

Workshop: Les armatures composites internes au béton

Mercredi 27 Novembre

INDURA 23 avenue Condorcet, 69100 VILLEURBANNE

Armature en PRF pour Renforcer la Floride

Presenter: Steven Nolan, P.E. Senior Structures Design Engineer Florida Department of Transportation Member of TRB's <u>AFF80 – Standing</u> <u>Committee on Structural FRP</u>

FRP Reinforcement Deployment in Florida

Speaker Bio: Steven Nolan, P.E.

Registered Professional Engineer in Florida since 2001. Originally from Australia with an engineering degree from the University of New South Wales (Sydney) 1989. A Construction Engineer for a heavy civil contractor for several years before emigrating to the USA in 1996 and joining *FDOT*. Currently leads the implementation of Advanced Materials for Bridge applications within the State Structures Design Office.

Chair of the statewide Structural Advance Materials Technical Advisory Group (SAMTAG), which coordinates deployment and monitoring of the 8 technologies of immediate interest to FDOT including UHPC, FRC, and various BFRP, GFRP & CFRP composite reinforcements. His 23 years with FDOT also includes in-house bridge design; PM structural research projects; development of many of the FDOT precast and prestressed concrete Design Standards; and participation in NCHRP and NIST Technical Panels;

Member of: Transportation Research Board (TRB) AFF80 Committee on Structural FRP; Bridge Engineering Institute's (BEI) International Advisory Committee; fib; reviewer for ASCE Journal of Composite Construction. Provides technical support for FDOT members on AASHTO's T-6 (FRP Composites) and T-10 (Concrete Design) Committees on Bridges and Structures. Co-author and presenter for numerous papers on FRP and Prestressed Concrete related to bridges and coastal structures including most recently: ACI-SDC Forum 46, BEI-2019; TRB (2018-2019); 2018 fib-Congress, ASCE-Florida, IALCCE-2018, IBC-2018; ABC-UTC Conferences (2014-2015); CAMX Conferences (2015-2019); and FDOT Transportation Symposium & Design Training Expo's (2013-2019).

Owner/Designer's perspective

- Historical French-Floridian Bridge Technology Sharing
- Why use FRP rebar for Bridges & Public Infrastructure
- Available Design Guidance & Tools
- Cost Justification (Service Life, LCC, etc.)
- What do we still need?
- Typical Project Examples

Historical French-Floridian Bridge Technology Sharing

Florida Keys Bridges

Until 1978, all precast concrete segmental bridges were built by the balanced or progressive cantilever method, with the exception of smaller overpass structures. The first designs produced by Figg and Muller Engineers were for the Florida Keys bridge replacement program and included the Long Key Bridge, Seven-Mile Bridge, Channel Five Bridge, and Niles Channel Bridge

Courtesy: PCI Journal "Jean Muller: Bridge Engineer" (March-April 2006).

Brotonne Bridge (1977)

Historical French-Floridian Technology Sharing

Historical French-Floridian Technology Sharing

 2013 FDOT French Study PT-Duct Flexible Filler (wax) Tour

- Poutre-Dalles System (PDS) for prestressedslab units.
 - 2004 FHWA Scan Tour inspired adoption of similar PDS by Minnesota DOT⁽¹⁾ in 2005;
 - Later adoption by FDOT in 2013 with a modified concept – Florida-Slab Beam (FSB) - 70 bridges designed to-date.

Orange Ave (2014)

(1) MnDOT/FHWA Precast Slab System Workshop Summary Report, FHWA, Sept 8, 2005. 6

France-Florida Comparisons

France-Florida-NZ Comparisons

Florida GFRP-RC Projects

▼ FRP Rebar Projects

Fast-Facts sheets for selected projects available:

40th Ave NE over Placido Bayou Arthur Drive over Lynn Haven Bayou Bakers Haulover Cut Bulkhead Replacement ** Cedar Key Bulkhead Rehab ** Halls River Bridge ** NE 23rd Ave over Ibis Waterway PortMiami Tunnel Retaining Walls ** South Maydell Dr over Palm River SR-A1A Flagler Beach Seawall (Segment 3) ** SR-5 (US-17) over Trout River ** SR-5 (US 41) over Morning Star and Sunset Waterways SR-5 (US 41) over North Creek SR-30 over St Joe Inlet SR-312 over Matanzas River ** SR-520 over Indian River Bulkhead Rehab Sunshine Skyway Seawall Rehabilitation UM Innovation Bridge ** UM Fate Bridge ** ** completed UM i-Dock ** US-1 over Cow Key Channel

