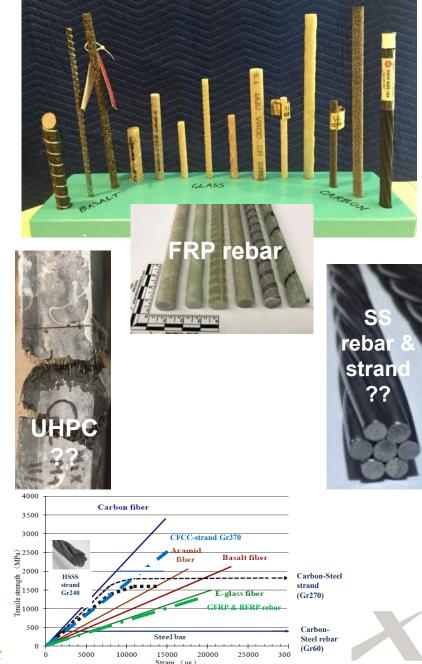
- 1. What are the Needs?
- 2. What are our Options?
- 3. What are the Benefits?
- 4. What are some **Challenges that need** Solving?

What Are the Needs ?

- Florida maintains over 166 million sq.ft. of bridge area ¹
- Florida has more than 4,000 miles seawall-bulkheads²

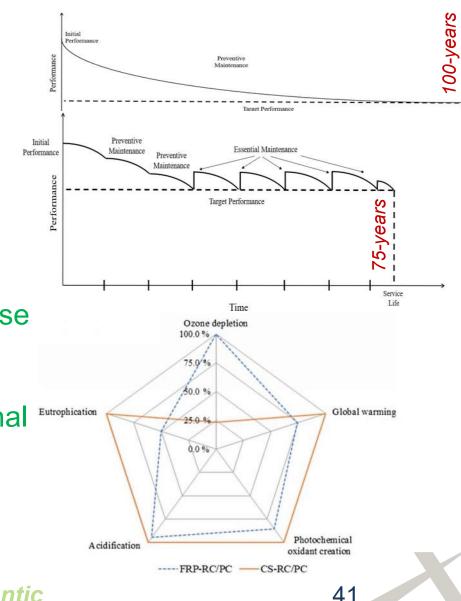
abs/10.1890/150065

			FDOT Brid	ge Deck A	rea (Squa	are Feet)			
Sant			lefter and	Distr	ict		-		
	D1	D2	D3	D4	D5	D6	D7	Turnpike	Tota
>1930's	59,278	343,697	288,979	92,308	77,762	258,464	153,377	0	1,273,865
1940's	171,558	334,093	165,977	18,231	20,248	98,057	27,114	0	835,279
1950's	879,478	1,807,266	765,387	435,327	567,212	1,496,850	1,357,430	597,192	7,906,14
1960's	1,143,661	5,412,125	1,095,280	1,089,510	3,335,514	4,024,420	1,924,386	749,843	18,774,739
1970's	2,525,123	6,050,066	4,349,136	4,223,189	1,382,828	2,116,673	3,849,713	2,055,573	26,552,302
1980's	3,705,331	2,427,726	2,593,652	6,797,929	1,099,028	4,754,463	5,849,264	1,038,778	28,266,170
1990's	1,872,971	2,708,191	5,284,785	3,201,458	2,338,915	1,518,442	3,287,262	2,926,232	23,138,256
2000's	2,934,733	5,338,688	4,884,453	3,619,007	3,303,165	1,347,235	4,196,084	1,802,460	27,425,825
2010's	766,709	3,027,594	2,873,274	0	2,828,151	1,442,905	2,935,326	619,216	14,493,176
Total	14,058,842	27,449,445	22,300,924	19,476,959	14,952,823	17,057,510	23,579,955	9,789,294	148,665,751

