Contents

1.0 Executive Summary .. 4

2.0 Introduction .. 6

 2.1 Project Team Members, Working Group and Stakeholders ... 6

 2.2 Statewide Non-Motorized Traffic Statistics Data Repository .. 7

 2.3 The Need for Non-Motorized Data .. 7

3.0 Program Development Methodology, Goals, and Objectives .. 9

 3.1 Non-Motorized Data Program Goals ... 9

 3.2 Non-Motorized Data Program Objectives .. 9

3.0 Defining Data Collection Program Components .. 10

4.0 State of Florida Project Area and Data Partners/Stakeholders ... 11

 4.1 Existing Non-Motorized Traffic Volume Counts ... 11

 4.2 Traffic Counting Loaner Equipment ... 11

5.0 FDOT’s Site Selection Methodology ... 12

 5.1 Site Selection Method Steps Summarized ... 12

 5.2 Site Selection Step Details ... 12

 5.2.1 Step 1 – Agency Outreach (Statewide designated Data Wrangler) .. 12

 5.2.2 Step 2 – Create and Document Site Selection Criteria .. 14

 5.2.3 Step 3 – Assess site recommendations ... 16

 5.2.4 Step 4 – Create preliminary site installation schedules and start coordinating site installation resources .. 18

6.0 Site Selection Methodology Testing and Project Results ... 19

7.0 Sites Recommended for Continuous Counting - On-Site Visit Results .. 24

 Statewide and FDOT District Map Results ... 26

8. FDOT Non-Motorized Program Next Steps ... 34

 Statewide Continuous Count Program ... 34

 Statewide Short-term Count Loaner Program .. 34

 Statewide Repository .. 34

 Statewide Training and Technical Assistance .. 34

9.0 Conclusions ... 35

Appendix A - Site Location Table

Appendix B - On-Site Evaluation Forms
Appendix C – Program Brochure

Appendix D - Working Group Slides Show 1 and 2

Appendix E - Survey Form
1.0 Executive Summary

The Florida Department of Transportation Office of Transportation Data and Analytics (TDA) began the development of a Non-Motorized Traffic Counting Program in May 2018 with a need to provide bicycle and pedestrian (non-motorized) volume and supporting statistics and information to new and existing data customers. The purpose of developing the non-motorized data program is similar to motorized traffic volume data in that non-motorized data can be used for all the same type of analyses such as safety studies, planning and programming FDOT facilities, pavement and trail maintenance, etc. One example that illustrates the critical need for a non-motorized data program is to understand safety crash rates to accurately determine exposure so that valid statistical methods can be used to report the increased or decreased rates of accidents involving non-motorized traffic. Without volume data, accident rates and volumes are challenging (at best) to determine. Below is the executive summary describing FDOT’s Non-Motorized data program with a defined purpose, methodology, outcomes, and benefits to the program.

Purpose: To collect statistically valid bicycle and pedestrian (non-motorized) traffic volume data so that traffic volume statistics can be calculated and published annually.

Methodology: The methodology used to develop a non-motorized traffic volume program entails following some of the established motorized data program methods that serve as a model to the non-motorized program. For example, developing a non-motorized program includes establishing site selection and equipment installation/data collection criteria based on a statewide geographic footprint with continuous and short-term volume counting that can statistically represent all non-motorized facilities. Once the selection criteria are established, a survey of stakeholders (usually the data users) is conducted to gather input from across the geographic state boundaries of Florida. Survey respondents provide recommended sites in which to collect non-motorized count data and then the selection criteria are applied to the recommendations automatically creating a way of prioritizing where financial counting equipment and installation investments are implemented. Upon collecting data, information is then put through a quality control and quality checking process, statistics are calculated, and published non-motorized data is processed on an annual basis. Customers are then provided with access to this data for many different analyses as described in the purpose.

Outcomes: FDOT data customers and contributors of Transportation Data and Analytics office will be provided non-motorized traffic statistics in which to use for determining historical and current facility usage by bicycle and pedestrian travelers. Partnerships to be established across FDOT regions and with City, County, MPO, and other data customers and contributors will provide a working group and established venue for regular communications among the traffic data community in Florida. Training will be provided as part of establishing the statewide non-motorized counting program that includes FDOT Central Office and District staff as well as city, county, mpo, and other data customers and contributors.

Benefits: The FDOT (TDA) Central Office can provide a repository of data, calculate published annual non-motorized statistics similar to the motorized data collection program. As with the motorized traffic data collection program, the non-motorized program can take advantage of existing and established software technologies for providing data and calculating statistics. Non-motorized traffic volume data provides decision making information that is key in making bicycle and pedestrian infrastructure
investments. This data can provide critical decision-making information about non-motorized facilities that include several examples below:

1. providing volume data for traffic safety making a travel network with safer facilities (currently, accurate safety rates cannot be calculated without volume data)
2. providing planning studies with accurate volumes on travel behavior and travel trends so that informed investments in new and existing facilities can be made
3. providing maintenance staff with information in which to target resources or avoid maintenance activities such as street sweeping at critical travel times
4. providing traffic operations with accurate volumes allows for signal timing strategies to include non-motorized travelers

Other DOT agencies across the nation have developed non-motorized counting programs that have experienced the following benefits that FDOT could also experience upon developing a non-motorized count program:

1. Ability to establish performance measures, making informed decisions on facilities, and establishing funding eligibility
2. Provide and acquire support funding for facilities
3. Collaborate with safety strategies that include non-motorized travelers
4. Distribute non-motorized data to key customers such as federal agencies requesting non-motorized traffic volumes
5. Allows for making informed decisions on facilities
6. Accurately providing data for crash impact studies
7. Providing information on travel behavior so that informed decisions on lighting, cross-walks, reflectivity, and facility connections can be made
8. Congestion mitigation and air quality (CMAC) funding strategies can be more targeted
9. Construction, re-routing, and event planning can be more informed about non-motorized travel behavior
10. Strategically optimizing resources so that motorized and non-motorized data collection staff can be cross-trained to maintain and collect both types of data
11. Developing stakeholder communication that serves as a model for both motorized and non-motorized data

Next Steps: Moving forward, the program will be divided into four main components. Combined, the four components will make-up a robust statewide non-motorized traffic monitoring program that will collect continuous count data, short-term count data, establish data sharing relationships with local agencies to establish a statewide repository and provide on-going statewide training and technical assistance to any entity either actively involved in non-motorized traffic monitoring or has the desire to begin non-motorized traffic monitoring in the near future.
2.0 Introduction
There is a demand for understanding and evaluating FDOT and partner agencies (FDOT Districts, MPOs, Cities, Counties, etc.) investments and project funding prioritization methods for non-motorized facilities and travel demand. Projects specifically targeted for bicycle and pedestrian travel within the state of Florida struggle to compete for funding with other highway projects because they do not currently have the necessary information to determine past, current, or future facility usage. Knowing this and for many other reasons, FDOT has developed a regional bicycle and pedestrian volume counting program.

The key to building a Non-Motorized Data Program is to collect, quality control, calculate, and distribute only statistically valid bicycle and pedestrian traffic volume data so that traffic volume statistics can be calculated and published annually.

The methodology used to develop FDOT’s non-motorized traffic volume program entails following some of the established motorized data program methods that serve as a model to the non-motorized program. For example, developing a non-motorized program includes establishing site selection and equipment installation/data collection criteria based on a statewide geographic footprint with continuous and short-term volume counting that can statistically represent all non-motorized facilities. Once the selection criteria are established, a survey of stakeholders (the data users and some contributors) was conducted to gather input from across the geographic state boundaries of Florida. Survey respondents provided a total of 406 recommended sites in which to collect non-motorized count data. Site selection criteria was then applied to the recommendations automatically creating a way of prioritizing where financial counting equipment and installation investments could initially be implemented.

Upon collecting data, information is then put through a quality control and quality checking process, statistics are then calculated, data is processed, and published on an annual basis. Customers are then provided with access to this data for many different analyses as described in the purpose.

2.1 Project Team Members, Working Group and Stakeholders
As part of the volume counting program, FDOT established a small core-working group of stakeholders within the state of Florida. In addition to this core working group, many agencies within the state of Florida are also interested in (or have already started) developing bicycle and pedestrian volume counting data programs. These agencies with the help of the core working group is expected to grow into a formalized traffic data committee within the next several years. As the growth of this committee occurs, FDOT is strategically planning, envisioning, and preparing for multiple agency data partnerships where bicycle and pedestrian volume data suppliers and users can access one centralized regional non-motorized database.

On July 27th, 2018, the Working Group was provided with a presentation outlining the status and a detailed preview of the following items: Virtual Site Visits, On-Site Visits, Why Counting is Important, and the Training Materials. This presentation can be found in the Appendix D.

This working group continues to provide the FDOT Non-Motorized Program Development Team with critical feedback on multiple aspects of the program. For example, the working group took the survey
and provided feedback prior to implementing and sending the survey statewide to agencies throughout the state of Florida. See Attachment A for the list of project team members, working group participants, and agency stakeholders. There were 220 respondents of the survey representing 178 different agencies.

2.2 Statewide Non-Motorized Traffic Statistics Data Repository
Ultimately FDOT’s TDA Office will create a statewide non-motorized traffic statistics data repository that allows data customers and contributors to access information that comprises non-motorized traffic volume statistics like the motorized annual average daily traffic (AADT) statistic. During this project, there were many recommendations that will help in the development of a statewide centralized non-motorized database. These recommendations have been documented throughout this report. For example, data collection standards, site selection methodologies using standard methods that are documented for collecting, storing, and distributing data will help to architect a web-enabled software solution for the state of Florida.

FDOT has taken the first step in developing a standard for the state of Florida by investing in this non-motorized program development and documented methodologies project. During this project, a customized site selection method has been developed, tested, implemented and documented for the purpose of sharing these project results with statewide data partner agencies (also known as non-motorized data contributors).

2.3 The Need for Non-Motorized Data
All communities in the state of Florida would like to reduce automobile air emissions and increase individuals personal exercise and activity through active transportation. There is a demand for understanding and evaluating statewide, regional, and local agency investments and project funding including their prioritization methods. Projects specifically targeted for bicycle and pedestrian travel within the State of Florida struggle to compete for funding with other highway projects because they do not currently have the necessary information to determine past, current, or future facility usage. Knowing this, FDOT has developed a Statewide

<table>
<thead>
<tr>
<th>2016 rank</th>
<th>Metro area</th>
<th>2016 Pedestrian Danger Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cape Coral-Fort Myers, FL</td>
<td>283.1</td>
</tr>
<tr>
<td>2</td>
<td>Palm Bay-Melbourne-Titusville, FL</td>
<td>235.2</td>
</tr>
<tr>
<td>3</td>
<td>Orlando-Kissimmee-Sanford, FL</td>
<td>234.7</td>
</tr>
<tr>
<td>4</td>
<td>Jacksonville, FL</td>
<td>228.7</td>
</tr>
<tr>
<td>5</td>
<td>Deltona-Daytona Beach-Ormond Beach, FL</td>
<td>226.2</td>
</tr>
<tr>
<td>6</td>
<td>Lakeland-Winter Haven, FL</td>
<td>206.0</td>
</tr>
<tr>
<td>7</td>
<td>Tampa-St. Petersburg-Clearwater, FL</td>
<td>192.0</td>
</tr>
<tr>
<td>8</td>
<td>Jackson, MS</td>
<td>189.6</td>
</tr>
<tr>
<td>9</td>
<td>Memphis, TN-MS-AR</td>
<td>153.3</td>
</tr>
<tr>
<td>10</td>
<td>North Port-Sarasota-Bradenton, FL</td>
<td>148.2</td>
</tr>
<tr>
<td>11</td>
<td>Miami-Fort Lauderdale-West Palm Beach, FL</td>
<td>145.1</td>
</tr>
<tr>
<td>12</td>
<td>Bakersfield, CA</td>
<td>132.8</td>
</tr>
<tr>
<td>13</td>
<td>Birmingham-Hoover, AL</td>
<td>132.1</td>
</tr>
<tr>
<td>14</td>
<td>Little Rock-North Little Rock-Conway, AR</td>
<td>127.9</td>
</tr>
<tr>
<td>15</td>
<td>Houston-The Woodlands-Sugar Land, TX</td>
<td>127.2</td>
</tr>
<tr>
<td>16</td>
<td>Phoenix-Mesa-Scottsdale, AZ</td>
<td>125.1</td>
</tr>
<tr>
<td>17</td>
<td>Detroit-Warren-Dearborn, MI</td>
<td>124.2</td>
</tr>
<tr>
<td>18</td>
<td>Riverside-San Bernardino-Ontario, CA</td>
<td>123.4</td>
</tr>
<tr>
<td>19</td>
<td>Baton Rouge, LA</td>
<td>120.6</td>
</tr>
<tr>
<td>20</td>
<td>McAllen-Edinburg-Mission, TX</td>
<td>118.8</td>
</tr>
</tbody>
</table>
bicycle and pedestrian volume counting program.

Safety is another important factor contributing to the need to better understand non-motorized volumes and behaviors. Florida has consistently ranked as one of the leading states in the country regarding non-motorized injuries and fatalities. The 2016 *Dangerous by Design* study led by Smart Growth America and the National Complete Streets Coalition, indicated that among the most dangerous metro areas to walk in the country, Florida has 9 metro areas ranked in the top 11. The Statewide Non-Motorized Traffic Monitoring program will assist planners, engineers, and safety specialists throughout the state in better understanding the usage and exposure rates of non-motorized facilities, thus make more informed decisions on how to improve safety for non-motorized travelers within their jurisdiction.

As part of the development of the non-motorized traffic volume counting program, FDOT established a small core-working group and a larger group of potential agency data partners within the State of Florida that are also interested in (or have already started) developing bicycle and pedestrian volume counting data programs. These groups are expected to grow into a formalized traffic data committee within the next several years. As the growth of this committee occurs, FDOT is strategically planning, envisioning, and preparing for multiple agency data partnerships where bicycle and pedestrian volume data suppliers and users can access one centralized regional non-motorized database. As described in section 5 of this document, a survey of Florida agency data partners revealed the overwhelming need for bicycle and pedestrian data. Survey respondents reported needing data for the following purposes which are also illustrated in the Purpose for Top 56 Proposed Locations Table: Bicycle and pedestrian facility usage, safety, general data collection, before and after facility improvements are completed, traffic operations, design, economic study, transit study, and other reasons.
3.0 Program Development Methodology, Goals, and Objectives
A
gencies need bicycle and pedestrian volume data to report on established performance measures, enhance safety, provide for better operations and proper maintenance, and fulfill customer needs for non-motorized data. Agencies have started to develop bicycle and pedestrian volume counting programs within the state of Florida and as a result have started purchasing, installing, and implementing automated bicycle and pedestrian volume counting equipment.

One goal of this program is to establish non-motorized data collection, storage, and retrieval standards with supporting and documented methods. Currently there is no centralized, statewide, or integrated access to bicycle and pedestrian counting volume data and statistics or integrated datasets (such as with motorized traffic counts). Currently, agencies are using different site selection methods, types of equipment and software technologies that makes integrating these datasets difficult or impossible. The goal of this program is to establish a statewide accepted standard methodology for selecting data collection sites that encourages strategic site selection where data is collected once and used many times by multiple agency partners.

3.1 Non-Motorized Data Program Goals
There are 3 program goals for the Non-Motorized Data Collection program as listed below:

1. **Goal #1** - To develop a statistically valid non-motorized data collection program
2. **Goal #2** - To develop a reliable, reputable and efficient non-motorized data collection program
3. **Goal #3** - To develop an all-inclusive (data steward, data user and contributor driven) non-motorized data collection program

3.2 Non-Motorized Data Program Objectives
Working to achieve these goals, the following specific objectives and described methodologies have been established for the statewide non-motorized data program:

1. **Objective #1** – Develop a standardized site selection method that complies with nationally accepted methods for calculating annualized non-motorized traffic statistics.
 a. This includes following all documented federal highway administration (FHWA) traffic monitoring guidebook (TMG) recommendations as technically, feasibly, and fiscally possible.
 b. This includes using nationally accepted site selection methods for motorized traffic data collection as a guide to develop non-motorized site selection methods for the state of Florida.

2. **Objective #2** – Provide data collection and traffic statistics site selection methods that can be standardized, repeated, and implemented across multiple agencies.
 a. Site selection methods documented in this report can be replicated by other agencies within the State of Florida.
3. **Objective #3** – Develop statewide site selection methods that can be distributed across the state of Florida.

4. **Objective #4** – Include multiple data contributors and users (known as stakeholders) in the process of developing standard statewide non-motorized data collection methods.

 a. This project included engaging stakeholders early in the development of the statewide site selection methodology.

 b. This project included developing agency partnerships that ensured and encouraged non-motorized data sharing business practices.

5. **Objective #5** – Develop a site selection methodology that yields the greatest benefit and is most efficient to the state of Florida in terms of data usage and technologies used to collect data.

 a. This project included considering site selection methods that will help in collecting data for safety, planning, performance measures, investment decisions, etc.

 b. This project included evaluating, testing, and considering multiple technologies for collecting non-motorized data when developing the site selection methodology.

3.0 Defining Data Collection Program Components

Within the Florida DOT, there are 5 program components to consider. For example, the program management and procurement component might include contracting, purchasing, strategic planning, resource identification, etc. The data collection program component encompasses site selection, installation, and data collection activities. Other data collection components include data retrieval, data quality assurance and quality checking, data analyses and statistical calculations, as well as reporting. As illustrated in the non-motorized counting program components graphic, FDOT has organized and is managing the non-motorized program with site selection methodologies that specifically cover the data collection program component. The first steps that this program is focusing on is the site selection methods required to strategically and optimally collect non-motorized data within the state of Florida.
4.0 State of Florida Project Area and Data Partners/Stakeholders

The State of Florida is comprised of the statewide/district DOT agency, metropolitan planning organizations (MPO’s), county/city/unincorporated local governmental agencies and several private entities with an interest in bicycle and pedestrian volume data. The State DOT Centralized Office of Transportation and Data Analytics (TDA) provided an opportunity for all data partners and stakeholders to participate in the development of a Statewide Non-Motorized data collection program. Maps have been provided within this report to illustrate the stakeholder’s geographic locations and distribution of project participants.

4.1 Existing Non-Motorized Traffic Volume Counts

When developing the statewide non-motorized data program, FDOT established a goal of developing site selection methods within a statewide count program that contribute and support a statistically valid, reliable, reputable, efficient and all-inclusive data collection program. Manual counts will be used as a quality assurance and quality control (QA/QC) data source and automated counts will be used to calculate all annualized traffic statistics for publishing volumes. Automated counts will be evaluated and incorporated into the statewide data collection program as needed.

FDOT invested in bicycle volume short-term counting equipment and will be collecting data using this equipment to help inform the process of selecting continuous counting locations in which to make investments for installing permanent counting equipment. Strategic partners have agreed to and will also help in the process of sharing and collecting short-term data.

4.2 Traffic Counting Loaner Equipment

FDOT invested in bicycle counting equipment that is intended to capture short-term bicycle traffic volumes on facilities that are appropriate for bicycle tube installation. This equipment is available to loan to data partner agencies on a short-term basis for short-term counting purposes. Equipment will either be provided to the data partner agency that is willing and able to install and follow the outlined traffic counting goals of the state of Florida, or FDOT will install the counters and collect data for the data partner agency. It is expected the loaner counting program will expand as FDOT continues to develop their statewide non-motorized counting program. Other statewide non-motorized traffic counting programs across the nation have a loaner counter program where counters are generally installed for one to two-week periods at a location decided and agreed upon by local and state DOT staff where local agency data partners are responsible for any permitting, monitoring, and maintenance issues while the counters are installed in their geographic area. FDOT will be available to assist with installation and will provide count data in CSV or Excel format once counters are returned. Additional signed cross-jurisdictional agreements may be required. For more information on obtaining short duration counts using state funded counting equipment in the traffic counting loaner program, contact Eric Katz at Eric.Katz@dot.state.fl.us or (850) 414-4704.
5.0 FDOT’s Site Selection Methodology

There are four steps in FDOT’s site selection methodology that are described below so that data partners and supporting agencies and private data collection partners can follow a statewide standardized process when determining where to collect bicycle and pedestrian volume. All four steps are summarized below, and details are described for how to implement each step.

5.1 Site Selection Method Steps Summarized

Nationally accepted and documented methods for selecting sites in which to collect non-motorized traffic data include:

1. Conduct agency outreach – contact agency and private data partners
2. Create and document site selection criteria
3. Assess site recommendations
4. Create preliminary installation schedules and start coordinating installation resources

FDOT is following these nationally accepted and documented methods and as of September 2018, FDOT completed steps 1-3 and continues on-going work on step #4 as listed above. Here are the specific detailed tasks that FDOT has completed:

- Created and distributed a survey to potential agency data partners
- Developed a tracking worksheet for survey responses
- Analyzed responses using selection criteria that was also created
- Conducted virtual site visits at 406 proposed sites
- Conducted a total of 50 on-site visits
- Prioritized and organized sites within the tracking worksheet
- Finalized site selection for installation of continuous counting equipment

Below are the detailed steps defined and methods to follow for the development of a statewide non-motorized data program.

5.2 Site Selection Step Details

Developing a non-motorized traffic counting program requires that both temporary and permanent bicycle and pedestrian counters be installed to estimate long-term (continuous counting) trends, to collect volume data before and after construction, and to test and work with various vendor technologies.

5.2.1 Step 1 – Agency Outreach (Statewide designated Data Wrangler)

Step 1 is to conduct agency outreach that provides a venue for outreach, communication, and coordination to data partner agencies located within the state of Florida. Agencies interested in collecting bicycle and/or pedestrian volume count data should begin by contacting the statewide data wrangler within the state who is Eric Katz as listed below. A statewide data wrangler is an individual that works as a multiple agency resource to coordinate, gather, and update the state of Florida’s bicycle and pedestrian data collection activities. FDOT is organized and in a strategic position to coordinate statewide data collection activities and as such is considered the state’s data wrangler. As the statewide designated data wrangler, FDOT is helping the state of Florida by coordinating schedules,
resources (including equipment and staff), access to data, and the development of statewide adopted data collection standard.

As of December 2018, the statewide designated Data Wrangler is:

Eric Katz, AICP, CNU-A
Transportation Data and Analytics Office
Non-Motorized Statewide Traffic Monitoring Program Coordinator
(850) 414-4704
Eric.Katz@dot.state.fl.us
Florida Department of Transportation
605 Suwannee St.
Tallahassee, Florida 32399

In effort to complete Step 1 – conduct agency outreach, FDOT developed survey questions that were e-mailed using the survey monkey technology software solution. Communication methods with stakeholders also included sending e-mail, calling agencies, and hosting an in-person stakeholder meeting. Within the survey, data partners and contributors provided site location recommendations that were then evaluated for statewide continuous counting site installation. The e-mail request to complete the survey was sent on June 4, 2018 to every data partner and contributor in the state of Florida. The survey that was sent out is presented in Attachment E - Survey.

5.2.1.2 Survey Results
Survey results included 406 data collection site recommendations for collecting bicycle and pedestrian traffic volume count data. The recommendations made were from a total of 178 different agencies. The map shows the top 50 recommendations in green that were made during the survey. Since the completion of this recommendations report, new recommendations have been and will continue to be made over time. It is expected that tracking recommendations over time is a dynamic process that will likely include the need to be to be updated regularly.
5.2.2 Step 2 – Create and Document Site Selection Criteria

Updating and evaluating sites requires the development of site selection criteria which is Step 2. This step provides a way to standardize the method of site selection for both short and/or long-term counting and establishes the foundation for all sites that are selected to collect bicycle and pedestrian volume count data. Completing this step provides a way, as described in subsequent steps, to prioritize and select sites for collecting data. The FDOT non-motorized site selection criteria has been established and is listed below. This selection criteria are also dynamic and are subject to change over time with changes in technology, staff, and agency policies. The selection criteria were developed based on standard motorized traffic data collection methodologies in mind.

An agency that is ready to start collecting and recommend collecting bicycle and pedestrian volume data in the state of Florida should review, evaluate, and update sites based upon the following site selection criteria described below.

5.2.2.1 FDOT Site Selection Criteria:

Site selection criteria provides a way to evaluate and prioritize requests for bicycle and pedestrian counting volume data. The site selection criteria listed below is not meant to be all-encompassing nor is it meant to eliminate sites that might need data collected for other purposes such as project specific economic development purposes, before and after construction studies, health impact studies, etc.
1. **LOCATION** - Location should be within the state of Florida. Sites that are on (or close to – connectors) to FDOT owned facilities should be given priority.

2. **DURATION** - Sites selected and recommended should include collecting automated counting technology used to collect data on a continuous (365 days/year) or short-term (minimum 24 hours of hourly consecutive hourly count data, with a preferred a 14-day count) basis. If 2-hour manual counts are possible, manual counts should be used as a validation count (Quality Assurance and Quality Control - QA/QC) for where automated continuous and short-term counting equipment is installed. Using manual counts for validation requires coordination of the automated and manual counting resources. Manual counts should be collected at the same location on the same date and time as automated counters and each hourly count should be compared and validated.

3. **FACTOR GROUP DESIGNATION** - Sites selected and recommended for data collection should include an evenly distributed representation of the state of Florida’s factor groups.

ASSUMPTIONS:

- Factor groups are subject to change over time with data informing the process of establishing factor groups
- There are only a few existing continuous counting stations within the state of Florida that might be able to create factors but these are not owned by the Florida Department of Transportation and currently there is not enough data (short term or continuous counting data) to inform the process of creating factor groups.
- Over time, additional factor groups will be established and additional continuous counting stations will be installed to collect volume data
- The state of Florida will use factor groups to calculate factors from continuous count stations that can be applied to short-term counts for the purpose of calculating annual traffic statistics that can be published annually, a full-years’ worth of data must be collected to calculate and publish these statistics

The State of Florida Factor Groups (as of December 2018)

1. Urban Commute
2. Urban Mixed
3. Urban Recreational
4. Rural Commute
5. Rural Mixed
6. Rural Recreation
7. Mixed Commute
8. Mixed Recreational
9. Mixed Mixed
10. University Commute
11. University
12. University Mixed
This factor group list will be updated and dynamic as more information is available such as conducting on-site visit and gathering on-site information and collecting short-term counts and analyzing data from the short-term counts.

4. **FACILITY IMPROVEMENTS** – Sites selected and recommended for data collection should receive higher priority when sites fall within an area where a known facility improvement (such as adding stripes, bike lanes, etc.) will occur. Given the relatively small number of count sites in the state of Florida, staff will not use a lack of counter locations or data to disqualify locations in project selection or determine eligibility for federal funding.

5. **MULTIPLE AGENCY SUPPORT** - Sites selected and recommended for data collection should receive higher priority when sites fall within an area where multiple agency resources are available, ready, and willing to help in installing, maintaining, and evaluating data collected from a site.

5.2.2.2 Other Agency’s Site Selection Criteria Example

With several agencies across the country starting up bicycle and pedestrian volume data collection programs, there has been several different selection criteria established across the nation. Below is a sample of some of the criteria used to select sites for collecting bicycle and pedestrian volume data.

1. Must have a mix of sites that cover all anticipated factor groups
 - Example: include on-street and trail locations
 - Example: include urban, commuter, mixed
 - Example: include low, medium, high volume
2. Sites that are targeted for facility improvements (example: adding bike lanes)
3. Sites that are on a DOT facility or are a connector to a DOT Facility
4. Sites where local agencies resources are available, ready, and willing to help
5. Sites represent a variety of conditions within the overall network (example: economically challenged area, near transit stations, near hospitals, on greenways, etc.)

5.2.3 Step 3 – Assess site recommendations

Once the site selection criteria are developed, the next step is to assess, evaluate and prioritize potential sites for collecting data. Recommended sites are organized and prioritized according to the site selection criteria. This process is typically managed electronically within a spreadsheet and recommendations are sorted by the site selection criteria. Further evaluation of each site is then conducted using a virtual site audit process and an on-site evaluation of the site as described below.

