

ASCE FLORIDA SECTION ANNUAL CONFERENCE

July 12-13th, 2018 St. Petersburg, FL

FDOT Fiber-Reinforced Polymer (FRP) initiatives for bridge structures

Steve Nolan, P.E. (State Structures Design Office)

FDOT FRP initiatives for bridge structures

ABSTRACT:

FDOT will present the latest developments for fiber-reinforced polymer composite materials for structural applications, primarily for use in bridges. Deployment of external FRP for retrofit, repair and strength restoration began in the 1990's. Application of internal FRP systems for new construction have been researched for at least this long, but practical implementation for bridges and related structures has been limited in Florida to several projects in the last few years. Adoption of FRP for transportation infrastructure has been accelerating nationally as the commercial options and competition expand, and the design guidelines and specifications mature. With the release of ASTM D7957, the update to the 2009 AASHTO LRFD Guide Specification for GFRP reinforced concrete, and the new AASHTO LRFD Guide Specification for CFRP Prestressed Concrete developed under NCHRP **Project 12-97**, the use of FRP for bridge applications is primed to accelerate significantly in the next few years. The demand for resilient, sustainable infrastructure is increasing beyond just the initial procurement cost. The significant benefits of non-corrosive structural systems with a longer maintenance-free service-life will be highlighted, and the FRP systems that can provide these feature will be identified. Several recently completed FDOT bridge projects will be exhibited, and the Department's efforts for broader FRP deployment under the "Invitation to Innovation" and other initiatives will be summarized.

Overview

1. A Brief History of FRP at FDOT 2. Highway Innovation and Incentive Programs 3. FRP Specifications 4. Specification Harmonization 5. Design Tools 6. Advancements 7. Example FRP Elements 8. Projects 9. FDOT Principles for Broader Deployment

History of FRP at FDOT

Photo Courtesy of Astaldi Construction Corp. – Halls River Bridge under construction (FDOT FRP-RC/PC & HCB Demonstration project), April 2017.

History of FRP at FDOT - Repair/Strengthening Operations

FDOT's Fiber-Reinforced Polymer Deployment Train

External FRP Laminate Repairs

1990's

Now considered routine practice for some applications

FDOT currently references ACI 440.2R-08 (with modifications); AASHTO Guide Spec. (2012) is also available.

FDOT

History of FRP at FDOT - Need for Corrosion Protection

Gandy Blvd. seawall,

(Tampa Bay)

Old St. George Island Bridge Piling

- FRP can increase Durability
- Extend maintenance-free Service-Life
- Mitigate long-term Risks

History of FRP at FDOT - Bridge Fender Systems

Fully implemented on FDOT projects.

FRP systems strongly recommended see **SDG 3.14** and ^{DS} Index 21930 or SP Index 415-030)

(Photos Courtesy of Creative Pultrusion)

History of FRP at FDOT – Carbon FRP-PC

History of FRP at FDOT – Carbon FRP-PC & Glass FRP-RC

History of FRP at FDOT – Composite Bridge Girders

History of FRP at FDOT – Composite Bridge Girders (cont.)

History of FRP at FDOT – Basalt FRP-RC

STIC Incentive Project – BFRP-RC Standardization

 Develop Standards & Specifications for basalt fiber-reinforced polymer (BFRP) bars for the internal reinforcement of structural concrete.

https://www.fhwa.dot.gov/innovation/stic/state_innovation.cfm

Highway Innovation and Incentive Programs

Highway Innovation and Incentive Programs

STIC Excellence Award Forward (April 2018):

"America's highway community faces significant challenges: an aging infrastructure, growing traffic volumes and limited staffing and funding resources. Widespread use of innovation and enhanced business processes is essential to meeting customer needs and increasing the efficiency of project delivery.

Initiatives such as *Every Day Counts*, the second *Strategic Highway Research Program (SHRP2)* Implementation Assistance Program, the *AASHTO Innovation Initiative*, and others are designed to promote innovations and support the highway community in putting them into practice. Whether through training, workshops, demonstrations, technical assistance or incentive funding, the result of these initiatives is rapid technology transfer and accelerated deployment of innovation across the nation..."

https://www.fhwa.dot.gov/innovation/stic/2018_stic_excellence_award.pdf

Highway Innovation and Incentive Programs

Every Day Counts (EDC):

FHWA: PBES → ABC, UHPC, *GRS-IBS*...

