AASHTO CFRP-Prestressed Concrete Design Training Course

UNIVERSITY of HOUSTON

CULLEN COLLEGE of ENGINEERING Department of Civil & Environmental Engineering

Design of Pretensioned Concrete Bridge Beams with Carbon Fiber-Reinforced Polymer (CFRP) Systems

UNIVERSITY of HOUSTON

CULLEN COLLEGE of ENGINEERING Department of Civil & Environmental Engineering

COURSE OUTLINE

- 1. Introduction & References
- 2. Prestressing CFRP
- 3. Flexural Design
- 4. Shear Design
- 5. Prestressed Piles
- 6. Design Examples

Florida Department of TRANSPORTATION

UNIVERSITY of HOUSTON

CULLEN COLLEGE of ENGINEERING Department of Civil & Environmental Engineering

Material Properties of Prestressing CFRP

Types and sizes Mechanical properties Coefficient of thermal expansion Creep rupture

Stress Limitations for Prestressing CFRP

Prestress Losses

Total prestress loss Elastic shortening Thermally induced losses Long-term time-dependent losses

Development of pretensioning CFRP tendons

CFRP bar

CFRP cable

Sizes

Consistent with AASHTO M 31M/M 31 ASTM A615/A615M ASTM D7957/D7957M

Provided by manufacturer FDOT Spec 933-1.3

[AASHTO CFRP Material Specifications 2.5.4]

Material Properties: Prestressing CFRP vs. Steel

Prestressing CFRP Material Properties

Provisions	Test Methods	AASHTO CFRP Minimums	FDOT Minimums
Tensile Strength	ASTM D7205/ D7205M	N/A	≥ values listed in Table 1-2 in FDOT Spec 933
Tensile Modulus of Elasticity	ASTM D7205/ D7205M	≥ 17,000 ksi	≥ 18,000 ksi for bar ≥ 22,400 ksi for cable
Shear Strength (Transverse Axis)	ASTM D7617/ D7617M	≥ 10 % of tensile strength	N/A
Tensile Strain	N/A	≥ 1.2 %	N/A
Bond Strength	ASTM D7913/D7913M	≥ 700 psi	N/A

Prestressing CFRP Strand [FDOT]

Table 1-2					
Typical Sizes	and Loads of C	FRP Prestressin	g Strands and Ba	rs	
Туре	Nominal Diameter (in)	Nominal Cross Sectional Area (in ²)	Nominal Ultimate Load (P _u) (kips)	Nominal Ultimate Tensile Stress (ksi)	
Single Strand - 5.0mm Ø	0.20	0.025	9.1	364	
7-strand - 7.9mm Ø	0.31	0.048	17.8	370	
7-strand - 10.8mm Ø	0.43	0.090	33.1	367	
Single Strand - 9.5mm Ø	0.38	0.110	35.0	318	
7-strand - 12.5mm Ø	0.49	0.117	43.3	370	
Single Strand - 12.7mm Ø	0.50	0.196	59.0	301	
7-strand - 15.2mm Ø	0.60	0.179	66.2	369	
7-strand - 17.2mm Ø	0.68	0.234	86.6	338	

* will be corrected as 370 ksi in January 2021 eBook

Material properties of prestressing CFRP investigated in NCHRP Report 907					
	Cable	Bar			
Effective cross-sectional area, in ²	0.179	0.196			
Resin type	Ероху	Vinyl Ester			
Fiber volume fraction	0.65	N/A			
Longitudinal ultimate load, kip	61	49			
Longitudinal tensile strength, ksi	340	250			
Longitudinal elastic modulus, ksi	22,480	20,880			
Maximum longitudinal strain, %	1.7	1.3			

* Note: FDOT limit > NCHRP Report 907 value

[FDOT Specification Section 933]

[NCHRP Report 907]

Table 5-1						
Physical and Mechanical Property Requirements for CFRP Prestressing Strands						
Property	Test Method	Requirement	Specimens per LOT			
Fiber Mass Fraction	ASTM D2584 or ASTM D3171	≥70%	10			
Short-Term Moisture Absorption	ASTM D570, Procedure 7.1; 24 hours immersion at 122°F	≤0. 25%	10			
Long-Term Moisture Absorption	ASTM D570, Procedure 7.4; immersion to full saturation at 122°F	≤1.0%	10			
Glass Transition Temperature (T_g)	ASTM D7028 (DMA) or ASTM E1356 (DSC; <i>T</i> _m)/ASTM D3418 (DSC; <i>T</i> _{mg})	≥230°F ≥212°F	3			
Total Enthalpy of Polymerization (Resin)	ASTM E2160	Identify the resin system used for each bar size and report the average value of three replicates for each system	-			
Degree of Cure	ASTM E2160	≥95% of Total polymerization enthalpy	3			
Measured Cross Sectional Area Ultimate Tensile Strength (UTS) Tensile Modulus	ASTM D7205	Within -5% to +10% of nominal values listed in Table 1-2 ≥ Value listed in <u>Table 1-2</u> ≥18,000 ksi	10			