5.2.3.1 Virtual Site Audits

Conducting virtual site audits allows a preliminary site visit to occur virtually prior to visiting the site in person. Using technology tools such as google earth, google maps, and accessing images of the sites being recommended allows an agency to evaluate a site prior to conducting an on-site visit.
The following recommendations allow sites to be prioritized and should be considered when conducting a virtual site audit:

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and stand around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points (choke points) that allows a counter to capture all travelers on the facility
8. Avoid counting at intersections, preferred counting locations are mid-block so that an entire segment can be assigned a traffic volume statistic
9. Look for locations along the facility where a poll, tree, or other structure might be able to serve as part of the counter installation (example: light poll where a video camera can be installed)
10. Review the types of pedestrians and bicyclists traveling on the facility (example, do travelers have backpacks, panniers, or business attire which would typically indicate commuter travel versus spandex that would indicate recreational travel.

Conducting virtual site visit requires keeping in mind the next step in the process which is to conduct an on-site field visit. In preparation for visiting the site in person, printing out maps, photographs, or google earth images while conducting the virtual site audit may help when conducting the on-site visit. Bringing notes and stakeholder comments to the site may also help.

5.2.3.2 On-site Field Visits

The next step is to conduct an on-site field visit. This process can require several days or weeks depending on the number of sites recommended. In preparation for conducting on-site visits, FDOT developed an automated form that could be printed and manually completed on-site as well as electronically filled out on a table. This form can be found in Appendix B.

FDOT strategically collected a lot of information about each site using this electronic form and a separate on-site workbook report has been prepared and finalized. This report supplements all the information found in this recommendations report.

The process FDOT followed to prepare for each on-site visit includes following the on-site preparation list for conducting the on-site visits listed below.

1. Develop schedules with estimated time to drive to sites and on-site evaluation time
2. Schedule site recommendation contacts (stakeholders) to meet on-site (this includes meeting other agency representatives that recommended the site)
3. Printing maps/photos/google earth images and notes provided from the stakeholders
4. Bring paper to take notes about the site conditions while on-site
5. Bring laptop to access electronic forms and workbook sheets as well as prioritization spreadsheet (and print), google maps, etc.
6. Bring camera (phone that takes pictures) to take on-site pictures
Many observations can be made while on-site that should be noted by documenting site conditions on paper/laptop while on-site. These observations that should be documented include:

1. Observe bicycle, pedestrian, and motorized traffic behaviors (on path, on roadway, direction of travel, etc.)
2. Take pictures of bicycle/pedestrian travelers to determine the best counter installation location
3. Look for the choke points where all travelers will pass within a 12 to 15’ detection zone
4. Look for overhead and underground utilities (it is best to test inductance at the location while on-site to see if there will be any interference)
5. Look at the surface type and note whether it is asphalt, concrete, brick, gravel, etc.
6. Look at facilities to count on-site and make note of sidewalks, roadway, trails, dirt, etc.
7. Look for high traffic volume generators such as hospitals, shopping malls, schools, beaches, etc.
8. Sites should be evaluated as a potential short-term versus continuous counting site (For example, low or no volume sites might only require short-term counting)
9. Document the type of technology suitable for the site (tube, infrared, video, etc.)

Note: all items listed above can be found in the On-Site workbook.

5.2.4 Step 4 – Create preliminary site installation schedules and start coordinating site installation resources

Since equipment is not always stocked by vendors, there is typically a gap of time before the equipment is delivered. Agencies can use this gap of time to schedule and coordinate installation resources. Here are a few tips to consider for scheduling and coordinating installation resources:

- Execute partnership agreements – determine if formal partnership agreement is necessary. For example, if one agency will manage the data and the other agency will maintain the equipment, this might be documented in a formal (signed) memorandum of agreement (MOA) outlining responsibilities of each agency.
- Strategically coordinate existing resources – try to optimize resources by finding agencies that have staff that can install and maintain equipment that are already trained and well-versed in traffic counting technologies. Also look for resources that can manage, process, publish, and distribute data.
- Reducing installation costs while increasing equipment purchases – if agency stakeholders have internal or contract staff that can provide the installation of loops, tubes, or cameras, the agency should consider using these resources for the installation of Non-Motorized equipment. If these resources do not exist, the cost of installing equipment will need to be factored into the cost of the data collection at the site. Upon contacting stakeholders, if internal or contract staff can provide equipment installation, additional budgeted funds can be used for purchasing more counting equipment. These strategically coordinated efforts among agencies around the country are partnering and coordinating installation and equipment purchasing to optimize resources and funding.
6.0 Site Selection Methodology Testing and Project Results

Site selection methods for this project were developed, tested, and refined May through September 2018 by conducting virtual and on-site visits. Each site visited was evaluated as a potential short-term and continuous counting location. Schedules for conducting on-site field visits is found on the following pages.
Statewide Non-Motorized Traffic Monitoring Program | December 2018

District 2

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>27-Aug-18</td>
<td>6:00-8:30 am</td>
<td>Leave FDOT CENTRAL OFFICE – Drive to Jacksonville airport - 163 miles (2 hr 38 min.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8:30-8:50 am</td>
<td>Northbank RiverWalk, Water St @ Hogan St.</td>
<td>40 min Met Stakeholder from the City of Jacksonville Agency on-site</td>
</tr>
<tr>
<td></td>
<td>9:30-9:45 am</td>
<td>Hendricks Ave @ Atlantic Blvd bike lanes, Hendricks Ave @ Atlantic Blvd</td>
<td>20 min</td>
</tr>
<tr>
<td></td>
<td>10:15-10:45 am</td>
<td>Baldwin Rail Trail, Imeson Rd</td>
<td>20 min</td>
</tr>
<tr>
<td></td>
<td>11:05-12:00 pm</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12:00 - 1:15 pm</td>
<td>Drive to Gainesville - 68 miles (1 hr 15 min.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arrive at 1:15</td>
<td>NE 3rd Ave @ Waldo Rd shared path, NE 3rd Ave @ Waldo Rd</td>
<td>30 min Met Stakeholder from the City of Gainesville Agency on-site</td>
</tr>
<tr>
<td></td>
<td>1:45-2:05 pm</td>
<td>NW 3rd Ave @ 6th St Rail Trail, NW 3rd Ave @ 6th St</td>
<td>20 min</td>
</tr>
<tr>
<td></td>
<td>2:25pm-2:45pm</td>
<td>Depot Rail Trail, Depot Rd @ 6th St.</td>
<td>20 min</td>
</tr>
<tr>
<td></td>
<td>3:05-3:25 pm</td>
<td>Suburb site</td>
<td>20 min</td>
</tr>
<tr>
<td></td>
<td>3:20-3:30 pm</td>
<td>Drive to Orlando - check in to hotel - 113 miles - 1 hr 52 min.</td>
<td></td>
</tr>
</tbody>
</table>

District 5

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-Aug-18</td>
<td>9:00-9:30 am</td>
<td>Leave Orlando Hotel – Drive to first site</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arrive at 9:30am</td>
<td>Downtown 1, Livingston St. @ Magnolia Ave.</td>
<td>20 min Met Stakeholder from the MetroPlan Agency on-site</td>
</tr>
<tr>
<td></td>
<td>9:50-10:10am</td>
<td>Little Econ Trail, Baldwin Park St @ Lake Baldwin Ln</td>
<td>20 min</td>
</tr>
<tr>
<td></td>
<td>10:30-10:45am</td>
<td>SunRail @ Church St, SunRail @ Church St</td>
<td>20 min</td>
</tr>
<tr>
<td></td>
<td>11:05-11:35am</td>
<td>Shingle Creek Trail, Hoganland Blvd. @ Iro Bronson Memorial Hwy</td>
<td>20 min</td>
</tr>
<tr>
<td></td>
<td>12:00-1:00pm</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:00-2:20pm</td>
<td>Drive to Melbourne’s first site - 57 miles - 1 hr 20 min.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arrive at 2:30pm</td>
<td>Melbourne A1A, A1A @ Ocean side blvd</td>
<td>20 min Met Stakeholder from the Space Coast TPO Agency on-site</td>
</tr>
<tr>
<td></td>
<td>2:50-3:00pm</td>
<td>Melbourne Transit stop, Eau Gallie Causeway @ Patrick Dr</td>
<td>20 min</td>
</tr>
<tr>
<td></td>
<td>3:20-3:30pm</td>
<td>Bridge site, Eau Gallie Causeway</td>
<td>20 min</td>
</tr>
<tr>
<td></td>
<td>3:50-4:10pm</td>
<td>Suburb site, Eau Gallie Causeway</td>
<td>20 min</td>
</tr>
<tr>
<td></td>
<td>4:30-6:20pm</td>
<td>Drive to West Palm Beach hotel - 113 miles (1hr 52 min.)</td>
<td></td>
</tr>
</tbody>
</table>
Statewide Non-Motorized Traffic Monitoring Program

29-Aug-18 Wednesday

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00-9:30am</td>
<td>Leave West Palm Beach hotel and drive to first site</td>
</tr>
<tr>
<td>Arrive at 9:30am</td>
<td>Okeechobee Blvd @ Rosemary Blvd</td>
</tr>
<tr>
<td>9:50-10:10am</td>
<td>Okeechobee Blvd @ Rosemary Blvd</td>
</tr>
<tr>
<td>10:30-10:50am</td>
<td>Suburb site</td>
</tr>
<tr>
<td>11:10-12:10pm</td>
<td>Drive to Fort Lauderdale - 42 miles (1 hr)</td>
</tr>
<tr>
<td>12:10-1:10pm</td>
<td>Lunch</td>
</tr>
<tr>
<td>1:10-1:40pm</td>
<td>A1A @ Sunrise Blvd</td>
</tr>
<tr>
<td>2:00-2:15pm</td>
<td>Sunrise Blvd @ Middle River</td>
</tr>
<tr>
<td>2:35-3:00pm</td>
<td>Suburb site</td>
</tr>
<tr>
<td>3:30-5:15pm</td>
<td>Drive to Naples hotel - 109 miles (1 hr 45 min)</td>
</tr>
</tbody>
</table>

30-Aug-18 Thursday

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00-9:30am</td>
<td>Leave Naples Hotel – Drive to first site</td>
</tr>
<tr>
<td>Arrive at 9:30am</td>
<td>Baker Park Gordon River Greenway</td>
</tr>
<tr>
<td>9:50-11:20am</td>
<td>Drive to North Port - 89 miles (1 hr 30 min)</td>
</tr>
<tr>
<td>Arrive at 11:20am</td>
<td>US 41 @ Sumter Blvd US 41 @ Sumter Blvd</td>
</tr>
<tr>
<td>11:40-12:00pm</td>
<td>Price Blvd @ Spring Haven Price Blvd @ Spring Haven</td>
</tr>
<tr>
<td>12:20-1:20pm</td>
<td>Lunch</td>
</tr>
<tr>
<td>1:20-2:40</td>
<td>Drive to Bradenton Beach - 52 miles (1 hr 12 min)</td>
</tr>
<tr>
<td>Arrive at 2:40pm</td>
<td>Gulf Dr @ Cortex Rd Gulf Dr @ Cortex Rd</td>
</tr>
<tr>
<td>3:00-3:30pm</td>
<td>Suburb site</td>
</tr>
<tr>
<td>3:30-5:10pm</td>
<td>Drive to Tampa hotel - 52 miles (1 hr 20 min)</td>
</tr>
</tbody>
</table>

31-Aug-18 Friday

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00-9:30am</td>
<td>Leave Tampa Hotel - drive to first site</td>
</tr>
<tr>
<td>Arrive at 9:30am</td>
<td>Tampa Riverwalk ADDRESS STREET NAME</td>
</tr>
<tr>
<td>9:50-10:00am</td>
<td>Jackson St Cycle Track Jackson St</td>
</tr>
<tr>
<td>10:20-10:35am</td>
<td>Courtney Campbell Causeway Courtney Campbell Causeway</td>
</tr>
<tr>
<td>10:55-11:20am</td>
<td>Suburb site</td>
</tr>
<tr>
<td>11:40-12:40pm</td>
<td>Lunch</td>
</tr>
<tr>
<td>12:40-1:00pm</td>
<td>Drop-off Liz at Tampa airport - Drive to Inverness - 80 miles - 1 hr 20 min</td>
</tr>
<tr>
<td>Arrive at 2:20pm</td>
<td>Withlacoochee 1 Withlacoochee 1</td>
</tr>
<tr>
<td>2:40-2:50pm</td>
<td>Withlacoochee 2 Withlacoochee 2</td>
</tr>
<tr>
<td>3:10-6:45pm</td>
<td>Drive back to Tallahassee - 219 miles - 3 hr 15 min</td>
</tr>
</tbody>
</table>
Week 2

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Activity Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-Sep-18</td>
<td>7:00-11:30am</td>
<td>Meet at FDOT D6 and drive to Key West - 165 miles (3 hrs 45 min.)</td>
</tr>
<tr>
<td>5-Sep-18</td>
<td>11:30 - 12:30</td>
<td>Lunch</td>
</tr>
<tr>
<td></td>
<td>12:30pm</td>
<td>Arrive at Duval @ Eaton</td>
</tr>
<tr>
<td></td>
<td>1:00 - 1:20pm</td>
<td>Palm Ave Causeway</td>
</tr>
<tr>
<td></td>
<td>1:40 - 2:00pm</td>
<td>FL Overseas Heritage Trail site 1</td>
</tr>
<tr>
<td></td>
<td>2:20 - 2:40pm</td>
<td>FL Overseas Heritage Trail site 2</td>
</tr>
<tr>
<td></td>
<td>3:00 - 3:20pm</td>
<td>FL Overseas Heritage Trail site 3</td>
</tr>
<tr>
<td></td>
<td>3:30 - 4:45pm</td>
<td>Drive to Islamorada- 80 miles (1 hr 42 min.)</td>
</tr>
<tr>
<td></td>
<td>4:45pm</td>
<td>Arrive at FL Overseas Heritage Trail site 4</td>
</tr>
<tr>
<td></td>
<td>5:10 - 5:40pm</td>
<td>Drive to Key Largo - 16.6 miles (24 min.)</td>
</tr>
<tr>
<td></td>
<td>6-Sep-18</td>
<td>Lunch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>site 5</td>
</tr>
<tr>
<td></td>
<td>10:30am</td>
<td>Gov. Center/transit station</td>
</tr>
<tr>
<td></td>
<td>11:00am</td>
<td>Arrive at Miami River Greenway</td>
</tr>
<tr>
<td></td>
<td>11:30 - 11:50pm</td>
<td>Miami River Greenway adjacent to Brickell bridge</td>
</tr>
<tr>
<td></td>
<td>12:00pm - 1:00pm</td>
<td>Lunch</td>
</tr>
<tr>
<td></td>
<td>1:10 - 1:50pm</td>
<td>Venetian Causeway</td>
</tr>
<tr>
<td></td>
<td>2:10 - 2:40pm</td>
<td>Rickenbacker Causeway</td>
</tr>
<tr>
<td></td>
<td>3:00 - 3:30pm</td>
<td>M-Path @ 72 St.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Site visits complete</td>
</tr>
</tbody>
</table>

Week 3

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Activity Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-Sep-18</td>
<td>10:45-11:00am</td>
<td>Leave Central Office and meet at Tallahassee Planning office</td>
</tr>
<tr>
<td>10-Sep-18</td>
<td>11:15am</td>
<td>Arrive at Cascades Trail</td>
</tr>
<tr>
<td></td>
<td>11:35am - 11:50am</td>
<td>Separated Bike Lanes on Pensacola</td>
</tr>
</tbody>
</table>

District 6

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Activity Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-Sep-18</td>
<td>10:45-11:00am</td>
<td>Leave Central Office and meet at Tallahassee Planning office</td>
</tr>
<tr>
<td></td>
<td>11:15am</td>
<td>Arrive at Cascades Trail</td>
</tr>
<tr>
<td></td>
<td>11:35am - 11:50am</td>
<td>Separated Bike Lanes on Pensacola</td>
</tr>
</tbody>
</table>
Below is an updated factor group list that shows the anticipated representation of factor groups based on the gathering of information from conducting on-site visits. Once data is collected from the sites selected for continuous counting, another update of the factor groups list will be required.

Updated State of Florida Factor Groups (As of September 2018)

There is a total of 13 different factor groups within the total of 55 on-site visits that were conducted providing the information displayed in the table below. A master table identifying the site number and site location description is provided in Appendix A.

<table>
<thead>
<tr>
<th>#</th>
<th>Factor Group</th>
<th># of Sites within the Factor Group</th>
<th>Sites within the Factor Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bayfront/Oceanfront Recreational</td>
<td>2</td>
<td>43, 44</td>
</tr>
<tr>
<td>2</td>
<td>Beach Mixed</td>
<td>2</td>
<td>16, 21</td>
</tr>
<tr>
<td>3</td>
<td>Beach Recreational</td>
<td>1</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>Causeway Recreational</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>Mixed Recreational</td>
<td>2</td>
<td>15, 29</td>
</tr>
<tr>
<td>6</td>
<td>Mixed Rural</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>River - Mixed</td>
<td>2</td>
<td>3, 31</td>
</tr>
<tr>
<td>8</td>
<td>Rural Recreational</td>
<td>3</td>
<td>7, 14, 32, 52, 53, 54, 55</td>
</tr>
<tr>
<td>9</td>
<td>University Commute</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>University Mixed</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>Urban Commute</td>
<td>10</td>
<td>1, 2, 6, 8, 9, 12, 17, 25, 28, 36</td>
</tr>
<tr>
<td>12</td>
<td>Urban Mixed</td>
<td>19</td>
<td>4, 5, 13, 20, 32, 34, 35, 37, 38, 39, 40, 41, 42, 45, 46, 47, 48, 49, 50, 51</td>
</tr>
<tr>
<td>13</td>
<td>Urban Riverfront</td>
<td>3</td>
<td>18, 19, 27</td>
</tr>
<tr>
<td>14</td>
<td>DIST 3 - TBD</td>
<td>2</td>
<td>TBD</td>
</tr>
</tbody>
</table>

TOTAL SITES EVALUTED ON-SITE: 55
7.0 Sites Recommended for Continuous Counting - On-Site Visit Results

Selecting sites and recommending that FDOT invest in purchasing equipment, installing, and collecting non-motorized continuous counting data required the analyses of more than 400 site recommendations provided by data partners across the State of Florida. All sites were evaluated using the virtual site visit techniques described earlier in this recommendation report. The methods for selecting sites described throughout this document were also followed allowing the more than 400 sites to be narrowed down to a top 55 sites. On-site visits were conducted at the top 55 sites and a total of 30 sites are recommended for continuous counting.

Below are the recommended results for sites that should be considered for continuous counting installations. A total of 30 sites were selected representing 10 of the 13 different factor groups.

<table>
<thead>
<tr>
<th>#</th>
<th>Factor Group</th>
<th>Total # of Sites within the Factor Group</th>
<th>Sites within the Factor Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bayfront Recreational</td>
<td>1</td>
<td>43, 44</td>
</tr>
<tr>
<td>2</td>
<td>Beach Mixed</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>Beach Recreational</td>
<td>1</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>Mixed Recreational</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>Rural Mixed</td>
<td>1</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>Rural Recreational</td>
<td>2</td>
<td>7, 14, 52</td>
</tr>
<tr>
<td>7</td>
<td>Urban Commute</td>
<td>7</td>
<td>2, 8, 9, 12, 17, 28, 36</td>
</tr>
<tr>
<td>8</td>
<td>Urban Mixed</td>
<td>9</td>
<td>4, 13, 20, 33, 35, 38, 39, 42, 47</td>
</tr>
<tr>
<td>9</td>
<td>Urban Recreational</td>
<td>2</td>
<td>22, 23</td>
</tr>
<tr>
<td>10</td>
<td>Urban Riverfront</td>
<td>3</td>
<td>18, 19, 27</td>
</tr>
<tr>
<td>11</td>
<td>TBD - DIST 3</td>
<td>2</td>
<td>TBD</td>
</tr>
</tbody>
</table>

TOTAL SITES EVALUATED ON-SITE: 30

**plus 2 more for Dist. 3

Missing are factor groups Causeway Recreational, River Mixed, and University Commute. These factor groups should be represented in the next round of installations anticipated in the year 2020.
Below is the table showing the factor groups represented that could be further evaluated for continuous counting site installations. A total of 14 sites fell within this group with a ranking of 2 representing 8 of the 13 factor groups.

<table>
<thead>
<tr>
<th>#</th>
<th>Factor Group</th>
<th>Total # of Sites within the Factor Group</th>
<th>Sites within the Factor Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beach Mixed</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>Causeway Recreational</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>Mixed Recreational</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>Mixed Rural</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>Rural Recreational</td>
<td>3</td>
<td>32, 53, 55</td>
</tr>
<tr>
<td>6</td>
<td>University Mixed</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>Urban Commute</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Urban Mixed</td>
<td>5</td>
<td>37, 40, 41, 49, 53</td>
</tr>
</tbody>
</table>

TOTAL SITES EVALUTED ON-SITE: 14

Sites that are recommended for short-term counting only were ranked a number 3 and the table below shows that a total of 12 sites fell within this group and 6 different factor groups were represented.

<table>
<thead>
<tr>
<th>#</th>
<th>Factor Group</th>
<th>Total # of Sites within the Factor Group</th>
<th>Sites within the Factor Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oceanfront Recreational</td>
<td>1</td>
<td>44</td>
</tr>
<tr>
<td>2</td>
<td>River - Mixed</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>University Commute</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Urban Commute</td>
<td>2</td>
<td>6, 25</td>
</tr>
<tr>
<td>5</td>
<td>Urban Mixed</td>
<td>5</td>
<td>34, 45, 46, 48, 50, 51</td>
</tr>
<tr>
<td>6</td>
<td>Rural Recreational</td>
<td>1</td>
<td>54</td>
</tr>
</tbody>
</table>

TOTAL SITES EVALUTED ON-SITE: 12
Statewide and FDOT District Map Results
Statewide Non-Motorized Traffic Monitoring Program | December 2018

District 6
FDOT Statewide Non-Motorized Traffic Monitoring Program Proposed Count Locations

Proposed Count Type
Continuous or Short-Term
Electronic Survey Resilient-Proposed Counting Locations
SUNTRIP Route 1
US 163
US 198
State Road

Produced By
Transportation Data & Analysis Office
October 31, 2028
8. FDOT Non-Motorized Program Next Steps

Moving forward, the program will be divided into four main components. Combined, the four components make-up a robust statewide non-motorized traffic monitoring program that will collect continuous count data, short-term count data, establish data sharing relationships with local agencies and provide on-going statewide training and technical assistance to any entity either actively involved in non-motorized traffic monitoring or has the desire to begin non-motorized traffic monitoring.

Statewide Continuous Count Program
FDOT’s goal is to install 1-2 Continuous counters, per FDOT district, on a yearly basis. Once FDOT obtains a year’s worth of statistically valid data, the data will be published and shared to the public through Florida Traffic Online. Please refer to the following maps (pg. 26 – 33) for results displaying the first round of Continuous Count stations and Short-term count stations FDOT will consider for installation.

Statewide Short-term Count Loaner Program
FDOT CO will work closely with Districts and local agencies to begin deploying short term count equipment along local/state facilities. FDOT CO currently has 20 short term count devices that we will loan out to local agencies to begin collecting non-motorized data. In addition to loaning out the equipment, FDOT will provide training on how to properly install the counter to help ensure good data is being collected. In return for the equipment/training, FDOT CO will receive reliable data from the local agency. The counters will ideally be placed for 2 weeks at a location and then can be moved to other locations.

Statewide Repository
FDOT is currently accepting existing non-motorized volume data from agencies willing to share it with FDOT TDA for analysis and will help greatly in building the statewide non-motorized network. FDOT’s goal is to get as much data as possible to be submitted and accepted by FHWA’s Travel Monitoring Analysis System (TMAS). The data will help build the national non-motorized network FHWA is in the beginning stages of working on. FDOT will use the existing St. Marks count station as the first site to submit to the TMAS system.

Statewide Training and Technical Assistance
FDOT will provide on-going training and technical assistance with any agency currently involved with or want to get involved with counting non-motorized traffic monitoring. An annual meeting will serve as our yearly update regarding the program and share the latest data results. FDOT hopes this meeting will also serve as a platform for FDOT and local agencies to share best practices and lessons learned regarding non-motorized counting.
9.0 Conclusions

In May 2018 FDOT started the process of developing a statewide bicycle and pedestrian volume counting program. As of September 2018, FDOT completed surveying and gathering site selection information from survey respondents/data partners that included: 2 FDOT district offices, 1 state park, 5 metropolitan planning organizations, 3 counties, 8 cities, 2 Downtown Development Authorities, and 1 NGO. These data partners will continue to provide key advances and support to the FDOT statewide non-motorized traffic monitoring program. This recommendations report provides FDOT and partner agencies with a documented site selection method reference and guidance document in which all agencies can follow so that standard methods are used to collect non-motorized data. If these methods are followed by all agencies, data can be shared and integrated into a statewide network of non-motorized traffic data volumes that cover the entire state of Florida.

Also, as of September 2018, FDOT evaluated all site selection recommendations and completed the process of prioritizing sites according to site selection criteria aimed at picking the most appropriate locations which would provide continuous counting station (CCS) traffic volume data for the development of a statewide non-motorized program. A lot of analytical and field work was completed to prioritize sites as survey information, virtual and on-site visits, and partner agency communications provided the necessary information to complete site evaluations. Out of 406 data partner site recommendations, FDOT prioritized the top 30 sites as appropriate for continuous counting installation. These sites will provide critical information needed to advance the non-motorized data program in the next phase of non-motorized data program development which is to establish and fund an equipment and installation budget, develop equipment specifications, develop purchasing and installation documentation, purchase equipment, and install equipment.

