

<u>Third International Workshop on FRP Bars for Concrete Structures</u> (IW-FRPCS3) Workshop Theme: "Advances in concrete reinforcement" Date: August 3-4th, 2021

DAY 2 Wednesday, August 4th

<u>Session 4: Advancing FRP Rebar Manufacturing & Product Development</u> to meet Market Needs (8:15-9:45am EDT)

(What is new, better, and scalable?)

RoundTable discussion with audience participation, preceded with 3-minute introduction by panelists.

Moderator: John Busel (ACMA)

No slides

Panelists (5 mins)

- Higher Performing Bent Bars: Borna Hajimiragha (B&B)
- Why should we consider epoxy: Bhavesh Muni (Olin)
- How can thermoplastics help: <u>Paolo Casadei</u> (SIREG)
- What other fibers to consider: Mike Levine (MAFIC)
- Why not filament winding for closed stirrups: Don Smith (RAW) No slides
- Ensuring QC and Scalability: Bernard Drouin (Pultrall)

"Advances in concrete reinforcement"

August 3-4, 2021 - Virtual

High Performance Bent Bars

Borna Hajimiragha, B&B FRP Manufacturing Inc.(MST-BAR), Toronto

8 am Aug 4th

"Advances in concrete reinforcement"

Topics

- Bent bar primary use
- High performance bent bar
- Alternative to bent bars
- Mechanical connection
- When is good enough good enough?
- Scalability and Reality

"Advances in concrete reinforcement"

Bent Bar Primary use

Bent bars predominantly use for

- Anchorage (Connecting two components)
- Confinement & Shear
- Chair and placement of other rebar

"Advances in concrete reinforcement"

Anchorage of GFRP!

• Anchorage (Connecting two components)

High Performance Bent

Tested on #3,#4,#5 and #6

Straight Portion of the Bent

• Strength, Shear, Bond

"Advances in concrete reinforcement"

Straight Portion of the Bent

• Strength, Shear, Bond

Specimen	Lot #	Maximum tensile load (kN)	Ultimate tensile strength (MPa)	Tensile elastic modulus (GPa)	Ultimate tensile strain (%)
1		413	1454	57	2.6
2		393	1384	55	2.5
3		387	1363	55	2.5
4		404	1423	51	2.8
5		414	1458	54	2.7
6	1	346	1218	53	2.3
7		371	1306	53	2.5
8		377	1327	55	2.4
Average		388	1367	54	2.5
SD		23.2	81.6	1.7	0.16
COV %		6.0	6.0	3.1	6.2
1		352	1239	51	2.4
2		361	1271	55	2.3
3		366	1289	54	2.4
4		366	1289	57	2.3
5		373	1313	54	2.4
6	2	415	1461	51	2.9
7		340	1197	55	2.2
8		365	1285	56	2.3
Average		367	1293	54	2.4
SD		21.8	76.9	2.0	0.21
COV %		5.9	5.9	3.7	8.7

Table 2 - Tensile Strength of Bent Portions of MST GFRP Bent Bars #6 (Nominal Area 284 mm²)

Specimen	Lot #	Maximum load (kN)	Ultimate tensile strength (MPa)
1		254	894
2		262	923
3		278	979
4		258	908
5		251	884
6	1	243	856
7		267	940
8		251	884
Average		258	908
SD		10.9	38.5
COV %		4.2	4.2
1		263	926
2		241	849
3		250	880
4		233	820
5		229	806
6	2	231	813
7		248	873
8		242	852
Average		242	853
SD		11.4	40.2
COV %		4.7	4.7

Table 3 – Summary of Average Tensile Strength of Straight and Bent Portions of MST GFRP Bent Bars #6

Lot #	Average Tensile Strength of Straight Portion (MPa)	Average Tensile Strength of Bent Portion (MPa)	Bent Strength Ratio (%)
1	1367	908	66
2	1293	853	66

"Advances in concrete reinforcement"

Straight Portion of the Bent

• Shear (CSA S807-19 :180MPa)

	LOT No.1		LOT No.2		LOT No.3	
Specimen	Failure Force	Transverse Shear Strength	Failure Force	Transverse Shear Strength	Failure Force	Transverse Shear Strength
	kN	MPa	kN	MPa	kN	MPa
SAMPLE 01	80.41	202.0	90.3	226.9	87.08	218.8
SAMPLE 02	84.65	212.7	84.65	212.7	86.77	218.0
SAMPLE 03	82.37	207.0	87.4	219.6	84.45	212.2
SAMPLE 04	85.4	214.6	80.98	203.5	84.53	212.4
SAMPLE 05	82.3	206.8	81.3	204.3	83.22	209.1
SAMPLE 06	81.45	204.6	82.75	207.9	81.64	205.1
SAMPLE 07	81.83	205.6	78.15	196.4	85.99	216.1
SAMPLE 08	78.13	196.3	80.3	201.8	83.76	210.5
Average	82.1	206.2	83.2	209.1	84.7	212.8
Standard Deviation	2.1	5.4	3.8	9.4	1.7	4.4
Coefficient of Variation (%)	2.6	2.6	4.5	4.5	2.1	2.1

