AASHTO GFRP-Reinforced Concrete Design Training Course

Course Content Areas

- 1. Introduction & Materials
- 2. Flexure Response
- 3. Shear Response
- 4. Axial Response
- 5. Case Studies & Field Operations

Course Overview & Expectations

Learning Objectives

- Know what FRP reinforcement is
- Learn the fundamental mechanical properties of FRP bars and bends
- Become aware of some major material-based design provisions of concrete members internally reinforced with GFRP bars with particular reference to AASHTO and FDOT documents
- Become aware of relevant FRP-RC projects in and out of state

Course Content Areas

- 1. Introduction & Materials
- 2. Flexure Response
- 3. Shear Response
- 4. Axial Response
- 5. Case Studies & Field Operations

1. INTRODUCTION TO FRP-RC & MATERIAL PROPERTIES OF GFRP

Table of Contents - Intro & Materials

- Problem Statement
- Where to Use Glass FRP
- FRP Material Properties
- Durability
- Design Guides and Standards

Concluding Remarks

Problem Statement

- Failure mechanism for structures exposed to aggressive environments is often corrosion of steel reinforcement
- Traditional corrosion
 mitigation efforts:
 - ✓ Admixtures
 - ✓ Increase Concrete Cover
 - ✓ Alter Concrete Mix
 - ✓ Membranes & Overlays
 - Epoxy-Coated, Galvanized or Stainless Steel

SERVICE LIFE OF STRUCTURES GREATLY REDUCED BY CORROSION

FRP Rebars

Fiber reinforced polymer (FRP) bars as alternative reinforcement for concrete

A composite material system made of: Fibers + Resin

FRP Rebars

Key Benefits

- Corrosion resistant
- High strength-to-weight ratio
- Ease of application & installation
- Lightweight ¼ the weight of steel
- Transparent to magnetic fields and radar frequencies
- Electrically & thermally non-conductive

FIRST COST COMPARABLE WITH EXPOXY-COATED STEEL

Table of Contents

- Problem Statement
- Where to Use Glass FRP
- FRP Material Properties
- Durability
- Design Guides and Standards

Concluding Remarks

Where Should FRP Be Used?

- Concrete structures susceptible to corrosion
 - Steel corrosion by chlorides
 - Environments that lower concrete pH
 - Structures with minimum concrete cover
- Concrete structures requiring nonferrous reinforcement due to
 - Electro-magnetic considerations
 - Thermal non-conductivity
- Where machinery will "consume" the reinforced concrete member (i.e., mining and tunneling)

Ready for Prime Time

- Structural design defined by ACI & AASHTO (and FDOT)
- Bar properties defined by ASTM D7957 (and FDOT)
- 600+ installations in US
 & Canada
- Traditional procurement & construction methods

Table of Contents

- Problem Statement
- Where to Use Glass FRP
- FRP Material Properties
- Durability
- Design Guides and Standards

Concluding Remarks

Types of Fiber in FRP Bars

- Carbon Fiber Reinforced Polymer (CFRP)
- **Glass** Fiber Reinforced Polymer (**GFRP**)
- Basalt Fiber Reinforced Polymer (BFRP)
- Aramid Fiber Reinforced Polymer (AFRP)

Types of Resin in FRP Bars

Some Thermoset Resins (Only ones allowed for now): Two-part system composed of resin and hardener resulting in a one-way (irreversible) chemical reaction

- Vinyl Ester
- Epoxy

Polyester Not allowed in structural applications because of poor durability

FRP Bar Types

Several commercially available GFRP solid round bars with different external surface (not standardized) deformations:

- (A & F) Sand coated + helical wrap
- (B) Helically wrapped
- (C) Ribbed
- (D) Sand coated
- (E) Helically grooved

FRP Bar Shapes

• Straight bars

Bent bars

• Spirals

•

Twisted strands (PC use)

-

Material Specifications

FDOT 932-3 and ASTM D7957 specs set minimum QUALIFICATION & QC for Glass (and Basalt)* FRP bars