Prior to installation of CCS equipment, FDOT plans to collect short-term counts at the locations the team visited on-site, in addition to other proposed locations. Currently FDOT is working with agencies to install short-term equipment that is part of the FDOT non-motorized equipment loaner program. FDOT is also currently working on training agency staff to help with deployment of short-term counters. Finally, FDOT is providing technical assistance on an as needed basis to agency partner interested in developing non-motorized counting programs.
Appendix A – Site Location Table
<table>
<thead>
<tr>
<th>Site #</th>
<th>Site Name</th>
<th>Factor Group</th>
<th>Ranking</th>
<th>District</th>
<th>Metro Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hendricks Ave @ St. Marcos</td>
<td>Urban Commute</td>
<td>2</td>
<td>2</td>
<td>Jacksonville</td>
</tr>
<tr>
<td>2</td>
<td>Hendricks Ave @ Memorial Park</td>
<td>Urban Commute</td>
<td>1</td>
<td>2</td>
<td>Jacksonville</td>
</tr>
<tr>
<td>3</td>
<td>North Bank River @ Water St @ Hogan St</td>
<td>River - Mixed</td>
<td>3</td>
<td>2</td>
<td>Jacksonville</td>
</tr>
<tr>
<td>4</td>
<td>North Bank River @ YMCA</td>
<td>Urban Mixed</td>
<td>1</td>
<td>2</td>
<td>Jacksonville</td>
</tr>
<tr>
<td>5</td>
<td>Edgewood Ave. @ Post Street</td>
<td>Urban Mixed</td>
<td>2</td>
<td>2</td>
<td>Jacksonville</td>
</tr>
<tr>
<td>6</td>
<td>103rd St @ Wesconnet</td>
<td>Urban Commute</td>
<td>3</td>
<td>2</td>
<td>Jacksonville</td>
</tr>
<tr>
<td>7</td>
<td>Baldwin Rail Trail</td>
<td>Rural Recreational</td>
<td>1</td>
<td>2</td>
<td>Jacksonville</td>
</tr>
<tr>
<td>8</td>
<td>3rd Ave @ Waldo Rd.</td>
<td>Urban Commute</td>
<td>1</td>
<td>2</td>
<td>Gainesville</td>
</tr>
<tr>
<td>9</td>
<td>3rd Ave @ Waldo Rd. 2</td>
<td>Urban Commute</td>
<td>1</td>
<td>2</td>
<td>Gainesville</td>
</tr>
<tr>
<td>10</td>
<td>9th Ave @ 6th Street Rail Trail</td>
<td>University Commute</td>
<td>3</td>
<td>2</td>
<td>Gainesville</td>
</tr>
<tr>
<td>11</td>
<td>6th St. Depot Rail Trail</td>
<td>University Mixed</td>
<td>2</td>
<td>2</td>
<td>Gainesville</td>
</tr>
<tr>
<td>12</td>
<td>Livingston Street @ Magnolia Ave.</td>
<td>Urban Commute</td>
<td>1</td>
<td>5</td>
<td>Orlando</td>
</tr>
<tr>
<td>13</td>
<td>Little Econ Trail @ Cady Way Trail</td>
<td>Urban Mixed</td>
<td>1</td>
<td>5</td>
<td>Orlando</td>
</tr>
<tr>
<td>14</td>
<td>Cross Seminole Trail</td>
<td>Rural Recreational</td>
<td>1</td>
<td>5</td>
<td>Orlando</td>
</tr>
<tr>
<td>15</td>
<td>Shingle Creek Trail</td>
<td>Mixed Recreational</td>
<td>1</td>
<td>5</td>
<td>Orlando</td>
</tr>
<tr>
<td>16</td>
<td>A1A @ Ocean</td>
<td>Beach Mixed</td>
<td>2</td>
<td>5</td>
<td>Melbourne</td>
</tr>
<tr>
<td>17</td>
<td>Evans @ SR 192</td>
<td>Urban Commute</td>
<td>1</td>
<td>5</td>
<td>Melbourne</td>
</tr>
<tr>
<td>18</td>
<td>Flagler Trail</td>
<td>Urban Riverfront</td>
<td>1</td>
<td>4</td>
<td>West Palm Beach</td>
</tr>
<tr>
<td>19</td>
<td>Lake Trail @ Sunset Ave</td>
<td>Urban Riverfront</td>
<td>1</td>
<td>4</td>
<td>West Palm Beach</td>
</tr>
<tr>
<td>20</td>
<td>Sunrise Boulevard @ Middle River</td>
<td>Urban Mixed</td>
<td>1</td>
<td>4</td>
<td>Fort Lauderdale</td>
</tr>
<tr>
<td>21</td>
<td>A1A @ Vistamar</td>
<td>Beach Mixed</td>
<td>1</td>
<td>4</td>
<td>Fort Lauderdale</td>
</tr>
<tr>
<td>22</td>
<td>Gordon River @ Baker Park bridge 1</td>
<td>Urban Recreational</td>
<td>1</td>
<td>1</td>
<td>Naples</td>
</tr>
<tr>
<td>23</td>
<td>Gordon River @ Baker Park bridge 2</td>
<td>Urban Recreational</td>
<td>1</td>
<td>1</td>
<td>Naples</td>
</tr>
<tr>
<td>24</td>
<td>Price Boulevard</td>
<td>Mixed Rural</td>
<td>2</td>
<td>1</td>
<td>North Port</td>
</tr>
<tr>
<td>25</td>
<td>US 41 @ Sumter Boulevard</td>
<td>Urban Commute</td>
<td>3</td>
<td>1</td>
<td>North Port</td>
</tr>
<tr>
<td>26</td>
<td>Gulf Drive @ Cortez Rd</td>
<td>Beach Recreational</td>
<td>1</td>
<td>1</td>
<td>Bradenton Beach</td>
</tr>
<tr>
<td>27</td>
<td>Tampa Riverwalk</td>
<td>Urban Riverfront</td>
<td>1</td>
<td>7</td>
<td>Tampa</td>
</tr>
<tr>
<td>28</td>
<td>Jackson Street Cycle Track</td>
<td>Urban Commute</td>
<td>1</td>
<td>7</td>
<td>Tampa</td>
</tr>
<tr>
<td>29</td>
<td>Rome Ave @ Bayfront</td>
<td>Mixed Recreational</td>
<td>2</td>
<td>7</td>
<td>Tampa</td>
</tr>
<tr>
<td>30</td>
<td>Courtney Campbell Causeway</td>
<td>Causeway Recreational</td>
<td>2</td>
<td>7</td>
<td>Tampa</td>
</tr>
<tr>
<td>31</td>
<td>Withlacoochee Trail 1 (Orange ave)</td>
<td>Rural Mixed</td>
<td>1</td>
<td>7</td>
<td>Floral City</td>
</tr>
<tr>
<td>32</td>
<td>Withlacoochee Trail 2 (Eden Drive)</td>
<td>Rural Recreational</td>
<td>2</td>
<td>7</td>
<td>Inverness</td>
</tr>
<tr>
<td>33</td>
<td>Overseas Heritage Trail - Publix</td>
<td>Urban Mixed</td>
<td>1</td>
<td>6</td>
<td>Key West</td>
</tr>
<tr>
<td>34</td>
<td>Overseas Heritage Trail - Cow bridge</td>
<td>Urban Mixed</td>
<td>3</td>
<td>6</td>
<td>Key West</td>
</tr>
<tr>
<td>35</td>
<td>Duval @ Margaritaville</td>
<td>Urban Mixed</td>
<td>1</td>
<td>6</td>
<td>Key West</td>
</tr>
<tr>
<td>36</td>
<td>Staples Bridge</td>
<td>Urban Commute</td>
<td>1</td>
<td>6</td>
<td>Key West</td>
</tr>
<tr>
<td>37</td>
<td>Underline - south of S. Miami station</td>
<td>Urban Mixed</td>
<td>2</td>
<td>6</td>
<td>Miami</td>
</tr>
<tr>
<td>38</td>
<td>Underline - north of S. Miami station</td>
<td>Urban Mixed</td>
<td>1</td>
<td>6</td>
<td>Miami</td>
</tr>
<tr>
<td>39</td>
<td>Miami River - One Miami</td>
<td>Urban Mixed</td>
<td>1</td>
<td>6</td>
<td>Miami</td>
</tr>
<tr>
<td>40</td>
<td>Miami - Biscayne Blvd</td>
<td>Urban Mixed</td>
<td>2</td>
<td>6</td>
<td>Miami</td>
</tr>
<tr>
<td>41</td>
<td>Venetian - 1</td>
<td>Urban Mixed</td>
<td>2</td>
<td>6</td>
<td>Miami</td>
</tr>
<tr>
<td>42</td>
<td>Venetian - 2</td>
<td>Urban Mixed</td>
<td>1</td>
<td>6</td>
<td>Miami</td>
</tr>
<tr>
<td>43</td>
<td>South Pointe Park</td>
<td>Bayfront Recreational</td>
<td>1</td>
<td>6</td>
<td>Miami</td>
</tr>
<tr>
<td>44</td>
<td>Atlantic Greenway Trail</td>
<td>Beachfront Recreational</td>
<td>3</td>
<td>6</td>
<td>Miami</td>
</tr>
<tr>
<td>45</td>
<td>Rickenbacker Causeway</td>
<td>Urban Recreational</td>
<td>3</td>
<td>6</td>
<td>Miami</td>
</tr>
<tr>
<td>46</td>
<td>Cascades Trail @ Adams Street</td>
<td>Urban Mixed</td>
<td>3</td>
<td>3</td>
<td>Tallahassee</td>
</tr>
<tr>
<td>47</td>
<td>Pensacola St. - Separated bike lanes</td>
<td>University Mixed</td>
<td>1</td>
<td>3</td>
<td>Tallahassee</td>
</tr>
<tr>
<td>48</td>
<td>Miami River Greenway - near Brickell Bridge</td>
<td>Urban Mixed</td>
<td>3</td>
<td>6</td>
<td>Miami</td>
</tr>
<tr>
<td>49</td>
<td>Underline - Miami River</td>
<td>Urban Mixed</td>
<td>2</td>
<td>6</td>
<td>Miami</td>
</tr>
<tr>
<td>50</td>
<td>Overseas Heritage Trail - Home Depot</td>
<td>Urban Mixed</td>
<td>2</td>
<td>6</td>
<td>Key West</td>
</tr>
<tr>
<td>51</td>
<td>A1A @ Miami Road</td>
<td>Urban Mixed</td>
<td>3</td>
<td>4</td>
<td>Fort Lauderdale</td>
</tr>
<tr>
<td>52</td>
<td>US Bike Route 15 - 4 Freedoms Trail - South</td>
<td>Rural Recreational</td>
<td>1</td>
<td>2</td>
<td>Madison</td>
</tr>
<tr>
<td>53</td>
<td>US Bike Route 15 - 4 Freedoms Trail - Hanson</td>
<td>Rural Recreational</td>
<td>2</td>
<td>2</td>
<td>Madison</td>
</tr>
<tr>
<td>54</td>
<td>US Bike Route 15 - 4 Freedoms Trail - Poppy Trail</td>
<td>Rural Recreational</td>
<td>3</td>
<td>2</td>
<td>Madison</td>
</tr>
<tr>
<td>55</td>
<td>US Bike Route 15 - GA/FL border</td>
<td>Rural Recreational</td>
<td>2</td>
<td>2</td>
<td>Madison</td>
</tr>
<tr>
<td>56</td>
<td>District 3 (TBD)</td>
<td>TBD</td>
<td>3</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>57</td>
<td>District 3 (TBD)</td>
<td>TBD</td>
<td>3</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>
Appendix B – On-Site Evaluation Forms
On-Site Visit Form

<table>
<thead>
<tr>
<th>SITE NAME</th>
<th>DATE OF SITE VISIT</th>
<th>WEATHER CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hendricks Avenue @ San Marcos</td>
<td>8/27/2018</td>
<td>Standing water in bike lane and cloudy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>FACTOR GROUP</th>
<th>GPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hendricks Avenue @ San Marcos</td>
<td>Urban Commute</td>
<td>-81.6524462; 30.3036912</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LANE WIDTH</th>
<th># OF LANES</th>
<th>COUNT TYPE</th>
<th>SITE RANKING</th>
<th>RANKING NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3</td>
<td>Both</td>
<td>2</td>
<td>No travelers present</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIDEWALK WIDTH</th>
<th># OF SIDEWALKS</th>
<th>CITY AND DOT DISTRICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>2</td>
<td>DISTRICT 2 - JACKSONVILLE</td>
</tr>
</tbody>
</table>

NOTES: ON-SITE VISIT #1 on Monday, August 27, 2018. No rep on site, but spoke with City of Jacksonville over the phone.

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

NOTES: On site between 8:45am to 9:15 am. No travelers witnessed at site during visit.

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!

NOTES:
- No non-motorized behavior observed
- Must do prior to considering CCS
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

1. Look and observe bicycle, pedestrian, and motorized traffic behaviors
2. Take pictures of bicycle travelers to determine the best counter installation location
3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone
4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.
5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.
6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.
7. Sites should be evaluated as a potential short-duration versus continuous counting site
8. Document site technology types (tube, infrared, video, etc.)

<table>
<thead>
<tr>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Travelers Present</td>
</tr>
<tr>
<td>☑ Pictures Taken</td>
</tr>
<tr>
<td>☑ Good Pinch Points for Install</td>
</tr>
<tr>
<td>☑ Smooth Surface</td>
</tr>
<tr>
<td>□ Sidewalks Present</td>
</tr>
<tr>
<td>□ Roadways Present</td>
</tr>
<tr>
<td>□ Trails Present</td>
</tr>
<tr>
<td>□ Post Required</td>
</tr>
</tbody>
</table>

SELECT SURFACE TYPE:
- Asphalt

SELECT INSTALLATION TYPE:
- Loop, Piezo, and IR

SELECT COUNT TYPE(S):
- Both Short Term and Continuous Counting

NOTES: Lots of shopping near by, but places were not open during visit.

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

| □ Downtown Business District |
| □ Hospitals Nearby |
| □ Transit Stop Nearby |
| □ Major Employers Nearby |
| □ Universities Nearby |
| □ Public Recreational Lands Nearby |
| □ Bodies of Water Nearby |
| □ Other Nearby Origin/Destination Observations |

NOTES:
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES: According to the City of Jacksonville, this site could be moved (The COJ will get back to Eric on this. There is a lot of bike activity on this corridor, they are currently filling a gap of completing a bike lane.

<table>
<thead>
<tr>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Trees Present Nearby</td>
</tr>
<tr>
<td>☑ Polls Present Nearby</td>
</tr>
<tr>
<td>☐ Bollards Present Nearby</td>
</tr>
<tr>
<td>☐ Obstacles (in trail or road) Nearby</td>
</tr>
<tr>
<td>☐ Outdoor Siting Areas Nearby</td>
</tr>
<tr>
<td>☐ Vehicles Queuing in Roadway Nearby</td>
</tr>
<tr>
<td>☐ Parallel Parked Vehicles Present Nearby</td>
</tr>
</tbody>
</table>

ENTER SITE DRAWING:

![Site Drawing Image](image-url)
Virtual Site Visit Map:

Virtual Site Visit Photos:

On Site Photos
On-Site Visit Form

SITE NAME: Hendricks Avenue @ Memorial Park
LOCATION: Hendricks Avenue @ Memorial Park
FACTOR GROUP: Urban Commute
GPS: 30.3020934, -81.6512772
DATE OF SITE VISIT: 8/27/2018
WEATHER CONDITIONS: Cloudy and wet on roadway
PICTURES TAKEN: Yes
CITY AND DOT DISTRICT: DISTRICT 2 - JACKSONVILLE
LANE WIDTH: 13
SIDEWALK WIDTH: 5
COUNT TYPE: Both
of LANES: 5
of SIDEWALKS: 2
SITE RANKING: RANKING NOTE: Good site

NOTES: ON-SITE VISIT #2 on Monday, August 27, 2018. Rep not on site, but spoke with City of Jacksonville over the phone while on site.

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

Checkboxes
- Good Mid-Block Location
- Curves
- Special Events Nearby
- Powerlines
- Hills
- School or University Nearby
- Water Bodies
- Choke Points
- Parks and/or Recreation Facility Nearby
- Motorized Traffic Present
- People Hanging Around Area (milling around)

NOTES:
- Witnessed bike lane extension project milled and under construction.
- Smooth pavement. Memorial park is next to proposed site. Although we were there 8:30 to 9:00 am, team witnessed low bike/ped traffic during visit.

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!

NOTES:
- Low activity
- Motorized traffic will have to do traffic control for this site
- Heavy amount of motorized traffic
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

1. Look and observe bicycle, pedestrian, and motorized traffic behaviors
2. Take pictures of bicycle travelers to determine the best counter installation location
3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone
4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.
5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.
6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.
7. Sites should be evaluated as a potential short-duration versus continuous counting site
8. Document site technology types (tube, infrared, video, etc.)

Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:

- [] Travelers Present
- [] Pictures Taken
- [] Good Pinch Points for Install
- [] Smooth Surface
- [] Sidewalks Present
- [] Roadways Present
- [] Trails Present
- [] Post Required

SELECT SURFACE TYPE:
- Concrete

SELECT INSTALLATION TYPE:
- Loop, Piezo, IR, and Camera

SELECT COUNT TYPE(S):
- Both Short Term and Continuous Counting

NOTES: 1 bike and 1 ped present during visit. Local park across the street with loop path.

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- [] Downtown Business District
- [] Hospitals Nearby
- [] Transit Stop Nearby
- [] Major Employers Nearby
- [] Universities Nearby
- [] Public Recreational Lands Nearby
- [] Bodies of Water Nearby
- [] Other Nearby Origin/Destination Observations

NOTES:
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

<table>
<thead>
<tr>
<th>NOTES:</th>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTER SITE DRAWING:</td>
<td>☑ Trees Present Nearby ☑ Polls Present Nearby ☑ Outdoor Siting Areas Nearby</td>
</tr>
<tr>
<td></td>
<td>☑ Obstacles (in trail or road) Nearby ☑ Bollards Present Nearby ☑ Vehicles Queuing in Roadway Nearby</td>
</tr>
<tr>
<td></td>
<td>☑ Parallel Parked Vehicles Present Nearby</td>
</tr>
</tbody>
</table>
Virtual Site Visit Map:
Site Visit Photos:
1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allow a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site’s ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

<table>
<thead>
<tr>
<th>Installation Details to evaluate are listed below.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Look and observe bicycle, pedestrian, and motorized traffic behaviors</td>
</tr>
<tr>
<td>2. Take pictures of bicycle travelers to determine the best counter installation location</td>
</tr>
<tr>
<td>3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone</td>
</tr>
<tr>
<td>4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.</td>
</tr>
<tr>
<td>5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.</td>
</tr>
<tr>
<td>6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.</td>
</tr>
<tr>
<td>7. Sites should be evaluated as a potential short-duration versus continuous counting site</td>
</tr>
<tr>
<td>8. Document site technology types (tube, infrared, video, etc.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Travelers Present</td>
</tr>
<tr>
<td>✓ Pictures Taken</td>
</tr>
<tr>
<td>□ Sidewalks Present</td>
</tr>
<tr>
<td>□ Trails Present</td>
</tr>
<tr>
<td>SELECT SURFACE TYPE:</td>
</tr>
<tr>
<td>Concrete</td>
</tr>
<tr>
<td>Select INSTALLATION TYPE:</td>
</tr>
<tr>
<td>Loop, Piezo, and IR</td>
</tr>
<tr>
<td>SELECT COUNT TYPE(S):</td>
</tr>
<tr>
<td>Continuous Counting</td>
</tr>
</tbody>
</table>

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations. Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

<table>
<thead>
<tr>
<th>Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Downtown Business District</td>
</tr>
<tr>
<td>□ Hospitals Nearby</td>
</tr>
<tr>
<td>□ Transit Stop Nearby</td>
</tr>
<tr>
<td>□ Major Employers Nearby</td>
</tr>
<tr>
<td>□ Universities Nearby</td>
</tr>
<tr>
<td>□ Public Recreational Lands Nearby</td>
</tr>
<tr>
<td>□ Bodies of Water Nearby</td>
</tr>
<tr>
<td>□ Other Nearby Origin/Destination Observations</td>
</tr>
</tbody>
</table>

Notes:
5 - ADDITIONAL INFRASTRUCTURE SITE OBSERVATIONS and SITE DRAWING

STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

<table>
<thead>
<tr>
<th>NOTES:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTER SITE DRAWING: No drawing taken.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees Present Nearby</td>
</tr>
<tr>
<td>Polls Present Nearby</td>
</tr>
<tr>
<td>Bollards Present Nearby</td>
</tr>
<tr>
<td>Parallel Parked Vehicles Present Nearby</td>
</tr>
</tbody>
</table>

Virtual Site Visit Map:

Virtual Site Visit Photos:
1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
 - NOTES: Medium to high volume
2. Test for Interference, are there visible power lines
 - NOTES:
3. Watch Traffic, Look for Origin and Destinations
 - NOTES:
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
 - NOTES: YMCA, grocery store, artist market
5. Note all Observations during the On-Site visit
 - NOTES:
6. Gather additional information from recommending Agency
 - NOTES:
7. Search for data sources such as Strava
 - NOTES:
8. Other sources of information
 - NOTES:
9. Perform Short Duration Counts at potential CCS!!!
 - NOTES:
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

1. Look and observe bicycle, pedestrian, and motorized traffic behaviors.
2. Take pictures of bicycle travelers to determine the best counter installation location.
3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone.
4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.
5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.
6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.
7. Sites should be evaluated as a potential short-duration versus continuous counting site.
8. Document site technology types (tube, infrared, video, etc.)

Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:

- Travelers Present
- Pictures Taken
- Good Pinch Points for Install
- Smooth Surface
- Sidewalks Present
- Roadways Present
- Trails Present
- Post Required

SELECT SURFACE TYPE:
Other

SELECT INSTALLATION TYPE:
Loop, Piezo, IR, and Camera

SELECT COUNT TYPE(S):
Both Short Term and Continuous Counting

NOTES: Brick pavers

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Hospitals Nearby
- Transit Stop Nearby
- Major Employers Nearby
- Universities Nearby
- Public Recreational Lands Nearby
- Bodies of Water Nearby
- Other Nearby Origin/Destination Observations

NOTES: Potential bus transit stop near by. YMCA nearby.
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

<table>
<thead>
<tr>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees Present Nearby</td>
</tr>
<tr>
<td>Polls Present Nearby</td>
</tr>
<tr>
<td>Bollards Present Nearby</td>
</tr>
<tr>
<td>Parallel Parked Vehicles Present Nearby</td>
</tr>
</tbody>
</table>

ENTER SITE DRAWING:
Virtual Site Visit Map:

Site Visit Photos:
On-Site Visit Form

SITE NAME:	Edgewood Ave @ Post Street	DATE OF SITE VISIT:	8/27/2018
LOCATION:	Edgewood Ave @ Post Street	WEATHER CONDITIONS:	cloudy
FACTOR GROUP:	Urban Mixed	PICTURES TAKEN:	Yes
GPS:	30.312007, -81.7179204		
CITY AND DOT DISTRICT:	DISTRICT 2 - JACKSONVILLE		

| LANE WIDTH: | 12 | # of LANES | 4 | COUNT TYPE: | Both |
| SIDEWALK WIDTH: | 6 | # of SIDEWALKS | 2 | SITE RANKING: | 2 |

NOTES: ON-SITE VISIT #5 on Monday, August 27, 2018. Met with City of Jacksonville at 10:20am.

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

1. Look and observe bicycle, pedestrian, and motorized traffic behaviors
2. Take pictures of bicycle travelers to determine the best counter installation location
3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone
4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.
5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.
6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.
7. Sites should be evaluated as a potential short-duration versus continuous counting site
8. Document site technology types (tube, infrared, video, etc.)

Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:

- Travelers Present
- Pictures Taken
- Good Pinch Points for Install
- Smooth Surface
- Sidewalks Present
- Roadways Present
- Trails Present
- Post Required

NOTES: Variety of brick, asphalt, and concrete. 2 counters would be required due to roadway width.

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Hospitals Nearby
- Transit Stop Nearby
- Major Employers Nearby
- Universities Nearby
- Public Recreational Lands Nearby
- Bodies of Water Nearby
- Other Nearby Origin/Destination Observations

NOTES: Parking observed in area.
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES:

Check Boxes Below if Observed While On-Site:

- Trees Present Nearby
- Polls Present Nearby
- Bollards Present Nearby
- Obstacles (in trail or road) Nearby
- Outdoor Siting Areas Nearby
- Vehicles Queuing in Roadway Nearby
- Parallel Parked Vehicles Present Nearby

ENTER SITE DRAWING:

![Site Drawing Image]
Virtual Site Visit Map:

Site Visit Photos:
On-Site Visit Form

SITE NAME: 103rd St @ Wesconnett
LOCATION: 103rd St @ Wesconnett
FACTOR GROUP: Urban Commute
GPS: 30.248216°, -81.737392°
LANE WIDTH: 11
SIDEWALK WIDTH: 5
CITY AND DOT DISTRICT: DISTRICT 2 - JACKSONVILLE
DATE OF SITE VISIT: 8/27/2018
WEATHER CONDITIONS: Cloudy and wet.
PICTURES TAKEN: Yes

LANE WIDTH: # of LANES
SIDEWALK WIDTH: # of SIDEWALKS
COUNT TYPE: Short term
SITE RANKING: 3
RANKING NOTE: Too many powerlines

NOTES: ON-SITE VISIT #6 on Monday, August 27, 2018. Met with City of Jacksonville between 10:40 - 10:50am

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!

NOTES: Bicyclist witnessed on sidewalk. Too many powerlines. Primary means of transportation for locals is bicycle due to economics.

NOTES: Several bicyclists seen on sidewalk.

NOTES:

NOTES:

NOTES:

NOTES:

NOTES:

NOTES:

NOTES:

NOTES:

NOTES:

NOTES:
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

<table>
<thead>
<tr>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Travelers Present</td>
</tr>
<tr>
<td>☑ Pictures Taken</td>
</tr>
<tr>
<td>☑ Good Pinch Points for Install</td>
</tr>
<tr>
<td>☑ Smooth Surface</td>
</tr>
<tr>
<td>☑ Sidewalks Present</td>
</tr>
<tr>
<td>☑ Roadways Present</td>
</tr>
<tr>
<td>☑ Trails Present</td>
</tr>
<tr>
<td>☑ Post Required</td>
</tr>
</tbody>
</table>

1. Look and observe bicycle, pedestrian, and motorized traffic behaviors
2. Take pictures of bicycle travelers to determine the best counter installation location
3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone
4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.
5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.
6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.
7. Sites should be evaluated as a potential short-duration versus continuous counting site
8. Document site technology types (tube, infrared, video, etc.)

NOTES: Lots of motorized traffic. Low maintenance on sidewalk. Short duration only. Tube only site.

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Hospitals Nearby
- Transit Stop Nearby
- Major Employers Nearby
- Universities Nearby
- Public Recreational Lands Nearby
- Bodies of Water Nearby
- Other Nearby Origin/Destination Observations

NOTES: Some shops and gas station nearby. Bus stops nearby. Economically challenged area.
5 - ADDITIONAL INFRASTRUCTURE SITE OBSERVATIONS and SITE DRAWING

STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES: City of Jacksonville explained safety issues with this location. Problems at night. Road diet planned for area.

<table>
<thead>
<tr>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Trees Present Nearby</td>
</tr>
<tr>
<td>☐ Polls Present Nearby</td>
</tr>
<tr>
<td>☐ Bollards Present Nearby</td>
</tr>
<tr>
<td>☐ Parallel Parked Vehicles Present Nearby</td>
</tr>
</tbody>
</table>

ENTER SITE DRAWING:

![Site Drawing Image]
1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
 - NOTES: High volume, bicyclists present during entire visit.
2. Test for Interference, are there visible power lines
 - NOTES:
3. Watch Traffic, Look for Origin and Destinations
 - NOTES: steady bike traffic
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
 - NOTES:
5. Note all Observations during the On-Site visit
 - NOTES:
6. Gather additional information from recommending Agency
 - NOTES:
7. Search for data sources such as Strava
 - NOTES:
8. Other sources of information
 - NOTES:
9. Perform Short Duration Counts at potential CCS!!!
 - NOTES:
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Look and observe bicycle, pedestrian, and motorized traffic behaviors</td>
</tr>
<tr>
<td>2.</td>
<td>Take pictures of bicycle travelers to determine the best counter installation location</td>
</tr>
<tr>
<td>3.</td>
<td>Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone</td>
</tr>
<tr>
<td>4.</td>
<td>Look at the surface type and note whether it is asphalt, concrete, gravel, etc.</td>
</tr>
<tr>
<td>5.</td>
<td>Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.</td>
</tr>
<tr>
<td>6.</td>
<td>Look for travel volume generators such as hospitals, shopping malls, schools, etc.</td>
</tr>
<tr>
<td>7.</td>
<td>Sites should be evaluated as a potential short-duration versus continuous counting site</td>
</tr>
<tr>
<td>8.</td>
<td>Document site technology types (tube, infrared, video, etc.)</td>
</tr>
</tbody>
</table>

Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:

- **SELECT SURFACE TYPE:**
 - Asphalt

- **SELECT INSTALLATION TYPE:**
 - Loop, Piezo, IR, and Camera

- **SELECT COUNT TYPE(S):**
 - Both Short Term and Continuous Counting

NOTES: Great site for counting.

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Hospitals Nearby
- Transit Stop Nearby
- Major Employers Nearby
- Universities Nearby
- Public Recreational Lands Nearby
- Bodies of Water Nearby
- Other Nearby Origin/Destination Observations

NOTES:
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES: People observed in designated sitting area. Took pictures and selected exact counter location on-site at the white stripe in the trail pavement surface.

<table>
<thead>
<tr>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Trees Present Nearby</td>
</tr>
<tr>
<td>☑ Polls Present Nearby</td>
</tr>
<tr>
<td>☐ Bollards Present Nearby</td>
</tr>
<tr>
<td>☐ Parallel Parked Vehicles Present Nearby</td>
</tr>
<tr>
<td>☑ Obstacles (in trail or road) Nearby</td>
</tr>
<tr>
<td>☑ Outdoor Siting Areas Nearby</td>
</tr>
<tr>
<td>☐ Vehicles Queuing in Roadway Nearby</td>
</tr>
</tbody>
</table>

ENTER SITE DRAWING: No Drawing for this site
Virtual Site Visit Map:

Site Visit Photos:
On-Site Visit Form

SITE NAME:	Gainesville - 3rd Avenue @ Waldo Road
LOCATION:	NE 3rd Avenue @ Waldo Road
FACTOR GROUP:	Urban Commute
GPS:	29.6544339, -82.3096129
DATE OF SITE VISIT:	8/27/2018
WEATHER CONDITIONS:	cloudy, hot and humid
PICTURES TAKEN:	Yes

LANE WIDTH: 11
of LANES | 5
SIDEWALK WIDTH: 5
of SIDEWALKS | 2

COUNT TYPE: Both

CITY AND DOT DISTRICT: DISTRICT 2 - GAINESVILLE

NOTES: ON-SITE VISIT #8 on Monday, August 27, 2018. We met with City of Gainesville at 1:30 pm.

