

FRP Reinforced Concrete Design

Presented by:Rick Vallier, P.E.FDOT Structures Design Office

Hypothetical Bridge Replacement Project

Structure in an **Extremely Aggressive** marine environment

- Plans Preparation Manual (PPM) 2.10.1
 <u>Vertical clearance</u> for concrete
 superstructure over extremely
 aggressive environments is 12 ft. above
 the Mean High Water (MHW).
- Structures Design Guidelines (SDG) 1.4.2
 <u>Concrete cover</u> requirements in extremely aggressive environments.
- Structures Design Guidelines (SDG) 1.4.3
 <u>Admixtures</u> for Corrosion Protection: fly ash, slag, silica fume, metakaolin, ultrafine fly ash to reduce permeability.

Alternatives to Carbon Steel Reinforcement

This type of project needs to be considered for **corrosion resistant** materials.

Two alternatives to carbon steel as concrete reinforcement for corrosion resistance on FDOT projects are:

Stainless Steel

Bar (Spec. 931)
Strand – HSSS (Spec. 933)

FRP Reinforcement
Bar – GFRP (Spec. 932) CFRP (Spec. 932)
Strand – CFRP (Spec. 933)

Alternatives to Carbon Steel Reinforcement

This type of project needs to be considered for **corrosion resistant** materials.

Two alternatives to carbon steel as concrete reinforcement for corrosion resistance on FDOT projects are:

Stainless Steel

Bar (Spec. 931)
Strand – HSSS (Spec. 933)

 FRP Reinforcement
 Bar – GFRP (Spec. 932) CFRP (Spec. 932)
 Strand – CFRP (Spec. 933)

2017

FDOT Spec. 932-3.2 Bar Sizes and Loads

	Table 3-1 Sizes and Tensile Loads of FRP Reinforcing Bars						
Bar Size Designation	Nominal Bar Diameter	Nominal Cross Sectional	Measured Cross	-Sectional Area	Minimum Guaranteed Tensile Load (kips)		
	(in)	Area (in ²)	Minimum	Maximum	GFRP Bars	CFRP Bars	
2	0.250	0.049	0.046	0.085	6.1	10.3	
3	0.375	0.11	0.104	0.161	13.2	20.9	
4	0.500	0.20	0.185	0.263	21.6	33.3	
5	0.625	0.31	0.288	0.388	29.1	49.1	
6	0.750	0.44	0.415	0.539	40.9	70.7	
7	0.875	0.60	0.565	0.713	54.1	-	
8	1.000	0.79	0.738	0.913	66.8	-	
9	1.128	1.00	0.934	1.137	82.0	-	
10	1.270	1.27	1.154	1.385	98.2	-	

Characteristics of FRP Reinforcement:

- Polymer resin matrix relatively weak
 - Bond force is transferred through resin to fibers
 - Shear resistance is considered relatively weak
- Low compressive strength of FRP
 - Design of FRP reinforcement to resist compression is not recommended
- Modulus of Elasticity is low
 - Due to lower stiffness, serviceability often controls the design
- Creep-rupture threshold is low
 - Constant tension can cause fibers to fail after a period of time called the endurance time
 - GFRP is considered more susceptible than CFRP

FRP Bar <u>Mechanical Characteristics</u> Influenced By: Pre-Construction

- Manufacturing Process
- Rate of Curing
- Quality and Quantity of Constituents

Construction and Post-Construction

- Moisture
- Oltraviolet Exposure
- Elevated Temperature
- Alkaline, Acidic, Saline Solutions

Characteristics of FRP Reinforcement:

- Coefficient of thermal expansion is different in the longitudinal and radial directions
 - Potential for splitting cracks within concrete under temperature increase if concrete confining action is insufficient
 - Ratio of cover to bar diameter greater than 1.6 is considered sufficient to avoid cracking under high temperatures up to 175°F

Coefficient of Thermal Expansion x 10 -6/°F						
Direction	Steel	GFRP	CFRP	Concrete		
Longitudinal	6.5	3.3 to 5.6	-4.0 to 0.0	4 to 6		
Transverse	6.5	11.7 to 12.8	41 to 58	4 to 6		
From ACI 440.1R-15,	2017 Pesign Training					

Expo

Characteristics of FRP Reinforcement:

• Endurance time in fire and elevated temperature less than for steel

- Reinforcement type, aggregate type, and concrete cover will influence fire performance
- Tensile, compressive, and shear properties of the resin material diminish as temperature approaches the glass transition temperature (Tg).

