AASHTO CFRP-Prestressed Concrete Design Training Course

Florida Department of **TRANSPORTATION**

UNIVERSITY of **HOUSTON**

CULLEN COLLEGE of ENGINEERING Department of Civil & Environmental Engineering

Design of Pretensioned Concrete Bridge Beams with Carbon Fiber-Reinforced Polymer (CFRP) Systems

Florida Department of TRANSPORTATION

UNIVERSITY of HOUSTON

CULLEN COLLEGE of ENGINEERING Department of Civil & Environmental Engineering

COURSE OUTLINE

- 1. Introduction & References
- 2. Prestressing CFRP
- 3. Flexural Design
- 4. Shear Design
- 5. Prestressed Piles
- 6. Design Examples

Florida Department of TRANSPORTATION

UNIVERSITY of HOUSTON

CULLEN COLLEGE of ENGINEERING Department of Civil & Environmental Engineering

Halls River Bridge (Homosassa, FL)

Will Potter (2018), Fiber-Reinforced Polymer (FRP) Development for FDOT Structural Applications

Halls River Bridge (Homosassa, FL)

CFRP Prestressed Square Pile

Halls River Bridge (Homosassa, FL) CFRP Prestressed Sheet Pile

CFRP Prestressed Sheet Pile

FDOT Standard Plans, FY 2020-21

455-101		Square CFRP and SS Prestressed Concrete Piles - Typical Details and Notes							
455-102		Square CFRP and SS Prestressed Concrete Pile Splices							
455-112		12" Square CFRP and SS Prestressed Concrete Pile							
455-114		14" Square CFRP and SS Prestressed Concrete Pile							
455-118	SQUARE	18" Square CFRP and SS Prestressed Concrete Pile							
455-124	PILE	24" Square CFRP and SS Prestressed Concrete Pile							
455-130		30" Square CFRP and SS Prestressed Concrete Pile							
455-154	CYLINDER	54" Precast/Post-Tensioned CFRP and SS Concrete Cylinder Pile							
455-160	PILE	60" Prestressed CFRP and SS Concrete Cylinder Pile							
455-400		Precast Concrete Sheet Pile Wall (Conventional)							
433-400	SHEET								
455-440	PILE	Precast Concrete Sheet Pile Wall (CFRP/GFRP & HSSS/GFRP)							

[FDOT <u>Standard Plans</u>, Index 455-118]

FDOT *Standard Plans Instructions (SPI)*, FY 2020-21 Index 455-101 Series Square CFRP & SS Prestressed Concrete Piles

Design Assumptions and Limitations

- Standard piles are designed to have 1000 psi uniform compression after prestress losses without any applied loads to offset tensile stresses that occur during typical driving.
- The piles are designed to have 0.0 psi tension using a load factor of 1.5 times the pile self weight during pick-up, storage and transportation

Square Pile

- Clear cover *cc*
- Concrete compressive strength f_c'
- CFRP ultimate strength f_{fu}
- CFRP effective prestressing stress f_{fe} (after losses)

Square Pile: Under Prestressing Force Only

$$\sum T_{i} = C \qquad \qquad A_{f,total} \cdot f_{fe} = A_{c} \cdot f_{ce} \qquad f_{ce} = \frac{A_{f,total} \cdot f_{fe}}{A_{c}} = \frac{A_{f,total} \cdot f_{fe}}{h^{2}}$$

Square Pile: Under Prestressing Force Only

$$f_{ce} = \frac{A_{f,total} \cdot f_{fe}}{h^2}$$

Adjust jacking force until satisfy

 $f_{ce} = 1000 \ psi$ uniform compression at time of installation

[FDOT Standard Plans Instructions, FY 2020-21 Index 455-101 Series Square CFRP & SS Prestressed Concrete Piles]

Square Pile: P-M diagram

Assume a compression depth c

Under Under Additional Prestressing Compression Load Force Only *P* with eccentricity *e* $\varepsilon_{fi} = \varepsilon_{fe} + \varepsilon_{fi,l}$