SECTION 9 NONMETALLIC ACCESS FOR CONCRETE PAVEMENT AND	32 ORY MATERIALS OCONCRETE STRUCTURES ent and Structures: Preformed joint filler AASHTO M213, or cellulose fiber types AASHTO M213, or cellulose fiber types (additional content) is acceptable (understructures) and content) is acceptable (understructures) acceptable (understructure)	Bar manufacturer not known/selected at the design stage
932-1 Joint (MPF of the system) of AASHTO M133 932-1.1 Preformed Joint AASHTO M133 shall meet the requirements of AASHTO M21 meeting all the requirements of AASHTO M21 meeting all the requirements of 0.2% zinc provided they contain minimums of 0.2% zinc provided they contain minimums of 0.2% wax. For AASHTO M153, unless a particular wax be used. Preformed joint fillers shall have required, and shall be furnished in lengths eq installed, except that strips which are of a ler ionts, or between longitudinal joint and edg	932-3 Fiber Reinforced Polymer (FRP) 932-3.1 General: Obtain FRP rei Department's Production Facility Listing requirements of Section 105. Use only solid, round, the fiber reinforced polymer (GFRP) or carb Bars shall be manufactured using pultrus poted in the producer's Quality Control I	Reinforcing Bars. nforcing bars from producers currently on the Producers seeking inclusion on the list shall meet the rmoset basalt fiber reinforced polymer (BFRP), glass on fiber reinforced polymer (CFRP) reinforcing bars. ion, variations of pultrusion, or other suitable processes Plan, subject to the approval of the State Materials

* FDOT only

noted in the producer's Quality Control Plan, subject to the approval of the State Materials Office (SMO). For BFRP and CFRP bars only vinyl ester or epoxy resin systems are permitted. For GFRP, use only bars manufactured using vinyl ester resin systems and glass fibers classified as E-CR or R that meet the requirements of ASTM D578.

Return to Table of Contents

1070

July 2020

FRP Bar Sizes

Same as steel bars, specified per *FDOT* 932-3, Table 3-1 and *ASTM* D7957. Area range (min-max) given for measured values for any surface type

	Table 3-1 Sizes and Tensile Loads of FRP Reinforcing Bars						
Bar Size Designation	Nominal Bar	Nominal Cross Sectional	Measured Cross-Sectional Area (in ²)		Minimum Guaranteed Tensile Load (kips)		
	Designation	(in)	Area (in ²)	Minimum	Maximum	BFRP and GFRP Bars	CFRP Bars
	2	0.250	0.049	0.046	0.085	6.1	10.3
	3	0.375	0.11	0.104	0.161	13.2	20.9
	4	0.500	0.20	0.185	0.263	21.6	33.3
	5	0.625	0.31	0.288	0.388	29.1	49.1
	6	0.750	0.44	0.415	0.539	40.9	70.7
	7	0.875	0.60	0.565	0.713	54.1	-
	8	1.000	0.79	0.738	0.913	66.8	-
	9	1.128	1.00	0.934	1.137	82.0	-
	10	1.270	1.27	1.154	1.385	98.2	-

FRP Mechanical Properties

Higher tensile strength, but less stiff than steel

 Provides less confinement to concrete and RC members have more deflection than steel-RC

Anisotropic behavior

- $\checkmark\,$ High strength in the fiber direction
- Low shear strength and dowel action (resin dominated)

Elastic up to failure - no ductility

 ✓ Cannot be used in seismic areas, no plastic hinges formed in RC members

Tensile Stress-Strain Characteristics

Typical Tensile Properties

	Steel	GFRP
Yield Stress ksi (MPa)	40-75 (276-517)	
Guaranteed Tensile Strength, (f* _{f,u}), (Average – 3 sigma) ksi (MPa)		78-160 (534-1240)
Average Elastic Modulus, (E _f) (Average) Ksi (GPa)	29,000 (200)	6,500 – 8,700 (45-60)
Yield Strain, (ε _y)	0.14-0.25%	N/A
Guaranteed Tensile Ultimate Strain, ($\epsilon^*_{f,u}$)	~10-12%	1.2-2.4%

Design Tensile Strength

• Design tensile strength and strain are:

$$f_{fu} = C_E f_{fu}^*$$
$$\varepsilon_{fu} = C_E \varepsilon_{fu}^*$$

AASHTO GFRP 2.4.2.1-1

Where C_E is the environmental reduction factor from **AASHTO** Table 2.4.2.1-1 (red box) (proposed new factors in **ACI 440** in green)

Fiber	Concrete not exposed to earth or weather	Concrete exposed to earth or weather	
Glass	0.9 0.8	0.85 0.70	