<u>Strategic Highway Research Program (SHRP2):</u> TRB, AASHTO & FHWA:

- Prefabricated Elements-PBES (<u>R04</u> Report & <u>Toolkit</u>)
- Service Life Design for Bridges (<u>R19A</u>)
- Service Limit State Design Guide Spec./Toolkit (<u>R19B</u>)

AASHTO Innovation Initiative (A.I.I):

AASHTO: Carbon Fiber-Reinforced Polymer Strands

What's in these Programs... involving FRP?

NCHRP:

<u>**Report 503**</u> (2003): Application of FRP Composites to the Highway Infrastructure

 Dr. Dennis Mertz (lead author) – "Lack of a clear signal of intent or encouragement from government agencies undermines FRP suppliers' confidence in the viability of a long-term market..."

<u>Synthesis 512</u> (2017): Use of Fiber-Reinforced Polymers in Highway Infrastructure

State-of-the-art review

<u>US Scan Team Report 13-03 (2017)</u>: Advances in FRP Composite Transportation Infrastructure

NCHRP 20-68A program

What's in these Programs... involving FRP?

Ideas Deserving of Exploratory Analysis (IDEA): NCHRP (TRB & AASHTO):

• Glass FRP Prestressing Strand (MILDGLASS-2018)

Innovative Bridge Research and Construction (IBRC):

FHWA (1998-2006): FRP Bridges are to be revisited and an update report on status issued;

Innovative Bridge Research and Deployment (IBRD):

FHWA (2006-2017): US 90 over Little River - PBES Bent Caps (used *SHRP2 R04 Toolkit* for guidance). FDOT since developed a Mathcad Design Program which includes GFRP-RC elements.

RESEARCH

DEA

Innovations Deserving

What else is there... (ASCE Grand Challenge)

 "Reduce the life cycle cost of infrastructure by 50 percent by 2025 and foster the optimization of infrastructure investments for society"

Together we can close the infrastructure gap!

www.ascegrandchallenge.com

What else is there... (nationally / internationally)

FDOT participation in related technical organizations:

- AASHTO Committee on Bridge and Structures T6 FRP (Member: William Potter)
- TRB AFF80 Structural Fiber Reinforced Polymers (Members: Potter, Fallaha & Nolan)
- ACMA Transportation Structures Council & FRP Rebar Manufacturers Council (liaisons → John Busel)
- ACI 440 (liaison \rightarrow Prof. Nanni)
- **Canadian Standards Association** (liaison → Prof. Benmokrane)
- fib Task Group 5.1 FRP Reinforcement for concrete structures (liaison → TBA)

What else is there... (locally) SAMTAG

Structural Advance Materials TAG mission:

 Advance the <u>safe</u> implementation and broad deployment of innovative structural materials through <u>advisement to the *Structures Technical*</u> <u>Advisory Group (TAG) and coordination with national and international</u> specification development organization representatives...

Members are to support *District Structures Design Engineers (DSDE)* make informed choices:

- 1 ~ Champion & 1 ~ Backup from each District Structures Office
- 2 ~ Consultants structures design community
- 2 ~ State Materials Office materials experts
- 2 ~ State SDO facilitators & coordinators
- 1 ~ Structures Research Center representative
 - ~ Friends of the TAG (Collaborators)

What else is there... (locally)

E-Updates | FL511 | Mobile | Site Mar Search FDOT

ANNUAL CONFERENCE

FDOT Invitation-to-Innovation (Design Innovation initiative)

FRP Reinforcing Bar & Strands: Basalt, Carbon & Glass FRP Rebar; Carbon FRP Prestressing

FDOT Research:

1/31/2018

3/1/2017

8/31/2015

- **Materials Research Program:**
- **Structures Research** Program:

Tensioning Application

Bridge Girder Alternatives for Extremely Aggressive Environments

Durability Evaluation of Florida's Fiber-Reinforced Polymer (FRP)

