

Second International Workshop on GFRP Bars for Concrete Structures

January 18-19, 2019 Orlando, Florida

Day 1

Advances in concrete reinforcement

Session 1: Owner's Perspective on the Use of GFRP Bars

(1:15 - 3:00pm)

Presentations (2 @ 10 mins) **1.1 US perspective** *a. (Antonio Nanni – ACI) b. (Steven Nolan – AASHTO/FDOT)* **1.2 Canadian perspective** (Brahim Benmo) *Discussion 1.3 (30 mins)*

Presentations (2 @ 10 mins)

1.4 Australian perspective and experience on GFRP bars in concrete structures (Allan Manalo, USQ)

1.5 European perspective (Emmanuel Ferrier)

Discussion 1.6 (30 mins)

Update on ACI Activities related to FRP bars

Document	Doc Ballot by Sub	Doc Ballot by 440 Main	Resolve Negative 440 Main Ballot	Doc to ACI for TAC Review	TAC Review	440 Reply to TAC Comments Ballot	Return to ACI for Layout	In Print	Plan is to get the code
440-H CODE	PI-F15 PII-Su16	PI- <mark>S17</mark> PII-S18	PI-S17 PII-S18	Fall 2019					 balloted at main by
Bar Const. Spec	Done	Done	Done	Done	Done	Spring 2018			spring 2020
440.2R Strengthening	One Section Done	One Section Done	One Section Done						
440.7R Masonry	Done	Done	Fall 2018						Negatives resolved and back to TAC
Repair Const. Spec	Done	Spring 2018							
Fire TechNote	Done	Spring 2018							
440.4R Prestress	Fall 2018	Spring 2019							
440-J	Pending								

440-H – FRP Reinforced Concrete Code

Chapter completed Ballot at Main

Chapter 1 (General) Chapter 4 (Structural System Requirements) Chapter 5 (Loads) Chapter 21 (Strength Reduction Factors) Chapter 26 (Construction Documents and Inspection)

Chapters under ballot at Main

Chapter 22 (Sectional Strength) Chapter 25 (Reinforcement Details)

Chapter Balloted at Sub

Chapter 7 (One-Way Slabs): Will require 2nd ballot at sub Chapter 9 (Beams): Will require 2nd ballot at sub Chapter 20 (GFRP Reinforcement Properties): Ready to ballot at main Chapter 24 (Serviceability Requirements): Ready to ballot at main

440-H – FRP Reinforced Concrete Code

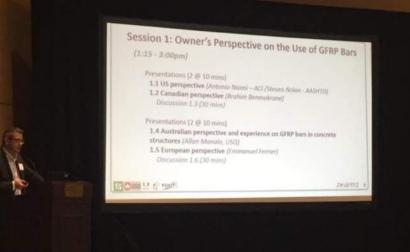
Rough Drafts Ready for Small Group Review

Chapter 10 (Columns): Author –Nanni; Reviewers - Harries & Shield Chapter 11 (Walls): Authors – Sadeghian & Tomlinson; Reviewers - Harries & Shield Chapter 13 (Foundations): Author – Nanni; Reviewers – Bischoff Chapter 15 (Joints) & Chapter 16 (Connections): Author – El Salakawy; Reviewers – Galati, Polak, Masetti

Rough Drafts Requiring Revision by Authors

Chapter 8 (Two-Way Slabs): Authors – Benmokrane, El Salakawy & Masmoudi Brown indicated that there is need of volunteers to do this effort, new Associate and associated members are strongly encouraged to step up and help with this task. Chapter 16 (Connections between members): Authors – El-Salakaway

Session 1: Owner's Perspective on the Use of GFRP Bars


(1:15 - 3:00pm)

Presentations (2 @ 10 mins) 1.1 US perspective

b. (Antonio *Nanni* – ACI)

a. Steven Nolan – AASHTO/FDOT)

1.2 Canadian perspective (Brahim Benmokrane) Discussion 1.3 (30 mins)

Presentations (2 @ 10 mins)

1.4 Australian perspective and experience on GFRP bars in concrete structures (Allan Manalo, USQ)

1.5 European perspective (Emmanuel Ferrier)

Discussion 1.6 (30 mins)

Recent and Future FDOT Activities

- 1. STIC Incentive Project: BFRP-RC Standardization
- 2. NCHRP-IDEA-2017: MildGlass
- 3. 2018 FRP-RC Project Updates
 - Bakers Haulover Cut
 - Halls River Bridge

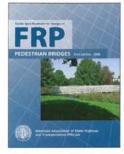
FDOT

- Sunshine Skyway Seawall Rehab
- SR A1A Secant Pile Seawall
- 4. 2019 FRP-RC/PC Projects Scheduled:
 - NE 23rd Ave/Ibis Waterway 2/27/19 letting
 - US 41 over North Creek 2/27/19 letting
 - US 41 over Morning Star & Sunset Canal 2/27/19 letting
 - US 1 over Cow Key channel, 6 Span Replacement 10/21/19 letting
 - Pensacola Beach Pedestrian Tunnels (3) Design 100% (city project)

IW-GFRP2 FDOT

AASHTO Guide Specifications

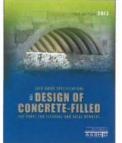
BRIDGES & STRUCTURES


Fiber-Reinforced Polymer

GUIDE SPECIFICATIONS FOR THE DESIGN OF CONCRETE BRIDGE BEAMS PRESTRESSSED WITH CFRP SYSTEMS, 1ST EDITION

These guide specifications apply to the design of prestressed concrete beams constructed of normal weight concrete and prestressed by carbon fiberreinforced polymer (CFRP) prestressing systems. 2018. 70 pp.

PDF Download Code: CFRP-1-UL | List Price: 51 | Member Price: \$38


GUIDE SPECIFICATIONS FOR DESIGN OF FRP PEDESTRIAN BRIDGES, 1ST EDITION

These guide specifications apply to fiberreinforced polymer (FRP) composite bridges intended to carry, primarily, pedestrian and bicycle traffic. 2008. 20 pp.

PDF Download Code: GSDFPB-1-UL | List Price: \$27 | Member Price: \$20 LOOSELEAF Code: GSDFPB-1 | List Price: \$34 | Member Price: \$25

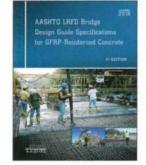
LOOSELEAF & PDF Combo Code: GSDFPB-1-PUL | List Price: \$47 | Member Price: \$35

AASHTO LRFD GUIDE SPECIFICATIONS FOR DESIGN OF CONCRETE-FILLED FRP **TUBES, 1ST EDITION**

These guide specifications present provisions for the analysis and design of concrete-filled fiber-reinforced polymer (FRP) tubes (CFFT) for use as structural components in bridges. Design methodology allows CFFTs to be designed as flexural members, axial compression members, or members subjected to combined flexural and axial compression, in addition to shear. CFFT bridge

components may include beams, arches, columns, and piles. 2012. 48 pp.

- PDF Download Code: LRFDFRP-1-UL | List Price: \$32 | Member Price: \$24
- LOOSELEAF Code: LRFDFRP-1| List Price: \$41 | Member Price: \$30
- LOOSELEAF & PDF Combo Code: LRFDFRP-1-PUL | List Price: \$57 | Member Price: \$42


sign of Bonded FRP ystems for Repair First Edition 2012

GUIDE SPECIFICATIONS FOR DESIGN OF BONDED FRP SYSTEMS FOR REPAIR AND STRENGTHENING OF CONCRETE BRIDGE ELEMENTS, 1st EDITION **

These guide specifications are intended for the repair and strengthening of reinforced and prestressed highway bridge structures using externally bonded fiber-reinforced polymer (FRP) composite systems. 2012. 52 pp.

****** Research Project Statement NCHRP 20-07/Task 428:

Update of the 2012 AASHTO Guide Specifications for Design of Bonded FRP Systems for Repair and Strengthening of Concrete Bridge Elements.

AASHTO LRFD BRIDGE DESIGN **GUIDE SPECIFICATIONS FOR GFRP-REINFORCED** CONCRETE, 2ND EDITION

material specifications, and new knowledge and field experiences beyond bridge decks and traffic railings.

Some of the major updates in this new edition include a title change from the 2009 first edition, AASHTO LRFD Bridge Design Guide Specification for GFRP-Reinforced Concrete Bridge Decks and Traffic Railings, to acknowledge the inclusion of information beyond bridge decks and traffic railings; greater consistency with the AASHTO LRFD Bridge Design Specifications, 8th Edition; Consideration of flexural members, such as girders and bent caps, not included in first edition; consideration of substructure and foundation elements along with compression members; differentiation between the fatigue and creep limit states; and revised shear design methodology. 2018. 122 pp.