	Table	e 5-1	
Physical a	nd Mechanical Property Requ	irements for CFRP Pres	stressing Strands
Property	Test Method	Requirement	Specimens per LOT
Alkali Resistance with Load	ASTM D7705, 3 months test duration at 140 ± 5°F. Apply sustained tensile stress to induce 3000 micro-strain, followed by tensile test per ASTM D7205	Tensile strength retention ≥70% of UTS	5
Creep Rupture Strength	ASTM D7337, 3 months test duration at laboratory conditions. Apply sustained tensile load equivalent to 75% UTS, followed by tensile test per ASTM D7205	Equivalent sustained load ≥75% UTS AND Tensile strength retention ≥90% UTS	3

Note: In FDOT Spec (July 2020), the minimum Tensile Modulus is 18,000 ksi, but this is based on single-bar-strand.

For CFRP cables, the minimum Tensile Modulus is 22,400 ksi, this will be updated in FDOT Spec (Jan 2021)

	Table 5-2		1
Testing requirem	ents for Project Material Accepta	nce of CFRP Prestressing Strand	
Property	Test Method	Requirement	
	ASTM D2584	* Moto: grooter	thop 650
Fiber Mass Fraction	or	$\geq 70\%$ in NCHRP Rep	ort 907
	ASTM D3171		
Short-Term Moisture	ASTM D570, Procedure 7.1;	<0.25%	
Absorption	24 hours immersion at 122°F	<u>_0.2370</u>	
	ASTM D7028 (DMA)	>230°E	
Glass Transition	or	≥230 T	
Temperature	ASTM E1356 (DSC;	>212°F	
	$T_{\rm m}$)/ASTM D3418 (DSC; $T_{\rm mg}$)	<u>~</u> 212 I	
Degree of Cure	ASTM E2160	≥95% of Total polymerization enthalpy	
Actual Cross Sectional		Within -5% to +10% of nominal values	
Area		listed in Table 1-2	
Ultimate Tensile	ASTM D7205	> Value listed in Table 1.2	
Strength			
Tensile Modulus		≥18,000 ksi	

Prestressing CFRP Material Properties

 f_{pu} - Design tensile strength of prestressing CFRP

 f_{pu} = Tensile Strength × Environmental Reduction Factor

Table 1.4.1.2—Environmental Reduction Factors (CE)

Environmental Condition	CE
Prestressing CFRP not exposed to environmental effects (internal applications)	1.0
Prestressing CFRP exposed to environmental effects (external applications without protection)	0.9

Prestressing CFRP Material Properties

Tensile Strength (AASHTO CFRP-1, Material Specification, 2.6.1)

"The tensile strength, as reported by the manufacturer for product certification, shall be the load measured according to **ASTM D7205/ D7205M** at a frequency and number of specimens as specified in Article 2.9.1 and the characteristic value (manufacturer's guaranteed strength) computed according to ASTM D7290 divided by the area of prestressing CFRP as specified in Article 2.5.4. The manufacturer shall report the individual test results."

ASTM D7290 (2017)

Two-parameter Weibull distribution

$$f(x) = \left(\frac{\beta}{\alpha}\right) \left(\frac{x}{\alpha}\right)^{\beta-1} exp\left[-\left(\frac{x}{\alpha}\right)^{\beta}\right]$$

 β = Shape parameter; α = Scale parameter

Tensile Strength (AASHTO CFRP-1, Material Specification)

Two-parameter Weibull distribution

$$(x) = \left(\frac{\beta}{\alpha}\right) \left(\frac{x}{\alpha}\right)^{\beta-1} exp\left[-\left(\frac{x}{\alpha}\right)^{\beta}\right]$$

<u>Step 1</u>: Determine mean \bar{x} and standard deviation S_{n-1} for the measured material

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} \qquad \qquad S_{n-1} = \frac{\sum_{i=1}^{n} (\bar{x} - x_i)^2}{n-1}$$

<u>Step 2</u>: The maximum likelihood estimate $\hat{\beta}$ of the shape parameter β , is calculated by numerically solving the following equation

$$\frac{\sum_{i=1}^{n} x_i^{\widehat{\beta}} ln(x_i)}{\sum_{i=1}^{n} x_i^{\widehat{\beta}}} - \frac{1}{\widehat{\beta}} - \frac{\sum_{i=1}^{n} ln(x_i)}{n} = 0$$

property

Tensile Strength (AASHTO CFRP-1, Material Specification)

<u>Step 3</u>: The maximum likelihood estimate $\hat{\alpha}$ of the scale parameter α , is calculated by

$$\widehat{\alpha} = \left(\frac{\sum_{1}^{n} x_{i}^{\widehat{\beta}}}{n}\right)^{\frac{1}{\widehat{\beta}}}$$

<u>Step 4</u>: Calculate the coefficient of variation (COV)

$$COV = \frac{\sqrt{\Gamma\left(1 + \frac{1}{\hat{\beta}}\right) - \Gamma^2\left(\left(1 + \frac{1}{\hat{\beta}}\right)\right)}}{\Gamma\left(1 + \frac{1}{\hat{\beta}}\right)}$$