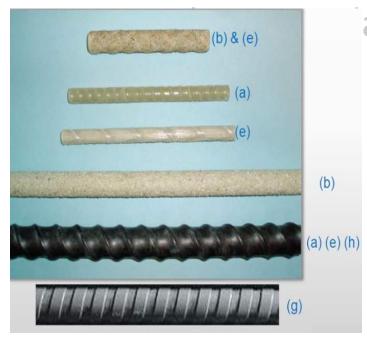

Seven Mile Bridge "New" and Old (Florida Keys) Jupiter (FL) WebTable 3. Shoreline hardening and population statistics by state (3) Hard Hard sheltered Sheltered sheltered oben Oben oben Hard shore shore shore shore shore shore shore shore (km) (km) (%) (km) (km) (km) (km) (km) Atlantic Connecticut 477 1907 477 1907 2163 292 2208 Delaware 287 1982 29 54 54 DC 29 53 1938 Florida 2694 11 365 2752 11 992 6340 649 Alabama 356 2606 26 383 Gandy Blvd. seawall (Tampa Bay) Cow Key Channel 1976 & 1983 Bridge Inventory - 2020 Annual Report Courtney Campbell Causeway Conclusion (1) FDOT Bridge Inventory - 2020 Annual Report (2) Estimates from Gittman Florida's bridges are generally in good condition, with those maintained by the FDOT in better condition than those et al. (2015) maintained by local governments or others. The most serious threat to bridges in Florida is the corrosion of steel rein-(3) Gittman et al. (2015) forced concrete substructures in coastal regions. Much has been learned in recent years about corrosion in marine environments, affecting material specifications and design practices that helps new bridges built today. However, the older https://esajournals.onli bridges in the coastal regions are beginning to require careful evaluation and extensive corrective actions. On-going renelibrary.wiley.com/doi/ 39

What are our Options ?

- 1. Glass & Basalt FRP rebar for concrete structures
- 2. Carbon FRP strand and spirals for prestressed members
- 3. Pultruded, Wound & Molded FRP Structural Components
- 4. FRP Laminates and Wraps for rehabilitation & strengthening



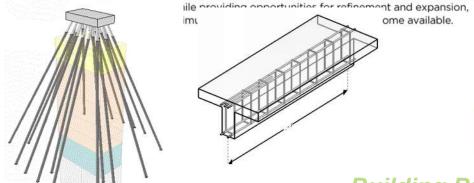
Building Bridges Along the Atlantic


What Are the Benefits ?

- 1. Reduced repair & rehabilitation
 - No corrosion
- 2. Longer asset life and replacement frequency
- 3. Potential reuse of foundations
- 4. Potential for widening in future.
- 5. Lighter weight materials
 - Worker safety
 - Strengthening of existing structures or decrease design loads
- 6. Sustainability benefits
 - Materials have improved LCA over conventional Europering
 - Reduce cement content needed or even geopolymer low alkalinity concretes

What Are the Challenges that need Solving ?

- Connections Coupling, Anchoring, Lifting Devices
- Bent bars Consistency, Scaling, & Performance
- Supply chain efficiency & Contractor expectations



What Are some Challenges that need Solving ?

- Connections Coupling, Anchoring
- Bent bars Consistency, Scaling, & P
- Supply chain efficiency & Contractor
- LCC Policy, Standards, & Design tools

GUIDE SPECIFICATION FOR SERVICE LIFE DESIGN OF HIGHWAY BRIDGES, 1st EDITION Item Code: HBSLD-1

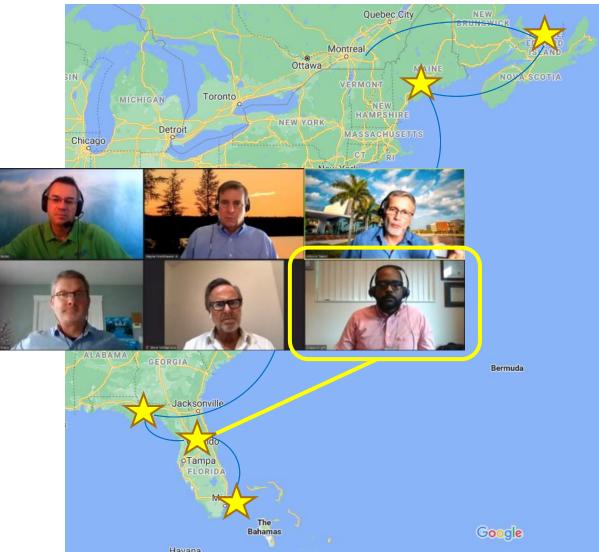
This guide specification is intended to offer design recommendations for agencies wishing to implement service life design principles and detailing recommendations. It was developed to incorporate quantitative approaches, along with proven deemed-to-satisfy provisions, into a single comprehensive design design design the implementation on a national level. It also establishes