Property	Test Method	Requirement
Glass Transition	ASTM E1640 (DMA) or	≥230°F
Temperature (Tg)	ASTM E1356 (DSC)	≥212°F

Specification 932-3 <u>http://www.fdot.gov/programmanagement</u>

Characteristics of FRP Reinforcement:

- Life cycle costs likely lower where steel corrosion is a concern
- Admixtures for corrosion protection may not be needed:
 - Silica Fume Ultrafine Fly Ash
 - Metakaolin
 Calcium Nitrite
- Transportation costs lower and handling easier for FRP due to light weight
- Concrete cover reduction is allowed

Characteristics of FRP Reinforcement:

Bent Bars

- FRP is pultruded from thermoset resin
- FRP is fabricated with bends
 - Sharp bends can be manufactured, but avoid due to potential failure
 - Radius / Bar Diameter ≥ 3
 - Tail Length = 12 x Bar Diameter
 - Field bending not permitted
- Developmental Design Standard
 D21310 Bar Bending Details

From Developmental Design Standard D21310:

Crinkling of Inner Fibers

To Bend FRP Bars:

Bent Bars

- 1) During the pultrusion process, prevent polymerization of the resin at sections to be bent.
- 1) Bend the section by hand.
- 2) Place in an oven to complete polymerization.

Flexural Strength Design Philosophy Steel Reinforced Concrete Design

- Tension-Controlled Behavior
- Yielding of Steel Prior to Concrete Crushing Provides Ductility and Warning of Distress

FRP Reinforced Concrete Design

- Tension-Controlled Behavior
 - FRP Rupture
- Compression-Controlled Behavior
 - Concrete Crushing prior to FRP Rupture
- o Margin of Safety is Higher than for Steel Reinforced Design

Design Assumptions

- Plane sections remain plane
- Flexural strength using equivalent rectangular concrete stress distribution
- Compressive strain in concrete assumed to be 0.003
- Tensile strength of concrete is ignored
- Perfect bond exists between concrete and FRP reinforcement
- o Tensile behavior of FRP reinforcement is linear elastic until failure
- Compressive strength of FRP reinforcement is ignored

Flexural Strength

Concrete:

Compressive Strength

No. 8 GFRP – Based on Spec. 932: Nominal Bar Area

Minimum Modulus of Elasticity $E_f = 6,500$ Minimum Guaranteed Tensile Load 66.8 kips

Guaranteed Tensile Strength f_{fu} * = 66.8 kips / 0.79 in² = 84.5 ksi

$$A_f = 0.79 \text{ in}^2$$
 14.5"
 $E_f = 6,500 \text{ ksi}$

f'c = 5.5 ksi

Flexural Strength

- C_E = Environmental Reduction Factor = 0.7 (ACI 440.1R-15: Concrete Exposed to Weather)
- f_{fu} = Design Tensile Strength of FRP

Flexural Strength

		Steel		
Qty. of No. 8 Bars	2	3	4	2
ρ	0.01090	0.01635	0.02179	0.01090
ρ balanced	0.01519	0.01519	0.01519	0.03574
Control	Tension	Transitioning	Compression	Tension
φ	0.55	0.57	0.65	0.9
Mn (kip-ft)	102	146	163	107
фMn (k-ft)	56	83	106	96

Flexural Strength

		Steel		
Qty. of No. 8 Bars	2	3	4	2
ρ	0.01090	0.01635	0.02179	0.01090
ρ balanced	0.01519	0.01519	0.01519	0.03574
Control	Tension	Transitioning	Compression	Tension
φ	0.55	0.57	0.65	0.9
Mn (kip-ft)	102	146	163	107
φMn (k-ft)	56	83	106	96
				2017

Design Trainin

Cracking AASHTO LRFD Bridge Design Guide Specifications for GFRP-Reinforced Concrete Bridge Decks and Traffic Railings

w = maximum crack width Crack Width Limit = 0.02 in.

$$w = 2\frac{f_{f,s}}{E_f}\beta k_b \sqrt{d_c^2 + \frac{s^2}{4}}$$

ACI 440.1R-15

S max = maximum bar spacing

$$s_{max} = 1.15 \frac{E_f w}{f_{fs} k_b} - 2.5 c_c \le 0.92 \frac{E_f w}{f_{fs} k_b}$$

Deflection Deflections in FRP Reinforced members tend to be greater in magnitude than structures reinforced similarly with steel.

Creep Rupture & Fatigue

ACI 440.1R-15

Limit Stress Levels:

Fiber type	GFRP	CFRP
Creep rupture stress limit $f_{fs,sus}$	$0.20 f_{fu}$	$0.55 f_{fu}$

f fs,sus = stress level induced in FRP by sustained service loads

$$f_{fs,sus} = M_{s,sus} \frac{n_f d(1-k)}{I_{cr}}$$

Similar to Fatigue evaluation.

