September 19, 2002

MEMORANDUM

TO: District Structures Design Engineers
 (Gerard Moliere, Rod Nelson, Keith Shores, John Danielsen,
 Neil Kenis, Kim Saing, Jose Rodriguez, and Agnes Spielmann)
 District and Central Office Construction Engineers
 (Dan Foss, Henry Haggerty, Steve Benak, Jennifer Olson, Steve
 Wigle, Mark Croft, Jim Moulton, Jr., Walt Lange)

FROM: William N. Nickas, State Structures Design Engineer

COPIES: Bob Greer, Freddie Simmons, Bill Albaugh, Bill Domico, Jack Evans,
 Bob Nichols, Larry Sessions, Marcus Ansley, Doug Edwards (FHWA),
 Anath Prasad, Sharon Holmes, Henry Bollmann, Steve Plotkin, Tom
 Andres, Robert Robertson, Tony Mireles, Duane Brautigam

SUBJECT: Temporary Design Bulletin C02-15
 (Reference: New Direction for Florida Post-Tensioned Bridges – Corven
 Engineering, Inc)
 Strategy 5 – Multiple Tendon Paths
 Effective 8/1/02

To emphasize the importance of the Department’s new directions for post-tensioned
structures which increase the durability and level of performance of these structures, the
Department of Transportation is issuing Temporary Design Bulletins C02-11 thru 15.

Because of experiences in the past with tendon section loss due to corrosion, the
Department of Transportation has decided to address the internal redundancy of post-
tensioned structures by providing multiple tendon paths. Multiple tendon paths will
increase the number of tendons in post-tensioned spans and components and will provide
more structural strength in the event a tendon is lost compared to current practices. The
policy and related issues are outlined below. The document containing each these
requirements is listed in [] after each requirement.

1. The minimum number of tendons across critical sections is shown in the following
table: [SDG 7.11.1, Table 7.4]
2. Provide the following minimum number of tendons for post-tensioned substructure elements: [SDG 5.4, Table 5.1]

<table>
<thead>
<tr>
<th>Post-Tensioned Bridge Element</th>
<th>Minimum Number of Tendons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hammerhead Pier</td>
<td>6</td>
</tr>
<tr>
<td>Straddle Beams</td>
<td></td>
</tr>
<tr>
<td>C-Pier Column (Bars only)</td>
<td></td>
</tr>
<tr>
<td>C-Pier Cap</td>
<td></td>
</tr>
<tr>
<td>C-Pier Footing (Bars only)</td>
<td></td>
</tr>
<tr>
<td>Hollow Precast Piers</td>
<td>8</td>
</tr>
<tr>
<td>I-Section Precast Piers</td>
<td></td>
</tr>
</tbody>
</table>

3. All balanced cantilever bridges shall utilize a minimum of 4 positive moment external draped continuity tendons (2 per web) that extend to adjacent pier diaphragms. [SDG 7.11.1]

4. Provisions shall be made in the diaphragms, deviation blocks and other components of the superstructure for the future strengthening of segmental structures. Future strengthening shall be externally draped post-tensioning strands and shall be sized in accordance with AASHTO for the construction and service life of the structure. [to be clarified in SDG]