

GFRP Reinforced Concrete Design for Pile Bent Caps

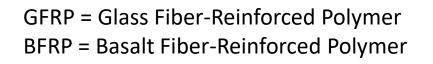
Steven Nolan, P.E. – State Structures Design Office

October 19, 2022

Summary

The **FDOT Structures Manual** now encourages the use of Fiber-Reinforced Polymer (FRP) reinforcing for certain concrete bridge elements located in the splash zone of extremely aggressive environments. Pile bent caps are one of the more common bridge elements requiring this design approach. This presentation will summarize the design of Glass FRP reinforced concrete using a typical intermediate pile bent cap example and FDOT's Mathcad Bent Cap Program v1.0.

#3 FDOT Vital Few

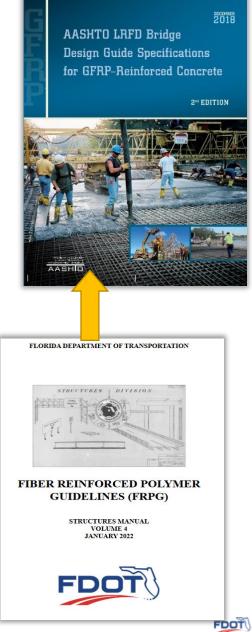

Learning objectives

- Awareness of FDOT's Mathcad Bent Cap Design Program v1.0 capabilities and limitations.
- Awareness of GFRP reinforced concrete design for Flexural and Shear Limit States.
- Understanding of Pile Bent Cap reinforcing strategies for Glass Fiber-Reinforced Polymer (GFRP) bars.

Outline

- Design Guidance for GFRP-RC
- Design Tools for GFRP-RC
- Flexural Design Limit States:
 - Strength
 - Service Crack Control
 - Service Sustained Load
 - Fatigue
- Shrinkage & Temperature Reinforcing Design
- Shear Design
- Review: Design guidance & resources
- Where to find more FRP-RC training

^{#3} FDOT Vital Few



Design guidance for Bridges

- **AASHTO** LRFD Bridge Design Guide Specifications for GFRP-Reinforced Concrete, 2nd Edition (2018)
- Supplemented by
 - FDOT <u>Structures Manual</u> Volume 4, FRP Guidelines, Chapter 2 for BFRP & GFRP Rebar
- Use associated Material Specifications
 - FDOT Spec 932-3 for BFRP & GFRP Rebar (Material Specs)
 - Similar to ASTM D7957 for GFRP Rebar, (2017)

iber Reinforced Polymer Guidelines	Topic No. 625-020-018
Basalt and Glass Fiber Reinforced Polymer (bfrp, GFRP) and Carbon Fiber Reinforced Polymer (CFRP)	January 2022
BASALT AND GLASS FIBER REINFORCED	

Design guidance for Buildings (FYI only)

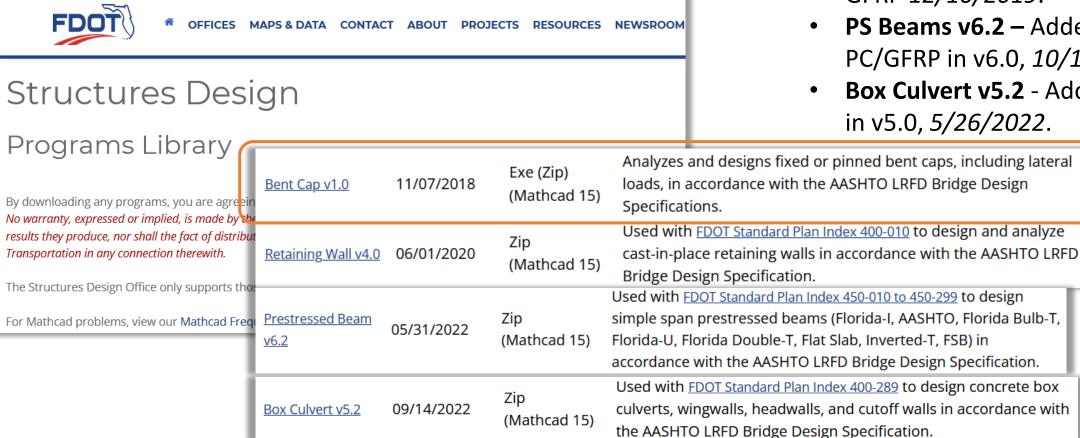
- ACI CODE-440.11-22: Building Code Requirements for Structural Concrete Reinforced with Glass Fiber-Reinforced Polymer (GFRP) Bars—Code and Commentary (2022)
- Uses associated Material Specifications
 ASTM D7957 for GFRP Rebar, (2017)

IN-LB Inch-Pound Units

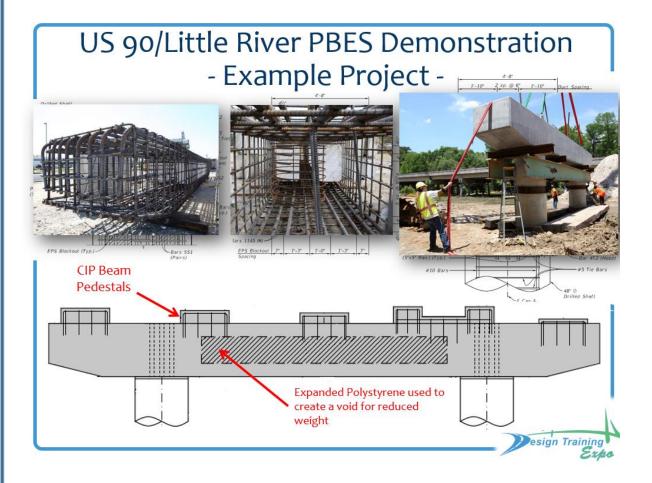
An ACI Standard An ANSI Standard

-440.11-2

Building Code Requirements for Structural Concrete Reinforced with Glass Fiber-Reinforced Polymer (GFRP) Bars—Code and Commentary


Reported by ACI Committee 440

Design Tools for GFRP-RC Design


• FDOT Design Software

- Bent Cap v1.0 Includes GFRP 11/1/2018.
- Retaining Wall v4.0 Added GFRP *12/10/2019*.
- PS Beams v6.2 Added CFRP-PC/GFRP in v6.0, 10/1/2021.
- Box Culvert v5.2 Added GFRP in v5.0, 5/26/2022.

• Previously introduced this Mathcad Program at the 2016 FDOT Design Training Expo

Mathcad Design Program

US90 Project:			Vua	t Int. face	+1	и,	-Mr	V, w/ #	5@6"	
2-Drilled Shaft Cap	Str, +N	1, Str, -1	N _u of	Ext. Col.	w/1	8#11	w/ 20#1	1 (4 le	gs)	
Design	(kip*f	t) (kip*	ft)	(kip)	(kip	o*ft)	(kip*f	:) (ki	p)	
EOR's Design	2988	-325	5	598 481		18	5298	71	9	
FDOT Mathcad (conc.)	3196	-328	6	895	40	25	5274	68	7	
FDOT Mathcad (distr.)	2947	-328	6	798	40	23	5274	00	"	
Difference (distributed)	1.4%	-0.99	6	-25.1%	-0.	1%	0.5%	4.7	1%	С
RC Pier	3471	-287	4	773	48	91	4710	71	.5	C
RC Pier vs. Mathcad Diff.	17.8%	6 -12.5	%	-3.1%	1.4	4%	-10.7%	4.1	.%	D
US90 Project:					+1	м,	-M,	V, w/ #	5@7.5"	
6 x Pile Bent Cap	Str, +N	1. Str P	n	Vu		7#9	w/ 8#		egs)	w
	(kip*f		-	(kip)		o*ft)	(kip*f		p)	· ·
EOR's Design	1255	-520)	330	13	48	921	3	55	
FDOT Mathcad (conc.)	981	-443	3	467	13	47	924		58	1
FDOT Mathcad (distr.)	753	-421	L	322	1 13	47	924	4	08	
Difference (distributed)	-21.89	6 -14.8	%	-2.4%	-0.	1% 0.3%		25.5%		
RC Pier	590	-495	5	412	2 1160		959	4	53	
RC Pier vs. Mathcad Diff.	-21.69	6 17.5	.5% 28.1%		-13	.9% 3.8%		-1.	0%	
SHRP2 Example 3b	:					-	м,			
2-Column Cap De	sign					w/	10#11	-Mr	V _r w/‡	1 6@ 9"
		Str _i +M _u	Str ₁ - N	n. \	/u	(2)	ows)	w/ 8#11	(41	egs)
		(kip*ft)	(kip*	it) (k	ip)	(ki	p*ft)	(kip*ft)	(ki	ip)
SHRP2 Example 3b		1901	-226	3 3	54	2	823	2396	80	09
FDOT Matchcad (d	ist.)	2626	-179	9 3	51	2	823	2396	7	11
Difference		38.2%	-20.5	% -0	.9%	0	.0%	0.0%	-12	.1%
RC Pier		2504	-161	-1613 2		276 2		2422	6	53
RC Pier vs. Mathca	d Diff.	-4.6%	-10.3	% -21	1.3%	-(.7%	1.1%	-6.	8%
SHRP2 Example 3b	:					+	M,			
2-Column Cap De	sign					w/	10#11	-Mr	V,w/‡	#6@ 9"
		Str _I +M _u	Str ₁ - N	n., N	/u	(2)	ows)	w/ 8#11	(410	egs)
		(kip*ft)	(kip*	it) (k	ip)	(ki	p*ft)	(kip*ft)	(ki	ip)
SHRP2 Example 3b		1901	-226	3 3	54	2	823	2396	80	09
FDOT Matchcad (d	ist.)	2626	-179	9 3	51	2	823	2396	7	11
Difference		38.2%	-20.5	% -0	.9%	0	.0%	0.0%	-12	.1%
RC Pier		2504	-161	3 2	76	2	802	2422	66	53
RC Pier vs. Mathca	d Diff.	-4.6%	-10.3	% -21	L.3%	-(.7%	1.1%	-6.	8%

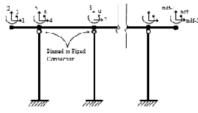
Comparisons of US 90 Demonstration project designs with new FDOT Mathcad program.

Comparison with two designs recently completed in-house, a published TxDOT Pile Bent Design Example (June 2010), the SHRP2 R04-RR-1 twocolumn bent cap design example, and analysis with Bentley's RC Pier software showed good correlation of results. Deviations in the results can be explained by the refinements in modeling and loading assumptions for the different designs.

Comparisons of other design examples with new FDOT Mathcad program

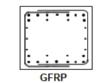
FDO

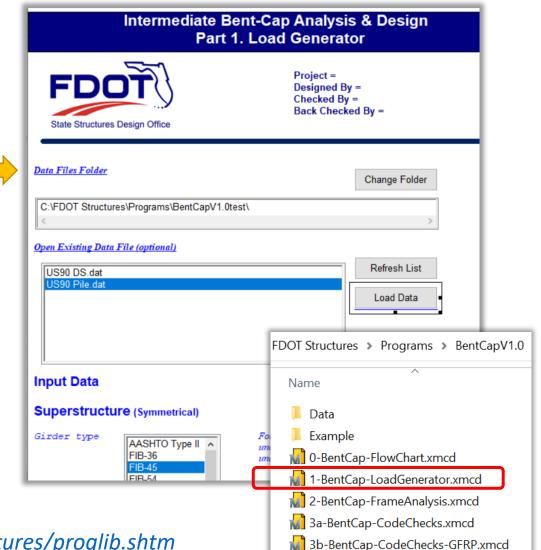
NSPORTATION


Project = Designed By = Checked By = Back Checked By =

Run the appropriate worksheets by double clicking the icons below. Modify the input data as required & execute <calculate worksheet> (Ctrl + F9) twice to save/view information. When finished, close the worksheet window <u>without saving</u> to return to this screen. Project information is stored in the Project Data File (.dat file), so Mathcad worksheets should <u>not</u> be saved, unless permanent modifications are intended.

PART 1: LOAD GENERATOR


PART 2: FRAME ANALYSIS

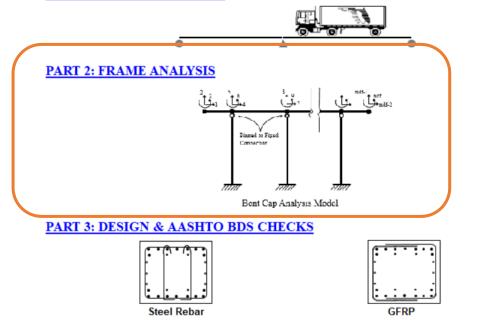


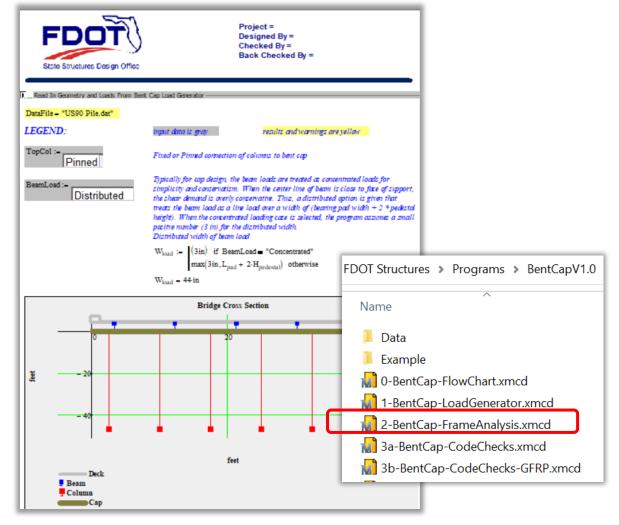
Bent Cap Analysis Model

PART 3: DESIGN & AASHTO BDS CHECKS

FDOT

TRANSPORTATION

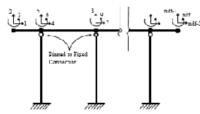

Flow Chart



Project = Designed By = Checked By = Back Checked By =

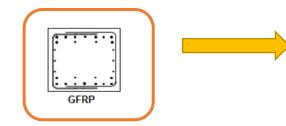
Run the appropriate worksheets by double clicking the icons below. Modify the input data as required & execute <calculate worksheet> (Ctrl + F9) twice to save/view information. When finished, close the worksheet window <u>without saving</u> to return to this screen. Project information is stored in the Project Data File (.dat file), so Mathcad worksheets should <u>not</u> be saved, unless permanent modifications are intended.

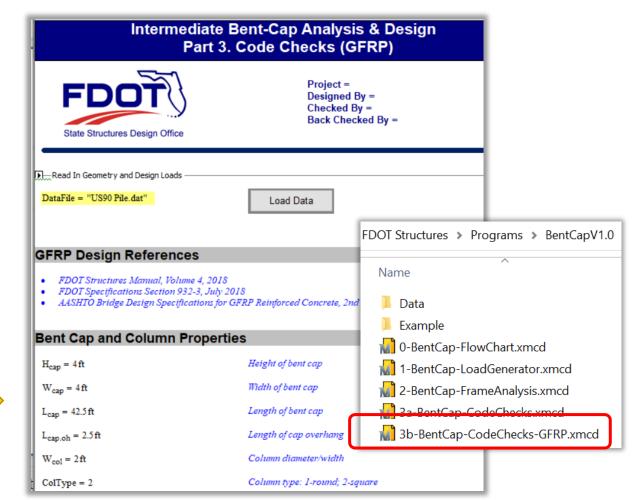
PART 1: LOAD GENERATOR


Project = Designed By = Checked By = Back Checked By =

Run the appropriate worksheets by double clicking the icons below. Modify the input data as required & execute <calculate worksheet> (Ctrl + F9) twice to save/view information. When finished, close the worksheet window <u>without saving</u> to return to this screen. Project information is stored in the Project Data File (.dat file), so Mathcad worksheets should <u>not</u> be saved, unless permanent modifications are intended.

