

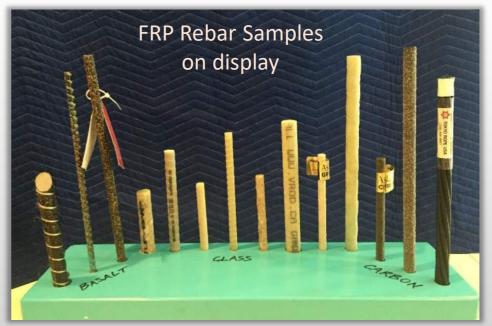
July 21, 2019 Seminar for HDOT

BFRP-RC Standardization of Design & Materials

FHWA Project: STIC-0004-00A (*Phase 3 - Technology Transfer*)

FRP-RC Design - Part 1

James Fu, Ian Robertson, Rodrigo Romo, Raphael Kampmann, Alvaro Ruiz, Steve Nolan



Seminar Description

Fiber-reinforced polymer (FRP) materials have emerged as an alternative for producing reinforcing bars for concrete structures. Due to other differences in the physical and mechanical behavior of FRP materials versus steel, unique guidance on the engineering and construction of concrete structures reinforced with FRP bars is necessary.

Learning Objectives

Part 1

 \sim

Part

 \mathbf{M}

Part

Part 4

- Understand the mechanical properties of FRP bars
- Describe the behavior of FRP bars
- Describe the design assumptions
- Describe the use of internal FRP bars for serviceability
 & durability design including long-term deflection
- Describe the flexural/shear/compression design procedures of concrete members internally reinforced with FRP bars
- Review the procedure for determining the development, splice length, and bends for FRP bars.

Content of the Complete Seminar

FRP-RC Design - Part 1, (30 min.)

This session will introduce concepts for reinforced concrete design with FRP rebar. Topics will address:

- Materials & Design Specifications;
- Design & Typical Applications;
- FRP Rebar Properties;
- New Developments and Solutions;

BFRP-RC Design - Part 2, (45 min.)

This session will introduce FRP rebar that is being standardized under FHWA funded project *STIC-0004-00A* with extended FDOT research under BE694, and provide training on the flexural design of beams, slabs, and columns for:

- Design Assumptions and Material Properties
- Ultimate capacity and rebar development length under strength limit states;
- Crack width, sustained load resistance, and deflection under service limit state;

Content of the Complete Seminar

FRP-RC Design - Part 3, (45 min.)

This session continues with FRP rebar from Part 2, covering shear and axial design of columns at the strength limit states for:

- Shear resistance of beams and slabs;
- Axial Resistance of columns;
- Combined axial and flexure loading.

FRP-RC Design - Part 4 (30 min.)

This session continues with FRP rebar from Part 3, covering detailing and plans preparation:

- Fatigue resistance under the Fatigue limit state;
- Minimum Shrinkage and Temperature Reinforcing;
- Bar Bends and Splicing;

Some Local Flavor

Honoapi'ilani Hwy, Maui

Pearl Harbor, Oahu

Introduction - A word from your local sponsors...

During the last few years, Universities have been working closely with national & international engineering firms and government departments (including HDOT & FDOT):

- Bridges
- Parking facilities
- Water-treatment plants
- Tunnels
- Retaining walls
- Traffic Barriers
- RC/PC Sheet Piles
- Precast Driven Piles

Introduction - Significant Applications

Examples of major national and international projects using FRP bars:

- Nipigon Bridge on the Trans-Canada Highway (northwestern Ontario, Canada)
- Champlain Bridge (Montreal)
- TTC Subway North Tunnels (Highway 407) (Toronto)
- Port of Tanger Med II (Morocco)
- Port of Miami Tunnel (Florida FDOT)
- Pearl Harbor Dry Dock Rehab (Hawaii US Navy)

Introduction - Significant Applications

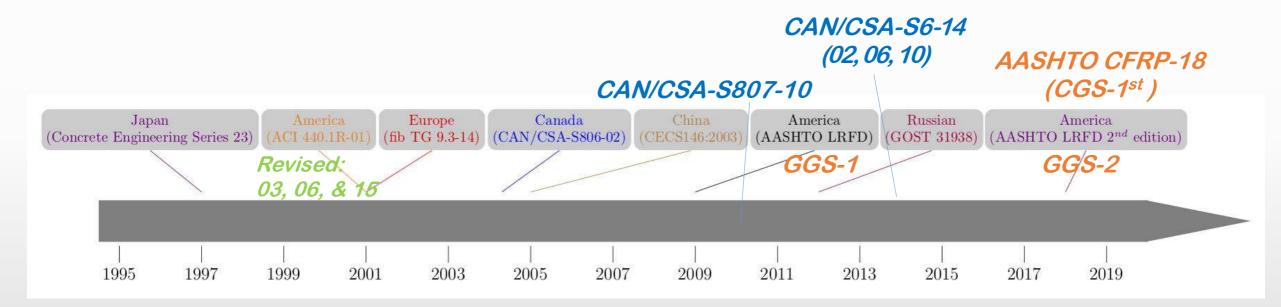
Let us begin...

FRP-RC Design - Part 1, (30 min.)

This session will introduce concepts for reinforced concrete design with FRP rebar. Topics will address:

- Materials & Design Specifications;
- Design & Typical Applications;
- FRP Rebar Properties;
- New Developments and Solutions;

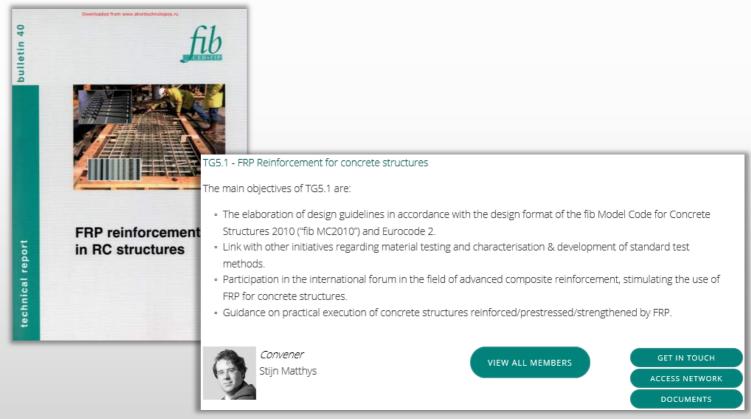
BFRP-RC Design - Part 2, (45 min.)