🔲 Don't show this window again

Published

Sept. 2020

Life-Cycle Design, Assessment, and Maintenance of Structures and Infrastructure Systems


performance indicators over the entire service life. ASCE strongly supports a change of design paradigm and proposed the use of Life-Cycle Cost Analysis in conjunction with the Grand Challenge of reducing life-cycle costs of civil infrastructure projects by 50% by 2025. Furthermore, research and implementa-

Building Bridges Along the Atlantic

Service Life Design of Highway Bridge

OUTLINE

- Moderator: Antonio Nanni, PhD. PE. (University of Miami)
- Speaker 1: Darrell Evans, PE. (*PEI Dept.* of Transportation, Infrastructure & Energy)
- Speaker 2: Wayne Frankhauser Jr., PE (Maine Dept. of Transportation)
- Speaker 3: Steven Nolan, PE. (Florida Dept. of Transportation)
- Speaker 4: Chase Knight, PhD. PE. (Florida Dept. of Transportation)
- Speaker 5: Steve McNamara, (ANZAC CONTRACTORS, INC.)

INFRASTRUCTURE FEATURED PANEL DISCUSSION

Wednesday, September 23, 2020 2:25 pm – 3:40 pm EDT

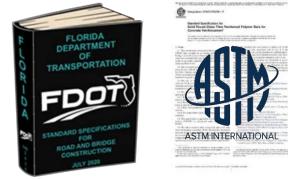
Building Bridges Along the Atlantic - A Florida Materials Perspective

Chase Knight, PhD, P.E. State Corrosion & Composite Materials Engineer

FDOT

September 21-24, 2020 / www.theCAMX.org

OUTLINE


- 1. How does FDOT approve specified FRP materials for infrastructure?
- 2. What are our Quality Control expectations?
- 3. How can a new/novel FRP product or material get approved for use?
- 4. What do we worry about?

How does FDOT approve specified FRP materials for infrastructure? – Uniform Approval Processes

- Limited U.S. consensus standards for FRP products • and recognized manufacturer certification programs:
 - Develop **FDOT Specifications** as an interim measure. Ι.
 - Develop FDOT Sampling and Test Methods (FSTMs), if ii. necessary.
- FRP Producer Approval or Product Approval (APL)? lacksquare
 - "widgets" go on the APL.
 - ii. Most FRP products require more nuanced review, approval and monitoring = Producer QC Plan Approval by FDOT.
 - iii. Similar to Prestressed Concrete Plant approval, but no inplant inspectors at this time - Auditing is an option -Industry or AASHTO certification program could be desirable.

Building Bridges Along the Atlantic

Topic No.: 675-000-000 Materials Manual Fiber Reinforced Polymer Composites

Effective: November, 8 2013 Revised: October 27, 2014 May 17, 2019

Volume II FIBER REINFORCED POLYMER COMPOSITES CHAPTER 10: Florida Test Methods Florida Sampling and Testing Methods V1-Section 10.1 [PDF-123KB] N/A CHAPTER 11: Steel and Miscellaneous Metal Products Section 11.1 Fabrication Inspection and Testing of V1-Section 11.1 V2-Section 11.1 Structural Metal Products Welding Procedure Specification Review and V2-Section 11.2 Section 11.2 Approval Process Section 11.3 N/A V2-Section 11.3 Advanced Ultrasonic Testine N/A V2-Section 11.4 Section 11.4 Computed Radiography Procedures Photostimulable Luminescence) V2-Section 11.5 Section 11.5 Pre-Approved Repair Procedures for Structural N/A Section 11.6 Pre-Approved Repair Procedures for Shop V2-Section 11.6 CHAPTER 12: Fiber Reinforced Polymer Composites V2-Section 12. Section 12.1 Fiber Reinforced Polymer Composites N/A

Section 12.1

Uniform Approval Processes


- Limited U.S. consensus standards for FRP products and recognized manufacturer certification programs:
 - i. Develop FDOT Specifications as an interim measure

or supplemental requirements, such as highlighted in the example below:

932-3 Fiber Reinforced Polymer (FRP) Reinforcing Bars.

932-3.1 General: Obtain FRP reinforcing bars from producers currently on the Department's Production Facility Listing. Producers seeking inclusion on the list shall meet the requirements of Section 105.

