Session 2: GFRP Bar Manufacturer's Installer's, & Supplier's Perspective

(3:20 - 5:20pm)

Presentations (3 @ 10 mins)

2.1 – B&B FRP Manufacturing Unique Projects (Borna Hajimiragha)

2.2 - Owens Corning Lessons Learned (Doug Gremel)

2.3 – GFRP Quality Control (Xavier Seynave)

Discussion 2.4 (90 mins)

Prepared by Borna Hajimiragha CEO Alejandro Avendaño Engineering Director January 2019

Repair of Damaged Bent Caps & Columns Using SCC & GFRP Rebar

"South Corridor" in Panama, Panama

- Inaugurated in 2000
- **1.5 miles**
- o 6 lanes
- NU1350 girders, five foot deep pile cap, 4 x 48" Diameter columns
- Road Concession Toll road. Bought back by government in 2015

"South Corridor" in Panama, Panama

Initial Condition

- Highly Aggressive Environment
- Spalling in NU girders and in pile caps
- Columns have longitudinal cracks consistent with corrosion damage
- o Concrete design strength
 - o Columns 2500 psi
 - o Pile Caps 4500 psi

Initial Condition

Left: damage at underside of bent caps, Right: close-up of broken corner of stirrup

About the Rehabilitation Project

- o 14M USD project
- Design & Build awarded to ICONSA
- o 21 months
 - 3 months of evaluation and design of retrofits: concrete cores for strength, chloride contents, corrosion rate, corrosion potential, carbonation
 - o 18 months of rehab works
- Seabed is dry during low tides for about 6 hours
- No daytime traffic closures allowed
- Three main activities:
 - o Column Rehab
 - \circ Bent cap
 - o Superstructure

GFRP Rebar Properties

Specimens details and test results for Lot #1 GFRP bar #3.

Lot #1 GFRP bar #3																	
Sample #	Testing date	Test duration	φ	d	A	L al	L	L _{a2}	L _t	L_g	<i>P</i> _{<i>u</i>}	f_u	ε _u	Ε	Ult. Elongation	Notes	
		min	mm	mm	mm^2	mm	mm	mm	mm	mm	kN	MPa	mm/mm	GPa	%		
1	July 20, 2018	4.1	27	9.5	71	420	705	400	1525	115	88.3	1244	-	-		No strain measurments	
2	July 31, 2018	3.5	27	9.5	71	400	700	400	1500	115	88.1	1241	0.020	61.7	2.0		
3	July 31, 2018	3.2	27	9.5	71	450	695	450	1595	115	92.0	1295	0.021	61.5	2.1	Sample received not aligned in tube	
4	July 31, 2018	3.3	27	9.5	71	450	697	400	1547	115	95.4	1343	0.022	61.5	2.2	Sample received not aligned in tube	
5	July 31, 2018	2.9	27	9.5	71	497	603	400	1500	115	88.7	1249	0.020	61.8	2.0		
Average										90.5	1274	0.021	61.6	2.1			
	Standard Deviation									3.2	44	0.001	0.1	0.1			
CV (%)										3.5	3.5	3.9	0.2	3.9			

Column Rehabilitation

- Removal of contaminated concrete through hydro demolition
- Replace of highly damaged rebar
- Apply epoxy-cement passivator coat
- Apply Migrating corrosion inhibitor (longitudinal reinforcement is not exposed)
- o Install GFRP cage for shrinkage control
- o Install Permanent FRP jacket
- Cast new self-consolidating concrete (Type I cement, Corrosion inhibitor, ~12000 psi @ 28 days)

Two Options

- Use pre-packed repair mortar
 - PRO: Very little shrinkage, very high early strength, low permeability
 - CON: \$\$\$\$\$\$\$\$
- Use self-compacting concrete with 3/8" aggregate
 - PRO: high early strength, low permeability, Surface resistivity is ~40 KOhm-cm, \$\$\$
 - o CON: possible shrinkage problem
 - Shrinkage in SCC was addressed by the use of GFRP reinforcement. Approximately 1.2M USD in savings.