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid curves
5. Avoid hills
6. Select locations with pinch points that allows a counter to capture all travelers
7. Avoid counting at the intersection, preferred counting locations are mid-block

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

| 1. Look and observe bicycle, pedestrian, and motorized traffic behaviors |
| 2. Take pictures of bicycle travelers to determine the best counter installation location |
| 3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone |
| 4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc. |
| 5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc. |
| 6. Look for travel volume generators such as hospitals, shopping malls, schools, etc. |
| 7. Sites should be evaluated as a potential short-duration versus continuous counting site |
| 8. Document site technology types (tube, infrared, video, etc.) |

Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:

- **SELECT SURFACE TYPE:**
 - Asphalt

- **SELECT INSTALLATION TYPE:**
 - Loop, Piezo, IR, and Camera

- **SELECT COUNT TYPE(S):**
 - Both Short Term and Continuous Counting

NOTES:

- Sidewalks have grass grown over. Not well maintained.

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations. Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- **Downtown Business District**
- **Hospitals Nearby**
- **Transit Stop Nearby**
- **Major Employers Nearby**
- **Universities Nearby**
- **Public Recreational Lands Nearby**
- **Bodies of Water Nearby**
- **Other Nearby Origin/Destination Observations**

NOTES:
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES: Bus stop on 3rd, lots of peds and bikes during visit.

<table>
<thead>
<tr>
<th>ENTER SITE DRAWING:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees Present Nearby</td>
</tr>
<tr>
<td>Polls Present Nearby</td>
</tr>
<tr>
<td>Bollards Present Nearby</td>
</tr>
<tr>
<td>Parallel Parked Vehicles Present Nearby</td>
</tr>
</tbody>
</table>
On-Site Visit Form

<table>
<thead>
<tr>
<th>SITE NAME: 3rd Avenue @ Waldo Road 2</th>
<th>DATE OF SITE VISIT: 8/27/2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION: 3rd Avenue @ Waldo Road 2</td>
<td>WEATHER CONDITIONS: hot - cloudy</td>
</tr>
<tr>
<td>FACTOR GROUP: Urban Commute</td>
<td>PICTURES TAKEN: Yes</td>
</tr>
<tr>
<td>GPS: 29.653878, -82.309770</td>
<td>CITY AND DOT DISTRICT: DISTRICT 2 - GAINESVILLE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LANE WIDTH:</th>
<th># of LANES</th>
<th>2</th>
<th>COUNT TYPE:</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIDEWALK WIDTH:</td>
<td># of SIDEWALKS</td>
<td>2</td>
<td>SITE RANKING:</td>
<td>1</td>
</tr>
<tr>
<td>CITY AND DOT DISTRICT:</td>
<td>DISTRICT 2 - GAINESVILLE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES: ON-SITE VISIT #9 on Monday, August 27, 2018. Met with City of Gainesville at 2:35pm.

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

- [] Good Mid-Block Location
- [] Powerlines
- [] Water Bodies
- [] Motorized Traffic Present
- [] People Hanging Around Area (milling around)
- [] Curves
- [] Hills
- [] Choke Points
- [] School or University Nearby
- [] Special Events Nearby
- [] Parks and/or Recreation Facility Nearby

NOTES: 2 sites capturing both directions of travel.

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!

NOTES:
- High activity. 2 sites at this location
- East Gainesville connection
- lots of jay walking
- More information needed
- Additional data sources
- Short duration counts

3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

1. Look and observe bicycle, pedestrian, and motorized traffic behaviors

2. Take pictures of bicycle travelers to determine the best counter installation location

3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone

4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.

5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.

6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.

7. Sites should be evaluated as a potential short-duration versus continuous counting site

8. Document site technology types (tube, infrared, video, etc.)

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Hospitals Nearby
- Transit Stop Nearby
- Major Employers Nearby
- Universities Nearby
- Public Recreational Lands Nearby
- Bodies of Water Nearby
- Other Nearby Origin/Destination Observations

NOTES:
5 - ADDITIONAL INFRASTRUCTURE SITE OBSERVATIONS and SITE DRAWING

STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES:

<table>
<thead>
<tr>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Trees Present Nearby</td>
</tr>
<tr>
<td>☑ Polls Present Nearby</td>
</tr>
<tr>
<td>☑ Bollards Present Nearby</td>
</tr>
<tr>
<td>☑ Parallel Parked Vehicles Present Nearby</td>
</tr>
</tbody>
</table>

ENTER SITE DRAWING:

![Site Drawing Image]
Virtual Site Visit Map:

Site Visit Photos:
On-Site Visit Form

SITE NAME:	3rd Avenue @ 6th Street Rail Trail	DATE OF SITE VISIT:	8/27/2018
LOCATION:	3rd Avenue @ 6th Street Rail Trail	WEATHER CONDITIONS:	sunny, partly cloudy
FACTOR GROUP:	University Commute	PICTURES TAKEN:	Yes
GPS:	29.6537685, -82.3307168	CITY AND DOT DISTRICT:	DISTRICT 2 - GAINESVILLE

NOTES:
- ON-SITE VISIT #10 on Monday, August 27, 2018. Met with City of Gainesville at 2:45 - 3:15pm.

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site’s ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

| 1. Look and observe bicycle, pedestrian, and motorized traffic behaviors |
| 2. Take pictures of bicycle travelers to determine the best counter installation location |
| 3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone |
| 4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc. |
| 5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc. |
| 6. Look for travel volume generators such as hospitals, shopping malls, schools, etc. |
| 7. Sites should be evaluated as a potential short-duration versus continuous counting site |
| 8. Document site technology types (tube, infrared, video, etc.) |

Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:

- Travelers Present
- Pictures Taken
- Good Pinch Points for Install
- Smooth Surface
- Sidewalks Present
- Roadways Present
- Trails Present
- Post Required

Select Surface Type:

- Asphalt

Select Installation Type:

- Loop, Piezo, IR, and Camera

Select Count Type(s):

- Both Short Term and Continuous Counting

Notes: Bike trail and depot trail near by.

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Hospitals Nearby
- Transit Stop Nearby
- Major Employers Nearby
- Universities Nearby
- Public Recreational Lands Nearby
- Bodies of Water Nearby
- Other Nearby Origin/Destination Observations

Notes: Meandering pedestrian observed would not have been counted. Bicyclists have multiple turning points.
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

<table>
<thead>
<tr>
<th>NOTES: Hard location to count, no funneling point. Maybe need to look up or down stream.</th>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTER SITE DRAWING: No Drawing</td>
<td>Trees Present Nearby</td>
</tr>
<tr>
<td></td>
<td>Polls Present Nearby</td>
</tr>
<tr>
<td></td>
<td>Bollards Present Nearby</td>
</tr>
<tr>
<td></td>
<td>Obstacles (in trail or road) Nearby</td>
</tr>
<tr>
<td></td>
<td>Outdoor Siting Areas Nearby</td>
</tr>
<tr>
<td></td>
<td>Vehicles Queuing in Roadway Nearby</td>
</tr>
<tr>
<td></td>
<td>Parallel Parked Vehicles Present Nearby</td>
</tr>
</tbody>
</table>
Virtual Site Visit Map:

Virtual Site Visit Photos:
On-Site Visit Form

SITE NAME: 6th St - Depot Rail Trail
LOCATION: 6th St - Depot Rail Trail
FACTOR GROUP: University Mixed
GPS: 29.64338919, -82.3308409
LANE WIDTH: 2
SIDEWALK WIDTH: 2
COUNT TYPE: Both
SITE RANKING: 2
RANKING NOTE: 2 trails into roundabout

DATE OF SITE VISIT: 8/27/2018
WEATHER CONDITIONS: Hot and sunny
PICTURES TAKEN: Yes

NOTES: ON-SITE VISIT #11 on Monday, August 27, 2018. Met with City of Gainesville at 3:15 to 3:30pm

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

NOTES: Trail location is adjacent to roundabout

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!

NOTES: commuter traffic
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

<table>
<thead>
<tr>
<th>Installation Details to evaluate are listed below.</th>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Look and observe bicycle, pedestrian, and motorized traffic behaviors</td>
<td>SELECT SURFACE TYPE:</td>
</tr>
<tr>
<td>2. Take pictures of bicycle travelers to determine the best counter installation location</td>
<td>Asphalt</td>
</tr>
<tr>
<td>3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone</td>
<td>SELECT INSTALLATION TYPE:</td>
</tr>
<tr>
<td>4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.</td>
<td>Loop, Piezo, IR, and Camera</td>
</tr>
<tr>
<td>5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.</td>
<td>SELECT COUNT TYPE(S):</td>
</tr>
<tr>
<td>6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.</td>
<td>Both Short Term and Continuous Counting</td>
</tr>
<tr>
<td>7. Sites should be evaluated as a potential short-duration versus continuous counting site</td>
<td></td>
</tr>
<tr>
<td>8. Document site technology types (tube, infrared, video, etc.)</td>
<td></td>
</tr>
</tbody>
</table>

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Hospitals Nearby
- Transit Stop Nearby
- Major Employers Nearby
- Universities Nearby
- Public Recreational Lands Nearby
- Bodies of Water Nearby
- Other Nearby Origin/Destination Observations

NOTES:

- biker switched from path to bike lane. Nearby older homes that used to be occupied by railroad workers, but now its occupied by students.
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

<table>
<thead>
<tr>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Trees Present Nearby</td>
</tr>
<tr>
<td>☑ Polls Present Nearby</td>
</tr>
<tr>
<td>☐ Bollards Present Nearby</td>
</tr>
<tr>
<td>☐ Parallel Parked Vehicles Present Nearby</td>
</tr>
<tr>
<td>☐ Obstacles (in trail or road) Nearby</td>
</tr>
<tr>
<td>☐ Outdoor Siting Areas Nearby</td>
</tr>
<tr>
<td>☐ Vehicles Queuing in Roadway Nearby</td>
</tr>
</tbody>
</table>

ENTR SITE DRAWING: No Drawing
Virtual Site Visit Map:

Virtual Site Visit Photos:
On-Site Visit Form

SITE NAME: Livingston St @ Magnolia Ave
LOCATION: Livingston St @ Magnolia Ave
FACTOR GROUP: Urban Commute
GPS: 28.5474639, -81.3751548
LANE WIDTH: 13
SIDEWALK WIDTH: 6.5
of LANES: 4
of SIDEWALKS: 2
COUNT TYPE: both
DATE OF SITE VISIT: 8/28/2018
CITY AND DOT DISTRICT: DISTRICT 5 - ORLANDO
WEATHER CONDITIONS: Sunny - warm - partly cloudy
PICTURES TAKEN: Yes
NOTE: complex behaviors

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using.

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!

3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.
NOTES: Close to sunrail station

5 - ADDITIONAL INFRASTRUCTURE SITE OBSERVATIONS and SITE DRAWING

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Universities Nearby
- Hospitals Nearby
- Public Recreational Lands Nearby
- Transit Stop Nearby
- Bodies of Water Nearby
- Major Employers Nearby
- Other Nearby Origin/Destination Observations

NOTES: Main Links stop just before I-4; Orlando urban trail will connect eventually.

Installation Details to evaluate are listed below.

1. Look and observe bicycle, pedestrian, and motorized traffic behaviors
2. Take pictures of bicycle travelers to determine the best counter installation location
3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone
4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.
5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.
6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.
7. Sites should be evaluated as a potential short-duration versus continuous counting site
8. Document site technology types (tube, infrared, video, etc.)

Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:

- Travelers Present
- Pictures Taken
- Good Pinch Points for Install
- Smooth Surface
- Sidewalks Present
- Roadways Present
- Trails Present
- Post Required

SELECT SURFACE TYPE:
- Asphalt

SELECT INSTALLATION TYPE:
- Loop, Piezo, IR, and Camera

SELECT COUNT TYPE(S):
- Both Short Term and Continuous Counting
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES:

<table>
<thead>
<tr>
<th>Enter Site Drawing:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Trees Present Nearby</td>
</tr>
<tr>
<td>☑ Polls Present Nearby</td>
</tr>
<tr>
<td>☑ Bollards Present Nearby</td>
</tr>
<tr>
<td>☑ Parallel Parked Vehicles Present Nearby</td>
</tr>
</tbody>
</table>
Virtual Site Visit Map:

Virtual Site Visit Photos:
On-Site Visit Form

SITE NAME: Little Econ Trail @ Cady Way Trail
LOCATION: Baldwin Park St @ Lake Baldwin Ln
FACTOR GROUP: Urban Mixed
GPS: 28.5750557, -81.3151927
LANE WIDTH: 11
SIDEWALK WIDTH: 13
DATE OF SITE VISIT: 8/28/2018
WEATHER CONDITIONS: Warm - partly cloudy
PICTURES TAKEN: Yes
CITY AND DOT DISTRICT: DISTRICT 5 - ORLANDO
COUNT TYPE: Both
SITE RANKING: 1
PICTURES TAKEN: Yes
RANKING NOTE: Opportunity to count 2 trails

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

<table>
<thead>
<tr>
<th>AVOID ...</th>
<th>Good Mid-Block Location</th>
<th>Powerlines</th>
<th>Hills</th>
<th>Special Events Nearby</th>
<th>Curves</th>
<th>Choke Points</th>
<th>School or University Nearby</th>
<th>Water Bodies</th>
<th>Motorized Traffic Present</th>
<th>Parks and/or Recreation Facility Nearby</th>
<th>People Hanging Around Area (milling around)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Avoid power lines</td>
<td></td>
</tr>
<tr>
<td>2. Avoid water bodies</td>
<td></td>
</tr>
<tr>
<td>3. Avoid installation of counters that point towards traffic (Infrared counters)</td>
<td></td>
</tr>
<tr>
<td>4. Avoid areas where people stop and mill around an area</td>
<td></td>
</tr>
<tr>
<td>5. Avoid curves</td>
<td></td>
</tr>
<tr>
<td>6. Avoid hills</td>
<td></td>
</tr>
<tr>
<td>7. Select locations with pinch points that allows a counter to capture all travelers</td>
<td></td>
</tr>
<tr>
<td>8. Avoid counting at the intersection, preferred counting locations are mid-block</td>
<td></td>
</tr>
</tbody>
</table>

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

<table>
<thead>
<tr>
<th>OBSERVATIONS</th>
<th>NOTES:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Determine Baseline Activity Levels and Behaviors</td>
<td>Steady bike and ped traffic</td>
</tr>
<tr>
<td>2. Test for Interference, are there visible power lines</td>
<td></td>
</tr>
<tr>
<td>3. Watch Traffic, Look for Origin and Destinations</td>
<td>Runners, recreational, road biker, and commuters witnessed</td>
</tr>
<tr>
<td>4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)</td>
<td></td>
</tr>
<tr>
<td>5. Note all Observations during the On-Site visit</td>
<td>Parks near by</td>
</tr>
<tr>
<td>6. Gather additional information from recommending Agency</td>
<td></td>
</tr>
<tr>
<td>7. Search for data sources such as Strava</td>
<td></td>
</tr>
<tr>
<td>8. Other sources of information</td>
<td></td>
</tr>
</tbody>
</table>
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

<table>
<thead>
<tr>
<th>Installation Details to evaluate are listed below.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Look and observe bicycle, pedestrian, and motorized traffic behaviors</td>
</tr>
<tr>
<td>2. Take pictures of bicycle travelers to determine the best counter installation location</td>
</tr>
<tr>
<td>3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone</td>
</tr>
<tr>
<td>4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.</td>
</tr>
<tr>
<td>5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.</td>
</tr>
<tr>
<td>6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.</td>
</tr>
<tr>
<td>7. Sites should be evaluated as a potential short-duration versus continuous counting site</td>
</tr>
<tr>
<td>8. Document site technology types (tube, infrared, video, etc.)</td>
</tr>
</tbody>
</table>

- Select Surface Type: Asphalt
- Select Installation Type: Loop, Piezo, IR, and Camera
- Select Count Type(s): Continuous Counting

Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:

- **Travellers Present**
- **Pictures Taken**
- **Good Pinch Points for Install**
- **Smooth Surface**
- **Sidewalks Present**
- **Roadways Present**
- **Trails Present**
- **Post Required**

NOTES: Most crashes on trail on safest built intersection due to bike/peds not stopping.

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 – Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- **Downtown Business District**
- **Hospitals Nearby**
- **Transit Stop Nearby**
- **Major Employers Nearby**
- **Universities Nearby**
- **Public Recreational Lands Nearby**
- **Bodies of Water Nearby**
- **Other Nearby Origin/Destination Observations**

NOTES: 1/2 mile to Simmons street transit stop.
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES:

ENTER SITE DRAWING:
Virtual Site Visit Map:

Virtual Site Visit Photos:
On-Site Visit Form

SITE NAME: Cross Seminole Trail
LOCATION: Cross Seminole Trail
FACTOR GROUP: Rural Recreational
GPS: 28.668438, -81.207516
CITY AND DOT DISTRICT: DISTRICT 5 - ORLANDO
DATE OF SITE VISIT: 08/28/2018
WEATHER CONDITIONS: Warm - cloudy
PICTURES TAKEN: Yes

1 - ON-SITE CHARACTERISTICS

LANE WIDTH: 14
SIDEWALK WIDTH: 14
COUNT TYPE:

SITE RANKING: 1
RANKING NOTE: Installer support on site

NOTES: ON-SITE VISIT #14 on Tuesday, August 28, 2018. Met with MetroPlan and Seminole County at 10:05. Medium volume site.

Step 1 - Evaluate On-Site Characteristics

Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors

When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!

NOTES:
- Steady bike/ped activity; Road biking club witnessed.
- 1 trail

Checklist

- [] Good Mid-Block Location
- [] Curves
- [] Hills
- [] Powerlines
- [] Water Bodies
- [] Motorized Traffic Present
- [] People Hanging Around Area (milling around)
- [] School or University Nearby
- [] Choke Points
- [] Parks and/or Recreation Facility Nearby

NOTES: Cady Trail becomes Seminole trail at county line; Before and after counts because of incoming improvements. State hwy connection will go from 2 to 4 lanes. Installer support on site from Seminole County.
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

1. Look and observe bicycle, pedestrian, and motorized traffic behaviors
2. Take pictures of bicycle travelers to determine the best counter installation location
3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone
4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.
5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.
6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.
7. Sites should be evaluated as a potential short-duration versus continuous counting site
8. Document site technology types (tube, infrared, video, etc.)

Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:

- Travelers Present
- Pictures Taken
- Good Pinch Points for Install
- Smooth Surface
- Sidewalks Present
- Roadways Present
- Trails Present
- Post Required

SELECT SURFACE TYPE:
- Asphalt

SELECT INSTALLATION TYPE:
- Loop, Piezo, IR, and Camera

SELECT COUNT TYPE(S):
- Both Short Term and Continuous Counting

NOTES: Seminole County is open to partnering. Staff possesses technical abilities to install. Lots of non-motorized travelers. UCF not far.

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Hospitals Nearby
- Transit Stop Nearby
- Major Employers Nearby
- Universities Nearby
- Public Recreational Lands Nearby
- Bodies of Water Nearby
- Other Nearby Origin/Destination Observations

NOTES: City of Oviedo
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES:

Check Boxes Below if Observed While On-Site:

- Trees Present Nearby
- Polls Present Nearby
- Bollards Present Nearby
- Obstacles (in trail or road) Nearby
- Outdoor Siting Areas Nearby
- Vehicles Queuing in Roadway Nearby
- Parallel Parked Vehicles Present Nearby

ENTER SITE DRAWING:
Virtual Site Visit Map:

Virtual Site Visit Photos:
Site Visit Photos:
1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
 - Good Mid-Block Location
 - Powerlines
 - Water Bodies
 - Motorized Traffic Present
 - People Hanging Around Area (milling around)
 - Curves
 - Hills
 - Choke Points
 - School or University Nearby
 - Parks and/or Recreation Facility Nearby

4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block
 - NOTES: Bridge choke point for counter. Near airport. 3 bicyclists.

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
 - NOTES: Low volume site
2. Test for Interference, are there visible power lines
 - NOTES:
3. Watch Traffic, Look for Origin and Destinations
 - NOTES:
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
 - NOTES:
5. Note all Observations during the On-Site visit
 - NOTES:
6. Gather additional information from recommending Agency
 - NOTES:
7. Search for data sources such as Strava
 - NOTES:
8. Other sources of information
 - NOTES:
9. Perform Short Duration Counts at potential CCS!!!
 - NOTES:
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

- 1. Look and observe bicycle, pedestrian, and motorized traffic behaviors
- 2. Take pictures of bicycle travelers to determine the best counter installation location
- 3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone
- 4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.
- 5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.
- 6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.
- 7. Sites should be evaluated as a potential short-duration versus continuous counting site
- 8. Document site technology types (tube, infrared, video, etc.)

Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:

- Travelers Present
- Pictures Taken
- Good Pinch Points for Install
- Smooth Surface
- Sidewalks Present
- Roadways Present
- Trails Present
- Post Required

SELECT SURFACE TYPE:
- Asphalt

SELECT INSTALLATION TYPE:
- Loop, Piezo, IR, and Camera

SELECT COUNT TYPE(S):
- Both Short Term and Continuous Counting

NOTES: Low activity

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Hospitals Nearby
- Transit Stop Nearby
- Major Employers Nearby
- Universities Nearby
- Public Recreational Lands Nearby
- Bodies of Water Nearby
- Other Nearby Origin/Destination Observations

NOTES: Near regional airport; met worker investigating drainage issues. 3 cyclist witnessed on perpendicular roadway turned onto trail.
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

<table>
<thead>
<tr>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Trees Present Nearby</td>
</tr>
<tr>
<td>✔ Polls Present Nearby</td>
</tr>
<tr>
<td>✔ Bollards Present Nearby</td>
</tr>
<tr>
<td>☐ Parallel Parked Vehicles Present Nearby</td>
</tr>
</tbody>
</table>

Notes:

- **(461x516)**

Enter Site Drawing:
Virtual Site Visit Map:

Virtual Site Visit Photos:
Site Visit Photos:
1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid curves
5. Avoid hills
6. Select locations with pinch points that allows a counter to capture all travelers
7. Avoid counting at the intersection, preferred counting locations are mid-block

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!

NOTEs:
- 2 bicyclists witnessed and lady in wheel chair; Wal Mart across street
- Beach access across roadway
- Corridor installing multiple RRFB crossings
- Westside sidewalk
- Getting rid of slip lanes
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

1. Look and observe bicycle, pedestrian, and motorized traffic behaviors.
2. Take pictures of bicycle travelers to determine the best counter installation location.
3. Look for the pinch points where all travelers will pass within a 12 to 15' detection zone.
4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.
5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.
6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.
7. Sites should be evaluated as a potential short-duration versus continuous counting site.
8. Document site technology types (tube, infrared, video, etc.).

Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:

- Travelers Present
- Pictures Taken
- Good Pinch Points for Install
- Smooth Surface
- Sidewalks Present
- Roadways Present
- Trails Present
- Post Required

SELECT SURFACE TYPE:
- Asphalt

SELECT INSTALLATION TYPE:
- Loop, Piezo, IR, and Camera

SELECT COUNT TYPE(S):
- Continuous Counting

NOTES: Walmart, beach side dogs; shopping and activities at site; bear bar site with pedestrian fatality issues.

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations. Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Hospitals Nearby
- Transit Stop Nearby
- Major Employers Nearby
- Universities Nearby
- Public Recreational Lands Nearby
- Bodies of Water Nearby
- Other Nearby Origin/Destination Observations

NOTES: Walmart is big draw
5 - ADDITIONAL INFRASTRUCTURE SITE OBSERVATIONS and SITE DRAWING

STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES: Not many travelers witnessed during visit

<table>
<thead>
<tr>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Trees Present Nearby</td>
</tr>
<tr>
<td>☑ Polls Present Nearby</td>
</tr>
<tr>
<td>☑ Bollards Present Nearby</td>
</tr>
<tr>
<td>☐ Parallel Parked Vehicles Present Nearby</td>
</tr>
</tbody>
</table>

ENTER SITE DRAWING:

![Site Drawing Image]
Map

Virtual Site Visit Photos:
On-Site Visit Form

<table>
<thead>
<tr>
<th>SITE NAME:</th>
<th>Evans @ SR 192</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION:</td>
<td>Evans @ SR 192</td>
</tr>
<tr>
<td>FACTOR GROUP:</td>
<td>Urban Commute</td>
</tr>
<tr>
<td>GPS:</td>
<td>28.0790528, -80.6511803</td>
</tr>
<tr>
<td>LANE WIDTH:</td>
<td>28.0790528, -80.6511803</td>
</tr>
<tr>
<td>SIDEWALK WIDTH:</td>
<td>2</td>
</tr>
</tbody>
</table>

DATE OF SITE VISIT:	8/28/2018
WEATHER CONDITIONS:	Hot and sunny - cloudy
PICTURES TAKEN:	Yes

| # of LANES | 4 |
| # of SIDEWALKS | 2 |

| CITY AND DOT DISTRICT: | DISTRICT 5 - Melbourne |
| SITE RANKING: | 1 |

| RANKING NOTE: | State facility |

NOTES: ON-SITE VISIT #17 on Tuesday, August 28, 2018. Met with Space Coast TPO and Brevard County at 3:30 pm.

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics
Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors
When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!

NOTES:
- a few peds witnessed at intersection; at mall location
- need 2 short term sites to determine best location; Willing partners present from TPO, and County. Data Partners want to count other sites. Need counts for safety
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

<table>
<thead>
<tr>
<th>Install Details to evaluate are listed below.</th>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
</table>
| 1. Look and observe bicycle, pedestrian, and motorized traffic behaviors | ![Check Boxes](#) Travelers Present
![Check Boxes](#) Pictures Taken
![Check Boxes](#) Good Pinch Points for Install
![Check Boxes](#) Smooth Surface
![Check Boxes](#) Sidewalks Present
![Check Boxes](#) Roadways Present
| | ![Select Surface Type](#) Asphalt
![Select Installation Type](#) Loop, Piezo, IR, and Camera
![Select Count Type(s)](#) Continuous Counting |
| 2. Take pictures of bicycle travelers to determine the best counter installation location | |
| 3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone | |
| 4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc. | |
| 5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc. | |
| 6. Look for travel volume generators such as hospitals, shopping malls, schools, etc. | |
| 7. Sites should be evaluated as a potential short-duration versus continuous counting site | |
| 8. Document site technology types (tube, infrared, video, etc.) | |

NOTES: Closer observation transit site needed. Look farther west or east with more traffic. Designated bike lane. Intersection counts exist. 1 of 8 designated bike lanes. Northrop Grumman near by. Observed bicyclist cutting across grass from mall to site due to sidewalk gap.