 $\Gamma($) the gamma function

Tensile Strength (AASHTO CFRP-1, Material Specification)

<u>Step 5</u>: Calculate Nominal Strength by

 $x_{0.005} = \hat{\alpha}(0.0513)^{\frac{1}{\widehat{\beta}}}$

5th percentile value

<u>Step 6</u>: Calculate Characteristics Strength by

 $x_{char} = \Omega x_{0.005}$

 Ω is data confidence factor depends on sample size

TABLE 1 Data Co	onfidence Facto	or, Ω , on the 51	in-Percentile Va	alue for a Well	Dull Distributio	n with 80 % Co	onfidence [~] (Re	is 3 and 4)
	COV							
n	0.05	0.10	0.15	0.20	0.25	0.30	0.40	0.50
10	0.950	0.899	0.849	0.800	0.752	0.706	0.619	0.541
11	0.953	0.906	0.860	0.814	0.769	0.725	0.642	0.567
12	0.956	0.913	0.869	0.826	0.783	0.741	0.662	0.589
13	0.959	0.918	0.876	0.835	0.795	0.755	0.679	0.609
14	0.961	0.922	0.883	0.844	0.805	0.767	0.694	0.626
15	0.963	0.926	0.889	0.851	0.814	0.778	0.707	0.641
16	0.965	0.929	0.894	0.858	0.822	0.787	0.719	0.655
18	0.968	0.935	0.902	0.869	0.836	0.803	0.739	0.678
20	0.970	0.940	0.909	0.878	0.847	0.816	0.755	0.698
22	0.972	0.944	0.914	0.885	0.856	0.827	0.769	0.714
24	0.974	0.947	0.919	0.891	0.864	0.836	0.781	0.728
26	0.975	0.949	0.923	0.897	0.870	0.844	0.791	0.741
28	0.976	0.952	0.927	0.902	0.876	0.851	0.800	0.752
30	0.977	0.954	0.930	0.906	0.882	0.857	0.809	0.761
32	0.978	0.956	0.933	0.910	0.886	0.863	0.816	0.770
34	0.979	0.957	0.935	0.913	0.890	0.868	0.822	0.778
36	0.980	0.959	0.938	0.916	0.894	0.872	0.828	0.785
38	0.980	0.960	0.940	0.919	0.897	0.876	0.833	0.791
40	0.981	0.962	0.942	0.921	0.901	0.880	0.838	0.797
42	0.982	0.963	0.943	0.924	0.904	0.883	0.843	0.803
44	0.982	0.964	0.945	0.926	0.906	0.886	0.847	0.808
46	0.983	0.965	0.946	0.928	0.909	0.889	0.851	0.813
48	0.983	0.966	0.948	0.929	0.911	0.892	0.854	0.817
50 or more	0.984	0.967	0.949	0.931	0.913	0.895	0.858	0.821

^{*A*} Linear interpolation is permitted. For *COV* values below 0.05 ($\hat{\beta} > 24.95$), the values for *COV* = 0.05 shall be used.

Example: Design Strength

10 tensile test results: 370, 366, 368, 372, 370, 368, 365, 368, 369, 366 ksi

Step 1:
$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = 368.2$$
 $S_{n-1} = \frac{\sum_{i=1}^{n} (\bar{x} - x_i)^2}{n-1} = 4.62$

Step 2:
$$\hat{\beta} = 119$$

Step 3: $\hat{\alpha} = \left(\frac{\sum_{i=1}^{n} x_{i}^{\hat{\beta}}}{n}\right)^{\frac{1}{\hat{\beta}}} = 369$

<u>Step 4</u>: *COV* = 0.005

Example: Design Strength

10 tensile test results: 370, 360, 368, 372, 370, 368, 360, 368, 369, 366 ksi

Step 5:
$$x_{0.005} = \hat{\alpha}(0.0513)^{\frac{1}{\hat{\beta}}} = 360$$

Step 6:
$$Ω = 0.95$$

5

TABLE 1 Data Confidence Factor, Ω, on the 5th-P

x _{char}	=	$\Omega x_{0.005}$	=	342	ksi

n	0.05	0.10	
10	0.950	0.899	
11	0.953	0.906	
12	0.956	0.913	
13	0.959	0.918	
14	0.961	0.922	
15	0.963	0.926	
16	0.965	0.929	
10	0.069	0.025	

Example: Design Strength

10 tensile test results: 370, 360, 368, 372, 370, 368, 360, 368, 369, 366 ksi

Tensile Strength Comparison

Characteristics Value (Tensile Strength) AASHTO CFRP-1 / ASTM D7290 (2017)	342 ksi
Calculated Guaranteed Strength ($\bar{x} - 3S_{n-1}$) ACI 440.2R	354 ksi

Coefficient of Thermal Expansion (CTE)

- Shall be measured according to ASTM D696
 - CTE depends on: Type of fiber Type of resin Volume fraction of fibers

Creep Rupture

To prevent Creep Rupture failure

Limit the prestress level in prestressing CFRP

Stress Limitations for Prestressing CFRP

The tensile strength at the strength and extreme event limit state

Design tensile strength f_{pu}

The prestressing CFRP stress due to prestress or at the service limit state

min - Recommended by
the manufacturer

Table 1.9.1-1

Table 1.9.1	.1—Stress	Limits for	Prestressing	CFRP
-------------	-----------	------------	--------------	------