This session will introduce FRP rebar that is being standardized under FHWA funded project *STIC-0004-00A* with extended FDOT research under BE694, and provide training on the flexural design of beams, slabs, and columns for:

- Design Assumptions and Material Properties
- Ultimate capacity and rebar development length under strength limit states;
- Crack width, sustained load resistance, and deflection under service limit state

North American Material Specifications and Design Codes for Concrete Structures Reinforced with FRP Bars

Seminar based on CAN/CSA-S6, -806 & -807 vs. AASHTO GGS-2 and FDOT Specifications


Development of Worldwide FRP-RC/PC Guidelines

Other national Specifications and Design Codes for Concrete Structures Reinforced with FRP Bars

European –

- *fib* (Fédération internationale du béton), *Bulletin 40*: FRP reinforcement in RC structures: Technical report (2007)
- *fib Model Code 2020* (in development)
- Eurocode 1992 (in development)

Other national Material Specifications and Design Codes for **Concrete Structures Reinforced with FRP Bars**

Russian Classification for Standards 91 080 40

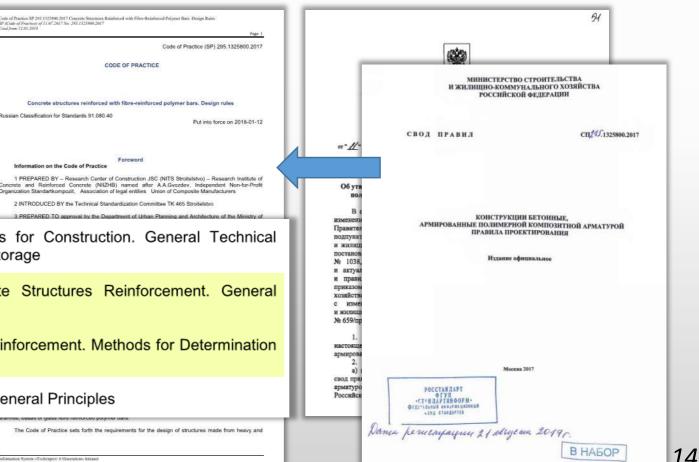
Information on the Code of Practice

Code of Practice SP 295.1375500.2017 Concrete Structures Reinforced with Fibre-Reinforced Polymer Bass. Design Rule SP (Code of Practice) of 11.07.2017 Nat. 295.7325800.2017

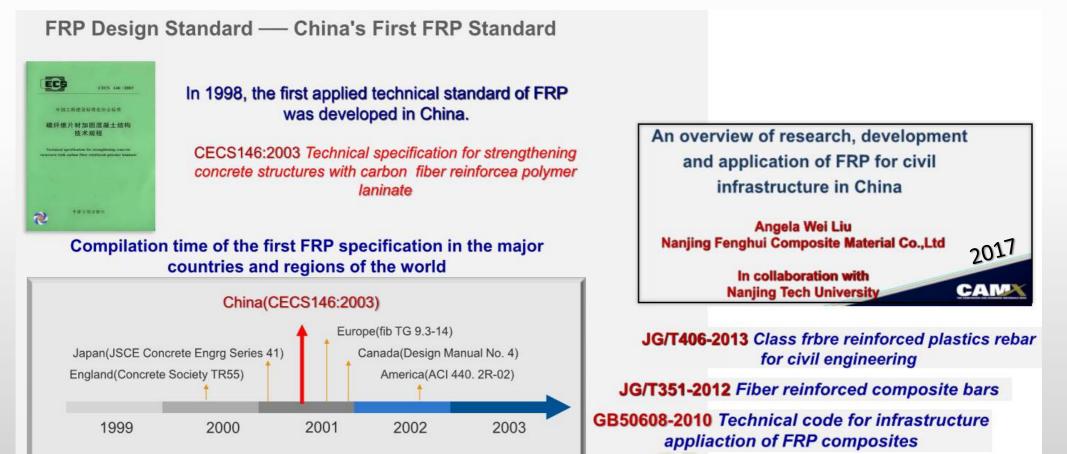
CODE OF PRACTICE

Foreword

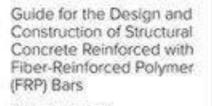
2 INTRODUCED BY the Technical Standardization Committee TK 465 Stroitelstyr


SP295 Russian Code of Practice (2017, 2018.12.01 English translation)

REPARED TO approval by the Department of Urban Planning and Archit GOST 13015-2003 Reinforced Concrete and Concrete Products for Construction. General Technical Requirements. Rules for Acceptance, Marking, Transportation and Storage


GOST 31938-2012 Fibre-Reinforced Polymer Bar for Concrete Structures Reinforcement. General Specifications

GOST 32492-2015 Fibre-Reinforced Polymer Bar For Concrete Reinforcement. Methods for Determination of Structural and Thermo-Mechanical Characteristics

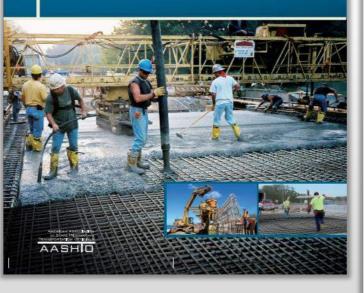

GOST 27751-2014 Reliability for Constructions and Foundations. General Principles

Other national Material Specifications and Design Codes for Concrete Structures Reinforced with FRP Bars