Behavior Function of Temperature

- Thermosets are characterized by Glass Transition Temperature, T_g
- Resin tensile, compressive, and shear properties diminish when temperatures approach T_g
- *T_g* values of approximately 212 °F (100 °C) are required for Vinyl Ester typically used GFRP rebars
- T_g lowers as a result of moisture absorption

Temperature

Summary: GFRP Differences with Steel

PROs

- High longitudinal strengthto-weight ratio
- Corrosion resistance
- Electro-magnetic neutrality
- Good fatigue endurance
- Low thermal & electrical conductivity
- Lightweight

CONs

- No yielding
- Low transverse strength
- Relatively low modulus
- High CTE perpendicular to fibers
- Sensitive to UV, moisture & alkaline environment
- Susceptible to fire & smoke production

Strength of FRP at bend

• FRP bars can be fabricated with bends, however the tensile strength at bend is reduced by about 40%

Compressive behavior of FRP bars

 Reduced strength and stiffness as compared to tensile properties

Shear behavior of FRP bars

 Unidirectional FRP materials have a lower interlaminar shear modulus and shear strength as compared to steel

Behavior under sustained and cyclic loading

• FRP bars can undergo creep-rupture under sustained loading and fatigue rupture under cyclic loading

Moisture absorption [ASTM D570]

Fiber content [ASTM D2484]

Cross-sectional area [ASTM D792]

Minimum requirements: FDOT 932, Table 3.2 (straight bars) & 3.3 (bent bars)

Tensile test [*ASTM* D7205]

Minimum requirements: *FDOT* 932, Table 3.2 & 3.3

AASHTO 2.4.2.1:

 $f_{fu} \rightarrow Guaranteed tensile strength = average minus three standard deviations$

Horizontal shear [*ASTM* D4475]

Transverse shear [*ASTM* D7617]

Minimum requirements: FDOT 932, Table 3.2 (straight bars) & 3.3 (bent bars)

Bond-toconcrete [ASTM D7913]

Minimum requirements: *FDOT* 932, Table 3.2

untin han and

Strength of FRP at Bend

- FRP bars can be fabricated with bends; however, the tensile strength of the bend is reduced up to 40% per ASTM D7957
- Bend internal diameter is larger than for steel
- FDOT 932-3.3 includes additional specifications for properties of FRP bent bars at bend locations

Bar Designation, mm [U.S. Standard]	Minimum Bend Diameter mm [in.]
M6 [2]	38 [1.50]
M10 [3]	58 [2.25]
M13 [4]	76 [3.00]
M16 [5]	96 [3.75]
M19 [6]	114 [4.50]
M22 [7]	134 [5.25]
M25 [8]	152 [6.00]

Table of Contents

- Problem Statement
- Where to Use Glass FRP
- FRP Material Properties
- Durability
- Design Guides and Standards

Concluding Remarks

Durability Assessment

Methods used to assess and validate the durability of FRP bars:

 Accelerated aging protocols (high temperature; immersion in water w/ or w/o high pH and/or salt)

→ fast

2. Extraction of samples from real life structures

GFRP Bars Extracted from Bridges 15-20 Years Old

- Investigation to assess long-term durability of GFRP bars after at least 15 years in service
- Cores extracted from eleven bridges located across the United States

GFRP Bars Extracted from Bridges 15-20 Years Old

Results indicated reduction in tensile strength of 2.13% over a period of 17 years of service that would correspond to drop in strength of 12.5% over a period of 100 years with degradation rate assumed to be linear

Durability

Source: Long-term Durability of GFRP Reinforcement in Concrete: A Case Study after 15 Years of Service - O. Gooranorimi, E. Dauer, J. Myers, A. Nanni

NO SIGN OF BOND DEGRADATION NOR LOSS OF CONTACT AND MECHANICAL PROPERTIES AFTER 15 YEARS IN SERVICE

Table of Contents

- Problem Statement
- Where to Use Glass FRP
- FRP Material Properties
- Durability
- Design Guides and Standards

Concluding Remarks

Design Guides and Tools

- Design Guide
 - Currently available
- Uniform Approval
 Processes
 - Manufacturer Approval vs. Product Approval
- Reliable Design Tools
 - Commercial vs. Agency based design programs

Center for Integration

of Composites into Infrastructure 37/77

2018

Polymer (CFRP) Systems

Design Guidance & Tools in Florida

Currently available documents:

- AASHTO: Only GFRP
- FDOT 932-3: GFRP and BFRP

Usage Restrictions / Parameters Design Ciriena Standards Producer Quality Control Program Projects Technology Transfer (T²)