	.		
	Cables	Bars	
Immediately prior to transfer (f_{pbt})	0.70 <i>f_{pu}</i>	0.65 <i>f</i> _{pu}	
At service limit state after all losses (f_{pe})	0.65 f _{pu}	0.60 f _{pu}	

Stress Limitations: Prestressing CFRP vs. Steel

Table 1.9.1.1—Stress Limits for Prestressing CFRP

	Cables	Bars
Immediately prior to transfer (f_{pbt})	0.70 <i>f</i> _{pu}	0.65 <i>f</i> _{pu}
At service limit state after all losses (f_{pe})	0.65 <i>f</i> _{pu}	0.60 <i>f</i> _{pu}

Table 5.9.2.2-1—Stress Limits for Prestressing Steel

	Low Relaxation	Plain High	Deformed High
	Strand	Strength Bars	Strength Bars
Immediately prior to transfer (f_{pbt})	0.75 <i>f_{pu}</i>	0.70 <i>f</i> _{pu}	-
At service limit state after all losses (f_{pe})	0.80 f _{py}	0.80 <i>f</i> _{py}	0.80 <i>f</i> _{py}

Prestress Losses

- Total Prestress Losses
- Elastic shortening
- Thermally induced losses
- Long-term losses
 Approximate Estimation
 Refined Estimation
 Prestress losses between transfer and deck placement
 Prestress losses between deck placement and final time

Prestress Losses

Total prestress loss in pretensioned members

Prestressing Steel does not have this part

Losses/gains due to

 elastic shortening or extension at the time of application of prestress and/or external loads Losses due to long-term

- shrinkage and creep of concrete
- relaxation of the prestressing CFRP

Loss due to

temperature change

Instantaneous

Time dependent

Prestress Losses

Elastic shortening

$$\Delta f_{pES} = \frac{E_f}{E_{ct}} f_{cgp}$$

- E_f = Modulus of elasticity of prestressing CFRP (ksi)
- E_{ct} = Modulus of elasticity of concrete at transfer or time of load application (ksi)
- *f_{cgp}* = Concrete stress at the center of gravity of prestressing CFRP due to prestressing force immediately after transfer and the self-weight of the member at the section of maximum moment (ksi)

Prestress Losses: Thermally-Induced Losses

Lower longitudinal coefficient of thermal expansion of CFRP than concrete causes thermal induced stresses that cause prestress gain or loss

Longitudinal effect, $\alpha_{f,l} < \alpha_c$

Prestress Losses: Thermally-induced losses

$$\Delta f_{pTH} = \Delta T(\alpha_{f,l} - \alpha_c) E_f \ge 0$$

$$\Delta T$$
 = Temperature change (°F)

$$\alpha_{f,l}$$
 = Longitudinal coefficient of thermal expansion of prestressing CFRP (/°F)

- α_c = Coefficient of thermal expansion of concrete (/°F)
- E_f = Modulus of elasticity of prestressing CFRP (ksi)

Prestress Losses: Long-Term Losses

Approximate Estimation ¹

[AASHTO CFRP Specifications 1.9.2.3] [AASHTO LRFD Specifications 5.9.3.3]

Refined Estimation

[AASHTO CFRP Specifications 1.9.2.5] [AASHTO LRFD Specifications 5.9.3.4]

Prestress Losses

Long-Term Losses (Approximate Estimation)

$$\Delta f_{pLT} = 10.0 \frac{f_{pi} A_{ps}}{A_g} \gamma_h \gamma_{st} + 12.0 \gamma_h \gamma_{st} + \Delta f_{pR}$$

Correction factor for relative humidity

Correction factor for concrete strength

$$\gamma_h = 1.7 - 0.01 H$$

$$\gamma_{st} = \frac{5}{1 + f_{ci}'}$$

Estimation of relaxation loss, taken as 2.4 ksi for low relaxation strand and in accordance with manufacturers recommendations for other types of strands

Prestress Losses: Long-Term Losses (Refined Estimation)

$$\Delta f_{pLT} = \left(\Delta f_{pSR} + \Delta f_{pCR} + \Delta f_{pR1}\right)_{id} + \left(\Delta f_{pSD} + \Delta f_{pCD} + \Delta f_{pR2} - \Delta f_{pSS}\right)_{df}$$

Prestress losses between Transfer and deck placement Prestress losses between deck placement and the final time

Prestress Losses: Long-Term Losses (Refined Estimation) Prestress losses *between Transfer and deck placement*

• Shrinkage (Girder) • Creep (Girder) • Relaxation (CFRP) • $\Delta f_{pR1} = \left(0.019\left(\frac{f_{pt}}{f_{pu}}\right) - 0.0066\right)\log(24t) \times f_{pu}$ Cables ((f_{pr})) • $\Delta f_{pR1} = \left(0.019\left(\frac{f_{pt}}{f_{pu}}\right) - 0.0066\right)\log(24t) \times f_{pu}$ Cables ((f_{pr}))

$$\Delta f_{pR1} = \left(0.013 \left(\frac{f_{pt}}{f_{pu}}\right) - 0.0057\right) \log(24t) \times f_{pu} \quad \text{Bars} \quad \Box$$