Why use FRP rebar for Bridges and Structures

- Florida maintains more than 17,000,000 m² (185M ft²) of bridge area
- Florida has more than 6,500 km (4,000 miles) seawall-bulkheads

WebTable 3.	Shoreline	e hardenin	ng and pop	oulation	statistic	cs by sta	ate	(1)	1
	Hard sheltered shore (km)	Sheltered shore (km)	Hard sheltered shore (%)	Hard open shore (km)	Open shore (km)	Hard open shore (km)	Hard shore (km)	Total shore (km)	Hara shore (%)
Atlantic									1
Connecticut	477	1907	25	0	0		477	1907	25
Delaware	287	2163	13	5	45	11	292	2208	13 🕴
DC	29	54	53	0	0		29	54	53
Florida	2694	11 365	24	58	628	9	2752	11 992	23
Gulf									<
Alabama							356	2606	14
Florida							4427	26 383	17
L suistant a st							252	2205	1.1

Why? ... Inevitability of Corrosion

Figure 1. a) Components for corrosion; b) Electro-chemical process of corrosion; c) Generation of stress inside the concrete; d) Evolution of cracks as corrosion progresses; e) Cracks due to corrosion; f) Spalling due to corrosion; g) Delamination due to corrosion.

Figure 1 from: Corrosion Mechanism in Reinforced Concrete (Maia & Alves, 2017)

Why? ... Drastic Consequences Demand Different Solutions

Fiber-Reinforced Polymer (FRP) composites have been successfully utilized for durable bridge applications for more **30+ years worldwide**, demonstrating their ability to provide reduced maintenance cost, extended service life, and significantly increase design durability.

FRP materials of most interest to FDOT (currently):

- Carbon FRP strands and laminates -(PAN fiber with epoxy or vinyl-ester resin systems)
- Glass FRP reinforcing Bars (E-CR fiber with vinyl-ester resin systems);
- **Basalt FRP reinforcing bars** (melt rock fiber with epoxy resin systems).

Available Design Guidance & Tools

Mandatory (normative) Specifications

- Currently there are mostly only Guide Design documents in the USA.
- Uniform Approval Processes
 - Manufacturer Approval vs Product Approval
- Reliable Design Tools
 - Commercial vs. Agency based design programs

Available Design Guidance & Tools

				N
			R	
luvergi	ne-Rhá	one-/	Alpes	-

Mandatory Specifications needed

- Currently there are mostly only Guide Design docs in the USA

STRUCTURES MANUAL

Volume 1 - Structures Design Guidelines Volume 2 - Structures Detailing Manual Volume 3 - FDOT Modifications to LRFDLTS-1 Volume 4 - Fiber Reinforced Polymer Guidelines

> Frequently Asked Questions 2018 Revision History Archived Structures Manuals Additional Links

uct Approval

Materials Acceptance and Certification System

elect Report to View

Production Facility

Aggregate Production Facility Listing	Lists all Aggregate Production Facilities
All Producers (Excel)	Lists all non-expired Production Facilities in an Excel file
Approved Aggregate Products For Friction Course	Lists all Aggregate Friction Course Products by Geological
Approved Aggregate Products From Mines or Terminals Listing	Lists Approved Aggregate Products for Mines or Terminals
Approved Products at Expired Mines or Terminals	A summary report to identify Approved Products at Expired
	Terminals Expired at Mine
Asphalt Production Facility Listing	Lists all Asphalt Production Facilities
Asphalt Recycled Products	Approved Asphalt Recycled Products Report by Plant
Asphalt Targets	A listing of the asphalt gradation and gravity (Gsb) data for A
Cementitious Materials Production Facility Listing	Lists Cementitious Materials Production Facilities
Coatings Production Facility Listing	Lists all Coatings Production Facilities
Fiber Reinforced Polymer Production Facility Listing	Lists all Fiber Reinforced Polymer Production Facilities

https://www.fdot.gov/structures/innovation/FRP.shtm

FRP-02

Company

Contact:

Phone

Available Design Guidance & Tools

- **Uniform Approval Processes** (National based systems preferred)
 - Manufacturer Approval vs Product Approval

https://mac.fdot.gov/smoreports

Available Design Guidance & Tools

Accessible & Reliable Design Tools

- Commercial vs. Agency/Institution based design programs

Typical GFRP-RC Tools

Intermediate Bent-Cap Analysis & Design

Project = Designed By = Checked By = Back Checked By =

Typical GFRP-RC Applications and Details

**

Projects using Bulkhead Cap standards:

Bakers Haulover Cut Bulkhead Replacement Halls River Bridge ** NE 23rd Ave over Ibis Waterway SR-5 (US 41) over North Creek SR-30 over St Joe Inlet SR-520 over Indian River Bulkhead Rehab Sunshine Skyway Seawall Rehabilitation Standard Plans InstructionsTopic No. 625-010-003Index 455-440Precast Concrete Sheet Pile Wall (CFRP/GFRP & FY 2020-21HSSS/GFRP)FY 2020-21

Figure 1 Typical Cap Details

Net Present Value (NPV)

Cost Justification (Service Life, LCC, etc.)

 LCC & LCA also can show the sustainable (economic and environmental) advantage of composite structures in the coastal environment:

Example LCC & LCA Comparison of Carbon Steel-RC/PC verses FRP-RC/PC bridge (0.6% Effective Discount Rate), adapted from Cadenazzi et al. 2019.

19

Cost Justification (Service Life, LCC, etc.)

- LCC & LCA also can show the sustainable (economic and environmental) advantage of composite structures in the coastal environment:

CS-RC/PC alternative

FRP-RC/PC alternative

Graphs: Cadenazzi, T., Dotelli, G., Rossini, M., Nolan, S., and A. Nanni. (2019). Cost and Environmental Analyses of Reinforcement Alternatives for a Concrete Bridge. Structure and Infrastructure Engineering.

Cost Justification (Service Life, LCC, etc.) -Younis et al., 2018

uvergne-Rhône-Alpes	Table 4 Summary o	f LCCA results.				
	Design a	lternative	Present costs ((\$/m ²)		
			Material	Construction	Repair	Reconstruction
"Life cycle cost	RC1 RC2 RC3		90 389 174	135 135 108	183.9 24.6 -	230.7 - -
analysis of structural concrete using seawater, recycled concrete aggregate, and GFRP reinforcement", <u>https://doi.org/10.1016/j.c</u>	ycle cost (\$/m²) 000 000 000 003	RC1 = Tra RC2 = Tra RC3 = Cor	ditional concrete ditional concrete acrete with seav	e mix with carbon-(k e mix with SS rebar; vater & RCA with GF	olack) steel re RP rebar.	2bar; 1000 900 800 700 600 500 400
(Baseline scenario with discount rate = 0.7%)	9 200 100 0	0 10 20	30 40 50 Time (vea		о ајј – 100	300 200 100 0 0.0% 2.0%

Fig. 5. Life cycle cost results (considering the baseline scenario where r = 0.7% and C = 150% of *M*).

Discount rate (%)

4.0%

End-of-life

r = 5.9%

8.0%

6.0%

50.8

37.3

54.3

10.0%

LCC (\$/m2)

690.4

585.9

336.3

---- RC1 ---- RC2 ---- RC3

- Connections (post-installed anchors – ACI 318 Chapter 17/ACI 355.4)
- Fatigue limits
- Importance of Elastic Modulus
- Bent Bars
- Scalability of production

Halls River Bridge - Traffic Railing Retrofit:

	-	

Connections (post-installed dowels bars – *ACI 318* Chapter 17/ACI 355.4))

Connections (mechanical couplers)

- Connections (coupling, post-installed)
- Fatigue limits refinement
- Importance of Elastic Modulus
- Bent Bars
- Scalability of production

recommended creep-rupture stress limit $(0.30f_{fu})$ can also be applied for limiting the fatigue stresses in GFRP-reinforced elements subjected to fatigue cyclic loads owing to the similarity between the fatigue and creep-rupture strengths of FRP bars (GangaRao et al. 2006; Rostasy et al. 1993). Additional studies on the fatigue behavior of GFRP bars, however, are essential to support future adjustments of the stress limit.