Overview

The deterioration of reinforcing and prestressing steel within concrete is one of the prime causes of failure of concrete structures. In adoition to being exposed to weather, concrete transportation structures in Florida are also commonly located in aggressive environments such as marine locations and inland water crossings where the water is acidic. Cracks in concrete create paths for the agents of the aggressive environments to reach the reinforcing and/or prestressing steel and begin the corresive exidation process. An innovative approach to correct this major issue is to replace traditional steel har and strand reinforcement with Ether Reinforced Entymer (FRP) reinforcing bars and strands. FRP reinforcing bars and strands are made from flaments or fibers held in a polymeric resin matrix binder. FRP reinforcing can be made from various types of fibers such as class (GERP), basall (OERP) or carbon (CERP) A surface treatment is typically provided that facilitates a bond between the reinforcing and the concrete.

Beneficial characteristics of FRP reinforcing include: It is highly resistant to chloride ion and chemical attack.

Its tensile strength is greater than that of steel yet it weighs only one quarter as

much

Photo courtesy of Hughes Bros. He e Play > Ph

FLORIDA DEPARTMENT OF TRANSPORTATION

STRUCTURES MANUAL

Volume 1 - Structures Design Guidelines Volume 2 - Structures Detailing Manual Volume 3 - FDOT Modifications to LRFDLTS-1 Volume 4 - Fiber Reinforced Polymer Guidelines

> Frequently Asked Questions 2018 Revision History Archived Structures Manuals Additional Links

NIVERSITY

2** EDITION

Center for Integration of Composites into

Infrastructure

Design Guidance & Tools in Florida

Uniform Approval Processes

https://mac.fdot.gov/smoreports

- Manufacturer Approval vs. Product Approval

	FDOT	per Reinforced Poly	ymer Pro	duction Facility Listing	
FRP-02 OWENS COF Company: Hughes Brothers, Contact: DOUG GREMEL Phone: (402) Physical Address: Company:	RNING (SEWARD NE) Inc. Email: dou PULTRALL Pultrall Inc	ug@hughesbros.com	FRP-07 P Company: Pul Contact: Bogd Phone: (714)	Itron Composites Ltd Ian Patrascu Em. 880-9533 Fax	ail: bogdan@pultron.com ::
210 North 13th St Contact: Ff Seward, NE 6843 Phone: Physical / Co QC Plan Status: 700 geme Co	RP-12 TUF-BAR INC (EDMONTON ompany: Tuf-Bar Inc. ontact: Nathan Sim	CANADA) Email: na	S404 Street Building 10 Jebel UNITED ARAB E	FRP-08 ATP Company: ATP	Finally a signunder@ate co.it
#04 GFRI ^{Modelor} Ph #05 GFRI ^{CANADA} Ph #06 GFRI _{QC} Plan S ₅₇ #07 GFRI #0 #08 GFRI #0	ione: (780) 448-9338 iysical Address: 15-76 Avenue INADA	Fax: Mailing Addr 5715-76 Aven CANADA	QC Plan Status: #04 GFF #05 GFF #06 GFF	Phone: (811) 948-7131 Physical Address: via Campa 34 ITALY	Fax: Mailing Address: via Campa 34 ITALY
#0 QC #0 #0	C Plan Status: Quality Control Plan ACCEPT #03 GFRP BAR #04 GFRP BAR #05 GFRP BAR #06 GFRP BAR #07 GFRP BAR #08 GFRP BAR	ED 3/19/2019 Glass Fiber Reinforced Polyme Glass Fiber Reinforced Polyme Glass Fiber Reinforced Polyme Glass Fiber Reinforced Polyme Glass Fiber Reinforced Polyme	#08 GFF er Reinforcing fc er Reinforcing fc er Reinforcing fc er Reinforcing fc er Reinforcing fc	QC Plan Status FRP-14 TUF-BAR INC (ONT) #03 GFI Company: Tuf-Bar Inc. #04 GFI Contact: Jay Christopher #05 GFI Phone: (519) 833-5050 #06 GFI Physical Address: #08 GFI 7 Erin Park Dr CANADA	ARIO CANADA) Email: jay@tufbarcanada.com Fax: Mailing Address: 7 Erin Park Dr CANADA