PDF Download Code: GFRP-2-UL | List Price: \$135 | Member Price: \$100

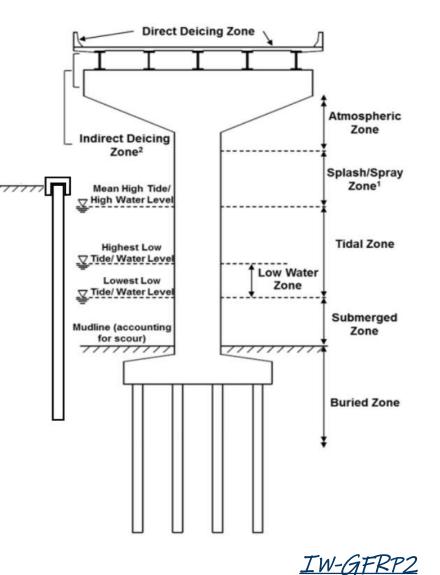
FDOT FRP Research Efforts

FDOT

NSERC CRSNG

1992	Feasibility of Fiberglass Pretensioned Piles in a Marine Environment	Sen, R.	USF
1995	Active Deformation Control of Bridges with AFRP Cables	Arockiasamy, M.	FAU
1995	Durability of CFRP Pretensioned Piles in a Marine Environment – Phase II	Sen, R.	USF
1997	Mechanical and Microscopy Analysis of CFRP Matrix Composite Materials	Garmestani, H.	FAMU/ FSU
1997	FRP Composite Column and Pile Jacket Splicing	Mirmiran, A.	UCF
1997	An Analytical and Experimental Investigation of Concrete Filled FRP Tubes	Mirmiran, A.	UCF
1997	Flexural Reliability of RC Bridge Girders Strengthened with CFRP Laminates	Okeil, A.	UCF
1998	Studies of CFRP Prestressed Concrete Bridge Columns and Piles in Marine Environment	Arockiasamy, M.	FAU
1999	LRFD Flexural Provisions for PSC Bridge Girders Strengthened with CFRP Laminates	El-Tawil, S.	UCF
2000	Investigation of Fender Systems for Vessel Impact	Yazdani, N.	FAMU/ FSU
2001	Design of Concrete Bridge Girders Strengthened with CFRP Laminates	El-Tawil, S.	UCF
2003	Hybrid FRP-Concrete Column	Mirmiran, A.	NC State
2004	CFRP Repair of Impact Damaged Bridge Girders	Hamilton, T	UF
2009	Thermo-Mechanical Durability of CFRP Strengthened RC Beams	Mackie, K	UCF
2011	Testing of Trelleborg Structural Plastics	Wagner, D.	FDOT

FDOT FRP Research Efforts (cont.)


2012	The Repair of Damaged Bridge Girders with CFRP Laminates	El-Safty, A.	UNF
2014	Investigation of CFCC in Prestressed Concrete Piles	Roddenberry, M.	FAMU/ FSU
2015	Repair of Impact Damaged Utility Poles with FRP, Phase II	Mackie, K.	UCF
2015	Use of CFRP Cable for Post-Tensioning Applications	Mirmiran, A.	FIU
2017	Durability Evaluation of Florida's FRP Composite Reinforcement for Concrete Structures	Hamilton, T.	UF
2018	Bridge Girder Alternatives for Extremely Aggressive Environments	Brown, J.	ERAU
2018	Degradation Mechanisms and Service Life Estimation of FRP Concrete Reinforcements	El-Safty, A.	UNF
2018	Testing, Evaluation, and Specification for Polymeric Materials used for Transportation Structures	El-Safty, A.	UNF
2018	Performance Evaluation of GFRP Reinforcing Bars Embedded in Concrete Under Aggressive Environments	Kampmann, R.	FAMU/ FSU
2019	Inspection and Monitoring of Fabrication and Construction for the West Halls River Road Bridge Replacement	Roddenberry, M.	FAMU/ FSU
2021	Evaluation of GFRP Spirals in Corrosion Resistant Concrete Piles	Jung, S.	FAMU/ FSU
2021	Development of GFRP Reinforced Single Slope Bridge Rail	Consolazio, G.	UF
2019	Performance Evaluation, Material and Specifications for Basalt FRP Reinforcing Bars Embedded in Concrete (STIC)	Kampmann, R. Roddenberry, M.	FAMU/ FSU
		IW-GFF	<u>272</u> 6

AASHTO Initiatives of Interest

• NCHRP 12-108 – Design Guide for Service Life Design

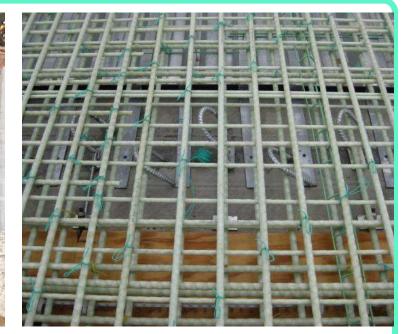
Micro-Exposure Zones proposed under NCHRP Project 12-108 and SHRP2-19B.

¹ For unprotected locations, the 20 feet area above the tidal zone (UFGS, 2012; Caltrans, 2014). For locations protected by seawalls or otherwise sheltered from open ocean waves, 6-feet area above tidal zone (UFGS, 2012).
 ² If subject to splash/spray/runoff due to joint failure.

FDOT FRP-RC/PC Projects

Current Project Status for 2018

- Halls River Bridge Replacement- Mar/Apr 2019 completion?
- Bakers Haulover Cut Seawalls completed 2018
- Sunshine Skyway Seawall Rehab 2020 completion?
- US 17/Trout River & SR 312/Matanzas River
 Bridge Substructure (Rehab) completed
- SR A1A Secant Pile Seawall 11/6/18 contractor awarded

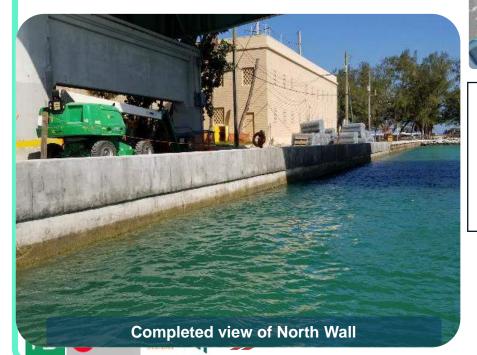

Halls River Bridge

2

Halls River Bridge

Halls River Bridge

Prestressed Sheet Pile System (rebuilt 1970's): Extensive corrosion damage in splash zone



Divers placing GFRP rebar mat in forms

Bulkhead wall cap GFRP reinforcement in place

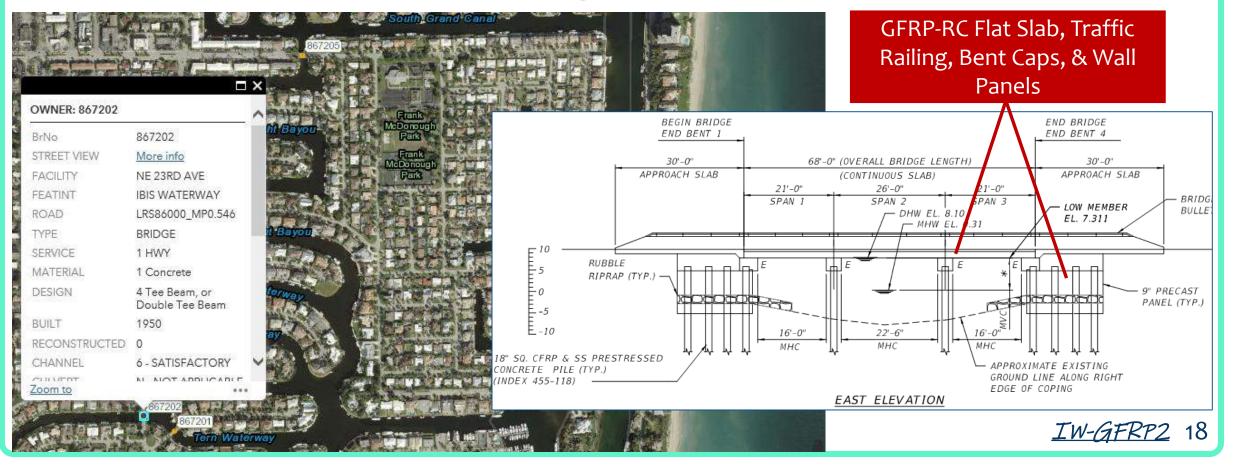
Bakers Haulover Cut Bridge Rehab.

Skyway Rest Area Seawall (Cap Rehab.)

