

Structures Research Update

Christina Freeman

Structures Research Center

- Large Scale Structures Research
 - In-House
 - University/Consultant
- Bridge Load Testing/Rating and Monitoring

20-TON

As Part of the Research Project: *Replaceable Unbonded Tendons for Post-Tensioned Bridges*

Diabolo Deviator Simulation with Flexible Filler

Test Beam

Source: Hamilton et al. *Replaceable Unbonded Tendons for Post-Tensioned Bridges*. UF, 2017.

ETAG 013 Fatigue Test

Source: Hamilton et al. Replaceable Unbonded Tendons for Post-Tensioned Bridges Presentation. UF, 2017.

Source: Hamilton et al. Replaceable Unbonded Tendons for Post-Tensioned Bridges Presentation. UF, 2017.

Test Results

SYMPOSIU

Dissection: HDPE Thickness

Source: Hamilton et al. Replaceable Unbonded Tendons for Post-Tensioned Bridges Presentation. UF, 2017.

Post-testing Strand Test

Source: Hamilton et al. Replaceable Unbonded Tendons for Post-Tensioned Bridges Presentation. UF, 2017.

Techniques to Remove Defective Grout

Source: TranSystems "Summary of Findings for Bridge No. 720677" 2012.

Wonderwood Bridge

Two Treatment Methods

Hydrodemolition

• Remove and replace soft grout

Drying

 Remediate soft grout and leave in place

Source: Hamilton et al. *Evaluation of Techniques for Removal of Defective Grout from Post-Tensioning Tendons Presentation*. UF, 2017.

Hydrodemolition Test Setup 10 PC 15 PC(B) 30 PC(A) 5 PC 15 PC(A Target

Source: Hamilton et al. *Evaluation of Techniques for Removal of Defective Grout from Post-Tensioning Tendons Presentation*. UF, 2017.

Hydrodemolition Trial

Source: Hamilton et al. *Evaluation of Techniques for Removal of Defective Grout from Post-Tensioning Tendons Presentation*. UF, 2017.

Hydrodemolition Dissection

Drying Trial Setup

Drying Trial

Source: Hamilton et al. *Evaluation of Techniques for Removal of Defective Grout from Post-Tensioning Tendons Presentation*. UF, 2017.

Drying Trial

Source: Hamilton et al. *Evaluation of Techniques for Removal of Defective Grout from Post-Tensioning Tendons Presentation*. UF, 2017.

Measurement

Source: Hamilton et al. *Evaluation of Techniques for Removal of Defective Grout from Post-Tensioning Tendons Presentation*. UF, 2017.

Findings

- Negligible moisture content in soft grout of drying specimen
- Reduced moisture content in good grout of drying specimen
- Inefficient moisture removal beyond outlet
- Corrosion during drying

Source: Hamilton et al. *Evaluation of Techniques for Removal of Defective Grout from Post-Tensioning Tendons Presentation*. UF, 2017.

Wonderwood Bridge

Bridge Girder Alternatives for Extremely Aggressive Environments

Hybrid FRP/Concretefilled U-Girder

Hybrid FRP/Concrete-filled Tube

0.98

0.98

2/ 72 77 81

36.00 33.94 11.28

 $A_{a,a,b} = 5.36 \text{ in}^2$

 $A_{2 \text{ flanges}} = 7.44 \text{ in}^2$

I_{yy} = 31.8 in⁴

= 10.6 in³

r_w = 1.52 in

Weight = 11.2 lbs/lf

r_{xx} = 12.9 in

 $= 91.2 \text{ in}^2$

 $A_{2 \text{ webs}} = 50.1 \text{ in}^2$

 $A_{2 \text{ flanges}} = 34.0 \text{ in}^2$ $I_{ac} = 2626 \text{ in}^4$

, , = 292 in³

 $r_{yy} = 5.37$ in Weight = 70 lbs/lf

Pultruded Double Web I-Beam

Conceptual Design

- 32 ft clear roadway width
- 8 in thick cast-in-place RC deck
- Simply supported span lengths: 30', 40', 50', 60' & 75'
- Variable girder spacing ($N_b = 5$ through $N_b = 12$)

Source: Brown et al. Bridge Girder Alternatives for Extremely Aggressive Environments, Embry-Riddle, 2018.

