Field Applications of Non-Conventional Reinforcing and Strengthening Methods for Bridges and Structures, Part 1 of 3 (Speaker Schedule)

Moderator: Jimmy Kim (Steve Nolan support) 5 x 20 min. presentations + 3 min. Q&A each.

1:05 pm Using a Prestressed Mechanically Fastened FRP Plate for Strengthening **Bridges in N.C.** Rudolf Seracino (North Carolina State University) Prestressing with GFRP Bars and Strands for Substructure Applications 1:28 pm Marco Rossini (University of Miami) US-41 over North Creek; FRP-RC 2-Span Flat Slab Bridge and CFRP-PC/ 1:51 pm **GFRP-RC Substructure & Bulkhead** Joe Losaria (*Patel, Greene and Associates*) **CFRP-PC/GFRP-RC Harkers Island Bridge Replacement Project** 2:14 pm Trey Carroll (North Carolina DOT) US-1 over Cow Key Channel Span Replacements with CFRP/GFRP-PC 2:37 pm Florida Slab-Beams - Luis Vargas (Bolton Perez)

CONCRETE CONVENTION

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Using a Prestressed Mechanically Fastened FRP Plate for Strengthening Bridges in NC

Rudolf (Rudi) Seracino Professor and Associate Head of Department

Sheng-Hsuan (Mike) Lin and Gregory Lucier Department of Civil, Construction and Environmental Engineering North Carolina State University

Field Applications of Non-Conventional Reinforcing and Strengthening Methods for Bridges and Structures

ACI Fall 2020 Virtual Convention

Introduction

- Background
- □ Retrofit concept
- Retrofit design

□ Field Demonstration Project

□ Franklin County Bridge

□ Sampson County Bridge

Predicted Global Behavior

- □ Layered-sectional analysis
- Second-order effect
- Predicted results

Conclusions

Background

AASHTO Load Limit

- Inventory rating
 - □ Routine traffic
 - No incremental damage
 - Zero tensile stress in concrete
- Operating rating
 - Infrequent, heavier traffic
 - Small incremental damage
 - Maximum live load permissible

State of C-Channel Beams in NC

- Approximately 80% of 269 bridges are load posted
- □ Average detour: 7.5 miles
- Increased travel time
 - □ School bus: 22 minutes
 - □ Fire truck: 14 minutes

□ MF-FRP Repair System

- Rapid installation
- Common tools & equipment
- Restore prestress loss
- □ Simple FRP prestress process

Original Retrofit Concept – C-Channel Beams

MF-FRP 2.0 Design Details

Large-Scale Laboratory Experiments

Predicted Global Behavior

□ Layered-Sectional Analysis – Moment and Curvature

□ Moment-Area Method – Deflection

7

Predicted Global Behavior

Second-order effect

- □ MF-FRP system similar to unbonded prestressing
- □ No strain compatibility
- □ Change in unbonded prestress force is related to member deflection

Predicted Global Behavior

□ Predicted vs Experimental Results

Bridge No. 340080, Franklin County, North Carolina – April 2019

- □ Spalling and flexural crack of previous repair
- □ Requires posting 18/24 without repair
- □ ADTT ~50, impacting local logging industry

- Built in 1961
- □ Previously repaired with patches
- □ Current posting 21/28

Bridge No. 340080, Franklin County, North Carolina – April 2019

- □ Rapid and easy installation
- Low material cost
- Installed by a four-person DOT crew
- Approximately 4.1 labor-hours for a single C-Channel beam repair installation

Bridge No. 340080, Franklin County, North Carolina – October 2020

Bridge No. 810003, Sampson County, North Carolina – October 2020

- Extensive spalling and flexural cracking of previous repairs
- Significant corrosion of prestressing strands
- □ ADTT ~60, Detour length 6 miles

- □ Built in 1966
- □ 3-span, C-channel beam
- □ Currently closed to traffic
- □ Previous posting 16/22

Bridge No. 810003, Sampson County, North Carolina – October 2020

Bridge No. 810003, Sampson County, North Carolina – Oct 2020

□ Retrofit Design – Flexural and Shear Strengthening

□ *Flexural Strengthening* – **MF-FRP 2.0 Design**

Shear Strengthening – Apply bolted steel plates on the damaged stems in the end regions

Flexural and Shear Strengthening

Conclusions

- The proposed MF-FRP system addresses both inventory and operating load limits for prestressed concrete bridge beams.
- A procedure has been developed to predict the momentdisplacement response of MF-FRP strengthened C-channel beams.
- An MF-FRP system remains in good condition on an existing bridge after 18 months of service since the installation.
- The MF-FRP design is optimized for rapid installation by a fourperson DOT crew, without the need for specialized tools or equipment, that is an economical alternative compared to other options.
- A second repair on a closed C-Channel bridge is designed that addressed both flexural and shear strengthening.

NC STATE UNIVERSITY

Center for Integration of Composites into Infrastructure

Acknowledgments:

- Brad C. McCoy, Ph.D.: Assistant Professor, United States Military Academy
- Zakariya Bourara, MS: Structural Engineer, Dewberry
- Juliet Swinea, Senior Undergraduate, NCSU Civil Engineering Department

Prestressing with GFRP Bars and Strands NCHRP-IDEA/207: MILDGLASS Marco Rossini

Antonio Nanni

Field Applications of Non-Conventional Reinforcing and Strengthening Methods for Bridges and Structures

Table of Contents

Research Significance

- The problem of corrosion
- Solution: Fiber Reinforced Polymers

Mild FRP Prestressing

- Challenges of FRP prestressing
- Concept of mild FRP prestressing

Experimental Investigation

- Prototype GFRP Strand
- Coupling with Steel Anchors
- Field Application at 23rd Ave Bridge

Conclusions

The Problem of Corrosion: Cost

- Demand for durable and lowmaintenance technologies from: DOTs, FHWA, AASHTO, EU and member states
- 8.3B USD annual cost of corrosion for highway bridges in the US
- 21B USD total maintenance, rehabilitation, replacement cost for sheet piles in Florida (3,600 miles armored shoreline)
- Non-corrosive reinforcement may reduce Life Cycle Costs by 25%

Nolan, S., Rossini, M., & Nanni, A. (2018). Seawalls, SEACON, and Sustainability in the Sunshine State Nolan, S., & Nanni, A. (2017). Deployment of Composite Reinforcing
Rossini, M., Nanni, A., Matta, F., Nolan, S., Potter, W., & Hess, D. (2019). Overview of AASHTO Design Specifications for GFRP-RC Bridges 2nd Edition: Toledo Bridge as Case Study

The Problem of Corrosion: Safety

- 10+ major Bridge Collapses co-caused by corrosion since 2014
- Pre/Post-tensioned cable-stayed bridge in Genova (IT)
- Post-tensioned medium-span bridge in Agrigento (IT)

Bazzucchi, F., Restuccia, L., & Ferro, G. A. (2018). Considerations over the Italian road bridge infrastructure safety after the Polcevera viaduct collapse: Past errors and future perspectives

The problem of Corrosion: Sustainability & Resilience

- Recyclability applies to disposables
- **Durability** applies to structures and infrastructures
- Reduced environ. impact from maintenance (average -25%)
- Ensure **Resilience** of transportation network and communities

Cadenazzi, T., Dotelli, G., **Rossini, M.**, Nolan, S., & Nanni, A. (2019). Life-Cycle Cost and Life-Cycle Assessment Analysis at the Design Stage of a Fiber-Reinforced Polymer-Reinforced Concrete Bridge in Florida.

Solution: Fiber Reinforced Polymers

- CFRP strands for prestress
 - 1x7-15.2 mm
 - 2300 MPa | 155 GPa
 - x4.0 times steel cost
- GFRP bars for reinforcement
 - 16 mm round solid
 - 800 MPa | 45 GPa
 - x1.5 times steel cost
- GFRP strands for mild PC (?)

Table of Contents

- Research Significance
 - The problem of corrosion
 - Solution: Fiber Reinforced Polymers

Mild FRP Prestressing

- Challenges of FRP prestressing
- Concept of mild FRP prestressing

Experimental Investigation

- Prototype GFRP Strand
- Coupling with Steel Anchors
- Field Application at 23rd Ave Bridge

Conclusions

Challenges of CFRP Prestressing

- Effective but complex
- Expensive: 4 times steel
- Expansive: pseudo-Poisson ratio
- <u>Complex</u>: large anchors & splicing
- Brittle: constructability & safety

Concept: FRP Mild Prestressing

- Low prestress level
- Simple: standard anchors
- Steel-like constructability
- Limits cracking
- Safe pulling
- Targets Coastal Structures
- Highest corrosion
- Lowest prestress
- Piles, sheet piles, seawalls

08

Prototype: GFRP Strand

- Tailored for deployment
- Economic: 1.5 times steel
- Efficient: low modulus → low losses
- Simple: same anchors as steel-PC
- Pseudo-ductility: large displacement

Table of Contents

- Research Significance
 - The problem of corrosion
 - Solution: Fiber Reinforced Polymers
- Mild FRP Prestressing
 - Challenges of FRP prestressing
 - Concept of mild FRP prestressing
- Experimental Investigation
 - Prototype GFRP Strand
 - Coupling with Steel Anchors
- Field Application at 23rd Ave Bridge
- Conclusions

Pull Strength with Steel-PC Anchors

Standard anchors and wedges

464

- 7 tests | COV = 3.9%
- GTS Guaranteed 56%

UNIVERSITY MIAMI

ЭF

MPa

kN

Pseudo-creep Behavior

- Load control
- $\delta/\delta_i = 1.11 | COV = 1.2\%$
- 20% creep in the strand
- 80% slip at anchors
- As the anchors slip and the strand creeps, the <u>crossheads</u> move to apply more load
- The <u>extensometer</u> only sees creep
- Slip → <u>setting losses</u>

Pseudo-relaxation Behavior

- Displacement control
- $\Delta F = 0.20 F_i | COV = 12\%$
- 50% relax. in the strand
- 50% slip at anchors
- No movement at <u>crossheads</u>
- As the anchors slip, the strand shortens and the <u>extensometer</u> measures
- Need to <u>reduce losses</u>

Pull Techniques for Reduced Losses

Single pull

0.20 F_i

Simple and familiar to precasters Are **re-pull** or **pre-pull** necessary & feasible?

Pull Techniques for Reduced Losses

Pull Techniques for Reduced Losses

Table of Contents

- Research Significance
 - The problem of corrosion
 - Solution: Fiber Reinforced Polymers
- Mild FRP Prestressing
 - Challenges of FRP prestressing
 - Concept of mild FRP prestressing
- Experimental Investigation
 - Prototype GFRP Strand
 - Coupling with Steel Anchors
- Field Application at 23rd Ave Bridge
- Conclusions

First GFRP-PC Piles in the Ground in Florida

Installation at 23rd Avenue Bridge

Shop Drawings per FDOT Specifications

GFRP portially prestressed cross section

12 ~ #4, GFRP bor, at 6.5 kips after seating losses 12 ~ #8, GFRP bor, non prestressed

Structural & Economic Performance

- Partially prestressed
 - 12 M13 at 30 kN (30% GTS)
 - 12 M25 non-prestressed
- Same performance as FDOT steel, stainless, CFRP design
 - Flexure, shear, drivability
- 40% cheaper than steel and 25% cheaper than carbon over its life cycle.
- 100 years service life

Table of Contents

- Research Significance
 - The problem of corrosion
 - Solution: Fiber Reinforced Polymers
- Mild FRP Prestressing
 - Challenges of FRP prestressing
 - Concept of mild FRP prestressing
- Experimental Investigation
 - Prototype GFRP Strand
 - Coupling with Steel Anchors
- Field Application at 23rd Ave Bridge

Conclusions

Conclusions

- Developed the concept of Mild Prestressing:
 - Mitigate challenges of CFRP in some applications
 - GFRP strands prototype
 - Traditional steel-PC anchors
- Feasible technology with pull at 30-50 %GTS
- First demonstrator successfully installed at 23rd Avenue Bridge a Florida DOT project.
- Same performance, more durable, at a lower cost.

Thank []!

US 41 NB over North Creek FRP Reinforced Concrete Two-Span Flat Slab Bridge

Joseph Losaria, PE - PGA Steven Nolan, PE - FDOT Andra Diggs II, PE - FDOT David Hartman – Owens Corning

PROJECT LOCATION

- Sarasota County, Florida
- South of Sarasota, FL near Osprey, FL
- Outfalls to Little Sarasota Bay
- Tidally Influenced
- Within FDOT District 1

ACI 2020 Convention – US 41 at North Creek

INTRODUCTION

• FLORIDA DEPARTMENT OF TRANSPORTATION (FDOT) PROJECT

- Transportation Innovation Challenge Initiative (Andra Diggs II)
- Project required additional shoulder, bike lanes and sidewalk
- Existing Bridge
 - Built in 1927 and widened in 1950
 - No existing plans available
 - Existing bridges were cast in place flat slab superstructures on unknown foundations
 - Utilized vertical wall abutment
 - Previous pile jacket repairs
- Bridge widening was considered but was not feasible given the age of the bridge.
- Options considered during bridge development study:
 - Separate shared use path bridge
 - Bridge replacement
 - Culvert alternative

GEOTECHNICAL

- Presence of shallow limestone layer
- Extremely aggressive environment
- Tidal Condition at North Creek
- Flows to Little Sarasota Bay
- Foundation options considered:
- Steel Piles
- Precast Square Concrete Piles
- Drilled Shafts

16

22

50/4

[<u>5M</u>]-A

WEATHERED LIMESTONE

• Need vertical retaining walls at abutments to tie into SB bridge that is to remain

• Existing abutment wall system:

Concrete sheet pile walls with a deadman system

• Evaluated several retaining wall types

- Steel sheet pile
- Issue with shallow limerock layer
- Concrete sheet pile with deadman system
 - Costly and labor intensive
- Soldier-Pile wall
 - Uses precast square concrete piles
 - Uses precast concrete panels
- Recommendation: Concrete Soldier Pile Wall System

Recommendation: Concrete Soldier Pile Wall System

Precast Concrete Panels

- Able to accommodate geometry changes along wall.
- Faster construction since panels are precast.

Precast Concrete Panels

8 CONTRACTOR SHALL GROUT THE GAP BETWEEN ADJACENT PANELS IN ACCURDANCE WITH SPEC 451-45. GROUT SHALL PROVIDE FULL BEARING OF PANEL AGAINST FILE AND COMPLETELY SEAL ANY OPENINGS BETWEEN PANELS AND CONCRETE FILES. PRIOR TO GROUTING, THE VERTICAL JOINTS BETWEEN PANELS SHALL BE CLEANED AND FREE OF DEBRIS.

PRECAST CONCRETE PANEL GAP DETAIL

Lateral Stability

- Need to check at service and during construction limit state
- Control deflections at top of pile until pile cap is poured

ACI 2020 Convention – US 41 at North Creek

• FRP Materials:

- Utilized CFRP/SS strands for prestressed piles
- Utilized GFRP reinforcement for precast panels

• Benefits:

- No corrosion in extremely aggressive environment
- Easier handling during precast construction

Challenges:

- Contractor had to handle top hooked bars with care
- Procurement time for GFRP bars are longer

• Unique Items:

- Similar bridge one-mile north of North Creek replaced last year with conventional materials
- Will compare performance of FRP versus conventional materials
- FRP test panels were provided with additional GFRP reinforcing
- Utilized carbon black steel on bent caps for constructability and field adjustability

SUPERSTRUCTURE

- CIP Concrete Flat Slab Superstructure
- Utilized GFRP Bars
- Design was completed using AASHTO LRFD Bridge Design Guide Specifications for GFRP

Reinforced Concrete Bridge Decks and Traffic Railings, 1st Edition

SUPERSTRUCTURE

• Effect of incorporating newer design criteria

GFRP Design Value	GFRP Design Value
(1 st Edition)	(2 nd Edition)
Moment Flexural Resistance = 148 kip-ft (201 kN-m)	Moment Flexural Resistance = 172 kip-ft (233 kN-m)
Fatigue Limit Maximum Stress =	Fatigue Limit Maximum Stress =
11.9 ksi (82 MPa)	14.9 ksi (103 MPa)
Positive Sustained Tensile Stress in GFRP = 13.5 ksi (93 MPa)	Positive Sustained Tensile Stress in GFRP = 6.9 ksi (48 MPa)
Negative Sustained Tensile Stress in GFRP =	Negative Sustained Tensile Stress in GFRP =
12.9 ksi (89 MPa)	7.66 ksi (53 MPa)

SUPERSTRUCTURE

• Summary of changes from 1st edition and 2nd edition of AASHTO

Design Factor		AASHTO (2 nd Edition)	AASHTO (1 st Edition)	ACI 440.1R-15	CSA (2014)	Critical Design Parameter Description
	f _{fu} ⁺	99.9	99.9	99.9	95.0	Strength percentile
	Φ _c	0.75	0.65	0.65	0.75	Resistance factor concrete failure
	Φ _T	0.55	0.55	0.55	0.55	Resistance factor FRP failure
	Φ _s	0.75	0.75	0.75	0.75	Resistance factor shear failure
	C _E	0.70	0.70	0.70	1.0	Environmental reduction
	Cc	0.30	0.20	0.20	0.25*	Creep rupture reduction (* C _E not applied)
	C _f	0.25	0.20	0.20	0.25*	Fatigue reduction (* C _E not applied)
	C _b	0.83	0.70	0.70	1.0	Bond reduction
	w	0.028 (0.7)	0.02 (0.5)	0.028 - 0.020 (0.7 - 0.5)	0.02 (0.5)	Crack width limit inch (mm)
	C _{c, stirrup}	1.5 (40)	1.5 (40)	2.0 (50)	1.5 (40)	Clear cover inch (mm)
	C _{c, slab}	1.0 (25)	0.79 (20) – 2.0 (50)	0.79 (20) – 2.0 (50)	1.5 (40)	Clear cover inch (mm)

BENEFITS OF FRP

- Addresses corrosion within the splash zone area
- Reduced concrete cover on GFRP reinforced components
- Easier handling and placement of FRP components
- Reduction in long-term maintenance costs
- Provides FDOT opportunity for material performance comparison

COST COMPARISON

Costs of FRP and Carbon Steel Soldier Pile End Bent Systems

North Creek (FRP):	Quantity	Unit	Unit Cost	Total Cost
Concrete Class IV, Bulkhead (no C.I.)	47.9	CY	\$ 1,067.20	
With GFRP Bars, #6	(36.6)	(m ³)	(\$1,395.03)	\$ 51,118.90
	1386	LF	\$ 150.00	
24" CFRP SPC Piles (no HRP)	(422.7)	(m)	(\$ 491.80)	\$207,900.00
TOTAL BULKHEAD COST =	\$259,018.90			
Catfish Creek (Black Carbon Steel):	Quantity	Unit	Unit Cost	Total Cost
Concrete Class IV, Bulkhead (with C.I.)	51.68	CY	\$ 1,131,53 ⁽¹⁾	\$ 58,477.41
With #7 Reinforcing Steel	(39.51)	(m ³)	(\$ 1,479.12) ⁽¹⁾	
	1157.2	LF	\$ 106.00 ⁽²⁾	\$122,663.20
24" SPC Piles (with HRP)	(352.9)	(m)	(\$ 347.54 ⁽²⁾)	
TOTAL BULKHEAD COST =				\$181,140.61

Highly Reactive Pozzolan (HRP), Corrosion Inhibitor (CI)

COST COMPARISON

Costs of FRP and Carbon Steel CIP Flat Slab Superstructure

North Creek (FRP):	Quantity	Unit	Unit Cost	Total Cost
Concrete Class IV, Bridge Superstructure (no C.I.)	157.2	СҮ	\$ 1,836.40	\$ 288,682.75
With GFRP Bars, #4, #8, #10	(120.3)	(m ³)	(\$2,400.53)	
Catfish Creek (Black Carbon Steel):	Quantity	Unit	Unit Cost	Total Cost
Concrete Class IV, Bridge Superstructure (with C.I.) ⁽¹⁾	51.68	СҮ	\$ 1,552.75 ⁽¹⁾	\$ 131,129.85
With #4, #5, #8 Reinforcing Steel	(39.51)	(m ³)	(\$ 1,479.12) ⁽¹⁾	

- Bridge total length and span arrangement varied:
- North Creek = 58-ft total, 35-ft Span 1 and 23-ft Span 2
- Catfish Creek = 40-ft total, 20-ft equal spans

COST COMPARISON

- Cost Comparison Conclusions:
- Bridge with FRP has higher initial costs
- 100-year service life for FRP reinforced structure versus 75-year service life for carbon steel reinforced structure
- Payback period = 20 years
- Including maintenance costs, LCC savings can be up to 50% for FRP reinforced structures

CONCLUSIONS (BENEFITS):

- FRP eliminates any corrosion concern particularly for elements within the splash zone
- Benefits in urban environments with a tight R/W
- Ease of handling of GFRP reinforcement during construction
- Longer service life for FRP reinforced structure
- Use of soldier-pile wall end bent system with FRP materials provides highly durable bridge wall system in extremely aggressive environments
- Further refinements of design codes for FRP will bring further substantial cost savings

CONCLUSIONS (CHALLENGES):

- Procurement of FRP materials was longer compared to traditional materials
- Handling of precast panels with exposed hooked FRP bars required careful handling
- Sand coating on GFRP reinforcement had challenges in handling for field crew
- Consideration for use of larger spacing between GFRP
- Unforeseen existing bridge foundation locations
- No as-built plans available for existing bridge

QUESTIONS?