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

| ![Check Boxes](#) Downtown Business District
![Check Boxes](#) Hospitals Nearby
![Check Boxes](#) Transit Stop Nearby
![Check Boxes](#) Major Employers Nearby | ![Check Boxes](#) Universities Nearby
![Check Boxes](#) Public Recreational Lands Nearby
![Check Boxes](#) Bodies of Water Nearby
![Check Boxes](#) Other Nearby Origin/Destination Observations |

NOTES: Florida Institute of Technology close by
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES: Median; 2 counter site; staggered counters

<table>
<thead>
<tr>
<th>Enter Site Drawing:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Check Boxes Below if Observed While On-Site:

- Trees Present Nearby
- Polls Present Nearby
- Bollards Present Nearby
- Obstacles (in trail or road) Nearby
- Parallel Parked Vehicles Present Nearby
- Outdoor Siting Areas Nearby
- Vehicles Queuing in Roadway Nearby
Virtual Site Visit Map:

Virtual Site Visit Photos:
On-Site Visit Form

<table>
<thead>
<tr>
<th>SITE NAME:</th>
<th>Flagler Trail @ Evernia St</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION:</td>
<td>Flagler Trail</td>
</tr>
<tr>
<td>FACTOR GROUP:</td>
<td>Urban Riverfront</td>
</tr>
<tr>
<td>GPS:</td>
<td>26.7108833, -80.0499063</td>
</tr>
<tr>
<td>DATE OF SITE VISIT:</td>
<td>8/29/2018</td>
</tr>
<tr>
<td>WEATHER CONDITIONS:</td>
<td>warm - sunny - partly cloudy</td>
</tr>
<tr>
<td>CITY AND DOT DISTRICT:</td>
<td>DISTRICT 4 - PALM BEACH</td>
</tr>
<tr>
<td>SITE RANKING:</td>
<td>1</td>
</tr>
<tr>
<td>RANKING NOTE:</td>
<td>lots of travelers; need publicly</td>
</tr>
</tbody>
</table>

LANE WIDTH: 10

SIDEWALK WIDTH: 1

NOTES: ON-SITE VISIT #18 on Wednesday, August 29, 2018. Met with Palm Beach TPA at 9:00 am - 9:30.

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

<table>
<thead>
<tr>
<th>Installation Details to evaluate are listed below.</th>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Look and observe bicycle, pedestrian, and motorized traffic behaviors</td>
<td>![Checkboxes](Travelers Present) ![Checkboxes](Pictures Taken) ![Checkboxes](Good Pinch Points for Install) ![Checkboxes](Smooth Surface) ![Checkboxes](Sidewalks Present) ![Checkboxes](Roadways Present) ![Checkboxes](Trails Present) ![Checkboxes](Post Required)</td>
</tr>
<tr>
<td>2. Take pictures of bicycle travelers to determine the best counter installation location</td>
<td></td>
</tr>
<tr>
<td>3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone</td>
<td>![Select Installation Type](Loop, Piezo, and IR)</td>
</tr>
<tr>
<td>4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.</td>
<td>![Select Count Type(s)](Continuous Counting)</td>
</tr>
<tr>
<td>5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.</td>
<td></td>
</tr>
<tr>
<td>6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.</td>
<td></td>
</tr>
<tr>
<td>7. Sites should be evaluated as a potential short-duration versus continuous counting site</td>
<td></td>
</tr>
<tr>
<td>8. Document site technology types (tube, infrared, video, etc.)</td>
<td></td>
</tr>
</tbody>
</table>

NOTES: Brick surface

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

<table>
<thead>
<tr>
<th>Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>![Checkboxes](Downtown Business District)</td>
<td>![Checkboxes](Universities Nearby)</td>
</tr>
<tr>
<td>![Checkboxes](Hospitals Nearby)</td>
<td>![Checkboxes](Public Recreational Lands Nearby)</td>
</tr>
<tr>
<td>![Checkboxes](Transit Stop Nearby)</td>
<td>![Checkboxes](Bodies of Water Nearby)</td>
</tr>
<tr>
<td>![Checkboxes](Major Employers Nearby)</td>
<td>![Checkboxes](Other Nearby Origin/Destination Observations)</td>
</tr>
</tbody>
</table>

NOTES:
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES: Special events and bars close by.

Check Boxes Below if Observed While On-Site:

- Trees Present Nearby
- Polls Present Nearby
- Bollards Present Nearby
- Obstacles (in trail or road) Nearby
- Outdoor Siting Areas Nearby
- Parallel Parked Vehicles Present Nearby
- Vehicles Queuing in Roadway Nearby

ENTER SITE DRAWING:
Virtual Site Visit Map:

Virtual Site Visit Photos:
On-Site Visit Form

SITE NAME: Lake Trail @ Sunset Ave - ocean side of bay
DATE OF SITE VISIT: 8/29/2018
LOCATION: Lake Trail @ Sunset Ave - ocean side of bay
WEATHER CONDITIONS: sunny - warm - cloudy
FACTOR GROUP: Urban Riverfront
GPS: 26.719455,-80.0428884
PICTURES TAKEN: Yes
CITY AND DOT DISTRICT: DISTRICT 4 - PALM BEACH
LANE WIDTH: 11
SIDEWALK WIDTH: 1
COUNT TYPE: Both

SITE RANKING: 1
RANKING NOTE: easy site

NOTES: ON-SITE VISIT #19 on Wednesday, August 29, 2018. Met with Palm Beach TPA at 10:35 am.

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

<table>
<thead>
<tr>
<th>Details</th>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Look and observe bicycle, pedestrian, and motorized traffic behaviors</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Details</th>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Take pictures of bicycle travelers to determine the best counter installation location</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Details</th>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Details</th>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Details</th>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Details</th>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Details</th>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Sites should be evaluated as a potential short-duration versus continuous counting site</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Details</th>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Document site technology types (tube, infrared, video, etc.)</td>
<td></td>
</tr>
</tbody>
</table>

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

<table>
<thead>
<tr>
<th>Details</th>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Downtown Business District</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Details</th>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Universities Nearby</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Details</th>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Hospitals Nearby</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Details</th>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Public Recreational Lands Nearby</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Details</th>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Transit Stop Nearby</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Details</th>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Bodies of Water Nearby</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Details</th>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. Other Nearby Origin/Destination Observations</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:

- Travelers Present
- Pictures Taken
- Good Pinch Points for Install
- Smooth Surface
- Sidewalks Present
- Roadways Present
- Trails Present
- Post Required

SELECT SURFACE TYPE:

- Asphalt

SELECT INSTALLATION TYPE:

- Loop, Piezo, IR, and Camera

SELECT COUNT TYPE(S):

- Both Short Term and Continuous Counting
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES:

<table>
<thead>
<tr>
<th>Enter Site Drawing:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Check Boxes Below if Observed While On-Site:

- Trees Present Nearby
- Obstacles (in trail or road) Nearby
- Polls Present Nearby
- Outdoor Sitting Areas Nearby
- Bollards Present Nearby
- Vehicles Queuing in Roadway Nearby
- Parallel Parked Vehicles Present Nearby
Virtual Site Visit Map:

Site Visit Photos:
On-Site Visit Form

| SITE NAME: |
| SunRise Blvd @ Middle River |
| LOCATION: |
| SunRise Blvd @ Middle River |
| FACTOR GROUP: |
| Urban Mix (bridge) |
| GPS: |
| 26.1379256, -80.1177026 |
| DATE OF SITE VISIT: |
| 8/29/2018 |
| WEATHER CONDITIONS: |
| Hot |
| PICTURES TAKEN: |
| Yes |
| CITY AND DOT DISTRICT: |
| DISTRICT 4 - FT LAUDERDALE |
| # of LANES |
| COUNT TYPE: |
| # of SIDEWALKS |
| SITE RANKING: |
| 1 |
| RANKING NOTE: |
| Fills need for bridge |

NOTES: ON-SITE VISIT #20 on Wednesday, August 29, 2018. Met with City of Fort Lauderdale at 1pm to 1:30pm.

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

NOTES: Move site to bridge location for choke point. Near Galleria Mall. Many events affect traffic on roadway.

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site’s ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!

NOTES:

- Travelers over bridge
- Bridge
- NOTE: Bridge
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

<table>
<thead>
<tr>
<th>Installation Details to evaluate are listed below.</th>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Look and observe bicycle, pedestrian, and motorized traffic behaviors</td>
<td>Travelers Present</td>
</tr>
<tr>
<td>2. Take pictures of bicycle travelers to determine the best counter installation location</td>
<td>Pictures Taken</td>
</tr>
<tr>
<td>3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone</td>
<td>Good Pinch Points for Install</td>
</tr>
<tr>
<td>4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.</td>
<td>Smooth Surface</td>
</tr>
<tr>
<td>5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.</td>
<td>Sidewalks Present</td>
</tr>
<tr>
<td>6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.</td>
<td>Roadways Present</td>
</tr>
<tr>
<td>7. Sites should be evaluated as a potential short-duration versus continuous counting site</td>
<td>Trails Present</td>
</tr>
<tr>
<td>8. Document site technology types (tube, infrared, video, etc.)</td>
<td>Post Required</td>
</tr>
</tbody>
</table>

NOTES: Near George English Park, triathlon on bridge

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

NOTES: Near mall; Fire station near bridge; school nearby
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES: Need to check with vendors on whether their equipment can count electric scooters and segways.

Check Boxes Below if Observed While On-Site:
- Trees Present Nearby
- Polls Present Nearby
- Bollards Present Nearby
- Obstacles (in trail or road) Nearby
- Outdoor Siting Areas Nearby
- Parallel Parked Vehicles Present Nearby
- Vehicles Queuing in Roadway Nearby

ENTER SITE DRAWING:
Site visit photos:
On-Site Visit Form

<table>
<thead>
<tr>
<th>SITE NAME:</th>
<th>A1A @ Vistamar</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION:</td>
<td>A1A @ Vistamar</td>
</tr>
<tr>
<td>FACTOR GROUP:</td>
<td>Beach Mixed</td>
</tr>
<tr>
<td>GPS:</td>
<td>26.133541, -80.103168</td>
</tr>
<tr>
<td>DATE OF SITE VISIT:</td>
<td>8/29/2018</td>
</tr>
<tr>
<td>WEATHER CONDITIONS:</td>
<td>Hot</td>
</tr>
<tr>
<td>PICTURES TAKEN:</td>
<td>Yes</td>
</tr>
<tr>
<td>CITY AND DOT DISTRICT:</td>
<td>DISTRICT 4 - FT LAUDERDALE</td>
</tr>
<tr>
<td>LANE WIDTH:</td>
<td>4</td>
</tr>
<tr>
<td># of LANES</td>
<td>4</td>
</tr>
<tr>
<td>SITE RANKING:</td>
<td>1</td>
</tr>
<tr>
<td>NOTES:</td>
<td>ON-SITE VISIT #21 on Wednesday, August 29, 2018. Met with City of Fort Lauderdale at 1:30-2:00pm</td>
</tr>
</tbody>
</table>

NOTES: ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!

NOTES:
- Good Mid-Block Location
- Curves
- Hills
- Motorized Traffic Present
- Choke Points
- People Hanging Around Area (milling around)
- Special Events Nearby
- School or University Nearby
- Parks and/or Recreation Facility Nearby

NOTES:
- Fort Lauderdale open to installation and funding. Fort Lauderdale has some funds that must be spent by Sept. 30.
- Steady stream of bikes and peds
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

<table>
<thead>
<tr>
<th>Installation Details to evaluate are listed below.</th>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Look and observe bicycle, pedestrian, and motorized traffic behaviors</td>
<td>✓ Travellers Present</td>
</tr>
<tr>
<td>2. Take pictures of bicycle travelers to determine the best counter installation location</td>
<td>✓ Pictures Taken</td>
</tr>
<tr>
<td>3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone</td>
<td>✓ Good Pinch Points for Install</td>
</tr>
<tr>
<td>4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.</td>
<td>✓ Smooth Surface</td>
</tr>
<tr>
<td>5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.</td>
<td>✓ Sidewalks Present</td>
</tr>
<tr>
<td>6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.</td>
<td>✓ Roadways Present</td>
</tr>
<tr>
<td>7. Sites should be evaluated as a potential short-duration versus continuous counting site</td>
<td></td>
</tr>
<tr>
<td>8. Document site technology types (tube, infrared, video, etc.)</td>
<td>Select Counts Present</td>
</tr>
<tr>
<td>✗ Trails Present</td>
<td>Select Surface Type:</td>
</tr>
<tr>
<td>✗ Post Required</td>
<td>Concrete</td>
</tr>
</tbody>
</table>

NOTES: Brick pavers

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations. Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Hospitals Nearby
- Transit Stop Nearby
- Major Employers Nearby
- Universities Nearby
- Public Recreational Lands Nearby
- Bodies of Water Nearby
- Other Nearby Origin/Destination Observations

NOTES:
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES:

<table>
<thead>
<tr>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Trees Present Nearby</td>
</tr>
<tr>
<td>☑ Polls Present Nearby</td>
</tr>
<tr>
<td>☐ Bollards Present Nearby</td>
</tr>
<tr>
<td>☐ Parallel Parked Vehicles Present Nearby</td>
</tr>
</tbody>
</table>

ENTER SITE DRAWING:
Virtual Site Visit Map:

Virtual Site Visit Photos:
Site Visit Photos:
On-Site Visit Form

<table>
<thead>
<tr>
<th>SITE NAME:</th>
<th>Gordon River @ Baker Park - Bridge 1</th>
<th>DATE OF SITE VISIT:</th>
<th>8/29/2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION:</td>
<td>Gordon River @ Baker Park - Bridge 1</td>
<td>WEATHER CONDITIONS:</td>
<td>Sunny - 2 inches of rain night before</td>
</tr>
<tr>
<td>FACTOR GROUP:</td>
<td>Urban Recreational</td>
<td>PICTURES TAKEN:</td>
<td>Yes</td>
</tr>
<tr>
<td>GPS:</td>
<td>26.160632, -81.783632</td>
<td>CITY AND DOT DISTRICT:</td>
<td>DISTRICT 1 - Naples</td>
</tr>
<tr>
<td>LANE WIDTH:</td>
<td># of LANES</td>
<td>COUT TYPE:</td>
<td>Both</td>
</tr>
<tr>
<td>SIDEWALK WIDTH:</td>
<td># of SIDEWALKS</td>
<td>SITE RANKING:</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RANKING NOTE:</td>
<td>1 of 2 bridges</td>
</tr>
</tbody>
</table>

NOTES: ON-SITE VISIT #22 on Wednesday, August 29, 2018. Met with Collier MPO at 9:15 - 10:00 am.

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
 - NOTES: Medium level of bike, ped, and runner traffic
2. Test for Interference, are there visible power lines
 - NOTES:
3. Watch Traffic, Look for Origin and Destinations
 - NOTES:
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
 - NOTES:
5. Note all Observations during the On-Site visit
 - NOTES:
6. Gather additional information from recommending Agency
 - NOTES:
7. Search for data sources such as Strava
 - NOTES:
8. Other sources of information
 - NOTES:
9. Perform Short Duration Counts at potential CCS!!!
 - NOTES:
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

1. Look and observe bicycle, pedestrian, and motorized traffic behaviors
2. Take pictures of bicycle travelers to determine the best counter installation location
3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone
4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.
5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.
6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.
7. Sites should be evaluated as a potential short-duration versus continuous counting site
8. Document site technology types (tube, infrared, video, etc.)

Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:

- Travelers Present
- Pictures Taken
- Good Pinch Points for Install
- Smooth Surface
- Sidewalks Present
- Roadways Present
- Trails Present
- Post Required

SELECT SURFACE TYPE:
- Asphalt

SELECT INSTALLATION TYPE:
- Loop, Piezo, IR, and Camera

SELECT COUNT TYPE(S):
- Both Short Term and Continuous Counting

NOTES: Asphalt section at entrance to bridge. Bridge itself is wooden. Check with vendors on installation in wood on bridge. Hard to access site by car. Airport nearby. Trail around airport with lots of pedestrians.

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Hospitals Nearby
- Transit Stop Nearby
- Major Employers Nearby
- Universities Nearby
- Public Recreational Lands Nearby
- Bodies of Water Nearby
- Other Nearby Origin/Destination Observations

NOTES:
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES: Perfect location for a counter. Scooters, bicycles and pedestrians witnessed.

Check Boxes Below if Observed While On-Site:

- [] Trees Present Nearby
- [] Polls Present Nearby
- [] Bollards Present Nearby
- [] Obstacles (in trail or road) Nearby
- [] Outdoor Siting Areas Nearby
- [] Vehicles Queuing in Roadway Nearby
- [] Parallel Parked Vehicles Present Nearby

ENTER SITE DRAWING:

![Site Drawing]

<table>
<thead>
<tr>
<th>BRIDGE</th>
<th>COUNTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASPHALT TRAIL</td>
<td></td>
</tr>
</tbody>
</table>
Virtual Site Visit Map:

Site Visit Photos:
On-Site Visit Form

SITE NAME:	Gordon River @ Baker Park - Bridge 2
LOCATION:	Gordon River @ Baker Park - Bridge 2
FACTOR GROUP:	Urban Recreational
GPS:	26.1489336, -81.7867131
LANE WIDTH:	9.00
SIDEWALK WIDTH:	2
COUNT TYPE:	Both
DATE OF VISIT:	8/30/2018
WEATHER CONDITIONS:	Sunny - 2 inches of rain night before
CITY AND DOT DISTRICT:	DISTRICT 1 - Naples
PICTURES TAKEN:	Yes
PICTURES TAKEN:	Yes
NOTES:	ON-SITE VISIT #23 on Thursday, August 30, 2018. Met with Collier MPO and City of Naples at 10:00 - 10:30 am.

1 - ON-SITE CHARACTERISTICS

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Avoid power lines</td>
</tr>
<tr>
<td>2.</td>
<td>Avoid water bodies</td>
</tr>
<tr>
<td>3.</td>
<td>Avoid installation of counters that point towards traffic (Infrared counters)</td>
</tr>
<tr>
<td>4.</td>
<td>Avoid areas where people stop and mill around an area</td>
</tr>
<tr>
<td>5.</td>
<td>Avoid curves</td>
</tr>
<tr>
<td>6.</td>
<td>Avoid hills</td>
</tr>
<tr>
<td>7.</td>
<td>Select locations with pinch points that allows a counter to capture all travelers</td>
</tr>
<tr>
<td>8.</td>
<td>Avoid counting at the intersection, preferred counting locations are mid-block</td>
</tr>
</tbody>
</table>

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Determine Baseline Activity Levels and Behaviors</td>
</tr>
<tr>
<td>2.</td>
<td>Test for Interference, are there visible power lines</td>
</tr>
<tr>
<td>3.</td>
<td>Watch Traffic, Look for Origin and Destinations</td>
</tr>
<tr>
<td>4.</td>
<td>Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)</td>
</tr>
<tr>
<td>5.</td>
<td>Note all Observations during the On-Site visit</td>
</tr>
<tr>
<td>6.</td>
<td>Gather additional information from recommending Agency</td>
</tr>
<tr>
<td>7.</td>
<td>Search for data sources such as Strava</td>
</tr>
<tr>
<td>8.</td>
<td>Other sources of information</td>
</tr>
<tr>
<td>9.</td>
<td>Perform Short Duration Counts at potential CCS!!!</td>
</tr>
</tbody>
</table>

Notes

- County and MPO and city open to assisting with installation. Blair Foundation provided $2 million for the bridge facility dedicated to the Go Fast Lane project (lane delineation) to get away from congestion of park. Blair Foundation has recently disbanded and has no more funding. Dana will find funding to add another counter so that during construction, pre formed loops could be installed. Need for cutting pavement after construction will be eliminated.

- On-Site Visit Form
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

<table>
<thead>
<tr>
<th>Installation Details to evaluate are listed below.</th>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Look and observe bicycle, pedestrian, and motorized traffic behaviors</td>
<td>チェックするボックスが適用される項目を選択して表面、インストレーション、カウントタイプを選択します。</td>
</tr>
<tr>
<td>2. Take pictures of bicycle travelers to determine the best counter installation location</td>
<td>コンクリートセクション入口に橋。橋自体は木で作られています。</td>
</tr>
<tr>
<td>3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone</td>
<td>バイロート、ピエゾ、IR、カメラ</td>
</tr>
<tr>
<td>4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.</td>
<td>インストレーションタイプ選択</td>
</tr>
<tr>
<td>5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.</td>
<td>混合</td>
</tr>
<tr>
<td>6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.</td>
<td>構築</td>
</tr>
<tr>
<td>7. Sites should be evaluated as a potential short-duration versus continuous counting site</td>
<td>ハードアクセスサイト。車でアクセス難しい。</td>
</tr>
<tr>
<td>8. Document site technology types (tube, infrared, video, etc.)</td>
<td>ブリッジ周辺にたくさんのペデストリアン。</td>
</tr>
</tbody>
</table>

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

NOTES: Concrete section at entrance to bridge. Bridge itself is wooden. Check with vendor. Hard to access site by car. Airport nearby. Trail around airport with lots of pedestrians.
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES: Perfect location for a counter. Scooters, bicycles and pedestrians witnessed.

<table>
<thead>
<tr>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Trees Present Nearby</td>
</tr>
<tr>
<td>☑ Polls Present Nearby</td>
</tr>
<tr>
<td>☑ Bollards Present Nearby</td>
</tr>
<tr>
<td>☑ Obstacles (in trail or road) Nearby</td>
</tr>
<tr>
<td>☑ Outdoor Siting Areas Nearby</td>
</tr>
<tr>
<td>☑ Vehicles Queuing in Roadway Nearby</td>
</tr>
<tr>
<td>☑ Parallel Parked Vehicles Present Nearby</td>
</tr>
</tbody>
</table>

ENTER SITE DRAWING:
Virtual Site Visit Map:

Site Visit Photos:
TEMPORARY TRAIL WILL BE CLOSED FROM 9-04-18 TO 3-4-19
1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

1. Look and observe bicycle, pedestrian, and motorized traffic behaviors
2. Take pictures of bicycle travelers to determine the best counter installation location
3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone
4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.
5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.
6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.
7. Sites should be evaluated as a potential short-duration versus continuous counting site
8. Document site technology types (tube, infrared, video, etc.)

Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:

<table>
<thead>
<tr>
<th>Select Surface Type:</th>
<th>Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Installation Type:</td>
<td>Loop, Piezo, and IR</td>
</tr>
<tr>
<td>Select Count Type(s):</td>
<td>Continuous Counting</td>
</tr>
</tbody>
</table>

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

<table>
<thead>
<tr>
<th>Downtown Business District</th>
<th>Hospitals Nearby</th>
<th>Universities Nearby</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Recreational Lands Nearby</td>
<td>Bodies of Water Nearby</td>
<td>Other Nearby Origin/Destination Observations</td>
</tr>
</tbody>
</table>

NOTES: School - a lot of motorized traffic.
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES:

<table>
<thead>
<tr>
<th>Enter Site Drawing:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Check Boxes Below if Observed While On-Site:

- [x] Trees Present Nearby
- [] Polls Present Nearby
- [] Bollards Present Nearby
- [] Parallel Parked Vehicles Present Nearby
- [] Obstacles (in trail or road) Nearby
- [] Outdoor Siting Areas Nearby
- [x] Vehicles Queuing in Roadway Nearby
Virtual Site Visit Map:
On-Site Visit Form

<table>
<thead>
<tr>
<th>SITE NAME: US 41 @ Sumter Blvd</th>
<th>DATE OF SITE VISIT: 8/30/2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION: US 41 @ Sumter Blvd</td>
<td>WEATHER CONDITIONS: Hot</td>
</tr>
<tr>
<td>FACTOR GROUP: Urban Commute</td>
<td>PICTURES TAKEN: No</td>
</tr>
<tr>
<td>GPS:</td>
<td>CITY AND DOT DISTRICT: District 1 - North Port</td>
</tr>
<tr>
<td>LANE WIDTH:</td>
<td># of LANES:</td>
</tr>
<tr>
<td>SIDEWALK WIDTH:</td>
<td># of SIDEWALKS:</td>
</tr>
<tr>
<td>SITE RANKING:</td>
<td>3 RANKING NOTE: Under construction</td>
</tr>
</tbody>
</table>

NOTES: ON-SITE VISIT #25.

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!

NOTES:
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

<table>
<thead>
<tr>
<th>Installation Details to evaluate are listed below.</th>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Look and observe bicycle, pedestrian, and motorized traffic behaviors</td>
<td>□ Travelers Present</td>
</tr>
<tr>
<td>2. Take pictures of bicycle travelers to determine the best counter installation location</td>
<td>□ Pictures Taken</td>
</tr>
<tr>
<td>3. Look for the pinch points where all travelers will pass within a 12 to 15' detection zone</td>
<td>□ Good Pinch Points for Install</td>
</tr>
<tr>
<td>4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.</td>
<td>□ Smooth Surface</td>
</tr>
<tr>
<td>5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.</td>
<td>□ Sidewalks Present</td>
</tr>
<tr>
<td>6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.</td>
<td>□ Roadways Present</td>
</tr>
<tr>
<td>7. Sites should be evaluated as a potential short-duration versus continuous counting site</td>
<td>□ Trails Present</td>
</tr>
<tr>
<td>8. Document site technology types (tube, infrared, video, etc.)</td>
<td>□ Post Required</td>
</tr>
</tbody>
</table>

NOTES:

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Hospitals Nearby
- Transit Stop Nearby
- Major Employers Nearby
- Universities Nearby
- Public Recreational Lands Nearby
- Bodies of Water Nearby
- Other Nearby Origin/Destination Observations

NOTES:
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

<table>
<thead>
<tr>
<th>NOTES:</th>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☐ Trees Present Nearby</td>
</tr>
<tr>
<td></td>
<td>☐ Polls Present Nearby</td>
</tr>
<tr>
<td></td>
<td>☐ Bollards Present Nearby</td>
</tr>
<tr>
<td></td>
<td>☐ Obstacles (in trail or road) Nearby</td>
</tr>
<tr>
<td></td>
<td>☐ Outdoor Siting Areas Nearby</td>
</tr>
<tr>
<td></td>
<td>☐ Parallel Parked Vehicles Present Nearby</td>
</tr>
<tr>
<td></td>
<td>☐ Vehicles Queuing in Roadway Nearby</td>
</tr>
</tbody>
</table>

ENTER SITE DRAWING:
On-Site Visit Form

SITE NAME: Bradenton Beach - Gulf Dr @ Cortez
DATE OF SITE VISIT: 8/30/2018
LOCATION: Bradenton Beach - Gulf Dr @ Cortez
WEATHER CONDITIONS: Cloudy - raining - warm
FACTOR GROUP: Beach Recreational
PICTURES TAKEN: Yes
GPS: 27.4664148, -82.6988468
LANE WIDTH: 2
SIDEWALK WIDTH: 2
COUNT TYPE: Both
of LANES
of SIDEWALKS
SITE RANKING:
RANKING NOTE: High bike/ped traffic, raining

NOTES: ON-SITE VISIT #26 on Thursday, August 30, 2018. Met with City of Bradenton Beach at 2:30 - 3:30.

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!

NOTES:
- Medium level of bike, ped, and runner traffic
- Sidewalk and designated bike lane at site
- Check with Manatee County for installation support; resort town
- Permits will be handled by CO
- Manatee county is in charge of signals and maintenance for all signals, including Bradenton Beach. Plan of a multi-use trail along scenic highway, 10 years out. Bridge street has event. Cocina Beach is near by. Barrier Island traffic study underway (phase 1 and phase 2 is available on website.) Bessy Rainy is project manager. Nathan Kautz are with the project. Looking for short, medium and long term solutions to solve congestion. Check with District 1 if they have resources. Challenges getting on Long Boat key. Rope and bollard project may happen in the next 90 days. David Wheeler is manager of study of Barrier islands. Sections in corridor have major safety concerns. There is a goal for a SunTrail multi-use path on 1 or both sides of road.
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

<table>
<thead>
<tr>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Travelers Present</td>
</tr>
<tr>
<td>☑ Pictures Taken</td>
</tr>
<tr>
<td>☑ Good Pinch Points for Install</td>
</tr>
<tr>
<td>☑ Smooth Surface</td>
</tr>
<tr>
<td>☑ Sidewalks Present</td>
</tr>
<tr>
<td>☑ Roadways Present</td>
</tr>
<tr>
<td>☑ Trails Present</td>
</tr>
</tbody>
</table>

1. Look and observe bicycle, pedestrian, and motorized traffic behaviors
2. Take pictures of bicycle travelers to determine the best counter installation location
3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone
4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.
5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.
6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.
7. Sites should be evaluated as a potential short-duration versus continuous counting site
8. Document site technology types (tube, infrared, video, etc.)