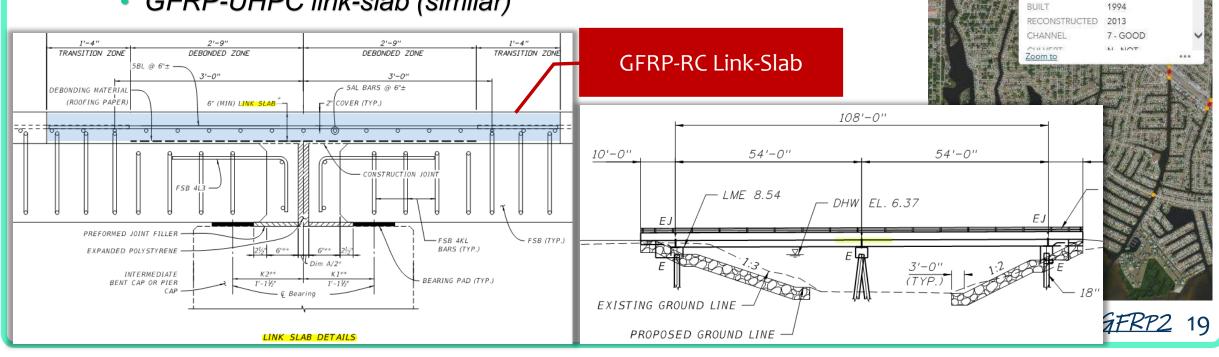
US 17 & SR 312 Bridge Substructure (Rehab)

Looking Forward to Construction – Feb. 2019

SR A1A Secant-Pile Seawall – 11/6/18 contractor awarded



- NE 23rd Ave/Ibis Waterway 2/27/19 letting
- US 41 over Morning Star & Sunset Canal 2/27/19 letting
- US 41 over North Creek 7/31/19 letting
- US 1 over Cow Key channel, 6 Span Replacement 10/21/19 letting
- Pensacola Beach Pedestrian Tunnels (3) Design 100% (city project)


• NE 23rd Ave/Ibis Waterway – 2/27/19 letting

US 41 over Morning Star & Sunset

Canal – 2/27/19 letting

- GFRP-RC link-slab (shown)
- GFRP-UHPC link-slab (similar)

OWNER: 010045

STREET VIEW

FACILITY

FEATINT

ROAD

TYPE

SERVICE

DESIGN

MATERIAI

010045

CANAL

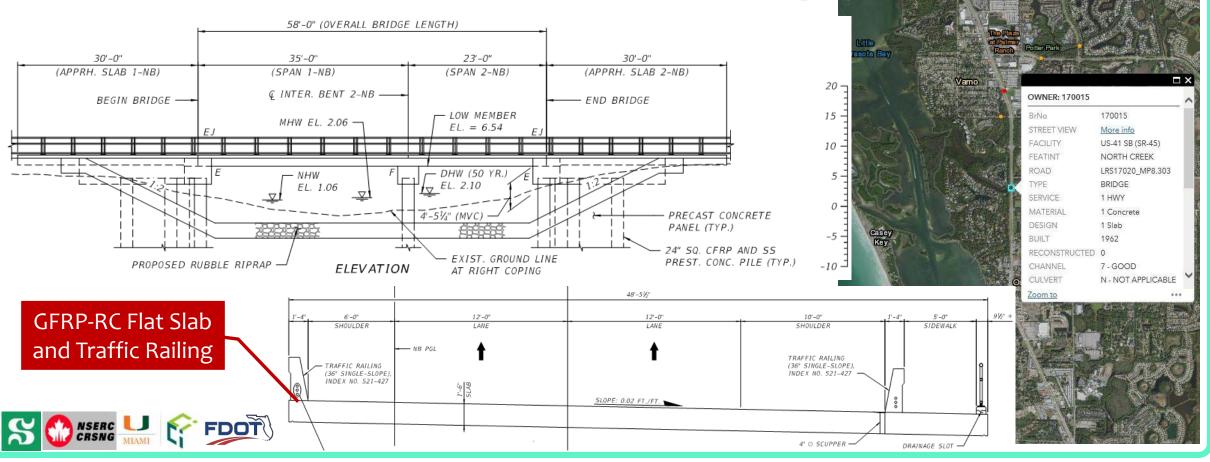
BRIDGE

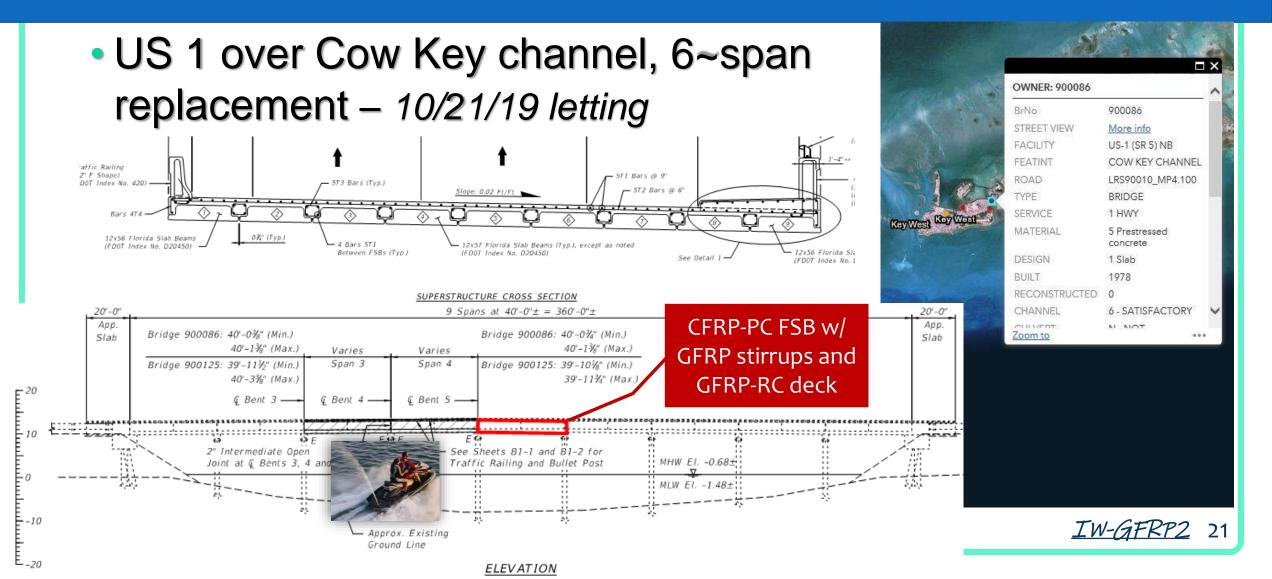
1 HWY

1 Slab

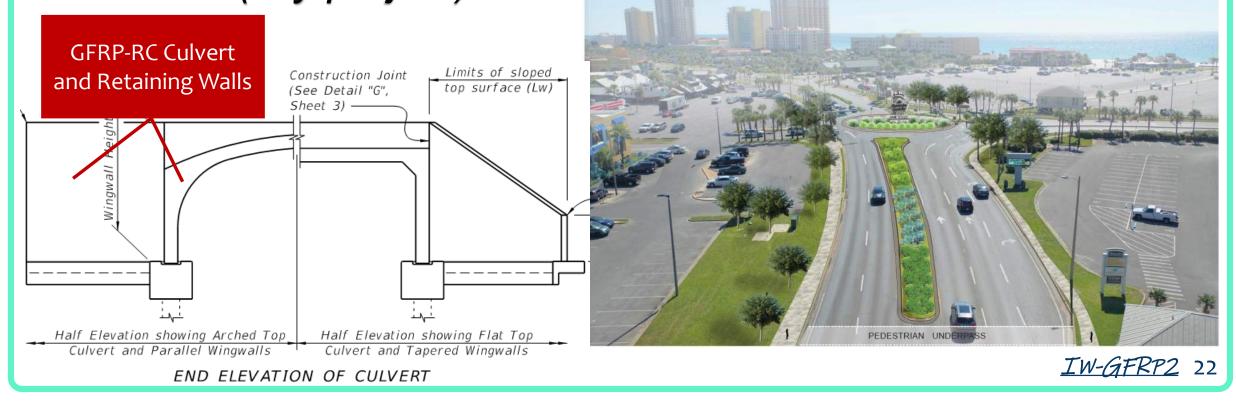
1 Concrete

More info


US-41 (SR-45)


MORNING STAR

LRS01010 MP19.55


BrNo

• US 41 over North Creek – 7/31/19 letting

Pensacola Beach Pedestrian Tunnels (3) – Design 100% (city project)

Session 1: Owner's Perspective on the Use of GFRP Bars (1:15 - 3:00pm)

Presentations (2 @ 10 mins)
 1.1 US perspective (Antonio Nanni – ACI /Steven Nolan - AASHTO)
 1.2 Canadian perspective (Brahim Benmokrane)
 Discussion 1.3 (30 mins)

Presentations (2 @ 10 mins) **1.4 Australian perspective an** structures (Allan Manalo, USC) **1.5 European perspective** (En Discussion 1.6 (30 mins) GERP Bars for Concrete Structures Driando, FL, January 18-19, 2019 Session 1 : Owner's Perspective on the Use of GERP Bars Canadian Perspective Market Dessor and Tier-1 Canada Research Chair, and NSERC/Industry Research Chair, and And NSERC/Industry Research Ch

Second International Workshop on GFRP Bars for Concrete Structures Orlando, FL, January 18-19, 2019

Session 1 : Owner's Perspective on the Use of GFRP Bars Canadian Perspective

Brahim Benmokrane, PEng., Ph.D. Professor and Tier-1 Canada Research Chair, and NSERC/Industry Research Chair Department of Civil Engineering, University of Sherbrooke, Sherbrooke, QC, CANADA

Outline of presentation

CAN/CSA Codes and Standards New Development of GFRP Bars Current use of GFRP rebar in Canada MTO & MTQ's Policies and Practices for Use of GFRP Rebar Design and Research Issues Construction Issues and Visual Inspection Conclusions

CAN/CSA Codes and Standards

 CAN/CSA S6: "Canadian Highway Bridge Design Code", Section 16 "Fibre Reinforced Polymers (FRP) Structures". 1st Edition in 2000, 2nd Edition in 2006, Supplement S1 in 2010, 3rd Edition in 2000, 4th Edition in 2019 (Approved)

- CAN/CSA S806: "Design and Construction of Building Components with FRP". 1st Edition in 2002, 2nd Edition in 2012
- 3. CAN/CSA-S807: "Specifications for Fibre Reinforced Polymers". 1st Edition in 2010, 2nd Edition in 2019 (Approved)