Shear Strength

ACI 440.1R-15

Resistance factors (ϕ) for shear = 0.75

Minor modification due to lower stiffness of FRP than steel.

$$V_f = \frac{A_{fv} f_{fv} d}{s}$$

$$V_c = \left(\frac{5}{2}k\right) 2\sqrt{f_c'} b_w d$$

$$f_{fv} = 0.004 E_f \leq f_{fb}$$

Cost Comparison (Installed Price)

Bar Size	Nominal Diameter	Average Unit Costs of Three Bidders on the Halls River Bridge Project			res Manual for Estimating
Size	Diameter	GFRP Bar	CFRP Bar	Grade 60 Steel Bar	Stainless Steel
#4	0.500"	\$1.18 / LF	\$7.99 / LF	\$0.60 / LF	\$2.72 / LF
#5	0.625"	\$1.37 / LF	\$8.34 / LF	\$0.94 / LF	\$4.19 / LF
#6	0.750"	\$1.55 / LF	-	\$1.35 / LF	\$5.98 / LF
#8	1.000"	\$2.54 / LF	-	\$2.40 / LF	\$10.74 / LF

Note: There is not 1:1 substitution of FRP for steel bars. Black steel bar based on \$0.90 / Ib for all bar sizes. Stainless steel bar based on \$4.00 / Ib for all bar sizes.

Topic No. 625-020-018

January 2017

FLORIDA DEPARTMENT OF TRANSPORTATION

FDOT STRUCTURES MANUAL

- Volume 1 Structures Design Guidelines
- Volume 2 Structures Detailing Manual
- Volume 3 FDOT Modifications to LRFDLTS-1
- Volume 4 Fiber Reinforced Polymer Guidelines

http://www.fdot.gov/structures

FDOT Design Criteria for FRP:

Vol. 1 – SDG

- Bearing Piles 3.5
- Fender Systems 3.14
- Structural Fiber Reinforcement 3.17
- BDR Cost Estimating 9.2
 - o Bearing Piles
 - Sheet Pile
- Vol. 2 SDM
- Fender Systems 24
- Vol. 4 FRPG
- Reinforcing Bars 2
- Strands 3
- Strengthening 4
- Pultruded Shapes 5
- VIP Shapes 6
- Thermoplastic Shapes 7

FDOT Design Criteria for using FRP Composites:

The Structures Manual implements **basic design guidelines** for FRP composites in specific applications.

As is the case with all structural materials, the engineer must practice the *appropriate standard of care* when designing components using FRP composites.

Research and field implementation of FRP materials is ongoing and design recommendations continue to evolve.

Completion Date	Title	Researcher	Institution	Research No.
5/31/2018	Performance Evaluation of GFRP Reinforcing Bars Embedded in Concrete Under Aggressive Environments	R. Kampmann	FSU	BDV30 977-18
3/31/2018	Degradation Mechanisms and Service Life Estimation of FRP Concrete Reinforcements	A. El Safty	UNF	BDV34 977-05

http://www.fdot.gov/research

Halls River Bridge Replacement Project Homosassa, Florida http://www.fdot.gov/structures/innovation/FRP.shtm

Volume 4 - Fiber Reinforced Polymer Guidelines (FRPG)

Unless otherwise stated within the FRPG, the **use of FRP composites requires approval** of the State Structures Design Office.

Obtain concept approval before proceeding with any design effort.

After concept is approved, submit the design to the State Structures Design Office for review.

PPM 26.3.2: Structures with any component designed using FRP composite materials is a Category 2 Structure.

Volume 4 - Fiber Reinforced Polymer Guidelines (FRPG) – Sections 2 & 3 Permitted use of FRP reinforcement **without** prior approval by the State Structures Design Engineer:

 GFRP/CFRP reinforcing bars used for expansion joints in junction slabs when paired with a keyed joint

CFRP/GFRP Prestressed Concrete
 Bearing Pile
 Design Standards (22600 Series)
 CFRP/GFRP Prestressed Concrete