Prestress Losses: Long-Term Losses (Refined Estimation) Prestress losses *between Transfer and deck placement*

Shrinkage (Girder)

$$\Delta f_{pSR} = \varepsilon_{bid} E_p K_{id}$$

Shrinkage strain of girder

$$\varepsilon_{bid} = k_s k_{hs} k_f k_{td} 0.48 \times 10^{-3}$$

Transformed section coefficient (interaction between concrete and bonded tendon)

$$K_{id} = \frac{1}{1 + \frac{E_f}{E_{ci}} \frac{A_{pf}}{A_g} \left(1 + \frac{A_g e_{pg}^2}{I_g}\right) [1 + 0.7\Psi_b(t_d, t_i)]}$$

Prestress Losses: Long-Term Losses (Refined Estimation) Prestress losses *between Transfer and deck placement*

• Creep (Girder) $\Delta f_{pCR} = \frac{E_f}{E_{ci}} f_{cpg} \Psi_b(t_d, t_i) K_{id}$

Creep coefficient $\Psi_b(t_d, t_i) = 1.9k_s k_{hc} k_f k_{td} t_i^{-0.118}$

Transformed section coefficient (interaction between concrete and bonded tendon)

$$K_{id} = \frac{1}{1 + \frac{E_f}{E_{ci}} \frac{A_{pf}}{A_g} \left(1 + \frac{A_g e_{pg}^2}{I_g}\right) [1 + 0.7\Psi_b(t_d, t_i)]}$$

 t_i : age of concrete at time of initial load application (day)

 t_d : age of deck placement (day)
Prestress Losses: Long-Term Losses (Refined Estimation) Prestress losses *between Transfer and deck placement*

Factor for the effect of the volume-to-surface ratio of the component

$$k_s = 1.45 - 0.13 \left(\frac{V}{S}\right) \ge 1.0$$

Humidity factor for shrinkage

Humidity factor for creep

Factor for the effect of concrete strength

Time development factor

$$k_{hs} = 2.00 - 0.014H$$

$$k_{hc} = 1.56 - 0.008H$$

$$k_{f} = \frac{5}{1 + f_{ci}'}$$

$$k_{td} = \frac{t}{12\left(\frac{100 - 4f_{ci}'}{f_{ci}' + 20}\right) + t}$$

[AASHTO LRFD Specifications 5.4.2.3.2] [AASHTO LRFD Specifications 5.4.2.3.3]

- Prestress Losses: Long-Term Losses (Refined Estimation) Prestress losses *between Transfer and deck placement*
 - Relaxation (CFRP) $\Delta f_{pR1} = \left(0.019 \left(\frac{f_{pt}}{f_{pu}}\right) - 0.0066\right) \log(24t) \times f_{pu}$ Cables $t = t_d - t_i \qquad \Delta f_{pR1} = \left(0.013 \left(\frac{f_{pt}}{f_{pu}}\right) - 0.0057\right) \log(24t) \times f_{pu}$ Bars

(Based on the experimental program in NCHRP Report 907)

Prestress Losses: Long-Term Losses (Refined Estimation) Prestress losses *between deck placement and the final time*

- Shrinkage (Girder) $\Delta f_{pSD} = \varepsilon_{bdf} E_f K_{df}$
- Shrinkage (Deck) $\Delta f_{pSS} = \frac{E_f}{E_c} \Delta f_{cdf} [1 + 0.7 \Psi_b(t_f, t_d)]$ (Prestress Gain)
- Creep (Girder) $\Delta f_{pCD} = \frac{E_f}{E_{ci}} f_{cpg} \left[\Psi_b (t_f, t_i) \Psi_b (t_d, t_i) \right] K_{df} + \frac{E_f}{E_c} \Delta f_{cd} \Psi_b (t_f, t_d) K_{df}$
- Relaxation (CFRP) $\Delta f_{pR2} = \left(0.019 \left(\frac{f_{pt}}{f_{pu}}\right) 0.0066\right) \log(24t) \times f_{pu}$ Cables

$$\Delta f_{pR2} = \left(0.013 \left(\frac{f_{pt}}{f_{pu}}\right) - 0.0057\right) \log(24t) \times f_{pu} \text{ Bars}$$

Prestress Losses: Long-Term Losses (Refined Estimation) Prestress losses *between deck placement and the final time*

Shrinkage (Girder)

$$\Delta f_{pSD} = \varepsilon_{bdf} E_f K_{df}$$

Shrinkage strain of girder

$$\varepsilon_{bdf} = k_s k_{hs} k_f k_{td} 0.48 \times 10^{-3}$$

Transformed section coefficient (interaction between concrete and bonded tendon)

$$K_{df} = \frac{1}{1 + \frac{E_f}{E_{ci}} \frac{A_{pf}}{A_c} \left(1 + \frac{A_c e_{pc}^2}{I_c}\right) \left[1 + 0.7\Psi_b(t_f, t_d)\right]}$$