CAN/CSA Codes and Standards

CAN/CSA-S6-06 A National Standard of Canada

Specification for fibre-reinforced polymers

\$807-10

Design and construction of building structures with fibre-reinforced polymers

\$806-12

Design Code

Canadian Highway Bridge

- GFRP Bars
- GFRP Stirrups
- GFRP Spirals & Hoops
- GFRP Bent Bars
- GFRP Headed Bars
- GFRP Dowels
- GFRP Adhesive Anchors

Canadian GFRP Bar Manufacturers

At least six Canadian GFRP bar manufacturers qualified their products in accordance with CAN/CSA S807 and obtained approvals from end-users and government authorities (such as MTO and MTQ):

- 1. B&B FRP MANUFACTURING INC. (MSTBAR)
- 2. **BP COMPOSITES INC.** (TUF-BAR)
- 3. FIBERLINE COM POSITE CANADA INC. (COMBAR)
- 4. PULTRALL INC. (V-ROD)
- 5. TEMCORP INC. (TEMBAR)
- 6. PULTRON INC. (MATEEN)

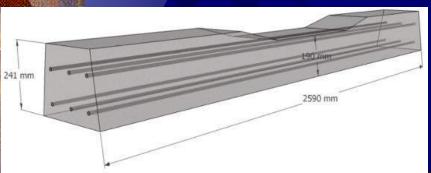
<u>Glass FRP Bars (High Modulus and High Strength)</u> 1. Guaranteed Tensile strength up to <u>1200 MPa (175 ksi)</u> 2. Modulus of elasticity up to <u>60 GPa (9 Msi)</u>

GFRP Grades (CAN CSA S807)

© Canadian Standards Association

Specification for fibre-reinforced polymers

Table 2 Grades of FRP bars and grids corresponding to their minimum modulus of elasticity, GPa


(See Clause 8.3 and Table 3)

	Grade I		Grade II		Grade III	
Designation	Individual bars	Bars in a grid	Individual bars	Bars in a grid	Individual bars	Bars in a grid
AFRP	50	40	70	60	90	80
CFRP	80	70	110	100	140	130
GFRP	40	30	50	40	60	50

Prestressed GFRP Concrete Sleepers for Railways Applications

Prestressed GFRP Concrete Sleepers for Railways Applications

GFRP Ties

GFRP Spirals and Hoops

Precast Driven Piles (USA)- Arthur Drive Bridge, Lynn Haven, Florida

Cages fabrication for GFRP RC Precast Piles

Pile Driving Field Test The three piles at the Bridge Site

Pile Driving Field Test

Test Results/Visual observations

- Normal pile driving behavior
- No cover spalling
- No cracking
- No damage
- Average Pile capacity 333 ksi

GFRP Bent Bars

Glass FRP Headed bars

Glass FRP Headed bars

Minimum pullout capacity of anchor headed bars (CSA S807)

Fibre	Diameter, mm	Minimum pullout capacity kN	
Glass	15	100	At 100 kN no more than 0.5
01855	10	100	mm
	20	120	At 100 kN no
			more than 0.5
			mm

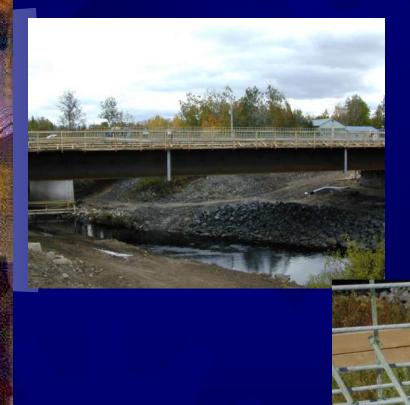
Current Use of GFRP Bars in Canada

FRP Rebar Use in Concrete Bridges in Canada 202 Bridges – 5 provinces

	Rebar	Deck only	Deck, parapet, barrier, enclosure, and/or sidewalk	Parapet, barrier, enclosure, and/or sidewalk
Bridges in Canada	202	167	23	12
		Sou	Jrce:	

Current Use of GFRP Rebar

Bridge Deck Slabs


K

NSERC Research Chair in Innovative FRP Reinforcement for Infrastructure

Current Use of GFRP Rebar Bridge Deck Slabs

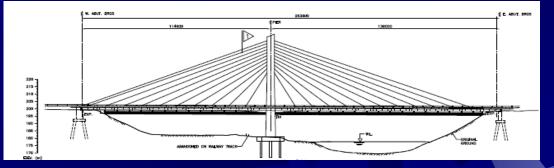
Val-Alain Bridge, Val-Alain, QC, 2004

Current Use of GFRP Rebar Bridge Barrier Walls

CRIB

Current Use of GFRP Rebar

X

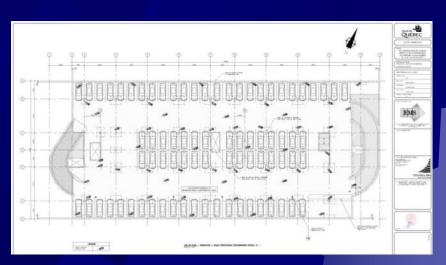

Precast Deck Slabs

Current Use of GFRP Rebar

Precast Deck Slabs

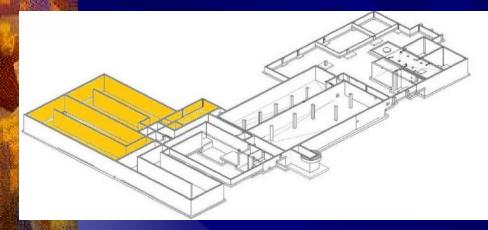
Nipigon River Cable-Stayed Bridge

The First Deck Slab Reinforced with GFRP Bars in Cable Stayed Bridge


Nipigon River Cable-Stayed Bridge

2012-2017 (106 M\$) ~827 ft. (252m) in length two-span, four lanes 480 precast concrete panels (10 ft. x 23 ft.) High Performance concrete Panel joint filled with UHPFRC Many partners

Current Use of GFRP Rebar Parking Garages

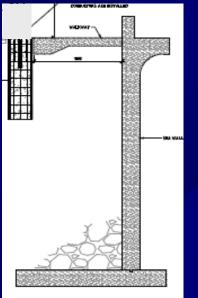


Current Use of GFRP Rebar Water Treatment Plants

Fiel

Current Use of GFRP Rebar Tunnels & RC Soft Eyes

Current Use of GFRP Rebar Concrete Pavements



Current Use of GFRP Rebar Retaining Walls

E 'A' LIGHT POLE INSTALLATION DETAIL

Current Use of GFRP Rebar Precast Utilities

MTO & MTQ's Policies and Practices for Use of GFRP Rebar

GFRP in decks

 Since 2008, MTO has constructed a significant number of bridge decks with GFRP, including:

- precast deck panels between girders

- cast in place slab on girders (simply

supported or semi-continuous)

Progressed beyond trial stage

 Not favourable for integral abutment due to large sustained negative moment and uncertain stress-strain behavour of bent bars

Current use of GFRP rebar

Component	Acceptable	Remarks
Top mat in waterproofed decks with AADT > 50000	Yes	Based on financial
Negative reinforcement in rigid frame and integral abutment	Νο	Uncertain stress- strain behaviour of bent bars
PL2/TL4 barrier or parapet wall	Yes	Based on equivalent static design, crash testing not required
PL3/TL5 barrier wall with AADT < 100000	Yes	Only crash tested products
Curbs and sidewalk	Yes	
Stirrups in precast girders	No	Bent bars QC/QA issues, strength reduction.

Examples of GFRP in decks

Whiteman's Creek Precast Deck, Hwy 24 Humber River Bridge Hwy 401 Nestor Falls Hwy 71 Precast Deck Rainy Lake/Noden Causeway PC Deck Chukuni River Bridge Precast Deck Hwy 105 Ottawa Queensway bridges Warden Avenue Hwy 401 overlay Nipigon River Bridge

PL3/TL5 Barrier Wall

 MTO accepts crash test result for PL3/TL5 barrier with Combar, Tembar and Vrod, Standard Drawing has been issued..

 All other manufacturers will have to go through similar crash test in order to have their product/design qualified for PL3 /TL5 barrier.

PL3/TL5 Barrier Wall

Crash Test with GFRP PL-3 barriers TTI, TEXAS

K

NSERC Research Chair in Innovative FRP Reinforcement for Infrastructure

39

CRIB

PL2/TL4 Barrier and Parapet Walls

 MTO already has two standards for each, one using Grade 1 (40 GPa) with bent bars and another using Grade 3(60 GPa) with headed anchors.
 With only Grade 3 in DSM, the Grade 1 standard will be withdrawn. MTO has recently implemented Guidelines for Inspection and Acceptance of Glass Fibre Reinforced Polymer (GFRP) Reinforcing Bars

Design and Research Issues

 Currently there is no standard yet for rehab of barrier/parapet walls using GFRP dowels with epoxy grout in drilled holes:

 research at Ryerson University funded by MTO to evaluate GFRP dowels in epoxy grout and long term effects to be completed soon

Design and Research Issues

- No more use of Grade 1
- No more use of bent bars in precast girders
- MTO is funding a research project at U of Waterloo to investigate the stress-strain behaviour of bent bars, hopefully design provisions could be developed for integral abutments.
- MTO is also funding a research project at U of Toronto to develop design provisions for spirals in columns.