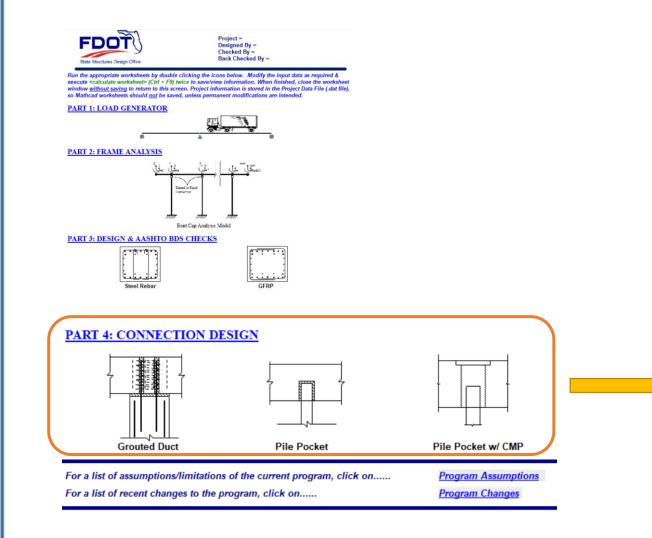
PART 1: LOAD GENERATOR

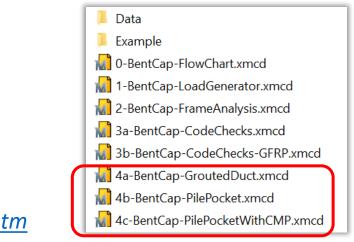

PART 2: FRAME ANALYSIS

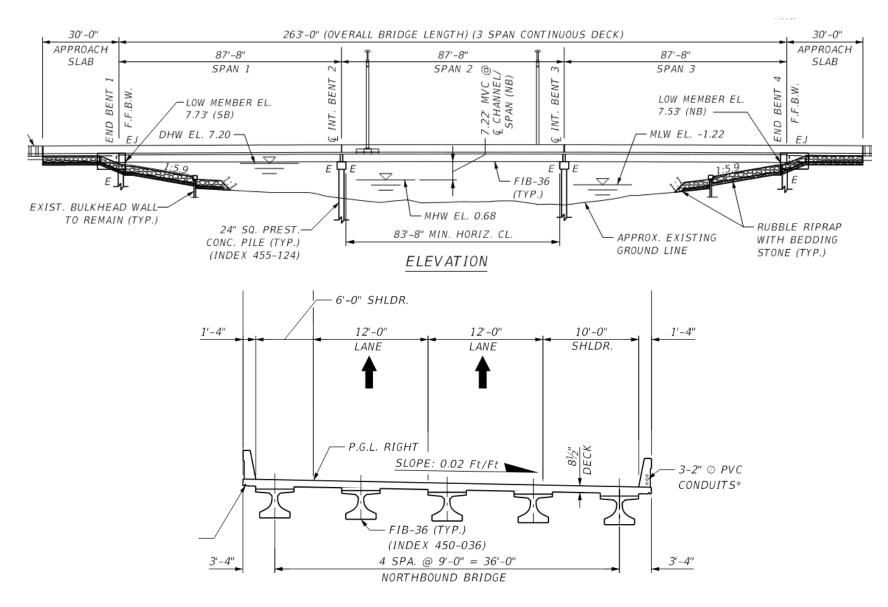


Bent Cap Analysis Model

PART 3: DESIGN & AASHTO BDS CHECKS




Flow Chart


 Part 4 is intended for preliminary design of Precast Bent Cap connections with 3 options.

Part 4 will not be covered in this presentation.

Flow Chart

Design Example for Intermediate Pile Bent Cap

Inputs - Superstructure

- 0 skew
- Girder = FIB-36 @ 9' spacing (5 total)
- Haunch 1" (average)
- Barrier Height = 36" (single-slope) 430 plf
- Slab = 8.5" (includes 0.5" sacrificial)
- Back Span = Forward Span = 87.67'
- Curb-Curb width = 40'
- Distance Coping to Roadway Edge = 1.333'
- No Wearing Surface
- Additional DL (SIP Forms)
 - Int Beam = 100 plf
 - Ext Beam = 50 plf

AASHTO Type II A

FIB-36

FIB-45 FIB-54

FIB-63

Input Data

Intermediate Bent-Cap Analysis & Design Part 1. Load Generator

Project = Superstructure (Symmetrical)
Designed By =
Checked By =
Girder type
DACENTO Type II

Change Folder C:\FDOT Structures\Programs\BentCapV1.0\

Open Existing Data File (optional)

Earman-Ph3-GFRP.dat	Refresh List
Earman-Ph3-steel.dat	
Earman-Ph3.dat	Load Data
SWS GFRP Example Piles.dat	
US90 DS.dat	
US90 Pile.dat	

Input Data

Superstructure (Symmetrical)

For steel or custom beams not shown under Girder type, input the beam properties under the Loads collapsed region.

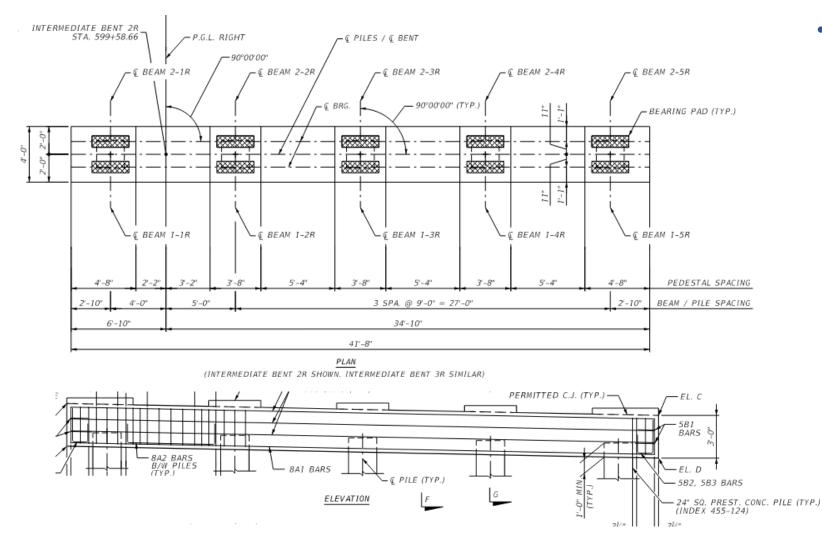
FIB-72 FIB-78 FIB-84		
Cap Skew	Degrees	
Average Haunch Thickness 1	inches	
Barrier Height	inches	
Barrier weight per SDG Table 2.2-1 430	lb/ft	
Slab Thickness (including sacrificial 8.5	inches	
Length of back station span	feet	
Length of ahead station span	feet	
Total Number of Beams in Typical Section 5		
Centerline-to-centerline beam spacing 9	feet	
Curb-to-curb roadway width 40	feet	
Distance from coping to roadway edge 1.3333	feet	
Dead load of Wearing Surfaces and Utilities Exterior per beam line	Beam Ib/ft	Interior Beam 0
Additional dead load of structural Exterior	Beam	Interior Beam
components and nonstructural attachments per beam line(i.e. SIP forms)	lb/ft	107

For steel or custom beams not shown

under the Loads collapsed region.

under Girder type, input the beam properties

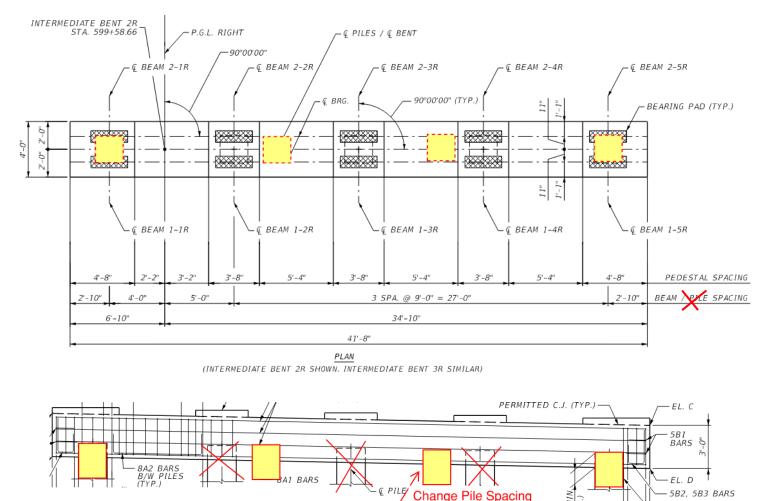
• Inputs - Superstructure


- 0 skew
- Girder = FIB-36 @ 9' spacing (5 total)
- Haunch 1" (average)
- Barrier Height = 36" (single-slope) 430 plf
- Slab = 8.5" (includes 0.5" sacrificial)
- Back Span = Forward Span = 87.67'
- Curb-Curb width = 40'
- Distance Coping to Roadway Edge = 1.333'
- No Wearing Surface
- Additional DL (SIP Forms)

lb/ft

lb/ft

- Int Beam = 100 plf
- Ext Beam = 50 plf



• Inputs – Substructure Example 1

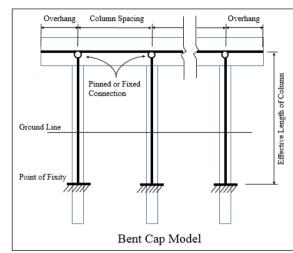
- No. of columns = 5
- Eff. Length columns = 40'
- Column Spacing = 9.0'
- Column Type = 2 (sq.)
- Column Width = 24"
- Cap Height = 36"
- Cap Width = 48"
- Cap Length = 41.67'
- Avg. Pedestal Height = 3"
- Ped. Width = 48"
- Ped. Length = 44"
- Bearing Pad Length = 32"
- f'c Bent Cap = 5.5 ksi
- f'c Columns = 6.0 ksi
- Agg. Correction Factor = 1.0
- Conc. Density for $E_c = 0.145$ kcf
- Conc. Density for DL = 0.150 kcf

ELEVATION

-0" MIN (TYP.)

24" SQ. PREST. CONC. PILE (TYP.)

(INDEX 455-124)


to 12-ft for Example 2

Inputs – Substructure Example 2

- No. of columns = 4
- Eff. Length columns = 40'
- Column Spacing = 12.0'
- Column Type = 2 (sq.)
- Column Width = 24"
- Cap Height = 36"
- Cap Width = 48"
- Cap Length = 41.67'
- Avg. Pedestal Height = 3"
- Ped. Width = 48"
- Ped. Length = 44"
- Bearing Pad Length = 32"
- f'c Bent Cap = 5.5 ksi
- f'c Columns = 6.0 ksi
- Agg. Correction Factor = 1.0
- Conc. Density for $E_c = 0.145$ kcf
- Conc. Density for DL = 0.150 kcf

Substructure (Symmetrical about CL of Superstructure)

Number of columns, minimum of 2 required	5	
Effective length of columns	40	feet See bent
Column spacing	9.0	feet
Column type	2	1 = Round 2 = Saucre

Bent Cap v1.0

	Column Diameter/Width	24	inches	
	Cap Height	36	inches	
1	Cap Width	48	inches	
	Cap Length	41.67	feet	
t cap model	Average pedestal height	3	inches	
	Pedestal Width	48	inches	In direction of cap width
	Pedestal Length	44	inches	In direction of cap length
	Beam bearing pad Length	32	inches	In direction of cap length
	Min.28-day compressive strength for cap	5.5	ksi	
	Min.28-day compressive strength for cols	6	ksi	
	Correction factor for source of aggregate	1.0		[SDG 1.4.1]
	Concrete unit weight for calculating Ec	0.145	kcf	
	Concrete unit weight for calculating dead loads	0.15	<i>kcf</i>	[SDG Table 2.2-1]

• Inputs - Substructure

- No. of columns = 5 or 4
- Eff. Length columns = 40.0'
- Column Spacing = 9.0' or 12'
- Column Type = 2 (sq.)
- Column Width = 24"
- Cap Height = 36"
- Cap Width = 48"
- Cap Length = 41.67'
- Avg. Pedestal Height = 3"
- Ped. Width = 48"
- Ped. Length = 44"
- Bearing Pad Length = 32"
- f'c Bent Cap = 5.5 ksi
- f'c Columns = 6.0 ksi
- Agg. Correction Factor = 1.0
- Conc. Density for $E_c = 0.145$ kcf
- Conc. Density for DL = 0.150 kcf

Additional Input for Centrifugal Force (CE)

Radius of curvature of traffic lane..... 0

Input a Radius of 0 for bridges with no horizontal curve

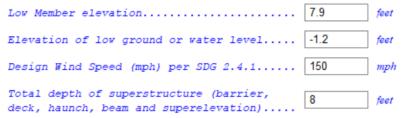
> (typically length of continuous deck)

If the highway design speed is not specified, it should be conservatively taken as the maximum specified in the AASHTO publication, A Policy on Geometric Design of Highways and Streets (70 mph).

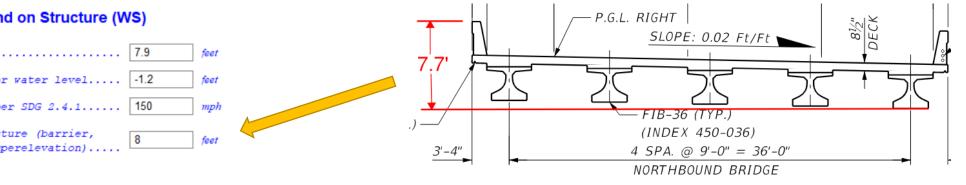
Highway design speed..... 70 mph

The total CE load shall be distributed to bent caps based on the superstructure continuity and the relative stiffness of the bent caps in the direction of CE load.

Distribution Factor for CE load to Minimum 0 Maximum 1 intermediate bent cap


Additional Input for Braking Force (BR)

The total BR load shall be distributed to bent caps based on the superstructure continuity and the relative stiffness of the bent caps in the direction of BR load.


Distribution	Factor for BR load to	0.25	Minimum 0
intermediate	bent cap	0.25	Maximum 1

Length c	fl	bridge	for	BR	load	calcul	ation	263
(length	of	lane	load)					

Additional Input for Wind on Structure (WS)

- Inputs Additional (CE, BR, & WS)
 - Radius of Curvature for CE = 0'
 - Highway Speed for CE = n/a (70 mph)
 - Distribution CE load = n/a (1.0) •
 - Distribution BR load = 0.25
 - Length bridge for BR load = 263'
 - Low Member Elev. = EL. +7.9 (avg.)
 - Low Water Level or Ground = EL -1.2
 - Design Wind Speed = 150 mph
 - Total Depth of Superstructure = 8.0'

Additional Input for Water Load (WA)

NOTES:

- Current version of Load Generator focuses on design and analysis of Bent-Cap, which is typically controlled by Strength I and Service I, III limit states with water load of 100 year Basic Flood. The flood elevation is typically below the bottom of cap. Thus, calculation of WA is omitted in current version.
- To consider WA load (e.g. existing bridges with flood elevation above the bottom of cap), directly input the WA load acting on the bent-cap that is under consideration.

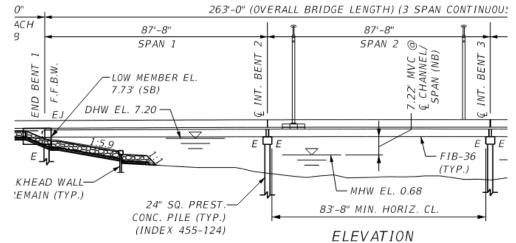
100 year	event: parallel to the bent-cap	0	kip
-	event: perpendicular to the	0	kip
500 year	event: parallel to the bent-cap	0	kip
-	event: perpendicular to the	0	kip

Additional Input for Force Effect due to Uniform Temperature (TU)

NOTES:

- TU load is typically perpendicular to the plane of bent-cap and thus resisted by cantilever columns. Calculation of TU is omitted in current version.
- To consider TU load (e.g. bridges with big skew), directly input the TU load acting on the bent-cap that is under consideration.

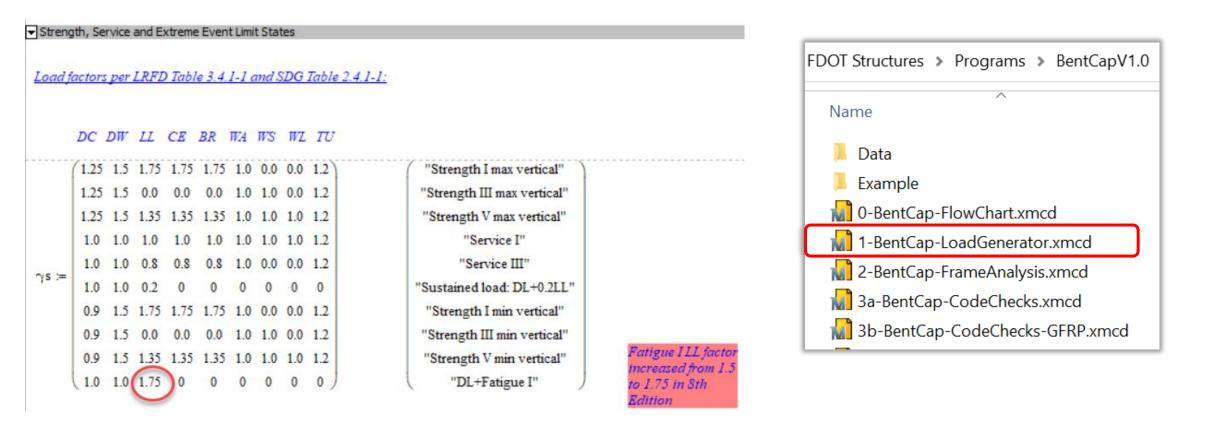
TU load in the longitudinal direction of the bridge 0 kip


The current version only performs transverse loading analysis.

However, there are inputs and place holders for future longitudinal analysis enhancements.