Use only solid, round, thermoset basalt fiber reinforced polymer (BFRP), glass fiber reinforced polymer (GFRP) or carbon fiber reinforced polymer (CFRP) reinforcing bars. Bars shall be manufactured using pultrusion, variations of pultrusion, or other suitable processes noted in the producer's Quality Control Plan, subject to the approval of the State Materials Office (SMO). For BFRP and CFRP bars only vinyl ester or epoxy resin systems are permitted. For GFRP, use only bars manufactured using vinyl ester resin systems and glass fibers classified as E-CR or R that meet the requirements of ASTM D578.

Measured Cross- Sectional Area		Within the range listed in Table 3-1	
Guaranteed Tensile		\geq Value listed in	
Load ^a	ASTM D7205	Table 3-1	10 ⁿ
Tensile Modulus		≥6,500 ksi for <mark>BFRP and</mark> GFRP	
Tensne Wodulus		≥18,000 ksi for CRFP	
Alkali Resistance with Load	ASTM D7705; Procedure B, set sustained load to 30% of value in Table 3-1; 3 months test duration, followed by tensile strength per ASTM D7205	≥ 70% Tensile strength retention	5 ^m
Transverse Shear Strength	ASTM D7617	>22 ksi	5 ⁿ
Horizontal Shear Strength ^p	ASTM D4475	>5.5 ksi	5 ⁿ
Bond Strength to Concrete, Block Pull-Out	ACI 440.3R, Method B.3 or ASTM D7913	>1.1 ksi	5 ^m
a – Guaranteed tensile load s n – Tests shall be conducted	hall be equal to the average test result from all thre for all bar sizes produced.	e lots minus three standard deviati	ons.

m – Tests shall be conducted for the smallest, median, and largest bar size produced.

- Only required for BFRP bars.

Uniform Approval Processes

• FRP Producer Approval = Materials Acceptance & Certification

https://mac.fdot.gov/smoreports Generated: 5/28/2019 6:08:38 PM FDOŤ Fiber Reinforced Polymer Production Facility Listing OWENS CORNING (BLYTHEWOOD, SC) **FRP-02** ffice. 5007 N.E. 39th Avenue, Gainesvi FRP-07 PULTRON (DUBAI) Owens Corning Infrastructure Solutions Company John Amonett Email: john.amonett@owenscoming.com Company: Pultron Composites Ltd Contact: Fax: (419) 819-9739 Phone Contact: Bogdan Patrascu Email: bogdan@pultron.com PULTRALL **FRP-06** Physical Address: (714) 880-9533 Fax: Phone: 1051 Jenkins Brothers Rd Company: Pultrall Inc Mailing Address: Physical Address: Blythewood, SC 29016 Email roxanne.fortier@pultrall.com Contact: ROXANNE FORTIER S404 Street S404 Street Building 10 Jebel Ali Free Zone South Phone (418) 335-320 FRP-12 Building 10 Jebel Ali Free Zone South TUF-BAR INC (EDMONTON CANADA) QC Plan Status: Quality C Physical Address: UNITED ARAB EMIRATES Company: Tuf-Bar Inc. **FRP-08** ATP #04 GFRP BAR 700 9eme rue Nord Thetford Mines nathan@tuf-bar.com Fmail #05 GERP BAR Contact: Nathan Sim QC Plan Status: Quali ATP Company: CANADA Phone: (780) 448-9338 Fax: #06 GFRP BAR #04 GFRP BAR a.giamundo@atp.sa.it Contact: Aniello Giamundo Email: QC Plan Status: Quali Physical Address: Mailing Address: #07 GFRP BAR #05 GFRP BAR Phone: (811) 948-7131 Fax: #08 GFRP BAR 5715-76 Avenue #03 GFRP BAR 5715-76 Avenue Physical Address: Mailing Address: #06 GFRP BAR #04 GFRP BAR CANADA CANADA via Campa 34 #08 GFRP BAR via Campa 34 #05 GFRP BAR ITAL Y ITALY Quality Control Plan ACCEPTED 3/19/2019 #06 GFRP BAR QC Plan Status: FRP-14 TUF-BAR INC (ONTARIO CANADA) Quality Company: #08 GFRP BAR #03 GFRP BAR Glass Fiber Reinforced Polymer Reinforcing for Concrete, #3 QC Plan Status: Tuf-Bar Inc. #04 GFRP BAR Glass Fiber Reinforced Polymer Reinforcing for Concrete, #4 #03 GFRP BAR jay@tufbarcanada.com Contact: Jay Christopher Email: #05 GFRP BAR Glass Fiber Reinforced Polymer Reinforcing for Concrete, #5 #04 GFRP BAR (519) 833-5050 Fax: Phone: #06 GFRP BAR Glass Fiber Reinforced Polymer Reinforcing for Concrete, #6 Mailing Address: #05 GFRP BAR Physical Address: #07 GFRP BAR Glass Fiber Reinforced Polymer Reinforcing for Concrete, #7 #06 GFRP BAR 7 Erin Park Dr 7 Erin Park Dr #08 GFRP BAR Glass Fiber Reinforced Polymer Reinforcing for Concrete, #8 #08 GFRP BAR CANADA CANADA