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

<table>
<thead>
<tr>
<th>Downtown Business District</th>
<th>Universities Nearby</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospitals Nearby</td>
<td>Public Recreational Lands Nearby</td>
</tr>
<tr>
<td>Transit Stop Nearby</td>
<td>Bodies of Water Nearby</td>
</tr>
<tr>
<td>Major Employers Nearby</td>
<td>Other Nearby Origin/Destination Observations</td>
</tr>
</tbody>
</table>

NOTES: Major puddling occurring near 11th St. Construction north of Cortez Blvd. Bridge street used to be main street of island. Stantec is FDOT consultant for Barrier Island study. John K. subconsultant that did non-motorized traffic counting for 12 hours (7am - 7pm). Bessy is PM Several bikes and peds despite rain during off-season

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

NOTES: Tourist Development Fund. Bypass for City Hall before site we selected. Site location may change based on short term counting. Need to work with Lynn for details. People coming from north to south can follow trail that comes under the bridge.
5 - ADDITIONAL INFRASTRUCTURE SITE OBSERVATIONS and SITE DRAWING

STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES: Tourist Development Fund. Bypass for City Hall before site we selected. Site location may change based on short term counting. Need to work with Lynn for details. People coming from north to south can follow trail that comes under the bridge.

<table>
<thead>
<tr>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Trees Present Nearby</td>
</tr>
<tr>
<td>☐ Obstacles (in trail or road) Nearby</td>
</tr>
<tr>
<td>☐ Polls Present Nearby</td>
</tr>
<tr>
<td>☐ Outdoor Siting Areas Nearby</td>
</tr>
<tr>
<td>☐ Bollards Present Nearby</td>
</tr>
<tr>
<td>☐ Vehicles Queuing in Roadway Nearby</td>
</tr>
<tr>
<td>☐ Parallel Parked Vehicles Present Nearby</td>
</tr>
</tbody>
</table>

NOTES: Traffic Mgmt. Operation Manager of Manatee County. May help with install. Need to check on permits with FDOT before installing. Barrier Study finding revealed that Moose Lodge has more non-motorized traffic than City Hall location. Safety issues all over the city. Reconstruct of roadway is needed. Pursued TIGER grant and didn’t get it. Pursuing SUN Trail path at DOT. Red Tide affects the traffic volumes. Grand vision for city to be a carless city. District 7 funding for project might support counting.

ENTER SITE DRAWING:
Virtual Site Visit Map:

Site Visit Photos:
1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
 NOTES: Steady flow of bikes and peds.
2. Test for Interference, are there visible power lines
 NOTES:
3. Watch Traffic, Look for Origin and Destinations
 NOTES:
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
 NOTES:
5. Note all Observations during the On-Site visit
 NOTES:
6. Gather additional information from recommending Agency
 NOTES:
7. Search for data sources such as Strava
 NOTES:
8. Other sources of information
 NOTES:
9. Perform Short Duration Counts at potential CCS!!!
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

<table>
<thead>
<tr>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Travelers Present</td>
</tr>
<tr>
<td>☑ Pictures Taken</td>
</tr>
<tr>
<td>☑ Good Pinch Points for Install</td>
</tr>
<tr>
<td>☑ Smooth Surface</td>
</tr>
<tr>
<td>☑ Sidewalks Present</td>
</tr>
<tr>
<td>☑ Roadways Present</td>
</tr>
<tr>
<td>☑ Trails Present</td>
</tr>
<tr>
<td>☑ Post Required</td>
</tr>
</tbody>
</table>

SELECT SURFACE TYPE:
- Asphalt

SELECT INSTALLATION TYPE:
- Loop, Piezo, IR, and Camera

SELECT COUNT TYPE(S):
- Both Short Term and Continuous Counting

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

| ☑ Downtown Business District |
| ☑ Hospitals Nearby |
| ☑ Transit Stop Nearby |
| ☑ Major Employers Nearby |

NOTES:
- Consider overhead archways
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

<table>
<thead>
<tr>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Trees Present Nearby</td>
</tr>
<tr>
<td>☐ Polls Present Nearby</td>
</tr>
<tr>
<td>☐ Bollards Present Nearby</td>
</tr>
<tr>
<td>☐ Obstacles (in trail or road) Nearby</td>
</tr>
<tr>
<td>☐ Outdoor Siting Areas Nearby</td>
</tr>
<tr>
<td>☐ Vehicles Queuing in Roadway Nearby</td>
</tr>
<tr>
<td>☐ Parallel Parked Vehicles Present Nearby</td>
</tr>
</tbody>
</table>

ENTER SITE DRAWING:

![Site Drawing Diagram](image-url)
Virtual Site Visit Map:

Virtual Site Visit Photos:
Site Visit photos:
1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

NOTES:
Consider 2 sites based on feasibility with infrastructure. Brick or concrete. In front of municipal building. Urban environmental challenges. Only cycle track on one-way street on state.

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

<table>
<thead>
<tr>
<th>Installation Details to evaluate are listed below.</th>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Look and observe bicycle, pedestrian, and motorized traffic behaviors</td>
<td>![Checkboxes and dropdowns for surface, installation, and count types]</td>
</tr>
<tr>
<td>2. Take pictures of bicycle travelers to determine the best counter installation location</td>
<td></td>
</tr>
<tr>
<td>3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone</td>
<td></td>
</tr>
<tr>
<td>4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.</td>
<td></td>
</tr>
<tr>
<td>5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.</td>
<td></td>
</tr>
<tr>
<td>6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.</td>
<td></td>
</tr>
<tr>
<td>7. Sites should be evaluated as a potential short-duration versus continuous counting site</td>
<td></td>
</tr>
<tr>
<td>8. Document site technology types (tube, infrared, video, etc.)</td>
<td></td>
</tr>
</tbody>
</table>

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Hospitals Nearby
- Transit Stop Nearby
- Major Employers Nearby
- Universities Nearby
- Public Recreational Lands Nearby
- Bodies of Water Nearby
- Other Nearby Origin/Destination Observations

NOTES: K-8 school. Street car near by.
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES: Great location for Cycle Track counting.

Check Boxes Below if Observed While On-Site:

- Trees Present Nearby
- Polls Present Nearby
- Bollards Present Nearby
- Obstacles (in trail or road) Nearby
- Outdoor Siting Areas Nearby
- Vehicles Queuing in Roadway Nearby
- Parallel Parked Vehicles Present Nearby

ENTER SITE DRAWING:
Virtual Site Visit Map:

Virtual Site Visit Photos:
1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

<table>
<thead>
<tr>
<th>No.</th>
<th>Guidelines</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Avoid power lines</td>
<td>Good Mid-Block Location</td>
</tr>
<tr>
<td>2.</td>
<td>Avoid water bodies</td>
<td>Powerlines</td>
</tr>
<tr>
<td>3.</td>
<td>Avoid installation of counters that point towards traffic (Infrared counters)</td>
<td>Motorized Traffic Present</td>
</tr>
<tr>
<td>4.</td>
<td>Avoid areas where people stop and mill around an area</td>
<td>People Hanging Around Area (milling around)</td>
</tr>
<tr>
<td>5.</td>
<td>Avoid curves</td>
<td>Curves</td>
</tr>
<tr>
<td>6.</td>
<td>Avoid hills</td>
<td>Hills</td>
</tr>
<tr>
<td>7.</td>
<td>Select locations with pinch points that allows a counter to capture all travelers</td>
<td>Choke Points</td>
</tr>
<tr>
<td>8.</td>
<td>Avoid counting at the intersection, preferred counting locations are mid-block</td>
<td>School or University Nearby</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parks and/or Recreation Facility Nearby</td>
</tr>
</tbody>
</table>

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

<table>
<thead>
<tr>
<th>No.</th>
<th>Observations</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Determine Baseline Activity Levels and Behaviors</td>
<td>Medium To High volume</td>
</tr>
<tr>
<td>2.</td>
<td>Test for Interference, are there visible power lines</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Watch Traffic, Look for Origin and Destinations</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Note all Observations during the On-Site visit</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Gather additional information from recommending Agency</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Search for data sources such as Strava</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Other sources of information</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Perform Short Duration Counts at potential CCS!!!</td>
<td></td>
</tr>
</tbody>
</table>
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

<table>
<thead>
<tr>
<th>Installation Details to evaluate are listed below.</th>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Look and observe bicycle, pedestrian, and motorized traffic behaviors</td>
<td> Travelers Present ![Select Surface Type] (Asphalt)</td>
</tr>
<tr>
<td>2. Take pictures of bicycle travelers to determine the best counter installation location</td>
<td> Pictures Taken ![Select Installation Type] (Loop, Piezo, and IR)</td>
</tr>
<tr>
<td>3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone</td>
<td> Good Pinch Points for Install ![Select Count Type(S)] (Continuous Counting)</td>
</tr>
<tr>
<td>4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.</td>
<td> Smooth Surface Sidewalks Present Roadways Present</td>
</tr>
<tr>
<td>5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.</td>
<td> Trails Present Post Required</td>
</tr>
<tr>
<td>6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.</td>
<td></td>
</tr>
<tr>
<td>7. Sites should be evaluated as a potential short-duration versus continuous counting site</td>
<td></td>
</tr>
<tr>
<td>8. Document site technology types (tube, infrared, video, etc.)</td>
<td></td>
</tr>
</tbody>
</table>

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

![Check Boxes](Yes/No) Downtown Business District	![Check Boxes](Yes/No) Universities Nearby
![Check Boxes](Yes/No) Hospitals Nearby	![Check Boxes](Yes/No) Public Recreational Lands Nearby
![Check Boxes](Yes/No) Transit Stop Nearby	![Check Boxes](Yes/No) Bodies of Water Nearby
![Check Boxes](Yes/No) Major Employers Nearby	![Check Boxes](Yes/No) Other Nearby Origin/Destination Observations

NOTES:
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES:

<table>
<thead>
<tr>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Trees Present Nearby</td>
</tr>
<tr>
<td>☑ Polls Present Nearby</td>
</tr>
<tr>
<td>☑ Bollards Present Nearby</td>
</tr>
<tr>
<td>☑ Obstacles (in trail or road) Nearby</td>
</tr>
<tr>
<td>☑ Trees Present Nearby</td>
</tr>
<tr>
<td>☑ Outdoor Siting Areas Nearby</td>
</tr>
<tr>
<td>☑ Parallel Parked Vehicles Present Nearby</td>
</tr>
</tbody>
</table>

ENTER SITE DRAWING:

<table>
<thead>
<tr>
<th>ENTER SITE DRAWING:</th>
<th>ENTER SITE DRAWING:</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAIL WIDE UP</td>
<td>TRAIL WIDE UP</td>
</tr>
<tr>
<td>3 LANES LEFT</td>
<td>3 LANES RIGHT</td>
</tr>
<tr>
<td>2 BIKE LANE</td>
<td>SIDEWALK NARROW</td>
</tr>
</tbody>
</table>
Virtual Site Visit Map:

Site Visit Photos:
On-Site Visit Form

<table>
<thead>
<tr>
<th>SITE NAME</th>
<th>DATE OF SITE VISIT:</th>
<th>8/31/2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION</td>
<td></td>
<td>Courtney Campbell Causeway</td>
</tr>
<tr>
<td>FACTOR GROUP</td>
<td></td>
<td>Causeway Recreational</td>
</tr>
<tr>
<td>GPS</td>
<td></td>
<td>27.970704, -82.578732</td>
</tr>
<tr>
<td>LANE WIDTH: # of LANES</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>SIDEWALK WIDTH: # of SIDEWALKS</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

CITY AND DOT DISTRICT: DISTRICT 7 - TAMPA

PICTURES TAKEN: Yes

WEATHER CONDITIONS: Hot

NOTES: ON-SITE VISIT #30 on Friday, August 31, 2018. Met with D7 at 10:30am.

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

1. Look and observe bicycle, pedestrian, and motorized traffic behaviors

2. Take pictures of bicycle travelers to determine the best counter installation location

3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone

4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.

5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.

6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.

7. Sites should be evaluated as a potential short-duration versus continuous counting site

8. Document site technology types (tube, infrared, video, etc.)

Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:

- Travelers Present
- Pictures Taken
- Good Pinch Points for Install
- Smooth Surface
- Sidewalks Present
- Roadways Present
- Trails Present
- Post Required

SELECT SURFACE TYPE:
- Concrete

SELECT INSTALLATION TYPE:
- Loop, Piezo, and IR

SELECT COUNT TYPE(S):
- Continuous Counting

NOTES:

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Hospitals Nearby
- Transit Stop Nearby
- Major Employers Nearby
- Universities Nearby
- Public Recreational Lands Nearby
- Bodies of Water Nearby
- Other Nearby Origin/Destination Observations

NOTES:
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES:

<table>
<thead>
<tr>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Trees Present Nearby</td>
</tr>
<tr>
<td>☑ Polls Present Nearby</td>
</tr>
<tr>
<td>☑ Bollards Present Nearby</td>
</tr>
<tr>
<td>☑ Parallel Parked Vehicles Present Nearby</td>
</tr>
<tr>
<td>☐ Obstacles (in trail or road) Nearby</td>
</tr>
<tr>
<td>☑ Outdoor Siting Areas Nearby</td>
</tr>
<tr>
<td>☑ Vehicles Queuing in Roadway Nearby</td>
</tr>
</tbody>
</table>

ENTER SITE DRAWING:
Virtual Site Visit Map:

Virtual Site Visit Photos:

Site Visit photos:
1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

<table>
<thead>
<tr>
<th>1. Avoid power lines</th>
<th>2. Avoid water bodies</th>
<th>3. Avoid installation of counters that point towards traffic (Infrared counters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] Good Mid-Block Location</td>
<td>[] Curves</td>
<td>[] Special Events Nearby</td>
</tr>
<tr>
<td>[] Powerlines</td>
<td>[] Hills</td>
<td>[] School or University Nearby</td>
</tr>
<tr>
<td>[] Water Bodies</td>
<td>[] Choke Points</td>
<td>[] Parks and/or Recreation Facility Nearby</td>
</tr>
<tr>
<td>[] Motorized Traffic Present</td>
<td>[] People Hanging Around Area (milling around)</td>
<td></td>
</tr>
</tbody>
</table>

4. Avoid areas where people stop and mill around an area

5. Avoid curves

6. Avoid hills

7. Select locations with pinch points that allows a counter to capture all travelers

8. Avoid counting at the intersection, preferred counting locations are mid-block

NOTES: Great trail that goes through center of town. Discovered counter approximately 100 feet north of Orange Ave. Trail funded by Emma Love Jenrette Memorial Citrus County historical society. Trail is near local bike shop. Trail is near a school.

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

<table>
<thead>
<tr>
<th>1. Determine Baseline Activity Levels and Behaviors</th>
<th>2. Test for Interference, are there visible power lines</th>
<th>3. Watch Traffic, Look for Origin and Destinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTES: Witnessed dog walker on trail</td>
<td>NOTES:</td>
<td>NOTES:</td>
</tr>
</tbody>
</table>

4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)

5. Note all Observations during the On-Site visit

6. Gather additional information from recommending Agency

7. Search for data sources such as Strava

8. Other sources of information

9. Perform Short Duration Counts at potential CCS!!!

NOTES: Annual bike ride 1st Sunday of October.
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

1. Look and observe bicycle, pedestrian, and motorized traffic behaviors
2. Take pictures of bicycle travelers to determine the best counter installation location
3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone
4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.
5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.
6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.
7. Sites should be evaluated as a potential short-duration versus continuous counting site
8. Document site technology types (tube, infrared, video, etc.)

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Hospitals Nearby
- Transit Stop Nearby
- Major Employers Nearby
- Universities Nearby
- Public Recreational Lands Nearby
- Bodies of Water Nearby
- Other Nearby Origin/Destination Observations

NOTES: K-8 school. Street car near by.
5 - ADDITIONAL INFRASTRUCTURE SITE OBSERVATIONS and SITE DRAWING

STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

<table>
<thead>
<tr>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Trees Present Nearby</td>
</tr>
<tr>
<td>☑ Polls Present Nearby</td>
</tr>
<tr>
<td>☑ Bollards Present Nearby</td>
</tr>
<tr>
<td>☐ Obstacles (in trail or road) Nearby</td>
</tr>
<tr>
<td>☐ Outdoor Siting Areas Nearby</td>
</tr>
<tr>
<td>☐ Vehicles Queuing in Roadway Nearby</td>
</tr>
<tr>
<td>☐ Parallel Parked Vehicles Present Nearby</td>
</tr>
</tbody>
</table>

NOTES:

ENTER SITE DRAWING:
Virtual Site Visit Map:

Site Visit Photos:
On-Site Visit Form

SITE NAME:	Inverness - Withlacoochee Trail 2 (Eden Drive)	DATE OF SITE VISIT:	8/31/2018
LOCATION:	Inverness - Withlacoochee Trail 2 (Eden Drive)	WEATHER CONDITIONS:	Warm - cloudy
FACTOR GROUP:	Rural mixed	PICTURES TAKEN:	Yes
GPS:	28.8229522, -82.3162889	CITY AND DOT DISTRICT:	DISTRICT 7 - Inverness

LANE WIDTH:	12	COUNT TYPE:	Both
# of LINES			
# of SIDEWALKS	3	SITE RANKING:	2

NOTES: ON-SITE VISIT #32 on Friday, August 31, 2018. Met with FDLE Parks Director at 1:30pm.

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Estimating 450,000 per year. Horses on trail but not much.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

9. Perform Short Duration Counts at potential CCS!!!

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!

NOTES: Witnessed pedestrian and 2 bikes on trail during visit

NOTES:

NOTES:

NOTES:

NOTES:

NOTES: Second site to consider along Withlacoochee Trail. This is site is more rural than the previous. Annual event brings about 600 - 800 people. 100 mile route doing an out-and-back.

NOTES:

NOTES:

NOTES: Annual bike ride 1st Sunday of October.
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

<table>
<thead>
<tr>
<th>Installation Details to evaluate are listed below.</th>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Look and observe bicycle, pedestrian, and motorized traffic behaviors</td>
<td>☑ Travelers Present</td>
</tr>
<tr>
<td>2. Take pictures of bicycle travelers to determine the best counter installation location</td>
<td>☑ Pictures Taken</td>
</tr>
<tr>
<td>3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone</td>
<td>☑ Good Pinch Points for Install</td>
</tr>
<tr>
<td>4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.</td>
<td>☑ Smooth Surface</td>
</tr>
<tr>
<td>5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.</td>
<td>☑ Sidewalks Present</td>
</tr>
<tr>
<td>6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.</td>
<td>☑ Roadways Present</td>
</tr>
<tr>
<td>7. Sites should be evaluated as a potential short-duration versus continuous counting site</td>
<td>☑ Trails Present</td>
</tr>
<tr>
<td>8. Document site technology types (tube, infrared, video, etc.)</td>
<td>☑ Post Required</td>
</tr>
</tbody>
</table>

NOTES: Connects to Good Neighbor Trail (Hernando County).

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 – Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Universities Nearby
- Hospitals Nearby
- Public Recreational Lands Nearby
- Transit Stop Nearby
- Bodies of Water Nearby
- Major Employers Nearby
- Other Nearby Origin/Destination Observations

NOTES: Downtown Inverness; Withlacoochee Technical Institute; many lakes and Withlacoochee River.
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES:

Check Boxes Below if Observed While On-Site:

- Trees Present Nearby
- Polls Present Nearby
- Bollards Present Nearby
- Parallel Parked Vehicles Present Nearby
- Obstacles (in trail or road) Nearby
- Outdoor Siting Areas Nearby
- Vehicles Queuing in Roadway Nearby

ENTER SITE DRAWING:
Virtual Site Visit Map:

Site Visit Photos:
On-Site Visit Form

SITE NAME: Overseas Heritage Trail - Publix
LOCATION: Overseas Heritage Trail - Publix
FACTOR GROUP: Urban Mixed
GPS: 24.5697946, -81.765863
LANE WIDTH: 1
SIDEWALK WIDTH: 1

DATE OF SITE VISIT: 9/5/2018
WEATHER CONDITIONS: Hot - cloudy
PICTURES TAKEN: Yes
CITY AND DOT DISTRICT: DISTRICT 6 - Key West

NOTES: ON-SITE VISIT #33 on Wednesday, Sept 5, 2018. Met with D6 and City of Key West at site at 12:30.

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!

3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary
Step 4 -- Look at Origins and Destinations

Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- **Downtown Business District**
- **Transit Stop Nearby**
- **Major Employers Nearby**
- **Universities Nearby**
- **Public Recreational Lands Nearby**
- **Bodies of Water Nearby**
- **Other Nearby Origin/Destination Observations**

NOTES: Sears and Publix nearby;

Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:

<table>
<thead>
<tr>
<th>Surface Type</th>
<th>Installation Type</th>
<th>Count Type(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete</td>
<td>Loop, Piezo, IR, and Camera</td>
<td>Both Short Term and Continuous Counting</td>
</tr>
</tbody>
</table>

NOTES: 2 sidewalks; 5 lanes; turn lane in middle. In front of Publix and Sears, not behind.

5 - ADDITIONAL INFRASTRUCTURE SITE OBSERVATIONS and SITE DRAWING
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES: Stock Island has most of affordable housing to the north of the site. Florida Keys Community College is 2.1 miles from The Home Depot on Stock Island but most students probably live on Stock Island.

Check Boxes Below if Observed While On-Site:

- Trees Present Nearby
- Polls Present Nearby
- Bollards Present Nearby
- Obstacles (in trail or road) Nearby
- Outdoor Sitting Areas Nearby
- Vehicles Queuing in Roadway Nearby
- Parallel Parked Vehicles Present Nearby

ENTER SITE DRAWING:
Virtual Site Visit Map:

Site Visit Photos:
On-Site Visit Form

SITE NAME: Overseas Heritage Trail - Cow bridge

LOCATION: Overseas Heritage Trail - Cow bridge

FACTOR GROUP: Urban Mixed

GPS: 24.5711534, -81.7487622

CITY AND DOT DISTRICT: DISTRICT 6 - Key West

LANE WIDTH: 3

SIDEWALK WIDTH: 2

Date of Site Visit: 9/5/2018

Weather Conditions: Hot - cloudy

Pictures Taken: Yes

Count Type: Both

Site Ranking: 3

Ranking Note: Already has counter

NOTES:

ON-SITE VISIT #34 on Wednesday, September 5, 2018. Met with D6 and City of Key West at 12:45pm.

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!

3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.
Installation Details to evaluate are listed below.

1.	Look and observe bicycle, pedestrian, and motorized traffic behaviors
2.	Take pictures of bicycle travelers to determine the best counter installation location
3.	Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone
4.	Look at the surface type and note whether it is asphalt, concrete, gravel, etc.
5.	Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.
6.	Look for travel volume generators such as hospitals, shopping malls, schools, etc.
7.	Sites should be evaluated as a potential short-duration versus continuous counting site
8.	Document site technology types (tube, infrared, video, etc.)

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Hospitals Nearby
- Transit Stop Nearby
- Major Employers Nearby
- Universities Nearby
- Public Recreational Lands Nearby
- Bodies of Water Nearby
- Other Nearby Origin/Destination Observations

5 - ADDITIONAL INFRASTRUCTURE SITE OBSERVATIONS and SITE DRAWING
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

<table>
<thead>
<tr>
<th>NOTES:</th>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTER SITE DRAWING:</td>
<td>☐ Trees Present Nearby ☐ Obstacles (in trail or road) Nearby</td>
</tr>
<tr>
<td></td>
<td>☐ Polls Present Nearby ☐ Outdoor Siting Areas Nearby</td>
</tr>
<tr>
<td></td>
<td>☐ Bollards Present Nearby ☐ Vehicles Queuing in Roadway Nearby</td>
</tr>
<tr>
<td></td>
<td>☐ Parallel Parked Vehicles Present Nearby</td>
</tr>
</tbody>
</table>
Virtual Site Visit Map:

Site Visit Photos:
On-Site Visit Form

SITE NAME: Duval @ Margaritaville
LOCATION: Duval @ Margaritaville
FACTOR GROUP: Urban Mixed
GPS: 24.555727, -81.802796
WEATHER CONDITIONS: Hot - cloudy
PICTURES TAKEN: Yes
CITY AND DOT DISTRICT: DISTRICT 6 - Key West
DATE OF SITE VISIT: 9/5/2018
LANE WIDTH: 2
SIDEWALK WIDTH: 2
COUNT TYPE: Both

RANKING NOTE: Downtown shopping area

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!

3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary

NOTES: ON-SITE VISIT #35 on Wednesday, September 5, 2018. Met with D6 and City of Key West at 2:25.
Installation Details to evaluate are listed below.

1. Look and observe bicycle, pedestrian, and motorized traffic behaviors
2. Take pictures of bicycle travelers to determine the best counter installation location
3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone
4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.
5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.
6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.
7. Sites should be evaluated as a potential short-duration versus continuous counting site
8. Document site technology types (tube, infrared, video, etc.)

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 – Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Other Nearby Origin/Destination Observations
- Universities Nearby
- Public Recreational Lands Nearby
- Bodies of Water Nearby
- Transit Stop Nearby
- Major Employers Nearby
- Hospitals Nearby
- Post Required

NOTES:

- Complex bike ped movements happening along corridor. Need to put loops across roadway if going to count site. Expect scooters, 3 wheel bikes, long boards.

5 - ADDITIONAL INFRASTRUCTURE SITE OBSERVATIONS and SITE DRAWING
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

<table>
<thead>
<tr>
<th>NOTES: Only 2 lanes of traffic and two sidewalks. Very complex movements.</th>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Trees Present Nearby</td>
<td>☑ Obstacles (in trail or road) Nearby</td>
</tr>
<tr>
<td>☑ Polls Present Nearby</td>
<td>☑ Outdoor Siting Areas Nearby</td>
</tr>
<tr>
<td>☑ Bollards Present Nearby</td>
<td>☑ Vehicles Queuing in Roadway Nearby</td>
</tr>
<tr>
<td>☑ Parallel Parked Vehicles Present Nearby</td>
<td></td>
</tr>
</tbody>
</table>

ENTER SITE DRAWING:
Virtual Site Visit Map:

Site Visit Photos:
1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

<table>
<thead>
<tr>
<th>Powerlines</th>
<th>Water Bodies</th>
<th>Motorized Traffic Present</th>
<th>People Hanging Around Area (milling around)</th>
<th>Curves</th>
<th>Hills</th>
<th>Special Events Nearby</th>
<th>School or University Nearby</th>
<th>Choke Points</th>
<th>Parks and/or Recreation Facility Nearby</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES: Heavy ped traffic. City of Key West very interested in site. School at Flagler. Only bridge to get to houses that cross over river. Great choke point.

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using:

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!

NOTES:

- High volume of children utilizing route.
- Other sources of information

3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.
Installation Details to evaluate are listed below.

1. Look and observe bicycle, pedestrian, and motorized traffic behaviors
2. Take pictures of bicycle travelers to determine the best counter installation location
3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone
4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.
5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.
6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.
7. Sites should be evaluated as a potential short-duration versus continuous counting site
8. Document site technology types (tube, infrared, video, etc.)

Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:

<table>
<thead>
<tr>
<th>Select Surface Type:</th>
<th>Asphalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Installation Type:</td>
<td>Loop, Piezo, IR, and Camera</td>
</tr>
<tr>
<td>Select Count Type(s):</td>
<td>Both Short Term and Continuous Counting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Select</th>
<th>Travelers Present</th>
<th>Pictures Taken</th>
<th>Good Pinch Points for Install</th>
<th>Smooth Surface</th>
<th>Sidewalks Present</th>
<th>Roadways Present</th>
<th>Trails Present</th>
<th>Post Required</th>
</tr>
</thead>
</table>

NOTES: Bridge over water. Bollards are present. Watch out for crocodiles.

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 – Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

<table>
<thead>
<tr>
<th>Check</th>
<th>Downtown Business District</th>
<th>Universities Nearby</th>
<th>Other Nearby Origin/Destination Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hospitals Nearby</td>
<td>Public Recreational Lands Nearby</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transit Stop Nearby</td>
<td>Bodies of Water Nearby</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Major Employers Nearby</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES: School near by.