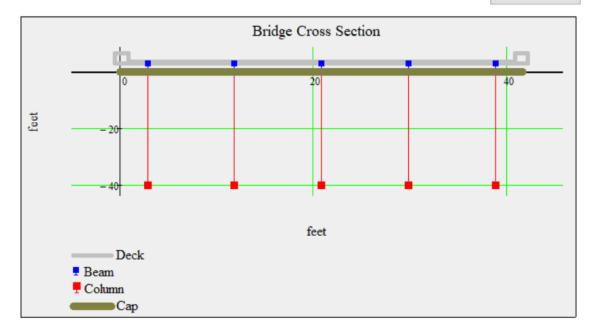
Part 1 - Load Generator

- Inputs Additional (WA & TU)
 - 100-year event: parallel to bent-cap = 0 kips
 - 100-year event: perp. to bent-cap = 0 kips
 - 100-year event: parallel to bent-cap = 0 kips
 - 100-year event: perp. to bent-cap = 0 kips
 - Longitudinal TU load = 0 kips


IGNORE THESE FOR THIS EXAMPLE

Correction needed to Fatigue Load combination:

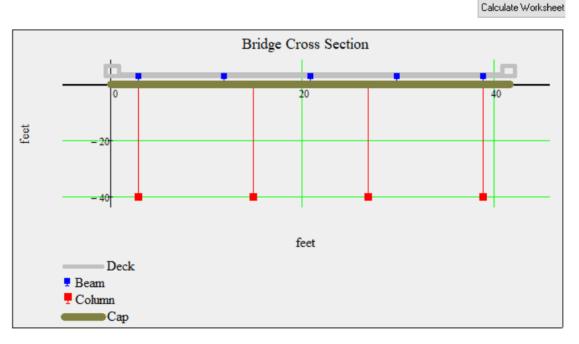
- Live Load Factor increased from 1.5 to 1.75 in 8th Edition of AASHTO LRFD BDS.



Calculate Worksheet

Set Output Dat	a	
<u>Save Data Fil</u>	<u>e (optional)</u>	
Use curre	nt input file	
File Name	SWS GFRP Example Piles.dat	Save Data

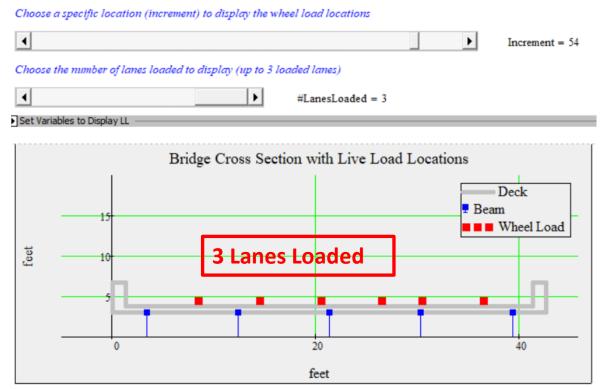
Note: You can specify an output folder location by using the Change Folder feature above.



Example 1 – 5 Piles @ 9' Spacing

Part 1 - Load Generator

\rightarrow Save Data File

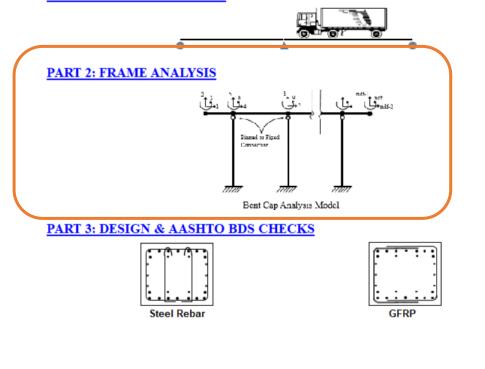

- → Calculate Worksheet
- Visually Check Inputs and Wheel load positioning

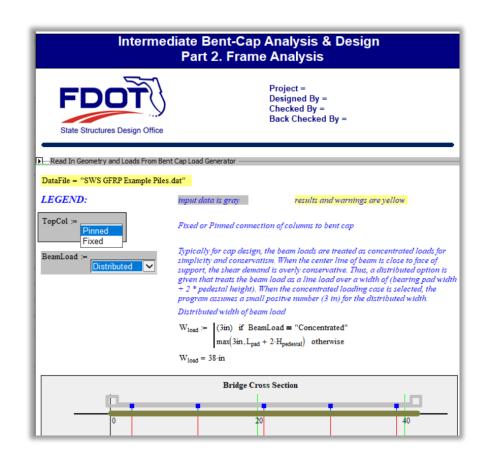
Example 2 – 4 Piles @ 12' Spacing

Graphical Display of Wheel Loads

Example 1 – 5 Piles @ 9' Spacing

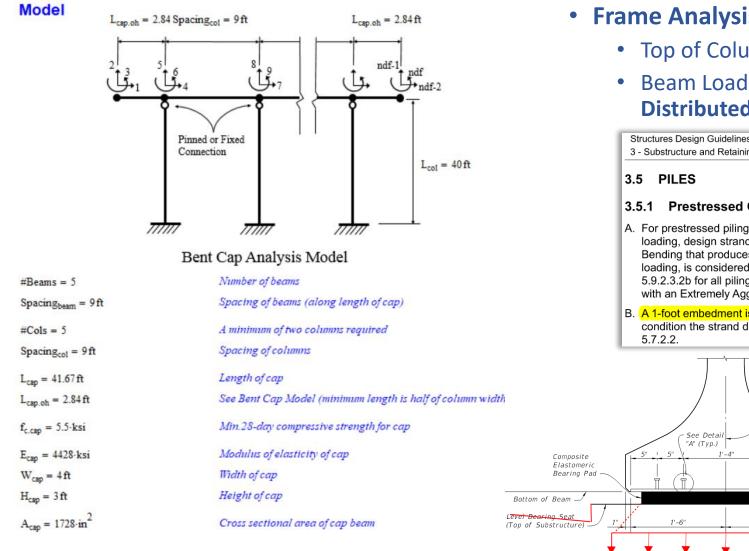
- Save Data File
- Calculate Worksheet
- Visually Check Inputs and Wheel load positioning



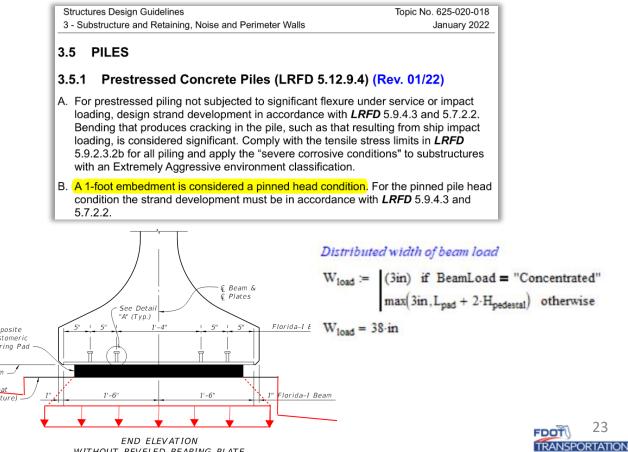

Project = Designed By = Checked By = Back Checked By =

Run the appropriate worksheets by double clicking the icons below. Modify the input data as required & execute <calculate worksheet> (Ctrl + F9) twice to save/view information. When finished, close the worksheet window <u>without saving</u> to return to this screen. Project information is stored in the Project Data File (.dat file), so Mathcad worksheets should <u>not</u> be saved, unless permanent modifications are intended.

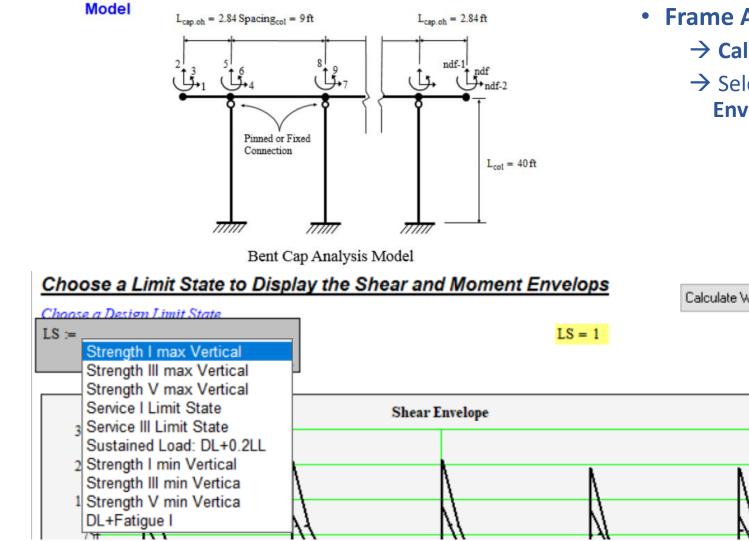
PART 1: LOAD GENERATOR



- Inputs Frame Analysis
 - Top of Column Connection = **Pinned** or **Fixed**
 - Beam Load Distribution to Cap = Concentrated or Distributed


TRANSPORTATION

Part 2 – Frame Analysis


Frame Analysis - Inputs

- Top of Column Connection = Pinned or Fixed
- Beam Load Distribution to Cap = **Concentrated** or Distributed

Part 2 – Frame Analysis

WITHOUT BEVELED BEARING PLATE

Part 2 – Frame Analysis

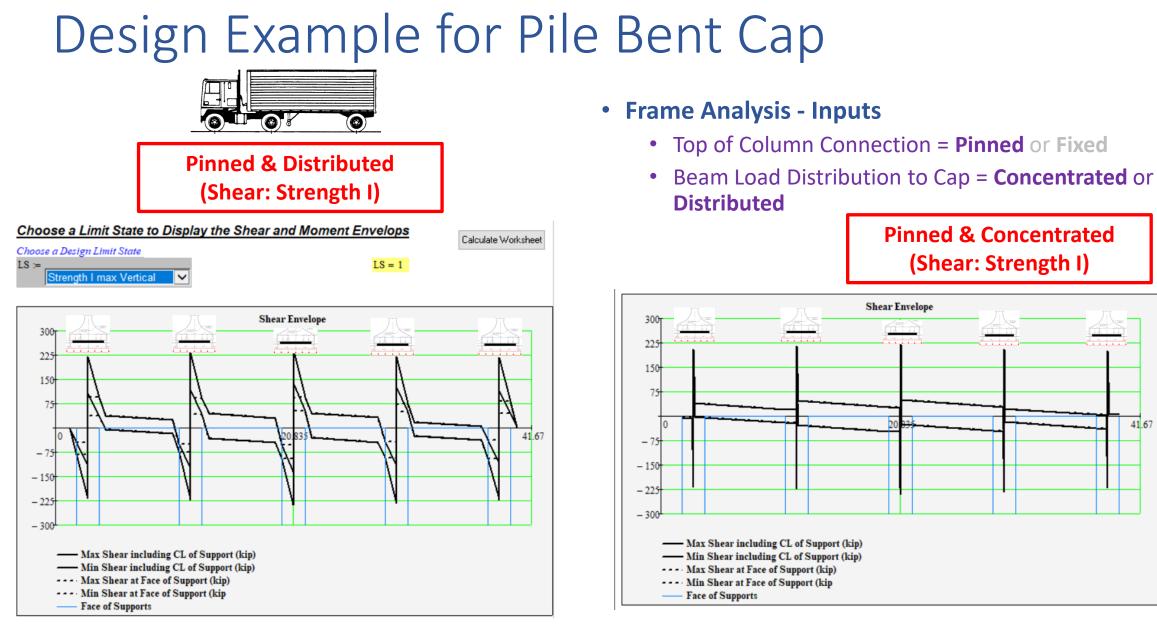
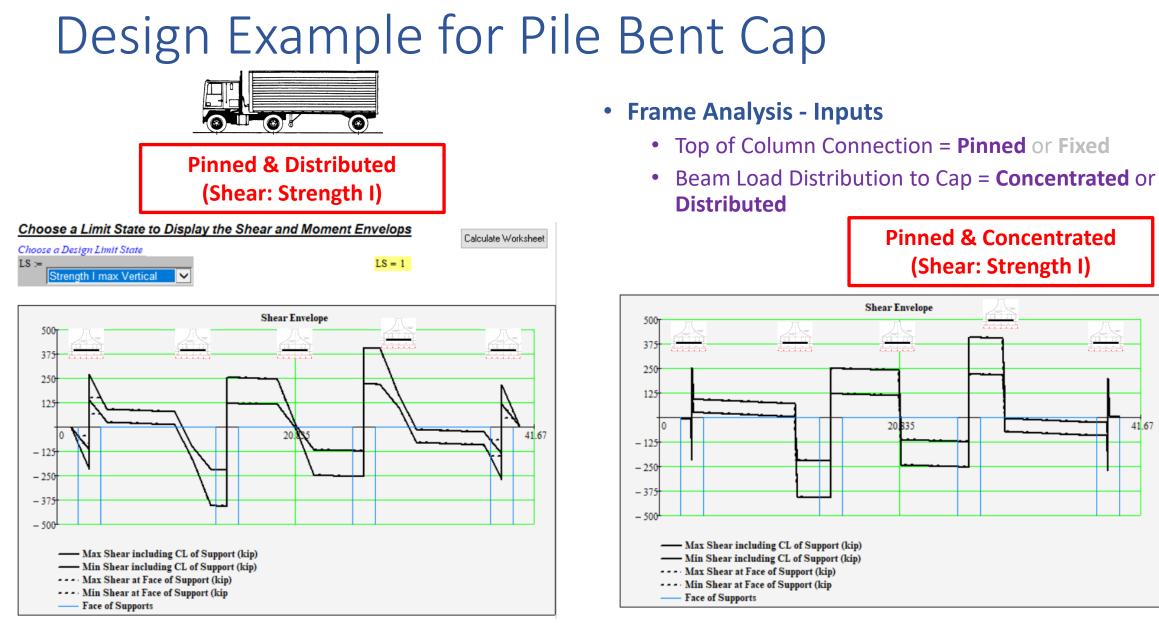

- Frame Analysis
 - \rightarrow Calculate Worksheet
 - → Select Limit State to view Shear & Moment **Envelopes**

Table 3.4.1-1—Load Combinations and Load Factors

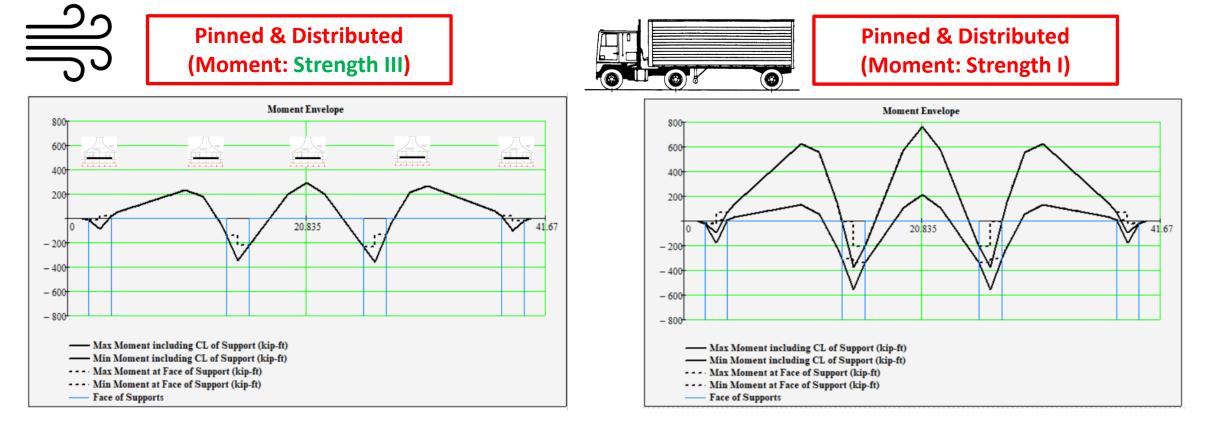
	DC				
	DD				
	DW				
	EH				
	EV	LL			
	ES	IM			
	EL	CE			
Load	PS	BR			
Combination	CR	PL			
Limit State	SH	LS	WA	WS	WL
Strength I	γ_P	1.75	1.00		
(unless noted)					
Strength II	γ_P	1.35	1.00	_	
Strength III	γ_P		1.00	1.00	
Strength IV	γ_P		1.00	_	
Strength V	γ_P	1.35	1.00	1.00	1.00
Extreme	1.00	γεQ	1.00	_	
Event I					
Extreme	1.00	0.50	1.00	_	
Event II					
Service I	1.00	1.00	1.00	1.00	1.00
Service II	1.00	1.30	1.00	_	
Service III	1.00	γ_{LL}	1.00	_	
Service IV	1.00		1.00	1.00	
Fatigue I—		1.75			—
LL, IM & CE	+ DL	for G	FRP-	RC O	nlv
only					

Calculate Worksheet

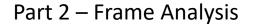


Example 1 – 5 Piles @ 9' Spacing

Part 2 – Frame Analysis


Example 2 – 4 Piles @ 12' Spacing

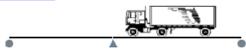
Part 2 – Frame Analysis

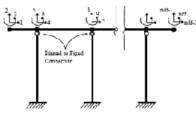


CONTINUE WITH Example 2 – 12' Pile Spacing Using the conditions

- Frame Analysis
 - Top of Column Connection = Pinned
 - Beam Load Distribution to Cap = Distributed

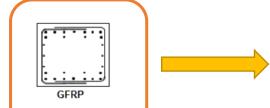
Example 2 – 4 Piles @ 12' Spacing



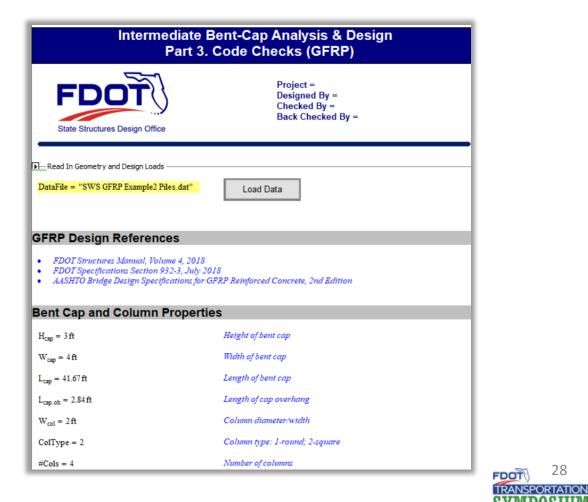

Project = Designed By = Checked By = Back Checked By =

Run the appropriate worksheets by double clicking the icons below. Modify the input data as required & execute <calculate worksheet> (Ctrl + F9) twice to save/view information. When finished, close the worksheet window without saving to return to this screen. Project information is stored in the Project Data File (.dat file), so Mathcad worksheets should not be saved, unless permanent modifications are intended.