 $C = 0.85(\alpha_1 f'_c)(\beta_1 c)h$ $f_{fi} = E_f \varepsilon_{fi} \le f_{fu}$ $T_i = A_{fi} f_{fi}$

Square Pile: P-M diagram

Square Pile: P-M diagram Balanced Condition

Square Pile: P-M diagram

$$C = (\alpha_1 f_c')(\beta_1 c)h$$

$$T_i = A_{fi} f_{fi} \qquad f_{fi} = E_f \varepsilon_{fi} \le f_{fu}$$

Cylinder Pile

The first 66" cylinder pile cast for the Harry Nice Bridge replacement. These pile have CFCC strand and spiral and exceed 200' in length. Pile produced from Cape Charles plant (June 2020)

[FDOT <u>Standard Plans</u>, Index 455-160]

Cylinder Pile

- Concrete compressive strength f_c'
- CFRP ultimate strength f_{fu}
- CFRP effective prestressing stress f_{fe} (after losses)

е

Cylinder Pile: Under Prestressing Force Only

$$\sum T_i = C \qquad A_{f,total} \cdot f_{fe} = A_c \cdot f_{ce} \qquad f_{ce} = \frac{A_{f,total} \cdot f_{fe}}{A_c} = \frac{A_{f,total} \cdot f_{fe}}{\pi (R_o^2 - R_i^2)}$$

Cylinder Pile: Under Prestressing Force Only

$$f_{ce} = \frac{A_{f,total} \cdot f_{fe}}{\pi (R_o^2 - R_i^2)}$$

Adjust jacking force until satisfy

 $f_{ce} = 1000 \, psi$ uniform compression at time of installation

[FDOT Standard Plans Instructions, FY 2020-21 Index 455-101 Series Square CFRP & SS Prestressed Concrete Piles]

Cylinder Pile: P-M diagram

$$T_i = A_{fi} f_{fi}$$

Cylinder Pile: P-M diagram

$$Pe = M = C(R_o - \bar{y}) - T_1(R_o - d_1) - T_2(R_o - d_2) + T_3(d_3 - Ro) + T_4(d_4 - R_o)$$
$$\sum T_i = C + P \longrightarrow P, M \xrightarrow{\emptyset = 0.75} \emptyset P, \emptyset M$$

Factored Axial Resistance

For compressive components symmetrical about both principal axes

$$P_r = \phi P_n$$

FRP does NOT have compressive strength

Spiral reinforcement
$$P_n = 0.85[k_c f'_c (A_g - A_{ft} - A_{pf}) - A_{pf} (f_{pe} - E_p \varepsilon_{cu})]$$

Tie reinforcement $P_n = 0.80[k_c f'_c (A_g - A_{ft} - A_{pf}) - A_{pf} (f_{pe} - E_p \varepsilon_{cu})]$

[Replaced steel (s) with CFRP (f), f_y with f_{pu}]

$$k_c = \begin{cases} 0.85 & \text{when } f'_c \le 10 \text{ ksi} \\ 0.85 - 0.02(f'_c - 10) \ge 0.75 \text{ when } f'_c > 10 \text{ ksi} \end{cases}$$

- **P-M Interaction Diagram**
 - Pure compression
 - Pure tension
 - Pure bending
 - Balanced condition
 - Zero tension

Questions?

UNIVERSITY of **HOUSTON**

CULLEN COLLEGE of ENGINEERING Department of Civil & Environmental Engineering

5.1 Review Questions: Fundamentals

Florida Department of **TRANSPORTATION**

UNIVERSITY of HOUSTON

CULLEN COLLEGE of ENGINEERING Department of Civil & Environmental Engineering

- 5.1.1) When constructing a P-M diagram for a CFRP prestressed piles, the balance points refers to:____?
- a. The point at which the CFRP yields and concrete crushes
- b. The point at which the CFRP ruptures and concrete crushes
- c. The point at which the CFRP yields before concrete crushes
- d. The point at which the concrete crushes, but the CFRP has not ruptured

P-M diagram: Balanced Condition

Prestressing Compression Load Force Only *P* with eccentricity *e*

- 5.1.1) When constructing a P-M diagram for a CFRP prestressed piles, the balance points refers to:____?
- a. The point at which the CFRP yields and concrete crushes

b. <u>The point at which the CFRP ruptures and concrete crushes</u>

- c. The point at which the CFRP yields before concrete crushes
- d. The point at which the concrete crushes, but the CFRP has not ruptured

5.1.2) For FDOT 455-101 Series Square CFRP Prestressed Concrete Piles, which of the below statement(s) is/are TRUE?