Use of Fiber Reinforced Polymer Composite Cable for Post-

Composite Reinforcement for Concrete Structures

				Home Ab	out FDOT Contact Us Map	s & Data Offices Peri	formance Projects
			Struct	ures Design			
			Structures Design / Design Innovation Fiber Reinforced Polymer Reinforcing				
			Fiber R Reinfor Overview Usage Res Design Crit Specificatic Standards Standards Producer O Projects Technology Contact	trictions / Parameters eria ms tuality Control Program (Transfer (T ²)			
Γ	7/31/2014	Degradation Assessment of Internal Continuous Fiber Reinforcement in Concrete Environment			A. El Safty	University of North Florida	BDK82-977- 05 Summary Report
\neg	6/30/2018	Performance Evaluation of GFRP Reinforcing Bars Embedded in Concrete Under Aggressive Environments			R. Kampmann	Florida State University	BDV30 977-18
	3/31/2018	Degradation Mechanisms and Service Life Estimation of FRP Concrete Reinforcements		A. El Safty	University of North Florida	BDV34 977-05	
Γ	4/16/2014	Investigation of Carbon Fiber Composite Cables (CFCC) in Prestressed Concrete Piles		M. Roddenberry, P. Mtenga	Florida State University	BDK83 977-17	
	11/30/1998	<u>Studies on Carbon F</u> <u>Concrete Bridge Colu</u> <u>Environment</u>	idies on Carbon FRP (CFRP) Prestressed ncrete Bridge Columns and Piles in Marine vironment		M Arockiasamy	Florida Atlantio University	c B-9076
	8/1/1995 Durability of CFRP Pretensioned Piles in Marin Environment Volume II		ioned Piles in Marine	R. Sen	University of South Florida	0510642	
Brown, Jeff E A U		Embry-Riddle Aeronautical University		Potter, William	BDV22 977-01		
Hamilton, Trey Ur		University of Flor	ida	Wagner, David	BDV31 977-01		
Mirmiran, Amir		Florida Internatio University	nal	Potter, William	BDV29 977-10	21	ASCE FLORIDA SECTION

What else is there... (locally)

FRP materials of most interest to FDOT (currently):

- Carbon FRP strands and laminates (PAN fiber with epoxy or vinyl-ester resin systems)
- Glass FRP reinforcing Bars (E-CR fiber with vinyl-ester resin systems);
- **Basalt FRP reinforcing bars** (melt fiber with epoxy resin systems).

Typical stress-strain relationships of different FRPs compared to steel bars (Zhishen et al., 2012)

What else is there... (locally)

FDOT Standards, Specifications & Projects:

See **FRP-Design Innovation website** for "one-stop shopping":

http://www.fdot.gov/structures/innovation/FRP.shtm

- Index^{DS}: 22440, 22600 series, D22900, D21310, D22420;
- Index^{SP}: 455-440, 455-100 series;
- Specifications 400, 410, 415, 450, 471, 932, 933;
- Projects (shown in later slides)

Specifications - CFRP

AASHTO's 1st Edition for prestressed concrete with FRP strands Bridge Design Guide Specifications (BDGS:CFRP-PC).

 Approved 06/28/2018 by AASHTO Committee on Bridges and Structures (thru T-6 sponsorship).

Specifications - GFRP

AASHTO's 1st Edition on decks and railings has now been updated to a complete Bridge Design Guide Specification (BDGS:GFRP-RC) 2nd Edition.

Approved 06/28/2018 by AASHTO Committee on Bridges and Structures (thru T-6 sponsorship).