PART 1: LOAD GENERATOR

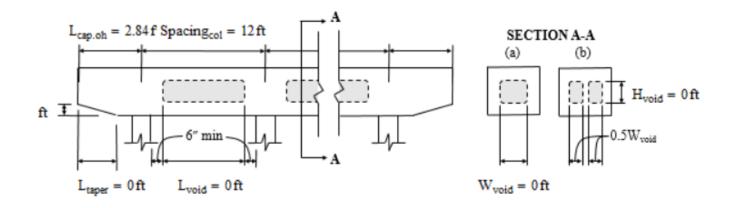

PART 2: FRAME ANALYSIS

Bent Cap Analysis Model

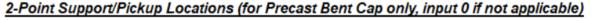

PART 3: DESIGN & AASHTO BDS CHECKS

Design – GFRP Reinforcing

 \rightarrow Load Data

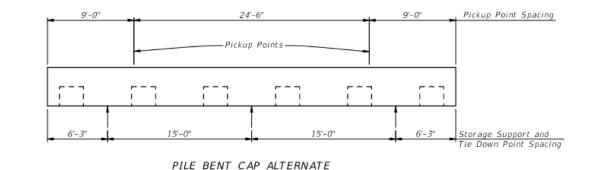

28

Part 3 – Design & AASHTO Checks


Tapered Ends/Voids in Bent Cap (input 0 if not applicable)

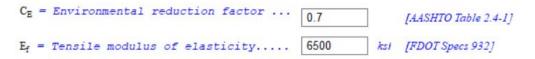
Height of taper	0	ft
Length of taper	0	ft
Height of void	0	ft
Width of void	0	ft
Length of void	0	ft

- Inputs Tapered Ends and Internal Voids
 - N/A for Example 2
 - Internal Voids are only intended for precast bents to reduce handling weights.


Inputs – Support/Pickup Points

Distance of support/pick-up 0 ft

FDO'



location to cap end.....

Minimum Guaranteed Tensile Load of GFRP reinforcing bars

GFRP Material and Design Properties

[FDOT Spec 932-3]

Nominal Area of GFRP reinforcing bars [FDOT Spec 932-3]

A(Bar) :=	$0.049in^2$ if Bar = 2	$P_T(Bar) :=$	6.1kip if $Bar = 2$		
	0.11in^2 if Bar = 3		6.1kip if Bar = 2 13.2kip if Bar = 3 21.6kip if Bar = 4		
	2		21.6kip if Bar = 4		
	$0.20in^2$ if Bar = 4		29.1kip if Bar = 5		
	$0.31in^2$ if Bar = 5		40.9kip if Bar = 6		
	$0.44in^2$ if Bar = 6		54.1kip if Bar = 7		
			66.8kip if Bar = 8		
	$0.60in^2$ if Bar = 7		82.0kip if Bar = 9		
	$0.79in^2$ if Bar = 8		21.0kip if Bar = 4 29.1kip if Bar = 5 40.9kip if Bar = 6 54.1kip if Bar = 7 66.8kip if Bar = 8 82.0kip if Bar = 9 98.2kip if Bar = 10 0 otherwise		
	2		0 otherwise		
A(Bar) :=	1.00in if Bar = 9				
	2	Tensile Strength of GFRP reinforcing bars			
	$1.27in^{-1}$ if Bar = 10		D (D)		
	0 otherwise	$f_{fu}(Bar) := \frac{P_T(Bar)}{A(Bar)}$			
		"B(Dar) .=	A(Bar)		

• Inputs – GFRP Material & Design Properties

- Environmental Reduction Factor = 0.7
- Tensile Modulus of Elasticity = 6,500 ksi
- Rebar Properties = *Specification 932-3*

Table 932-6								
Sizes and Tensile Loads of FRP Reinforcing Bars								
Bar Size Designation	Nominal Bar Diameter (in)	Cross Sectional Area (in ²)	Measured Cross-Sectional Area (in ²)		Minimum Guaranteed Tensile Load (kips)			
			Minimum	Maximum	BFRP and GFRP Bars	CFRP (Type II) Single & 7-Wire Strands	CFRP (Type I) Bars	
2.1-CFRP	0.21	0.028	0.026	0.042	-	7.1	-	
2	0.250	0.049	0.046	0.085	6.1	-	10.3	
2.8-CFRP	0.280	0.051	0.048	0.085	-	13.1	-	
3	0.375	0.11	0.104	0.161	13.2	-	20.9	
3.8-CFRP	0.380	0.09	0.087	0.134	-	23.7	-	
4	0.500	0.20	0.185	0.263	21.6	-	33.3	
5	0.625	0.31	0.288	0.388	29.1	-	49.1	
6	0.750	0.44	0.415	0.539	40.9	-	70.7	
6.3-CFRP	0.630	0.19	0.184	0.242	-	49.8	-	
7	0.875	0.60	0.565	0.713	54.1	-	-	
7.7-CFRP	0.770	0.29	0.274	0.355	-	74.8	-	
8	1.000	0.79	0.738	0.913	66.8	-	-	
9	1.128	1.00	0.934	1.137	82.0	-	-	
10	1.270	1.27	1.154	1.385	98.2	-	-	

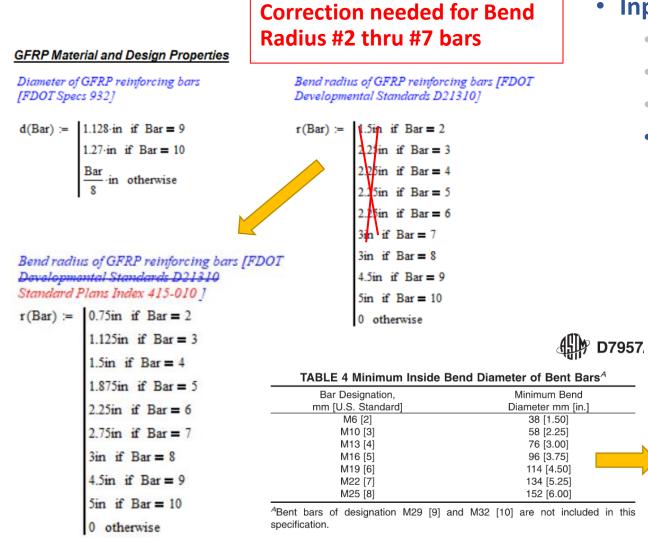
- Inputs Critical Section for Negative Moment
 - 1 = at Centerline of Support/Pile
 - 2 = at Face of Support/Pile

Design Loads - Moments and Shears (Torques not considered)

Critical section for shear should be at face of support.

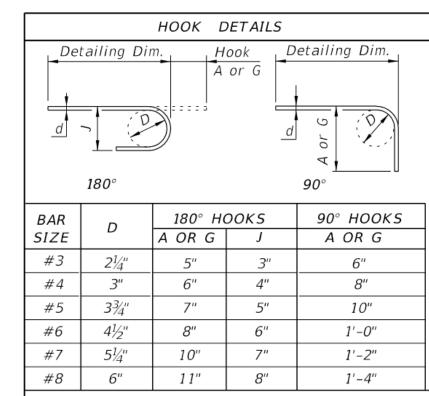
Conservatively take design negative moment at the CL of support; Except for bent caps built integrally with supports (full moment connection), design may be based on the moments at face of support.

Critical section for flexural design.. 1 1- at center line of support 2- at face of support


Reinforcement (Symmetrical to CL of Bent Cap)

A few recommendations on bar size and spacing are available to minimize problems during casting.

- Use the same size and spacing of reinforcing for both the negative and positive moment regions. This
 minimizes construction errors where the top steel is mistakenly placed at the bottom or vice versa.
- If this arrangement is not possible, give preference to maintaining the same spacing between the top and bottom reinforcement. Same grid pattern allows grouted ducts placement and the concrete vibrator to be more effective in reaching the full depth of the cap, especially for multi-layer reinforcing.



Part 3 – Design & AASHTO Checks

- Inputs GFRP Material & Design Properties
 - Environmental Reduction Factor = 0.7
 - Tensile Modulus of Elasticity = 6500 ksi
 - Rebar Properties = Specification 932-3

Rebar Bend Radius = <u>Index 415-010</u>

Part 3 – Design & AASHTO Checks

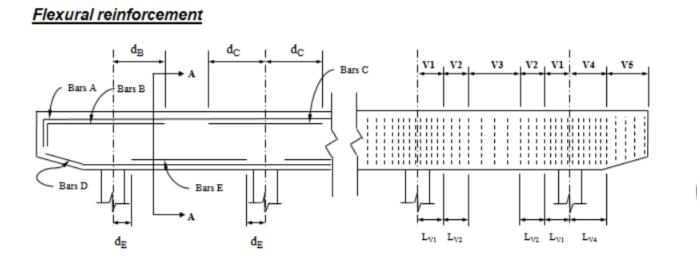
to c.g. of 1st layer bars (in.), b2

Flexural reinforcement can be placed up to 2 layers in current version. Top Reinforcement (Negative Moment) Size of top reinforcing bars (A, B & C), Bat#top 3.25 Distance from c.g. of 1st layer bars to c.g. of 2nd layer bars to c.g. of 1st layer bars (in.), t1 Bottom Reinforcement (Positive Moment) Size of bottom reinforcing bars (D & E), Bat#tot 3.25 Distance from c.g. of 1st layer bars

Inputs – Flexural Reinforcement

- Bar Size for Top Reinf (#) Bars A, B & C
- Distance from c.g. 1st layer to top cap face (*t1*)
- Distance from c.g. 2nd layer to c.g. 1st layer (t2)
- Bar Size for Bottom Reinf (#) Bars D & E

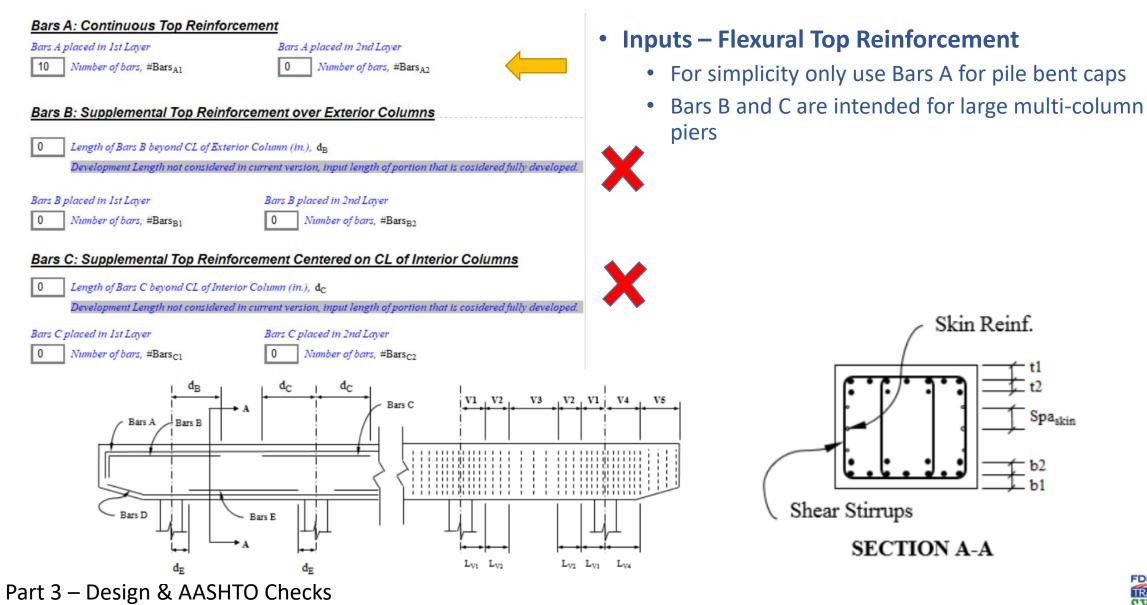
Shear Stirrups

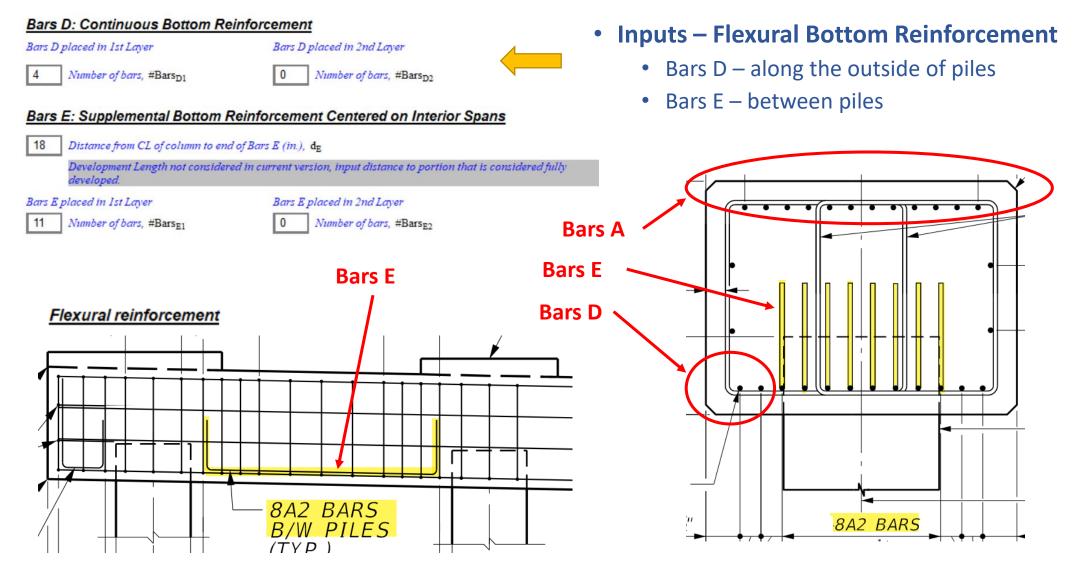

• Distance from c.g. 1st layer to bottom cap face (b1)

SECTION A-A

Skin Reinf.

Spa_{skin}


• Distance from c.g. 2nd layer to c.g. 1st layer (b2)



Part 3 – Design & AASHTO Checks

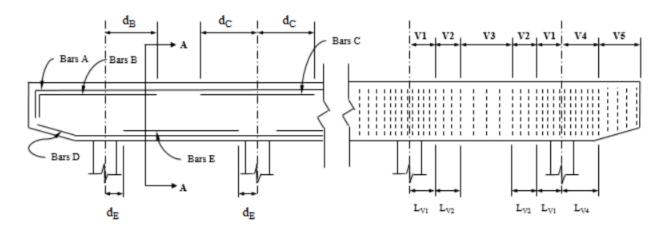
to cap bottom face (in.), b1

Part 3 – Design & AASHTO Checks

Spacing of Flexural Reinforcement

For crack control check, the bar spacing is calculated assuming a uniform distribution of bars on the 1st layer. Designer/user to calculate the actual spacing of bars if bars are not evenly distributed or bundled together. The maximum allowable spacing is plotted along the cap under the "Crack Control" section and the maximum allowable spacing at the most critical cap section is reported at the end of the program.

Concrete cover on the two sides (in.)