- ACI 440. 1R: "Guide for the design and Construction of Structural Concrete Reinforced with FRP Bars". 1st Edition in 2001, 2nd Edition in 2003, 3rd Edition in 2006, 4th Edition in 2015, <u>Design Code (ACI 318 in 2020)</u>.
- 2. AASHTO LRFD: "Bridge Design Guide Specifications for GFRP-Reinforced Concrete Bridge Decks and Traffic Railings". 1st Edition in 2009, 2nd Edition 2018
- 3. ASTM D7957-17: "Standard Specification for Solid Round Glass Fiber Reinforced Polymer Bars for Concrete Reinforcement". <u>1st Edition 2017</u>
- 4. CAN/CSA S6: "Canadian Highway Bridge Design Code", Section 16 "Fibre Reinforced Polymers (FRP) Structures". 1st Edition in 2000, 2nd Edition in 2006, Supplement S1 in 2010, 3rd Edition in 2014, 4th Edition in 2019
- 5. CAN/CSA S806: "Design and Construction of Building Components with FRP". 1st Edition in 2002, 2nd Edition in 2012, 3rd Edition in 2019?
- 6. CAN/CSA-S807: "Specifications for Fibre Reinforced Polymers". 1st Edition in 2010, 2nd Edition in 2019

American Concrete Visiti Am

Reported by ACI Committee 440


0

44(

AASHTO LRFD Bridge Design Guide Specifications for GFRP-Reinforced Concrete

2^{NO} EDITION

This international standard was developed in accordance with internationally recepted principles on standardization established in the Decision on Principle's for the Development of International Standards, Cardie and Recommunitations issued to the World Trade Organization Deduced Barriers to Trade (TBT) Connector.

Designation: D7957/D7957M - 17

Standard Specification for Solid Round Glass Fiber Reinforced Polymer Bars for Concrete Reinforcement¹

This submit is local and the final despinant DNN/02997W, the number meaningly following the despination individual year of original adoption or, in the case of revision, the year of has realism. A samitrix is paradiment individual individual within the four of hist morphose. A supercept equal is in findowine, an individual damps may be last revision or reception.)

1. Scope

1.1 This specification covers glass fiber reinforced polymer (GRRP) bars, provided in cut leaghts and bent shapes and having an external straface otherancement for concerts reinforcement. Bars covered by this specification shall meet the requirements for geometric, material, mechanical, and physical propericle doorfled herein.

1.2 Bars produced according to this standard tare qualified using the test methods and must meet the requirements given by Table 1. Quality control and certification of production loss of bras are completed using the test methods and must user the requirements given in Table 2.

1.3 The text of this specification references notes and footnets, which provide explanatory material. These notes and footnotes (excluding those in tables) shall not be considered as requirements of the specification.

1.4 The following FRP materials are not covered by this specification: 1.4.1 Bars made of more than one load-bearing fiber type

(das is, bybrid FRP).

 A.2 Bars having no external surface coharcement (that is, 1.4.2 Bars having no external surface coharcement (that is,

plain or smooth birs, or dowels). 1.4.3 Birs will geometries other than solid, round cross

sections, 1.4.4 Pre-manufactured grids and gratings made with FRP materials.

 This specification is applicable for either SI (as Specification dealine D7957M) or inch-pound units (as Specification D7957).

1.6 The values stated in either indispond units or 81 units are to be regarded as standard, Within the text, the indispond units are shown in brackets. The values stated in each system are not exact equivalentic therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformatic with the specification.

¹⁵This specification is under the jurnelician of ANTM Committee 1200 on Comparish Materials and its 2n direct responsibility of Softwarmittee 1200 15 on Comparish to Could Sometone Current oblina approval Aug. L. 2017, Published August 2017. Originally approved in 2017, Doil 10.1320/00123.201953.201903.417.

1.7 This standard does not purport to address all of the safety rememor, if any, associated with its use, It is the responsibility of the user of this standard to establish appropriate safety, health and environmental particless and determine the applicability of neutralization illustrations prior in me. 1.8 This internationally scengistery limitations prior in me. 1.8 This internationally scengistery interactions on standard ization established in the Decision on Principles for the Development of Internationally scenarios. Standards, Guides and Recommendationst insued by the World Trade Organization Technical Barriers in Trade (TRT Committee)

2. Referenced Documents

2.1 ASTM Standards.² AM350A615M Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement. COM Herminology Relating to Chemical-Reinstant Nonane-

CS04 Terminology Relating to Chemical-Resistant Noian Inflic Materials D570 Test Method for Water Absorption of Plastics

D792 Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement

D2S84 Test Method for Ignition Loss of Cured Reinforced Rosins

D3171 Test Methoda for Constituent Content of Composite Materials D3878 Terminology for Composite Materials

D36 76 Terramotogy for Composite Materials D7205/07205M Test Method for Tensile Properties of Fiber Reinforced Polymer Manix Composite Bars D7617/075617M Test Method for Thanseerse Shear Strength

of Fiber-reinforced Polymer Matrix Composes Bars D7705/D7705M Test Method for Allauli Resistance of Fiber Reinforced Polymer (FRP) Matrix Composite Bars (see

in Concrete Construction D9913/D7913M Test Method for Bond Strength of Fiber-Reinforced Polymer Matrix Composite Bars to Concrete

by Pullout Testing 197914/D7914M Test Method for Strength of Liner Reinforced Polymer (FRP) Bent Bars in Bend Locations

¹ For referenced ASTM annalarda, start the ASTM solution, www.astm.org, str. consert ASTM Concentres Services in service/Castm.org. For Annalard Model of ASTM Stochards volume information, refer to the standard's Document Statementy page on the ASTM website.

Crayright BAGTM Internations, 100 Bas Factors Drive, PD Bas 2700. West Connectoders, 74 16(26-266), Julied States

- Design principles well established through extensive research and field practice, and experience gained on viability of construction management practices where FRP reinforcement is adopted through traditional low-bid letting processes and competitive bidding from multiple FRP bar suppliers
- Provisions governing testing and evaluation for certification and QC/QA
- Describes permitted constituent materials, limits on constituent volumes, and minimum performance requirements
- Specific properties of FRP reinforcement, design equations and resistance factors, detailing, material and construction specifications
- FRP bar preparation, placement (including cover requirements, reinforcement supports), repair, and field cutting.