- Prestress Losses: Long-Term Losses (Refined Estimation) Prestress losses *between deck placement and the final time*
 - Shrinkage (Deck) $\Delta f_{pSS} = \frac{E_p}{E_c} \Delta f_{cdf} [1 + 0.7 \Psi_b(t_f, t_d)]$

Change in concrete stress at centroid of prestressing strands due to shrinkage of deck concrete

$$\Delta f_{cdf} = \frac{\varepsilon_{ddf} A_d E_{c \, deck}}{1 + 0.7 \Psi_b(t_f, t_d)} \left(\frac{1}{A_c} - \frac{e_{pc} e_d}{I_c}\right)$$

Shrinkage strain of deck

$$\varepsilon_{ddf} = k_s k_{hs} k_f k_{td} 0.48 \times 10^{-3}$$

 t_d : age of deck placement (day) t_f : final age (day)

Prestress Losses: Long-Term Losses (Refined Estimation) Prestress losses *between deck placement and the final time*

• Creep (Girder) $\Delta f_{pCD} = \frac{E_f}{E_{ci}} f_{cpg} \left[\Psi_b(t_f, t_i) - \Psi_b(t_d, t_i) \right] K_{df} + \frac{E_f}{E_c} \Delta f_{cd} \Psi_b(t_f, t_d) K_{df}$

Creep coefficient

$$\Psi_b(t, t_i) = 1.9k_s k_{hc} k_f k_{td} t_i^{-0.118}$$

Transformed section coefficient (interaction between concrete and bonded tendon)

$$K_{df} = \frac{1}{1 + \frac{E_f}{E_{ci}} \frac{A_{pf}}{A_c} \left(1 + \frac{A_c e_{pc}^2}{I_c}\right) \left[1 + 0.7\Psi_b(t_f, t_d)\right]}$$

- Prestress Losses: Long-Term Losses (Refined Estimation) Prestress losses *between deck placement and the final time*
 - Relaxation (CFRP) $\Delta f_{pR2} = \left(0.019 \left(\frac{f_{pt}}{f_{pu}}\right) - 0.0066\right) \log(24t) \times f_{pu}$ Cables $t = t_f - t_d \qquad \Delta f_{pR2} = \left(0.013 \left(\frac{f_{pt}}{f_{pu}}\right) - 0.0057\right) \log(24t) \times f_{pu}$ Bars

Development of Pretensioning Tendons

[AASHTO CFRP Specifications C1.9.3.2.2]

Transfer Length

 $l_t = \frac{f_{pbt}d_b}{\alpha_t f'^{0.67}}$

for steel $l_t = 60d_b$

- d_b = Prestressing CFRP diameter (in.)
- f'_{ci} = Design concrete compressive strength at time of prestressing (ksi)
- f_{pbt} = Stress in prestressing CFRP immediately prior to transfer (ksi)
- α_t = Coefficient related to transfer length taken as 1.0 for bar, 1.1 for cable

Alternatively, transfer length can be estimated as $50d_b$ for prestressing CFRP cables and bars

Flexural Bond Length for Bonded Prestressing CFRP

$$l_b = \frac{\left(f_{pu} - f_{pe}\right)d_b}{\alpha_d f_c'^{0.67}}$$

for steel

$$l_d \ge \kappa \left(f_{ps} - \frac{2}{3} f_{pe} \right) d_b$$

$$\kappa = 1.0 \text{ (member depth } \le 24 \text{ in.)}$$

$$\kappa = 1.6 \text{ (member depth } > 24 \text{ in.)}$$

- d_b = Prestressing CFRP diameter (in.)
- f_c' = Compressive strength of concrete for use in design (ksi)
- f_{pu} = Tensile stress of prestressing CFRP (ksi)
- f_{pe} = Effective stress in prestressing CFRP after losses (ksi)
- α_d = Coefficient related to flexural bond length taken as 0.53 for bar, 1.48 for cable

Development Length for <u>Debonded</u> Prestressing CFRP

Same equation as prestressing steel

$$l_d \geq \kappa \left(f_{pf} - \frac{2}{3} f_{pe} \right) d_b$$

- **κ** = 2.0
- d_b = Prestressing CFRP diameter (in.)
- f_{pf} = Average stress in prestressing CFRP at the time for which the nominal resistance of the member is required (ksi)
- f_{pe} = Effective stress in prestressing CFRP after losses (ksi)

Questions?

UNIVERSITY of **HOUSTON**

CULLEN COLLEGE of ENGINEERING Department of Civil & Environmental Engineering

2.1 Review Questions: Fundamentals

UNIVERSITY of HOUSTON

CULLEN COLLEGE of ENGINEERING Department of Civil & Environmental Engineering

2.1.1) The guaranteed tensile strength of prestressing CFRP as provided by the manufacturer is _____?