From: "Creep-Rupture Limit for GFRP Bars Subjected to Sustained Loads", (2019)

B.Benmokrane, V.L.Brown, K.Mohamed, A.Nanni, M.Rossini, Carol Shield (ASCE-JCC)

- Connections (coupling, post-installed)
 - Fatigue limits
 - Importance of Elastic Modulus
 - Bent Bars (thermo-set/plastic)
 - Scalability of production

Figure: Parametric analysis of flexural design algorithms per AASHTO GFRP-RC 2nd edition for HRB Bent Cap

From: M.Rossini, F.Matta, S.Nolan and A.Nanni, Extended Abstract "Overview of Proposed AASHTO Design Specifications for GFRP-RC Bridges 2nd Edition using Case-Specific Parametric Analysis" (2017)

Project Examples – Fast Facts Sheets

Fast-Facts: <u>https://www.fdot.gov/structures/innovation/FRP.shtm#link9</u>

Project Examples - Port Miami Tunnel Entrance Walls

Watson Island, Miami – 2014

Wall 6 under construction & Typical Cross-section of Retaining Walls 5 and 6

Fast-Facts: <u>https://www.fdot.gov/structures/innovation/FRP.shtm#link9</u>

Tallahassee

Port Miami Tunnel

Jacksonville

Project Examples - Innovation Pedestrian Bridge

University of Miami – 2016

Elevation view of Innovation Bridge with FRP reinforcement in the auger-cast-piles, bent-caps, double-tee stems and flanges, deck overlay and curbs.

Fast-Facts: https://www.fdot.gov/structures/innovation/FRP.shtm#link9

Project Examples - NE 23rd Ave/Ibis Waterway

Fast-Facts: https://www.fdot.gov/structures/innovation/FRP.shtm#link9

Project Examples - SR-A1A Secant-Pile Seawall

SR-A1A Flagler Beach Seawall

Auger-Cast Pile GFRP-RC Secant Wall

Fast-Facts: <u>https://www.fdot.gov/structures/innovation/FRP.shtm#link9</u>

Tallahassee

Jacksonville

Homosassa, FL 2017-19 (GFRP-RC & CFRP-PC) Five-span vehicular bridge

Tallahassee

Jacksonville

Fast-Facts: <u>https://www.fdot.gov/structures/innovation/FRP.shtm#link9</u>

Project Examples - Halls River Bridge

Homosassa, FL 2017-2019 (GFRP-RC & CFRP-PC)

Five-span vehicular bridge entirely constructed using corrosion-resistant solutions and mostly FRP reinforcement including:

- CFRP-PC bearing piles;
- CFRP-PC/GFRP-RC sheet piles;
- Hybrid HSCS-PC/GFRP-RC sheet piles;
- GFRP-RC bulkhead caps;
- GFRP-RC pile bent caps;
- GFRP-RC bridge deck
- GFRP-RC traffic railings
- GFRP-RC approach slabs
- GFRP-RC gravity wall.

Project Examples - Halls River Bridge

• Halls River Bridge – demonstrating Durability thru FRP materials...

Project Examples - Halls River Bridge

Halls River Bridge - modelling Resiliency thru potential for Adaption!

Showing the effect of a 1.8 m (6-ft) RSL

- Shows current MHW (blue) and 1.8 m projected RSL (dashed redline) - - - - - - - -
- with possible Adaption Strategy using 1.5 m raised bulkhead (right-side).

- Florida is the 3rd most populated U.S. state, and our population is expected to increase nearly 30% to 27 million by 2045. To plan for a resilient transportation future, we need to understand important trends and conditions today.
- Florida is the 14th largest economy on the planet (Florida Senate President Bill Galvano) What Natural Hazards Impact Our Transportation System?

In 2018. Since 2000. Nearly GLOBALM FΔN **TIDAL FLOODING** COASTA across Florida has SFA **INCREASED BY352%** in the U.S. are projected to experience was FLOODING more than **3.2 INCHES** Florida is among the STATES I IMPACT WILDFIRES by 2035 the 1993 average

What Types Of Extreme Weather Can Aflect The Mobility Of Floridians?

The amount of **PRECIPITATION** during heavy rainstorms has **INCREASED BY** *in the Southeast* over the last 60 years By mid-century, the Southeast is expected to experience up to **50 MORE DAYS** per year of temperatures exceeding **90 DEGREES** Approximately **6 MILLION PEOPLE EVACUATED** during Hurricane Irma, THE LARGEST EVACUATION IN U.S. HISTORY

Des Questions?

FRP Design Contact:

Steven Nolan, P.E. FDOT State Structures Design Office, 605 Suwannee St, Tallahassee, FL. 32399 Steven.Nolan@dot.state.fl.us

enr.com January 8/15, 2018 • ENR • 41

37

the next two weeks, lined up a nestrelocation expert and built a platform for the purpose, but on the day of the move,

a hawk ate the egg. Astaldi's lessons learned: Put a flag and a beacon on the tip of the crane and lower the boom over

weekends. The delay was covered in the contract, which was extended 19 days.