Session 1: Materials & Design

FRP Material Characterizing & Durability Testing

SEM, FTIR, DSC, DMA, Creep/Mechanical, etc.

Techniques for assessing physical properties and microstructure of FRP bars

Technique	Principle and objective	Typical results			
DSC (Differential Scanning Calorimetry)	Measure the difference in the amount of heat required to increase the temperature of a sample and reference as a function of temperature Determination of glass transition temperature or softening point (Tg) and cure ratio				
TMA (Thermomechanic al Analysis)	Measure the change of dimension of a sample as a function of temperature Determination of coefficient of thermal expansion (CET)	10.0kV 9.2mm x100 SE(M) 10.0kV 8.3mm x2.50k SE(U) 10.0kV 8.3mm x2.50k SE(U)			
FTIR (Infrared Spectroscopy)	Provide infrared spectrum of a material (i.e polymeric resin) to detect chemical changes, such as degradation Detection of chemical degradation of resin, such as hydrolysis				
SEM (Scanning Electronic microscopy)	Produce images of a sample by scanning it with a focused beam of electrons Investigation of the morphology, structure, defects (porosity, microcracking, debonding, corrosion, etc.)				

Design Considerations

- The designer should understand that a direct substitution between FRP and steel bars is not possible due to differences in mechanical properties of the two materials
- A major difference is that FRP's are linear up to failure and exhibit no ductility or yielding
- Another major difference is that serviceability will be more of a design limitation in FRP reinforced members than with steel. Due to it's lower modulus of elasticity (e.g., GFRP bars), deflection and crack widths will govern the design.

Where should FRP Concrete Reinforcing be used?

- Any concrete member susceptible to steel corrosion by chloride ions
- Any concrete member requiring non-ferrous reinforcement due to electro-magnetic considerations, e.g. tolling plaza
- As an alternative to epoxy, galvanized, or stainless-steel rebars
- Where machinery will "consume" the reinforced member (i.e., mining and tunneling)
- Applications requiring thermal nonconductivity

Civil and Building Applications

Concrete exposed to de-icing chlorides or salt sprays:

- Bridge decks
- Approach slabs
- Barrier walls
- Railroad crossings
- Salt storage facilities
- Retaining walls
- Parking Garages
- Seawalls, piles and piers
- Marine structures

Tunneling Softeyes


London, UK

Marine Structures

Corrosion of the steel reinforcement caused concrete delamination

Pearl Harbor, Hawaii

Marine Structures

Seawall Rehabilitation

Bridge Railings

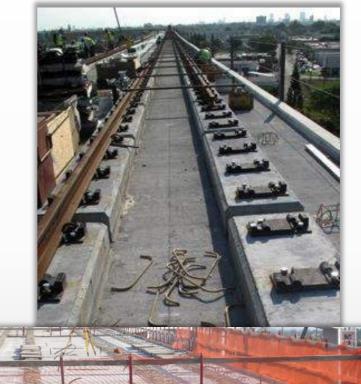
Electromagnetic Applications

- MRI rooms in hospitals
- Airport radio & compass calibration pads
- Electrical high voltage transformer vaults
- Concrete near high voltage cables and substations
- Electronic tolling plaza pavements and traffic barriers

Electric Utilities

Wall Protection System

 Protect key transformer sites on the energy grid from ballistics, explosions and fire without requiring grounding of reinforcement



Electrified Rail Isolation

Miami MetroRail: 2.4 miles of elevated rail

• Rail Plinths 100% reinforced with GFRP Bars

FRP Rebar Use in Concrete Bridges in USA

• 65 Bridges – 27 States

Colorado	2						
Connecticut	1	New Hampshire	1				
Florida	8	New York	3				
Georgia	2	North Carolina	1				
Indiana	1	Ohio	4				
Iowa	2	Oregon	1		Applications		
Kansas	1	PA/NJ	1		Dook		
Kentucky	2	Pennsylvania	1		Deck, parapet,	enclosure, and/or sidewalk	
Mass	1	Texas	3	Deels entry	barrier,		
Maine	4	Utah	2	Deck only	enclosure,		
Michigan	2	Vermont	1		and/or sidewalk		
Minnesota	1	Virginia	1	56	5	4	
Missouri	6	West Virginia	9	00	U	7	
Nebraska	1	Wisconson	3	Source: ACMA, 2016			

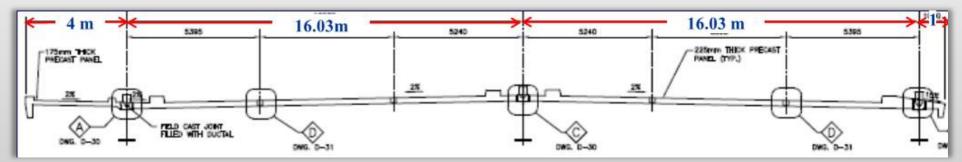
FRP Rebar Use in Concrete Bridges in Canada

• 202 Bridges – 5 provinces

	Rebar	Deck only	Deck, parapet, barrier, enclosure, and/or sidewalk	Parapet, barrier, enclosure, and/or sidewalk
Bridges in Canada	202	167	23	12