QC Plan Status: Quality Control Plan ACCEPTED 12/11/2017

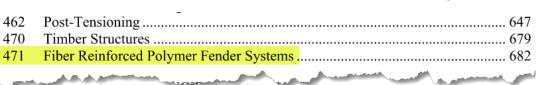
What are the Quality Control expectations? Uniform Approval Processes

Page

DIVISION I

GENERAL REQUIREMENTS AND COVENANTS

~	0	\sim	t 1	


1	Definitions and Terms	l
2	Proposal Requirements and Conditions	10
3	Award and Execution of Contract	16
4	Scope of the Work	20
5	Control of the Work	32
6	Control of Materials	52
7	Legal Requirements and Responsibility to the Public	57
	Prosecution and Progress	
9	Measurement and Payment	95
	-	

DIVISION II CONSTRUCTION DETAILS

STRUCTURES

	400	Concrete Structures	
	407	Three-Sided Precast Concrete Culvert	409
	410	Precast Concrete Box Culvert	416
	411	Epoxy Injection of Cracks in Concrete Structures	424
	413	Sealing Cracks and Concrete Structure Surfaces	427
	415	Reinforcing for Concrete	434
	416	Installation of Post-Installed Anchor Systems and Dowels	
		for Structural Applications in Concrete Elements	441
	425	Inlets, Manholes, and Junction Boxes	444
	430	Pipe Culverts	448
	431	Pipe Liner	
`	415	ural Plate Pipe of Pipe Arch Culverts	