AASHTO LRFD BRIDGE DESIGN GUIDE SPECIFICATIONS FOR GFRP REINFORCED CONCRETE – 2ND EDITION

TABLE OF CONTENTS

Section 1	INTRODUCTION	9
1.1 SC	OPE	9
1.2 DE	FINITIONS	. 9
1.3 LD	MITATIONS	10
1.4 DE	SIGN PHILOSOPHY	10
1.5 RE	FERENCES	10
Section 2	CONCRETE STRUCTURES	13
2.1 SC	OPE	13
2.2 DE	FINITIONS	13
2.3 NC	DTATION	15
2.4 M/	ATERIAL PROPERTIES	17
2.4.1	General	17
2.4.2	GFRP Reinforcing Bars	17
2.4.2.	1 Tensile Strength and Strain	17
2.4.2.	2 Modulus of Elasticity	18
2.5 LII	MIT STATES AND DESIGN METHODOLOGIES	18
2.5.1	General	18
2.5.1.	1 Limit-State Applicability	18
2.5.1.	2 Design Methodologies	18
2.5	1.2.1 General	18
2.5	1.2.2 B-Regions	19
2.5	0.1.2.3 D-Kegions	19
2.5.2	Service Limit State	19
2.5.3	Creep Kupture Lumit State	19
2.5.4	Fatigue Limit State	20

Specifications – BFRP (in progress)

STIC Incentive Project – BFRP-RC Standardization Fed. Project: STIC-004-A (April 2018 - Dec 2019) FDOT #443377-1; includes Research Project BDV30 986-01

 Develop standard specifications for basalt fiber-reinforced polymer (BFRP) bars for the internal reinforcement of structural concrete.

https://www.fhwa.dot.gov/innovation/stic/state_innovation.cfm

Specifications – FDOT

- 1. <u>Structures Manual</u> Vol. 4 (FRPG)
- 2. Construction Specs. (Division II)
- 3. Materials <u>Specs</u>. (Division III)
- 4. Materials Manual (Chapter 12)
 - Production Facility Approvals
- 5. Standard Plans (SP)
 - SP Instructions (SPI)
 - Developmental Standards (<u>DDS</u> & DSP

Specification Harmonization – GFRP-RC

- BDGS-GFRP 2nd Ed. refers to ASTM D7957-17 for material specifications
 - Only vinyl-ester GFRP / epoxy GFRP round bars allowed
 - Role separation and eased certification
- Design of GFRP-RC bridge elements follows structure of Bridge Design Specifications for steel-RC/PC (AASHTO-BDS-17, 8th Ed.).
 - Same language and integration
 - Familiar environment for the practitioner

Specification Harmonization – GFRP-RC (cont.)

Inputs from existing guidelines/codes:

- ACI 440.1R-15 "Guide for the Design and Construction of Structural Concrete Reinforced with Fiber Reinforced Polymer Bars"
- **CSA S6-14 Section 16** "Canadian Highway Bridge Design Code: Fibre-Reinforced Structures"

• **Coordination** with next-edition (where possible)

- ACI 440-19 "Building Code Requirements for Structural Concrete Reinforced with GFRP Bars" (under development)
- **CSA S6-19** Section 16 "Canadian Highway Bridge Design Code: Fibre Reinforced Structures" (under development)

Specification Harmonization – GFRP-RC (cont.)

	AASHTO-GS 2 nd 2018	AASHTO-GS 1 st 2009	ACI 440.1R 2015 <mark>(19)</mark>	CSA 2014 <mark>(19)</mark>	
f_{fu}^{*}	99.73	99.73	99.73	95.0 ⁽¹⁾	Strength percentile
Φ_{c}	0.75	0.65	0.65	0.75	Res. Fact. concr. failure
Φ _T	0.55	0.55	0.55	0.55	Res. Fact. FRP failure
Φ _s	0.75	0.75	0.75	0.75	Res. Fact. shear failure
C_{E}	0.70	0.70	0.70	1.0	Environmental reduction
C _C	0.30	0.20	0.20 (0.30)	0.25 (0.30)	Creep rupture reduction
C_{f}	0.25	0.20	0.20	0.25	Fatigue reduction
C_b	0.80	0.70 (2)	0.70 (2)	1.0	Bond reduction
W	0.28	0.20 or 0.28	0.20 to 0.28	0.20 ?	Crack width limit [in.]
C _{c,stirrups}	1.5	1.50	2.0 (3)	40	Clear cover [in.]
C _{c,slab}	1.0	0.75 to 2.0	0.75 to 2.0 ⁽³⁾	40	Clear cover [in.]