Source: ACMA, 2016

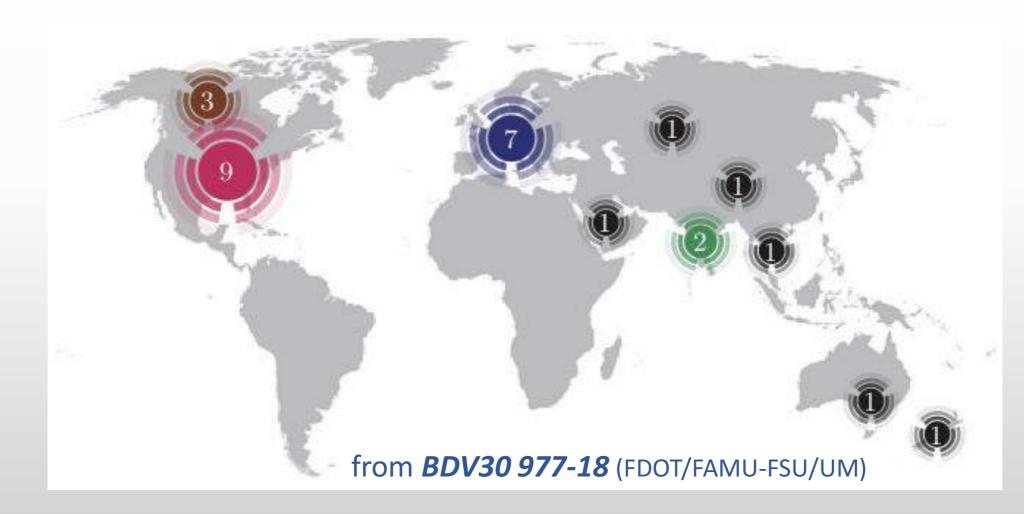
Nipigon River Cable-Stayed Bridge (Canada)


 The First Deck Slab Reinforced with GFRP Bars in Cable Stayed Bridge

Nipigon River Cable-Stayed Bridge (cont.)

- 2012-2017
- ~827 ft. (252m) in length
- two-span, four lanes
- 480 precast concrete panels (10 ft. x 23 ft.)
- High Performance concrete
- Panel joint filled with UHPFRC
- Many partners

Halls River Bridge Replacement, Florida, USA

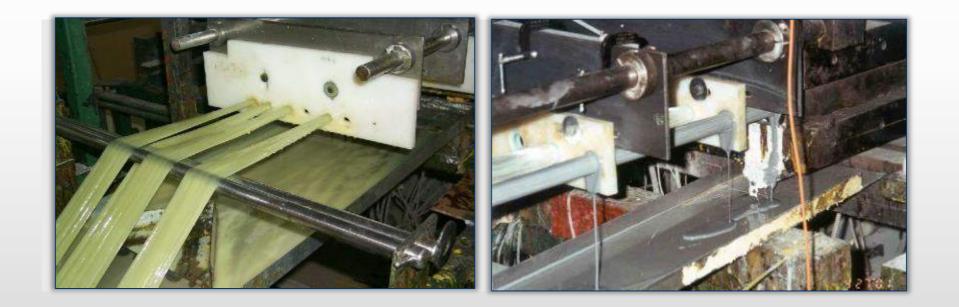


Session 1: Design & Typ. Applications

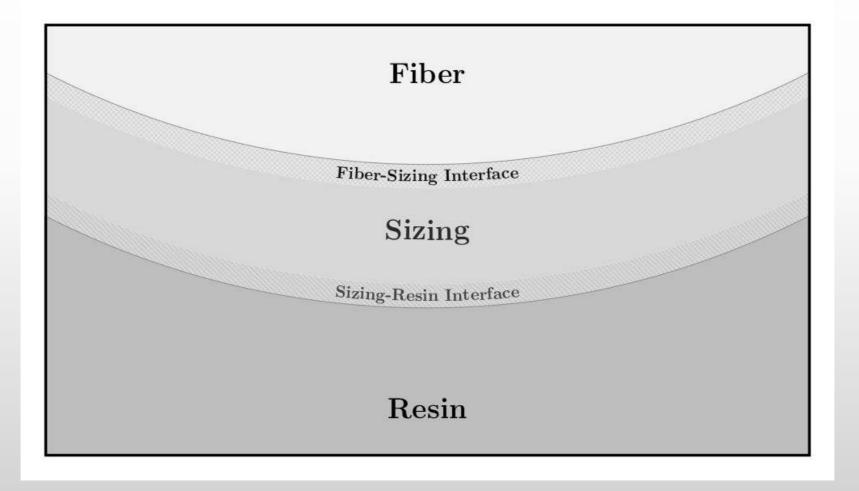
Halls River Bridge Replacement (cont.)

- **Owner:** Citrus County, Designer: FDOT, Funding: FHWA
- Location: Homosassa, FL (north of Tampa)
- **Superstructure**: GFRP Bars: Deck, Barriers & Approach Slabs
 - ✤ 186 ft. overall bridge length, 58 ft. wide
 - ✤ 5 spans (37 ft.), continuous deck, simple span beams
- **Substructure:** CFRP Pre-stressed Piles; Bent Caps: GFRP Bars
- Sheet Pile Walls: CFRP Sheet Piles; Wall Cap: GFRP Bars
- Contractor Bid Cost \$6.016 Million (Structures = \$4M; \$2M Roadway & Utilities)
 Bridge Cost = \$218 / sq. ft. (Conventional Construction = \$166 / sq.ft.)
- Accelerated Construction Potential
 - Lighter Materials Beams and Rebar
 - Faster Transportation and Delivery reduced construction time ??

Glass FRP Manufacturer Locations

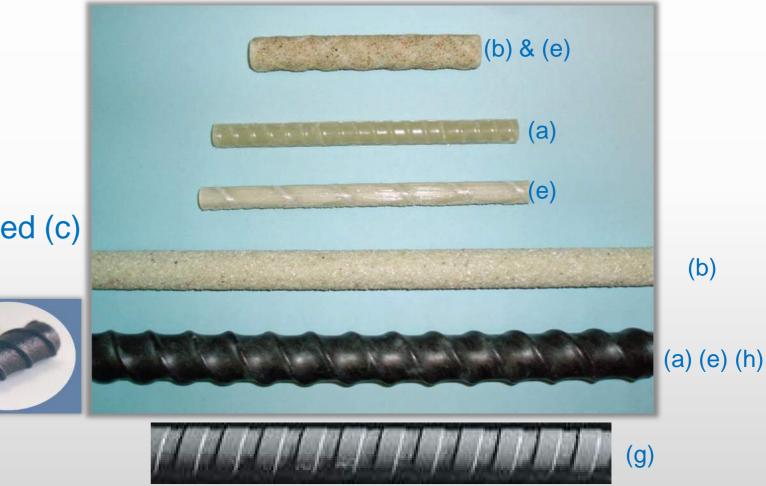


Basalt FRP Manufacturer Locations



FRP Reinforcing Bars - Typically produced by pultrusion process and its variations