- Prestressed piles are designed to have 1000 psi uniform compression after prestress losses without any applied loads to offset tensile stresses that occur during typical driving
- b. Prestressed piles are designed to have 0.0 psi tension using a load factor of 1.5 times the pile self weight during pick-up, storage and transportation
- c. Both (a) and (b)
- d. None of above

FDOT *Standard Plans Instructions (SPI)*, FY 2020-21 Index 455-101 Series Square CFRP & SS Prestressed Concrete Piles

Design Assumptions and Limitations

- Standard piles are designed to have 1000 psi uniform compression after prestress losses without any applied loads to offset tensile stresses that occur during typical driving.
- The piles are designed to have 0.0 psi tension using a load factor of 1.5 times the pile self weight during pick-up, storage and transportation

5.1.2) For FDOT 455-101 Series Square CFRP Prestressed Concrete Piles, which of the below statement(s) is/are TRUE?

- Prestressed piles are designed to have 1000 psi uniform compression after prestress losses without any applied loads to offset tensile stresses that occur during typical driving
- b. Prestressed piles are designed to have 0.0 psi tension using a load factor of 1.5 times the pile self weight during pick-up, storage and transportation

c. Both (a) and (b)

d. None of above

5.1.3) Which of below P-M diagram is for a CFRP prestressed concrete pile?

5.1.3) Which of below P-M diagram is for a CFRP prestressed concrete pile?

5.1.4) _____spiral ties should be used in CFRP prestressed piles?

- a. CFRP
- b. Steel

5.1.4) _____spiral ties should be used in CFRP prestressed piles?

- a. <u>CFRP</u>
- b. Steel

5.2 Design Example: Square Pile -18"x18"

Florida Department of TRANSPORTATION

UNIVERSITY of HOUSTON

CULLEN COLLEGE of ENGINEERING Department of Civil & Environmental Engineering

Geometry	Concrete	CFRP strand
	$f'_c = 6$ ksi	$D_p = 0.6$ in
• •	$f'_{ci} = 4 \text{ ksi}$	$A_{pf} = 0.179 \text{ in}^2$
	$E_c = 4557$ ksi	$E_f = 22,480$ ksi
18"	$E_{ci} = 3987$ ksi	$f_{pu} = 370$ ksi
	$\alpha_1 = 0.85$	
b = h = 18 in	$\beta_{-} = 0.75$	
cover = 3 in	$p_1 = 0.75$	$D_{wire} = 0.2$ in
$A_g = 323 \text{ in}^2$		
$I_q = 8748 \text{ in}^4$		

FDOT *Standard Plans Instructions (SPI)*, FY 2020-21 Index 455-101 Series Square CFRP & SS Prestressed Concrete Piles

 Standard piles are designed to have 1000 psi uniform compression after prestress losses without any applied loads to offset tensile stresses that occur during typical driving.