⁽¹⁾ Characteristic Strength; ⁽²⁾ $1/k_b$; ⁽³⁾ ACI 440.5-08 Table 3.1; (19) proposed for 2019 updates

Specification Harmonization – CFRP-PC

	AASHTO-BDS 8 th 2018 (steel only)	AASHTO-GS 1 st 2018	ACI 440.4R 2002 (11)	CSA 2014 <mark>(19)</mark>	
f_{fu}^{*}	99.73	99.73	99.73		Strength percentile
Φ_{c}	0.75	0.75	0.65	Res. Fact. concr. failure	
Φ_{T}	1.00	0.75	0.85	Res. Fact. FRP failure	
Φ _s	0.75	0.75			Res. Fact. shear failure
C_E	1.00	1.00 (internal)	0.9 (from 440.1R)		Environmental reduction
C _{Ci}	0.75 _j / 0.70 _{serv}	0.70 _j / 0.65 _{serv}	0.60		Creep rupture reduction
C_{f}	0.45	18 ksi			Fatigue reduction / stress
C_{b}	n/a				Bond reduction
W	n/a				Crack width limit [in.]
C _{c,stirrups}	-	-			Clear cover [in.]
C _{c,strand}	-	3.5 d _b			Clear cover

⁽¹⁾ Characteristic Strength; (19) proposed for 2019 updates

Design Tools – FDOT Programs & Design Aids

Marco Rossini

Saverio Spadea Antonio Nanni

Design Programs

- **CFRP-PC Beams**
- **GFRP-RC Flat-Slab**
- **GFRP-RC Bent Cap**
- Retaining Walls soon!
- 2. SPI "Design Aids"
- **Project GIS-Map App.** 3.
- 4. Under development
 - **Cost Estimating Guidance**
 - LCC Analysis Guidance

Design Tools – FDOT GIS-Mapping App.

1. Currently includes:

Active and Completed FRP-RC/PC projects;

2. Plans to add:

- Bridge beam FRP repair/ strengthening projects (25+ year history of wet-layup repairs)
- **FRP-Fender Systems**
- **HSSS** projects

https://fldot.sharepoint.com/sites/FDOT-Design/Structures/SpecialProjects/Lists/FRP%20Rebar%20Project/AllItems.aspx

Recent Advancement - GFRP-RC Specs

2nd Ed. updates reflect:

- Rationally defined creep rupture and fatigue load demands
- Separated Creep C_c and Fatigue C_f and aligned to CSA-14 (0.20 to 0.30 & 0.25 respectively) Need additional study to improve these conservative limits!

Recent Advancement (cont.) - GFRP-RC Specs

2nd Ed. updates reflect:

- Performances of *ASTM*-certified materials and increase **Compression-Controlled** Flexural Resistance ϕ_c alignment to **AASHTO BDS-17** (0.65 to 0.75);
- Reduced increased Bond Factor C_b (= 1/ k_b) and max. crack width to 0.028 inches.

Now need to:

1. Rationally increase **Tension-Controlled** Flexural Resistance Φ_t (0.55 to 0.75 ?), and

Future Advancement (cont.) - GFRP-RC Specs

- 1. Elastic modulus is a game-changer.
- 2. Increment shall not come from mere sectional area enlargement.
- 3. Need to operate within ASTM D7957-17 boundaries.
- 4. Improve quality of the manufacturing process to answer market demand: stiffness, bond performances, durability.

Future Advancement – GFRP-PC twisted strand

1. NCHRP's Innovations Deserving of Exploratory Analysis (IDEA)

• GFRP Prestressing - **MILDGLASS** (University of Miami);

(a) & (b) CFRP strand failed during tensioning; (c) cracking following strands release.

(a) GFRP strand prototype cross section; (b) compared to a CFRP alternative.

(a) GFRP-PC sheet pile concept (b) CFRP-PC sheet pile design for Halls River Bridge

Future Advancement – GFRP-PC twisted strand (cont.)

1. NCHRP's Innovations Deserving of Exploratory Analysis (IDEA)

• GFRP Prestressing - MILDGLASS (University of Miami);

Pull test load:

(a) Displacement diagrams;(b) Pull strength at varying twist per meter;

- (c) Creep displacement over initial value;
- (d) Creep rupture logarithmic regression

Future Advancement (cont.) – ????...

2. Next Innovation Deserving of Exploratory Analysis...

• BFRP Prestressing (perhaps)???