Bent Cap Rehabilitation

- Hydro demolition of cover
- Some rebar replacement, epoxy-cement coating over all rebar
- Apply migrating corrosion inhibitor
- o GFRP reinforcement over bottom and sides
- Install formwork and place self-consolidating concrete

Conclusion

- GFRP was used cost-effectively in combination with selfconsolidating concrete as a means to extend the service life of a critical bridge structure.
- Pre-bent GFRP allows for a fast installation of reinforcement around columns. Pre-bent L-shaped anchors were successfully used to maintain the GFRP meshes in place and provide structural support by dowel action.
- Material transportation cost to Panama was relatively inexpensive due to lighter weight of bar compare to conventional metallic bar.

Session 2: GFRP Bar Manufacturer's Installer's, & Supplier's Perspective

(3:20 - 5:20pm)

Presentations (3 @ 10 mins)
2.1 – B&B FRP Manufacturing Unique Projects (Borna Hajimiragha)
2.2 - Owens Corning Lessons Learned (Doug Gremel) (Floor discussion – No presentation)
2.3 – GFRP Quality Control (Xavier Seynave) Discussion 2.4 (90 mins)

Session 2: GFRP Bar Manufacturer's Installer's, & Supplier's Perspective

(3:20 - 5:20pm)

Presentations (3 @ 10 mins)
2.1 – B&B FRP Manufacturing Unique Projects (Borna Hajimiragha)
2.2 - Owens Corning Lessons Learned (Doug Gremel)

2.3 – GFRP Quality Control of Continuous Processes (Xavier Seynave)

Discussion 2.4 (90 mins)

Quality control of continuous processes

2nd International Workshop on GFRP bars for Concrete Structures

Composite Rebar for Concrete Structures

Assets and challenges of continuous manufacturing processes

The automotive approach: Description of the process(es) Risk-based analysis Monitoring, inspections and controls

Beyond quality control: improvement

Conclusion

Verood Composite Rebar for Concrete Structures

Continuous flow of material at different stages of transformation

PROCESS

Polymer-based mix

Machine(s) always on

Several sensors and feedback loops

Fibres

Assets and challenges of continuous manufacturing processes

Verces Composite Rebar for Concrete Structures

Failure of the process can result in failure of the product, failure of the product hints at an outof-control process.

Process parameters and product properties are tied.

product

stability

process

Assets and challenges of continuous manufacturing processes

Composite Rebar for Concrete Structures

Inspired by the automotive industry: flow chart

- List of the steps in chronological order
- Characteristic of the flow of material
- Useful to plan a plant layout
- Birds-eye view (but nothing is missing)

Description of the process(es)

Inspired by the automotive industry: FMEA

Potential Failure Mode and Effect Analysis

Process	Dotontial Failuro	Dotontial Efforts	Potential Causes	Current Process Controls			
Functions / Requirements	Mode	of Failure	/ Mechanisms of Failure	Prevention	Detection		
nequienents			ranare				

Inspired by the automotive industry: FMEA

Risk-based analysis

Inspired by the automotive industry: control plan

Actions taken based on the RPN: the greater the risk, the more frequent the inspections, the more accurate the measurements, etc...

Operation	Charac	teristics				Corr			
	Droduct	Process	Spec./Tol.	Instr	Sam	nple	Method of	Records	Action
	Product			IIISU.	Size	Freq.	Ctrl.		
production	cure ratio	(stability)	≥95%	DSC	1	1/shift	ASTM	computer	scrap bars
							E2160		adjust
	T _g	(stability)	≥100°C	DSC	1	1/shift	ASTM	computer	process
							E1356		param.

Road map to explain QC as logical and justified activities supported by a risk analysis of the manufacturing process(es)

Composite Rebar for Concrete Structures

Using a flow chart, FMEA and control plan opens several doors:

- Facilitating process reviews
- Planning of maintenance (preventive, predictive)
- Raising H&S concerns
- Prioritizing and implementing improvements
- Identifying weaknesses

Objective: stay in control

Tools are available and field-tested to plan the quality of the product.

The setting parameters of a continuous process guarantee the performances of the product.

Deep analysis of the process help to ensure the consistency of the product batch after batch.

Thank you!