FRP Reinforcing Bars – 3 Constituent Materials


FRP Bar Types

- Materials
 - Glass / vinyl ester
 - Carbon / epoxy
 - Basalt / epoxy/vinylester
 - Aramid / vinyl ester
- Forms
 - Solid round

FRP Bar Types

External Surface:

- Ribbed (a)
- Sand Coated (b)
- Wrapped and Sand Coated (c)
- Deformed (d)
- Helical (e)
- Grooved (g)
- Hollow core (h)

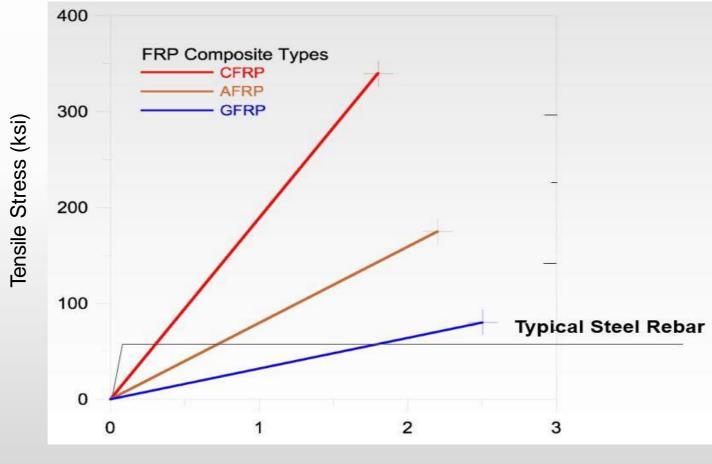
(b)

Differences from Steel

- High longitudinal strength to weight ratio
- Corrosion-resistant
- Electro-magnetic neutrality (glass/basalt/aramid)
- High fatigue endurance (carbon)
- Low thermal and electrical conductivity (glass/basalt)
- Light weight (1/4 steel)

Differences from Steel (cont.)

- No yielding before failure
- Low transverse strength
- Relatively low modulus (glass/basalt/aramid)
- Some susceptible to UV
- Sensitive to moisture (aramid)
- Sensitive to alkaline environment (glass/basalt)
- High CTE perpendicular to the fibers
- Susceptible to fire and smoke production


FRP Mechanical Properties and Behavior

• FRP is anisotropic

High strength only in the fiber direction Anisotropic behavior affects shear strength, dowel action and bond performance

• FRP does not exhibit yielding: is elastic until failure Design accounts for lack of ductility

Tensile Stress-Strain Characteristics

Tensile Strain (%)

Tensile Stress-Strain Characteristics

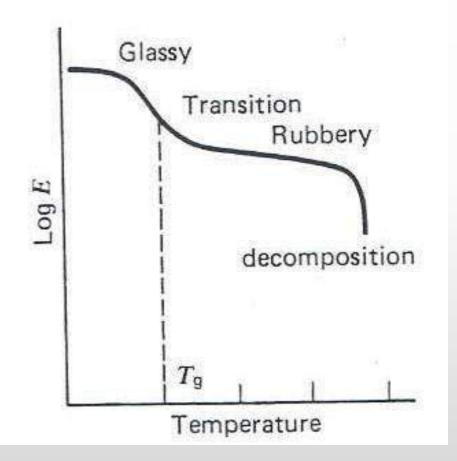
	Steel	GFRP	CFRP	AFRP
Yield Stress				
ksi	40-75	N/A	N/A	N/A
(MPa)	(276-520)			
Tensile Strength				
ksi	70-100	70-230	87-535	250-368
(MPa)	(483-690)	(483-1585)	(600-3700)	(1725-2540)
Elastic Modulus				
X 10 ³ ksi	29	5.1 - 8.6	15.9 – 24	6.0 - 18.2
(GPa)	(200)	(40-60)	(109-165)	(41-125)
Yield Strain				
%	0.14-0.25	N/A	N/A	N/A

Factors Affecting Material Characteristics

- Fiber volume
- Type of fibers
- Type of resin
- Fiber orientation/straightness
- Quality control during manufacturing
- Rate of curing
- Void content
- Service temperature

Typical Densities of reinforcing bars

	Steel	GFRP	CFRP	AFRP
lb./ft ³ (g/cm3)	493	78 – 131	93 – 100	78 – 88
	(7.90)	(1.25-2.10)	(1.50-1.60)	(1.25-1.40)


Coefficient of Thermal Expansion (CTE) 10⁻⁶/°F (x 10-6/°C)

Material	Longitudinal Direction	Transverse
Concrete	4 ~ 6 (7.2 to 10.8)	4 ~ 6 (7.2 to 10.8)
Steel	6.5 (11.7)	6.5 (11.7)
GFRP	3.5 ~ 5.6 (6.0 to 10.0)	≈ 30 (40)
CFRP	-4 ~ 0 (-9.0 to 0.0)	41 ~ 58 (74 to 104)
AFRP	-3.3 ~ -1.1 (-6 to-2)	33 ~ 44 (60 to 80)

Values of CTE differ between FRP materials and concrete and most relevant is the difference in the transverse bar direction

Effect of High Temperatures

- Resins will soften due to excessive heat
- Tensile, compressive, and shear properties of the resin diminish when temperatures approach the Glass Transition Temperature, T_q
- T_g values are approximately 230-240°F (110-115 °C) for vinyl ester resins which are typically used with GFRP rebar