QC Plan Status: Quality Control Plan ACCEPTED 12/11/2017

Company de E/00/0010 0.00.00

Material Acceptance Criteria

FDOT 932-3 Table 3-4

Property	Test Method	Requirement	Straight Bar
Fiber Mass Fraction	ASTM D2584 or ASTM D3171	≥70%	Yes
Short-Term Moisture Absorption	ASTM D570, Procedure 7.1; 24 hours immersion at 122°F	≤0.25%	Yes
Glass Transition Temperature	ASTM D7028 (DMA) or ASTM E1356 (DSC; T _m)/ ASTM D3418 (DSC; T _{mg})	≥230°F ≥212°F	Yes
Degree of Cure	ASTM E2160	≥95% of Total polymerization enthalpy	Yes
Measured Cross- sectional Area		Within range listed in Table 3-1	Yes
Guaranteed Tensile Load	AS TWI D7205	≥ Value listed in Table 3-1	Yes

Design Guidance & Tools In Florida

Accessible & Reliable Design Tools

Commercial vs. Agency/Institution based design programs

Infrastructure

Table of Contents

- Problem Statement
- Where to Use Glass FRP
- FRP Material Properties
- Durability
- Design Guides and Standards

Concluding Remarks

Concluding Remarks

- There is a strong case for use of FRP in structural concrete exposed to corrosive environment
- FRP anisotropic and linear elastic up to failure
- Material Specifications and Design Guides exist (ASTM D7957, FDOT-932, AASHTO GFRP,)
- Accessible design tools exist

Questions?

Thank

INTRODUCTION TO FRP-RC & MATERIAL PROPERTIES OF GFRP 1.1 Review Questions: Fundamentals

1.1.1) Where could GFRP reinforcement for concrete be most suitable?

- a. Any concrete member susceptible to steel corrosion by chlorides
- b. Any concrete member requiring non-ferrous reinforcement due to electromagnetic considerations
- c. As an alternative to epoxy, galvanized, or stainless steel rebars
- d. Applications requiring thermal non-conductivity
- e. All the above

Where Should FRP Be Used?

- Concrete structures susceptible to corrosion
 - Steel corrosion by chlorides
 - Aggressive agents that lower concrete pH
 - Structures with minimum cover concrete
- Concrete structures requiring non-ferrous reinforcement due to
 - Electro-magnetic considerations
 - Thermal non-conductivity
- Where machinery will "consume" the reinforced concrete member (i.e., mining and tunneling)

1.1.1) Where could GFRP reinforcement for concrete be most suitable?

- a. Any concrete member susceptible to steel corrosion by chloride ions
- b. Any concrete member requiring non-ferrous reinforcement due to electro-magnetic considerations
- c. As an alternative to epoxy, galvanized, or stainless steel rebars
- d. Applications requiring thermal non-conductivity
- e. All the above

1.1.2) Which of the following is *not* applicable to GFRP rebars?

- a. Corrosion resistant
- b. Ductility
- c. Low thermal and electrical conductivity
- d. Light weight
- e. High strength to weight ratio

FRP Mechanical Properties

- Higher tensile strength, but less stiff than steel
 - Provides less confinement to concrete and RC members have more deflection than steel-RC
- Anisotropic behavior
 - $\checkmark\,$ High strength in the fiber direction
 - Low shear strength and dowel action (resin dominated)
- Elastic up to failure no ductility
 - ✓ Cannot be used in seismic areas, no plastic hinges formed in RC members

Tensile Stress-Strain Characteristics

1.1.2) Which of the following is <u>**not**</u> applicable to GFRP rebars?

a. Corrosion resistant

b. Ductility

- c. Low thermal and electrical conductivity
- d. Light weight
- e. High strength to weight ratio

1.1.3) The E-modulus of GFRP rebars when compared to steel is approximately _____.

- a. 3 to 4 times lower
- b. Comparable
- c. 2 to 3 times higher
- d. 3 to 4 times higher

1.1.3) The E-modulus of GFRP rebars when compared to steel is approximately _____.