- a. The characteristic value computed according to ASTM D7290 divided by the area of prestressing CFRP. The manufacturer shall report the individual test results.
- b. The mean tensile strength of the sample population
- c. The mean tensile strength of the sample population minus two standard deviations
- d. None of the above

Tensile strength of prestressing CFRP

AASHTO CFRP-1 Specifications 2.6.1

"The tensile strength, as reported by the manufacturer for product certification, shall be the load measured according to ASTM D7205/D7205M at a frequency and number of specimens as specified in Article 2.9.1 and the characteristic value (Manufacturer's guarancted strength) **computed according to ASTM D7290 divided by the area of prestressing CFRP** as specified in Article 2.5.4. The **manufacturer shall report the individual test results.**"

- 2.1.1) The guaranteed tensile strength of prestressing CFRP as provided by the manufacturer is _____?
- a. <u>The characteristic value computed according to ASTM D7290 divided by</u> <u>the area of prestressing CFRP. The manufacturer shall report the individual</u> <u>test results.</u>
- b. The mean tensile strength of the sample population
- c. The mean tensile strength of the sample population minus two standard deviations
- d. None of the above

2.1.2) Prestressing CFRP has ______ than prestressing steel?

- **Higher** ultimate strength but **lower** elastic modulus a.
- **Higher** ultimate strength and **higher** elastic modulus b.
- **Lower** ultimate strength but **higher** elastic modulus C.
- **Lower** ultimate strength and **lower** elastic modulus a.

Material Properties: Prestressing CFRP vs. Steel

2.1.2) Prestressing CFRP has ______ than prestressing steel?

- Higher ultimate strength but lower elastic modulus a.
- **Higher** ultimate strength and **higher** elastic modulus b.
- **Lower** ultimate strength but **higher** elastic modulus C.
- **Lower** ultimate strength and **lower** elastic modulus a.

2.1.3) Prestress stress limit for CFRP is ______ than low relaxation carbon steel strand at service limit state?

- a. Lower
- b. Higher
- c. Same

Table 1.9.1.1—Stress Limits for Prestressing CFRP

	Cables	Bars
Immediately prior to transfer (f_{pbt})	0.70 <i>f</i> _{pu}	0.65 <i>f</i> _{pu}
At service limit state after all losses (f_{pe})	0.65 <i>f</i> _{pu}	0.60 <i>f</i> _{pu}

Table 5.9.2.2-1—Stress Limits for Prestressing Steel

	Low Relaxation	Plain High	Deformed High
	Strand	Strength Bars	Strength Bars
Immediately prior to transfer (f_{pbt})	0.75 <i>f_{pu}</i>	0.70 <i>f_{pu}</i>	-
At service limit state after all losses (f_{pe})	0.80 <i>f</i> _{py}	0.80 <i>f</i> _{py}	0.80 <i>f</i> _{py}

2.1.3) Prestress stress limit for CFRP is ______ than low relaxation carbon steel strand at service limit state?

- a. Lower
- b. Higher
- c. Same

2.1.4) Prestress loss due to temperature change should be considered in design for ____?

- a. Prestressing CFRP only
- b. Prestressing steel only
- c. Both prestressing CFRP and steel
- d. None of prestressing CFRP and steel

2.1.4) Prestress loss due to temperature change should be considered in design for ____?

- a. <u>Prestressing CFRP only</u>
- b. Prestressing steel only
- c. Both prestressing CFRP and steel
- d. None of prestressing CFRP and steel

2.1.5) Which type of prestressing strand requires longer transfer length?

- a. Prestressing CFRP requires longer transfer length
- b. Prestressing steel requires longer transfer length
- c. Same for Prestressing CFRP and steel

Transfer Length for Prestressing CFRP

$$l_t = \frac{f_{pbt} \alpha_b}{\alpha_t f_{ci}'^{0.67}}$$

 $f_{\mu} d_{\mu}$

Alternatively, transfer length can be estimated as $50d_b$ for prestressing CFRP cables and bars

Transfer Length for Prestressing steel

 $l_t = 60d_b$

2.1.5) Which type of prestressing strand requires longer transfer length?

a. Prestressing CFRP requires longer transfer length

b. Prestressing steel requires longer transfer length

c. Same for Prestressing CFRP and steel

2.2 Design Example: Prestress losses

UNIVERSITY of HOUSTON

CULLEN COLLEGE of ENGINEERING Department of Civil & Environmental Engineering

Geometry

Beam Span = 87.667 ft BeamSpacing = 9 ft BridgeWidth = 42.667 ft

Slab thickness $t_{slab} = 8.5$ in

Beam depth $h_{beam} = 36$ in

Concrete	CFRP strand	GFRP rebar
Beam $f'_{c.beam} = 8.5$ ksi	Diameter $D_p = 0.6$ in	Bar size $= #5$
Beam $f'_{ci.beam} = 6$ ksi	Effective area $A_{pf} = 0.179 \text{ in}^2$	Diameter $d_{GFRP} = 0.625$ in
Beam $E_{c.beam} = 5112$ ksi	Elastic modulus $E_f = 22,480$ ksi	Elastic modulus $E_{GFRP} = 6500$ ksi
Beam $E_{ci.beam} = 4557$ ksi	Design tensile strength $f_{pu} = 341$ ksi	Design tensile strength
Slab $f'_{c.slab} = 5.5$ ksi	Design tensile strain $\varepsilon_{pu}=0.015$ ksi	$f_{fu.GFRP} = 66.4$ ksi
Slab $E_{c.slab} = 4428$ ksi	Jacking stress $f_{pj} = 239$ ksi	Bend $\varphi_{bend} = 0.6$
Unit weight $\gamma_c = 150 \text{ pcf}$		