NORTH CAROLINA Department of Transportation

Harkers Island Bridge Replacement

Trey Carroll, P.E.

October 27, 2020

ncdot.gov

ncdot.gov

Harkers Island, NC

Harkers Island, NC

Harkers Island Bridge Replacement

Bridge No. 96

- Built 1970
- Superstructure Replacement
 2013
- Functionally Obsolete

Bridge No. 96

- Built 1970
- Superstructure Replacement
 2013
- Functionally Obsolete

Bridge No. 73

- Built 1969
- Posted SV 24, TTST 37
- Structurally Deficient

Leadup to Harkers Island

- 2005 Glass Fiber Reinforced Polymer (GFRP) Bridge Deck
- 2014 NCSU Research Project 2014-09: CFRP Strands in Prestressed Cored Slab Units
- 2017 Transportation Pooled Fund Research Project 5(363): Evaluation of 0.7 inch Carbon Fiber Reinforced Polymer Pretensioning Strands in Prestressed Beams

Significance of the Harkers Island Bridge Replacement Project

Project Utilizing Innovative Technology:

- Carbon Fiber Reinforced Polymer (CFRP) Strands
- Glass Fiber Reinforced Polymer (GFRP) Bars

Significance of the Harkers Island Bridge Replacement Project

Advantages of FRP Strands & Bars:

- Superior Corrosion Resistance
- High Tensile Strength
- Lightweight

Proposed Structure: 3,200'-0" 28 Spans

Harkers Island Bridge Replacement

<u>Navigational</u> <u>Channel</u>

- 45' Min. Vertical Clearance
- 125' Min. Horizontal Clearance
- Vessel Impact

Harkers Island Bridge Project Details

- Cast-in-place Concrete (Superstructure* & Substructure)
 - Glass Fiber Reinforced Polymer (GFRP) Bars

Harkers Island Bridge Project Details

- Cast-in-place Concrete (Superstructure* & Substructure)
 - Glass Fiber Reinforced Polymer (GFRP) Bars
- Prestressed Concrete Girders
 - Carbon Fiber Reinforced Polymer (CFRP) Strands
 - GFRP Stirrup Option
 - CFRP Stirrup Option

Harkers Island Bridge Project Details

- Cast-in-place Concrete (Superstructure* & Substructure)
 - Glass Fiber Reinforced Polymer (GFRP) Bars
- Prestressed Concrete Girders
 - Carbon Fiber Reinforced Polymer (CFRP) Strands
 - GFRP Stirrup Option
 - CFRP Stirrup Option
- Prestressed Concrete Piles
 - CFRP Strands
 - CFRP Spiral

54" F.I.B. Prestressed Concrete Girder

- 14 Spans
- Total # of Girders: 56
- Approximate Span Length: 100'

72" F.I.B. Prestressed Concrete Girder

- 11 Spans
- Total # of Girders: 44
- Approximate Span Length: 130'

Harkers Island Bridge Replacement

72" F.I.B. Prestressed Concrete Girde

- 11 Spans
- Total # of Girders: 44
- Approximate Span Length: 130'
- Girder Spacing: 8'-9"

78" F.I.B. Prestressed Concrete Girder

- 3 Spans
- Total # of Girders: 15
- Channel Span Length: 164'

Harkers Island Bridge Replacement

Pile Bents

- 24" Prestressed Concrete Piles
- 6 & 5 Pile Arrangement

25

Pile Bents

- 24" Prestressed Concrete Piles
- 6 & 5 Pile Arrangement

Approach Footing Bents

- 3'-6" Dia. Columns
- 10 24" Prestressed Concrete Piles

Harkers Island Bridge Replacement

Pile Bents

- 24" Prestressed Concrete Piles
- 6 & 5 Pile Arrangement

Approach Footing Bents

- 3'-6" Dia. Columns
- 10 24" Prestressed Concrete Piles

Channel Footing Bents

- 4'-0" Dia. Columns
- 15 24" Prestressed Concrete Piles

Design Challenges

- 1. Design Codes, Manuals, & References
- 2. Material Considerations
 - Design
 - Detailing

Codes, Manuals, & References:

- 1. ACI 440.1 Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars
- 2. NCDOT/NC State Research Project 2014-09 CFRP Strands in Prestressed Cored Slab Units

Codes, Manuals, & References:

1. ACI 440.1 Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars

2. NCDOT/NC State Research Project 2014-09 CFRP Strands in Prestressed Cored Slab Units

3. Michigan, Florida, & Virginia DOT

Codes, Manuals, & References:

1. ACI 440.1 Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars

2. NCDOT/NC State Research Project 2014-09 CFRP Strands in Prestressed Cored Slab Units

- 3. Michigan, Florida, & Virginia DOT
- 4. AASHTO LRFD Bridge Design Specification for GFRP-Reinforced Concrete, 2nd Edition
- 5. AASHTO Guide Specification for the Design of Concrete Bridge Beams Prestressed with CFRP Systems

Material Considerations

- Direct Substitution between FRP and Steel Strand/Reinforcement is not possible
- Modulus of Elasticity

CFRP Strands vs. Steel Strands

	Steel Strands	CFRP Strands
Diameter (in.)	0.6	0.6
Cross Section Area (in ²)	0.217	0.179
Ultimate/Guaranteed Strength (ksi)	$f_{u} = 270$	$f_{gu} = 339$
Yield Strength (ksi)	$f_y = 243$	$f_y = N/A$
Elastic Modulus (ksi)	$E_p = 28,500$	$E_p = 21,900$
Allowable Prestressing Stress immediately prior to Transfer (f_{pbt})	$\begin{array}{l} \text{AASHTO LRFD} \\ f_{pbt} \leq 0.75 f_{pu} \end{array}$	$\begin{array}{l} \text{AASHTO CFRP} \\ f_{pbt} \leq 0.70 f_{pgu} \end{array}$
Allowable (f_{pbt})	202.5 (44 kip/strand)	237.3 (42.5 kip/strand)

CFRP Strands vs. Steel Strands

	Steel Strands	CFRP Strands	
Diameter (in.)	0.6	0.6	
Cross Section Area (in ²)	0.217	0.179	
Ultimate/Guaranteed Strength (ksi)	$f_{u} = 270$	$f_{gu} = 339$	
Yield Strength (ksi)	$f_y = 243$	$f_y = N/A$	
Elastic Modulus (ksi)	$E_p = 28,500$	$E_p = 21,900$	
Allowable Prestressing Stress	AASHTO LRFD	AASHTO CFRP	
immediately prior to Transfer (T_{pbt})	$J_{pbt} \leq 0.75 J_{pu}$	$J_{pbt} \leq 0.70 J_{pgu}$	
Allowable (f_{pbt})	202.5 (44 kip/strand)	237.3 (42.5 kip/strand)	
1.1			

GFRP Reinforcement vs. Steel Reinforcement

GFRP Physical & Mechanical Properties						
Bar Size Designation	Nominal Diameter (in.)	Nominal Cross Section Area (in ²)	Guaranteed Tensile Strength (ksi)	Yield Strength (ksi)	Elastic Modulus (ksi)	Unit Weight/Length (lbs/ft)
4	0.500	0.20	110	N/A	6,700	0.189
5	0.625	0.31	105	N/A	6,700	0.287
6	0.750	0.44	100	N/A	6,700	0.408
7	0.875	0.60	95	N/A	6,700	0.544
8	1.000	0.79	90	N/A	6,700	0.730
	•	Steel Ph	ysical & Mechanic	al Properties		•
Bar Size DesignationNominal NominalNominal Cross Section Area (in 2)Tensile Strength (ksi)Yield Strength (ksi)Elastic Modulus (ksi)					Elastic Modulus (ksi)	Unit Weight/Length (lbs/ft)
4	0.500	0.20	90	60	29,000	0.668
5	0.625	0.31	90	60	29,000	1.043
6	0.750	0.44	90	60	29,000	1.502
7	0.875	0.60	90	60	29,000	2.044
8	1.000	0.79	90	60	29,000	2.670

GFRP Reinforcement vs. Steel Reinforcement

GFRP Physical & Mechanical Properties						
Bar Size Designation	Nominal Diameter (in.)	Nominal Cross Section Area (in ²)	Guaranteed Tensile Strength (ksi)	Yield Strength (ksi)	Elastic Modulus (ksi)	Unit Weight/Length (lbs/ft)
4	0.500	0.20	110	N/A	6,700	0.189
5	0.625	0.31	105	N/A	6,700	0.287
6	0.750	0.44	100	N/A	6,700	0.408
7	0.875	0.60	95	N/A	6,700	0.544
8	1.000	0.79	90	N/A	6,700	0.730
		Steel Ph	ysical & Mechanic	al Properties		•
Bar Size Designation	Nominal Diameter (in.)	Nominal Cross Section Area (in ²)	Tensile Strength (ksi)	Yield Strength (ksi)	Elastic Modulus (ksi)	Unit Weight/Length (lbs/ft)
4	0.500	0.20	90	60	29,000	0.668
5	0.625	0.31	90	60	29,000	1.043
6	0.750	0.44	90	60	29,000	1.502
7	0.875	0.60	90	60	29,000	2.044
8	1.000	0.79	90	60	29,000	2.670

GFRP Reinforcement vs. Steel Reinforcement

GFRP Physical & Mechanical Properties						
Bar Size Designation	Nominal Diameter (in.)	Nominal Cross Section Area (in ²)	Guaranteed Tensile Strength (ksi)	Yield Strength (ksi)	Elastic Modulus (ksi)	Unit Weight/Length (lbs/ft)
4	0.500	0.20	110	N/A	6,700	0.189
5	0.625	0.31	105	N/A	6,700	0.287
6	0.750	0.44	100	N/A	6,700	0.408
7	0.875	0.60	95	N/A	6,700	0.544
8	1.000	0.79	90	N/A	6,700	0.730
		Steel Ph	ysical & Mechanic	al Properties		
Bar Size Designation	Nominal Diameter (in.)	Nominal Cross Section Area (in ²)	Tensile Strength (ksi)	Yield Strength (ksi)	Elastic Modulus (ksi)	Unit Weight/Length (lbs/ft)
4	0.500	0.20	90	60	29,000	0.668
5	0.625	0.31	90	60	29,000	1.043
6	0.750	0.44	90	60	29,000	1.502
7	0.875	0.60	90	60	29,000	2.044
8	1.000	0.79	90	60	29,000	2.670

Bar Detailing:

		A & B	J
#	DIA (in)	MAX	(in)
#2	1/4	8'-3"	3½
#3	3/8	8'-3"	3¾
#4	1/2	8'-3"	5
#5	5/8	8'-3"	6¼
#6	3/4	8'-3"	7½
#7	7/8	8'-3"	9¾
#8	1	8'-3"	10

		Α	В
#	DIA (in)	MAX	MAX
#2	1/4	6'	5'-8''
#3	3/8	6'	5'-8''
#4	1/2	6'-3''	5'-10''
#5	5/8	6'-4''	5'-11"
#6	3/4	6'-5''	6′
#7	7/8	6'-8''	6'-3''
#8	1	6'-8''	6'-3''

		A & G	В	
#	DIA (in)	MAX	MIN	MAX
#2	1/4	5'-8''	9"	6'
#3	3/8	5'-8''	9"	6′
#4	1/2	5'-10''	11"	6'-3''
#5	5/8	5'-11''	1′	6'-4''
#6	3/4	6'	1'	6'-5''
#7	7/8	6'-3''	1'-4''	6'-8''
#8	1	6'-3''	1'-4''	6'-8''

Bar Detailing:

\checkmark				
•	\searrow			
		В		

		A & B	J
#	DIA (in)	MAX	(in)
#2	1/4	8'-3"	3½
#3	3/8	8'-3"	3¾
#4	1/2	8'-3"	5
#5	5/8	8'-3"	6¼
#6	3/4	8'-3"	7½
#7	7/8	8'-3"	9¾
#8	1	8'-3"	10

		Α	В
#	DIA (in)	MAX	MAX
#2	1/4	6'	5'-8''
#3	3/8	6'	5'-8''
#4	1/2	6'-3''	5'-10''
#5	5/8	6'-4''	5'-11''
#6	3/4	6'-5''	6'
#7	7/8	6'-8''	6'-3''
#8	1	6'-8''	6'-3''

		A & G	В	
#	DIA (in)	MAX	MIN	MAX
#2	1/4	5'-8''	9"	6′
#3	3/8	5'-8''	9"	6′
#4	1/2	5'-10''	11"	6'-3''
#5	5/8	5'-11''	1′	6'-4''
#6	3/4	6'	1'	6'-5''
#7	7/8	6'-3''	1'-4''	6'-8''
#8	1	6'-3''	1'-4''	6'-8''

Bar Detailing:

Field Applications of Non-Conventional Reinforcing and Strengthening Methods for Bridges and Structures, Part 1 of 3

Outline

Project Overview

CONVENTI

tpa.

- Deterioration of Superstructure
- Replacement Alternatives
- Project Design
- Construction Activities

tra.

US-1 / SR-5 over Cow Key Channel

Project Overview

Project Location

- US-1 over Cow Key Channel Bridges (NB-900086 & SB-900125) located in Florida Keys
- Bridge within the Florida Keys
 National Marine Sanctuary
- Evacuation route during Hurricane season
- Bridge type: Nine-span Sonovoid superstructure on pile bents, built between 1978 & 1985
- Aggressive Environment

Project Overview

Project Overview

Project Team

Scope Elements

Scope Elements

- Project Management
- Structures
- · Load rating evaluation
- Roadway
- S&PM
- · Temporary signalization
- Traffic Analysis
- Survey
- Utility coordination
- Public Involvement
- · Post design services

US-1 Over Cow Key Channel Span Replacements with CFRP/GFRP-PC Florida Slab-Beams

5

Project Team

- Bolton Perez & Associates
- Florida Department of Transportation District 6
 - Bridge Maintenance
 - Central Office
- City of Key West
- Monroe County
- · WSP Construction Engineers and Inspection
- Construction
 - Kiewit Infrastructure
 - Gate Precast Company (T. Newton)
 - > Forms: Hamilton Form Companies
 - GFRP Rebar: Pultrall (VROD)
 - > CFRP Rebar: Tokyo Rope Mfg. Co.

Project Overview

Bridge Plan

Project Overview

Typical Section

Deterioration of Superstructure

Deterioration

- Panels within splash zone exposed to stream of water from motorized recreational water-vehicles
- Underside of Sonovoid panels in Spans 3 and 4 experienced severe damage due reinforcing steel corrosion
- Deck underside in poor condition with evident concrete spalling and exposed reinforcing
- Load rating factors dropped to 0.68 & 1.25; temporary remediation was implemented by underpinning some panels
- Inspection report of May 2017 & Corrosion report from State Materials Office (SMO) determined the replacement of Spans 3 & 4 of NB & SB bridges
- FDOT SMO produced a second report showing corrosion initiation on Span 2, this span was added to scope

Deterioration of Superstructure

Exposed reinforcing, spalling, cracking & delamination

Underpinning at midspan

US-1 Over Cow Key Channel Span Replacements with CFRP/GFRP-PC Florida Slab-Beams

tra.

tra.

Replacement Alternatives

Superstructure Alternatives

- Cast-in-Place (CIP Reinforced Concrete Slab) rather robust in corrosive environments as the large amount of reinforcing offers ample redundancy
- CIP slabs require extensive false work, significant increase of load on substructure, increase in construction time
- Florida Slab Beam (FSB) precast prestress panels -- First use on State Road
- Coordinated with CO (Steve Nolan), SMO (Ivan Lasa) and District (Pablo Orozco)
- · Use of Innovative Materials: GFRP rebar and CFRP prestress
- · First time use of GFRP & CFRP on FSB system, eliminating future corrosion issues
- · Added protection penetrant sealer on the underside of the entire deck slab

Replacement Alternatives

Benefits of Propose Superstructure

Benefit of proposed Superstructure

· FSB benefits

- FSB provides a lighter superstructure reducing demand on substructure
- FSB allows accelerated construction since forms are not required to pour concrete deck
- FSB are light members facilitating beam erection
- GFRP & CFRP benefits
 - Eliminates the need for additional concrete cover
 - Eliminates concrete additives
 - Eliminates waterproofing sealants for corrosion protection
 - Reduces labor and equipment costs
 - Longer service life
 - Reduces future maintenance costs

US-1 Over Cow Key Channel Span Replacements with CFRP/GFRP-PC Florida Slab-Beams

13

Project Design

Criteria

Design Criteria

- AASHTO LRFD Bridge Design of Concrete Bridge Design Specifications, 8th Edition, 2017
- FDOT Structures Manual 2018
- AASHTO Guide Specification for the Design of Concrete Bridge Beams Prestresses with Carbon Fiber-Reinforced Polymer (CFRP) Systems, 1st Edition, 2018
- FDOT Standard Specifications for Road & Bridge Construction, 2019 Sections 932 & 933
- No impact on existing foundation
- Environmental

tra.

- Stringent turbidity requirements
- Monitoring on construction activities

tra.

Project Design

FSB Design Br. 900086

Project Design

Project Design FSB Design Br. 900086

FSB Design Br. 900086

Deck reinforcing

US-1 Over Cow Key Channel Span Replacements with CFRP/GFRP-PC Florida Slab-Beams

Design Parameters

- Concrete
 - FSB f'_c = 8.5 ksi
 - Deck f'_c = 5.5 ksi
- GFRP: #4 rebar
 - f_{fu} = 94 ksi
 - E_f = 6,500 ksi
- · CFRP: 0.6" diameter 7 wire strands
 - F_{pu CFRP} = 341 ksi
 - E_p = 22,400 ksi

Loads

- · DC1: Non-composite loads
 - FSB 12x56
- DC2: Composite loads
 - Barriers = 0.091 klf/Bm
 - Sidewalk = 0.09 klf/Bm
- · Composite loads (DW)
 - FWS = 0.056 klf/Bm
 - Utilities = 0.053 klf/Bm
- Design truck
- HL 93
- · Permit truck
 - FL 120

Project Design

FSB Design Br. 900086

Design truck controlling forces Bending forces - Midspan

- M_{DC} = 229.0 k-ft
- M_{DW} = 18.8 k-ft
- M_{LL+IM} = 258.7 k-ft

Design forces - Midspan

- M_{Serv1} = 503.1 k-ft
- M_{Serv III} = 451.4 k-ft
- M_{Strl} = 879.0 k-ft

Shear forces – At ends

- V_{DC} = 24.2 k
- V_{DW} = 1.94 k
- V_{LL+IM} = 54.7 k

Design forces - At ends

• V_{Str I} = 130.3 k-ft

US-1 Over Cow Key Channel Span Replacements with CFRP/GFRP-PC Florida Slab-Beams

19

tpa.

Design results

Service I - Midspan

- Top Slab: f_{c-slab} = 1.3 ksi < 0.6 f'_{c-slab}
- Top Flange: f_{c-FSB} = 2.3 ksi < 0.6 f'_c

Service III - Midspan

• Bottom Flange: $f_{c-FSB} = -0.12$ ksi < $0.095\sqrt{f_c'}$

Strength I - Midspan

- Compression controlled, $\phi = 0.75$
- $\phi M_n = 970.3 \text{ k-ft} > M_u = 879 \text{ k-ft}$
- · No need to verify min reinforcement

Shear forces – At ends

- Straight strands, $V_p = 0$
- Bonded strands, $\phi = 0.90$
- Transverse rebar strain limited to 0.004

Project Design FSB Design Br. 900086

- Concrete contribution $\phi V_c = 280.3 \text{ k}$
- $\phi V_n = 208.3 \text{ k} > V_u = 130.3 \text{ k}$
- Since $V_u > 0.5 \phi V_c$, provide min reinforcing
- · Min reinforcement satisfies interface shear
- Additional longitudinal reinforcement due to vertical shear is not required

Schedule

Construction Timeline

- Kiewit Infrastructure South; 6.17 Million (10/31/2019) & 167 days
- Construction started on March 16, 2020
- Reversible lanes were implemented on April 15, 2020 -- Bridge 900086 was closed to traffic
- Traffic shift on Bridge 900125 was at 10 am; relocation of delineators took 20 minutes
- · Traffic was shifted to newly built 3-spans of Bridge 900086 on 7/6/2020
- Traffic shift on Bridge 900086 was at 2 pm; relocation of delineators took 20 minutes
- Bridge were open to two lane of traffic on 9/25/2020
- Anticipated completion day 11/12/2020

US-1 Over Cow Key Channel Span Replacements with CFRP/GFRP-PC Florida Slab-Beams

21

tpa.