 Table 1: Summary of experimental results of the transverse shear strength of the straight portion of 15 mm (#5) MST-BAR® BEND GFRP bent bar

"Advances in concrete reinforcement"

Buckling

- Is it possible to Avoid?
- How important it is to prevent buckling?
- Size and Bent radius?

How Tight of Radius

- Is it possible to?
- Is it cost effective?

How Crazy?

- Complexity of the Bend?
- Cost Vs. Quantity?

How about this?

"Advances in concrete reinforcement"

Steel: When is Good enough, Good enough!

• Anchorage (Connecting two components)

Steel fails

Steel Pull out 45kN at 100mm Embd.

"Advances in concrete reinforcement"

When is Good enough, Good enough!

- Anchorage (Connecting two components)
- Why? Low Passion's Ratio High Bond strength

Bonded M15

GFRP bar

100kN-based on 500MPa Strength at bend 160kN-based on 800 MPa Strength at bend 200mm and more embed. required

150kN at 100mm Embd. For fully threaded integral rib Before concrete breaks

"Advances in concrete reinforcement"

Mechanical Coupler

- Grout Coupler Tested with
 - Off the Shelf High Strength Concrete
 - Test performed on #5 with standard #5 coupler

"Advances in concrete reinforcement"

Mode of Failure

- Concrete Shear inside the coupler @ 3.5" each side 140kN
 - Off the Shelf High Strength Concrete
 - Test performed on #5 with standard #5 coupler
 - 140kN(31,500lbf) inline with design strength
 - Not Meeting 1.2 x UTS
 - Solution: Making the grout coupler longer
 - Solution: Higher Concrete Strength/UHPC

Scalability and Reality

- Quantity ٠
- Price ٠
- Geometry •

Scalability and Reality

If this can be done perfectly?

Can this be done perfectly too?

"Advances in concrete reinforcement"

August 3-4, 2021 - Virtual

Epoxy For FRP Rebar

Bhavesh Muni & Huifeng Qian, Olin Epoxy, USA

About Olin

Composites based on Epoxy matrices have been used in various applications with extreme durability.

WHY EPOXY FOR FRP REBAR?

VERSATILE CURE AND PROCESSING

HIGH CORROSION RESISTANCE

"Advances in concrete reinforcement"

REBAR PERFORMANCE – PRE ALKALINE TREATMENT

Methods	Test Description	SPEC. FDOT 932	Test Values	Comment
ASTM D7617	Guar. Transverse Shear Strength	>19 ksi	21.0 ksi	Pass
ASTM D2584	Fiber Content (by weight)	>70 %	79.8 %	Pass
	Guar. Tensile Force	29.1 kip	33.1 kip	Pass
ASTM D7205	Tensile Modulus of Elasticity	≥ 6.5 Msi	7.0 Msi	Pass
	Tensile Strain	≥ 1.1%	1.6 %	Pass
ASTM D792	Measured Cross Sectional Area	0.288 to 0.388 in ²	0.292 in ²	Pass
	Moisture Absorption Short Term	≤ 0.25 %	0.17 %	Pass
ASTM D370	Moisture Absorption Long Term	≤ 1.00 %	0.67 %	Pass
ASTM D7913	Guar. Bond Strength	>1100 psi	1227 psi	Pass
	Degree of Cure	>95%	99.1 %	Pass
ASTM E2160	Glass Transition Temperature (DSC)	>100 °C	139 °C	Pass

Basalt fiber: FVF 60-65% Estimated Line Speed : 1-2 m/min **Tested in University of Miami**

"Advances in concrete reinforcement"

REBAR PERFORMANCE – POST ALKALINE TREATMENT

Test Method	Test Description	Spec. FDOT 932	Values	Result
	SAMPLE #3			
ASTM D7205	Tensile Load Retention (with load)1	>70 %	78.3 %	Pass
ASTM D7617	Trans. Shear Strength Retention	n/a	84.2 %	n/a
	Degree of Cure	>95 %	99.06 %	Pass
ASTM E2160	Glass Transition Temperature (DSC)	>100 °C	139 °C	Pass
	SAMPLE #4			
ASTM D7705	Tensile Load Retention (with load)1	>70%	92.3 %	Pass
ASTM D7617	Trans. Shear Strength Retention	n/a	107.6 %	n/a
	Degree of Cure	>95 %	99.4 %	Pass
ASTM E2160	Glass Transition Temperature (DSC)	>100 °C	128 °C	Pass
	SAMPLE #5			
ASTM D7705	Tensile Load Retention (with load)1	>70 %	89.8 %	Pass
ASTM D7617	Trans. Shear Strength Retention	n/a	106.2 %	n/a
	Degree of Cure	>95 %	99.1 %	Pass
ASTIN E2160	Glass Transition Temperature (DSC)	>100 °C	139 °C	Pass