Design and Research Issues

- Research by Mark Green at Queens University on Fire Resilience of GFRP reinforced components is completed and has shown very positive results.
- Research on combined bending and shear effect at closure joints using UHPFRC is in progress at U of Waterloo and Ryerson U.
- Code issues
 - Negative reinforcement over piers for composite steel girders
 - Phi factor for deformability
 - Strain limit of GFRP at ULS when tension control

Conclusions

 Application of GFRP bar in different structures in Canada has been proved to be very successful to date

 The concrete structures reinforced with GFRP bars have a first cost almost the same as concrete structures reinforced with epoxy coated or galvanized steel bars. Stainless steel bars are 2 to 4 times more expensive than GFRP bars.

Current Applications in Bridges & Buildings

Status

Very good structural behavior

Excellent short-term durability (≈ 20 years)

Conclusions

Main Concerns

Repair techniques

Long-term durability

Life cycle cost vs galvanized or stainless

Thank you for your attention

brahim.benmokrane@usherbrooke.ca

Session 1: Owner's Perspective on the Use of GFRP Bars

(1:15 - 3:00pm)

Presentations (2 @ 10 mins) **1.1 US perspective** (Antonio Nanni – AC **1.2 Canadian perspective** (Brahim Benr
Discussion 1.3 (30 mins)

Presentations (2@10mins)

1.4 Australian perspective and experience on GFRP bars in concrete structures (Allan Manalo, USQ)

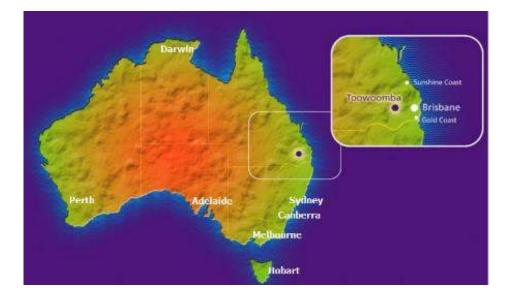
1.5 European perspective (Emmanuel Ferrier) Discussion 1.6 (30 mins)

Australian perspective and experience on GFRP bars

Dr Allan C Manalo

Associate Professor in Civil Engineering Theme leader – Civil Composites RPT Centre for Future Materials / School of Civil Engineering and Surveying University of Southern Queensland, Toowoomba, Qld 4350, Australia

2nd International Workshop on GFRP Bars for Concrete Structures



University of Southern Queensland

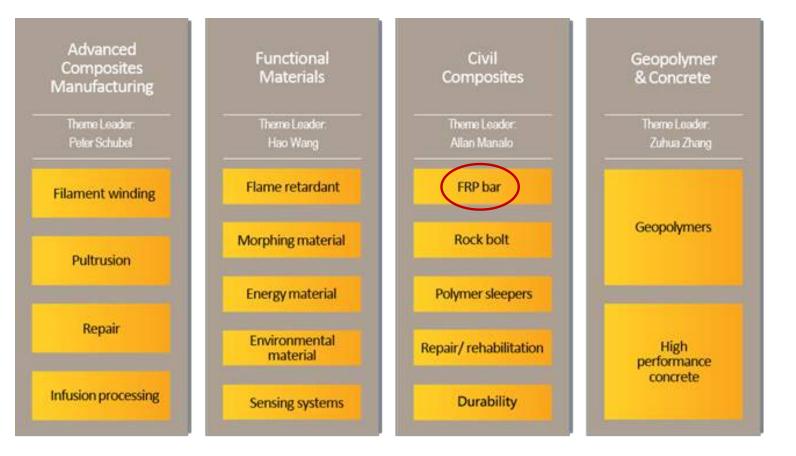
- Established in 1967
- Approximately 27,000 students
 - (800 international students on-shore)
- Queensland's No. 1 provider of online studies -The Department of Education, 2014
- 3 campuses in Australia (Queensland):
 - Toowoomba, Springfield, Ipswich
- 2 Faculties
 - \circ $\,$ Faculty of Business, Education, Law & Arts $\,$
 - Faculty of Health, Engineering & Sciences
- 3 Research Institutes and 9 Research Centres
 - Centre for Future Materials

Centre for Future Materials

Established in 1995

One of the leading research centres in Australia for engineered fibre composites

Delivering R&D to Reality

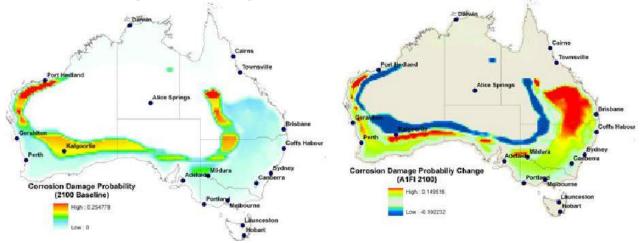

USQ does industry lead research – not academic interpretation of what industry may want.

Working closely with industry partners

Development of advanced/sustainable materials & manufacturing

From research laboratory to real-life applications

Providing education and training, and playing a major role in the development of materials and design standards



Corrosion of steel reinforcement

- Most concrete bridge infrastructure start to deteriorate only after 30 years of service (Austroads, 2016).
- Repair or replacement costs associated with steel corrosion in Australia are estimated at AU\$13 billion per year.
- The risk of corrosion is likely to increase significantly due to climate change (Wang et al. 2012).

Probability of corrosion damage by 2100 (Wang et al. 2012)

http://www.cairnspost.com.au/realestate/warning-to-check-for-concretecancer-in-older-unit-high-rise-complexes/story-fnjuflgv-1226802351244

Research on FRP bars

Institution	Materials	Bond	Bending	Shear	Slab	Impact	Columns	Durability
USQ	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Monash		\checkmark						\checkmark
UoW	\checkmark					\checkmark	\checkmark	
UWA							\checkmark	
UniSA			\checkmark					

Current Australian market

 There are two main suppliers/ distributors of GFRP bars in Australia, with basalt FRP bars are now being introduced.

[]SO

- Between 2012 and 2017, there were more than *1.5 million meters* of GFRP bars installed in actual construction projects.
- Market for GFRP bars increases by 13% per year, and with an estimated market value of around AU\$5.0 million in 2017.

V-Rod (Inconmat Australia)

ROCKBAR® (Galen Australia)

http://mateenbar.com/products-andspecifications/**mateenbar**/

climb0917.en.made-in-china.com/product/BKLEGiZvhtha/China-Fiberglass-Bar-FRP-Bar-GRP-Bar-Glass-Fiber-Bar.html

Current applications

- GFRP bars are used in Australia mainly as reinforcement in concrete structures exposed to harsh environmental conditions.
- 20% of market are for electrical and magnetic non-conductive applications including rail signal loops, hospital MRI's and nuclear science buildings
- Market penetration targets are marine infrastructure, precast concrete and electrical applications.

Anthon Jetty Wyndham, WA

Seawall replacement, Sylvania Waters Sydney

Annex extension, Toowoomba City Hall refurbishment project

Detector loop at Goldcoast Light Rail project

Pinkenba Wharf at Wagners' Pinkenba cement facility in Brisbane

- 252m long, 16m wide wharf comprising of **191 precast** geopolymer concrete deck reinforced with GFRP bars.
- Largest use of GFRP bars in Australia in a single job, i.e. 305 km (**152 tonnes**) of 16 mm, 19 mm, and 22 mm diameter bars.
- Designed following the CSA
 S806-12 with reference to relevant AS standards, i.e.
 AS3600 and loading codes.

Recent applications

Molecular Horizons Building, University of Wollongong

USQ

- Specified for electromagnetic neutrality and sensitive electrical research equipment. Tested and certified for fire performance.
- Designed following the CSA
 S806-12 with reference to relevant AS standards, i.e.
 AS3600 and loading codes.
- Uses over 50 tonnes of GFRP bars in 14 mm deep piles, pile caps, ground slabs, columns and walls through to the 2nd story and first floor suspended slab.

Pile cage in position

Pile cage in bored pier hole

Pilecap


Recent applications

Precast boat ramp planks

- Optimal design of precast concrete ramp planks reinforced with GFRP bars.
- Eliminated the use of expensive silica fume in concrete mix, making the planks at a cost similar to that of galvanised steel reinforced.

Mesh fabrication and mesh installation of GFRP reinforced is **30% faster** than GS reinforced (121.36 vs 173.82 worker minutes per 30 planks):

Test set-up for boat ramp planks

Installation of planks at Parkyn Parade boat ramp in Mooloolaba, Sunshine Cost.