Standardized Elements - Piles

Bridge Bearing Pile Standards

455-101	Square CFRP and SS Prestressed Concrete Piles - Typical
	Details and Notes
455-102	Square CFRP and SS Prestressed Concrete Pile Splices
455-112	12" Square CFRP and SS Prestressed Concrete Pile
455-114	14" Square CFRP and SS Prestressed Concrete Pile
455-118	18" Square CFRP and SS Prestressed Concrete Pile
455-124	24" Square CFRP and SS Prestressed Concrete Pile
455-130	30" Square CFRP and SS Prestressed Concrete Pile
455-154	54" Precast/Post-Tensioned CFRP and SS Concrete
	Cylinder Pile
455-160	60" Prestressed CFRP and SS Concrete Cylinder Pile

ALTERNATE STRAND PATTERNS

SECTION A-A $16 \sim 0.6" \text{ } \emptyset$, CFRP 7-Strand, at 42 kips $16 \sim \frac{1}{2}" \text{ } \emptyset$, CFRP Single-Strand, at 41 kips

Standardized Elements - Seawall-Bulkheads

Concrete Sheet Pile Bulkhead Standards

Proposed Elements - Substructures

Waterline footings & columns in saltwater – need big bars for this!

#10 bars recognized in **ASTM D7957;** Will need #11 bars in future; May also need #14 bars?

Project Example Elements - Piles

Bridge Bearing Pile Projects

- Halls River Bridge (Homosassa)
- NE 23rd Ave/Ibis Waterway (City of Lighthouse Point)
- C Street Bridge (Cedar Key)
- Barracuda Blvd (New Smyrna)
- 40th Ave. N (St Petersburg)
- iDock (Miami)
- Maydell Dr. (Tampa) ?

Project Example Elements - Seawall-Bulkheads

Concrete Sheet Pile Bulkhead Projects

- SR24/Channel 3 (Cedar Key)
- Halls River Bridge (Homosassa)
- Bakers Haulover Cut (Miami)
- Skyway Rest Area (Manatee Co.)
- Pinellas Bayway Structure E
- NE 23rd Ave/Ibis Waterway (City of Lighthouse Point)
- Barracuda Blvd (New Smyrna)
- Maydell Dr. (Tampa) ?
- 40th Ave. N (St Petersburg) ?

Project Example Elements - Seawall-Bulkheads

Secant Piles seawall on SR A1A

Project Example Elements - Bent Cap

Projects:

- Halls River Bridge (Homosassa)
- NE 23rd Ave/Ibis Waterway (City of Lighthouse Point)
- Barracuda Blvd (New Smyrna)
- iDock (Miami)
- Maydell Dr. (Tampa)?
- 40th Ave. N (St Petersburg)?

Typical Section from HRB Plans

Project Example Elements - Girders/Slab-Beams

Projects:

- Halls River Bridge = **HCB's** (Homosassa)
- NE 23rd Ave/Ibis Waterway = Flat-Slab (City of Lighthouse Point)
- US-1 over Cow Key Channel = FSB CFRP/GFRP (Key West)
 - 40th Ave. N = **FSB's** ? (St Petersburg)
 - Maydell Dr. = **FSB's** ? (Tampa)

FDOT Project Identification & Delivery

1. Environmental condition driven

- Durability/Magnetic Transparency/LCC
- **2. Optional precast alternatives**
 - Encourage stakeholder buy-in
- **3. Desire for multiple suppliers**
 - Redundancy & Supply chain security
- 4. Simplify design process/workflow
- **5. Minimize change for Contractors**
 - Business as usual...almost

Projects - Halls River Bridge progress

Projects - Halls River Bridge progress

Projects - Halls River Bridge progress (challenges)

Collaborative Projects

FDOT Collaboration Projects:

- <u>SEACON</u> (2016-2018): Sustainable Concrete using Seawater, Salt-contaminated Aggregates and Non-Corrosive Reinforcement (University of Miami & Polimi) – Halls River Bridge was one of the two "Demonstrator" projects;
- Arthur Drive Bridge in Lynn Haven (2017):
 Precast GFRP-RC Piles demonstration
 (University of Sherbrook & UNF)
- *iDock (2018):* GFRP-RC Piles/Caps/Beams (University of Miami)