Session 1: FRP Rebar Acceptance

	FDOT	[•] Арр	roval of FF	RP Proc	duction	Fa	cilities	<u>https://mac.fdc</u>	ot.gov/smorepor	<u>'ts</u>
					ymer Productio	on Facili				FD
FRP-02 OWENS Coll Company: Hughes Brother Contact: DOUG GREMEL Phone: (402) 646-6211 Physical Address: 210 North 13th St Seward, NE 6434 Seward, NE 6434 QC Plan Status: Quality Coll #04 GFRP BAR #05 GFRP BAR #05 GFRP BAR #06 GFRP BAR #07 GFRP BAR #08 GFRP BAR	FRP-06 PULTRAL Company: Pultrall Inc	PO Box L RTIER ext 231	doug@hughesbros.com Address:		Cont Phor Phys S404 Build UNIT	P-07 PU pany: Pultr tact: Bogdar ne: (714) 8 sical Address:	ILTRON (DUBAI) on Composites Ltd n Patrascu 180-9533 i Free Zone South RATES Quality Control Plan ACCEPTED 9/19/ FRP-08 ATP Company: ATP	Eihar Dainfaroad Dalumar Dainfaraing far f		P
	QC Plan Status: Compa #03 GFRP Contar #04 GFRP Phone #05 GFRP Physic #06 GFRP 5715-7 #08 GFRP CANAI QC Pla	 Nathan Sim (780) 448-93 al Address: 6 Avenue 6 Avenue A m Status: Qual #03 GFRP BAR #04 GFRP BAR #05 GFRP BAR #06 GFRP BAR #06 GFRP BAR 	38 ity Control Plan ACCEPTED 3/19/2019 Glass Fiber Glass Fiber Glass Fiber Glass Fiber Glass Fiber	Reinforced Polymer Rein Reinforced Polymer Rein Reinforced Polymer Rein Reinforced Polymer Rein	nforcing for Concrete, #3 nforcing for Concrete, #4 nforcing for Concrete, #5 nforcing for Concrete, #6 nforcing for Concrete, #7		#03 GFRP DAD #04 GFRF #05 GFRF #06 GFRF Contact: Jay C	UF-BAR INC (ONTARIO CANADA) -Bar Inc. :hristopher 833-5050		53
		#08 GFRP BAR	Glass Fiber	Reinforced Polymer Rein	nforcing for Concrete, #8		QC Plan Status:	Quality Control Plan ACCEPTED 12/11/2017		55

Session 1: FRP Rebar Acceptance

At least five Canadian GFRP bar manufacturers qualified their products in accordance with *CAN/CSA S807* and obtained approvals from end-users and government authorities (such as MTO and MTQ):

- B&B FRP Manufacturing, Inc. (MSTBAR)
- BP Composites, Inc. (TUF-BAR) *
- Fiberline Composites Canada, Inc. (COMBAR)
- Pultrall, Inc. (V-ROD) *
- Tempcorp, Inc. (TEMBAR)

* Also approved for FDOT use.

Other reputable manufactures supply North America:

USA: Marshall Composite Technologies Inc. (C-BAR); Composite Rebar Technologies Inc. (CRT); Basalt World (No Rust Rebar); Owens Corning (ASLAN formally Hughes Brothers Inc.)*

Europe: FiReP International AG (Switzerland), Asamer (Austria), Magmatech Ltd (United Kingdom); Sireg; ATP (Italy)*

Elsewhere: Galen (Russia); Pultron Composites Ltd. (MATEENBAR, NZ and Dubia)*

Session 1: FRP Rebar Acceptance

Qualification Tests per GFRP Bar Size (FDOT Spec 932; CSA S807-10)

- Tensile Strength & Modulus at room temp.: <u>15*</u>, 24 samples
- Tensile Strength & Modulus at cold temp.: <u>n/a</u>, 24 samples
- 3. Fiber Content: <u>15*</u>, 9 samples
- 4. Bond Strength: <u>15</u>, 24 samples
- 5. Transverse Shear Strength: 15, 24 samples
- Strength of bent bars:
 <u>15*</u>, 24 samples
 - * FDOT project level testing @ 3 per bar size

7. Transverse Coeff. Thermal Expansion: n/a, 9 samples n/a, 9 samples Void Content: 8. 9. Water Absorption: **15***, 15 samples **10.** Cure Ratio/Polymerization: **9***, 15 samples **11.** Glass Transition Temperature: **9***, 15 samples **12.** Alkaline Resistance without/load: **15**, 24 samples **13.** Alkaline Resistance with/load: **15**, 24 samples 14. Creep Rupture: n/a, 24 samples

Development of FRP Bar Solutions in North America

- GFRP Bars
- CFRP Bars
- GFRP & CFRP Stirrups
- GFRP & CFRP Spirals & Hoops
- GFRP Bent Bars
- GFRP Headed Bars
- GFRP Dowels
- GFRP Adhesive Anchors
- BFRP Bars (recently)

Grades of FRP Bars in Canada (CAN CSA S807-10)

© Canadian Standards Association

Specification for fibre-reinforced polymers

Table 2 Grades of FRP bars and grids corresponding to their minimum modulus of elasticity, GPa

(See Clause 8.3 and Table 3)

Designation	Grade I		Grade II		Grade III	
	Individual bars	Bars in a grid	Individual bars	Bars in a grid	Individual bars	Bars in a grid
AFRP	50	40	70	60	90	80
CFRP	80	70	110	100	140	130
GFRP	40	30	50	40	60	50

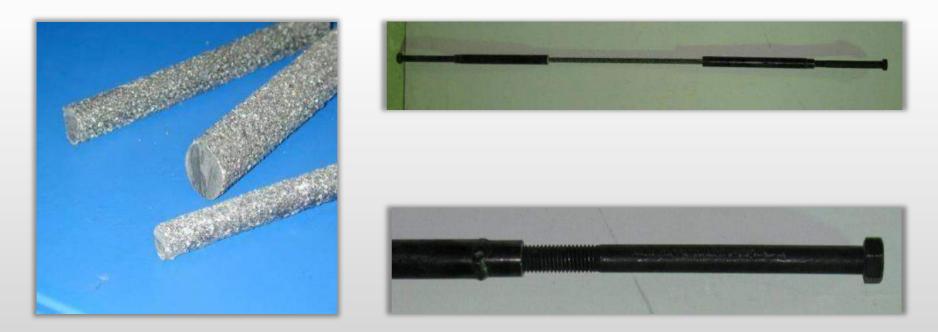
Grades of FRP Bars in Florida (FDOT Spec 932-3, similar to ASTM D7957)