• Existing bridges have 2 lanes of traffic in each direction

- Carried out a traffic analysis during construction to allow an Innovative MOT scheme:
 - Maintains existing number of lanes in each direction during peak hours
- Reversible lanes during MOT First Time application using flushmounted removeable delineators on an arterial facility in the State
- Pedestrian traffic is maintained

US-1 Over Cow Key Channel Span Replacements with CFRP/GFRP-PC Florida Slab-Beams

Precast Plant

Rolls of CFRP

Mesh & braided grip

CFRP: 7 wire 0.6" strand

tpa.

US-1 Over Cow Key Channel Span Replacements with CFRP/GFRP-PC Florida Slab-Beams

23

Construction Activities

Precast Plant

Wedges and couplers of CFRP and Standard prestressing steel

CFRP strand

tpa.

24

Precast Plant

CFRP prestress in casting bed

CFRP and Standard prestressing steel couplers layout

Prestressing steel

CFRP strands

tpa.

US-1 Over Cow Key Channel Span Replacements with CFRP/GFRP-PC Florida Slab-Beams

25

Construction Activities

Precast Plant

CFRP prestressing & GFRP rebar inside form

CFRP strands

tpa.

Precast Plant

Cast FSBs

tpa.

US-1 Over Cow Key Channel Span Replacements with CFRP/GFRP-PC Florida Slab-Beams

27

Construction Activities

Storage at Job Site

Delivery & Storage at Job Site

US-1 Over Cow Key Channel Span Replacements with CFRP/GFRP-PC Florida Slab-Beams

FSB Erection

Erection of 3rd FSB

tpa.

US-1 Over Cow Key Channel Span Replacements with CFRP/GFRP-PC Florida Slab-Beams

29

Construction Activities

Deck Reinforcing Installation

Deck Reinforcing Installation

Deck Pouring

tpa.

tpa.

US-1 Over Cow Key Channel Span Replacements with CFRP/GFRP-PC Florida Slab-Beams

31

Construction Activities

Reversible Lanes

Innovative MOT Concept in place from 4/15/2020 to 9/25/2020 - ZERO accidents

Reversible Lanes

Bridges 900086 and 900125 open to regular traffic on 9/25/2020

For more information visit https://www.bpaengineers.com/successful-reversible-mot-at-cow-key/

tpa.

US-1 Over Cow Key Channel Span Replacements with CFRP/GFRP-PC Florida Slab-Beams

33

October 27, 2020

Field Applications of Non-Conventional Reinforcing and Strengthening Methods for Bridges and Structures, Part 2 of 3

Moderators: Antonio Nanni & Steven Nolan - 6 x 16 min. presentations + 3 min. Q&A each.

10:05 am	An Introduction to GFRP Rebar and Recent International Field
	Applications - Peter Renshaw (Pultron Composites)
10:24 am	Recent Canadian Developments on Non-Conventional Reinforcing for
	Concrete Structures, Design Codes, and Applications in Buildings and
	Bridges - Brahim Benmokrane (University of Sherbrooke)
10:43 am	3-Span GFRP-RC Flat-Slab Bridge and Novel Seawall over Ibis Waterway
	Sybille Bayard (CONSOR Engineers)
11:02 am	5,000 ft. GFRP-RC Seawall Protects Highway A1A along Flagler Beach
	Christian Steputat <i>(University of Miami)</i>
11:21 am	Next Generation GFRP Bar Properties and Bridge Implementation
	Economics - Doug Gremel (Owens Corning Infrastructure Solutions)
11:40 am	6-Span CFRP-PC/GFRP-RC Bridge over Placido Bayou
	Chris Gamache (CARDNO)

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Comateenbar"

Introduction to GFRP Rebar & Recent Field Applications

Pete Renshaw Pultron Composites Ltd Mateenbar Ltd

The use of Steel Rebar has a long history

C mateenbar

It is the standard method of reinforcing concrete structures

It is appropriate for more than 90% of applications

But, what about the other 10%?

There are some applications where steel is not the best reinforcement

Comateenbar

Currently, many architects & engineers are not aware that there are alternatives to steel rebar

So, they continue to use steel

The Result

4 Fe + 3 $O_2 \rightarrow$ 2 Fe₂ O_3

Iron Oxide (Rust) is larger than steel

Steel rebar expands as it rusts

Expansion of rebar causes Spalling

concrete structures to blow apart

A <u>Very Expensive</u> Chemical Reaction

 $4Fe + 3O_2 \rightarrow 2Fe_2O_3 - \$$

The Cost

CNN story from 2018

There are more than 54,000 bridges in the US in need of repair, says this study

By Mercedes Legulzamon and Saeed Ahmed, CNN © Updated 0010 GMT (0810 HKT) February 3, 2018

(CNN) — There are more than 54,000 bridges in the United States that need to be repaired or replaced. That's good news -- relatively speaking -- because a year ago, the number was more than 55,000.

The latest figure comes from a report by the American Road and Transportation Builders Association, a group that advocates for strong investment in transportation infrastructure.

Using data from the Federal Highway Administration, the group releases an annual Deficient Bridge Report.

A \$1T Infrastructure Plan

37 Years to Repair or Replace

Many of these Bridges are failing due to Spalling of Concrete

GFRP rebar is a viable alternative

C mateenbar

GFRP - Glass Fibre Reinforced Plastic Composite Material

GFRP Rebar

- 2 x tensile strength of mild steel
- 1/4 the weight of steel
- Non electromagnetic
- **Excellent Thermal Insulator**
- Cuttable
- Non-metallic, so No Rust

Tensile Strength 145 ksi (1000 Mpa)

Tensile Modulus 5800 to 8700 ksi (40 to 60 GPa)

Elastic until Failure

Weight

Comateenbar

1/4 the weight of steel

1.5" bar at 20ft weighs less than 33 lb

Significant Labour Saving on Construction Site

Comateenbar

Safety in High Voltage Areas

No Electromagnetic Induction

No Electrical Interference

Aircraft Compass Calibration Pads

Calibration & Housing of Sensitive Electromagnetic Equipment

C mateenbar

Insulated Concrete Sandwich Panel Construction

Homes & Industrial

Cuttable

C mateenbar

Soft Eyes for Tunnels

Non Metallic – No Rust

Steel Rebar Begins to Rust Even Before Concrete is Poured

C mateenbar

ACI 440.3R – Accelerated Durability Test

96% Tensile Strength Retained after equivalent of 100 Years

GFRP Rebar in Harsh Environments

Comateenbar

Cost Comparison - Materials

Example (Middle East)

Total cost comparison. 2mx2m panel

Concrete used with GFRP is 30MPa (corrosion resistance not required) @ AED200/m³

Concrete used for steel reinforcement is 50MPa concrete @ AED300/m³

Concrete Savings helps offset GFRP cost

Total Difference = 7%

amateenbar

Total Cost Difference = 7%

GFRP rebar increases asset lifespan

Real Cost of GFRP is effectively lower as asset value is retained

Life-time cost comparison

Environmental Considerations

Codes & Guides

C mateenbar

2018

Design Guide Specifications for GFRP-Reinforced Concrete

2" EDITION

יי מערכי אינער אינער אינער אינער אינער אינעראי אינעראי אינעראי אינעראי אינעראי אינעראי אינעראי אינעראי איי

Designation Offentioners - 17

Standard Specification for Solid Round Glass Fiber Reinforced Polymer Bars for **Concrete Reinforcement**

ander i versitieren de fan het de seren filmen fan de seren en seren in seren in de seren de seren de seren de I negen anteine en la filmen al de seren de jaar de serene besette in persitier interior filmen de jaar d'het nei de Lagencember of deseren al deseren de seren de seren de seren de seren de

171 Tow Matheah Int Categories Dreams of Conserva-

Child Child Los Moiste la Dasse Papers el Vileo Estatuyo (Pusses Marco Caralos Marco Marco Carallo Carallo Carallo Carallo Carallo el Filo estatusentri hayare Nano, Sangana Baro Shalil Child Teo Marco I en Vila Fancasan el Vileo Rostana Partene (PRS): Nano Carapane Baro and a Panto Carallo Carallo Santo Sangat el Vileo Rostana Partene (PRS): Nano Carapane Baro and a Panto Carallo Santo Santo I a Santo Sangat el Vileo Rostana Partene Marco Carapane Ray el Vileo Rostana Partene Marco Carapane Ray el Vileo Rostana Santo Santo Santo Santo Santo Santo Rostana Partene Marco Carapane Ray el Vileo

In Pulses Series Presented for Nativel In Society of Star Nonthrough Pultomer of SPI Barn Harn to Barnd Local

Warfe Generatings for Europeake Materials of Endlifetimed for Merical for Ecolor Properties of

6. Repr.
1.1 The spectral in our height and benchmark (prights)
1.3 The previously much benchmark (prights)
1.4 The previously much benchmark (prights)
1.4 The previously much benchmark (prights)
1.5 The previously much benchmark (prights)
1.5 The previously much benchmark (prights)
1.6 The prime of the prights)
1.6 The prime of the

min devide haves.
113 Ber produce annöng ve den sondari an qualeta ming de sei methodi and mesi sun far squarmone gives in far an entrologi and provi sun far squarmone gives in far an explosite using process notabilitis de mais nontrativa and search angelina entrologi and and anno annotation.
1.3 The ent of min, sportbalants reformers some and importent processing devices and the states and important of the sportbalants.
1.4 The definition of the states of important of the sportbalants.
1.4 The definition of the sportbalants.
1.4 The definition of the sportbalants. 3. Referenced December 11 of TW familiants

 J. J. O'TH' Standards".
 McDiALMON, Neuroparation for behaviorated bard bare for Concept Reductioned.
 McDiALMON, Neuroparation Research with Manage.
 Dirth Tool Mathed for Neuroparation of Provid 1000° The Mathed for Neuroparation of Provid 1000° The Mathed for Neuroparation of Neuroparation (Neuroparatic).
 McDiaLMON State of Neuroparation of Neuroparation (Neuroparatic).
 McDiaLMON State of Neuroparation.
 McDiaLMON State.
 1.4 De following FAP matchin are not extend by the

LAT has make of new due one buildwains the new

LC has been as an end of the feature of the type then is, hyper 1997.
LLP the heads are considered without considered in the phase or execution.
LLD then with generative value with sound uncer.

1.1.0 Permandational publication protogo made web 780°

3.4 Das quertestes a applicable for other 60 in Span-basise (2010/6) or independenties for Spanfordier

0005. 18.7 The values wanted in online inclusional action of M anti-an torbe supported as standard. Within the word, the such possi-statis are determine therein. The values standard as card possi-statis are not reast approximate, thereine, such expected with the word-scial possibility of the values. Combining values them the two-statistical action is a manifold statement with the spectration.

Come allow appendix to 1 Mill Related Ingen (M) Degets and a set of the set o

Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars

\$806-12 (reaffirmed 2017)

Design and construction of building structures with fibre-reinforced polymers

FLORIDA DEPARTMENT OF TRANSPORTATION

STRUCTURES DESIGN GUIDELINES

> FDOT STRUCTURES MANUAL YOLUME 1 JANUARY 2016

Doha Metro, Qatar

Emirates Aluminium Smelter, Abu Dhabi

Rail Detection Loops, QLD, Australia

Toll Plaza, Turnpike, Maine

YAS Island Formula 1 Track, UAE

NATO, Afghanistan

Northside Storage Tunnel, Sydney

Potash Plant, Jordan

Kwinana Desalination Plant, WA, Australia

Terminal 4, Jebel Ali Port, UAE

Sea wall Dibba, United Arab Emirates

Interstate I5, Washington, USA

State Highway and Railway Repair, Kaikoura

Flood Mitigation Channel, Jazan, KSA

Sculpture, UAE

Schools on Pacific Atolls, Marshall Islands

GFRP is a Genuine Alternative to Steel

- ✓ Cost Effective
- ✓ Proven History
- ✓ Codes & Guides
- ✓ Ideal for Challenging Environments

Thank You

Further information available at <u>www.mateenbar.com</u>

Questions

ACI Fall 2020 Virtual Convention

October 28th 2020, 9:30am – 2:30pm, Virtual

Recent Canadian Developments related to Unconventional Reinforcing for Concrete Structures, Design Codes, and Applications in Buildings and Bridges

Dr. Brahim Benmokrane, P. Eng. FRSC, FACI, FCSCE, FIIFC, FCAE, FEIC, FBEI Professor of Civil Engineering

Canada Research Chair in Advanced Composite Materials for Civil Structures NSERC/Industrial Research Chair in Innovative FRP Reinforcement for Concrete Director, Sherbrooke University Research Centre on FRP Composites (CRUSMAC)

University of Sherbrooke, Sherbrooke, QC, CANADA E-mail:Brahim.Benmokrane@usherbrooke.ca

Co-authors:

Hamdy Mohamed, Khaled Mohamed, and Salaheldin Mousa

Outline of presentation

- <u>New Editions of CAN/CSA Standards &</u> Specifications : CSA S807-19 and CSA S6-19
- Introduction- FRP Reinforcement in Canadian Codes and Standards: <u>Recent Developments</u>
- <u>Recent Application of GFRP reinforcement in</u>

 Infrastructures

New Editions of CAN/CSA Standards & Specifications : CSA S807-19 and CSA S6-19

FRP Recent CSA Standards & Specifications

CSA S807:19 National Standard of Canada

CSA S6:19

Specification for fibre-reinforced polymers

Canadian Highway Bridge Design Code

Convertise Wantier's Casy Only. Distribution Prohibited.

Committee Mamber's Copy Only. Distribution Prohibited

CSA S807-19

CSA S6-19

HOW TO CERTIFY/QUALIFY/SPECIFY FRP BARS

New Edition of CSA S807 (2019)

The most comprehensive specs for FRP rebars in the world

CSA S807

- First edition in 2010
- Re-approved in 2015
- New Edition in 2019 (Second Edition)

Specification for fibre-reinforced polymers

CSA Material Specifications (CSA S807)

Describes permitted constituent materials, limits on constituent volumes, and minimum performance requirements.

Provides provisions governing testing and evaluation for product qualification and QC/QA.

Number of samples 20

10.1

4.2.2.1

The manufacturer shall define the production lot size for the production method used for the FRP (e.g., by weight, area of cross-section, and linear measurement). The manufacturer shall record values for the amounts of materials used in each lot. The production lot size of straight bars shall be divided in sub-lots of 20 000 m of bars up to a maximum of 60 000 m of bars of the same diameter. The manufacturer's quality control tests and samples shall be in accordance with Tables 7 and 8 for the first sub-lot of 20 000 m of bars of each production lot. For the two subsequent sub-lots of 20 000 m each, the manufacturer's quality control tests shall include

- a) fibre content;
- b) glass transition temperature;
- c) cure ratio;
- d) water absorption for one week; and
- e) apparent horizontal shear strength.

Table 7 (Concluded)

-	0

	Number and details of test specimens required					
Property	Qualification test	Manufacturer's QC	Owner's QA	Provided if needed for special applications†	Test method	Specified limits
Apparent horizontal shear strength by the short-beam method*	24 tests from 3 production lots for 10, 13, 15, 20, 25, and 32 mm or only the sizes manufactured by the supplier	5 tests for each bar size per lot used on project	5 tests for each bar size per lot used on project	N/A	ASTM D4475	 ≥ 35 MPa for Grade I bars ≥ 40 MPa for Grade II bars ≥ 45 MPa for Grade III bars
Apparent horizontal shear strength in high pH solution at 60 °C (alkali resistance)*	24 tests from 3 production lots for 10, 13, 15, 20, 25, and 32 mm or only the sizes manufactured by the supplier	N/A	N/A	N/A	ASTM D4475 Test duration: 3 months	The average from testing shall not be less than 85% of the average from room temperature testing for qualification (Table 7).

Table 9Minimum pullout capacity of anchor-headed bars(See Table 7.)

Fibre	Diameter, mm	Minimum pullout capacity, kN	Slip at loaded end limits
Glass	15	100	At 100 kN no more than 0.5 mm
	20	120	At 100 kN no more than 0.5 mm

Table 7 (Concluded)

	Number and details of test specimens required					
Property	Qualification test	Manufacturer's QC	Owner's QA	Provided if needed for special applications†	• Test method	Specified limits
Pullout capacity of anchor-headed glass fibre- reinforced polymer bars	f 24 tests from 3 production lots for 15 and 20 mm or only the sizes manufactured by the supplier	N/A	N/A	5 tests on bar size requested	ASTM D7913/D7913M A 300 × 300 × 300 mn concrete block shall b used.	1 <mark>Minimum values</mark> n <mark>defined in</mark> e <mark>Table 9</mark> ,
Durability characteristic of anchor-headed glass fibre- reinforced polymer bars	24 tests from 3 production lots for 15 and 20 mm or only the sizes manufactured by the supplier	N/A	N/A	5 tests on bar size requested	Test method in Annex F	The average from testing shall not be less than 80% of the average unconditioned testing for qualification (this Table).

Production lot size of Straight bars

The production lot size of <u>straight bars</u> shall be divided in sub-lots of 20,000 m of bars up to a maximum of 60,000 m of bars of the same diameter.

QC tests as indicated in Tables 3 and 4 for the first sub-lot of 20,000 m.

For the two subsequent sub-lots of 20,000 m each, the QC tests shall include:

- fibre content;
- glass transition temperature;
- cure ratio;
- water absorption for one week; and
- apparent Horizontal Shear Strength.

Production lot size of bent bars

The production lot size of bent bars of congruent shape and anchor-headed bars shall be divided in sub-lots of 2000 pieces up to a maximum number of 6000 pieces.

QC tests as indicated Tables 3 and 4 for the first sub-lot of 2000 pieces.

For the subsequent two sub-lots of 2000 pieces each, the QC tests shall include

- fiber content;
- glass transition temperature;
- cure ratio;
- water absorption for one week; and
- apparent Horizontal Shear Strength.
- Alkali resistance in high pH solution (without load), the tensile capacity retention \geq increased from 80% to 85% UTS.
- Alkali resistance in high pH solution (with load), the tensile capacity retention ≥ increased from 70% to 75% UTS.

Table 1ADesignated Bar Diameter and Nominal Area(Same as ASTM D7957/D7957M - 17)

Diameter mm	Nominal cross- sectional area (mm2)	Minimum measured cross- sectional area (mm2)	Maximum measured cross- sectional area (mm2)
8	50	48	79
10	71	67	104
13	129	119	169
15	199	186	251
20	284	268	347
22	387	365	460
25	510	476	589
30	645	603	733
32	819	744	894
36	1006	956	1157

Minimum Tensile Strength for GFRP Rebars (Grade III)

Minimum tensile strength for straight bars (#4 to #8) : 1000 MPa (145 ksi)

Minimum tensile strength for straight portion of bent bars (#4 to #8) : 1000 to 850 MPa (145 to 125 ksi)

Minimum tensile strength for bent portion of bent bars (#4 to #8) : 450 to 390 MPa (65 to 57 ksi)

Table 6

Grades of FRP bent bars corresponding to their minimum

modulus of elasticity of the straight portion, GPa

(See Clauses 8.3 and 10.1 and Table 7.)

	Grade IB	Grade IIB	Grade IIIB
Designation	Individual bars	Individual bars	Individual bars
AFRP	50	60	65
BFRP	50	55	60
CFRP	80	100	120
GFRP	40	45	50

Annex E (normative) <mark>Method of test for determining the strength of the bent</mark> portion of FRP reinforcing bars

Note: This Annex is a mandatory part of this Standard.

E.1 Scope

E.1.1

This test method is used to determine the force in the straight portion of a bent fibre-reinforced polymer (GFRP) bar, used as internal reinforcement for concrete structures, when rupture occurs in the bend.

Annex E (normative) Method of Test for Determining the Strength of the Bent Portion of FRP Reinforcing Bars

TOP VIEW

◬

325

Figure 1 – General Arrangement

Figure 2 – Dimensional Arrangement of the Block (nominal diameter of 20 mm or less, bent at an angle between 0 and 180 degrees, and manufactured with a bend-radius-to-bardiameter ratio of 4 or less)

GFRP #5 Lot #	Ultimate Load (kN)	Ultimate Stress (MPa)	Tensile Modulus (GPa)	Ultimate Strain (%)	GFRP #6 Lot #	Failure Ioad (kN)	Bend Strength (MPa)	Strength Reduction Factor (%)
1	335	1180	63	1.9	1	182	639	54
2	307	1082	62	1.8	2	179	630	58
3	318	1118	64	1.7	3	187	659	59

FRP Recent CSA Standards & Specifications

CSA S6:19

Canadian Highway Bridge Design Code

CSA S6 (CHBDC)

- First Edition in 2000 (GFRP as secondary reinforcement)
- Second Edition in 2006 (GFRP as main reinforcement)
- Third Edition in 2010 (FRP-RC beams & slabs, Shear equation, crack-width, Kb, and barrier walls)
- Re-approved in 2014
- Fourth Edition in 2019.