- a. 3 to 4 times lower (6.5-8.7 msi compared to 29 msi)
- b. Comparable
- c. 2 to 3 times higher
- d. 3 to 4 times higher

1.1.4) The durability of GFRP rebars _____

- a. Has been proven through accelerated aging protocols and by samples extracted from bridges that have been in service for 15 years
- b. Is unknown
- c. Is lower than steel
- d. a) and c) are true

Durability

Source: Long-term Durability of GFRP Reinforcement in Concrete: A Case Study after 15 Years of Service - O. Gooranorimi, E. Dauer, J. Myers, A. Nanni

NO SIGN OF BOND DEGRADATION NOR LOSS OF CONTACT AND MECHANICAL PROPERTIES AFTER 15 YEARS IN SERVICE

1.1.4) The durability of GFRP rebars _____

- a. Has been proven through accelerated aging protocols and by samples extracted from bridges that have been in service for 15 years
- b. Is unknown
- c. Is lower than steel
- d. a) and c) are true

- 1.1.5) The density of GFRP is about _____
- a. About 4 times lighter than steel
- b. Similar to that of steel
- c. About 4 times heavier than steel
- d. Half that of steel

Rebar	Density (lb./ft ³)	Nominal weight (lb./ft)			
type		#3	#5	#8	
GFRP	125	0.38	1.05	2.68	
Steel	505	0.09	0.26	0.66	

- 1.1.5) The density of GFRP is about _____
- a. About 4 times lighter than steel
- b. Similar to that of steel
- c. About 4 times heavier than steel
- d. Half that of steel

- a. Transverse
- b. Parallel

Transverse vs. Parallel Strength

Parallel - Tensile

- 70 ksi to >150 ksi
- Strength varies per bar size (shear lag effect)

Transverse - Shear

- > 22ksi
- Almost independent of bar size

1.1.6) FRP has higher strength in the direction _____ to the fibers.

- a. Transverse
- **b.** Parallel

1.1.7) The tensile strength of GFRP reinforcing bars with bend should be at minimum _____.

- a. The same as straight GFRP reinforcing bars
- b. 40% of the straight GFRP reinforcing bars
- c. 60% of the straight GFRP reinforcing bars
- d. 140% of the straight GFRP reinforcing bars

Strength of FRP at Bent

- FRP bars can be fabricated with bends, however the tensile strength of the bend is reduced up to 60% per ASTM D7957
- Bend radius is larger than for steel
- ASTM D7914 includes specifications for strength of FRP bent bars in bend locations

Bar Designation,	Minimum Bend		
mm [U.S. Standard]	Diameter mm [in.]		
M6 [2]	38 [1.50]		
M10 [3]	58 [2.25]		
M13 [4]	76 [3.00]		
M16 [5]	96 [3.75]		
M19 [6]	114 [4.50]		
M22 [7]	134 [5.25]		
M25 [8]	152 [6.00]		

1.1.7) The tensile strength of GFRP reinforcing bars with bend should be at minimum _____.

- a. The same as straight GFRP reinforcing bars
- b. 40% of the straight GFRP reinforcing bars
- c. 60% of the straight GFRP reinforcing bars
- d. 140% of the straight GFRP reinforcing bars

1.1.8) The guaranteed tensile strength of a GFRP bar as provided by the manufacturer is ______

- a. The mean tensile strength of the sample population
- b. The mean tensile strength of the sample population minus three standard deviations
- c. The mean tensile strength of the sample population minus two standard deviations
- d. None of the above

Material Characterization

Tensile test [*ASTM* D7205]

Minimum requirements: *FDOT* 932-3, Table 3.2 & 3.3

AASHTO 2.4.2.1:

 $f_{fu} \rightarrow Guaranteed tensile strength = mean minus three standard deviations$

1.1.8) The guaranteed tensile strength of a GFRP bar as provided by the manufacturer is ______

- a. The mean tensile strength of the sample population
- b. The mean tensile strength of the sample population minus three standard deviations
- c. The mean tensile strength of the sample population minus two standard deviations
- d. None of the above

1.1.9) At temperatures higher than approximately ______ the resin of GFRP bars begins to soften.

- a. 60 °F
- b. 212 °F
- c. 1220 °F

d. 2500 °F

Behavior at High Temperatures

- Thermosets are characterized by Glass Transition Temperature, T_g
- Resin tensile, compressive, and shear properties diminish when temperatures approach T_g
- T_g values are approximately 212 °F (100 °C) for Vinyl Ester typically used GFRP rebars
- T_g lowers as a result of moisture absorption

Elastic Modulus vs Temperature

Applied Questions

1.1.9) At temperatures higher than approximately ______ the resin of GFRP bars begins to soften.

- a. 60 °F
- b. 212 °F
- c. 1220 °F
- d. 2500 °F

AASHTO GFRP-Reinforced Concrete Design Training Course