Load and deflection behaviour

Standard drawings approved by TMR:

<u>SD4003 - Precast planks for boat</u> <u>ramp - Type RG4000 FRP (PDF,</u> <u>459 KB)</u>

Published at:

https://www.tmr.qld.gov.au/busi ness-industry/Technicalstandards-publications

FRP-reinforced precast concrete in tunnels and railways

http://www.railone.com/products-solutions/long-distance-and-freight-transport/ballastless-track-systems/rheda-2000r/

Challenges:

- Significant outlay for government
- Severe atmospheric condition, *i.e. sulphur dioxide fumes from diesel powered engines*
- Stray current corrosion in electrified railway systems
- High moisture and seepage
- Costly maintenance

Advantages:

- Significant outlay for government
- Severe atmospheric condition, *i.e. sulphur dioxide fumes from diesel powered engines*

Ballastless track reinforced with FRP bars

Continuously FRP reinforced concrete track slabs

Design codes/specifications

BD-108 Fibre-Reinforced Polymer (FRP) Bars

new Australian Standard for 'Design of concrete structures using Fibre-Reinforced Polymer (FRP) bars' (proposal under consideration by Standards Australia)

Nominating Organisations :

- University of Southern Queensland
- Australian Institute of Building
- AUSTROADS
- Cement Concrete & Aggregates Australia
- Composites Australia Inc

- National Precast Concrete Association Australia
- Concrete Institute of Australia
- Consult Australia
- University of Melbourne

Education and Training

CIV8803 – Mechanics and Technology of Fibre Composites *Online course offered by USQ*

Technology workshops:

to provide practising Australian engineers and civil engineering firms, as well as engineering students, with the knowledge necessary to **design concrete structures with GFRP reinforcing bars**.

Technology transfer:

Practical design and application of GFRP bars in construction including handing, installation and assembly.

- Current market and use of GFRP bars in Australia is increasing.
- Precast concrete members for marine/boating and rail infrastructure are identified as new and emerging markets for GFRP bars.

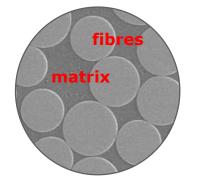
- deflection and "catastrophic" failure is not a major issue as the structure is continuously supported by ground or water.

- Current limitation for rapid acceptance is, still no Australian Codes in both design and manufacturing. Material standards, CSA vs ASTM and design standards, ACI vs ASTM? Can we develop a harmonised standard, i.e. ISO?
- Continuous education and training to risk adverse engineers to increase knowledge and confidence in the design and use of the materials.
- Minimise the use of bent bars. Need for new developments on cost-effective bent bars.



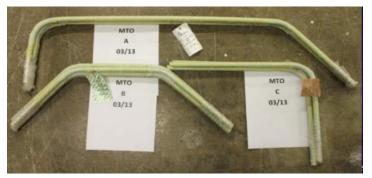
Thank you.

Find out more:



http://staffsearch.usq.edu.au/profile/allan-manalo

CRICOS QLD 00244B | NSW 02225M TEQSA: PRV12081


Fibre reinforced polymer (FRP) bars

Advantages

- Impervious to chloride ion and chemical attack
- Tensile strength greater than steel
- 1/4th weight of steel reinforcement
- Transparent to magnetic fields and radio frequencies
- Electrically and thermally non-conductive

Session 1: Owner's Perspective on the Use of GFRP Bars

(1:15 - 3:00pm)

Presentations (2 @ 10 mins) **1.1 US perspective** (Antonio I **1.2 Canadian perspective** (Br Discussion 1.3 (30 mins)

Presentations (2 @ 10 mins) **1.4 Australian perspective and structures** (Allan Manalo, USQ)

1.5 European perspective (Emmanuel Ferrier) Discussion 1.6 (30 mins)

Trends and Development of Codes and Specifications on GFRP Bars for Concrete Structures in Europe

Emmanuel FERRIER

LMC² - Université LYON 1

^{2nd}International Workshop on GFRP bars for Concrete Structures

+

Laboratoire des Matériaux Composites pour la Construction EA 7427

Université Claude Bernard (Lyon 1

Outline

- Primary drivers for DOT's & other owners to fully implement GFRP rebar?
- Projects where GFRP were not specified in the past ?
- Accelerated Construction advantages with FRP ?
- Conclusions

Outline

- Primary drivers for DOT's & other owners to fully implement GFRP rebar?
- Projects where GFRP were not specified in the past ?
- Accelerated Construction advantages with FRP ?
- Conclusions

Codes and specification in Europe

Materials design value

		$X_{\rm d} = \eta \frac{\lambda}{\gamma}$	Υ <u>k</u> , m
Exposure conditions	Type of fiber / matrix*	η_{a}	
		$\frac{\eta_{\rm a}}{1.0}$	
Concrete not-exposed to	Type of fiber / matrix* Carbon / Vinylester or epoxy Glass / Vinylesters or epoxy	6/52	
	Carbon / Vinylester or epoxy	1.0	
Concrete not-exposed to moisture	Carbon / Vinylester or epoxy Glass / Vinylesters or epoxy Aramid / Vinylesters or epoxy	1.0 0.8	
Concrete not-exposed to	Carbon / Vinylester or epoxy Glass / Vinylesters or epoxy	1.0 0.8 0.9	

* The use of a polyester matrix is allowed only for temporary structures.

(1) For ultimate limit states, the partial factor γ_m for FRP bars, denoted by γ_f , shall be set equal to 1.5.

(2) For serviceability limit states, the value to be assigned to the partial factor is $\gamma_f = 1$.

(3) The partial factor prescribed by the current building code shall be assigned for concrete.

Université Claude Bernard 🕞 Lyon 1

ULS calculation hypothesis

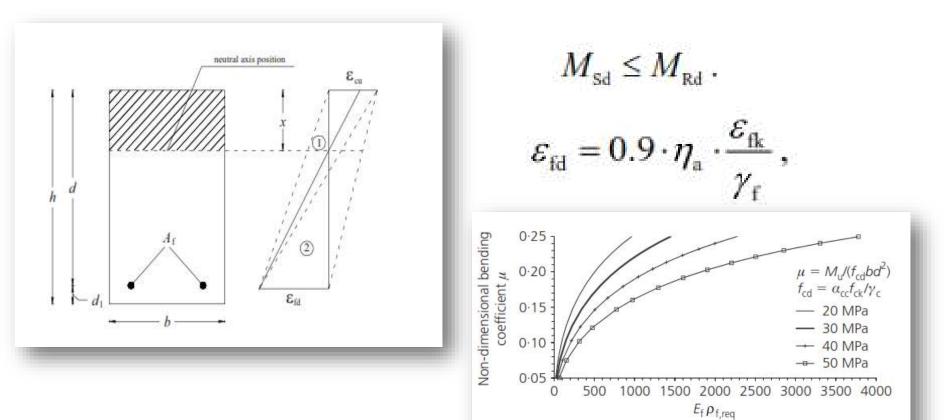


Figure 4. Design chart for flexural capacity of constant-width FRP RC elements

Université Claude Bernard (Lyon 1

SLS : Deflection limit

Code	Type of structures	Limit
Eurocode 2	Aesthetic and functionality conditions (quasi permanent loads) Damage limitation of non-structural elements sustained or attached (quasi permanent loads)	L/250 L/500
ACI 318-05	Roofs and floors supporting or attached to non-structural elements (Sum of long term deflection due to all sustained loads and immediate deflection due to any additional live load): Not likely to be damaged by large deflections Likely to be damaged by large deflections	L/240 L/480
	Elements not supporting or attached to non-structural elements likely to be damaged by large deflections (immediate deflection	
	due to live loads): Floors	L/360
	Flat roofs	L/180

$$f = f_1 \cdot \beta_1 \cdot \beta_2 \cdot \left(\frac{M_{\rm cr}}{M_{\rm max}}\right)^{\rm m} + f_2 \cdot \left[1 - \beta_1 \cdot \beta_2 \cdot \left(\frac{M_{\rm cr}}{M_{\rm max}}\right)^{\rm m}\right]$$

- f_1 is the deflection of the uncracked section;

- f_2 is the deflection of the transformed cracked section;

- $\beta_1 = 0.5$ is a non-dimensional coefficient accounting for bond properties of FRP bars;

- β_2 is a non-dimensional coefficient accounting for the duration of loading (1.0 for she loads, 0.5 for long time or cyclic loads);

- $M_{\rm max}$ is the maximum moment acting on the examined element;

- $M_{\rm cr}$ is the cracking moment calculated at the same cross section of $M_{\rm max}$;

- *m* is a coefficient to be set equal to 2.

SLS : Crack opening limit

$$w_{\rm k} = \beta \cdot s_{\rm rm} \cdot \varepsilon_{\rm fm}, \qquad s_{\rm rm} = 50 + 0.25 \cdot k_1 \cdot k_2 \cdot \frac{a_{\rm b}}{\rho_{\rm r}},$$

$$\varepsilon_{\rm fm} = \frac{\sigma_{\rm f}}{E_{\rm f}} \cdot \left[1 - \beta_1 \cdot \beta_2 \cdot \left(\frac{\sigma_{\rm fr}}{\sigma_{\rm f}} \right)^{\rm m} \right],$$

- k_1 is a coefficient accounting for the bond properties of the FRP bars, to be set equal to 1.6;

- k_2 is a coefficient depending upon the strain diagram (0.5 for flexure, 1.0 for pure tension);

- $d_{\rm b}$ is the equivalent diameter of the FRP bars, in mm; if bars of different diameter are used, their average value can be considered;

- $\rho_{\rm r}$ is the effective reinforcement ratio, equal to $A_{\rm f} / A_{\rm c,eff}$, where $A_{\rm c,eff}$ is the effective area in tension defined as the concrete area surrounding the tensile FRP reinforcement, having depth equal to 2.5 times the distance between tension fiber and bars centroid (EC2).