- 16.1 Scope
- 16.2 Definitions
- 16.3 Abbreviations and symbols
- 16.4 Durability
- 16.5 Fibre-reinforced polymers
 - 16.5.1 FRP bars and grids
 - 16.5.2 FRP strengthening systems
 - 16.5.3 FRP tendons
 - 16.5.4 Material properties
 - 16.5.5 Confirmation of the specified tensile strength
 - 16.5.6 Resistance factor
 - 16.5.7 Minimum bend-radius-to-bar-diameter ratio of bent FRP bars

- 16.6 Fibre-reinforced concrete
- 16.7 Externally restrained deck slabs
- 16.8 Concrete beams, slabs and columns
 - 16.8.2.4 Deflections and rotations
 - 16.8.4.2 Development length of FRP bundled bars
 - 16.8.4.3 Development length of FRP bent bar
 - 16.8.5 Development of headed FRP bars and grids
 - 16.8.5.1 Anchorage of headed FRP bar
 - 16.8.5.2 Development length for FRP grids
 - 16.8.7 Design for shear and torsion
 - 16.8.9 Compression components
 - 16.8.10 Cast-in-place deck slabs with FRP stay-in-place structural forms

CSA- 16.8.11 Strut-and-tie model for deep beams, corbels, and short walls GROUP

• 16.9 Stressed wood decks

16.10 Barrier walls

- 16.10.1 FRC barrier wall design details
- 16.10.2 Barrier wall design details with front and back reinforcement
- 16.10.3 Test Level 1, 2, 4, and 5 barrier wall design details
- 16.10.4 Factored punching shear resistance of concrete barrier to transverse traffic

16.11 Repair of damaged bridge barrier walls, curbs, and slabs reinforced with FRP bars

16.12 Rehabilitation of existing concrete structures with FRP

- 16.12.4 Retrofit for enhancement of concrete confinement
- 16.12.5 Retrofit for lap splice clamping

- Annex A16.1 (informative)740 Installation of FRP strengthening systems
- Annex A16.2 (normative)743 Quality control for FRP strengthening systems
- Annex A16.3 (informative) GFRP composite bridges

Durability/Material properties/New structural materials

16.5.3 Resistance factor (phi factor) phi factor of GFRP bars increased from 0.55 to 0.65

Rational:

Durability of GFRP bars has been enhanced during the last few years:

- 1. Better manufacturing process and quality control
- 2. Better constituents : 1) ECR-Glass versus E-Glass; Most of the GFRP bar manufacturers are using boron-free glass fibres (ECR, commercial name Owens Corning), 2) High-performance resins (advances in polymer chemistry)
- 3. Durability tests in alkaline solution show high strength retentions without load and under loads (CSA S807): 1) greater than 90-95% (without load), 2) greater than 83-90% (with load).
- 4. Recently the MTQ took cores for in-service bridges (more than 15 years). No degradation.
- 5. Durability of GFRP versus durability of concrete? The phi for concrete in the CHBDC is 0.75.

New Clauses in Chapter 16 of CSA S6-19

Maximum Axial Capacity

 $P_0 = \phi_c \alpha_1 f'_c A_g + \phi_f f_f A_f$

 $f_f = 0.002 E_f$

Longitudinal FRP reinforcement may be used in members subjected to combined flexure and axial load. However, the compressive strength of FRP reinforcement shall be limited to a stress corresponding to a strain of 0.002 in the calculation of the factored axial and flexural resistance of reinforced concrete members.

New Clauses in Chapter 16 of CSA S6-19

Barrier walls

The use of headed bars is now allowed for double-face reinforced concrete barriers

Introduction- FRP Reinforcement in Canadian Codes and Standards: Recent Developments

<u>60 GPa Modulus GFRP Bent Bars</u> Manufactured with a New Process

60 GPa Modulus GFRP Bent Bars Manufactured with a New Process

Modulus of Elasticity: 63 GPa (9 msi)

Tensile Strength of straight portion: <u>1160 MPa</u> (<u>168 ksi</u>)

Tensile Strength at bend: 700 MPa (100 ksi)

Recent Developments in GFRP Bars

Bendable GFRP bars with thermoplastic resins

Physical, Mechanical, and Durability Characteristics of Newly Developed Thermoplastic GFRP Bars for Reinforcing Concrete Structures

Recent Developments in GFRP

Bendable GFRP bars with thermoplastic resins

Dronorty	Thermoplastic bars			
Property	#3	#5	#6	
Tensile strength (MPa)	1,421	1,062	1,033	
Tensile modulus (GPa)	65.4	61.5	62.5	
Tensile strain (%)	2.17	1.65	2.14	
Transverse shear	207	196		
strength, (MPa)	207	100	-	
Interlaminar-shear	66 6	46.0	15 1	
strength, S _u (MPa)	0.00	40.0	40.1	
Bond strength (MPa)	-	27.3	-	

Recent Developments in FRP Bars

Basalt FRP bars with superior resistance to alkali attacks

Property retention after conditioning in alkaline solution for 3 months at 60°C:

Property	Status	Average (MPa)	Retention (%)	
Toncilo Strongth	Reference	1263	102 0/	
ienslie Strengtn	Conditioned	1306	103 76	
Tensile Modulus	Reference	51.2	100 %	
	Conditioned	51.3		
Interlaminar	Reference	40		
shear strength	Conditioned	43	107 %	

Current Field Applications in Canada using GFRP Bars

- Bridges decks, barriers/parapets, ret walls, sidewalks, app slabs, precast on ped bridges
- Transit (LRT/BRT) bridge structures, platforms, slabs, plinths, track beds, non-conductive components
- Tunnelling soft-eyes; slurry and D walls, caissons, secant piles
- Buildings distribution slabs, warehouse & heated slabs, garage slabs
- Precast components structural and architectural
- Hydro/substations chambers/vaults, duct banks, slabs

B&B FRP Manufacturing, Pultrall, TUF-BAR Canada, SFTec, Pultron, etc.

Recent Application of GFRP reinforcement in Infrastructures

Recent Application of GFRP reinforcement in Infrastructures

Clyde River Bridge – Prince Edward Island, Canada

Clyde River Bridge – Prince Edward Island, Canada

. 84

LIFE SCIENCES BUILDING – Big portion of the building totally reinforced with GFRP

LIFE SCIENCES BUILDING – Big portion of the building totally reinforced with GFRP

LIFE SCIENCES BUILDING – Big portion of the building totally reinforced with GFRP

Example of engineering firms that are familiar with the design using FRP bars:

- WSP,
- AECOM,
- Stephenson Engineering,
- RJC,
- Stantec,
- Mott MacDonald,
- ARUP,
- Moses Structural Eng'rs, Entuitive,
- McIntosh Perry,
- Belanger Eng'r Associated,
- NORR,
- Blackwell Structural Engr's,
- IBI Group,
- EXP, CIMA+,
- GM Blue Plan,
- Parsons,
- AMEC Foster Wheeler,
- Brenik Eng'r,
- Dorlan Eng'r,
- Atkins & Van Groll Eng'rs,
- SNC-Lavalin,
- EMS,
- etc.

Underground Enclosures

Concluding Remarks

- 1. Provisions governing testing and evaluation for certification and quality control/assessment, as well as FRP design provisions, are now in place to regulate the materials specifications and design aspects and guide FRP manufacturers and end-users
- 2. Application of GFRP bar in different concrete structures in Canada has been proved to be very successful to date
- 3. The concrete structures reinforced with GFRP bars have a first cost almost the same as concrete structures reinforced with epoxy coated or galvanized steel bars. Stainless steel bars are 2 to 4 times more expensive than GFRP bars.

Concluding Remarks

Current Applications in Bridges & Buildings

<u>Status</u>

Very good structural behaviour

Excellent short-term durability (~ 25 years)

Thank you for your attention

Contact:

E-mail:brahim.benmokrane@usherbrooke.ca

3-Span GFRP-RC Flat-Slab Bridge and Novel Seawall over Ibis Waterway

Sybille Bayard, PE E-mail: sbayard@consoreng.com

October 27, 2020

3-SPAN GFRP-RC FLAT SLAB BRIDGE AND NOVEL SEAWALL OVER IBIS WATERWAY

Agenda

- **Existing Bridge Conditions**
- **Proposed Bridge Replacement**
- **Codes and Specifications**
- **GFRP-RC Continuous Flat Slab**
 - Bending Moment Capacity
 - Crack Width Verification & Long-Term Deflection
 - Shear Capacity
- **GFRP-RC Bent Cap Design**
- **GFRP-RC Soldier Wall Precast Panel**
- **GFRP Construction Lesson Learns**
- **Estimated Construction Costs of GFRP**

3-SPAN GFRP-RC FLAT SLAB BRIDGE AND NOVEL SEAWALL OVER IBIS WATERWAY

THANK

Steve Nolan, PE – Florida Department of Transportation Ramon Otero, PE – Florida Department of Transportation > Donovan Pessoa, PE – Florida Department of Transportation Antonio Nanni, PhD, PE – University of Miami Marco Rossini, MS, PhD Candidate – University of Miami Steven R. McNamara – ANZAC Contractors, INC Yves Amisial, EI – CONSOR Engineers, LLC Christopher Howard, PE – CONSOR Engineers, LLC Frank Hickson, PE – CONSOR Engineers, LLC

Existing Bridge Conditions

N CONSOR

3-Span GFRP-RC Flat-Slab Bridge and Novel Seawall over Ibis Waterway

29 TONS Load Restricted

Built in 1950

Three-Span Reinforced Concrete T-Beams Concrete bents supported on 30-in circular concrete piles

Coastal Bridge – extremely aggressive marine environment

Load Restricted Bridge (29 tons) Age related deterioration evident in substructure/foundation (spalls with some delamination and pile jackets at intermediate bents)

Proposed Bridge Replacement

CONSOR

Codes and Specifications used in Design

AASHTO LRFD Bridge Design Specifications for GFRP – Reinforced Concrete Bridge Deck and Traffic Railings, November 2009 FDOT Structures Manual, January 2018

> Canadian Highway Bridge Design Code, CSA S6-14, Section 16.8.7

3-SPAN GFRP-RC FLAT SLAB BRIDGE AND NOVEL SEAWALL OVER IBIS WATERWAY

AASHTO LRFD Bridge Design Specifications, 7th Edition

ACI Guide for the Design and Construction of Structural Concrete FRP Bars, ACI 440.1R-15 FDOT Standard Specifications for Road and Bridge Construction, January 2019

COMPARISON CHART BETWEEN CARBON STEEL AND GFRP DESIGN

LOCATION	CARBON STEEL	GFRP
POSITIVE MOMENT (BOTTOM SLAB)	#7 @ 6 in.	#10 @ 6 in.
NEGATIVE MOMENT (TOP SLAB)	#7 @ 6 in.	#10 @ 6 in.
SHEAR REINFORCEMENT	NOT REQUIRED	NOT REQUIRED
LONG TERM DEFLECTION	0.11 in.	0.45 in.

Comparing Bending Moment Capacity in the Slab:

200 Failure (rupture) 150 Stress (ksi) Yielding 50 0 0.01 0.02 0 0.03 0.05 0.05 Strain -----Steel (Idealized elastic-plastic behavior) -O-GFRP (elastic behavior)

Stress-Strain Curve (Steel vs. GFRP)

GFRP Size and Tensile Loads - FDOT Standard Specifications

Table 3-1										
	Sizes and Tensile Loads of FRP Reinforcing Bars									
Bar Size	Bar Size Nominal Nominal Minimum Guaranteed									
Designation	Bar	Cross	Measured Cross	nsile Load						
Diameter Sectional (in ²) (in) Area						(kips)				
		(in ²)	Minimum	Maximum	GFRP Bars	CFRP Bars				
2	0.250	0.049	0.046	0.085	6.1	10.3				
3	0.375	0.11	0.104	0.161	13.2	20.9				
4	0.500	0.20	0.185	0.263	21.6	33.3				
5	0.625	0.31	0.288	0.388	29.1	49.1				
6	0.750	0.44	0.415	0.539	40.9	70.7				
7	0.875	0.60	0.565	0.713	54.1	-				
8	1.000	0.79	0.738	0.913	66.8	-				
9	1.128	1.00	0.934	1.137	82.0	-				
10	1.270	1.27	1.154	1.385	98.2	-				

Tensile strength calculated as: Guaranteed Tensile Load x C_E For #10 bars = 54ksi

Comparing Bending Moment Capacity in the Slab:

R CONSOR

Crack Width Verification and Long-Term Deflection in the Slab:

End Bent/Intermediate Bent Cap

COMPARISON CHART BETWEEN CARBON STEEL AND GFRP DESIGN

LOCATION	CARBON STEEL	GFRP
POSITIVE MOMENT (BOTTOM REINFORCEMENT)	4#6	5#6
NEGATIVE MOMENT (TOP REINFORCEMENT)	4#6	5#6
SHEAR REINFORCEMENT (STIRRUPS)	#5 @ 11 in.	#6 @ 8 in.

Soldier Pile Walls – Precast panels

Fatigue and Creep Rupture Limit

SERVICE = 1.0EH + 1.0WA + 0.2LS

Maximum sustained tensile stress: $f_{fs} \leq C_C \times f_{fd}$

Where:

 C_c is the Creep rupture reduction factor, equal to 0.3

 f_{fd} is the guaranteed tensile strength x environment reduction factor, equal to 0.7

panels

at End

Bent 4

GFRP Construction Lesson Learns:

GFRP Construction Lesson Learns:

Transportation, Delivery & Handling

Transportation and Delivery

Damaged Panels during construction

GFRP Construction Lesson Learns:

CONSOR

The light weight of GFRP allows for much easier installation, less demand on workers, and much more time efficient

Considerations in Construction Time and Schedule:

No Field Bending – No room for deviation

GFRP bars not readily available

Requires 6-8 weeks for manufacturing

Not available locally – account for transportation time and cost

Estimated Construction Costs of GFRP

GFRP AS-BID CONSTRUCTION COSTS								
Pay Item Description	Unit	Quantity	Unit Price	Total Price				
Fiber Reinforced Polymer Bars, #5 Bar	LF	2,804	\$0.99	\$2,775.96				
Fiber Reinforced Polymer Bars, #6 Bar	LF	11,110	\$1.68	\$18,664.80	Co			
Fiber Reinforced Polymer Bars, #8 Bar	LF	2,081	\$2.29	\$4,765.49	G			
-iber Reinforced Polymer Bars, #10 Bar	LF	8,610	\$4.37	\$37,625.70				
TOTAL ESTIMATED COSTS OF GFRP (Slab, Ben	its, & bulkheads)			\$63,831.95				

NOTE:

50% increase in the cost of GFRP. However this contributes only a 1% increase in the overall cost of the bridge

OTHER BENEFITS

- Durability (100⁺ yrs)
- No corrosion-related maintenance
- Lightweight (Construction workmanship & timeefficiency)

Cost of Steel

REINFORCING S	TEEL ESTIMA		TION COSTS	
Pay Item Description	Unit	Quantity	Unit Price	Total Price
Reinforcing Steel - Superstructure	LB	27,605	\$1.00	\$27,605.00
Reinforcing Steel - Substructure	LB	8,579	\$1.00	\$8,579.00
Reinforcing Steel - Bulkhead	LB	6,005	\$1.00	\$6,005.30
TOTAL ESTIMATED COSTS OF REINFORCING S	STEEL (Slab, Bent	s, & bulkheads)		\$42,189.30

3-SPAN GFRP-RC FLAT SLAB BRIDGE AND NOVEL SEAWALL OVER IBIS WATERWAY

QUESTIONS?

NCONSOR

2020 ACI CONCRETE CONVENTION - A VIRTUAL EXPERIENCE -

FIELD APPLICATIONS OF NON-CONVENTIONAL REINFORCING AND STRENGTHENING METHODS FOR BRIDGES AND STRUCTURES

5,000 Feet (1.6 km) GFRP-RC Seawall/Bulkhead protects State-Highway A1A along Flagler Beach, Florida - USA

SESSION 37: PART 2 of 3 - October 28, 2020 (11:02 Hours)

5,000 Feet (1.6 km) GFRP-RC Seawall/Bulkhead protects State-Highway A1A along Flagler Beach, Florida - USA

UNIVERSITY OF MIAMI Advanced Structures and Materials Laboratory

Christian C. Steputat, P.E., LEED AP BD+C Ph.D. Candidate

CONCRETE

CONVENTIO

Hurricane Matthew in 2016 **60 NEWS HURRICAL** impacted Flagler Beach, FL Sun 2 COPM 20 mph Hurricane Matthew October 8 September 28 - October 9, 2016 Category 2 125 mph October 1

Remains left in the wake of Hurricane Matthew in 2016. Destructive forces at work resulted in the "wash-out" and destruction of the essential <u>State Road A1A</u>, which is an Evacuation Route and is **Critical to the Infrastructure**.

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

CONVENTION

acı

- Severe corrosion damage of existing steel sheet-pile bulkheads and <u>extensive erosion</u> <u>damage of adjacent</u> <u>sand dune systems.</u>
- Implementation of intervention, to <u>avoid</u> <u>future collapse-type of</u> <u>damage</u> to SR-A1A, along Flagler Beach.

The most recent damage from Hurricane Matthew in 2016, resulted in severe damage and <u>undermining of almost one mile</u> of the State Highway (SR-A1A).

STEEL SHEET-PILE WALL THICKNESS EVALUATIONS (BY OTHERS)

State Road A1A (SR-A1A), Flagler Beach, Florida - Seawall Summary of Findings and Results

Wall-Thickness Evaluation of SR-A1A Sheet Pile Retaining Wall at Flagler Beach (January 8, 2016)

- * "...If the corrosion progresses at the current rate, in the next 3 years many piles will start losing the sacrificial steel and no piles will have any sacrificial steel remaining in the next 7 years."
- Average section-loss up to 13 mils/year > 2 times SDG 3.1

Section Loss shown (up to 13 mils/year)

aci

CONCRETE

CONVENTIO

STEEL-REINFORCING vs. GFRP-REBAR Cost Comparison (Published and FDOT Bid-Estimates)

Rebar Size (Square Inches)

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

5

STATE ROAD A1A (SR-A1A), FLAGLER BEACH, FLORIDA - ALTERNATIVES SELECTION

				Weighte				
Alt. No.	Seawall/Bulkhead-Type Description	Wall Cost per Linear Foot	Cost 50%	RUI 25%	Const. 5%	Maint. 20%	Total Score	Final Rank
1	36 Inch Diameter Secant-Pile Wall (Steel-Rebars)	\$ 2,123.16	250	86	25	50	411	2
2	36 Inch Diameter Secant-Pile Wall (GFRP-Bars)	\$2,308.00	230	86	25	100	441	1
3	Anchored Steel Sheet-Pile Wall (Sections)	\$2,146.63	247	125	8	25	406	3
4	Double Cantilever Sheet-Pile Wall (Sections)	\$2,790.81	190	94	13	33	330	4

Note: State Road A1A (SR-A1A) Segment-3 Seawall/Bulkhead Feasibility-Study Cost Comparison (Report Update completed in 2017). Data provided, as published by FDOT, with Alternatives Selection Process shown. The GFRP Alternative 2 was selected.

Table 1: State Road A1A (SR-A1A) Seawall/Bulkhead-Type Alternatives considered and ranked for construction to fortify the Evacuation-Route (Zone-A) and Dune-System

This <u>Alternative-2</u> was selected, due to the <u>corrosion-resistant GFRP's reinforcing</u>, relative "ease" of construction (the site conditions have Coquina Rock, i.e. difficult to drive sheet-pile sheeting), less equipment requirements, relative "fast" speed of construction installation, since no pre-drilling is required, and less community impact, due to less vibration and noise.

STATE ROAD A1A (SR-A1A), FLAGLER BEACH, FLORIDA - VULNERABILITY LIMITS

The most recent damage from Hurricane Matthew in 2016, resulted in severe damage and <u>undermining of almost one mile of the State Highway A1A</u>. The <u>Recovery-Phase</u> includes the building of a <u>Secant-Pile Seawall/Bulkhead</u> along the <u>High Vulnerability Limits in Segment-3</u>, with additional temporary revetment needed.

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

October 28, 2020

ac

ONCRETE

CONVENTIO

Utilization of GFRP bars for reinforcing

COLLEGE of

ENGINEERING

- 4920' length of Secant Pile seawall with GFRP reinforcement <u>long-term durability</u> and additional corrosion protection.
- First FDOT project with greater than one million linear feet of GFRP reinforcing bar.
- Utilization of GFRP bars in lieu of traditional Grade-60 steel rebar in the secant pile which are tipped in a high chloride content sand and water table, and top periodically exposed to salt spray when exposed.