- Inputs Concrete Cover
 - See Structures Manual, Vol.4 FRPG 2.3.E
 - Side Concrete Cover = 2"
 - Bottom & Top cover previously set by "1st layer c.g."

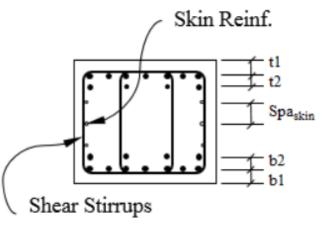
Fiber Reinforced Polymer Guidelines	Topic No. 625-020-018	
2 - Basalt and Glass Fiber Reinforced Polymer (bfrp, GFRP) and Carbon Fiber Reinforced Polymer (CFRP)	January 2022	

E. Use the following minimum concrete covers:

	Environment			
FRP Reinforced Component (Precast and Cast-in-Place)	S ¹	M ¹	E ¹	
(Frecast and Cast-III-Frace)		Concrete Cover (inches)		
Superstructure Components				
Cast-in-Place Beams		2		
Top deck surfaces of Short Bridges ²		1.5		
Top deck surfaces of Long Bridges ²		2 ³		
Front and back surfaces of Pedestrian/Bicycle Railings constructed using the slip form method		2.5		
Wall copings and all other bridge superstructure surfaces and components not listed above		1.5		
Noise Wall Posts	2			
Precast Concrete Perimeter Wall Posts	1.75			
Precast Noise and Perimeter Wall Panels	1.5			
Substructure Components				
External surfaces cast against earth		3		
Exterior formed surfaces, columns, and tops of footings	2			
Exterior formed surfaces of Approach Slabs other than the bottom surface	2			
Beam/Girder Pedestals No. 5 bars and smaller 1.5				
Beam/Girder Pedestals No 6 bar thru no. 10 bars		2		
Prestressed Piles		34		
Cast-in-Place Cantilever Retaining Walls and Gravity Walls		2		
MSE Walls No. 5 bars and smaller		1.5		
MSE Walls No 6 bar thru. no. 10 bars		2		
Box and Three-sided Culverts	2			
Bulkheads and Sheet Pile Wall Caps	2			
Sheet Piles	Front and Back Faces - 3 ⁵ Sides - 2			

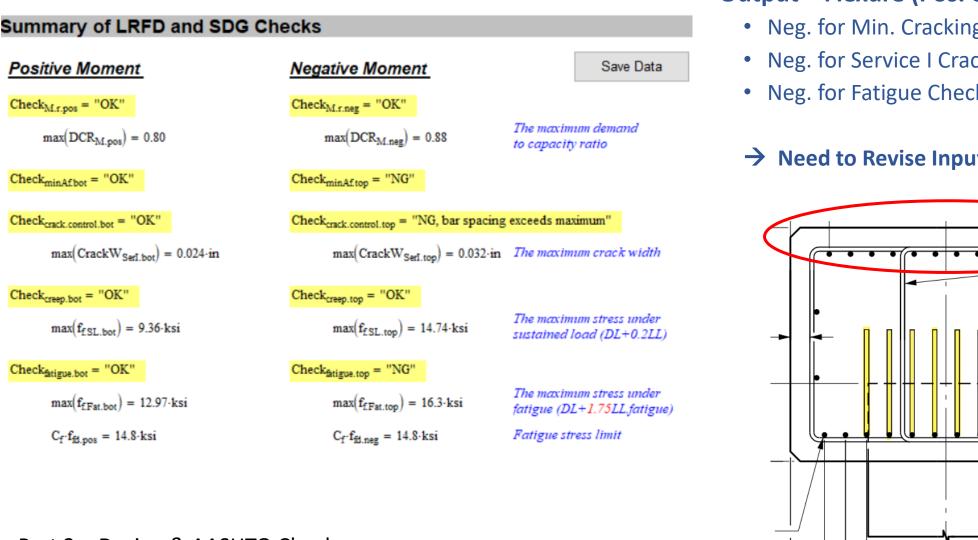
Flexural reinforcement

Part 3 – Design & AASHTO Checks

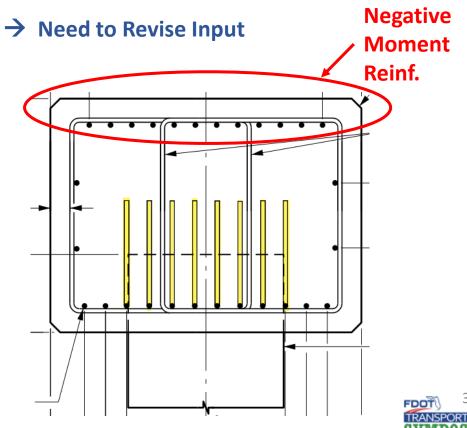

Shear Reinforcement

In order to maintain a level of flexibility for modeling and to allow for multiple spacings for shear reinforcement along the cap, the spacing of the stirrups over the pile (non-critical fo shear) is assumed to be the same as the first zone beyond the face of the pile.

Bars A Bars B Bars D Bars D Bars D Bars E A	$H_{V1} = V_2 + V_3 + V_2 + V_1 + V_4 + V_5$ $H_{V1} = V_2 + V_3 + V_2 + V_1 + V_4 + V_5$ $H_{V1} = V_2 + V_3 + V_2 + V_1 + V_4 + V_5$ $H_{V1} = V_2 + V_3 + V_2 + V_1 + V_4 + V_5$ $H_{V1} = V_2 + V_1 + V_4 + V_5$ $H_{V1} = V_2 + V_1 + V_4 + V_5$	• On
Zone VI	Zone V2 Zone V3	
0 Size of stirrup bar, $Bar#_{V1}$	0 Size of stirrup bar, $Bar#_{V2}$ 5 Size of stirrup bar, $Bar#_{V3}$	
0 No. of bar legs, #Legs _{V1}	0 No. of bar legs, #Legs _{V2} 4 No. of bar legs, #Legs _{V3}	
0 Spacing (in.), Spa _{V1}	0 Spacing (in.), Spa _{V2} 6 Spacing (in.), Spa _{V3}	
0 Length of Zone V1 (in.), L _{V1}	0 Length of Zone V2 (in.), L _{V2}	
Zone V4 (Cap overhang)	Zone V5 (Cap overhang)	
0 Size of stirrup bar, Bar# _{V4}	5 Size of stirrup bar, Bar# _{V5}	
0 No. of bar legs, #Legs _{V4}	4 No. of bar legs, #Legs _{V5}	
0 Spacing (in.), Spa _{V4}	6 Spacing (in.), Spa _{V5}	
0 Length of Zone V1 (in.), L _{V4}		

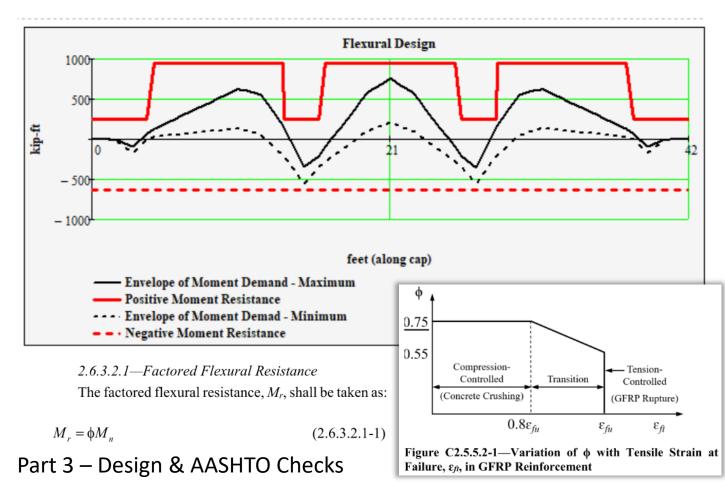

Inputs Shear Reinforcement

- Only use Zone 3 spacing for simplicity b/w piles
- Only use Zone 5 spacing for simplicity b/w piles


SECTION A-A

Output – Flexure (Pos. & Neg. Moment)

- Neg. for Min. Cracking Moment No Good
- Neg. for Service I Crack Control *No Good*
- Neg. for Fatigue Check *No Good*



Flexural Resistance [AASHTO BDS for GFRP 2.6]

Maximum demand to capacity ratio

 $max(DCR_{M.pos}) = 0.80$

 $max(DCR_{M.neg}) = 0.88$

- Output Flexure (Pos. & Neg. Moment)
 - Strength Limit State OK for loading.
 - ØMn.pos = 952 kip-ft
 - ØMn.neg = 634 kip-ft

Compression-Controlled (Concrete Crushing)

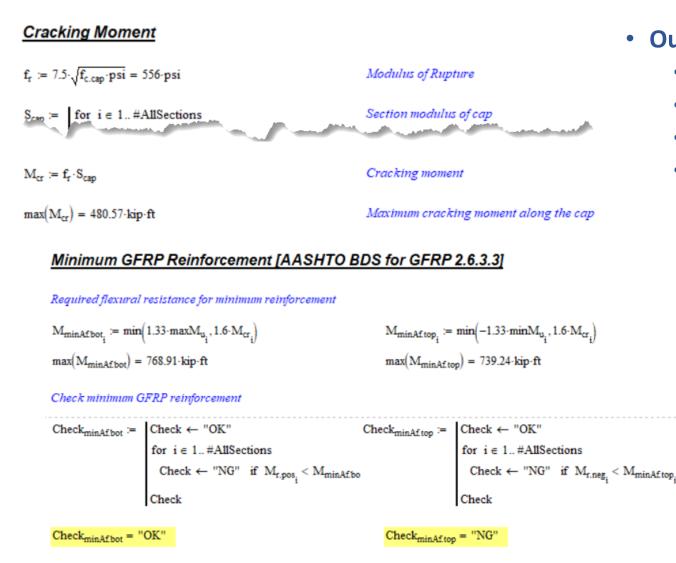
$$f_{f} = \sqrt{\frac{\left(E_{f}\varepsilon_{cu}\right)^{2}}{4} + \frac{0.85\beta_{1}f_{c}'}{\rho_{f}}E_{f}\varepsilon_{cu}} - 0.5E_{f}\varepsilon_{cu} \le f_{fd}}$$

$$M_{n} = A_{f}f_{f}\left(d - \frac{a}{2}\right)$$

$$(2.6.3.2.2-1)$$

in which:

$$a = \frac{A_f f_f}{0.85 f'_c b} \tag{2.6.3.2.2-2}$$


Tension-Controlled (GFRP Bar Rupture)

$$M_{n} = A_{f} f_{fd} \left(d - \frac{\beta_{1} c_{b}}{2} \right)$$
(2.6.3.2.2-3)

in which:

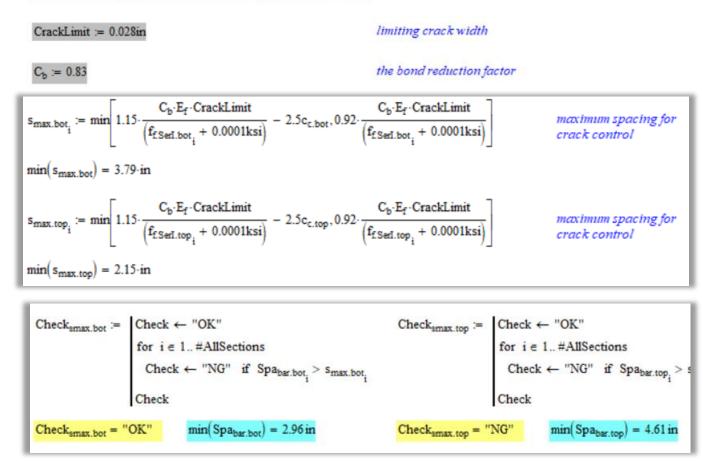
 C_h

$$= \left(\frac{\varepsilon_{cu}}{\varepsilon_{cu} + \varepsilon_{fd}}\right) d \tag{2.6.3.2.2-4}$$

- Output Flexure (Pos. & Neg. Moment)
 - Negative Cracking Moment No Good
 - 1.33*Mu = 1013 kip-ft
 - 1.6*Mcr = 739 kip-ft \leftarrow controls
 - ØM.neg = 634 kip-ft < min.(1.33Mu, 1.6Mcr), NG
 - Add approx. 20% more reinforcing

2.6.3.3—Limits for Reinforcement

There is no maximum reinforcement limit.


Unless otherwise specified by the Owner, at any section of a noncompression-controlled flexural component, the amount of tensile reinforcement shall be adequate to develop a factored flexural resistance, M_r , greater than or equal to the lesser of the following:

• 1.33 times the factored moment required by the applicable strength load combination specified in Table 3.4.1-1 of the *AASHTO LRFD Bridge Design Specifications*.

•
$$1.6f_r S_c - M_{dnc} \left(\frac{S_c}{S_{nc}} - 1\right)$$
 (2.6.3.3-1)

Crack Control [AASHTO BDS for GFRP 2.6.7]

Equation 2.6.7-1 is based on *ACI 440.1R* which uses a simplified conversion of the 1999 Frosch crack width equation.

Part 3 – Design & AASHTO Checks

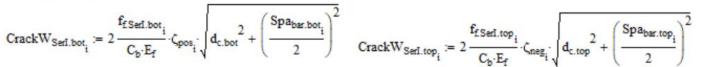
- Output Flexure (Pos. & Neg. Moment)
 - Service I Limit State (Crack Control):
 - Max. Allowed Bot. Bar Spacing = 3.79 in.
 - Bot. Spacing (b/w piles) = 2.96 in. ← OK
 - Max. Allowed Top Bar Spacing = 2.15 in.
 - - AASHTO & ACI provides this check in terms of bar spacing, but it is easier to visualize & graph by converting to crack width.

2.6.7—Control of Cracking by Distribution of Reinforcement

Except for deck slabs designed in accordance with Article 3.7.2, the provisions specified herein shall apply

The spacing, *s*, of the longitudinal GFRP reinforcing bars in the layer closest to the tension face shall satisfy Eq. 2.6.7-1:

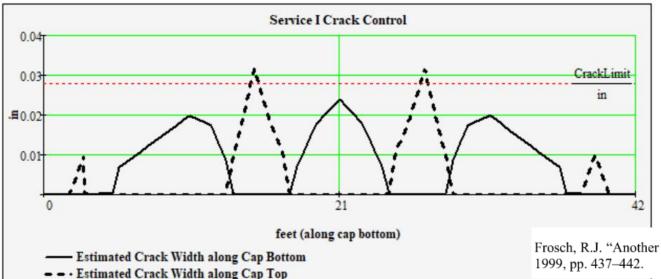
$$s \le \min\left(1.15 \frac{C_b E_f w}{f_{fs}} - 2.5 c_c; 0.92 \frac{C_b E_f w}{f_{fs}}\right)$$
(2.6.7-1)



Crack Control [AASHTO BDS for GFRP 2.6.7]

CrackLimit := 0.028in

limiting crack width


Estimated Service I crack width

Maximum Service I crack width

max(CrackW_{Serl.bot}) = 0.024 · in

 $max(CrackW_{Serl.top}) = 0.032 \cdot in$

- Output Flexure (Pos. & Neg. Moment)
 - Service I Limit State (Crack Control) cont.:
 - Max. allowed crack width = 0.28 in.
 - Bot. Crack Width (max) = 0.024 in. ← OK
 - Top Crack Width (max) = 0.032 in. ← NG
 - Provide closer spacing or increase area of reinforcing for top reinforcing to reduce tensile stress.

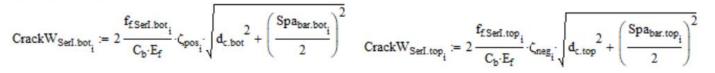
A NEW CRACK WIDTH EQUATION

Frosch⁴ observed that a significant shortcoming of the Gergely-Lutz and Kaar-Mattock equations is that they were both developed empirically using statistical analysis techniques on experimental data that was limited in the range of concrete covers investigated. In fact, he noted that only three test specimens had concrete covers greater than 2.5 inches.

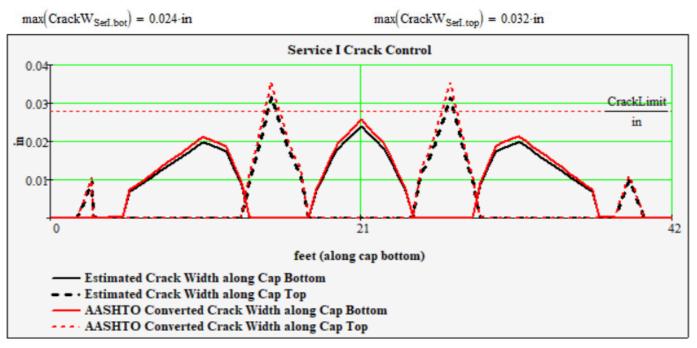
Frosch developed the following simple, theoretically-derived equation to predict crack widths that could be used regardless of the actual concrete cover:

$$w_{c} = 2\frac{f_{s}}{E_{s}}\beta \sqrt{(d_{c})^{2} + (\frac{s}{2})^{2}}$$
(4)

Frosch, R.J. "Another Look at Cracking and Crack Control in Reinforced Concrete." ACI Structural Journal, 96(3), 1999, pp. 437–442.