Table 3-1 Sizes and Tensile Loads of FRP Reinforcing Bars									
Bar Size Designation	Nominal Bar Diameter	Nominal Cross Sectional Area	Measured Cross (in		Minimum Guaranteed Tensile Load (kips)				
	(in)	(in²)	Minimum	Maximum	BFRP and GFRP Bars	CFRP Bars			
2	0.250	0.049	0.046	0.085	6.1	10.3			
3	0.375	0.11	0.104	0.161	13.2	20.9			
4	0.500	0.20	0.185	0.263	21.6	33.3			
5	0.625	0.31	0.288	0.388	29.1	49.1			
6	0.750	0.44	0.415	0.539	40.9	70.7			
7	0.875	0.60	0.565	0.713	54.1	-			
8	1.000	0.79	0.738	0.913	66.8	-			
9	1.128	1.00	0.934	1.137	82.0	-			
10	1.270	1.27	1.154	1.385	98.2	-			

Improving Properties of FRP Bars in North America

<u>Glass FRP Bars (High Modulus and High Strength)</u>

- 1. Guaranteed Tensile Strength up to 175 ksi (1,200 MPa)
- 2. Modulus of Elasticity up to 9,000 ksi (60 GPa)

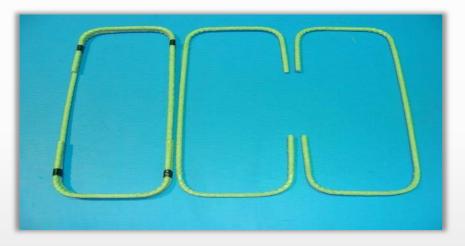


Improving FRP Bars in North America

Carbon FRP Bars:

- 1. Guaranteed Tensile Strength up to 290 ksi (2,000 MPa)
- 2. Modulus of Elasticity up to 20,000 ksi (135 GPa)

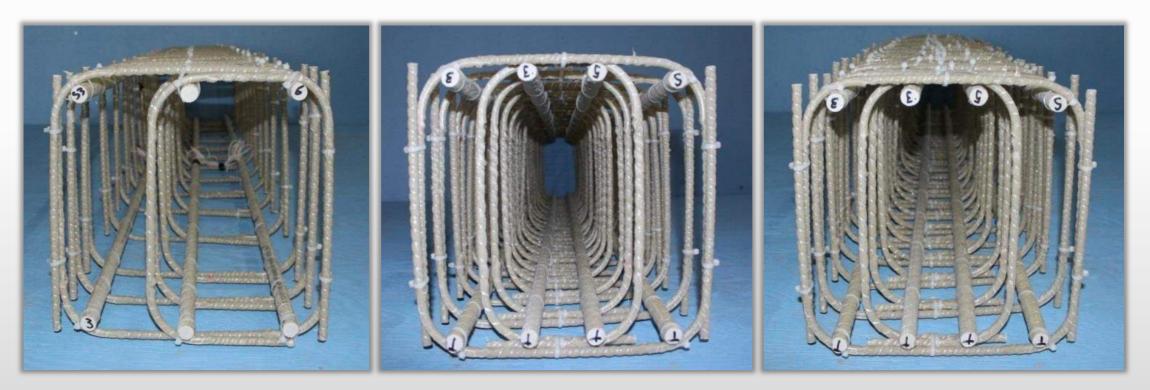
Improving FRP Bars in North America


Basalt FRP Bars (High Modulus and High Strength)

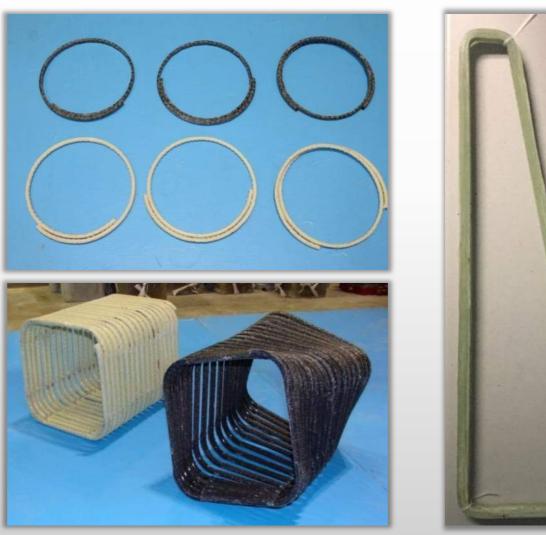
- 1. Guaranteed Tensile strength up to 200 ksi (1400 MPa)
- 2. Modulus of elasticity up to 9,000+ ksi (64-75 GPa)

Bent Bars & Complex Shapes in North America

FRP Stirrups



Bent Bars & Complex Shapes in North America


FRP Ties

Bent Bars & Complex Shapes in North America

FRP Spirals and Hoops

Bent Bars in North America

GFRP Bent Bars

Other FRP Solutions in North America

Glass FRP Headed bars

End of Part 1

Questions

<u>Co-presenters:</u>

Raphael Kampmann PhD

FAMU-FSU College of Engineering Tallahassee, FL.

kampmann@eng.famu.fsu.edu

FDOT Design Contacts:

Steven Nolan, P.E.

FDOT State Structures Design Office, Tallahassee, FL.

Steven.Nolan@dot.state.fl.us

Alvaro Ruiz, PhD student

University of Miami. Coral Gables, FL. <u>axr1489@miami.edu</u> FDOT Materials and manufacturing:

Chase Knight, Ph.D, P.E.

State Materials Office,

Gainesville, FL.

<u>Chase.Knight@dot.state.fl.us</u>