ONCRETE

CONVENT

PRIMARY PILE & CAP SECTION (SHOWN) INTERMEDIATE PILE WITH SINGLE CENTER BAR ONLY

GFRP Secant-Pile Cage-Assemblies Documented

- Note the layout of the GFRP bars and (toe-ends)
- One tension-type GFRP bar in the center of the Secant-Piles will be installed in the field ("wet-insert")
- ✤ Alternate piles will only receive one center GFRP bar
- ✤ GFRP-Ties are <u>not</u> Steel Wire-Ties (see Pictures)
- GFRP Cage-Assembly was "quick" and "lightweight"

The <u>GFRP bars</u> and <u>Cementitious Materials with Grout Fluidifier</u> are expected to significantly reduce the maintenance and repair costs over the life cycle of the seawall/bulkhead project and were instrumental in the rapid installation time of the <u>GFRP-Cages</u> due to the <u>GFRP bars light-weight and fluidity</u> ("mid-range" grout fluidifier) of the concrete-grout. <u>Product performance testing</u> indicates a 70% improvement of water retentivity, per ASTM C-941, 0% bleeding and 2% to 3% expansion, per ASTM C-940 and a normal setting time, per ASTM C-953. The <u>GFRP Laboratory Testing Results Summary</u> for Lot-1, Lot-2 and Lot-3 are shown below:

Test	Standard Tast	Lab	oratory ⁻	FDOT Section			
Prefix Method Laboratory Test Descriptions		Lot 1	Lot 2	Lot 3	Mean	932-3, Table 3-4 Requirements	
Dec	ASTM E2160	Degree of Cure, %	98	100	100	99.3	≥ 95
DSC	ASTM D3418	Glass Transition Temperature, °F	225	275	256	252	≥ 212
FC	ASTM D2584	Fiber Content (by weight), g	84	84	84	84	≥ 70
MAS	ASTM D570	Moisture Absorption (short term), %	0.17	0.18	0.12	0.16	≤ 0.25
MXA	ASTM D792	Measured Cross-Sectional Area for No. 8 bar, in. ²	0.818	0.825	0.803	0.815	> 0.738 < 0.913
TNO	ASTM	Guaranteed Tensile Load, kip	111.4	93.6	104.3	103.1	> 66.8
INS	D7205/D7205M	Tensile Modulus of Elasticity, ksi	8280	7980	7600	7950	≥ 6500
<u>Note:</u> °C = (°F − 32) / 1.8 ; 1 g = 0.04 oz. ; 1 in.² = 645 mm² ; 1 kip = 4.4 <u>kN</u> ; 1 <u>ksi</u> = 6.9 MPa							

Laboratory Testing compliance of GFRP rebars, with respect to FDOT Specifications, was demonstrated and Laboratory Test Results have surpassed the minimum specified requirements with great margin.

Table 2: GFRP Bars - Laboratory Testing Results Summary for Field-Sampled and Laboratory Tested Lot 1, 2 and 3

Secant-Pile Guide Wall Installation

Secant-Pile guide-wall trench boxes were installed to assure alignment of piles

1,847 Secant-Piles were installed via guide-wall

Concrete pouring, i.e. flowable-fill was placed to complete the Secant-Pile layout locations

Removal of steel formwork, prior to drilling Secant-Piles

STATE ROAD A1A - SECANT-PILE WALL

The piles were designed with glass fiber-reinforced polymer (**GFRP**) rebar to eliminate the concern of corrosion and provide **extended maintenancefree service life** to minimize future needed construction activities along the coastal dune system.

CONVENTION

Several "<u>Mitigation-Alternatives</u>" were carefully considered, after which the <u>Secant-Pile</u> system was selected and completed at the end of 2019. The secant-pile system <u>minimized the impact</u> on the existing sand dune-system during construction. Additionally, the <u>Piles are designed with GFRP</u> bars.

The Seawall's <u>Auger-Cast Concrete Secant-Piles</u> are 36 in (910 mm) in diameter and the <u>Primary Piles</u> are 36 ft (11 m) in lengths and are reinforced with 25 No. 8 GFRP bars.

Secant-Pile GFRP-Cage Installation Monitoring, QA/QC and Grout-Fluidifier Testing

1847 Secant-Piles were installed in only 4-1/2 Months for SR-A1A 1847 Secant-Piles were lifted, aligned, centered, and lowered into position

It should be noted that all pile centers have an accuracy of within 1-1/2 in (38 mm) in plan

Per FDOT Specifications, Section 455, Index E, grout needs a minimum standard flow rate of 15 seconds and achieve a minimum grout compressive strength of 4,000 psi (28 MPa).

Secant-Pile alignment and auger drilled soil removal, prior to concrete grouting

CONVENTION

<u>Laboratory and Field</u> <u>Testing of GFRP bars</u> <u>and Grout with Fluidifier</u>

<u>(i) ASTM C1611/C1611M</u>

Standard Test Method for Slump Flow of Self-Consolidating Concrete (SCC)

(ii) ASTM C1621/C1621M

Standard Test Method for Passing Ability of Self-Consolidating Concrete by J-Ring

Secant-Pile Guide Wall and removal, Pile-cap, GFRP Placement and Dune-restoration

Removal of unreinforced concrete <u>Guide-Wall</u>, pile-cap <u>GFRP placement</u>, and final <u>dune restoration/re-establishment</u> atop the installed Secant-Pile Seawall/Bulkhead.

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

October 28, 2020

Life-Cycle-Cost Evaluation, with respect to GFRP bars, for this SR-A1A Project

Engineer's Estimate:

Bid Quantities & Unit Cost:

Traditional steel reinforced auger-cast pile = \$191.50 / ft. length pile installed GFRP-reinforced concrete auger-cast piles = \$209.25 / ft. length pile installed

Assuming 75-year life for traditional RC = \$2.55 /year/ft. Assuming 100-year (min.) for GFRP-RC = \$2.09 /year/ft. (not considering reduced maintenance costs and environmental benefits) > 18% savings!

17

Note: Engineer's Estimate, Bid-Quantities & Unit Costs obtained from FDOT.

400-4-11 Class IV Concrete (Wall Cap) = (864 CY)(\$775/CY) = \$669,600 415-10-5 GFRP Reinforcing, #5 = (61892 LF)(\$1.37/LF) = \$84,792 455-112-6 Pile Auger Grouted, 36" Dia. = (51724 LF)(\$209.25) = \$10,823,247

Low Bid \$415.00/CY = \$358,560 Low Bid \$1.45/LF = \$89,743 Low Bid \$156.50/LF = \$8,094,806

Total Proposal Budget Estimate = \$27,276,946

Low Bid = \$22,429,705

GFRP - PRO's

- Seawalls, Piles, and Piers
- Marine Structures
- "Quick" installation
- Light weight installation
- Assembly time savings
- "Toe" or "No-Toe" option
- GFRP cages remain in-place, i.e. "no flotation" observed
- Resilient, durable and extended Life-Cycle

GFRP - CON's

- "Bent-Shapes" need to be Manufacturer fabricated
- No "on-site" bending of GFRP
- GFRP bars can contribute to "skinitching" due to presence of Glass-Fibers (protective clothes beneficial)
- Typically more GFRP bars are needed than black steel rebars
- Currently not many GFRP design guidelines are readily available, in design software, but "in-progress" and developing fairly "rapidly"

Added Benefits of GFRP Installations, as validated by this SR-A1A Project

- There is a substantial benefit by utilizing GFRP in structural concrete, exposed to corrosive environments
- Economics of GFRP comparable to "black steel" upfront costs and Return On Investment (ROI) is higher on a Life-Cycle Cost Analysis basis
- ✤ GFRP is anisotropic and linear-elastic up to failure
- Currently Specifications and Design Guidelines exist
- Light weight of GFRP translates into time-savings during assembly and significant material shipping cost reduction

- The GFRP bars have a high tensile strength, low weight, and are noncorrosive
- The cage installations were smooth and rapid, and maintenance and repair costs over the life cycle of the seawall are expected to be minimal
- The durable materials in the wall will provide an extended time window for restoration activities, with a longer Service-Life

<u>Note</u>: Pictures show Secant-Pile installation atop Dune-System.

Findings of GFRP Installations specific to the SR-A1A Project

- No Secant-Pile cage alterations were needed. Installed all 1,847
 Piles as intended during the design-phase. No alterations needed
- Quick and reliable Secant-Pile installation in soft to medium dense sands, during this State Road A1A (SR-A1A) project
- GFRP cage-assemblies resulted in up to 52% of time savings over "black steel" rebar cage construction
- Toe assemblies may be removed on future projects providing the integrity of grout hole stability remains in-place and EOR approves
- Less noise pollution (as field measured for this project) through Secant-Pile installation vs. Sheet-Pile installation

<u>Note</u>: As an added feature, <u>sustainability</u>, <u>reliability</u>, <u>durability</u> and <u>resiliency</u> are all associated with the use of <u>GFRP</u>.

Acknowledgments

We would like to thank the entire State Road A1A (SR-A1A) GFRP Secant-Pile design and construction team, inspectors and researchers, as well as all the individuals that have been actively involved and contributed to this unique and innovative project. A special thanks to:

- Florida Department of Transportation (FDOT)
- Superior Construction Southeast
- Malcolm Drilling Company
- RS&H
- Mott McDonald Florida
- Atkins
- Pultrall, Inc.
- Titan Concrete
- UM Dept. of Civil, Arch. and Env. Engineering
- University of Miami

5,000 Feet (1.6 km) GFRP-RC Seawall/Bulkhead protects State Highway A1A along Flagler Beach, Florida - USA

Questions?

Christian C. Steputat, P.E. E-mail: csteputat@miami.edu

Thank

Next Generation GFRP Bar properties & Implementation Economics

Doug Gremel – Director Engineering Owens Corning Infrastructure Solutions

REVIEW OF BASICS

- Tensile Modulus or Youngs Modulus strain exerted by a force stretching or contracting material
- Modulus of elasticity, $E = \frac{\sigma}{\epsilon}$

Stress, $\sigma = \frac{Force}{Area}$

Strain, $\varepsilon = \frac{\Delta l}{l}$

- E = tensile stress/tensile strain
 - E = (FL) / (A * change in L),
 - where F is the applied force, L is the initial length, A is the square area, and E is Young's modulus
 - Tensile stress = Force (ultimate load) / cross sectional area
- Small changes in AREA have a BIG effect on the modulus

PAST SITUATION – UNDER REPORTING CROSS SECTIONAL AREA

- Inflates properties
- Not transparent to the designer
- Can affect the design of the beam or slab
- Affects clear cover & bar spacing
- Credibility of industry

Is an 8 slice pizza bigger than an 6 slice pizza ?

Before industry standards

DIAMETER & AREA OF FIBERGLASS BARS

AREA OF FIBERGLASS BAR IS IMPORTANT

- Archimedes Principle
 - The buoyant force on a submerged object is equal to the weight of the liquid displaced. See ASTM D7205

Effect of area on modulus 0.104 in² vs 0.161 in²

Example shows upper & lower tolerances of ASTM D7957 **measured cross sectional area** on #3 (10mm) bar

ASTM D7957 – IMPORTANT INDUSTRY CONSENSUS

In ASTM D7957 we agreed as an industry to use "nominal area" for determination of properties WITH a tolerance to accommodate surface enhancements for bond.

- Nominal based on pure cylinder area for all calcs
- "measured cross sectional area" with a tolerance for bond enhancement, out of round, irregular surface... etc
- Set a path for true improvements which have occurred

NOMINAL VS "MEASURED AREA"

- To account for "surface enhancements"...
 - Ribs (height or depth & width of ribs)
 - Sand coating (size of sand grains)
 - Lugs / undulations between external wraps
- Reason for a "tolerance" from nominal
- ASTM D7957

Bar Nominal Dimensions Designation No. Diameter Cross-Sectional Area mm [in.] mm ² [in. ²]	Nomina	Dimensions	Measured Cross-Se mm ²	Guaranteed	
	Minimum	Maximum	Tensile Force kN (kip)		
M6 [2]	6.3 (0.250)	32 (0.049)	30 [0.046]	55 [0.085]	27 [6.1]
M10 [3]	9.5 [0.375]	71 [0.11]	67 [0.104]	104 [0.161]	59 [13.2]
M13 [4]	12.7 (0.500)	129 (0.20)	119 [0.185]	169 [0.263]	96 [21.6]
M16 [5]	15.9 [0.625]	199 [0.31]	186 [0.288]	251 [0.388]	130 [29.1]
M19 [6]	19.1 [0.750]	284 [0.44]	268 [0.415]	347 [0.539]	182 [40.9]
M22 [7]	22.2 (0.875)	387 [0.60]	365 [0.565]	460 [0.713]	241 [54.1]
M25 [8]	25.4 [1.000]	510 (0.79)	476 [0.738]	589 [0.913]	297 [66.8]
M29 [9]	28.7 [1.128]	645 [1.00]	603 [0.934]	733 [1.137]	365 [82.0]
M32 [10]	32.3 [1.270]	819 [1.27]	744 [1.154]	894 [1.385]	437 [98.2]

TABLE 3 Geometric and Mechanical Property Requirements

MODULUS – A FUNCTION OF GLASS CONTENT & AREA

Rule of Mixtures says $E_c = fE_f + (1-f)E_m$ where: f = volume fraction of fibers $E_f = E$ -Modulus of the fibers $E_m = E$ -Modulus of the matrix

How much glass you can pack into a given area = Modulus

NEW DOCUMENTS

- Hi-Mod Straight bars with minimum E-modulus of 8.75 msi (60GPa)
- Hi-Mod Fabricated bends with minimum E-modulus of 7.5msi (52GPa)
- Processes are different for most producers
- Physical & mechanical properties are different
- Highlights differences to the Designer

HI-MOD STRAIGHT BAR DRAFT

Date:	<enter date=""></enter>
To:	Subcommittee <axx.xx> or Main Committee <axx> members (both for concurrent ballots)</axx></axx.xx>
Tech Contact:	<contact address="" email="" name,="" number="" phone=""></contact>
Work Item #:	<enter item="" number="" work=""></enter>
Ballot Action:	Revision of <enter designation="" standard="" title=""></enter>
Rationale:	<enter action.="" an="" applicable="" ballot="" for="" history,="" if="" include="" on="" previous="" proposed="" reasons="" update=""></enter>

Standard Specification for

Solid Round, High Modulus Glass Fiber Reinforced Polymer Bars for Concrete Reinforcement in Straight Lengths¹

- Key Differences with ASTM D7957
 - Limits are higher for tensile modulus
 - Increased limits on tensile properties
 - Removes all references to bends (helps provide clarity)
 - Adds apparent shear (short beam) test
 - Better resolution on bond strength & strain by bar diameter
 - Adds epoxy resin if it meets durability criteria
- Similarities with ASTM D7957
 - Uses same "measured area" tolerances as existing ASTM D7957
 - Limits on Tensile strength & other parameters mirror CSA S807-19

HI-MOD FABRICATED BENT BAR DRAFT

Date:	<enter date=""></enter>
То:	Subcommittee <axx.xx> or Main Committee <axx> members (both for concurrent ballots)</axx></axx.xx>
Tech Contact:	<contact address="" email="" name,="" number="" phone=""></contact>
Work Item #:	<enter item="" number="" work=""></enter>
Ballot Action:	Revision of <enter designation="" standard="" title=""></enter>
Rationale:	<enter action.="" an="" applicable="" ballot="" for="" history,="" if="" include="" on="" previous="" proposed="" reasons="" update=""></enter>

Standard Specification for Solid RoundGlass Fiber Reinforced Polymer Bars for Concrete Reinforcement in Fabricated Bent Shapes¹

- Key Differences with ASTM D7957
 - Limits on Tensile strength & other parameters mirror CSA S807-19 for Grade II bends
 - Should provide clarity on bent bar properties and QC/QA
 - Defines lot size based on resin batch, not by shape !
 - Strength of straight portion of a bent bar
 - Strength of the bent portion of a bent bar
 - Better resolution on bond strength & strain by bar diameter
 - Adds epoxy resin if it meets durability criteria
- Similarities with ASTM D7957
 - Uses same "measured area" tolerances as existing ASTM D7957
 - Limits on Tensile strength & other parameters mirror CSA S807-19

HI-MOD FABRICATED BENT BAR DRAFT

Introduces "shape codes" and detailing guide similar to steel shape codes

DEFINING "LIMITS" FOR BARS

		100		cure and in		perty reequire		
Bar Designation No.	Nominal D	imensions	Measured Cr Area Limits	oss-Sectional mm² (in.²)	Winnorm Guaranteed Utimate Tensile Force KN Rdpl	Minimum Guaranteed Uttimate Tensile Strength MPa Ital	Utimate Tensile Strain %	Bond Strength MPa (sa)
	Diameter mm (in.)	Cross- Sectional Area mm ² [in. ²]	Minimum	Maximum				
M6 [2]	6.3 [0.250]	32 (0.049)	30 [0.046]	55 [0.085]	2	2	?	12,4[1,8]
M10 [3]	9.5 [0.375]	71 [0.11]	67 [0.104]	104 [0.161]	71 [16]	1000 [145]	1.7%	12.4[1.8]
M13 [4]	12.7 [0.500]	129 [0.20]	119 [0.185]	169 [0.263]	129 [29]	1000 [145]	1.7%	10.3[1.5]
M16 [5]	15.9 [0.625]	199 [0.31]	186 [0.288]	251 [0.388]	200 [45]	1000 [145]	1.7%	10.3[1.5]
M19 [6]	19.1 [0.750]	284 [0.44]	268 [0.415]	347 (0.539)	255 [57]	900 [130]	1.5%	9.6[1.4]
M22 [7]	22.2 [0.875]	387 [0.60]	365 [0.565]	460 [0.713]	334 [75]	862 [125]	1.5%	9.6[1.4]
M25 [8]	25.4 [1.000]	510 [0.79]	476 [0.738]	589 (0.913)	422 [95]	827 [120]	1.4%	7.6[1.1]
M29 [9]	28.7 [1.128]	645 [1.00]	603 [0.934]	733 [1.137]	7	2	?	7.6[1.1]
M32 [10]	32.3 [1.270]	819 [1.27]	744 [1.154]	894 [1.385]	7	7	7	7.6[1.1]

Bends

TABLE 3 Geometric and Mechanical Property Requirements

Bar Designation No.	Nominal Dimensions		Measured Cross-Sectional Area Limits mm ² (in. ²)		Minimum Guaranteed Utimate Tensile Force kN Nol	Minimum Guaranteed Uttimate Tensile Strength MPa [ksi]	Ultimate Tensile Strain %	Bond Strength MPa [ksi]
	Diameter mm (in.)	Cross- Sectional Area mm ² [in. ²]	Minimum	Maximum				
M6 [2]	6.3 [0.250]	32 [0.049]	30 [0.046]	55 [0.085]	2	2	2	2
M10 [3]	9.5 [0.375]	71 [0.11]	67 [0.104]	104 [0.161]	71 [16]	1000 [145]	1.9%	12.4[1.8]
M13 [4]	12.7 [0.500]	129 [0.20]	119 [0.185]	169 [0.263]	129 [29]	1000 [145]	1.9%	10.3[1.5]
M16 [5]	15.9 [0.625]	199 [0.31]	186 (0.288)	251 [0.388]	200 [45]	1000 [145]	1.9%	10.3[1.5]
M19 [6]	19.1 [0.750]	284 [0.44]	268 [0.415]	347 [0.539]	255 [57]	900 [130]	1.7%	9.6[1.4]
M22 [7]	22.2 [0.875]	387 [0.60]	365 [0.565]	460 [0.713]	334 [75]	862 [125]	1.7%	9.6[1.4]
M25 [8]	25.4 [1.000]	510 [0.79]	476 [0.738]	589 [0.913]	422 [95]	827 [120]	1.6%	7.6[1.1]

HOW IMPROVED PROPERTIES AFFECT DESIGN – BRIDGE DECK EXAMPLE

- Variables
 - Girder Spacing
 - Design methodology
 - Flexural Unit Strip
 - Arching action with restraint Empirical design
 - Concrete Strength
 - Concrete Cover
 - Deck Thickness
 - GFRP bar modulus
 - Reinforcing area bar spacing
 - Transverse
 - Longitudinal
 - Crack Widths
 - Deflection
 - Girder type
 - Cantilever overhang
 - Span type
 - Simply supported
 - Continuous with negative moment
 - Barrier size
 - Bond depended coefficient Kb
 - Etc etc

$ASTMD7957 \ PROPERTIES - \text{USING FLEXURAL UNIT STRIP METHODOLOGY}$

• AASHTO Table A4-1

- Same Top and Bottom Spacing
- Bottom Longitudinal 66% of Transverse
- Top Longitudinal S & T
- 2 Bar Diameter Clear Cover

			ASTM	Deck	Design T	able				
Effective Span	Deale Thickness		Transver	se Bars			Longitudi	nal Bars		ASTM Total
	Gol	Top	Bars	Botte	m Bars	Top	Bars	Botto	m Bars	
rought (c)	440	Size	Spa (in)	Size	Spa (in)	Size	Spa (in)	Size	Spa (in)	(in²/tt²)
7	8.50	#5	5.75	#5	5.75	#4	11.00	約	8.63	1.92
7.5	8.50	#5	5.75	#5	5.75	#4	11.00	#5	8.63	1.92
8	8.50	#5	5.50	#5	5.50	#4	11.00	#5	8.25	1.99
8.5	8.50	#5	5.50	#5	5.50	#4	11.00	#5	8.25	1.99
9	8.75	#5	5.50	#5	5.50	#4	11.00	#5	8.25	1.99
9.5	9.00	#5	5.25	#5	5.25	#4	11.00	#5	7.88	2.08
10	9.00	#5	5.00	#5	5.00	#4	11.00	#5	7.50	2.17
10.5	9.25	#5	4.75	#5	4.75	#4	11.00	#5	7.13	2.28
11	9.50	#5	4.75	#5	4.75	#4	11.00	#5	7.13	2.28
11.5	9.50	#5	4.50	#5	4.50	#4	11.00	#5	6.75	2.39
12	9.75	#5	4.50	#5	4.50	#4	11.00	#5	6.75	2.39
12.5	10.00	#5	4.25	#5	4.25	#4	11.00	#5	6.38	2.52