22201000			1184.4
Eurocode 2	Steel	Normal	0.3 mm
Model Code 1990	Steel	Normal	0.3 mm
JSCE (1997)	FRP		0.5 mm
ACI 440.1R-06 CSA (2002)	FRP	Interior	0.7 mm
ACI 440.1R-06 CSA (2002)	FRP	Exterior	0.5 mm
IStuctE (1999)	FRP	Close to observer Away from observer	0.3 mm >0.3 mm

Outline

- Primary drivers for DOT's & other owners to fully implement GFRP rebar?
- Projects where GFRP were not specified in the past ?
- Accelerated Construction advantages with FRP ?
- Conclusions

Pavement on seaside

Université Claude Bernard (B) Lyon 1

ACCOMPAGNER CRÉER PARTAGER

Pavement on road : electromagnetic field

Gare de Péage

Université Claude Bernard (

Soft eye FRP reinforcement

Figure 1-3: Soft eye FRP reinforcement

Université Claude Bernard 🕼 Lyon 1

Soft eye FRP reinforcement

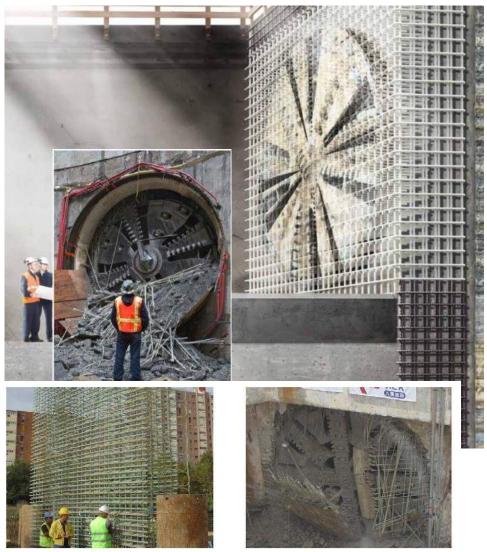


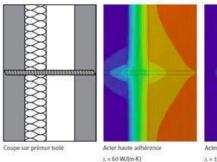
Figure 1-3: Soft eye FRP reinforcement

- Faster and safer penetrations
- Suitable for:
 - ✓ Soft-eyes in shaft walls at tunnelling projects
 - ✓ Diaphragm walls
 - ✓ Drilled pile walls
 - Temporary concrete buildings

Pile foundation FRP reinforcement

15

ireg


Soft Precast wall bolt

La gamme

- diamètre de 12 et 16 mm pour toutes les longueurs
- Iongueurs standards
- adaptées à l'épaisseur finie des doubles-murs

Université Claude Bernard

Lyon 1

Soft Precast wall bolt

Université Claude Bernard

ACCOMPAGNER CRÉER PARTAGER

Soft Precast wall bolt

LE PRÉMUR, ALTERNATIVE AU BÉTON BANCHÉ ?

a

Livré sous forme de panneaux sur le chantier, le prémur peut être intéressant pour réaliser certains types d'ouvrages ou certaines parties de bâtiment. Sous Avis technique du CSTB, sa mise en œuvre est exigeante et les entreprises doivent se poser la question de son coût.

Depuis une dizaine d'années, il existe une alternative au béton banché pour construire des murs porteurs : le prémur. Préfabriqué en usine, il se compose de deux parois minces en béton armé (4,5 à 7,5 cm), généralement sans acier en attente, maintenues espacées par des raidisseurs métalliques horizontaux. Une fois positionnés et stabilisés, les panneaux de prémur font office de coffrage : on y glisse des armatures de liaison et on y coule du béton prêt à l'emploi, ce qui garantit la stabilité de la construction. Cette technique peut être employée pour réaliser différents murs porteurs de bâtiments industriels, de bureaux ou d'habitations, pouvant comporter plusieurs niveaux de sous-sols, ou pour des murs de soutènement ; elle répond aux exigences de la construction en zone sismique. En fonction des contraintes qui lui sont demandées, l'épaisseur du prémur varie de 16 à 40 cm, tandis que sa hauteur varie de 1 à 12 m, pour une largeur de panneaux allant jusqu'à 3,80 m. S'il s'agit encore d'un marché de niche, avec un petit nombre de fabricants, l'intérêt des entreprises de maçonnerie pour cette technique va croissant. Avec 1,2 million de m2 en 2006, le prémur représente 7 % du total des murs construits. With 1,2 million of m² in 2006, precast wall represent 7 % of the total building wall.

Source FFB

If all conector are made of FRP that make 6 million of conector or 1,2 million of linear meter per year!

Université Claude Bernard (Jp) Lyon 1

18

LADORNTONE DO. МАТЕРИАЛ СОМИСКИЕ РОЛИ НА СОКОЛИСТИИ

Soft Precast wall bolt

Avis Technique 3/15-817

Goujons SCHÖCK

SCHOCK BAUTELLE Geränt Industringetaut Stellshoch Visituation Stracke 2 D-76534 Baden daden

IN 1EV. 2016

Charles BALOCHE

Groupe Spécialisé nº 3 Structures, planchers at activit composants structures

Ve poor envegationment in

CSTB Morehand on to convenience der Anti-Techniert CSTB, 44 annue han Swide, Danze sie Antre, 7 77440 Hanne in Malter Calitio 1 2016, 44 annue 120 - Ener (10.018 27.97) - Internet - wan (2017)

nie): 03 88 30 93 nie): 03 88 30 5

Commission chargée de formuler des Avis Techniques (ambié du 21 miers 2013)

Witnessen :

Composants structuraux

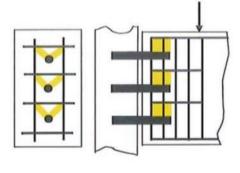

Stuctural components Strukturelle Bautolle

Figure 2-6: FRP rebars (Schöck Bauteile GmbH)

Université Claude Bernard (July Lyon 1

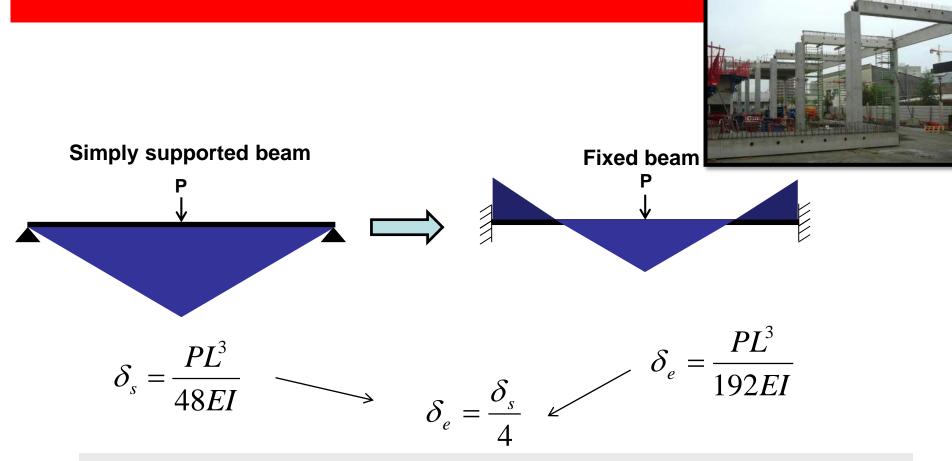
Outline

- Primary drivers for DOT's & other owners to fully implement GFRP rebar?
- Projects where GFRP were not specified in the past ?
- Accelerated Construction advantages with FRP ?
- Conclusions