Crack Control [AASHTO BDS for GFRP 2.6.7]


CrackLimit := 0.028in

limiting crack width

Estimated Service I crack width

Maximum Service I crack width

Part 3 – Design & AASHTO Checks

- Output Flexure (Pos. & Neg. Moment)
 - Service I Limit State (Crack Control) cont.:
 - Max. allowed crack width = 0.28 in.
 - Bot. Crack Width (max) = 0.024 in. ← OK
 - Top Crack Width (max) = 0.032 in. \leftarrow NG

A direct conversion of **AASHTO Guide Spec Eq. 2.6.7-1**, provides slightly more conservative widths as shown by the red plot lines in this graph.

$$s \leq \min\left(1.15 \frac{C_b E_f w}{f_{fs}} - 2.5c_c; 0.92 \frac{C_b E_f w}{f_{fs}}\right) \qquad (2.6.7-1)$$

$$(2.6.7-1)$$

$$(2.6.7-1)$$

$$(2.6.7-1)$$

$$(2.6.7-1)$$

$$(2.6.7-1)$$

43 TRANSPORTATION SYMPOSIUM

Creep Rupture Limit State [AASHTO BDS for GFRP 2.5.3]

To avoid creep rupture of the FRP reinforcement under sustained stresses or failure due to cyclic stresses and fatigue of th FRP reinforcement, the stress levels in the FRP under these stress conditions should be limited.

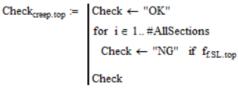
 $C_c := 0.30$

Creep rupture reduction factor

Creep rupture stress limit of GFRP

 $CreepLimit_{pos_i} := C_c \cdot f_{fd.pos}$

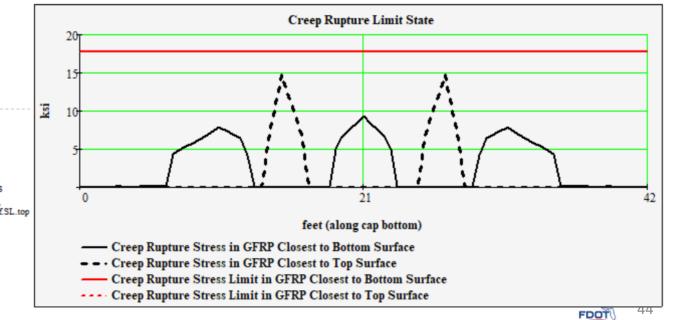
 $CreepLimit_{neg_i} := C_c \cdot f_{fd.neg}$


 $max(CreepLimit_{pos}) = 17.76$ ·ksi

 $max(CreepLimit_{neg}) = 17.76 \cdot ksi$

Stress in the bottom reinforcing due to sustained load (DL+0.2LL)

$$\begin{split} \mathbf{f}_{\texttt{f.SL.bot}_{i}} &\coloneqq \mathbf{ff}_{\texttt{f}} \Big(\texttt{maxM}_{\texttt{SL}_{i}}, \mathbf{d}_{\texttt{f.pos}_{i}}, \mathbf{d}_{\texttt{cap}_{i}}, \mathtt{S}_{\texttt{cap}_{i}}, \mathtt{k}_{\texttt{pos}_{i}}, \mathtt{I}_{\texttt{cr.pos}_{i}}, \mathtt{M}_{\texttt{cr}_{i}} \Big) \\ & \texttt{max} \big(\mathtt{f}_{\texttt{f.SL.bot}} \big) = 9.36 \cdot \mathtt{ksi} \end{split}$$



- Output Flexure (Pos. & Neg. Moment)
 - Service Limit State (Creep Rupture):

 $f_{f,s} \le C_c f_{fd} \tag{2.5.3-1}$

- Max. allowed bar stress = 17.8 ksi
- Bot. Stress (max) = 9.4 ksi OK
- Top Stress (max) = 12.3 ksi *← OK*

Fatigue Limit State [AASHTO BDS for GFRP 2.5.4]

 $C_{f} := 0.25$

Fatigue rupture reduction factor

Fatigue rupture stress limit of GFRP

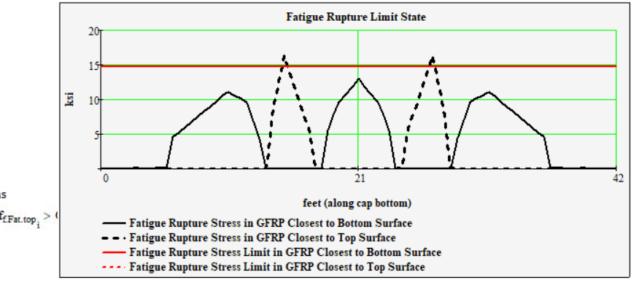
FatigueLimitpos: = Cf fil.pos

 $FatigueLimit_{neg} := C_{f'} f_{sl.neg}$

 $max(FatigueLimit_{pos}) = 14.8$ ·ksi

 $max(FatigueLimit_{neg}) = 14.8 \cdot ksi$

Stress in the bottom reinforcing due to sustained load (DL+1.5FatigueLL)


$$\begin{split} \mathbf{f}_{\mathrm{f},\mathrm{Fat,bot}_{i}} &\coloneqq \mathbf{ff}_{\mathrm{f}}\left(\mathrm{max}\mathbf{M}_{\mathrm{Fat}I_{i}}, \mathbf{d}_{\mathrm{f},\mathrm{pos}_{i}}, \mathbf{d}_{\mathrm{cap}_{i}}, \mathbf{S}_{\mathrm{cap}_{i}}, \mathbf{k}_{\mathrm{pos}_{i}}, \mathbf{I}_{\mathrm{cr},\mathrm{pos}_{i}}, \mathbf{M}_{\mathrm{cr}_{i}}\right) \\ &\max(\mathbf{f}_{\mathrm{f},\mathrm{Fat,bot}}) = 12.97 \cdot \mathrm{ksi} \end{split}$$

Stress in the top reinforcing due to sustained load (DL+1.5FatigueLL) $f_{f,Fat,top_{i}} := ff_{f}(-minM_{Fatl_{i}}, d_{f,neg_{i}}, d_{cap_{i}}, S_{cap_{i}}, k_{neg_{i}}, I_{cr,neg_{i}}, M_{cr_{i}})$ $max(f_{f,Fat,top}) = 16.3 \cdot ksi$

• Output – Flexure (Pos. & Neg. Moment) Fatigue Limit State:

$$f_{f,f} \le C_f f_{fd} \tag{2.5.4-1}$$

- Max. allowed bar stress = 14.8 ksi
- Bot. Stress (max) = 13.0 ksi ← OK
- Top Stress (max) = 16.3 ksi NG

TRANSPORTAT SYMPOSII

Skin Reinforcement [LRFD 5.7.3.4]

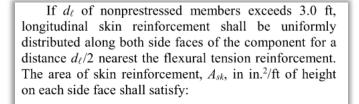
 $d_{1.pos} := H_{cap} - b1 = 2.73 \, ft$

 $d_{1.neg} := H_{cap} - t1 = 2.73 \, ft$

Distance from the extreme compression fiber to the centroid of extreme tension steel element

 $Check_{skin.reinf.reqd} := if(d_{1.pos} \ge 3ft \lor d_{1.neg} \ge 3ft, "Skin Reinf Required", "Skin Reinf Not Required")$

(5.6.7-3)

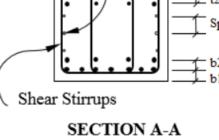

Check_skin.reinf.regd = "Skin Reinf Not Required"

 $Bar#_{skin} = 5$

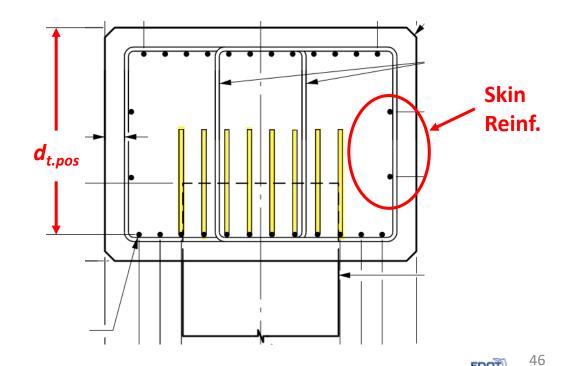
Size of bar

 $\#Bars_{skin} = 4$

Number of bars on each side face


$$A_{sk} \geq 0.012 \ (d_{\ell} - 30)$$

where:


 d_{ℓ} = distance from the extreme compression fiber to the centroid of extreme tension steel element (in.)

Part 3 – Design & AASHTO Checks

Skin Reinf.

- Output Flexure (Pos. & Neg. Moment) Skin Reinforcement (based on *LRFD BDS*):
 - Not Required, since d_t < 3-ft
 - Provide anyway #5's, need for Shrinkage & Temperature reinforcing on side face.

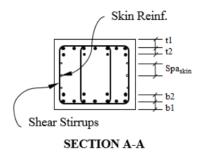
Shrinkage and Temperature Reinforcement [AASHTO BDS for GFRP 2.9.6]

For conservatism, use the lowest \mathbf{f}_{fb} for the calculation of the minimum shrinkage and temperature reinforcement ratio

ff.pos = 57.4.ksi

f_{fd.neg} = 59.19·ksi

 $\mathbf{f}_{\text{fd,skin}} := \mathbf{f}_{\text{fd}}(\text{Bar}\#_{\text{skin}}) = 65.71 \cdot \text{ksi}$


 $maxVbar := max(Bar\#_{V1}, Bar\#_{V2}, Bar\#_{V3}, Bar\#_{V4}, Bar\#_{V5}) = 5$

 $\mathbf{f}_{fit.shear} := \mathbf{f}_{fit}(maxVbar) = 65.71 \cdot ksi$

 $\mathbf{f}_{\texttt{fd.ts}} := \min(\mathbf{f}_{\texttt{fd.pos}}, \mathbf{f}_{\texttt{fd.neg}}, \mathbf{f}_{\texttt{fd.skin}}, \mathbf{f}_{\texttt{fd.shear}}) = 57.4 \cdot ksi$

 $\rho_{\text{fts}} \coloneqq 0.0018 \cdot \frac{60 \text{ksi}}{f_{\text{fd,ts}}} \cdot \frac{29000 \text{ksi}}{E_{\text{f}}} = 0.0084$

 $\rho_{f,f,f,k} := max(0.0014, min(\rho_{f,f,s}, 0.0036)) = 0.0036$

Part 3 – Design & AASHTO Checks

Strength of Positive Reinforcement Strength of Negative Reinforcement Strength of Skin Reinforcement Maximum bar size of Shear Reinforcement Lowest Strength of Shear Reinforcement Design strength for calculation of Shrinkage and Temperature Reinforcement Ratio (Lowest Strength of All Reinforcement for conservatism) $A_{shrink.reqd} := \frac{\rho_{f.ts} \cdot W_{cap} \cdot H_{cap}}{2(W_{cap} + H_{cap})} = 0.44 \cdot \frac{in^2}{ft}$

$$A_{\text{shrink.top}} := \frac{A(Bar\#_{\text{top}}) \cdot \#Bars_{A1}}{W_{\text{cap}}} = 1.98 \cdot \frac{in^2}{ft}$$
$$= \frac{A(Bar\#_{\text{bot}}) \cdot \#Bars_{D1}}{M_{\text{cap}}} = 1 \cdot \frac{in^2}{M_{\text{cap}}}$$

 $A_{\text{shrink.bot}} \coloneqq \frac{1}{W_{\text{cap}}} = 1 \cdot \frac{1}{\text{ft}}$

Ashrink.side :=

A(Bar#skin) + Barsskin + A(Bar#top) + A(Bar#bot)

• Output –

Shrinkage & Temp. Reinforcement Area:

- Min. Required = 0.44 sq.in/ft
- Min. Provided = 0.80 sq.in/ft (on side face)

and not less than 0.0014 (ACI, 2014). These provisions are modified accounting for the tensile modulus of elasticity and strength of shrinkage and temperature GFRP reinforcement:

$$\rho_{f,st} = 0.0018 \times \frac{60}{f_{fd}} \frac{29,000}{E_f} \ge 0.0014$$
(C2.9.6-1)

Area of required minimum shrinkage and temperature reinforcement per foot [LRFD 5.10.8]

Area of reinforcement near top surface

Area of reinforcement near bottom surface

0.8. in

Area of reinforcement near side surface

Shrinkage and Temperature Reinforcement [AASHTO BDS for GFRP 2.9.6]

... continued

CheckAreaShrinkReinf = "OK"

Spashrink.regd := 12in

 $\text{Spa}_{\text{shrink.top}} := \frac{W_{\text{cap}}}{\#\text{Reray}} = 4.8 \cdot \text{in}$

 $Spa_{shrink.bot} := \frac{W_{cap}}{\#Bars_{D1}} = 12 \cdot in$

Spashrink.side := Spaskin = 10.in

 $Spa_{shrink,shear} := max(Spa_{fv}) = 6 \cdot in$

Spashrink := max(Spashrink.top, Spashrink.bot, Spashrink.side, Spashrink.shear) = 12.in

 $SpaR_{shrink} := \frac{Spa_{shrink}}{Spa_{shrink.reqd}} = 1.00$

Check_{SpaShrinkReinf} = "OK"

Part 3 – Design & AASHTO Checks

Maximum spacing of shrinkage and temperature reinforcement

Spacing of reinforcement near top surface

Spacing of reinforcement near bottom surface

Spacing of reinforcement near side surface

Spacing of shear reinforcement (max along the cap)

2-in Critical spacing

Spacing Ratio of Shrinkage Reinforcement -Provided to Required • Output –

Shrinkage & Temp. Reinforcement Spacing:

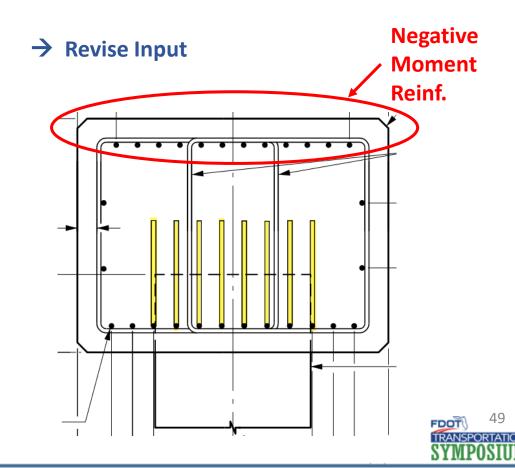
- Min. Required = 12 in.
- Min. Provided = 12 in. (on bottom face) or is 6" due to effect of pile embedment??

The spacing of GFRP reinforcing bars used as shrinkage and temperature reinforcement shall not exceed three times the slab thickness or 12 in., whichever is less.