Sheet Pile Wall

Design Standard 22440

ALTERNATE STRAND PATTERNS

4 ~ <mark>0.6" Ø, CFRP 7-Strand</mark>, at 42 kips

4 ~ <mark>½" Ø, CFRP Single-Strand,</mark> at 41 kips

2017

From Design Standard 22612 12" Pile Cross Section

Volume 1 – Structures Design Guidelines – Table 3.5.1-1

			Minimum Square Pile Size (inches)		Minimum Cylinder	Material Properties for All Pile Sizes ¹		
Pile Location		Vehicular Bridges	Pedestrian Bridges & Fishing Piers	Pile Diameter (inches)	Strand Type	Spiral Type	Reinforcing Bar Type	
	On land or in water in	Widenings	24 ²	18	54	Carbon steel, Spec 933	Carbon steel, Spec 931	Carbon steel, Spec 931
	environments that are		24 ³	18 ³	54 ³	Carbon steel, Spec 933	Carbon steel, Spec 931	Carbon steel, Spec 931
Pile Bents		sive Construction	18	14	54	CFRP, Spec 933 Stainless steel	CFRP, Spec 932 Stainless steel,	GFRP or CFRP, Spec 932 Stainless steel,
	chlorides					Spec 933	Spec 931	Spec 931
	On land or ir other envi		18	14	54	Carbon steel, Spec 933	Carbon steel, Spec 931	Carbon steel, Spec 931
Footings	mudline) in env are Extremel	y Aggressive	24 ²	18	54	Carbon steel, Spec 933	Carbon steel, Spec 931	Carbon steel, Spec 931
	On land or in w or mudline) enviror	in all other	18	14	54	Carbon steel, Spec 933	Carbon steel, Spec 931	Carbon steel, Spec 931

2017

esian Tra

Volume 1 – Structures Design Guidelines – Table 3.5.1-1

Pile Location		Minimum Square Pile Size (inches)		Minimum Cylinder	Material Properties for All Pile Sizes ¹			
			Pedestrian Bridges & Fishing Piers	Pile Diameter (inches)	Strand Type	Spiral Type	Reinforcing Bar Type	
	On land or in water in	Widenings	24 ²	18	54	Carbon steel, Spec 933	Carbon steel, Spec 931	Carbon steel, Spec 931
	environments that are		24 ³	18 ³	54 ³	Carbon steel, Spec 933	Carbon steel, Spec 931	Carbon steel, Spec 931
Pile Bents	Extremely Aggressive	New Construction	18	14	54	CFRP, Spec 933	CFRP, Spec 932	GFRP or CFRP, Spec 932
	due to chlorides				0.	Stainless steel, Spec 933	Stainless steel, Spec 931	Stainless steel, Spec 931
	On land or ir other envi	n water in all ironments	18	14	54	Carbon steel, Spec 933	Carbon steel, Spec 931	Carbon steel, Spec 931
Footings	mudline) in env are Extremel	y Aggressive	24 ²	18	54	Carbon steel, Spec 933	Carbon steel, Spec 931	Carbon steel, Spec 931
	On land or in w or mudline) enviror	in all other	18	14	54	Carbon steel, Spec 933	Carbon steel, Spec 931	Carbon steel, Spec 931

201

esian Tra

Volume 4 - Fiber Reinforced Polymer Guidelines (FRPG) – Section 2 See FRPG for permitted use **when approved by the State Structures Design Engineer:**

- Approach Slabs
- Bridge Decks
- Bridge Overlays
- Cast-in-Place Flat Slab
 - Superstructure
- Pile Bent Caps not in direct contact with water
- Pier Columns and Caps not in direct contact with water

- Retaining Walls, Noise
 Walls, Perimeter Walls
- Traffic Railings
- Pedestrian/Bicycle Railings
- Bulkheads and Bulkhead
 Copings
- o MSE Wall Panels
- Drainage Structures
- Concrete Sheet Piles

Note: Other locations will be considered on a case-by-case basis.

FDOT Structures Manual – Vol. 4 FRPG 2.3

Concrete Cover Requirements in Extremely Aggressive Environments

Component	FRP Cover Requirements	Steel Cover Requirements
External Surface Cast Against Earth	3 in.	4.5 in.
Box Culverts	2.5 in.	3 in.
C.I.P. Cantilever Retaining Walls	2.5 in.	3 in.
MSE Walls	2 in.	3 in.
Bulkheads and Sheet Pile Caps	3 in.	4 in.

esian Tra

See FDOT Structures Manual for cover requirements for other components. http://www.fdot.gov/structures

GFRP/CFRP Reinforcing Bars – Section 2 – Design Criteria

Design **concrete members** with FRP reinforcement according to:

- ACI 440.1 Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars
- ACI 440.4 Prestressing Concrete Structures with FRP Tendons

Design Bridge Decks according to:

AASHTO LRFD Bridge Design Specifications for GFRP-Reinforced
 Concrete Bridge Decks and Traffic Railings

Use FRP Mechanical Properties per:

• FDOT Specifications Section 932-3 FRP Reinforcing Bars

Thank You

Rick Vallier, P.E. FDOT Structures Design Office <u>Rick.Vallier@dot.state.fl.us</u> www.fdot.gov

Florida Department of TRANSPORTATION