Epoxy Rebar with *LITE***STONE™** 3200E/2131H exceeds or meets FDOT 932 specs

For Further information and discussion, Please contact Bhavesh H. Muni E-Mail: <u>bmuni@olin.com</u> Tel: 562-412-9962

"Advances in concrete reinforcement"

August 3-4, 2021 - Virtual

How thermoplastic GFRP can help

Why GFRP rebars are currently implemented mainly in straight applications such as decks and slabs, with limitations as stirrups and bent portions?

FRP REBAR CURRENT MANUFACTURER MODEL

> Rebars are not bendable after curing of the resin (thermoset – irreversible hardening):

- Production of straigth rebars shipped to contractor on-site
- If stirrups are needed, manufacturer needs to receive technical drawings to produce accordingly!

FRP CURRENT LOGISTIC LIMITATIONS

CURRENT FRP REBARS WITH THERMOSET RESIN (Vinilester/Epoxy) CANNOT BE BENT LOCALLY BUT ONLY AT MANUFACTURING SITE which causes:

- Longer lead time for bending & shipping
- Higher transportation costs (volumes)
- More difficult overall logistic if something goes wrong

THERE ARE ALSO TECHNICAL LIMITATIONS :

- Not constant quality of the bended rebars
- Lower mechanical properties of the bended rebars compared to straight rebars
- Large bent radius which limits the positioning of longitudinal rebars

HOW CAN WE OVERCOME THOSE DIFFICULTIES?

WE NEED TO BE ABLE TO FOLLOW THE SAME BUSINESS MODEL OF STEEL <u>REBARS</u>: Rebars are manufactured straight and then shipped to «Transformation centers» which bend rebars, based on design, and prepare cages to be shipped on site.

CERTIFIED TRANSFORMATION SITES ARE DISLOCATED LOCALLY IN THE TERRITORY

THERMOPLASTIC REBAR REVOLUTION

NEW BUSINESS MODEL

FROM MAKE-TO-ORDER INTO MAKE-TO-STOCK

Supply chain model: we can switch from the current make-to-order model, with lead time of **3-4 weeks**, to a make-to-stock model.

Lead Time 3-4 days

Manufacture and storage of straight rebars or coils

Bend the rebars into their **final shapes**

Shipping to construction sites / final customer

NEW BENDABLE FRP REBARS

REPLACING THERMOSET RESIN BY THERMOPLASTIC RESIN, FRP REBARS BECOME BENDABLE LOCALLY!

- Resin is soften by heat and thermoformable (thermoplastic reversable hardening):
 - ➤ When stirrups/bent bars are needed, manufacturer produces straight rebars shipped straight or in coils (to avoid waste) to certified transformation centers that will bent them locally just like they do with steel.

NEW BENDABLE FRP REBARS

WHAT ABOUT MECHANICAL-DURABILITY PROPERTIES?

- ✓ SIMILAR OR BETTER MECHANICAL PROPERTIES than of thermoset rebars;
- BENT BARS HAVE SAME MECHANICAL PROPERTIES OF STRAIGTH REBARS as they are the same rebar simply bent after production – no difference whatsoever respect to straight rebars (no need of having two standards for straight and bent bars).
- ✓ BENT RADIUS SIMILAR TO STEEL allows improving placement of flexural rebars and the overall optimization of design process;
- ✓ Surface treatment to obtain **SAME BONDING** to concrete of thermoset rebars;
- ✓ Same DURABILITY PROPERTIES of thermoset rebars (Alkaline and long term behaviour tested)

NEW BENDABLE FRP REBARS

WHAT ABOUT SUSTAINABILITY?