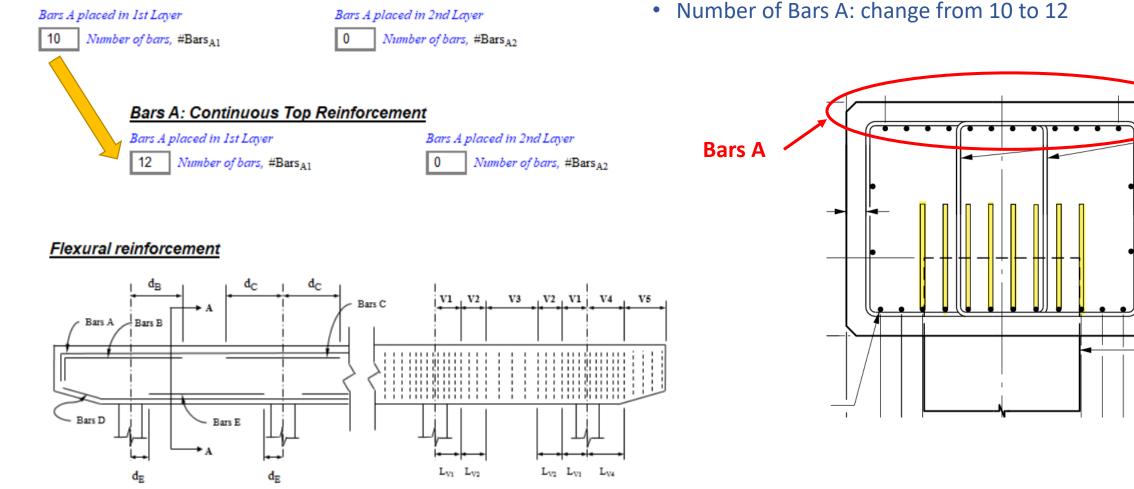
$$\rho_{f,st} = \max\left(\frac{3,132}{E_f f_{fd}}; 0.0014\right) \le 0.0036$$
(2.9.6-1)

and not less than 0.0014 (ACI, 2014). These provisions are modified accounting for the tensile modulus of elasticity and strength of shrinkage and temperature GFRP reinforcement:

$$D_{f,st} = 0.0018 \times \frac{60}{f_{fd}} \frac{29,000}{E_f} \ge 0.0014$$
 (C2.9.6-1)



Recall from our Initial Design attempt:

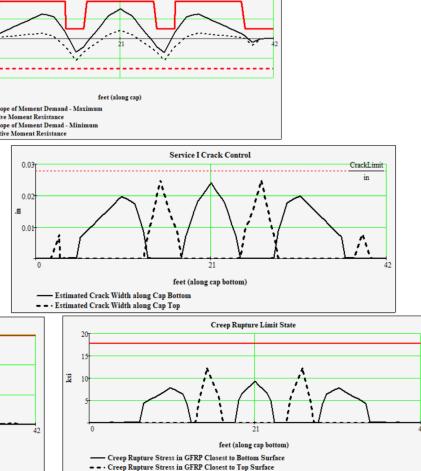

Summary of LRFD and SDG Che	ecks		
Positive Moment	Negative Moment		Save Data
$\frac{\text{Check}_{M.r.pos} = "OK"}{\max(\text{DCR}_{M.pos}) = 0.80}$	$\frac{\text{Check}_{M.r.neg} = "OK"}{\max(\text{DCR}_{M.neg})} = 0.88$	The maxim to capacity	um demand v ratio
Check _{minAf.bot} = "OK"	Check _{minAftop} = "NG"		
Check _{crack.control.bot} = "OK"	Check _{crack.control.top} = "NG, bar spacing	exceeds may	simum"
$max(CrackW_{SerI.bot}) = 0.024 \cdot in$	$max(CrackW_{\texttt{SerI.top}}) = 0.032 \cdot in$	The maxim	um crack width
$\frac{\text{Check}_{\text{creep.bot}} = "\text{OK}"}{\max(\mathbf{f}_{\text{f.SL,bot}})} = 9.36 \cdot \text{ksi}$	$\frac{\text{Check}_{\text{creep.top}} = "\text{OK}"}{\max(\mathbf{f}_{\text{f.SL.top}})} = 14.74 \cdot \text{ksi}$		um stress under load (DL+0.2LL)
Check_stigue.bot = "OK"	Check_fatigue.top = "NG"		
$max(\mathbf{f}_{f,Fat,bot}) = 12.97 \cdot \mathbf{ksi}$	$\max(\mathbf{f}_{\texttt{fFat.top}}) = 16.3 \cdot \texttt{ksi}$		um stress under L+ <mark>1.75LL.f</mark> atigue)
$C_{f} \cdot f_{fd,pos} = 14.8 \cdot ksi$	Cf:fis.neg = 14.8·ksi	Fatigue str	ress limit

• Output – Flexure (Pos. & Neg. Moment)

- Neg. for Min. Cracking Moment *No Good*
- Neg. for Service I Crack Control *No Good*
- Neg. for Fatigue Check *No Good*

Bars A: Continuous Top Reinforcement

Revise Inputs – Flexural Top Reinforcement

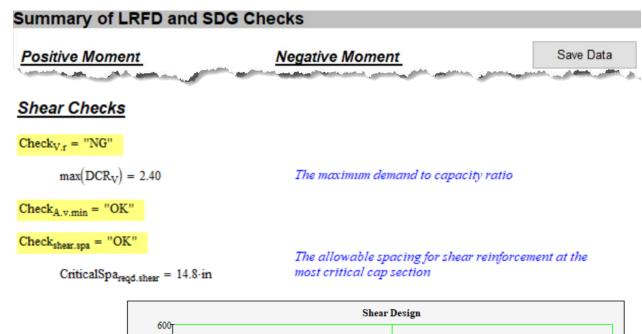

From Revised Design:

Summary of LRFD and SDG Checks

			AII OK:	
Positive Moment	Negative Moment	Save Data	1000	Flexural Design
Check _{M.r.pos} = "OK"	Check _{M.r.neg} = "OK"		500	
$max(DCR_{M,pos}) = 0.80$	$max(DCR_{M.neg}) = 0.73$	The maximum demand to capacity ratio	- 500	
Check _{minAfbot} = "OK"	Check _{minAf.top} = "OK"		- 1000	feet (along cap)
Check _{crack.control.bot} = "OK"	Check _{crack.control.top} = "OK"		Envelope of Moment E Positive Moment Resi Envelope of Moment E - • Negative Moment Res	istance Demad - Minimum
$max(CrackW_{Seri.bot}) = 0.024 \cdot in$	$max(CrackW_{SerI.top}) = 0.025 \cdot in$	The maximum crack width	0.03	Service I Crack Control
$\frac{\text{Check}_{\text{creep.bot}} = "\text{OK}"}{\max(\mathbf{f}_{\text{f.SL.bot}})} = 9.36 \cdot \text{ksi}$	$\frac{\text{Check}_{\text{creep.top}} = "\text{OK}"}{\max(\mathbf{f}_{\text{fSL.top}})} = 12.33 \cdot \text{ksi}$	The maximum stress under sustained load (DL+0.2LL)	0.02 .# 0.01	$ \land \land \land \land$
Check _{fatigue.bot} = "OK"	Check _{fatigue.top} = "OK"			
$max(f_{f:Fat.bot}) = 12.97 \cdot ksi$	$max(f_{f.Fat.top}) = 13.63 \cdot ksi$	The maximum stress under fatigue (DL+1.75LL.fatigue)	0	21 feet (along cap bottom)
$C_{f} \cdot f_{ff.pos} = 14.8 \cdot ksi$	$C_{f} \cdot f_{fd.neg} = 14.8 \cdot ksi$	Fatigue stress limit		— Estimated Crack Width along Cap Bottom • • Estimated Crack Width along Cap Top
		Fatigue Rupture Limit State		Creep Rupture Limit State
	15 10 5 5			
Part 3 – Design & AASH	TO Checks	21 feet (along cap bottom) Fatigue Rupture Stress in GFRP Closest to Bottom Surface Fatigue Rupture Stress Limit in GFRP Closest to Bottom Surface Fatigue Rupture Stress Limit in GFRP Closest to Top Surface	42	Creep Rupture Stress in GFRP Closest to Bottom Surface Creep Rupture Stress Limit in GFRP Closest to Bottom Surface Creep Rupture Stress Limit in GFRP Closest to Dots Surface Creep Rupture Stress Limit in GFRP Closest to Top Surface

Revised Output – Flexure (Pos. & Neg. Moment)

• All OK!



51

ANSPORTATION

OŤ

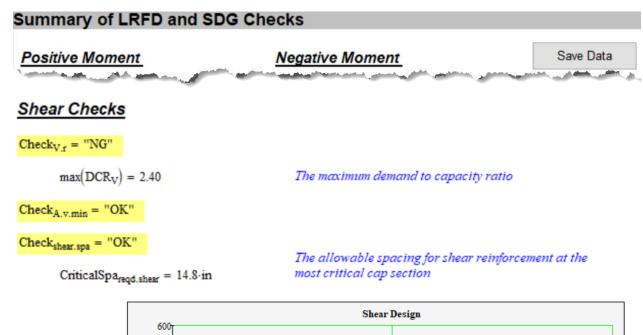
3 IMPOSI

Shear Design

Part 3 – Design & AASHTO Checks

- Check Output Shear Reinforcement
 - DCR = 2.40 ← *No Good*!
 - Revise
- Shear resistance is lower for both $V_c \& V_f$ than steel-RC design.

2.7.3.3—Nominal Shear Resistance		
The nominal shear resistance, V_n , shall be	e determined	
as:		
$V_n = V_c + V_f$	(2.7.3.3-1)	


Using Simplified Method for determining β and θ

$$V_c = 0.0316 \beta \sqrt{f'_c} b_v d_v \qquad (2.7.3.4-1)$$

• $\beta = 5.0k$

where the ratio of depth of neutral axis to reinforcement depth, k, may be calculated using Eq. 2.5.3-4.

• $\theta = 45^{\circ}$

Shear Design

Part 3 – Design & AASHTO Checks

- Check Output Shear Reinforcement
 - DCR = 2.40 ← *No Good*!
 - Revise Spacing or Size
- Shear Reinf. Design Stress is Limited by Elastic Modulus not Bent Bar Strength
 - $0.004E_f$ = 26 ksi \leftarrow Governs!
 - $(0.05r_b/d_b + 0.3)f_{fd} = 31.5$ ksi

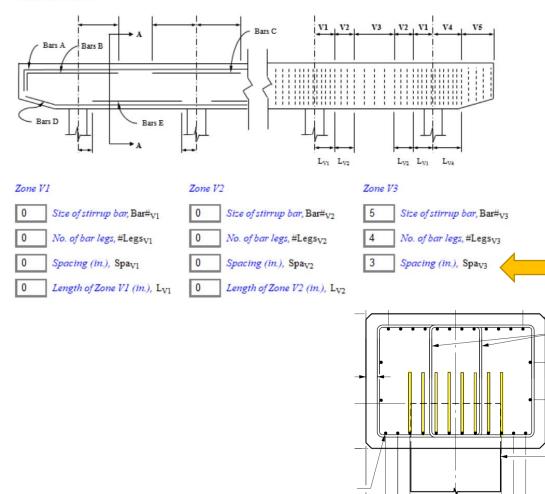
2.7.3.5—Procedure for Determining Shear Resistance Provided by Transverse Reinforcement

When using stirrups or hoops perpendicular to the longitudinal axis of the member, the nominal shear resistance provided by the transverse reinforcement, $V_{f_{2}}$, shall be calculated as:

$$V_f = \frac{A_{f\nu} f_{f\nu} d_{\nu} \cot \theta}{s}$$
(2.7.3.5-1)

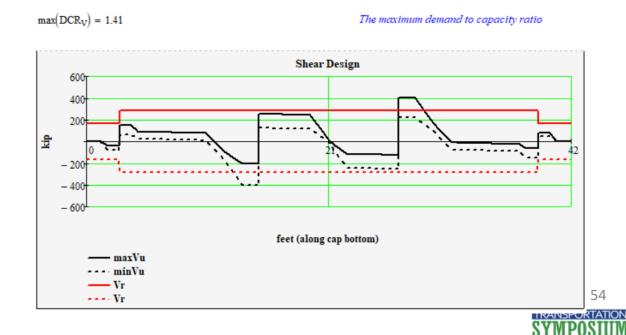
in which:

$$f_{fv} = 0.004E_f \le f_{fb} \tag{2.7.3.5-2}$$

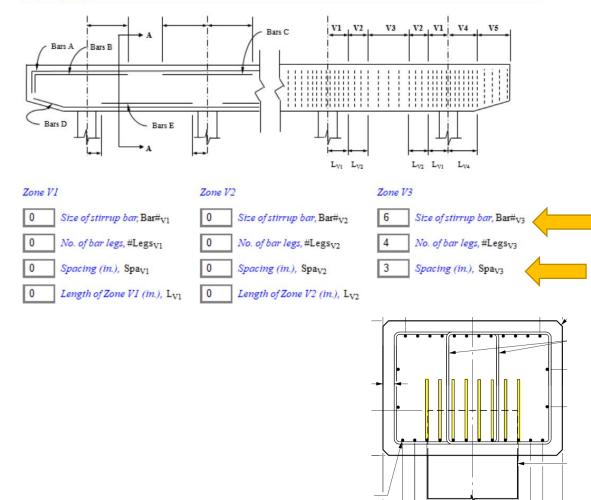

$$f_{fb} = \left(0.05 \frac{r_b}{d_b} + 0.3\right) f_{fd} \le f_{fd}$$
(2.7.3)

FDOT

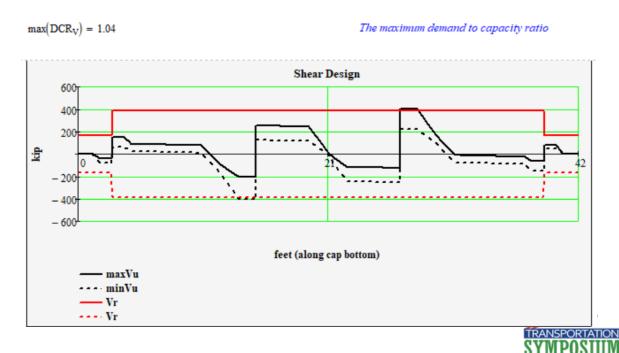
.5-3)


Shear Reinforcement

In order to maintain a level of flexibility for modeling and to allow for multiple spacings for shear reinforcement along the cap, the spacing of the stirrups over the pile (non-critical fo shear) is assumed to be the same as the first zone beyond the face of the pile.

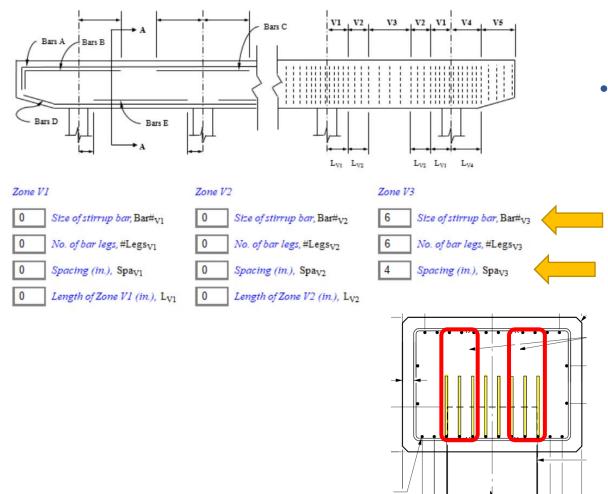

• Recall Original Inputs for Shear Reinforcement

- Zone V3 #5 @ 6" sp. (4 legs) ← *No Good*
- Zone V5 #5 @ 6" sp. (4 legs) ← OK
- Revision-1 Inputs Shear Reinforcement Zone 3
 - Try Zone V3 #5 @ 3" sp. (4 legs)
 - DCR = 1.41 ← still No Good

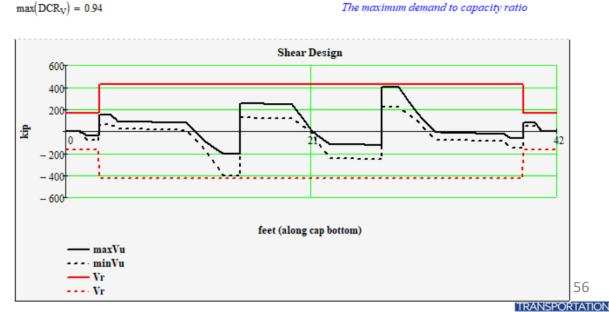


Shear Reinforcement

In order to maintain a level of flexibility for modeling and to allow for multiple spacings for shear reinforcement along the cap, the spacing of the stirrups over the pile (non-critical fo shear) is assumed to be the same as the first zone beyond the face of the pile.

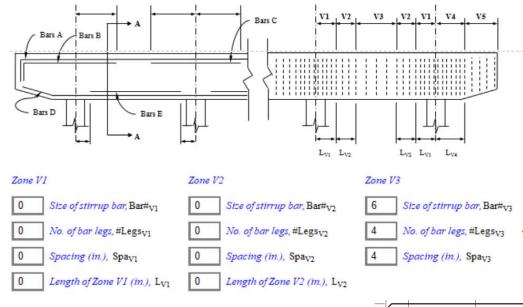

- Recall Revision-1 Inputs for Shear Reinforcement
 - Zone V3 #5 @ 3" sp. (4 legs) ← *No Good*
 - Zone V5 #5 @ 6" sp. (4 legs) ← OK
- Revision-2 Inputs Shear Reinforcement Zone 3
 - Try Zone V3 #6 @ 3" sp. (4 legs)
 - DCR = 1.04 ← *Still No Good* & too congested!

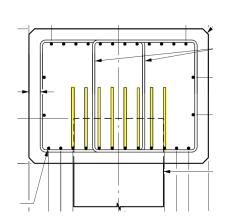
Design Example for Pile Bent Cap (3-ft height cap)


Shear Reinforcement

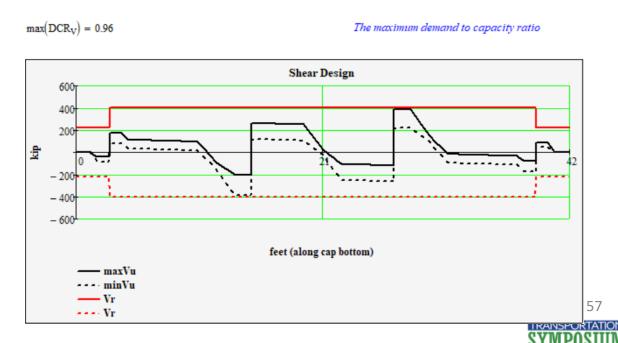
In order to maintain a level of flexibility for modeling and to allow for multiple spacings for shear reinforcement along the cap, the spacing of the stirrups over the pile (non-critical fo shear) is assumed to be the same as the first zone beyond the face of the pile.