Composite structures using FRP bars

-Used of full system effect on mechanical behaviour

- mixing material with FRP bars



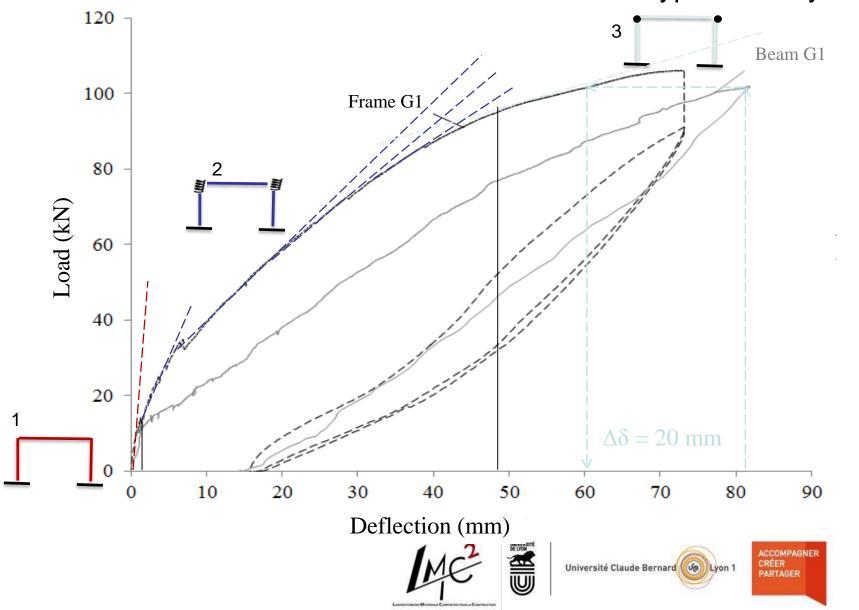
Université Claude Bernard (Jp Lyon 1

Difference between simply supported and fixed beams deflection

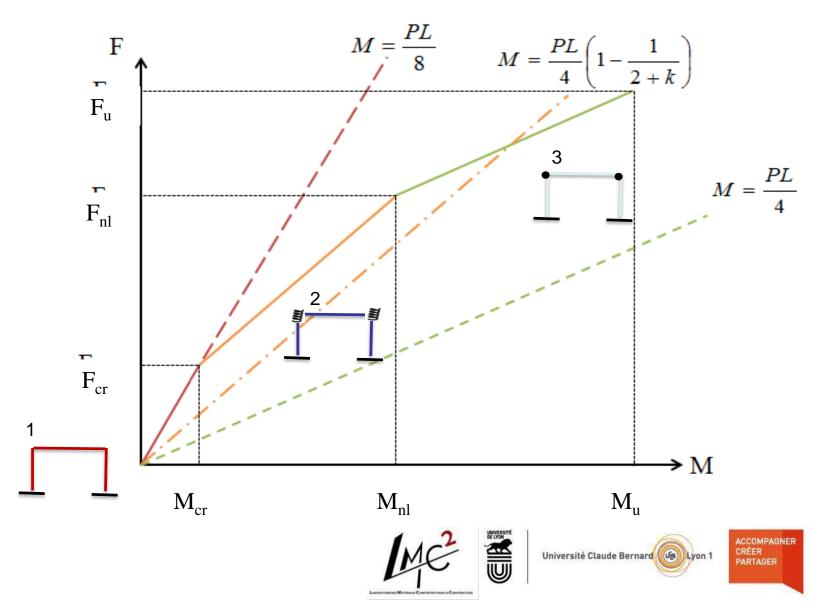
The moment distribution will change according to boundary conditions.

Université Claude Bernard (Lyon 1

ACCOMPAGNER CRÉER PARTAGER


Experimental setup

• 3-points bending test



Experimental results

Difference of deflection between isostatic and hyperstatic system

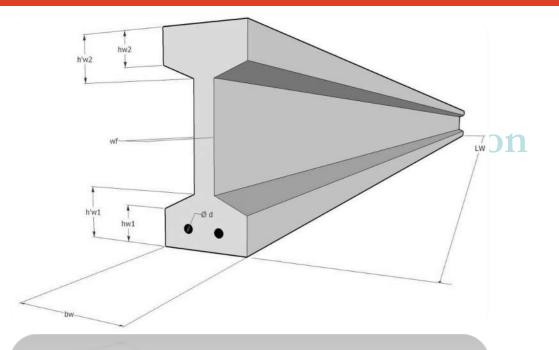
Force deduced from calculated features moments

« ...get the best of each material for new product... »

Ultra high performance concrete

Seonyu, Seoul pedestrian bridge

Sherbrooke pedestrian bridge


<u>FRP</u> Young modulus: 70 GPa to 200 GPa strenght : 1500 to 2800 MPa

<u>BFUP</u>

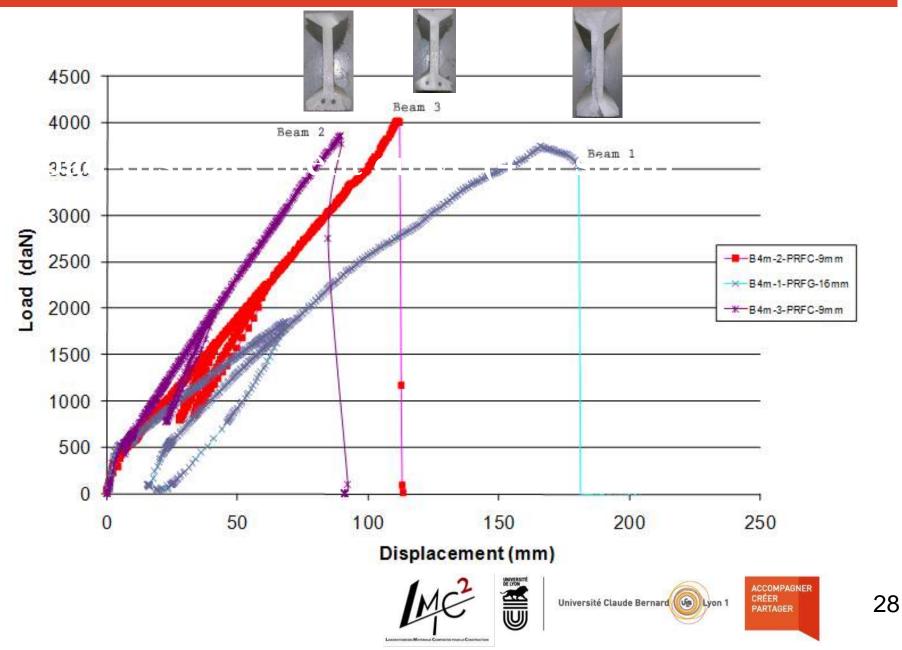
Young modulus: 200 MPa Strength: 200 MPa in compression 15 MPa in tension

« ... UHPC and FRP... »

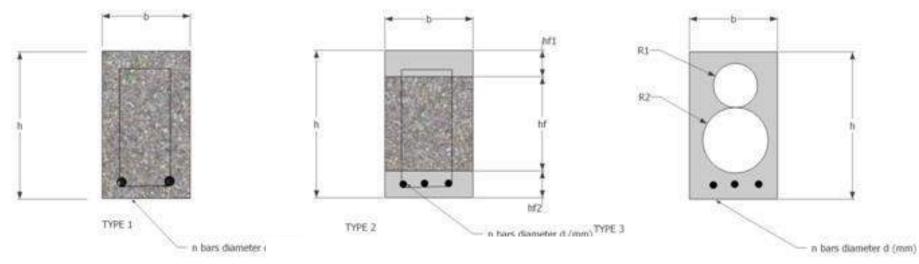
	h _{w1}	h' _{w1}	h _{w2}	h' _{w2}	b _w	b _f	h _w	L _w	FRP TYPE	Diameter	number	Area
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[m]	CF/GF	[mm]	[u.]	[mm ²]
Beam 1	23	40	32	48	90	22	200	4	Glass	16	1	201
Beam 2	17	33	10	21	90	22	176	4	Carbon	9.6	3	217
Beam 3	17	33	10	21	90	22	192	4	Carbon	9.6	2	144
Beam 4	38	55	35	50	90	22	215	2	Glass	16	2	402
Beam 5	38	55	35	50	90	22	215	2	Glass	16	2	402

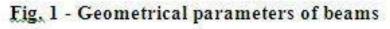
Beam 1

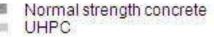
Beam 2



Beam 3 Beam 4 Beams section after testing

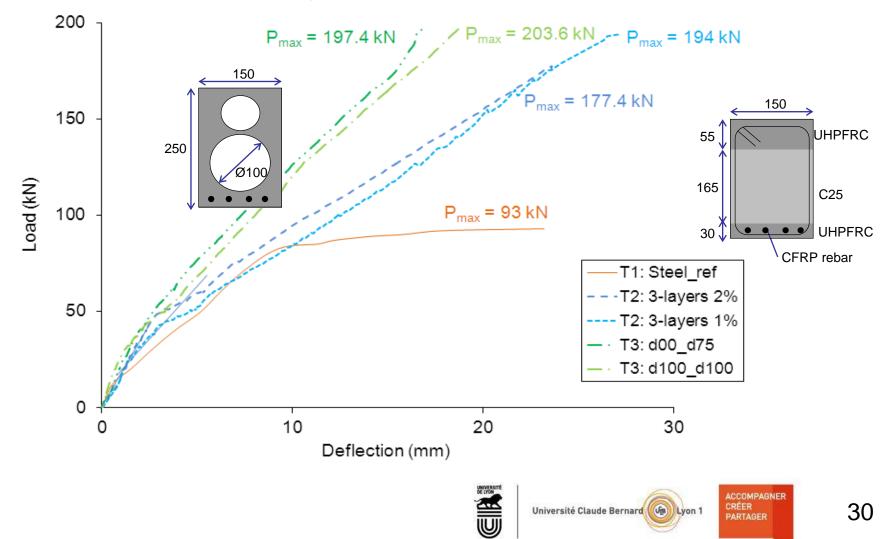



Load deflection curve



« ... UHPC, concrete and FRP... »

Choice of the sections


Material		Parameter	Value
	Tension	f _{cti} [MPa]	13.4
		e _e [%]	0.02
Ultra-high-performance		f _{ct} [MPa]	25.9
concrete	Compression	e _{bc} [%]	0.3
		f _{cc} [MPa]	171
	Young's modulus	E _c [MPa]	53900
	Tension	f _{FRP r} [MPa]	1890
CFRP rebars		e _{re} [%]	1.35
	Young's Modulus	E, [MPa]	130000

Experimental results

• Beams 2m-long, section 0.15x0.25

Outline

- Primary drivers for DOT's & other owners to fully implement GFRP rebar?
- Projects where GFRP were not specified in the past ?
- Accelerated Construction advantages with FRP ?
- Conclusions

Conclusions

- FRP bars used start to be used in Europe
- Codes are based on North American aproach
- Specific used may be found in building and road pavement
- Original research have been done combining FRP and UHPC

Université Claude Bernard Lyon 1

EA 7427

CRÉER