Note: 145 pcf is permitted

Prestress losses

Assume 0 in this example

Losses/gains due to

 elastic shortening or extension at the time of application of prestress and/or external loads

Instantaneous

Losses due to long-term

- shrinkage and creep of concrete
- relaxation of the prestressing CFRP

Loss due to

 temperature change

Time dependent

Prestress loss – Elastic shortening

Concrete stress at the center of gravity of prestressing CFRP due to prestressing force immediately after transfer and the self-weight of the member at the section of maximum moment:

Prestress Losses: Long-Term Losses (Refined Estimation)

$$\Delta f_{pLT} = \Delta f_{pSR} + \Delta f_{pCR} + \Delta f_{pR}$$

$$\int \qquad \uparrow \qquad \swarrow$$
Shrinkage Creep Relaxation

$$\Delta f_{pLT} = \left(\Delta f_{pSR} + \Delta f_{pCR} + \Delta f_{pR1}\right)_{id} + \left(\Delta f_{pSD} + \Delta f_{pCD} + \Delta f_{pR2} - \Delta f_{pSS}\right)_{df}$$

Prestress losses between Transfer and deck placement Prestress losses between deck placement and the final time

[AASHTO CFRP Specifications 1.9.2.5]

Prestress Losses: Long-Term Losses (Refined Estimation)

Prestress losses between Transfer and deck placement

- Shrinkage (Beam concrete) $\Delta f_{pSR} = \varepsilon_{bid} E_f K_{id} = 4.924 \text{ ksi}$
- Creep (Beam concrete) $\Delta f_{pCR} = \frac{E_f}{E_{ci}} f_{cpg} \Psi_b(t_d, t_i) K_{id} = 12.508 \text{ ksi}$

• Relaxation (CFRP)
$$\Delta f_{pR1} = \left(0.019 \left(\frac{f_{pt}}{f_{pu}}\right) - 0.0066\right) \log(24t) \times f_{pu} = 6.953 \text{ ksi}$$

In total,
$$\Delta f_{pLT.id} = (\Delta f_{pSR} + \Delta f_{pCR} + \Delta f_{pR1})_{id} = 24.385 \text{ ksi}$$

Prestress Losses: Long-Term Losses (Refined Estimation)

Prestress losses between deck placement and the final time

- Shrinkage (Beam concrete) $\Delta f_{pSD} = \varepsilon_{bdf} E_f K_{df} = 6.465$ ksi
- Shrinkage (Slab concrete)

$$\Delta f_{pSS} = \frac{E_f}{E_c} \Delta f_{cdf} \left[1 + 0.7 \Psi_b (t_f, t_d) \right] = 1.44 \text{ ksi}$$

Creep (Beam concrete)

$$\Delta f_{pCD} = \frac{E_f}{E_{ci}} f_{cpg} \Big[\Psi_b \big(t_f, t_i \big) - \Psi_b (t_d, t_i) \Big] K_{df} + \frac{E_f}{E_c} \Delta f_{cd} \Psi_b \big(t_f, t_d \big) K_{df} \\= -0.99 \text{ ksi}$$

• Relaxation (CFRP) $\Delta f_{pR2} = \left(0.019 \left(\frac{f_{pt}}{f_{pu}}\right) - 0.0066\right) \log(24t) \times f_{pu} = 10.814 \text{ ksi}$

In total, $\Delta f_{pLT.df} = (\Delta f_{pSD} + \Delta f_{pCD} + \Delta f_{pR2} - \Delta f_{pSS})_{df} = 14.86 \text{ ksi}$

PRESTRESSING CFRP

Total Prestress Losses

Elastic shortening $\Delta f_{pES} = 14.277$ ksi

Long-Term Losses $\Delta f_{pLT} = (\Delta f_{pSR} + \Delta f_{pCR} + \Delta f_{pR1})_{id} + (\Delta f_{pSD} + \Delta f_{pCD} + \Delta f_{pR2} - \Delta f_{pSS})_{df} = 39.245 \text{ ksi}$

Loss due to temperature change (Assume 0 in this example) $\Delta f_{pTH} = 0$

Total prestress loss $\Delta f_{pT} = \Delta f_{pES} + \Delta f_{pLT} + \Delta f_{pTH} = 53.522$ ksi (22.4%)

Effective prestress after all losses

$$f_{pe} = 185 \text{ ksi} < f_{pe.limit} = 0.65 f_{pu} = 222 \text{ ksi}$$
 OK

AASHTO CFRP-Prestressed Concrete Design Training Course

Florida Department of TRANSPORTATION

UNIVERSITY of HOUSTON

CULLEN COLLEGE of ENGINEERING Department of Civil & Environmental Engineering