Calculations courtesy of Koch Structures

USING PROPOSED ASTM HI-MOD STRAIGHT BAR PROPERTIES

			Gen II	Deck	Design 1	fable				
Effective Span Longth (ft)	Deale This lance		Transver	se Bars	-		Longitudi	nal Bars		C
	Deck Inckness	Top Bars		Botto	m Bars	Тор	Bars	Botto	m Bars	Gen il Total
	(0)	Size	Spa (in)	Size	Spa (in)	Size	Spa (in)	Size	Spa (in)	(mont)
7	8.50	#5	7.00	#5	7.00	#4	11.00	#5	10.50	1.61
7.5	8.50	#5	6.50	#5	6.50	#4	11.00	#5	9.75	1.72
8	8,50	#5	6.50	#5	6.50	#4	11.00	#5	9.75	1.72
8.5	8.50	#5	6.25	#5	6.25	#4	11.00	#5	9.38	1.78
9	8.75	#5	6.25	#5	6.25	#4	11.00	#5	9.38	1.78
9.5	9.00	#5	6.25	#5	6.25	#4	11.00	#5	9.38	1.78
10	9,00	#5	6.00	#5	6.00	#4	11.00	#5	9.00	1.85
10.5	9.25	#5	5.75	#5	5.75	#4	11.00	#5	8.63	1.92
11	9.50	#5	5.50	#5	5.50	#4	11.00	#5	8.25	1.99
11.5	9.50	#5	5.25	#5	5.25	#4	11.00	#5	7.88	2.08
12	9.75	#5	5.25	#5	5.25	#4	11.00	#5	7.88	2.08
12.5	10.00	#5	5.25	#5	5.25	#4	11.00	#5	7.88	2.08

SAVINGS WITH BETTER BAR PROPERTIES – UNIT STRIP FLEXURAL DESIGN

- Increased Bar Spacing for ALL spans
 - Average Transverse Increase 18%
- Reduction In Total Reinforcing Area for ALL girder spacings
- Average Reduction 14%

	Summary									
Gen II	ASTM	Reduction								
Total (in ² /ft ²)	Total (in²/tt²)	(%)								
1.61	1.92	15,87%								
1.72	1.92	10.25%								
1.72	1.99	13,74%								
1.78	1.99	10.71%								
1,78	1,99	10,71%								
1.78	2.08	14.35%								
1.85	2.17	15,03%								
1.92	2.28	15.76%								
1,99	2.28	12.35%								
2.08	2.39	13.01%								
2.08	2.39	13,01%								
2.08	2.52	17.43%								

ASTMD7957 PROPERTIES - USING EMPIRICAL DESIGN METHOD

- Reinforcing Calculated with Ratios
 - Bottom Transverse Stiffness Driven
 - Other 3 layers r = .0035
 - 2 Bar Diameter Clear Cover

		AST	VI Deck L	esign	able Emp	oirical N	lethod			
Davis - Davis	Deck Thislance		Transverse Bars				Longitudi	nal Bars		ASTM
Length (#)	Deck Inckness	Top Bars		Bott	om Bars	Top	Bars	Botto	m Bars	Total
Congar (c)	Ged	Size	Spa (in)	Size	Spa (in)	Size	Spa (in)	Size	Spa (in)	(in²/tt²)
7	8.50	#5	10.25	46	6.25	#5	10.25	#5	10.25	1.92
7.5	8.50	#5	10.25	#6	6.25	#5	10.25	#5	10.25	1.92
8	8,50	#5	10.25	#6	6.25	#5	10.25	#5	10.25	1.92
8.5	8.50	#5	10.25	#6	6.25	#5	10.25	#5	10.25	1.92
9	8,75	#5	10.00	46	6.00	#5	10.00	#5	10.00	1,98
9.5	9.00	#5	9.75	#6	5.75	#5	9.75	#5	9.75	2.05
10	9.00	#5	9.75	#6	5.75	#5	9.75	#5	9.75	2.05
10.5	9.25	#5	9.50	#6	5.50	#5	9.50	#5	9.50	2.12
11	9.50	#5	9.25	#6	5.25	#5	9.25	#5	9.25	2.20
11.5	9.50	#5	9.25	#6	5.25	#5	9.25	#5	9.25	2.20
12	9.75	#5	9.00	#6	5.25	#5	9.00	#5	9.00	2.23
12.5	10.00	#5	8.75	#6	5.00	#5	8.75	#5	8.75	2.31

Calculations courtesy of Koch Structural Solutions

PROPOSED ASTM HI-MOD- EMPIRICAL METHODOLOGY

		Gen	II Deck D	esign	Table Emp	pirical N	fethod			
Effective Span Longth (ft)	Durk Thiskness		Transverse Bars				Longitudi	nal Bars		Con II Total
	Lieck Inckness	Top Bars		Bott	om Bars	Тор	Bars	Botto	m Bars	Gen il Total
	- (m)	Size	Spa (in)	Size	Spa (in)	Size	Spa (in)	Size	Spa (in)	6u.u.)
7	8.50	#5	10.25	#6	8.00	#5	10.25	#5	10.25	1.73
7.5	8.50	#5	10.25	#6	8.00	#5	10.25	#5	10.25	1.73
8	8,50	#5	10.25	#6	8,00	#5	10.25	#5	10.25	1.73
8.5	8.50	#5	10.25	#6	8.00	#5	10.25	#5	10.25	1.73
9	8.75	#5	10.00	#6	7.75	#5	10.00	#5	10.00	1.78
9.5	9.00	#5	9.75	#6	7.50	#5	9.75	#5	9.75	1.83
10	9.00	#5	9.75	#6	7.50	#5	9.75	#5	9.75	1,83
10.5	9.25	#5	9.50	#6	7.25	#5	9.50	#5	9.50	1.89
11	9.50	#5	9.25	#6	7.00	#5	9.25	#5	9.25	1,95
11.5	9.50	#5	9.25	#6	7.00	#5	9.25	#5	9.25	1.95
12	9.75	#5	9.00	#6	6.75	#5	9,00	#5	9,00	2.01
12.5	10.00	#5	8.75	#6	6.50	#5	8.75	#5	8.75	2.07

SUMMARY EMPIRICAL DESIGN METHOD

- Increased Bar Spacing for ALL spans
 - Average Transverse Increase 30%
- Reduction In Total Reinforcing Area for ALL girder spacings
- Average Reduction 10%

Summar	y Empirical M	lethod
Gen II	ASTM	Reduction
Total (in ² /t ²)	Total (in ² /tt ²)	(%)
1.73	1.92	9.63%
1.73	1.92	9.63%
1.73	1.92	9.63%
1.73	1.92	9.63%
1.78	1.98	10.03%
1,83	2.05	10.45%
1.83	2.05	10.46%
1,89	2.12	10.93%
1.95	2.20	11.45%
1.95	2.20	11,45%
2.01	2.23	10.02%
2.07	2.31	10.53%

OTHER FACTORS AFFECTING DESIGN OPTIMIZATION

- Larger total reduction in bar area if top & bottom mat are designed separately
- More improvement in bar spacing gained if:
 - Crack Width is increased from 0.020"(0.5mm) to 0.028"(0.71mm)
 - Now in AASHTO 2019 Guide Spec GFRP LRFD design 2nd edition
 - Improve default bond dependent factor $C_b = 0.833 (K_b = 1.2)$
- Temperature & Shrinkage equations could be updated to take into account improvements in tensile modulus
- Empirical design methodology (arching action, restrained at girders except cantilevers) much more economical that Unit Strip method

OHIO DOT – BRIDGE DECK DRAFT STANDARDS

- Uses proposed revised properties (As does Florida DOT)
- Same reinforcing area implementation as steel rebar
 - Up to 12.5ft girder spacing

	Current ODOT BDM Deck Design Table												
			Transver	se Bars			Longitudir	nal Bars					
Effective Span	Deck Thickness	Top	o Bars	Botte	om Bars	To	p Bars	Bottom	Bars				
Length (ft)	(in)	Size	Spa (in.)	Size	Spa (in.)	Size	Spa (in.)	Size	Spa (in.)				
7.0	8.50	#5	6.00	#5	6.00	#4	12.50	#5	10.75				
7.5	8.50	#5	6.00	#5	6.00	#4	12.00	#5	10.25				
8.0	8.50	#5	6.00	#5	6.00	#4	11.50	#5	9.75				
8.5	8.50	#5	5.75	#5	5.75	#4	11.00	#5	9.25				
9.0	8.75	#5	5.75	#5	5.75	#4	11.00	#5	9.25				
9.5	9.00	#5	5.75	#5	5.75	#4	11.00	#5	9.25				
10.0	9.00	#5	5.25	#5	5.25	#4	10.00	#5	8.75				
10.5	9.25	#5	5.25	#5	5.25	#4	10.00	#5	8.75				
11.0	9.50	#5	5.00	#5	5.00	#4	9.50	#5	8.75				
11.5	9.50	#6	5.75	#5	5.75	84	7.75	#5	8.75				
12.0	9.75	#6	5.75	#5	5.75	#4	7.75	#5	8.75				
12.5	10.00	#6	5.75	#5	5.75	#4	7.75	#5	8.75				

Current draft Ohio DOT bridge deck standard

 2009 Benmokrane showed effects of deck design with 3 varying GFRP bar modulus

Table 2 Mechanical properties of GFRP bars used in this investigation

Type of GFRP	Area	Specified tensile strength,	Tensile modulus of elasticity,	
bars	(mm ²)	f _{FRPu} (MPa)	EFRP (MPa)	
A (low)	198	655	40800	
B (medium)	198	683	48200	
C (high)	198	1250	64200	

FRPRCS-9 Sydney Australia "Design of Concrete Bridge Deck Slabs using Different Types of GFRP Bars" - Sherif El-Gamal, Brahim Benmokrane

 2009 Benmokrane showed effects of deck design with 3 varying GFRP bar modulus

Type of GFRP	Area	Specified tensile strength,	Tensile modulus of elasticity,
bars	(mm ²)	f _{FRPu} (MPa)	EFRP (MPa)
A (low)	198	655	40800
B (medium)	198	683	48200
C (high)	198	1250	64200

Table 2 Mechanical properties of GFRP bars used in this investigation

FRPRCS-9 Sydney Australia "Design of Concrete Bridge Deck Slabs using Different Types of GFRP Bars" - Sherif El-Gamal, Brahim Benmokrane

- CSA Empirical design method considers arching action outside of cantilevers
- Reinforcing ratio directly related to bar modulus
- Bar tensile strength & concrete strength do NOT affect design
- Cover & Deck Thickness along with bar modulus drive design implementation
- Kb =0.8

Type of GFRP bars	Grade*	Nominal area** (mm ²)	Specified tensile strength, f_{FRPu} (MPa)	Tensile modulus of elasticity, E_{FRP} (GPa)
G-I	I	199	940	42.5
G-II	II	199	1130	52.5
G-III	III	199	1184	62.6

Table 2: Mechanical properties of sand-coated GFRP bars used in this investigation

* According to the CAN/CSA S807-10 (2010).

** Cross-sectional area of No. 15 GFRP bars (15.9 mm diameter) according to the CAN/CSA S807-10 (2010).

27% less reinforcing area in transverse direction with new standard properties

Using CSA S6 Flexural design method

- Designs limited by crack widths
- Increasing deck thickness reduces reinforcing area
- Girder spacing greatly affects implementation
- Increasing GFRP modulus decreases reinforcing area by varying amounts
- Used Bond Dependent Coefficient $K_b = 0.80$

Figure 5: Area of the transverse GFRP reinforcement versus the effective spacing between girders

Figure 6: Area of the transverse GFRP reinforcement versus the modulus of elasticity of the GFRP bars

Rebar area decreased between 10% to 27%

IMPACT ON DESIGNER

- Must be aware of differing material properties
 - Straight Bar
 - Bent Bar

PROPOSED ASTM HI-MOD FIBERGLASS MATERIAL STANDARDS

- Possible due to industry consensus on bar area tolerances
- Improvements in manufacturing capabilities
 - Glass content above 83% makes possible
- Cost neutral improvements
 - Glass is LESS costly than resin !
- Improves economics of implementation by 10 to 27%
 - Design methodology matters (bridge deck example)
 - Bond dependent coefficient & crack widths still control design

INDUSTRY HAS WORK TO DO

- Reach consensus on standards
- Prepare designers
- Validate proposed limits
 - Avoid flying too close to the sun

Cardno[®]

6-Span CFRP-PC/GFRP-RC Bridge over Placido Bayou

Christopher Gamache, P.E. Ananda Bergeron, P.E. Pooya Farahbakhsh, P.E.

Introduction

- > Purpose of Project
 - Bridge replacement to address existing structural deterioration
- > Project Location
 - City of St. Petersburg, Florida
 - 40th Avenue NE over Placido Bayou
- > Intent of Presentation
 - To provide illustrative example of a municipal bridge replacement utilizing FRP materials

Background

> Existing Bridge

- Nathanial J. Upham Bridge (No. 157154)
- Owned/maintained by the City of St. Petersburg
- Originally constructed in 1961
- Widened in 1990
- 58.0 ft (17.7 m) wide & 336.0 ft (102.4 m) long
- 7 equal simple spans
- Deck is comprised of butted prestressed voided slab beams
- Maximum vertical clearance of 8.5 ft (2.6 m)

Background

- > Existing Bridge Deficiencies
 - Categorized as Structurally Deficient
 - Deterioration in superstructure and substructure
 - Bridge Closed in August 2017 due to section loss in prestressing strands in 1961 beams in center span

Background

> Temporary Emergency Repairs

- To maintain two lanes of traffic and a sidewalk
- Three beams in the center span were replaced and transversely tied to the remaining existing beams

> Proposed Bridge

- Prestressed Florida Slab Beam (FSB) Superstructure with cast-in-place topping slab
- 57.8 ft (17.6 m) wide & 320.0 ft (97.5 m) long
- 6 span structure
- Prestressed pile bend substructure
- Phased construction to maintain traffic
- FRP sheet pile surrounding end bents and along approaches

- > Extremely Aggressive Environment
 - Within salt water splash zone
 - Vertical clearance varies from 7.0 ft (2.1 m) to 13.2 ft (4.0 m)
 - Design focused on concrete elements that are durable and resilient to salt water exposure
 - Accomplished by eliminating traditional carbon steel reinforcement and prestressing tendons with direct exposure to salt water
 - Direct exposure elements identified as bent piles, bent caps, sheet pile walls, beams, and topping slab
 - Design of FRP elements per
 - FDOT Fiber Reinforced Polymer Guidelines
 - AASHTO LRFD Bridge Design Guide Specifications for GFRP-Reinforced Concrete
 - AASHTO Guide Specifications for the Design of Concrete Bridge Beams Prestressed with CFRP Systems
 - ACI 440.4 Prestressing Concrete Structures with FRP Tendons

- > Substructure Design
 - Piles are prestressed 24" square.
 - FDOT Standard Plans allowing for the Contractor to choose between either CFRP or stainless steel reinforcement and prestressing tendons in the piles
 - Cast-in-place bent caps with GFRP reinforcement
 - FRP pultruded sheet pile with a cast-in-place concrete cap were designed around the end bents and along the roadway approaches

- > Superstructure Design
 - Consisted of 4 50 ft (15.2 m) spans and 2 60 ft (18.3 m) spans
 - 18 in (457 mm) deep FSB's with a 6 in (152 mm) cast-in-place topping slab
 - Link slabs were utilized in the topping slab over the intermediate bents

- > Superstructure Design
 - FSB's Utilized CFRP prestressing tendons with GFRP reinforcing bars
 - Concrete has 28-day compressive stress of 8,500 psi (59 MPa)
 - Tendons are 0.6 in (15 mm) diameter 7-strand
 - Tendons stressed to 70% of guaranteed ultimate tensile strength
 - Topping slab utilized GFRP reinforcing bars
 - Concrete has a 28-day compressive stress of 5,500 psi (38 MPa)
 - Concrete included shrinkage reducing admixtures
 - Link slab utilized GFRP reinforcing bars
 - Concrete has a 28-day compressive stress of 5,500 psi (38 MPa)
 - Concrete included shrinkage reducing admixtures and polymeric fibers
 - Debonding was set at 5% of the adjacent span

Cardno[®]

ACI Concrete Convention - Fall 2020 6-Span CFRP-PC/GFRP-RC Bridge over Placido Bayou 9

Challenges

> Phased Construction

- Substructure construction joints required threaded mechanical splices that aren't available with GFRP reinforcing bars
- Stainless steel reinforcing bars were lap spliced with GFRP bars to incorporate the threaded mechanical splices
- Superstructure construction joint was aligned with a joint between FSB's and formed with the topping slab
- > Cost Estimate
 - Accurate pricing without a developed history from previous projects

Next Steps

> Advertisement

- Project was advertised in August 2020 with bids opened in September 2020
- Bid prices for FRP elements

Item Description	Low Bid Unit Price	Ave. Unit Price
Fiber Reinforced Polymer Bars, #5 Bar	\$1.75/LF	\$2.37/LF
Fiber Reinforced Polymer Bars, #6 Bar	\$2.71/LF	\$2.85/LF
Fiber Reinforced Polymer Bars, #7 Bar	\$3.44/LF	\$3.24/LF
Fiber Reinforced Polymer Bars, #8 Bar	\$3.74/LF	\$3.37/LF
Prestressed Beam: Florida Slab Beam, Beam Depth 18"	\$670/LF	\$554/LF
Prestressed Conc Piling, 24" SQ w/FRP or SS Strand and Reinf	\$378/LF	\$561/LF

> Construction

Scheduled to start this winter

Cardno[®]

Thank you

For more information Christopher Gamache Senior Structures Engineer christopher.gamache@cardno.com Office: +1 727 431 1615 www.cardno.com **YEARS** Making a difference.

Field Applications of Non-Conventional Reinforcing and Strengthening Methods for Bridges and Structures, Part 3 of 3

Moderator: Steven Nolan (Jimmy Kim & Antonio Nanni support)

6 x 16 min. presentations + 3 min. Q&A each.

1:05 pm Repair of Structures Using UHPC

Peter Weber (ceEntek Pte Ltd)

- 1:24 pm Impact Damage Retrofit of RC Bridge Girder Previously Retrofitted with CFRP Fabric – Issam Harik (University of Kentucky)
- 1:43pm FRP Strengthening and Evaluation for Corrosion Deteriorated Bridge Bent Caps on US-80 Bridge near Dallas, TX Nur Yazdani (University of Texas at Arlington)
- 2:02 pm FRP Retrofitting and Non-Destructive Evaluation for Corrosion-Deteriorated Bridges in West Virginia - Hai Nguyen & Hien Nghiem (Marshall University)
- 2:21 pm Bridge Substructure Repairs with Basalt, Carbon, and Glass FRP Internal Reinforcement - Mohit Soni (Stantec)
- 2:40 pm Shear Strengthening Sunshine Skyway Trestle Spans Beam Strengthening with CFRP - Atiq Alvi (T.Y. Lin International)

Application of UHPC 2.0[™] for a non-conventional reinforcing and strengthening of a reinforced concrete beam for bridges and structures

Courtesy Walo Switzerland

Initial focus on Market in Switzerland and NA in cooperation with local contractors

- Advanced concept for Bridge rehabilitation
 - No added weight to the structure
 - Strengthening plus protection
 - Stops Chloride penetration into the structure
 - Extended lifetime
- On the way to worldwide standard
 - Switzerland, USA, China
- Requires thixotropic UHPC
- Critical material issues
 - Consistent fresh properties
 - Consistent hardened properties
 - Bond strength
 - Cost
- Worldwide opportunities
 - USA, Europe, China
 - Requires trained local contractor

Newport Bridge, Rhode Island, October 2020, ceEntek ce200SF-t

Figure 3: Basic configurations of structural elements combining UHPFRC and RC: left: UHPFRC layer has a protective function only; right: R-UHPFRC layer has structural resistance and protective functions.

ceEntek Solution For Bridge Overlay: UHPC 2.0[™] (ce200SF-t[™])

Fresh properties of ce200SF-t[™]: Thixotropic behavior

ceEntek Solution For Bridge Overlay: UHPC 2.0[™] (ce200SF-t[™])

Compressive strength of ce200SF-t[™]

Direct tensile performance of ce200SF-t[™]

Tensile strain

Comparison of the requirements of SIA 2052 with measured values in the direct tensile test

	Demonster	Requi	red minimu	m value		Measured valu	es	Re	equirements f	for
	Parameter	UO	UA	UB	Sample 1	Sample 2	Sample 3	UO	UA	UB
	<i>f_{ute}</i> , ksi (MPa)	≥ 1.0 (7.0)	≥ 1.0 (7.0)	≥ 1.5 (10.0)	2.1 (14.3)	2.1 (14.3)	2.1 (14.7)	Fulfilled	Fulfilled	Fulfilled
	f _{utu} ksi (MPa)	≥ 0.7 (4.9)	≥ 1.1 (7.7)	≥ 1.7 (12)	2.6 (18.1)	2.7 (18.3)	2.6 (17.8)	Fulfilled	Fulfilled	Fulfilled
	f _{utu} /f _{ute}	> 0.7	> 1.1	> 1.2	1.27	1.28	1.21	Fulfilled	Fulfilled	Fulfilled
	ε_{utu} (%)	-	> 0.15	> 0.2	0.23	0.21	0.51	Fulfilled	Fulfilled	Fulfilled
E	TE						CON	CRE		

Flexural strength and elastic modulus of ce200SF-t^{TM}

Curing ages	7 days	28 days
Flexural strength (ksi/MPa)	6.1/42.0	7.6/52.2
Elastic modulus (ksi/GPa)	5613/38.7	7470/51.5

Mechanism of bending resistance of UHPFRC reinforced concrete beam (RU-RC beam) [1]

ceEntek Solution For Bridge Overlay: UHPC 2.0[™] (ce200SF-t[™])

Importance of tensile strength

Balance of Bonding-, Compression- and Tensile strength

ac

NCRET

- Bonding strength defines monolithic behavior
- Compression- plus tensile strength define the member failure

Flexural- Shear collapse mechanism (a) R-UHPFRC hinge;(b) flexure-shear crack defining the member failure [2]

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

ceEntek UHPC 2.0[™] VS UHPC in tensile performance

Rapid chloride penetration test (ASTM C1202)

	Sample 1	Sample 2	Sample 3	Average	Classification
Charge passed (coulumbs)	205	186	211	200	Very low

Water absorption test (ASTM C642)

	Sample 1	Sample 2	Average	Classification
Absorption after immersion %	0.7	0.65	0.675	DL200*

*DL200 is the top classification in Canada standard --- CSA A23.1-19 Annex U

Advantage of Nano-technology

Porous interfacial transition zone between fiber and UHPC [3]

Denser interfacial transition zone between fiber and ceEntek UHPC 2.0TM [3]

'Wall' effect creates Nanofibers rich transition Zone around Macro-fibers

Certification tests of ce200SF-t[™], SIA2052, Switzerland

Switzerland is one of the first countries worldwide with a Code for UHPC.