- ✓ THERMOPLASTIC REBARS ARE RECYCLABLE !!!
 - ✓ Mechanical recycling compounds
 - ✓ Chemical recycling

"Advances in concrete reinforcement"

FRP Rebar Composition

Fibres (Reinforcements) Resins (Polymers) Fillers Additives

Fibres – Mechanical strength Resins – Chemical resistance

The process : Pultrusion

STRONG and FLEXIBLE

PULTRALL | All right reserved

Materials

bar #5 grade III type of resin: vinylester, lot number 1702193P type of fibre: glass

Production

manufacturing process: pultrusion lot number: 1711002-5-60 with a total of m, started on and ended on . a production lot is defined by a change of the lot number of the resin and/or a change of machine

Product characterisation

Cross sectional area: test method CSA S806 Annex A

	sample	mm²
	1	226
	2	225
	3	227
	4	224
	5	224
	average	225
	std deviation	1,1
required minimum:		189,1
requ	ired maximum:	238,8

Longitudinal tensile properties:

test method CSA S806 Annex C

	sample	load at break (kN)	strength (MPa)	modulus (MPa)	elongation (m/m)
	1	279	1411,2	61670	2,3%
	2	284	1435,3	61876	2,3%
	3	293	1478,3	61526	2,4%
	4	297	1499,2	62190	2,4%
	5	282	1422,2	61624	2,3%
	average	286,9	1449,2	61777	2,3%
	std deviation	6,7	33,8	236	0,1%
re	quired minima:	200		60000	1,2%

Transverse shear strength

test method ACI 440.3R test method B4

sample	load at break (kN)	strength (MPa)
1	96,6	244,0
2	99,9	252,4
3	97,9	247,3
4	97,1	245,4
5	97,0	245,2
average	97,7	246,8
std deviation	1,2	2,9
reau	180	

required minimum:

Fibre content (per weight):

test method ASTM D2584 (temp 650°C, sand coating discarded from result)

	sample	%
	1	83,4%
	2	83,8%
	3	83,9%
	4	83,4%
	5	83,5%
	average	83,6%
	std deviation	0,2%
requ	ired minimum:	70%

Void content:

test method ASTM D5117 (15 min wicking with basic fuchsin)

sample	wicking
1	ok
2	ok
3	ok
4	ok
5	ok

Water absorption:

test method ASTM D570 (50°C)

	sample	weight variation 24h	weight variation long term
	1	0,06%	0,12%
	2	0,06%	0,10%
	3	0,07%	0,11%
	4	0,07%	0,11%
	5	0,07%	0,12%
	average	0,07%	0,11%
	std deviation	0,00%	0,01%
re	quired minima:	0,25%	0,45%

Cure ratio and glass transition temperature:

test method ASTM D3418 and CSA S807 Annex A (half-height @ 20°C/min)

		0 0	
	sample	cure ratio	Tg
	sample	(%)	(°C)
	1	99,90	138
	2	99,61	134
	3	99,68	129
	4	99,73	131
	5	99,51	127
	average	99,69	131,7
	std deviation	0,13	3,7
required minima		95	100

STRONG and FLEXIBLE

PULTRALL | All right reserved

PULATILL

The quality system

- ISO9002-1994 since 1994
- ISO9001-2000 since 2003
- TS16949 since 2008

ISO14001 since 2016

Ce of	Cei of	BSI
QUALITY MANAGEMENT SYSTE	QUALITY MANAGEMENT SYSTEM	
This is to certify that:	This is to certify that:	
Puitrall Inc. 700, 96 rue Nord Thettord Mines Québeo GéG 625 Canada	Pultrall Inc. 700, 9e rue Nord Thettord Mines Québeo GG6 625 Canada	
Holds Certificate No: FM 516533 and operates a Quality Management System	Holds Certificate No: TS 516531 and operates a Quality Management System w scope:	
Design and manufacturing of compo	Manufacture of composite parts by pull	
This certificate is traceable to this co 3450-2 dated 05/12/2000 and issued	Permitted Exclusions: Product Design	
For and on behalt of BSI. Black VP Pagulatory Attains, BSI Group America it	For and on behall of BSI. <u> <u> </u></u>	
Originally Registered: 03/15/2007	Originally Registered: 09/13/2011 IATF Number: 0126729	ISO 9001
		100 0001
This contribute ensures the property of 800 and shall be on An electronic conflicute core to authenticated automa, Prim To be read to comparation with two appearations the adapt American Hendraganitans: 12110 Durend Hills Road, Balls 20	This overfloate sensities the property of B31 and shall be extran- An electronic coefficience can be authenticated coates. Provided to The terminal comparation with the success above of the subcechara Fairbare devisions are equaliting the scope of the overfloates and regularement range to estimate the sources of the coefficient and regularement range to estimate the sources of the subcechara and regularement range to estimate the sources of the subcechara IATF Contracted Office: 12110 Statistical Hills Float, Builte 200, B	FM 516533

Certification

V-ROD is CSA-S807-10 and ASTM-D7957 certified

Conclusion

- The quality system should be independently audited annually
- The product range should comply with CSA-S807 and ASTM D7957 (independently tested by a third party).
- Every manufacturing step should be subjected to inspections

Thank you