Jacking force *P_i* is adjusted (trial and error) to satisfy this requirement

 $P_j = 32 \text{ kip}$

$$f_{ce} = \frac{A_{f,total} \cdot f_{fe}}{h^2} = 1.02 \text{ ksi } \mathbf{OK} \qquad f_{pj} = 179 \text{ ksi} < f_{pj,limit} = 0.70 f_{pu} = 259 \text{ ksi } \mathbf{OK}$$

Total Prestress Losses

Elastic shortening $\Delta f_{pES} = 6.707$ ksi

Long-Term Losses $\Delta f_{pLT} = (\Delta f_{pSR} + \Delta f_{pCR} + \Delta f_{pR1})_{id} + (\Delta f_{pSD} + \Delta f_{pCD} + \Delta f_{pR2} - \Delta f_{pSS})_{df} = 34.757 \text{ ksi}$

Loss due to temperature change (Assume 0 in this example) $\Delta f_{pTH} = 0$

Total prestress loss $\Delta f_{pT} = \Delta f_{pES} + \Delta f_{pLT} + \Delta f_{pTH} = 41.463 \text{ ksi}$ (23.2%)

Effective prestress after all losses

$$f_{pe} = 137 \text{ ksi} < f_{pe.limit} = 0.65 f_{pu} = 241 \text{ ksi}$$
 OK

Summary of Stresses

Design tensile strength $f_{pu} = 370$ ksi

Jacking stress $f_{pi} = 179 \text{ ksi}$

 $f_{pei} = 154$ ksi Effective prestress at time of pile installation

Concrete stress (compression) at time of installation

$$f_{c,install} = 1.02$$
 ksi

Final effective prestress in prestressing CFRP cables

Concrete stress (compression) at final time

 $f_{ce} = 0.913$ ksi

Summary of Strains

Concrete crushing strain $\varepsilon_{cu} = 0.003$

CFRP strand rupture strain $\varepsilon_{pu} = 0.016$

Strain in prestressing strand at final time due to prestress force $\varepsilon_{pe} = 0.00611$

Strain in concrete at final time due to prestress force $\varepsilon_{ce} = 0.0002$

Remainder of strain in prestressing CFRP until rupture $\varepsilon_{p,rest} = 0.010$

Remainder of strain in concrete until crushing $\varepsilon_{c,rest} = 0.0028$

Square Pile: P-M diagram

 $C = (\alpha_1 f_c')(\beta_1 c)h$

$$T_i = A_{fi} f_{fi} \qquad f_{fi} = E_f \varepsilon_{fi} \le f_{fu}$$

Square Pile: P-M diagram

Concrete Compression Depth							
		С					
		0					
	0	3.31					
	1	3.32					
	2	3.33					
	3	3.34					
	4	3.35					
	5	3.36					
	6	3.37					
	7	3.38	·in				
	8	3.39					
	9	3.4					
	10	3.41					
	11	3.42					
	12	3.43					
	13	3.44					
	14	3.45					
	15						

Prestressing CFRP stress

	f_{f1}	f_{f2}	f_{f3}	f_{f4}
	0	1	2	3
0	146	220	295	370
1	145	220	294	369

 $f_f =$

...

·ksi

Square Pile: P-M diagram

[0			0				0		1420	1500	I	I	I	
	0	2.482		0	-326			0	225		1438					
	1	2.49		1	-324			1	225							
	2	2.498		2	-322			2	225			1000				_
	3	2.505		3	-320			3	225							
	4	2.513		4	-318			4	226							
	5	2.52		5	-316			5	226		Р	500				
	6	2.527		6	-315			6	226		kip	500-				
aa =	7	2.535	\cdot in P =	7	-313	∙kip	M =	7	226	∙kip∙ft						
	8	2.542		8	-311			8	226							
	9	2.55		9	-309			9	226			0-				-
	10	2.558		10	-307			10	226							
	11	2.565		11	-306			11	227		226					
	12	2.572		12	-304			12	227		- 326	500	I	I	1	
	13	2.58		13	-302			13	227		-	0	100	200	300	400
	14	2.588		14	-300			14	227			11		М		332
[15			15				15						(kip·ft)		

- **Square Pile:**
- P_n M_n diagram
- $\Phi P_n \Phi M_n$ diagram

5.3 Design Example: Sheet Pile - 12"x30"

Florida Department of TRANSPORTATION

UNIVERSITY of HOUSTON

CULLEN COLLEGE of ENGINEERING Department of Civil & Environmental Engineering

Assume jacking force $P_i = 0.70P_u = 46.34$ kip

 $f_{pj} = 259 \text{ ksi}$

This requirement does NOT apply to Sheet Piles

FDOT *Standard Plans Instructions (SPI)*, FY 2020-21 Index 455-101 Series Square CFRP & SS Prestressed Concrete Piles

• Standard piles are designed to have 1000 psi uniform compression after prestress losses without any applied loads to offset tensile stresses that occur during typical driving.