Hybrid Concrete-Filled FRP U-Girder

Load Ratings for FDOT Flat Slab Bridges

Past Work

- Contribution from Parapet
- Various Simple Equations for Distribution:
 - AASHTO LRFD Bridge Design Specifications (based on NCHRP Project 12-26)
 - AASHTO Standard Specifications
 - Amer and Arockiasamy Equations
 - University of Delaware Center for Innovative Bridge Engineering

Bridge Testing

Test Result Comparison to AASHTO

Wind Effects on Mast Arms

Drag Coefficient

Revised Drag Coefficient

FDOT Proposed Implementation

$$C_{di} = \begin{cases} 0.8 \\ \frac{1.2(1.33) \left(\frac{h}{D}\right)^2}{1.2 \left(\frac{h}{D}\right)^2 + 1.44 \left(\frac{h}{D}\right)} \\ 1.2 \end{cases}$$

for
$$1.82 < \frac{h}{D} < 11.1$$

for
$$h/D \ge 11.1$$

for $h/_{\rm D} \leq 1.82$

Hardware Modification Concepts

Source: Bridge et al. Wind Effects on Mast Arms Presentation, UF, 2018.

FDOT TRANSPORTATION SYMPOSIUM

Ultra-High Performance Concrete

UHPC Material Properties

- Fiber Reinforced (2%)
- Portland Cement Product
- Water to cementitious ratio < 0.25
- Compressive Strength > 21.7 ksi
- Tensile Strength > 0.72 ksi
- Enhanced Durability

UHPC Connection Use

Source: www.fhwa.dot.gov

Mixing

Testing and Placement

Florida Slab Beam (FSB) with Ultra-High Performance Concrete (UHPC) Joint Connections

Source: Garber & Chitty Presentation, SRUT 2017

Source: Garber & Chitty Presentation, SRUT 2017

FDOT TRANSPORTATION SYMPOSIUM

Test Specimen Casting

Control Specimen Test

Large Scale Testing

Source: Garber & Chitty Presentation, SRUT 2017

Ultra-High Performance Concrete (UHPC) Large Bar Splice

Substructure Accelerated Construction

Source: Edison Bridge Plans, US 90 Over Little River Bridge Plans

UHPC Large Bar Splice Connections

UHPC Substructure Connection

FDOT TRANSPORTATION SYMPOSIUM

Source: UHPC Connections for ABC presentation by Graybeal

Previous Splice Testing

Source: FHWA-HRT-14-090, Development length of reinforcing bars in UHPC: An experimental and analytical investigation by Ronanki, Valentim and Aaleti

Blind Casting

Hooper Road over US 17C in Union, New York

Source: UHPC Connections for ABC presentation by Graybeal

UHPC Large Bar Splice Testing

Upcoming Research

- Macro Synthetic Fiber Reinforcement for Improved Structural Performance of Concrete Bridge Girders
- Shear Friction Capacity of Corrugated Pipe Connection in Precast Footings
- Stainless Steel Strands and Lightweight Concrete for Pretensioned Concrete Girders
- Fiber-Reinforced Concrete Traffic Railings for Impact Loading
- Straight Steel I-girder Bridges with Skew Index Approaching 0.3
- Flexural Capacity of Concrete Elements with Unbonded and Bonded Prestressing
- Shear Behavior of Webs Post-Tensioned with Tendons Containing Flexible Fillers

Questions?

Christina Freeman, P.E.

(850) 921-7111

Christina.Freeman@dot.state.fl.us