Recall Revision-2 Inputs for Shear Reinforcement

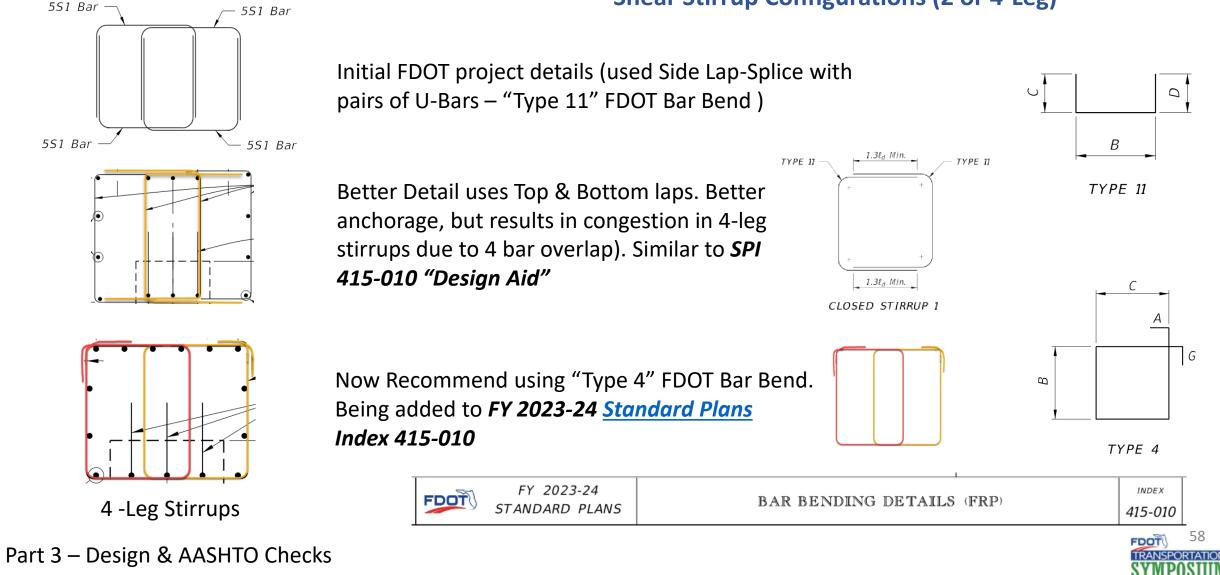

- Zone V3 #6 @ 3" sp. (4 legs) ← No Good
- Zone V5 #5 @ 6" sp. (4 legs) ← OK
- **Revision-3 Inputs Shear Reinforcement Zone 3**
 - Try Zone V3 #6 @ 4" sp. (6 legs)
 - DCR = $0.94 \leftarrow OK$, however a better design approach would be to thicken the bent cap to 4-ft.


Design Example for Pile Bent Cap (4-ft height cap)

Shear Reinforcement

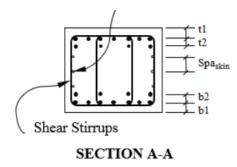

In order to maintain a level of flexibility for modeling and to allow for multiple spacings for shear reinforcement along the cap, the spacing of the stirrups over the pile (non-critical fo shear) is assumed to be the same as the first zone beyond the face of the pile.

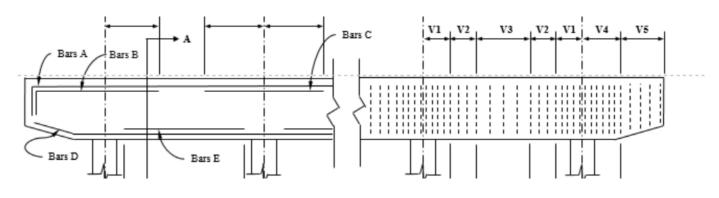
You should also be able to reduce some of the flexural reinforcing with the deeper cap!



- Recall 3-ft Cap Inputs for Shear Reinforcement
 - Zone V3 **#6** @ **4**" sp. (6 legs) ← OK
 - Zone V5 #5 @ 6" sp. (4 legs) ← OK
- Revise 4-ft Cap Shear Reinforcement Zone 3
 - Try Zone V3 #6 @ 4" sp. (4 legs)
 - DCR = 0.96 ← *OK*

Design Example for Pile Bent Cap (Shear Stirrups)

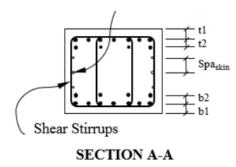

• Shear Stirrup Configurations (2 or 4-Leg)



Design Example for Pile Bent Cap (Summary)

• Comparison of different design alternates for 4-piles @ 12-ft spacing (Example 2)

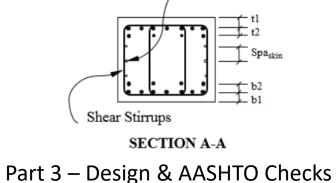
Rebar Location	GFRP-RC	GFRP-RC	Steel-RC
	3-ft Deep Cap	4-ft Deep Cap	3-ft Deep Cap
Bars A - Flexural Top	12 ~ #8's	<mark>9 ~ #8's</mark>	7 ~ #8's
	(A _f = 9.5 in²)	(A _f = 7.1 in ²)	(A _s = 5.5 in²)
Bars D & E - Flexural	15 ~ #8's	16 ~ #8's	8 ~ #8's
Bottom	(A _f = 11.9 in ²)	(A _f = 12.6 in ²)	(A _s = 6.3 in ²)
Bars V3 - Shear Stirrups	6-legs #6 at 4" sp.	4-legs #6 at 4" sp.	4-legs #5 at 9" sp.
	(A _f = 7.9 in ² /ft)	(A _f = 5.3 in ²)	(A _s = 1.7 in ²)

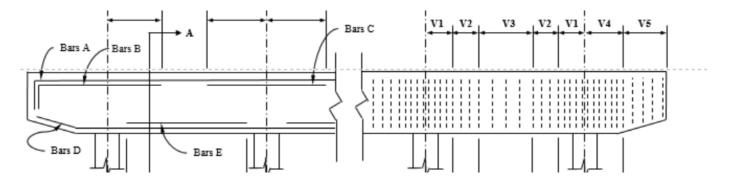


Design Example for Pile Bent Cap (Summary)

• Comparison of different design alternates for 5-piles @ 9-ft spacing (Example 1)

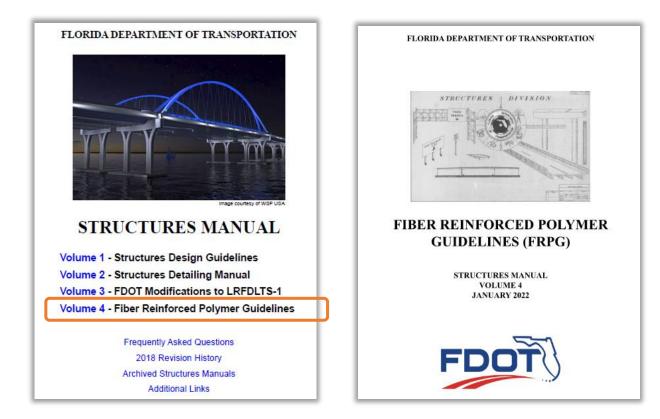
Rebar Location	GFRP-RC 3-ft Deep Cap	Steel-RC 3-ft Deep Cap
Bars A - Flexural Top	6 ~ #8's (A _f = 4.7 in ²)	6 ~ #6's (A _s = 2.6 in ²)
Bars D & E - Flexural Bottom	8 ~ #8's (A _f = 6.3 in ²)	7 ~ #7's (A _s = 4.2 in ²)
Bars V3 - Shear Stirrups	4-legs #5 at 11" sp. (A _f = 1.4 in ² /ft)	4-legs #4 at 12" sp. (A _s = 0.8 in ²)

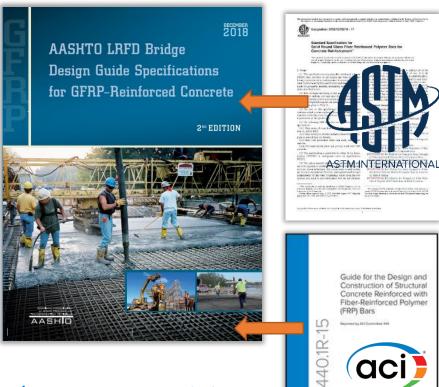

Bars A Bars B A Bars C V1 V2 V3 V2 V1 V4 V5 Bars A Bars B Bars C Bars C



Design Example for Pile Bent Cap (Summary)

 Comparison of different design alternates for 5-piles @ 9-ft spacing (Example 1) – Higher Modulus GFRP Rebar (Ef = 6,500 psi to 8,700 psi for future enhancements to ASTM D7957)


Rebar Location	GFRP-RC	GFRP-RC	GFRP-RC
	3-ft Deep Cap	3-ft Deep Cap	3-ft Deep Cap
	(<i>E_f</i> = 6500 ksi)	(E _f = 7250 ksi)	(E _f = 8700 ksi)
Bars A - Flexural Top	6 ~ #8's	7 ~ #7's	6 ~ #7's
	(A _f = 4.7 in ²)	(A _f = 4.2 in ²)	(A _f = 3.6 in ²)
Bars D & E - Flexural	8 ~ #8's	7 ~ #8's	6 ~ #8's
Bottom	(A _f = 6.3 in ²)	(A _f = 5.5 in²)	(A _f = 4.7 in ²)
Bars V3 - Shear Stirrups	4-legs #5 at 11" sp.	4-legs #5 at 13" sp.	4-legs #4 at 10" sp.
	(A _f = 1.4 in ² /ft)	(A _f = 1.1 in ² /ft)	(A _f = 1.0 in ² /ft)
,			



Review: Design guidance & resources

• FDOT Design Guidance – FRPG Chapter 2

• AASHTO Design Guide Specifications for GFRP-RC

https://www.fdot.gov/structures/structuresmanual/currentrelease/structuresmanual.shtm

Part 4 - Review

Review: Design guidance & resources

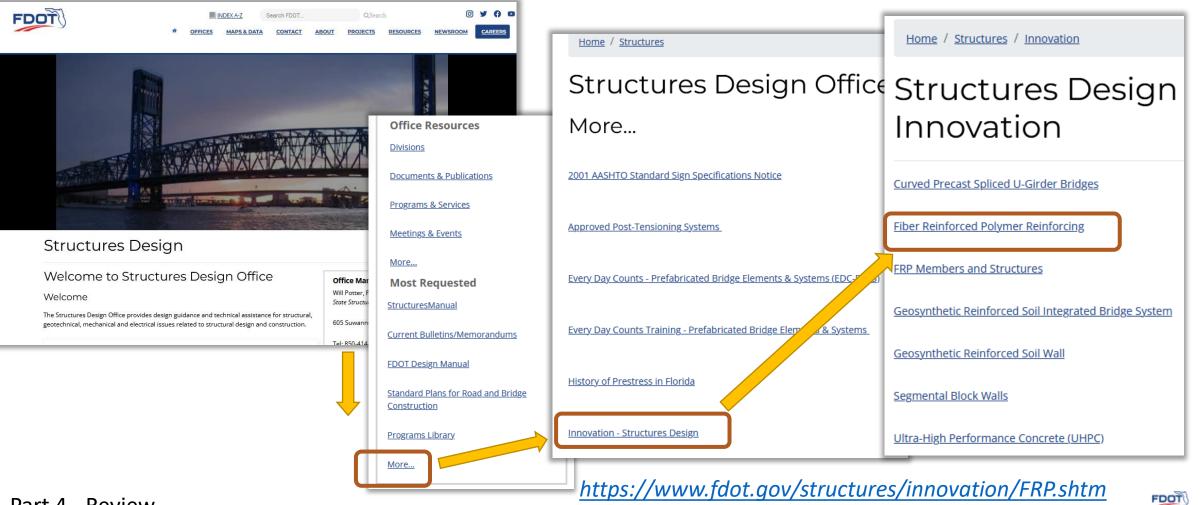

Materials & Construction

Materials Acceptance and Certification System

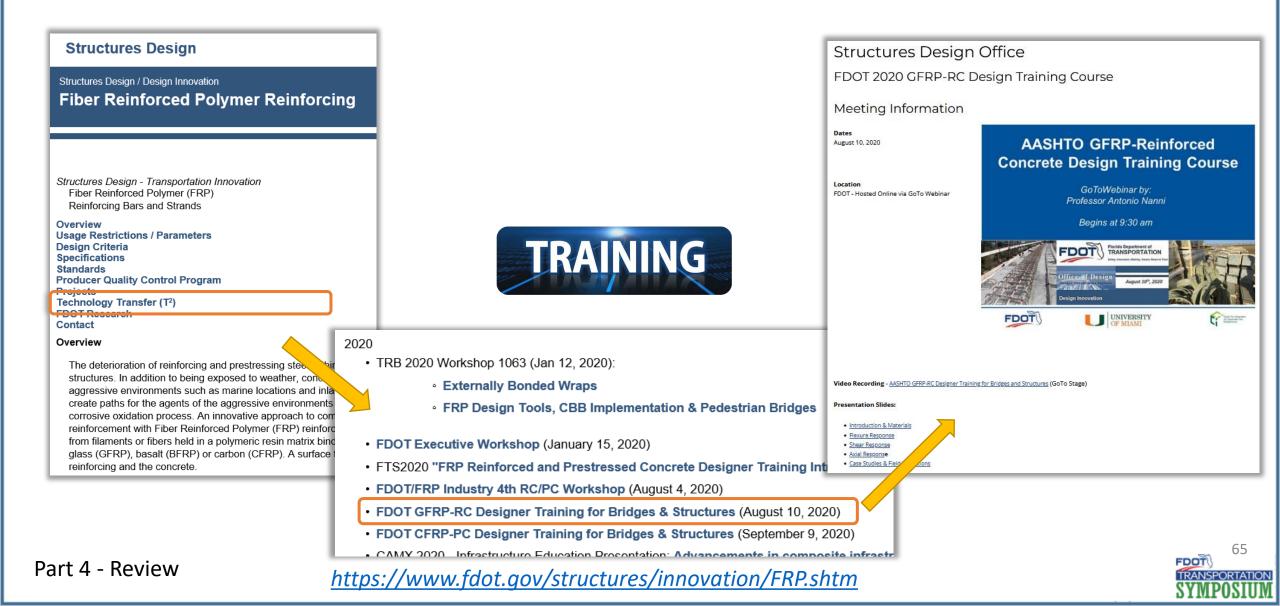
t Report to View	
oduction Facility	
Aggregate Production Facility Listing	Lists all Aggregate Production Facilities
All Producers (Excel)	Lists all non-expired Production Facilities in an Excel
Approved Aggregate Products For Friction Course	Lists all Aggregate Friction Course Products by Geole
Approved Aggregate Products From Mines or Terminals Listing	Lists Approved Aggregate Products for Mines or Terr
Approved Products at Expired Mines or Terminals	A summary report to identify Approved Products at E
	Terminals Expired at Mine
Asphalt Production Facility Listing	Lists all Asphalt Production Facilities
Asphalt Recycled Products	Approved Asphalt Recycled Products Report by Plan
Asphalt Targets	A listing of the asphalt gradation and gravity (Gsb) da
Cementitious Materials Production Facility Listing	Lists Cementitious Materials Production Facilities
Coatings Production Facility Listing	Lists all Coatings Production Facilities
Fiber Reinforced Polymer Production Facility Listing	Lists all Fiber Reinforced Polymer Production Facilitie

https://mac.fdot.gov/smoreports

Sections 415, 450, 932-3 & 933


<u>https://www.fdot.gov/programmanagement</u> /Implemented/SpecBooks/default.shtm

Part 4 - Review


Where to find more FRP-RC info & training

https://www.fdot.gov/structures

Part 4 - Review

Where to find more FRP-RC training

FDOT 2020 GFRP-RC Design Training Course

6-Hour Recorded Webinar Course

https://www.fdot.gov/structures/innovation/fdot-2020-gfrp-rc-design-course

GFRP-Reinforced Concrete Design for Bridges

AASHTO GFRP-Reinforced Concrete Design Training Course

Lead Speaker: Prof. Antonio Nanni Co-Speaker: Dr. Francisco De Caso

Department of Civil, Architectural & Environmental Engineering University of Miami

Questions

is worth losing a life over.

Contact Information

Steven Nolan, P.E. FDOT State Structures Design Office, 605 Suwannee St, Tallahassee, FL. 32399 <u>Steven.Nolan@dot.state.fl.us</u> **Ge Wan, P.E.** FDOT State Structures Design Office, 605 Suwannee St, Tallahassee, FL. 32399 <u>Ge.Wan@dot.state.fl.us</u>