Total Prestress Losses

Elastic shortening $\Delta f_{pES} = 5.825$ ksi

Long-Term Losses $\Delta f_{pLT} = (\Delta f_{pSR} + \Delta f_{pCR} + \Delta f_{pR1})_{id} + (\Delta f_{pSD} + \Delta f_{pCD} + \Delta f_{pR2} - \Delta f_{pSS})_{df} = 47.689 \text{ ksi}$

Loss due to temperature change (Assume 0 in this example) $\Delta f_{pTH} = 0$

Total prestress loss $\Delta f_{pT} = \Delta f_{pES} + \Delta f_{pLT} + \Delta f_{pTH} = 53.514 \text{ ksi}$ (20.7%)

Effective prestress after all losses

$$f_{pe} = 205 \text{ ksi} < f_{pe.limit} = 0.65 f_{pu} = 241 \text{ ksi}$$
 OK

Summary of Stresses

Design tensile strength $f_{pu} = 370$ ksi

Jacking stress $f_{pi} = 259 \text{ ksi}$

 $f_{pei} = 230$ ksi Effective prestress at time of pile installation

Concrete stress (compression) at time of installation

$$f_{c,install} = 0.918$$
 ksi

Final effective prestress in prestressing CFRP cables

Concrete stress (compression) at final time

$$f_{pe} = 205$$
 ksi

 $f_{ce} = 0.819$ ksi

Summary of Strains

Concrete crushing strain $\varepsilon_{cu} = 0.003$

CFRP strand rupture strain $\varepsilon_{pu} = 0.016$

Strain in prestressing strand at final time due to prestress force $\varepsilon_{pe} = 0.00914$

Strain in concrete at final time due to prestress force $\varepsilon_{ce} = 0.000180$

Remainder of strain in prestressing CFRP until rupture $\varepsilon_{p,rest} = 0.00732$

Remainder of strain in concrete until crushing $\varepsilon_{c,rest} = 0.00282$

Sheet Pile: P-M diagram

$$C = (\alpha_1 f_c')(\beta_1 c)h$$

$$T_i = A_{fi} f_{fi} \qquad f_{fi} = E_f \varepsilon_{fi} \le f_{fu}$$

$$Pe = M = C\left(\frac{h}{2} - \frac{\beta_1 c}{2}\right) - T_1\left(\frac{h}{2} - d_1\right) + T_2\left(\frac{h}{2} - d_2\right)$$

$$T_i = C + P \longrightarrow P, M \qquad = 0.75 \qquad \emptyset P, \emptyset M$$

Sheet Pile:				Compression zone depth <i>c</i>				\sim Top row CFRP stress f_{f1}
P-M diagram			/			/		Bottom row CFRP stress f_{f2}
		(0	1]
		0 2	43 44		0	247	370	-
		2 2	45		2	247	368	-
		3 2	46		3	246	367	
		4 2	47		4	246	366	
		5 2	48		5	245	365	_
		6 2	49		6	245	364	1
	cc =	7	2.5	n ^I f =	7	244	363	- KS1
		8 2	51		8	244	362	-
		9 2	52		9	244	361	-
		10 2	53 54		10	243	360	-
		12 2	55		12	243	359	-
		13 2	56		13	242	358	-
		14 2	57		14	242	357	1
		15			15	241]

Sheet Pile: P-M diagram

Sheet Pile: $P_n - M_n$ diagram $\Phi P_n - \Phi M_n$ diagram

AASHTO CFRP-Prestressed Concrete Design Training Course

Florida Department of TRANSPORTATION

UNIVERSITY of **HOUSTON**

CULLEN COLLEGE of ENGINEERING Department of Civil & Environmental Engineering