SIA2052 specifies three different levels of performance: UO, UA and UB (highest)

ceEntek is meeting and exceeding the highest levels of requirement as specified in the Code.

While worldwide Codes may differ slightly, UHPC is on the way to become a standardized product.

parameter	requi	red miminuı	n value	measu	red value	re	quire	nents f	or
	UO	UA	UB	tensile test	flexural test	UO	ι	JA	UB
f _{Utek} f _{Utuk} / f _{Utek} ε _{Utu}	≥ 7.0 MPa > 0.7 -	≥ 7.0 MPa > 1.1 > 1.5 ‰	≥ 10.0 MPa > 1.2 > 2.0 ‰	13.0 MPa 1.23 3.15 ‰	10.8 MPa 1.45 3.62 ‰	fulfilled fulfilled fulfilled	fulf fulf fulf	illed illed illed	fulfilled fulfilled fulfilled
strength		f _{∪ck} ≥ 120 MI	Pa	158	.7 MPa		fulf	illed	1
parameter	requ UO	iired mimir UA	um value UB	mea	asured value	UO	equir	ements UA	s for UB
compressive strength		f _{∪ck} ≥ 120	MPa	1	163.7 MPa		fı	lfilled	
coefficient	S	< 100 g/(r	n²∙h⁰.⁵)	89.0	0 g/(m ² ·h ^{0.5})		fı	lfilled	
parameter								meas	sured value
Elastic modu Shrinkage va Shrinkage va Autogenous	ilus after 28 alue after 9 alue after 9 shrinkage,	3 days, SN E I days, SIA I days, SIA ASTM-C 16	EN 12390-13 262/1, apper 262/1, apper 598-09, up to	, prisms 40 ndix F, seal ndix F, unse o 28 days	ed prisms 40x ed prisms 40x ealed prisms 4	x40x160 mm 40x40x160 m	ım	51.5 0 - 0.28 - 0.38 - 0.59	GPa 3 ‰ 3 ‰ 9 ‰

Creep coefficient after 91 days, SIA 262/1, appendix F, unsealed prisms 40x40x160 mm

0.50

Calculation of Bending Resistance Of UHPFRC Reinforced Concrete Beam (RU-RC Beam)

The bending resistance calculated here is at a negative bending moment cross section where the UHPFRC layer is in tension and the bottom of the original concrete beam is in compression. At the ultimate limit state, the bottom surface of the original concrete beam is crushed, in other word, the concrete strain at bottom surface reach the ultimate value $\varepsilon_c = 0.003$. At them same time, for a tension failure mode, the steel reinforcement in the UHPFRC layer is yielding. According on the calculation graph in last slide and force equilibrium, the depth of compressive zone x can be calculated according to following equations:

$$f_{Utu}bh_u + f_{sU}A_{sU} + \sigma_{sc}A_{sc} = 0.85x \cdot f_{cd}b$$

$$\sigma_{sc} = E_{sc}\varepsilon_c \cdot \frac{d_{sc} - x}{x}$$

If $\sigma_{sc} < f_{sc}$, then the bending resistance *M* is:

$$M = f_{Utu}bh_u(h_c + h_U - 0.425x - \frac{h_U}{2}) + f_{sU}A_{sU}(d_{sU} - 0.425x) + \sigma_{sc}A_{sc}(d_{sc} - 0.425x)$$

If $\sigma_{sc} \ge f_{sc}$, then the depth of compressive zone *x* should be re-calculated:

$$x = (f_{Utu}bh_u + f_{sU}A_{sU} + f_{sc}A_{sc})/(0.85f_{cd}b)$$

Then the bending resistance M should be calculated by the last equation again.

b is the width of the beam cross section; h_c is the height of the beam cross section; h_U is the thickness of UHPFRC layer; d_{sU} is the distance between the steel reinforcement at UHPFRC layer and bottom surface of the original concrete beam; f_{sU} is the yield strength of steel bars at UHPFRC layer; A_{sU} is the steel bar area at UHPFRC layer; σ_{sc} is the tension stress at the top steel reinforcement of the original concrete beam; f_{sc} is the yield strength of the top steel reinforcement of the original concrete beam; d_{sc} is the distance between the top steel reinforcement and bottom surface of the original concrete beam; d_{sc} is the distance between the top steel reinforcement and bottom surface of the original concrete beam; d_{sc} is the distance between the top steel reinforcement and bottom surface of the original concrete beam; f_{cd} is the compressive strength of original concrete;

Application of UHPC 2.0[™] (ce200SF-t[™]) In Beam Repairing

ce200SF-t[™] displays a higher tensile strength than traditional UHPFRC

	f _{Utu} (MPa)
ce200SF-t TM	18
Traditional UHPFRC	10

Case 1 : repairing overlay without steel reinforcement

	b (mm)	h (mm)	f_c (MPa)	f_{sc} (MPa)	$ ho_{sc}$ (%)	f _{Utu} (MPa)	h_U (mm)
Traditional UHPFRC	150	250	50	566	0.66	10	50
ce200SF-t TM	150	200		200	0.00	18	26

To obtain the same reinforcement strength, the layer of **ce200SF-t**[™] needed is significantly lower than with traditional UHPFRC: with an **overlay 48% thinner**, the same results can be achieved.

b is the width of the beam cross section; **h** is the height of the beam cross section; f_c is the compressive strength of original concrete; f_{sc} is the yield strength of the top steel reinforcement of the original concrete beam; ρ_{sc} is the ratio of the bottom steel reinforcement area over the effective depth of the beam cross section; f_{Utu} is the UHPFRC tensile strength; h_U is the thickness of UHPFRC layer.

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

UHPFRC

ten manager and a star star

Reinforced Concrete

Application of UHPC 2.0[™] (ce200SF-t[™]) In Beam Repairing

ce200SF-t[™] displays a higher tensile strength than traditional UHPFRC

	f _{Utu} (MPa)
ce200SF-t TM	18
Traditional UHPFRC	10

Case 2 : repairing overlay with steel reinforcement

	b (mm)	h (mm)	f_c (MPa)	f_{sc} (MPa)	$ ho_{sc}$ (%)	f_{SU} (MPa)	ρ_{SU} (%)	f_{Utu} (MPa)	<i>h_U</i> (mm)
Traditional UHPFRC	150	250	50	566	0.66	710	2.70	10	50
ce200SF-t TM	100	200		200	0100	,10	2.70	18	29

With a steel-reinforced UHPFRC layer, to obtain the same reinforcement strength, the layer of **ce200SF**- t^{TM} needed is significantly lower than with traditional UHPFRC: with an **overlay 42% thinner**, the same result can be achieved.

b is the width of the beam cross section; **h** is the height of the beam cross section; f_c is the compressive strength of original concrete; f_{sc} is the yield strength of the top steel reinforcement of the original concrete beam; ρ_{sc} is the ratio of the bottom steel reinforcement area over the effective depth of the beam cross section; ; f_{sU} is the yield strength of steel bars at UHPFRC layer; ρ_{sU} is the steel bar ratio at UHPFRC layer; f_{Utu} is the UHPFRC tensile strength; h_U is the thickness of UHPFRC layer.

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

R-UHPFRC

Reinforced Concrete

Application of UHPC 2.0[™] (ce200SF-t[™]) In Beam Repairing

ce200SF-t[™] displays a higher tensile strength than traditional UHPFRC

	f _{Utu} (MPa)
ce200SF-t TM	18
Traditional UHPFRC	10

Case 3 : repairing overlay with steel reinforcement, keeping the same layer thickness, but reducing the steel reinforcement volume

Reinforce	d Concre	te

				(%)	J_{SU} (NIF a)	(mm)	J _{Utu} (MPa)	$ ho_{sU}$ (%)
Traditional UHPFRC 150	250	50	566	0.66	710	50	10	2.70
e200SF-t TM	200						18	1.56

With a steel-reinforced UHPFRC overlay, with a same layer thickness (50 mm), the amount of steel bar reinforcement needed with **ce200SF-t[™]** is significantly lower than with traditional UHPFRC: with **a reduction of 42% in steel bar volume**, the same result can be achieved.

b is the width of the beam cross section; **h** is the height of the beam cross section; f_c is the compressive strength of original concrete; f_{sc} is the yield strength of the top steel reinforcement of the original concrete beam; ρ_{sc} is the ratio of the bottom steel reinforcement area over the effective depth of the beam cross section; ; f_{sU} is the yield strength of steel bars at UHPFRC layer; h_U is the thickness of UHPFRC layer; f_{Utu} is the UHPFRC tensile strength; ρ_{sU} is the steel bar ratio at UHPFRC layer.

Advantages of applying UHPC 2.0[™] (ce200SF-t[™]) In Bridge Repairing

Carbon Footprint of ce200SF-t[™] evaluated by Carbotech, Switzerland for Swiss Railway (SBB)

Impact of steel fibers to the carbon footprint of UHPC*

* Same level of flexural strength

EXAMPLE: UHPC2.0[™] BRIDGE DECKS

Ultra-high-performance concrete (UHPC) is rapidly emerging as a premier material for precast concrete construction and is ready to revolutionise and potentially change building and bridge design

Efficient use of materials, improved space utilization, better logistics.

When comparing a conventional concrete slab bridge deck used for 40- to 60-ft spans in accelerated bridge construction (ABC) applications and an optimized UHPC voided box slab using the same depth, width and load capacity, the UHPC product has about:

Source: https://www.enr.com/articles/49236-ultra-high-performance-concrete-is-ready-to-revolutionize-precast-prestressed-concre

REFERENCE

[1] Bastien-Masse, M., & Brühwiler, E. (2016). Contribution of R-UHPFRC strengthening layers to the shear resistance of RC elements. *Structural Engineering International*, *26*(4), 365-374.

[2] Noshiravani, T., & Brühwiler, E. (2014). Analytical model for predicting response and flexure-shear resistance of composite beams combining reinforced ultrahigh performance fiber-reinforced concrete and reinforced concrete. Journal of Structural Engineering, 140(6), 04014012.

[3] He, S., Qiu, J., Li, J., & Yang, E. H. (2017). Strain hardening ultra-high performance concrete (SHUHPC) incorporating CNF-coated polyethylene fibers. *Cement and concrete research*, *98*, 50-60.

Outline - Introduction - 2015 Repair of KY 562 Over 1-71 - 2018 Repair of KY 562 Over 1-71 - Conclusions - Acknowledgment

2

KY Bridge Repair With FRP

42 by Harik's Team 10 due to Truck Impact

Outline - Introduction **2015 Repair of KY 562 Over I-71** - 2018 Repair of KY 562 Over 1-71 - Conclusions - Acknowledgment

1

21

22

Outline

- Introduction
- 2015 Repair of KY 562 Over I-71
- 2018 Repair of KY 562 Over I-71
- Conclusions
- Acknowledgment

Moment Capacity (k		
Beam Condition	Beam 1	Beam 2
As-Built Beam	1083	1083
Beam Impacted on 09/09/2018	0	976
Beam Retrofitted on 11/08/2018	1148	1253
<u>Note</u> : Bridge load rating and p on 09/06/2018 can be ma	posting prior to im aintained.	pact

44

Conclusion

Structural concrete repair is an area where FRP Materials compete and win Outline

Introduction
2015 Repair of KY 562 Over I-71
2018 Repair of KY 562 Over I-71
Conclusions

- Acknowledgment

46

Acknowledgment

- FRP Researchers, Guides & Codes
- Kentucky Transportation Cabinet
- Federal Highway Administration
- University of Kentucky
- Industry

45

Evaluation of FRP Strengthening for Deteriorated Bridge Bent Caps

Nur Yazdani, Professor, University of Texas at Arlington Department of Civil Engineering

Yazan Almomani, Assistant Professor, Univ. of Petra, Jordan

Presentation Outline

- Introduction
- Background
- Problem Statement
- Objectives
- Bridge Description
- Concrete Repair and CFRP Strengthening
- Non-Destructive Load Testing
- Numerical Modeling
- Conclusions

Introduction

Almost 39% of U.S bridges are 50 years or older, and there were an average of 188 million trips across structurally deficient bridges each day (ASCE Report Card, 2017)

ac

ONCRETE

Source: Federal Highway Administration Annual Report, 2016

FRP Laminate Strengthening

- Widely used for bridge superstructure
- Less used for substructure

Bridge Description

- The west bound of US 80 over East Fork Trinity River Bridge in Dallas, TX, was selected for this study
- Built in 1940 and widened in 1970.
- Cast-in place reinforced concrete with 52-25 ft. spans.
- The average daily traffic is around 29,000 vehicles (NBI 2016)
- 8-in. composite deck.
- Total of 6 concrete T beams per span.

Location

Background

- 41.5 ft. clear roadway width with 2-2 ft. traffic lanes.
- 2000 psi concrete compressive strength.
- 33 ksi reinforcing steel yield strength.
- Significant concrete damage in some bent caps.

CON

Background

TEXAS ARLINGTON

Eight bent caps selected for repair.

Visual Inspection

- Significant concrete spalling.
- Flexural and shear rebars exposed in some spalled areas. Some excessive corrosion.
- Difficult access to underneath of the bridge.

Concrete Surface Preparation

CFRP Application

- The surface profile was prepared to CSP 3.
- CFRP was then applied on the repaired areas. For flexural strengthening, 24 in. wide CFRP used at bottom of the bent cap.

Instrumentation and Load Testing after Repair

- Instrumentation and load testing after repair was carried out in August 2017.
- A total of 38 concrete and FRP strain gages were installed.
- Fully loaded dump trucks used.
- AASHTO static and crawl speed tests used.

Strain gage locations for bent caps 37

	Axle 1	Axle 2	Axle 3	Total
	weight	weight	weight	Weight
	(lb.)	(lb.)	(lb.)	(lb.)
First Truck	12,700	20,300	19,500	52,500
Second	12,900	21,000	19,700	53,600
Truck				

Instrumentation and Load testing

Strain gage locations for bent cap 35

- The peak strains from all the tests were just around 20 microstrains.
- Relatively low weight of the test trucks, stiff bridge, and short bent cap spans.
- The bridge behaved linear-elastically since the strain readings returned to zero once the trucks were removed.

Strain comparisons, before and after repair

- Crawl speed test with two lanes loaded.
- Reduction in strain after repair for spans two and three in bent cap 37 of 28% and 20%, respectively.

Strain comparison of span two of bent cap 37

TEXAS

ARLINGTON

Strain comparison, before and after repair

TEXAS

ARLINGTON

Strain comparison, before and after repair

TEXAS

ARLINGTON

Neutral Axis Location

 The neutral axis moved slightly downwards after the FRP system was installed since the FRP reduced the strain at the bottom face.

Finite Element Model Results

Deterioration Effect

• The tensile capacity decreased with the section loss increased.

400 Section Loss (2in.) Model # **Section loss** 350 No Section Loss Section Loss (1.5 in.) 300 depth Section loss (3in.) Strain (Microstrain) 250 1 No section loss 200 2 1.5 in. 150 3 2 in. 100 50 3 in. 4 0 50 100 150 200 250 0 300 Load (psi)

Model Results

Bent Cap Capacity before and after Repair.

- The applied moment from the truck was around 20 k-ft. which is much less than the cracking moment and the moment capacity.
- The FRP design calculation was found to increase the moment capacity to 381 k-ft. (18%)

Cracking Moment				
	Theoretical (k-ft)	FE Model (k-ft)		
Before repair	161	147		
After repair	196	238		

Model Results (Cont.)

Bent Cap Capacity before and after Repair

Conclusions

UNIVERSITY OF TEXAS

- Tensile strain was reduced in two spans by 20 to 28% after CFRP strengthening.
- Application of the CFRP to bent cap rehabilitation was successfully performed with a simple and straightforward process.
- The neutral axis location shifted downwards after the CFRP strengthening.
- No traffic control was needed, except for one hour during load testing.

Conclusions

- The model strain results show a good agreement between the live load data and the finite element model.
- The bent cap section loss resulting from concrete deterioration had a reverse effect on the live load carrying capacity of the bent cap.
- The flexural load-carrying capacity of the damaged bridge was fully recovered and enhanced by applying CFRP sheets on the tensile side of the bent caps.
- Serviceability, especially crack control, was also improved after the CFRP strengthening.

Thank you!

FRP Retrofitting and Non-Destructive Evaluation for Corrosion-Deteriorated Bridges in West Virginia

Wael Zatar, PhD, Marshall University Hai Nguyen, PhD, Marshall University Hien Nghiem, PhD, Marshall University

Outline

aci

- Part I: Bridge conditions in West Virginia and Case Studies of WV FRP-Rehabilitated Bridges.
- Part II: Non-destructive testing of reinforced-concrete slabs.

Part I: Introduction

Use of FRP Composites in West Virginia

OCÍ

- According to 2017 National Bridge Inventory (NBI) database (FHWA 2017), West Virginia has 7,228 highway bridges and 19% of these bridges (1,372 bridges) were rated as structurally deficient (SD) and 1,394 bridges (19.3%) were rated as functional obsolete (FO).
- West Virginia has been recognized as a pioneer in the use of FRP composites. FRP composites have been used in the construction of approximately 220 bridges nationwide and 35 of those bridges are in WV.
- There are few FRP-retrofitted bridge projects in WV between 1998 and 2014. Major candidate structures/elements suitable for FRP retrofit include beams/girders, slabs, bents, columns/piles/pier caps, and abutments/footings.

Use of FRP Composites in West Virginia (Cont'd)

- The FRP wraps externally bonded to the concrete surface to compensate for strength lost due to corrosion, deterioration, or fire/impact damage.
- The use of FRP wraps allows the rehabilitation of the existing concrete, resulting in an economic repair as substructure replacement generally requires replacing the entire bridge. These repairs have saved the WVDOT thousands of dollars compared to conventional repairs.

aci

Bridge Conditions in West Virginia

Owner	Bridge Counts			Bridge Area (Square Meters)				
	All	Good	Fair	Poor	All	Good	Fair	Poor
State	6 <i>,</i> 993	1,814	3,700	1,479	3,569,116	694,518	2,292,099	582,499
County	1	1	0	0	320	320	0	0
Town	0	0	0	0	0	0	0	0
City	101	17	53	31	48,340	4,884	29,117	14,339
State Park	23	8	13	2	2,777	726	1,831	219
Local Park	0	0	0	0	0	0	0	0
Other State Agency	2	1	1	0	662	354	308	0
Other Local Agency	9	1	4	4	2,092	126	1,453	514
Private	4	1	3	0	4,223	103	4,120	0
Railroad	5	0	1	4	9,401	0	115	9,285
State Toll	99	4	93	2	171,012	505	165,291	5,216
Local Toll	0	0	0	0	0	0	0	0
Federally Owned	54	14	31	9	11,487	1,707	8,514	1,266

East Street Viaduct in Parkersburg, West Virginia

OC

- The RC bridge was built in 1907 with two traffic lanes under and 6,748 average daily traffic (as of 2015).
- Single span with a span length of 23.3 ft. and a length of 64.7 ft
- The substructure is composed of unreinforced concrete full-height abutments, RC wing walls, and bents.
- The superstructure consists of 3 ft. RC top slab, which carries 2.5 ft. of railroad slag fill and ten sets of railroad tracks.
- The bridge was rehabilitated in 2001 with GFRP wrapping of the abutments, wing walls, concrete bases of the bents, and top slab. In July 2012, WV State Forces, touched up the FRP on the headwall above the southbound lane with fiberglass repair kit, applied paint to GFRP areas showing wear, and repaired the weep drains.