Existing Condition - Dock damaged by Hurricane Irma (Miami)

Proposed Dock -

- **Precast Elements all using FRP reinforcement only:**
- 1. 8~ Piles: 24'x1'x1'
- 2. 4~ Pile Caps: 8'x2.5'x1'
- 3. 8~ Slabs:
 1~ unit of 144"x33"x8"
 1~ unit of 132"x33"x8"
 6~ units of 120"x33"x8"

RC Piles -

- Precast piles reinforced with GFRP 4 types of piles:
- 1. Type A: 6~#6 with spirals
- 2. Type B: 6~#6 with square ties
- 3. Type C: 6~#8 with spirals
- 4. Type D: 6~#8 with square ties

RC Pile Caps - Cages and cages inside formwork with block-outs

J

RC Slabs -

Cages and cages inside formwork with lift points

Completed Precast Elements - Slabs, caps and piles (at the Precaster's yard)

Looking Beyond Halls River Bridge

Photo Courtesy of Astaldi Construction Corp. – Halls River Bridge under construction (FDOT FRP-RC/PC & HCB Demonstration project), February 2018.

- Stewardship
 Confidence
- **3. Competency**
- 4. Consistency
- **5.** Codification

NCHRP Report 503 (2003) identified 11 elements for a draft strategic plan as follows:

- 1. Buy-in from all strategic plan participants;
- 2. Acceptance, implementation, and revision of the strategic plan;
- 3. The means to oversee and manage the strategic plan;
- 4. A study of the relative costs of FRP versus traditional materials;
- 5. A database of practical infrastructure-based FRP knowledge;
- 6. Generic bridge-specific material specifications;
- 7. Generic bridge-specific design and evaluation methodologies;
- 8. Generic bridge-specific inspection and repair methods;
- 9. Training on FRP composite materials for practicing engineers;
- 10. Education on FRP composite materials for graduate civil engineers; and
- 11. Continuation of FHWA's Innovative Bridge Research and Construction (IBRC) program.

2018 Strategic Workplan items

- 1. Endurance Limits
- 2. Endurance Characteristic Curves and Testing
- **3. Establishing Consistency**
- 4. Increasing Material Property Qualification Thresholds and Design Limits
- 5. Cost Estimating
 - a. OC initiative for ACMA FRP-RMC
- b. FDOT SDG Chapter 9 update
- 6. Bar Bends
 - a. Complex Shapes
 - b. FDOT Index D21310
- 7. Minimum Bar Sizes for Design Elements
- 8. Life-Cycle Cost Guidance
- 9. Minimum Concrete Class

1. Stewardship

- Responsible use of public funds = specify FRP where it makes sense;
- Maximize material efficiency = strive for constant improvement;
- Identify additional technical resources for exploitation = getting outside of our "silos".

1. Stewardship

2. Confidence

- Build Stakeholder confidence = owners, designers, contractors, suppliers, inspectors;
- Supply Chain security = redundancy, scalability, sustainability.

- **1. Stewardship**
- **2.** Confidence

3. Competency

- Designer qualifications/training = all minor bridge consultants;
- Design Tools = *calculations* & *estimates;*
- Contractor & Inspector guidance = CPAM & training.

4. Consistency

- Material reliability = *data gathering and curation;*
- Encourage improved QC = *improved reliability;*
- Simplified verification testing = *improved reliability* and efficiency;

4. Consistency

5. Codification

- Establish "Roadmap" for AASHTO LRFD BDS adoption;
- Coordination with CBS T-6, T-10, & ACI 440;
- Coordination with other national and international authoritative committees = TRB's AFF80, CSA, fib TG 5.1.

11 hours be

ASTALDI

1 255

No. of Concession, Name

III IIID

FDOT Contact Information

State Materials Office: Chase C. Knight, PhD. (352) 955-6642 Chase.Knight@dot.state.fl.us Structures Design Office: Felix Padilla, P.E. (FRP Assist. Coordinator) (850) 414-4290 Felix.Padilla@dot.state.fl.us

District Structures Offices: SAM-TAG representatives & District Structures Design Engineers