 Standard FRP Construction and Material Specifications

DIVISION III MATERIALS

ACCESSORY MATERIALS FOR CONCRETE PAVEMENT AND CONCRETE STRUCTURES

931	Metal Accessory Materials for Concrete Pavement and Con-	ncrete Structures 1047
932	Nonmetallic Accessory Materials for Concrete Pavement.	
	and Concrete Structures	
933	Prestressing Strand and Bar	
934	Non-Shrink Grout	
	market and a second sec	
~~~~	me American provide the market	mun A & manuar
946	Cast Iron Pipe	
946 948	Cast Iron Pipe Optional Drainage Products and Liner Repair Systems	

49

### How can a new/novel FRP product or material get approved for use? – Uniform Approval Processes

- Unique product (widget) that fits a Department Need Innovative Products List (IPL)
  - <u>https://fdotwp1.dot.state.fl.us/ApprovedProductList/Specifications?IsDevSpec=True</u>
- Standard products (widgets) that the Department needs Approved Product List (APL)
  - <u>https://fdotwp1.dot.state.fl.us/ApprovedProductList/Specifications</u>
- Novel or Project Specific Need **Technical Special Provision** (**TSP**)
  - > Work with District Specs Office and Project Manager
- Materials/Construction Process that is not mature **Developmental Specification** 
  - <u>https://www.fdot.gov/programmanagement/otherfdotlinks/developmental/default.shtm</u>
- Standard Materials/Construction Process (institutionalized acceptance) FDOT Standard Specifications for Road and Bridge Construction (Specs)
  - https://www.fdot.gov/programmanagement/implemented/specbooks/default.shtm

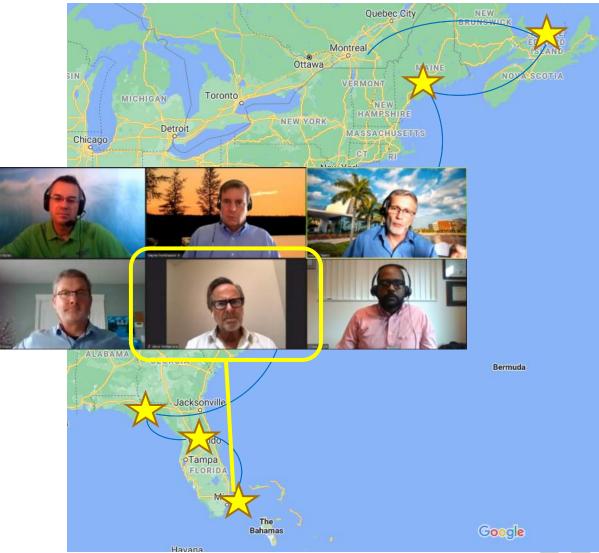
**Building Bridges Along the Atlantic** 

5

### What do we worry about? - CPR&T

- Consistency Creating a level "playing field" and setting clear expectations → uniform processes and standards.
- Predictability Mechanical and Durability →
  - Improvement can lead to more efficiency in design reduction factors with the same level of confidence.
- Repeatable/Reliability Builds confidence with owners, inspectors, contractors, and ultimately the public taxpayers → *can lead to reduced inspection and testing requirements.*
- Traceability When "stuff" happens, we need to be able to find out why, and where else this could be a problem. e.g. →
  - PT Grout "Chloride contamination (<u>2002-10</u>)", and then later "<u>Soft</u>".
  - Polymer adhesive-anchor creep failure from Boston Tunnel ceiling collapse



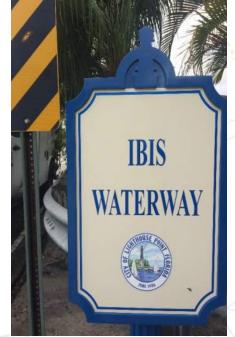



"You get what you test"



# OUTLINE

- Moderator: Antonio Nanni, PhD. PE. (University of Miami)
- Speaker 1: Darrell Evans, PE. (*PEI Dept.* of Transportation, Infrastructure & Energy)
- Speaker 2: Wayne Frankhauser Jr., PE (Maine Dept. of Transportation)
- Speaker 3: Steven Nolan, PE. (Florida Dept. of Transportation)
- Speaker 4: Chase Knight, PhD. PE. (Florida Dept. of Transportation)
- Speaker 5: Steve McNamara, (ANZAC CONTRACTORS, INC.)

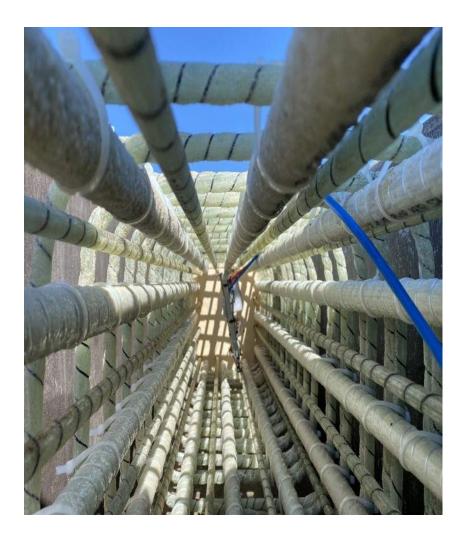



### N.E. 23rd Avenue Bridge [IBIS-Waterway] Prestressed GFRP-Piles & GFRP-RC Seawall

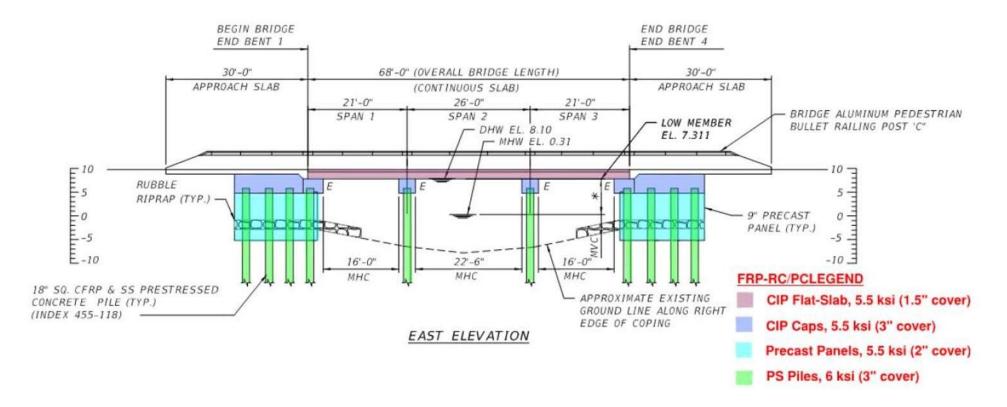