East Street Viaduct (Cont'd)

Elevation and end views

GFRP Wrapping on a headwall and a wing wall

Flag Run Bridge in West Virginia

- The RC bridge was built in 1940 with two lanes of traffic and 650 average daily traffic (as of 2014).
- It has a single span with a total length of 43.2 ft. (40 ft span).
- The superstructure consists of four RC T-beams (33 in. high and 16.5 in. wide) topped with cast-in-place RC slab and supported by two full-height concrete abutments.
- Entire bottom face and side faces at both ends of T-beams were wrapped with CFRP composites in 2002. Abutments were also wrapped with CFRP and the backwalls were patched.

Flag Run Bridge (Cont'd)

Elevation and end views

CFRP wraps in abutments and underside of a T-beam
Outline

aci

- Part I: Bridge conditions in West Virginia and Case Studies of WV FRP-Rehabilitated Bridges.
- Part II: Non-destructive testing of reinforced-concrete slabs.

Part II: Introduction

- Design drawings of many aging bridges may not be available which makes prediction of the remaining structural capacities of the bridge components more challenging, or even impossible.
- Fortunately, advanced non-destructive testing (NDT) techniques can provide great solutions to address the deteriorated bridges.
- In this part, the ultrasonic pitch & catch (UPC) technique for imaging concrete structures are discussed.

aci

Basic Principles of UPC Technique

Basic Principles of UPC Technique (Cont'd)

aci

d
$$\approx C \frac{\Delta t}{2}$$
 C = Wave
Speed N = 1 + 2 + 3 + ... (n - 1) = $\frac{(n - 1)n}{2}$ = 66

Synthetic Aperture Focusing Technique (SAFT)

aci

Specimen Preparation and Test Parameters

aci

Pre-planned delaminations with various sizes and depths

Test Results

Results (Cont'd)

Delamination	Predicted breadth in. [mm]	Measured breadth in. [mm]	Predicted depth in. [mm]	Measured depth in. [mm]
D1	7.71 [196]	8.00 [203]	2.44 [62]	2.32 [59]
D2	7.05 [179]	8.00 [203]	5.08 [129]	5.00 [127]
D3	7.87 [200]	8.00 [203]	2.36 [60]	2.32 [59]
D4	7.32 [186]	8.00 [203]	5.23 [133]	5.00 [127]
D5	7.48 [190]	8.00 [203]	3.31 [84]	3.62 [92]

Conclusions

- 2D reconstructed images of the rebars and delaminations can be interpreted based on specific patterns of color spectrum.
- The ultrasonic pitch and catch (UPC) is proved to be an excellent NDT technique for an accurate evaluation of concrete structures.
- Applications of other NDT techniques such as GPR and IRT for examining internal defects (e.g., voids, debondings, delaminations) of FRP-wrapped structures will be investigated in future works.

Thank you for your attention!

aci

Bridge Conditions in West Virginia

Main Structure Type	Code	SD (a)	FO (b)	Bridge Total (c)	a/c (%)	b/c (%)
Slab	01	168	144	517	32.5	27.9
Stringer/Multi-beam or Girder	02	592	516	3085	19.2	16.7
Girder and Floorbeam System	03	107	41	229	46.7	17.9
Tee Beam	04	49	25	104	47.1	24.0
Box Beam or Girders - Multiple	05	92	401	1905	4.8	21.0
Box Beam or Girders - Single or Spread	06	2	8	55	3.6	14.5
Frame (except frame culverts)	07	5	14	52	9.6	26.9
Orthotropic	08	0	2	2	0	100
Truss – Deck	09	0	4	11	0	36.4
Truss – Thru	10	78	35	180	43.3	19.4
Arch – Deck	11	159	134	399	39.8	33.6
Arch – Thru	12	1	2	8	12.5	25.0
Suspension	13	2	1	3	66.7	33.3
Stayed Girder	14	0	0	3	0	0
Movable – Lift	15	NA	NA	NA	NA	NA
Movable – Bascule	16	NA	NA	NA	NA	NA
Movable – Swing	17	NA	NA	NA	NA	NA
Tunnel	18	NA	NA	NA	NA	NA
Culvert (includes frame culverts)	19	46	36	539	8.5	6.7
Mixed types	20	1	0	1	100	0
Segmental Box Girder	21	1	1	3	33.3	33.3
Channel Beam	22	63	25	115	54.8	21.7
Other	00	6	5	17	35.3	29.4
Total		1,372	1,394	7,228	19.0	19.3

Major Non-Destructive Testing (NDT) Techniques

aci

Bridge Substructure Repairs with Basalt and Glass FRP Internal Reinforcement

Presented by Mohit Soni, PE, PMP, Peng

Stantec Consulting Services Inc.

- 1. Introduction
- 2. Purpose and Need
- 3. Procedure
- 4. Pilot Projects
 - US 17 over Trout River Details
 - SR 312 over Matanzas River
- 5. Testing
- 6. Lessons Learned
- 7. Conclusion

3

Introduction

Florida's Vast Infrastructure

Second longest coastline in the United States (behind Alaska)

122,000 centerline miles of roadway **14000** bridges (state and non-state) **176M SQ.ft** bridge area

Purpose and Need

The Consequences

- Earlier studies, and others, reveal:
 - GFRP exposed to marine environments resulted in degradation of mechanical properties
 - FRP bars embedded in moist concrete had adverse effects on long-term durability
- Therefore use of GFRP was restricted within submerged and splash zones.

FDOT Studies

- Degradation Assessment of Internal Continuous Fiber Reinforcement in Concrete Environment - BDK82-977-05, 2014
- Performance Evaluation of Basalt Fiber Reinforced Polymer (BFRP) Reinforcing Bars Embedded in Concrete - BVD30-986-01, 2018-2019
- Performance Evaluation, Material and Specification Development for Basalt Fiber Reinforced Polymer (BFRP) Reinforcing Bars Embedded in Concrete – BE694, 2019-2021

Studies confirm these methods meet requirements

However implementation required to measure longterm performance in different environments and exposure conditions

Two Projects in Focus

US 17 over Trout River

Bridge No. 720011 Duval County FDOT District 2

Scope includes:

- Removal of existing jackets from jacketed piles and the design of an impressed current cathodic protection (ICCP) system for previously jacketed piles
- Field identified prestressed concrete piles
- Detail ICCP system for concrete footers at Pier 9 and Pier 10 utilizing GFRP

EB SR 312 over Matanzas River

Bridge No. 780089 St. Johns County FDOT District 2

Scope includes:

- Design of impressed current cathodic protection system utilizing GFRP and BFRP for the columns
- Struts and footers for piers 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, and 31
- Repair delaminations for columns 28-1, 28-2, and 29-2
- Repair undermined seal for piers 24 and 25

FDOT's Conventional Approach on Preservation

- Cathodic protection
- Concrete rehabilitation using conventional carbon-steel

These pilots utilize alternative innovative reinforcement

• Including GFRP and BFRP

US 17 Over Trout River Details:

Length totaling 1,458 feet

AASHTO Type III

Prestressed beams

20-in. Square

Prestressed pile bents and pile footings

69.75 ft.

Overall bridge width and carries two lanes in each direction

Existing Condition

Existing pier footings and piles severely deteriorated due to spalls and delamination

Reinforcements were exposed with a section loss of 25% or more

Majority of damage occurred within splash zone

 \circ

Procedure

Substructure component needed to be cleaned

Removal of loose concrete Verifying reinforcement is robust and continuous

Sensitivity analysis was performed

Sensitivity analysis of piles Evaluated degree of risk associated with removal of concrete and reinforcement from active piles and footers

Results are reported to contractor

Contractor knows the amount of concrete that can safely be removed

Construction Method

For Pier 10, conventional forming of the jacket and placing concrete was used

Construction Method

Concrete was applied using shotcreting techniques for Pier 9.

Concrete quality issues

- Provided opportunity to explore removal of concrete from FRP bars

Innovations

- Utilization of GFRP bars in a variety of setting, including conjunction with shotcrete and conventional cast-in-place method
- Utilization of GFRP bars within the splash zone/marine environment will support the outcome of the studies for lifting restrictions

US 17 over Trout River

SR 312 over Matanzas River

SR 312 Over Matanzas River Details:

Length totaling 3,575 feet

AASHTO Type IV

Prestressed beams for approach spans and steel plate girders for 3-span channel unit

20-in. Square

Substructure comprised of 2-column piers supported by waterline footings

47.25 ft.

Overall bridge width and carries two lanes in each direction
Work Activities on SR 312

- Removal of existing multi-column pier jackets and installation of new jackets on multi-column pier
- Pier footing jackets with ICCP installed
- Ribbon anodes installed between piles on pier footing
- GFRP dowels and BFRP mesh were used in select locations

- Pier 15, 19, 20, 21, 22, 23, 26, 29, 30 and 31 were rehabilitated as follows:
 - Columns: No. 4 L-shape GFRP dowel bars were embedded into the columns to attach the 6-in. x 6-in. x 5/32-in. (150mm x 150mm x 4mm) BFRP mesh for crack control to protect the titanium anode mesh.
 - Footing Struts: No. 4 L-shape GFRP dowel bars were embedded into the strut to attach the No. 4 GFRP bars in longitudinal and No. 3 GFRP bars in transverse direction to protect the titanium anode mesh. Dowel spacing was 6-in. and GFRP bars were spaced at 1-ft. in both directions alongside of the strut.
 - Footing: This is among the first FDOT projects to implement ribbon anodes.

Existing Condition

Existing pier footings and piles severely deteriorated due to spalls and delamination

Reinforcements were exposed with a section loss of 25% or more

Majority of damage occurred within splash zone

Unexpected conditions

Previous spall/crack repairs did not work, one of the reasons was missing of ties at the bottom of the columns

Forming and pouring of columns damaged section after installation of ties

Shotcrete was used in the column and strut to form the jacket

 \bigcirc

Innovations

- Use of GFRP (ECR-VE) bar in conjunction with shotcrete
- Use of BFRP (Basalt-Epoxy) mesh in conjunction with GFRP (ECR-VE) bar
- Use of ribbon anodes in footings for cathodic protection of remaining carbon-steel reinforcing
- GFRP (ECR-VE) bar use in the marine environment
- Utilization of GFRP bars within the splash zone/marine environment will support the outcome of the studies for lifting restrictions

Finished Jackets

Testing

The surface of GFRP bars were provided with sand coating that promotes bond adhesion of the bar to shotcrete

Surface preparation was found to be adequate for bonding as defined by ACI 548.11R-12. for SR 312 over Matanzas River Testing

Lessons Learned

Challenges overcome for both projects:

- Longer lead times than typically expected for steel rebar was required for the procurement of GFRP due to the production shop availability for bending/fabrication GFRP bars as well as both GFRP and BFRP producers were not available locally.
- For pilot projects take into account the availability of experienced workers on similar technology as the technology was implemented for the first time in the state.
- GFRP/BFRP material storage guidelines and specifications including the temperature were not available in the FDOT specifications.
- Limitations on the field modifications associated with the reinforcing due to the shop bending/fabrication of the bars.
- Location of the site in relation to the concrete plant provided tight time intervals to place the concrete, possibly contributing to the poor placement of the shotcrete.
- Very little to no damage was observed after removal of concrete from BFRP mesh and GFRP bars and this reinforcing was then successfully reused.
- Shotcreting techniques require very strict quality control in mix design, temperatures as well as nozzle man skill and qualification for its success.

Conclusion

Conclusion

US 17 over Trout River Bridge and EB SR 312 over Matanzas River Bridge incorporated numerous innovations as pilot projects. In the end, both projects were successfully constructed and are being monitored long-term by the FDOT State Materials Office. The technologies and innovations implemented in both projects are associated with the usage of FRP is performing well and as a result partially contributed to FDOT lifting the restrictions on the usage of GFRP bars in the marine environment and implemented this innovative technology in several recent projects.

Questions

Shear Strengthening of Beams on the Sunshine Skyway Bridge Trestle Spans with CFRP

October 28, 2020

TYLININTERNATIONAL

Sunshine Skyway Bridge History

- Original Sunshine Skyway Bridge 1959
- Twin Structure 1971

Summit Venture Disaster May 9, 1980

Atiq Alvi, PE

Vice President/Technical Director - Bridge Rehabilitation

- Engineer of Record for 3rd CFRP Strengthening Project 2019
- Project Manager for Pilot CFRP Project 2007
- Project Manager for Skyway Trestle Span Beam Study 2006
- Technical Director for Bridge Rehabilitation
- Former FDOT District Seven Structures Maintenance Engineer
- PM/Engineer of Record for 50+ rehab projects, including movable and complex bridges
- Transportation Research Board Bridge Structural FRP Committee since 2003

Outline

- Sunshine Skyway Bridge, 1987
- AASHTO Beam Cracking, 1990s
- Investigation/Studies, 2006-2009
- Repair Projects, 2007, 2013, 2020
- Summary

Bob Graham Sunshine Skyway Bridge 1987

Location

- Carries I-275 over Tampa Bay
- 4.14 Miles in Length
- Crosses Three Counties
 - Pinellas
 - Manatee
 - Hillsborough

Bridge Geometry

Trestle Spans Length: 13,000 feet

Typical Diagonal Cracking

- Detected in mid-1990s
- Begins in Web
- Propagates at <u>20°</u> to <u>45°</u>

Typical Diagonal Cracking

 Shear Cracking in Web Extending to Bottom Flange

Typical Diagonal Cracking

Web Shear Cracking

Investigations and Studies

- Several Special Inspections
- In-Depth Investigation and Study
- Replicated Beams and Testing

FDOT District 1&7FDOT StructuresStructures MaintenanceResearch Center 2006

University of Florida 2009

Investigations and Studies

- Reviewed Inspection Reports
- Reviewed Original Design and Construction Plans
- Hands-On Inspection
- Traditional AASHTO Shear Analysis
- Strut and Tie Model
- Non-Linear FEM Analysis
- Performed Load Testing
- Replicated Girders and Load Tested

AASHTO TYPE IV Girder Properties	Value
Compressive Strength of the Girder	5500 psi
Concrete	
Compressive Strength of the Deck Slab	4000 psi
Concrete	
Jacking Force	39,600 lb
Initial Prestressing Steel Stress	185.15 ksi
Effective Prestressing Steel Stress after 24%	141 ksi
loss	
Ultimate Strength of Strands	270 ksi
Maximum Span Length	100.5 ft.
Weight of Barrier	419.0 lb/ft
Unit Weight of Concrete	155 lb/ft3

Cracking Summary

	Girders			Girders w/Cracking				
Bridge	Total	Exterior	Interior	Exterior	Exterior	Interior	Interior	Total
	Girders	Girders	Girders	Girders	%Cracked	Girders	%Cracked	%Cracked
Northbound	650	260	390	254	97.7%	4	1.0%	39.7%
Southbound	650	260	390	242	93.1%	5	1.3%	38.0%

* Majority of Diagonal Cracks in Exterior Faces of External Girders

Review of Design and Construction Records

- Excessive Debonding due to Change Made in Construction
- 33 Strands in Bottom Flange
- 20 (61%) Debonded
- 13 (39%) Fully Bonded
- Current FDOT Codes Allow 25% Debonding, not to exceed 30%

Effect of Excessive Strand Debonding

- Traditional Shear Analysis with Standard AASHTO Specifications
- 2. Strut and Tie Model
- 3. Non-Linear Finite Element Model

Potential cracking area

External Girders 93,98% and Internal Girders 1%

- Narrow outside overhangs
- Wide beam spacing
- Torqueing effect when the wet concrete load applied to beam
 - Torque remained in beams after concrete set
- Effect of Thermal Radiation
 - The 20° temperature differential created maximum principal stresses of 50 psi

Direct Reason for Failures

- Excessive Debonding
- No Confining Steel

Girder Testing

- Fabricated Two TYPE IV Girders
- Replicated Trestle Span Beams
- Identical Debonding
- Strengthened One Side
- Load Tested

Replicated AASHTO TYPE IV Girders

- Replicated Trestle Span Beams
- Identical Debonding
- Load Tested

Testing Results

- All Four Tests Exhibited Same Failure Mode
- Bulb Cracking Pattern
- Caused by Excessive Debonding
- No Confinement Steel
- Bursting of the Bulb

Comparison of Testing

Structures Research Lab Testing

Beam Testing During Construction

Conclusions and Recommendations of Studies

- 1. Diagonal cracking on exterior faces of external girders \approx 98% and 93%; Interior girders \approx 1.0%.
- 2. Traditional Analysis Indicates no deficiency in girders.
- 3. Standard AASHTO Specifications did not consider effect of debonding on shear capacity and overestimated nominal shear capacity of girders by 25%.
- 4. Strut and Tie Model and the Nonlinear FEM analysis are within 3%.
- 5. Concrete shear strength (Vc) insufficient to resist service loads.
- 6. CFRP strengthened and Control beams exhibit same patterns
- 7. CFRP Strengthened a/d Ratio = 1 \rightarrow 9% Increase in Vc
- 8. CFRP Strengthened a/d Ratio = $3 \rightarrow 21\%$ Increase in Vc
- 9. CFRP Wrap Also Improves Confinement
- 10. Recommendation → <u>Structural Strengthening with CFRP Wrap</u>

Project 1 (2007)

- 1st Strengthening Project
- Pilot Project
- Wrapping 965 LF
- Addressing 11% (worst) Cracked Beams

2007 CFRP Strengthening Plan

Concrete Surface Preparation

- Abrasive Blasting
- Grinding Corners
- Air Blasting

Epoxy Injection of Cracks

 Important to have uninterrupted surface area

CFRP Installation 2007

Vertical Strips for Shear

CFRP Installation 2007

 Longitudinal Strips for Anchoring

NCHRP Report 678 (2011)

- FRP Design for Shear Strengthening
- Mechanical Anchoring
 - Most effective method to prevent debonding of FRP Wrap

Project 2 (2013)

- Pilot for Mechanical Anchoring
- Wrapping 365 LF
- Addressing 4% (worst) Cracked Beams

Project 3 (2019)

- Third and Final Project in the Series
- Wrapping 7,225 LF
- Addressing 85% Remaining Deficient Beams
- Designed with the most current standards and codes
- Used what has worked successfully
- Allowed for self-adhesive wrap

Strengthening w/Mechanical Anchoring

Strengthening w/Mechanical Anchoring

Holes for Mechanical Anchoring

Radius ground to ½" minimum

Epoxy Installation

CFRP Wrap Installation

- 6"Vertical CFRP Strips
- 12" Spacing

Pull-Off Testing

Strength ≥ 200 psi

CFRP Mechanical Anchors Installation

- Pulling CFRP mechanical anchors through the web
- Fanned out at ends

CFRP Strengthening w/Anchoring Plan

2013 CFRP Anchor Fans Installation

 Epoxy anchor fans to face of beam

CFRP Strengthening w/Anchoring Plan

CFRP Patch Installation

Epoxy CFRP patches over fans

CFRP Wrap, Anchors and Patch Installed

Prior to Curing, Testing and UV Coating

UV Protective Coating

 UV Protective Coating installed over CFRP Material

Summary of Projects

Description	Year	Deficient Beams Addressed	CFRP Wrap (LF)
Pilot Project	2009	11%	975
Pilot for Mechanical Anchoring	2013	4%	365
Self-Adhesive CFRP Wrap	2019	85%	7,225

Acknowledgements

- Jim Jacobsen, PE, District Structures Maintenance Engineer, District 1 & 7 Structures Maintenance Office (DSMO)
- Ignacio Recio, PE, Skyway Bridge Maintenance Engineer, DSMO
- Mohsen Shahawy, PhD, PE, President Chief Engineer, SDR Engineering, Principal Investigator for Cracking Investigation of the Girders of the Skyway Trestle Spans and EOR for 1st CFRP Project
- Teddy Theryo, PE & Tony Ledesma, PE / Parsons Brinckerhoff (EOR for 2nd CFRP Project)
- Steve Womble, PE, Senior Structural Engineer, T.Y. Lin International
- Jim Fitzer, PE / CEI Project Manager / AECOM (CEI for 2nd Project)
- Jaime Deese, PE (Keystone)/Marcus Kelley, PE & Dustin Spears, PE (Highspans), CEI for 3rd CFRP Project
- FDOT Structures Research Center, Initial Report on Testing of Simulated Skyway Trestle Span Beams
- H.R. Hamilton, G. Llanos, B. Ross, University of Florida, Authors of Shear Performance of Existing Prestressed Concrete Bridge Girders

Questions?