**Steven McNamara, C.G.C., C.U.C.** President, ANZAC Construction, Inc., Florida

Christian C. Steputat, P.E., C.G.C., LEED AP BD+C Ph.D. Candidate, University of Miami, Coral Gables, FL









September 21-24, 2020 / www.theCAMX.org

## **INNOVATIVE GFRP-BRIDGE CONCEPTS**

- 1. Prestressed and Driven GFRP-Piles with Monitoring.
- 2. GFRP-RC CIP End-Bents, Intermediate Bent-Caps and Bulkhead Caps.
- 3. First Soldier Pile Bulkhead-Seawall with GFRP-RC Precast Panels in Florida.



### **INNOVATION AND LAYOUT**



• First of its kind, currently under construction, GFRP-RC 3-Span continuous Flat-Slab Bridge and first Soldier-Pile Bulkhead-Seawall with GFRP-RC Precast-Panels, in the State of Florida, USA.



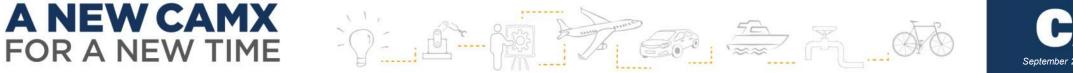
### **BRIDGE - REPLACEMENT VIA GFRP**

IBIS-Waterway Bridge replacement phase of project, in Lighthouse Point, Florida. Removal, Template-Construction and driving of Prestressed GFRP-RC Piles.



# A NEW CAMX






### **BRIDGE - PILE DRIVING PHASE**

The IBIS Waterway Bridge Pile-Driving included the driving of GFRP-RC Piles. Relative "hard" soil conditions and powerline locations challenged the driving.



# A NEW CAMX





### **BRIDGE - SEAWALL GFRP PANELS**

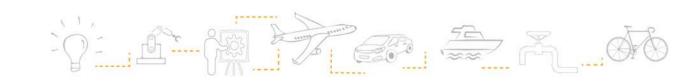


#### A NEW CAMX FOR A NEW TIME





### **INTERMEDIATE-BENTS**






IBIS-Waterway Bridge GFRP placement at Intermediate-Bents atop Prestressed GFRP-RC driven Piles.

Cage-Construction with GFRP bars is fast and efficient, due to lightweight and is also corrosion resistant.

#### A NEW CAMX FOR A NEW TIME





### **GFRP REINFORCED END-BENTS**



IBIS-Waterway Bridge GFRP placement at End-Bents atop Precast Seawall-Panels, and at Intermediate-Bents

#### A NEW CAMX FOR A NEW TIME







## **GFRP LESSONS LEARNED**

- Correct scheduling of FRP/GFRP/BFRP bar deliveries is critical
- Verify and check Shop-Drawings (Dimensions, Angles, Splices)
- For Structural Tie-Backs verify that slotted block-outs are designed for the corresponding angles of installation in both the vertical and horizontal plane (to easily accommodate the GFRP)
- Anticipate some bar-breakage and order some additional bars
- The lightweight and high strength of GFRP bars makes it easy to work with and improves installation efficiency by more than 52%
- The use of GFRP bars allows for less expensive Mix-Designs

# A NEW CAMX





## **CONCLUSIONS & RECOMMENDATIONS**

- There is a strong case for use of FRP/GFRP/BFRP in structural concrete exposed to corrosive environment
- Economics of FRP comparable to steel upfront and return on investment is higher on a life cycle cost analysis basis
- GFRP anisotropic and linear elastic up to failure
- Specifications and Design Guides exist
- Accessible design tools exist for design professionals
- Prestressed GFRP-RC Piles were successfully driven







### **IBIS-WATERWAY**



**A NEW CAMX** 

FOR A NEW TIME

·0: f







# THANK YOU FOR WATCHING