5 - ADDITIONAL INFRASTRUCTURE SITE OBSERVATIONS and SITE DRAWING
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

<table>
<thead>
<tr>
<th>NOTES:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Trees Present Nearby</td>
</tr>
<tr>
<td>☑ Polls Present Nearby</td>
</tr>
<tr>
<td>☑ Bollards Present Nearby</td>
</tr>
<tr>
<td>☑ Parallel Parked Vehicles Present Nearby</td>
</tr>
<tr>
<td>☑ Obstacles (in trail or road) Nearby</td>
</tr>
<tr>
<td>☐ Outdoor Siting Areas Nearby</td>
</tr>
<tr>
<td>☐ Vehicles Queuing in Roadway Nearby</td>
</tr>
</tbody>
</table>

ENTER SITE DRAWING:

![Site Drawing](image-url)
Virtual Site Visit Map:

Site Visit Photos:
On-Site Visit Form

<table>
<thead>
<tr>
<th>SITE NAME:</th>
<th>DATE OF SITE VISIT:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underline - south of S. Miami station</td>
<td>9/6/2018</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOCATION:</th>
<th>WEATHER CONDITIONS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underline - south of S. Miami station</td>
<td>Hot and humid, recent rain</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FACTOR GROUP:</th>
<th>GPS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban Mixed</td>
<td>25.704588; -80.289533</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CITY AND DOT DISTRICT:</th>
<th>DISTRICT 6 - Miami</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>LANE WIDTH:</th>
<th># of LANES</th>
<th>COUNT TYPE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIDEWALK WIDTH:</th>
<th># of SIDEWALKS</th>
<th>SITE RANKING:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SITE RANKING:</th>
<th>RANKING NOTE:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES: ON-SITE VISIT #37 on Thursday, September 6, 2018. Met with D6, Miami-Dade TPO, Miami-Dade County, and The Underline at 10:30am.

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics

Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors

When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
 - NOTES: High levels of ped traffic
2. Test for Interference, are there visible power lines
 - NOTES:
3. Watch Traffic, Look for Origin and Destinations
 - NOTES:
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
 - NOTES:
5. Note all Observations during the On-Site visit
 - NOTES:
6. Gather additional information from recommending Agency
 - NOTES:
7. Search for data sources such as Strava
 - NOTES:
8. Other sources of information
 - NOTES:
9. Perform Short Duration Counts at potential CCS!!!
 - NOTES:
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

<table>
<thead>
<tr>
<th>Details</th>
<th>Yes/No Boxes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Look and observe bicycle, pedestrian, and motorized traffic behaviors</td>
<td></td>
</tr>
<tr>
<td>2. Take pictures of bicycle travelers to determine the best counter installation location</td>
<td></td>
</tr>
<tr>
<td>3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone</td>
<td></td>
</tr>
<tr>
<td>4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.</td>
<td></td>
</tr>
<tr>
<td>5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.</td>
<td></td>
</tr>
<tr>
<td>6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.</td>
<td></td>
</tr>
<tr>
<td>7. Sites should be evaluated as a potential short-duration versus continuous counting site</td>
<td></td>
</tr>
<tr>
<td>8. Document site technology types (tube, infrared, video, etc.)</td>
<td></td>
</tr>
</tbody>
</table>

Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:

- **SELECT SURFACE TYPE:**
 - Asphalt

- **SELECT INSTALLATION TYPE:**
 - Loop, Piezo, IR, and Camera

- **SELECT COUNT TYPE(S):**
 - Both Short Term and Continuous Counting

NOTES: Several options in case Metrorail affects quality of count. Need to check with vendor on vibration of train above trail.

4 - ORIGIN and DESTINATION OBSERVATIONS

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Hospitals Nearby
- Transit Stop Nearby
- Major Employers Nearby
- Universities Nearby
- Public Recreational Lands Nearby
- Bodies of Water Nearby
- Other Nearby Origin/Destination Observations

NOTES:
5 - ADDITIONAL INFRASTRUCTURE SITE OBSERVATIONS and SITE DRAWING

STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES:

Check Boxes Below if Observed While On-Site:

- [] Trees Present Nearby
- [] Polls Present Nearby
- [] Bollards Present Nearby
- [] Parallel Parked Vehicles Present Nearby
- [] Obstacles (in trail or road) Nearby
- [] Outdoor Siting Areas Nearby
- [] Vehicles Queuing in Roadway Nearby

ENTER SITE DRAWING:
Virtual Site Visit Map:

Virtual Site Visit Photos:
On-Site Visit Form

<table>
<thead>
<tr>
<th>SITE NAME:</th>
<th>Underline - north of S. Miami station</th>
<th>DATE OF SITE VISIT:</th>
<th>9/6/2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION:</td>
<td>Underline - north of S. Miami station</td>
<td>WEATHER CONDITIONS:</td>
<td></td>
</tr>
<tr>
<td>FACTOR GROUP:</td>
<td>Urban Mixed</td>
<td>PICTURES TAKEN:</td>
<td>Yes</td>
</tr>
<tr>
<td>GPS:</td>
<td>25.705661, -80.288290</td>
<td>CITY AND DOT DISTRICT:</td>
<td>DISTRICT 6 - Miami</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LANE WIDTH:</th>
<th># of LANES</th>
<th>6</th>
<th>COUNT TYPE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIDEWALK WIDTH:</td>
<td># of SIDEWALKS</td>
<td>2</td>
<td>SITE RANKING:</td>
</tr>
</tbody>
</table>

NOTES: ON-SITE VISIT #38 on Wednesday, Sept 6, 2018. Met with D6, Miami-Dade TPO, Miami-Dade County, and The Underline at 10:30am.

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!

NOTES: Near transit station; Check with vendor under trees counter.
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

1. Look and observe bicycle, pedestrian, and motorized traffic behaviors

2. Take pictures of bicycle travelers to determine the best counter installation location

3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone

4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.

5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.

6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.

7. Sites should be evaluated as a potential short-duration versus continuous counting site

8. Document site technology types (tube, infrared, video, etc.)

4 - ORIGIN and DESTINATION OBSERVATIONS

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Hospitals Nearby
- Transit Stop Nearby
- Major Employers Nearby
- Universities Nearby
- Public Recreational Lands Nearby
- Bodies of Water Nearby
- Other Nearby Origin/Destination Observations

NOTES:
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

<table>
<thead>
<tr>
<th>NOTES:</th>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trees Present Nearby</td>
</tr>
<tr>
<td></td>
<td>Polls Present Nearby</td>
</tr>
<tr>
<td></td>
<td>Bollards Present Nearby</td>
</tr>
<tr>
<td></td>
<td>Obstacles (in trail or road) Nearby</td>
</tr>
<tr>
<td></td>
<td>Outdoor Siting Areas Nearby</td>
</tr>
<tr>
<td></td>
<td>Vehicles Queuing in Roadway Nearby</td>
</tr>
<tr>
<td></td>
<td>Parallel Parked Vehicles Present Nearby</td>
</tr>
</tbody>
</table>

ENTER SITE DRAWING:
Virtual Site Visit Map:

Virtual Site Visit Photos:
On-Site Visit Form

SITE NAME: Miami River - One Miami
DATE OF SITE VISIT: 9/6/2018
LOCATION: Miami River - One Miami
WEATHER CONDITIONS: Warm and sunny
FACTOR GROUP: Urban Mixed
PICTURES TAKEN: Yes
GPS: 25.771227, -80.186210
CITY AND DOT DISTRICT: DISTRICT 6 - Miami

<table>
<thead>
<tr>
<th>LANE WIDTH:</th>
<th># of LANES</th>
<th>COUNT TYPE:</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIDEWALK WIDTH:</td>
<td># of SIDEWALKS</td>
<td>SITE RANKING:</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTES: ON-SITE VISIT #39 on Thursday Sept 6, 2018. Met with D6, Miami-Dade TPO, and Miami DDA at 12:00am.

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

<table>
<thead>
<tr>
<th>Powerlines</th>
<th>Water Bodies</th>
<th>Good Mid-Block Location</th>
<th>Curves</th>
<th>Choke Points</th>
<th>Motorized Traffic Present</th>
<th>People Hanging Around Area (milling around)</th>
<th>Special Events Nearby</th>
<th>School or University Nearby</th>
<th>Parks and/or Recreation Facility Nearby</th>
</tr>
</thead>
</table>

NOTES: Connects with Bay Walk and River Walk; tourist location; next to high density mixed use; increase in visitors in December for Arty Basel; Lowest numbers during September. Current construction south of location

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!

NOTES: Miami Dade College
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

1. Look and observe bicycle, pedestrian, and motorized traffic behaviors
2. Take pictures of bicycle travelers to determine the best counter installation location
3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone
4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.
5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.
6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.
7. Sites should be evaluated as a potential short-duration versus continuous counting site
8. Document site technology types (tube, infrared, video, etc.)

<table>
<thead>
<tr>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travelers Present</td>
</tr>
<tr>
<td>Pictures Taken</td>
</tr>
<tr>
<td>Good Pinch Points for Install</td>
</tr>
<tr>
<td>Smooth Surface</td>
</tr>
<tr>
<td>Sidewalks Present</td>
</tr>
<tr>
<td>Roadways Present</td>
</tr>
<tr>
<td>Trails Present</td>
</tr>
<tr>
<td>Post Required</td>
</tr>
</tbody>
</table>

| SELECT SURFACE TYPE: |
| Asphalt |

| SELECT INSTALLATION TYPE: |
| Loop, Piezo, IR, and Camera |

| SELECT COUNT TYPE(S): |
| Both Short Term and Continuous Counting |

| NOTES: |

4 - ORIGIN and DESTINATION OBSERVATIONS

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Downtown Business District</td>
<td>Universities Nearby</td>
</tr>
<tr>
<td>Hospitals Nearby</td>
<td>Public Recreational Lands Nearby</td>
</tr>
<tr>
<td>Transit Stop Nearby</td>
<td>Bodies of Water Nearby</td>
</tr>
<tr>
<td>Major Employers Nearby</td>
<td>Other Nearby Origin/Destination Observations</td>
</tr>
</tbody>
</table>

| NOTES: Be aware of water |
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES:

Check Boxes Below if Observed While On-Site:

- Trees Present Nearby
- Polls Present Nearby
- Bollards Present Nearby
- Parallel Parked Vehicles Present Nearby
- Obstacles (in trail or road) Nearby
- Outdoor Siting Areas Nearby
- Vehicles Queuing in Roadway Nearby

ENTER SITE DRAWING:
Virtual Site Visit Map:

Virtual Site Visit Photos:
Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allow a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

NOTES: - Vitas building being torn down for incoming super tower. Brick pavers. Very complex site. Lots of bike ped activity; ULTRA event here. Transit stop with elevated train, buses, parking underneath that will need to be counted, both sides in both directions, minimally.

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!

NOTES: Miami Dade College
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

<table>
<thead>
<tr>
<th>Installation Details to evaluate are listed below.</th>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
</table>
| 1. Look and observe bicycle, pedestrian, and motorized traffic behaviors | ☐ Travelers Present
☐ Pictures Taken
☐ Good Pinch Points for Install
☐ Smooth Surface
☐ Sidewalks Present
☐ Roadways Present
☐ Trails Present
☐ Post Required |
| 2. Take pictures of bicycle travelers to determine the best counter installation location | SELECT SURFACE TYPE:
Asphalt |
| 3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone | SELECT INSTALLATION TYPE:
Loop, Piezo, IR, and Camera |
| 4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc. | SELECT COUNT TYPE(S):
Both Short Term and Continuous Counting |
| 5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc. | |
| 6. Look for travel volume generators such as hospitals, shopping malls, schools, etc. | |
| 7. Sites should be evaluated as a potential short-duration versus continuous counting site | |
| 8. Document site technology types (tube, infrared, video, etc.) | |

4 - ORIGIN and DESTINATION OBSERVATIONS

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Hospitals Nearby
- Transit Stop Nearby
- Major Employers Nearby
- Universities Nearby
- Public Recreational Lands Nearby
- Bodies of Water Nearby
- Other Nearby Origin/Destination Observations

NOTES:
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

<table>
<thead>
<tr>
<th>NOTES: Incoming Biscayne Green project</th>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☐ Trees Present Nearby</td>
</tr>
<tr>
<td></td>
<td>☐ Polls Present Nearby</td>
</tr>
<tr>
<td></td>
<td>☐ Bollards Present Nearby</td>
</tr>
<tr>
<td></td>
<td>☐ Parallel Parked Vehicles Present Nearby</td>
</tr>
<tr>
<td></td>
<td>☐ Obstacles (in trail or road) Nearby</td>
</tr>
<tr>
<td></td>
<td>☐ Outdoor Siting Areas Nearby</td>
</tr>
<tr>
<td></td>
<td>☐ Vehicles Queuing in Roadway Nearby</td>
</tr>
</tbody>
</table>

ENTER SITE DRAWING:
1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allow a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

NOTES:
- Green lanes recently installed. 2 bollards, staggered installation.

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
 - **NOTES:** Noticed bikes and peds along corridor.
2. Test for Interference, are there visible power lines
 - **NOTES:**
3. Watch Traffic, Look for Origin and Destinations
 - **NOTES:**
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
 - **NOTES:**
5. Note all Observations during the On-Site visit
 - **NOTES:**
6. Gather additional information from recommending Agency
 - **NOTES:**
7. Search for data sources such as Strada
 - **NOTES:**
8. Other sources of information
 - **NOTES:**
9. Perform Short Duration Counts at potential CCS!!!
 - **NOTES:**
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

1. Look and observe bicycle, pedestrian, and motorized traffic behaviors
2. Take pictures of bicycle travelers to determine the best counter installation location
3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone
4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.
5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.
6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.
7. Sites should be evaluated as a potential short-duration versus continuous counting site
8. Document site technology types (tube, infrared, video, etc.)

4 - ORIGIN and DESTINATION OBSERVATIONS

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Hospitals Nearby
- Transit Stop Nearby
- Major Employers Nearby
- Universities Nearby
- Public Recreational Lands Nearby
- Bodies of Water Nearby
- Other Nearby Origin/Destination Observations

NOTES: Be aware of water

NOTES: Public works would be inclined to supporting counter that counts nonmotorized and motorized. Maybe a Piezo.
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES:

<table>
<thead>
<tr>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Trees Present Nearby</td>
</tr>
<tr>
<td>☑ Polls Present Nearby</td>
</tr>
<tr>
<td>☑ Bollards Present Nearby</td>
</tr>
<tr>
<td>☐ Parallel Parked Vehicles Present Nearby</td>
</tr>
<tr>
<td>☐ Obstacles (in trail or road) Nearby</td>
</tr>
<tr>
<td>☐ Outdoor Siting Areas Nearby</td>
</tr>
<tr>
<td>☐ Vehicles Queuing in Roadway Nearby</td>
</tr>
</tbody>
</table>

ENTER SITE DRAWING:
Virtual Site Visit Map:

Site Visit Photos:
On-Site Visit Form

SITE NAME: Miami - Venetian 2
LOCATION: Miami - Venetian 2
FACTOR GROUP: Urban Mixed
GPS: 25.7941116, -80.1630281
DATE OF SITE VISIT: 9/6/2018
WEATHER CONDITIONS: hot - sunny
PICTURES TAKEN: Yes
LANE WIDTH: 25.7941116, -80.1630281
SIDEWALK WIDTH: 2
CITY AND DOT DISTRICT: DISTRICT 6 - Miami
COUNT TYPE:

LANE WIDTH: 2
of LANES
SIDEWALK WIDTH: 2
of SIDEWALKS

1 - ON-SITE CHARACTERISTICS

NOTES: ON-SITE VISIT #42 on Thursday Sept 6, 2018. Met with D6 and Miami-Dade TPO at 2:00 pm

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

NOTES: Green lanes recently installed. 2 bollards, staggered installation. May need to move counter based on north/south placement of counter. Avoid locations where car queuing occurs at boat bridges.

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

| 1. Look and observe bicycle, pedestrian, and motorized traffic behaviors |
| 2. Take pictures of bicycle travelers to determine the best counter installation location |
| 3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone |
| 4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc. |
| 5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc. |
| 6. Look for travel volume generators such as hospitals, shopping malls, schools, etc. |
| 7. Sites should be evaluated as a potential short-duration versus continuous counting site |
| 8. Document site technology types (tube, infrared, video, etc.) |

Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:

- Travelers Present
- Pictures Taken
- Good Pinch Points for Install
- Smooth Surface
- Sidewalks Present
- Roadways Present
- Trails Present
- Post Required

SELECT SURFACE TYPE:
- Asphalt

SELECT INSTALLATION TYPE:
- Loop, Piezo, IR, and Camera

SELECT COUNT TYPE(S):
- Both Short Term and Continuous Counting

NOTES: Public works would be inclined to supporting counter that counts nonmotorized and motorized. Maybe Piezo.

4 - ORIGIN and DESTINATION OBSERVATIONS

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Universities Nearby
- Hospitals Nearby
- Public Recreational Lands Nearby
- Transit Stop Nearby
- Bodies of Water Nearby
- Major Employers Nearby
- Other Nearby Origin/Destination Observations

NOTES: Be aware of water
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES:

<table>
<thead>
<tr>
<th>Enter Site Drawing:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Check Boxes Below if Observed While On-Site:

- [] Trees Present Nearby
- [] Obstacles (in trail or road) Nearby
- [✓] Polls Present Nearby
- [✓] Outdoor Siting Areas Nearby
- [✓] Bollards Present Nearby
- [✓] Vehicles Queuing in Roadway Nearby
- [] Parallel Parked Vehicles Present Nearby
Virtual Site Visit Map:

Site Visit Photos:
On-Site Visit Form

SITE NAME:	Miami - South Pointe Park	DATE OF SITE VISIT:	9/6/2018
LOCATION:	Miami - South Pointe Park	WEATHER CONDITIONS:	hot - sunny
FACTOR GROUP:	Bayfront Recreational	PICTURES TAKEN:	Yes
GPS:	25.765370, -80.133411	CITY AND DOT DISTRICT:	DISTRICT 6 - Miami

LANE WIDTH: 1

<table>
<thead>
<tr>
<th># of LANES</th>
<th>SITE RANKING:</th>
<th>COUNT TYPE:</th>
<th>Both</th>
<th>RANKING NOTE:</th>
</tr>
</thead>
</table>

SIDEWALK WIDTH: 1

<table>
<thead>
<tr>
<th># of SIDEWALKS</th>
<th></th>
</tr>
</thead>
</table>

NOTES: ON-SITE VISIT #43 on Thursday Sept 6, 2018. Met with D6 and Miami-Dade TPO at 2:05.

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid curves
5. Avoid hills
6. Select locations with pinch points that allows a counter to capture all travelers
7. Avoid counting at the intersection, preferred counting locations are mid-block

Notes

- Heavy bike and ped traffic.
- Adjacent to South Pointe Park.

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

<table>
<thead>
<tr>
<th>Installation Details to evaluate are listed below.</th>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Look and observe bicycle, pedestrian, and motorized traffic behaviors</td>
<td>![Checkboxes and dropdowns]</td>
</tr>
<tr>
<td>2. Take pictures of bicycle travelers to determine the best counter installation location</td>
<td></td>
</tr>
<tr>
<td>3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone</td>
<td></td>
</tr>
<tr>
<td>4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.</td>
<td></td>
</tr>
<tr>
<td>5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.</td>
<td></td>
</tr>
<tr>
<td>6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.</td>
<td></td>
</tr>
<tr>
<td>7. Sites should be evaluated as a potential short-duration versus continuous counting site</td>
<td></td>
</tr>
<tr>
<td>8. Document site technology types (tube, infrared, video, etc.)</td>
<td></td>
</tr>
</tbody>
</table>

4 - ORIGIN and DESTINATION OBSERVATIONS

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Hospitals Nearby
- Transit Stop Nearby
- Major Employers Nearby
- Universities Nearby
- Public Recreational Lands Nearby
- Bodies of Water Nearby
- Other Nearby Origin/Destination Observations

NOTES: High volume location
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES:

<table>
<thead>
<tr>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑️ Trees Present Nearby</td>
</tr>
<tr>
<td>☑️ Polls Present Nearby</td>
</tr>
<tr>
<td>☑️ Bollards Present Nearby</td>
</tr>
<tr>
<td>☐ Parallel Parked Vehicles Present Nearby</td>
</tr>
</tbody>
</table>

ENTER SITE DRAWING:
Virtual Site Visit Map:

Site Visit Photos:
On-Site Visit Form

<table>
<thead>
<tr>
<th>SITE NAME:</th>
<th>DATE OF SITE VISIT:</th>
<th>9/6/2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION:</td>
<td>WEATHER CONDITIONS:</td>
<td>hot - sunny</td>
</tr>
<tr>
<td>FACTOR GROUP:</td>
<td>PICTURES TAKEN:</td>
<td>Yes</td>
</tr>
<tr>
<td>GPS:</td>
<td>CITY AND DOT DISTRICT:</td>
<td>DISTRICT 6 - Miami</td>
</tr>
<tr>
<td>LANE WIDTH:</td>
<td># of LANES</td>
<td>14</td>
</tr>
<tr>
<td>SIDEWALK WIDTH:</td>
<td># of SIDEWALKS</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
ON-SITE VISIT #44 on Thursday September 6, 2018. Met with D6 and Miami-Dade TPO at 2:30pm.

1 - ON-SITE CHARACTERISTICS

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

<table>
<thead>
<tr>
<th>Details</th>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Look and observe bicycle, pedestrian, and motorized traffic behaviors</td>
<td>- Travelers Present</td>
</tr>
<tr>
<td>2. Take pictures of bicycle travelers to determine the best counter installation location</td>
<td>- Pictures Taken</td>
</tr>
<tr>
<td>3. Look for the pinch points where all travelers will pass within a 12 to 15' detection zone</td>
<td>- Good Pinch Points for Install</td>
</tr>
<tr>
<td>4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.</td>
<td>- Smooth Surface</td>
</tr>
<tr>
<td>5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.</td>
<td>- Sidewalks Present</td>
</tr>
<tr>
<td>6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.</td>
<td>- Roadways Present</td>
</tr>
<tr>
<td>7. Sites should be evaluated as a potential short-duration versus continuous counting site</td>
<td>- Trails Present</td>
</tr>
<tr>
<td>8. Document site technology types (tube, infrared, video, etc.)</td>
<td>- Post Required</td>
</tr>
</tbody>
</table>

NOTES:

- Look for travel volume generators such as hospitals, shopping malls, schools, etc.
- Sites should be evaluated as a potential short-duration versus continuous counting site.
- Document site technology types (tube, infrared, video, etc.).

4 - ORIGIN and DESTINATION OBSERVATIONS

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Hospitals Nearby
- Transit Stop Nearby
- Major Employers Nearby
- Universities Nearby
- Public Recreational Lands Nearby
- Bodies of Water Nearby
- Other Nearby Origin/Destination Observations

NOTES: High volume location
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

<table>
<thead>
<tr>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Trees Present Nearby</td>
</tr>
<tr>
<td>☑ Polls Present Nearby</td>
</tr>
<tr>
<td>☑ Bollards Present Nearby</td>
</tr>
<tr>
<td>☑ Obstacles (in trail or road) Nearby</td>
</tr>
<tr>
<td>☑ Outdoor Siting Areas Nearby</td>
</tr>
<tr>
<td>☑ Vehicles Queuing in Roadway Nearby</td>
</tr>
<tr>
<td>☑ Parallel Parked Vehicles Present Nearby</td>
</tr>
</tbody>
</table>

NOTES:

ENTER SITE DRAWING:
Virtual Site Visit Map:

Site Visit Photos:
1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Counters already exist; Check with vendor. Counter does not record direction. Close to Burnett Park.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

NOTES: Popular cycling destination. Numerous triathlons use hill during the year. Lots of safety issues regarding facility. Areas suffers from multiple hit-and-runs and drunk driving incidents

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!

NOTES: Observed bicyclists, pedestrians and runners
NOTES:
NOTES:
NOTES:
NOTES:
NOTES:
NOTES:
NOTES:
NOTES:
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

1. Look and observe bicycle, pedestrian, and motorized traffic behaviors
2. Take pictures of bicycle travelers to determine the best counter installation location
3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone
4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.
5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.
6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.
7. Sites should be evaluated as a potential short-duration versus continuous counting site
8. Document site technology types (tube, infrared, video, etc.)

Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:

- Travelers Present
- Pictures Taken
- Good Pinch Points for Install
- Smooth Surface
- Sidewalks Present
- Roadways Present
- Trails Present
- Post Required

SELECT SURFACE TYPE:
- Asphalt

SELECT INSTALLATION TYPE:
- Loop, Piezo, and IR

SELECT COUNT TYPE(S):
- Continuous Counting

NOTES:

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Hospitals Nearby
- Transit Stop Nearby
- Major Employers Nearby
- Universities Nearby
- Public Recreational Lands Nearby
- Bodies of Water Nearby
- Other Nearby Origin/Destination Observations

NOTES:
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES:

Check Boxes Below if Observed While On-Site:

- Trees Present Nearby
- Polls Present Nearby
- Bollards Present Nearby
- Obstacles (in trail or road) Nearby
- Outdoor Siting Areas Nearby
- Vehicles Queuing in Roadway Nearby
- Parallel Parked Vehicles Present Nearby

ENTER SITE DRAWING:
Virtual Site Visit Map:

Site Visit Photos:
1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Counters already exist; Check with vendor. Counter does not record direction. Close to Burnett Park.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site’s ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information

NOTES: Observed pedestrians running and walking and bicyclist while on site
NOTES:
NOTES:
NOTES:
NOTES:
NOTES:
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below:

1. Look and observe bicycle, pedestrian, and motorized traffic behaviors
2. Take pictures of bicycle travelers to determine the best counter installation location
3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone
4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.
5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.
6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.
7. Sites should be evaluated as a potential short-duration versus continuous counting site
8. Document site technology types (tube, infrared, video, etc.)

Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:

- Travelers Present
- Pictures Taken
- Good Pinch Points for Install
- Smooth Surface
- Sidewalks Present
- Roadways Present
- Trails Present
- Post Required

SELECT SURFACE TYPE:
- Concrete

SELECT INSTALLATION TYPE:
- Loop, Piezo, and IR

SELECT COUNT TYPE(S):
- Continuous Counting

NOTES: Decorative light poles are a good location to count.

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations. Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Hospitals Nearby
- Transit Stop Nearby
- Major Employers Nearby
- Universities Nearby
- Public Recreational Lands Nearby
- Bodies of Water Nearby
- Other Nearby Origin/Destination Observations

NOTES:
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

Check Boxes Below if Observed While On-Site:

- Trees Present Nearby
- Polls Present Nearby
- Bollards Present Nearby
- Obstacles (in trail or road) Nearby
- Parallel Parked Vehicles Present Nearby
- Outdoor Siting Areas Nearby
- Vehicles Queuing in Roadway Nearby

ENTER SITE DRAWING:
On-Site Visit Form

SITE NAME:	Pensacola St - Separated Bike lanes	DATE OF SITE VISIT:	9/10/2018
LOCATION:	Pensacola St - Separated Bike lanes	WEATHER CONDITIONS:	sunny - hot
FACTOR GROUP:	Urban Mixed	PICTURES TAKEN:	Yes
GPS:	30.4387103, -84.2861843	CITY AND DOT DISTRICT:	3 - Tallahassee
LANE WIDTH:		COUNT TYPE:	continuous and short-term counting
# of LANES	2	SITE RANKING:	3
SIDEWALK WIDTH:		RANKING NOTE:	Existing Counter Here

NOTES: ON-SITE VISIT #47, Met with City of Tallahassee at 11:30am.

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Counters already exist; Check with vendor. Counter does not record direction. Close to Burnett Park.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site’s ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information

NOTES: Observed cyclist riding on wrong direction of protected facility
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

1. Look and observe bicycle, pedestrian, and motorized traffic behaviors
2. Take pictures of bicycle travelers to determine the best counter installation location
3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone
4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.
5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.
6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.
7. Sites should be evaluated as a potential short-duration versus continuous counting site
8. Document site technology types (tube, infrared, video, etc.)

Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:

- Travelers Present
- Pictures Taken
- Good Pinch Points for Install
- Smooth Surface
- Sidewalks Present
- Roadways Present
- Trails Present
- Post Required

SELECT SURFACE TYPE:
- Concrete

SELECT INSTALLATION TYPE:
- Loop, Piezo, IR, and Camera

SELECT COUNT TYPE(S):
- Both Short Term and Continuous Counting

NOTES: Partner mentioned the downtown hills are a detractor from usage at times. There already Eco Counter Loops in this location. Follow-up for data.

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Universities Nearby
- Hospitals Nearby
- Public Recreational Lands Nearby
- Transit Stop Nearby
- Bodies of Water Nearby
- Major Employers Nearby
- Other Nearby Origin/Destination Observations

NOTES: A lot of state offices nearby
5 - ADDITIONAL INFRASTRUCTURE SITE OBSERVATIONS and SITE DRAWING

STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES:

<table>
<thead>
<tr>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Trees Present Nearby</td>
</tr>
<tr>
<td>☐ Polls Present Nearby</td>
</tr>
<tr>
<td>☐ Bollards Present Nearby</td>
</tr>
<tr>
<td>☐ Obstacles (in trail or road) Nearby</td>
</tr>
<tr>
<td>☐ Outdoor Siting Areas Nearby</td>
</tr>
<tr>
<td>☐ Vehicles Queuing in Roadway Nearby</td>
</tr>
<tr>
<td>☐ Parallel Parked Vehicles Present Nearby</td>
</tr>
</tbody>
</table>

ENTER SITE DRAWING:
Virtual Site Visit Map:

Site Visit Photos:
On-Site Visit Form

SITE NAME: Miami River Greenway - Near Brickell Bridge
LOCATION: Miami River Greenway - Near Brickell Bridge
FACTOR GROUP: Urban Mixed
GPS: 25.770635, -80.191714
LANE WIDTH: 18
SIDEWALK WIDTH: 1
COUNT TYPE: continuous and short-term counting
SITE RANKING: 1
RANKING NOTE: Good choke points

DATE OF SITE VISIT: 9/10/2018
WEATHER CONDITIONS: sunny - hot
PICTURES TAKEN: Yes
CITY AND DOT DISTRICT: 6 -Miami

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Counters already exist; Check with vendor. Counter does not record direction. Close to Burnett Park.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site’s ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information

NOTES: ON-SITE VISIT #48, Met with D6, Miami-Dade TPO, and Miami DDA at 11:45am.
9. Perform Short Duration Counts at potential CCS!!

3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary

<table>
<thead>
<tr>
<th>Installation Details to evaluate are listed below.</th>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Look and observe bicycle, pedestrian, and motorized traffic behaviors</td>
<td>Travelers Present
 Pictures Taken
 Good Pinch Points for Install
 Smooth Surface
 Sidewalks Present
 Roadways Present
 Trails Present
 Post Required</td>
</tr>
<tr>
<td>2. Take pictures of bicycle travelers to determine the best counter installation location</td>
<td>SELECT SURFACE TYPE:
 Concrete</td>
</tr>
<tr>
<td>3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone</td>
<td>SELECT INSTALLATION TYPE:
 Loop, Piezo, IR, and Camera</td>
</tr>
<tr>
<td>4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.</td>
<td>SELECT COUNT TYPE(S):
 Both Short Term and Continuous Counting</td>
</tr>
<tr>
<td>5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.</td>
<td></td>
</tr>
<tr>
<td>6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.</td>
<td></td>
</tr>
<tr>
<td>7. Sites should be evaluated as a potential short-duration versus continuous counting site</td>
<td></td>
</tr>
<tr>
<td>8. Document site technology types (tube, infrared, video, etc.)</td>
<td></td>
</tr>
</tbody>
</table>

NOTES: Pavers may be an issue for installation.

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Hospitals Nearby
- Transit Stop Nearby
- Major Employers Nearby
- Universities Nearby
- Public Recreational Lands Nearby
- Bodies of Water Nearby
- Other Nearby Origin/Destination Observations

NOTES: Close to MetroMover station, Hyatt Hotel, High density mixed use building along river.
5 - ADDITIONAL INFRASTRUCTURE SITE OBSERVATIONS and SITE DRAWING

STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

<table>
<thead>
<tr>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Trees Present Nearby</td>
</tr>
<tr>
<td>☐ Polls Present Nearby</td>
</tr>
<tr>
<td>☐ Bollards Present Nearby</td>
</tr>
<tr>
<td>☐ Parallel Parked Vehicles Present Nearby</td>
</tr>
</tbody>
</table>

| ENTER SITE DRAWING: |
Virtual Site Visit Map:

Virtual Site Visit Photos:
On-Site Visit Form

SITE NAME:	The Underline - Miami River	DATE OF SITE VISIT:	9/10/2018
LOCATION:	The Underline - Miami River	WEATHER CONDITIONS:	sunny - hot
FACTOR GROUP:	Urban Mixed	PICTURES TAKEN:	Yes
GPS:	25.767469, -80.195669	CITY AND DOT DISTRICT:	6 -Miami

| LANE WIDTH: | 10 | # of LANES | |
| SIDEWALK WIDTH: | # of SIDEWALKS | COUNT TYPE: | continuous and short-term counting |

| SITE RANKING: | 1 | RANKING NOTE: | Construction underway |

NOTES: ON-SITE VISIT #49 - Reviewed location after-hours. Not enough time in day to meet with partners.

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

| Notes: | High density and high level of pedestrian activity at this location. The Underline is being constructed at this location. Review plans provided by Miami-Dade County and The Underline. |

| Powerlines | Water Bodies | Motorized Traffic Present | People Hanging Around Area (milling around) | Energy Facilities Near Here | Schools or Universities Nearby | Special Events Nearby |
| Curves | Hills | Choke Points |

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!

Notes:

Notes: Brickell Backyard portion of Underline set for construction.
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

<table>
<thead>
<tr>
<th>Installation Details to evaluate are listed below.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Look and observe bicycle, pedestrian, and motorized traffic behaviors</td>
</tr>
<tr>
<td>2. Take pictures of bicycle travelers to determine the best counter installation location</td>
</tr>
<tr>
<td>3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone</td>
</tr>
<tr>
<td>4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.</td>
</tr>
<tr>
<td>5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.</td>
</tr>
<tr>
<td>6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.</td>
</tr>
<tr>
<td>7. Sites should be evaluated as a potential short-duration versus continuous counting site</td>
</tr>
<tr>
<td>8. Document site technology types (tube, infrared, video, etc.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travelers Present □ □ Pictures Taken □ □ Good Pinch Points for Install □ □ Smooth Surface □ □ Sidewalks Present □ □ Roadways Present □ □ Trails Present □ □ Post Required</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SELECT SURFACE TYPE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete □ □</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SELECT INSTALLATION TYPE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop, Piezo, IR, and Camera □ □</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SELECT COUNT TYPE(S):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both Short Term and Continuous Counting □ □</td>
</tr>
</tbody>
</table>

NOTES: Need to coordinate with incoming construction.

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

<table>
<thead>
<tr>
<th>Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downtown Business District □ □ Hospitals Nearby □ □ Public Recreational Lands Nearby □ □ Bodies of Water Nearby □ □ Other Nearby Origin/Destination Observations</td>
</tr>
<tr>
<td>Transit Stop Nearby □ □ Major Employers Nearby □ □ Universities Nearby □ □</td>
</tr>
</tbody>
</table>

NOTES: Close to Metrorail station and high density mixed use development.
5 - ADDITIONAL INFRASTRUCTURE SITE OBSERVATIONS and SITE DRAWING

STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES: Opportunity to partner with Underline and Miami-Dade County. Review construction documents provided by The Underline.

<table>
<thead>
<tr>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Trees Present Nearby</td>
</tr>
<tr>
<td>☐ Polls Present Nearby</td>
</tr>
<tr>
<td>☐ Bollards Present Nearby</td>
</tr>
<tr>
<td>☐ Parallel Parked Vehicles Present Nearby</td>
</tr>
<tr>
<td>☐ Obstacles (in trail or road) Nearby</td>
</tr>
<tr>
<td>☑ Outdoor Siting Areas Nearby</td>
</tr>
<tr>
<td>☐ Vehicles Queuing in Roadway Nearby</td>
</tr>
</tbody>
</table>

ENTER SITE DRAWING:
Virtual Site Visit Map:

Virtual Site Visit Photos:
On-Site Visit Form

SITE NAME: Overseas Heritage Trail - Home Depot
DATE OF SITE VISIT: 9/5/2018

LOCATION: Overseas Heritage Trail - Home Depot
WEATHER CONDITIONS: Hot - cloudy

FACTOR GROUP: Urban Mixed
PICTURES TAKEN: Yes

GPS: 24.566491, -81.771887
CITY AND DOT DISTRICT: DISTRICT 6 - Key West

<table>
<thead>
<tr>
<th>LANE WIDTH:</th>
<th># of LANES</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIDEWALK WIDTH:</td>
<td># of SIDEWALKS</td>
<td>2</td>
</tr>
</tbody>
</table>

COUNT TYPE: Both
of LANES: 5
of SIDEWALKS: 2
SITE RANKING: 2
RANKING NOTE: Complex site

NOTES: ON-SITE VISIT #50 on Wednesday Sept 5, 2018. Met with D6 and City of Key West at site at 12:00

1 - ON-SITE CHARACTERISTICS

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

NOTES: Plenty of recreational and commuter activity. Sharrow lanes: Powerlines; 2 counter site could be a problem. Near busy transit stop.

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

1. Determine Baseline Activity Levels and Behaviors
 NOTES: Lots of activity
2. Test for Interference, are there visible power lines
 NOTES:
3. Watch Traffic, Look for Origin and Destinations
 NOTES:
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
 NOTES:
5. Note all Observations during the On-Site visit
 NOTES: Near busy transit stop.
6. Gather additional information from recommending Agency
 NOTES:
7. Search for data sources such as Strava
 NOTES:
8. Other sources of information
 NOTES:
9. Perform Short Duration Counts at potential CCS!!!
 NOTES:

3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary

Installation Details to evaluate are listed below.

| Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types: |
|---|---|---|---|---|
| Good Mid-Block Location | Curves | Special Events Nearby |
| Powerlines | Hills | School or University Nearby |
| Water Bodies | Choke Points | Parks and/or Recreation Facility Nearby |
| Motorized Traffic Present | People Hanging Around Area (milling around) | |
1. Look and observe bicycle, pedestrian, and motorized traffic behaviors

2. Take pictures of bicycle travelers to determine the best counter installation location

3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone

4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.

5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.

6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.

7. Sites should be evaluated as a potential short-duration versus continuous counting site

8. Document site technology types (tube, infrared, video, etc.)

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Travelers Present
- Pictures Taken
- Good Pinch Points for Install
- Smooth Surface
- Sidewalks Present
- Roadways Present
- Trails Present
- Post Required

NOTES: 2 sidewalks; 5 lanes; turn lane in middle. In front of Home Depot.

5 - ADDITIONAL INFRASTRUCTURE SITE OBSERVATIONS and SITE DRAWING

STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES: Home Depot nearby

Check Boxes Below if Observed While On-Site:

- Downtown Business District
- Hospitals Nearby
- Transit Stop Nearby
- Major Employers Nearby
- Universities Nearby
- Public Recreational Lands Nearby
- Bodies of Water Nearby
- Other Nearby Origin/Destination Observations
ENTER SITE DRAWING:

- Trees Present Nearby
- Polls Present Nearby
- Bollards Present Nearby
- Obstacles (in trail or road) Nearby
- Outdoor Sitting Areas Nearby
- Vehicles Queuing in Roadway Nearby
- Parallel Parked Vehicles Present Nearby

[Image of site drawing]
On-Site Visit Form

<table>
<thead>
<tr>
<th>SITE NAME:</th>
<th>A1A @ Miami Rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION:</td>
<td>A1A @ Miami Rd</td>
</tr>
<tr>
<td>FACTOR GROUP:</td>
<td>Urban Mixed</td>
</tr>
<tr>
<td>GPS:</td>
<td>26.100455, -80.134484</td>
</tr>
<tr>
<td>DATE OF SITE VISIT:</td>
<td>8/29/2018</td>
</tr>
<tr>
<td>WEATHER CONDITIONS:</td>
<td>Hot and raining</td>
</tr>
<tr>
<td>PICTURES TAKEN:</td>
<td>Yes</td>
</tr>
<tr>
<td>CITY AND DOT DISTRICT:</td>
<td>DISTRICT 4 - FT LAUDERDALE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LANE WIDTH:</th>
<th># of LANES</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIDEWALK WIDTH:</td>
<td># of SIDEWALKS</td>
<td>6</td>
</tr>
</tbody>
</table>

NOTES:
- ON-SITE VISIT #51 on Wednesday, August 29, 2018. Met with City of Fort Lauderdale at 2:15pm
- SITE RANKING: 3
- RANKING NOTE: Too complex and expensive

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics
Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors
When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

| 1. Look and observe bicycle, pedestrian, and motorized traffic behaviors |
| 2. Take pictures of bicycle travelers to determine the best counter installation location |
| 3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone |
| 4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc. |
| 5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc. |
| 6. Look for travel volume generators such as hospitals, shopping malls, schools, etc. |
| 7. Sites should be evaluated as a potential short-duration versus continuous counting site |
| 8. Document site technology types (tube, infrared, video, etc.) |

Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:

- **Travellers Present**
- **Pictures Taken**
- **Good Pinch Points for Install**
- **Smooth Surface**
- **Sidewalks Present**
- **Roadways Present**
- **Trails Present**
- **Post Required**

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations. Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- **Downtown Business District**
- **Hospitals Nearby**
- **Transit Stop Nearby**
- **Major Employers Nearby**
- **Universities Nearby**
- **Public Recreational Lands Nearby**
- **Bodies of Water Nearby**
- **Other Nearby Origin/Destination Observations**

NOTES:
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

<table>
<thead>
<tr>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Trees Present Nearby</td>
</tr>
<tr>
<td>☑ Polls Present Nearby</td>
</tr>
<tr>
<td>☑ Parallel Parked Vehicles Present Nearby</td>
</tr>
<tr>
<td>☐ Bollards Present Nearby</td>
</tr>
<tr>
<td>☐ Obstacles (in trail or road) Nearby</td>
</tr>
<tr>
<td>☐ Outdoor Siting Areas Nearby</td>
</tr>
<tr>
<td>☑ Vehicles Queuing in Roadway Nearby</td>
</tr>
</tbody>
</table>

NOTES:

ENTER SITE DRAWING:
Virtual Site Visit Map:

Site Visit Photos:
1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
 - Low levels or bikes or peds during visit
2. Test for Interference, are there visible power lines
 - Notes:
3. Watch Traffic, Look for Origin and Destinations
 - Notes:
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
 - Notes:
5. Note all Observations during the On-Site visit
 - Notes:
6. Gather additional information from recommending Agency
 - Notes:
7. Search for data sources such as Strava
 - Notes:
8. Other sources of information
 - Notes:
9. Perform Short Duration Counts at potential CCS!!!
 - Notes:
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

<table>
<thead>
<tr>
<th>Installation Details</th>
<th>Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Look and observe bicycle, pedestrian, and motorized traffic behaviors</td>
<td>Travelers Present</td>
</tr>
<tr>
<td></td>
<td>Pictures Taken</td>
</tr>
<tr>
<td>2. Take pictures of bicycle travelers to determine the best counter installation location</td>
<td>Good Pinch Points for Install</td>
</tr>
<tr>
<td>3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone</td>
<td>Smooth Surface</td>
</tr>
<tr>
<td>4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.</td>
<td>Sidewalks Present</td>
</tr>
<tr>
<td>5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.</td>
<td>Roadways Present</td>
</tr>
<tr>
<td>6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.</td>
<td>Trails Present</td>
</tr>
<tr>
<td>7. Sites should be evaluated as a potential short-duration versus continuous counting site</td>
<td>Post Required</td>
</tr>
<tr>
<td>8. Document site technology types (tube, infrared, video, etc.)</td>
<td></td>
</tr>
</tbody>
</table>

NOTES: Noticed maintenance crews on site clearing trail

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations. Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Hospitals Nearby
- Transit Stop Nearby
- Major Employers Nearby
- Universities Nearby
- Public Recreational Lands Nearby
- Bodies of Water Nearby
- Other Nearby Origin/Destination Observations

NOTES:
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

<table>
<thead>
<tr>
<th>SWEEPS:</th>
</tr>
</thead>
</table>

- Trees Present Nearby
- Polls Present Nearby
- Bollards Present Nearby
- Parallel Parked Vehicles Present Nearby
- Obstacles (in trail or road) Nearby
- Outdoor Siting Areas Nearby
- Vehicles Queuing in Roadway Nearby

ENTER SITE DRAWING:
Virtual Site Visit Map:

Site Visit Photos:
On-Site Visit Form

SITE NAME:	US Bike Route 15 - Four Freedoms Trail - Hanson picnic	DATE OF SITE VISIT:	9/25/2018
LOCATION:	US Bike Route 15 - Four Freedoms Trail - Hanson picnic	WEATHER CONDITIONS:	Warm- sunny
FACTOR GROUP:	Rural Recreational	GPS:	-83.3657514, 30.5592966
CITY AND DOT DISTRICT:	District 2 - Madison County	LANE WIDTH:	2
SIDEWALK WIDTH:	2		

NOTES: ON-SITE VISIT #53 on Wednesday, September 25, 2018. Met with Madison County at 9:30am

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

1. Look and observe bicycle, pedestrian, and motorized traffic behaviors
2. Take pictures of bicycle travelers to determine the best counter installation location
3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone
4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.
5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.
6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.
7. Sites should be evaluated as a potential short-duration versus continuous counting site
8. Document site technology types (tube, infrared, video, etc.)

Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:

- [] Travelers Present
- [] Pictures Taken
- [] Good Pinch Points for Install
- [x] Smooth Surface
- [] Sidewalks Present
- [x] Roadways Present
- [] Trails Present
- [] Post Required

SELECT SURFACE TYPE:
- Asphalt

SELECT INSTALLATION TYPE:
- Loop, Piezo, IR, and Camera

SELECT COUNT TYPE(S):
- Both Short Term and Continuous Counting

NOTES: Asphalt is damaged in certain areas due to tree rootage

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- [] Downtown Business District
- [] Hospitals Nearby
- [] Transit Stop Nearby
- [] Major Employers Nearby
- [x] Universities Nearby
- [] Public Recreational Lands Nearby
- [] Bodies of Water Nearby
- [] Other Nearby Origin/Destination Observations

NOTES:
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

<table>
<thead>
<tr>
<th>Enter Site Drawing:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Trees Present Nearby</td>
</tr>
<tr>
<td>☑ Polls Present Nearby</td>
</tr>
<tr>
<td>☑ Bollards Present Nearby</td>
</tr>
<tr>
<td>☑ Parallel Parked Vehicles Present Nearby</td>
</tr>
<tr>
<td>☐ Obstacles (in trail or road) Nearby</td>
</tr>
<tr>
<td>☐ Outdoor Siting Areas Nearby</td>
</tr>
<tr>
<td>☐ Vehicles Queuing in Roadway Nearby</td>
</tr>
</tbody>
</table>

NOTES:
Virtual Site Visit Map:

Site Visit Photos:
On-Site Visit Form

<table>
<thead>
<tr>
<th>SITE NAME</th>
<th>DATE OF SITE VISIT</th>
<th>LOCATION</th>
<th>WEATHER CONDITIONS</th>
<th>CITY AND DOT DISTRICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Bike Route 15 - Four Freedoms Trail - Poppy Trail</td>
<td>9/25/2018</td>
<td>US Bike Route 15 - Four Freedoms Trail - Poppy Trail</td>
<td>Warm- sunny</td>
<td>District 2 - Madison County</td>
</tr>
<tr>
<td>FACTOR GROUP</td>
<td>GPS</td>
<td>FACTOR GROUP</td>
<td>GPS</td>
<td>GPS: 30.589347, -83.353564</td>
</tr>
<tr>
<td>Rural Recreational</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PICTURES TAKEN: Yes

<table>
<thead>
<tr>
<th>LANE WIDTH</th>
<th># of LANES</th>
<th>COUNT TYPE</th>
<th>SITE RANKING</th>
<th>RANKING NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Too much debris on trail</td>
</tr>
</tbody>
</table>

NOTES: ON-SITE VISIT #54 on Wednesday, September 25, 2018. Madison County rep had to leave for meeting. Visited site at 9:45am.

1 - ON-SITE CHARACTERISTICS

1. **Avoid power lines**
2. **Avoid water bodies**
3. **Avoid installation of counters that point towards traffic (Infrared counters)**
4. **Avoid areas where people stop and mill around an area**
5. **Avoid curves**
6. **Avoid hills**
7. **Select locations with pinch points that allows a counter to capture all travelers**
8. **Avoid counting at the intersection, preferred counting locations are mid-block**

2 - SITE SPECIFIC OBSERVATIONS and BEHAVIORS

1. **Determine Baseline Activity Levels and Behaviors**
 - **NOTES:** Too much tree and foliage debris on site. May affect quality of count. No bikes or peds present during visit. Trail merges back with roadway at this point.
2. **Test for Interference, are there visible power lines**
 - **NOTES:**
3. **Watch Traffic, Look for Origin and Destinations**
 - **NOTES:**
4. **Look for Choke Points** (natural funneling point such as bridges, tunnels or overpasses)
 - **NOTES:**
5. **Note all Observations during the On-Site visit**
 - **NOTES:**
6. **Gather additional information from recommending Agency**
 - **NOTES:**
7. **Search for data sources such as Strava**
 - **NOTES:**
8. **Other sources of information**
 - **NOTES:**
9. **Perform Short Duration Counts at potential CCS!!!**
 - **NOTES:**
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

<table>
<thead>
<tr>
<th>Installation Details to evaluate are listed below.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Look and observe bicycle, pedestrian, and motorized traffic behaviors</td>
</tr>
<tr>
<td>2. Take pictures of bicycle travelers to determine the best counter installation location</td>
</tr>
<tr>
<td>3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone</td>
</tr>
<tr>
<td>4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.</td>
</tr>
<tr>
<td>5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.</td>
</tr>
<tr>
<td>6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.</td>
</tr>
<tr>
<td>7. Sites should be evaluated as a potential short-duration versus continuous counting site</td>
</tr>
<tr>
<td>8. Document site technology types (tube, infrared, video, etc.)</td>
</tr>
</tbody>
</table>

Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:

- **Travellers Present**
- **Pictures Taken**
- **Good Pinch Points for Install**
- **Smooth Surface**
- **Sidewalks Present**
- **Roadways Present**
- **Trails Present**
- **Post Required**

SELECT SURFACE TYPE:
- Asphalt

SELECT INSTALLATION TYPE:
- Loop, Piezo, IR, and Camera

SELECT COUNT TYPE(S):
- Both Short Term and Continuous Counting

NOTES: Too much tree and foliage debris on trail. May affect quality of count.

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

- Downtown Business District
- Hospitals Nearby
- Transit Stop Nearby
- Major Employers Nearby
- Universities Nearby
- Public Recreational Lands Nearby
- Bodies of Water Nearby
- Other Nearby Origin/Destination Observations

NOTES:
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

NOTES:

<table>
<thead>
<tr>
<th>Enter Site Drawing:</th>
<th>Check Boxes Below if Observed While On-Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☑ Trees Present Nearby</td>
</tr>
<tr>
<td></td>
<td>☐ Polls Present Nearby</td>
</tr>
<tr>
<td></td>
<td>☐ Bollards Present Nearby</td>
</tr>
<tr>
<td></td>
<td>☐ Parallel Parked Vehicles Present Nearby</td>
</tr>
<tr>
<td></td>
<td>☐ Obstacles (in trail or road) Nearby</td>
</tr>
<tr>
<td></td>
<td>☐ Outdoor Siting Areas Nearby</td>
</tr>
<tr>
<td></td>
<td>☐ Vehicles Queuing in Roadway Nearby</td>
</tr>
</tbody>
</table>
Virtual Site Visit Map:

Site Visit Photos:
On-Site Visit Form

SITE NAME: US Bike Route 15 - GA/FL border
LOCATION: US Bike Route 15 - GA/FL border
FACTOR GROUP: Rural Recreational
GPS: 30.634090, -83.311879
DATE OF SITE VISIT: 9/25/2018
WEATHER CONDITIONS: Warm- sunny
PICTURES TAKEN: Yes
CITY AND DOT DISTRICT: District 2 - Madison County
LANE WIDTH: 2
SIDEWALK WIDTH:

<table>
<thead>
<tr>
<th>LANE WIDTH</th>
<th># of LANES</th>
<th>COUNT TYPE: Continuous</th>
<th>SITE RANKING:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>CITY AND DOT DISTRICT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>GPS</th>
</tr>
</thead>
</table>

NOTES: ON-SITE VISIT #55 on Wednesday, September 25, 2018. Madison County rep had to leave for meeting. Visited site at 10:15am.

1 - ON-SITE CHARACTERISTICS

Step 1 - Evaluate On-Site Characteristics. Below are some guidelines and things to look for when choosing sites for continuous counting purposes. Check the boxes as applicable below.

1. Avoid power lines
2. Avoid water bodies
3. Avoid installation of counters that point towards traffic (Infrared counters)
4. Avoid areas where people stop and mill around an area
5. Avoid curves
6. Avoid hills
7. Select locations with pinch points that allows a counter to capture all travelers
8. Avoid counting at the intersection, preferred counting locations are mid-block

Step 2 -- Determine Baseline Activity Levels and Evaluate Site Specific Observations and Behaviors. When on-site, evaluate conditions and baseline activity levels using the checklist below. If the site has no bicycle and/or pedestrian activity during the site visit and there is no evidence to substantiate activity may occur at other time periods at the site, note that further investigation would be needed before investing in CCS equipment. Activity and behavioral observations on-site can influence and potentially increase the site's ranking such as a diversity of users from differing perceived socioeconomic status to a diversity of bicyclist types (commuter, recreational, mixed).

1. Determine Baseline Activity Levels and Behaviors
2. Test for Interference, are there visible power lines
3. Watch Traffic, Look for Origin and Destinations
4. Look for Choke Points (natural funneling point such as bridges, tunnels or overpasses)
5. Note all Observations during the On-Site visit
6. Gather additional information from recommending Agency
7. Search for data sources such as Strava
8. Other sources of information
9. Perform Short Duration Counts at potential CCS!!!
3 - INSTALLATION DETAILS

Step 3 - Evaluate the site for potential continuous counting installation of equipment. During this step, make sure to consider all the items below and check the yes/no boxes and provide notes if necessary.

Installation Details to evaluate are listed below.

1. Look and observe bicycle, pedestrian, and motorized traffic behaviors
2. Take pictures of bicycle travelers to determine the best counter installation location
3. Look for the pinch points where all travelers will pass within a 12 to 15’ detection zone
4. Look at the surface type and note whether it is asphalt, concrete, gravel, etc.
5. Look at facilities to count on-site and make note of sidewalks, roadway, trails, etc.
6. Look for travel volume generators such as hospitals, shopping malls, schools, etc.
7. Sites should be evaluated as a potential short-duration versus continuous counting site
8. Document site technology types (tube, infrared, video, etc.)

Check the Boxes if Applicable Below and Select Surface, Installation, and Count Types:

<table>
<thead>
<tr>
<th>Check</th>
<th>Surface Type</th>
<th>Installation Type</th>
<th>Count Type(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>●</td>
<td>Travelers Present</td>
<td></td>
<td></td>
</tr>
<tr>
<td>●</td>
<td>Pictures Taken</td>
<td>Smooth Surface</td>
<td></td>
</tr>
<tr>
<td>●</td>
<td>Good Pinch Points for Install</td>
<td>Sidewalks Present</td>
<td></td>
</tr>
<tr>
<td>●</td>
<td>Roadways Present</td>
<td>Post Required</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SELECT SURFACE TYPE:</td>
<td>Loop, Piezo, IR, and Camera</td>
<td>Both Short Term and Continuous Counting</td>
<td></td>
</tr>
</tbody>
</table>

4 - ORIGIN and DESTINATION OBSERVATIONS

Step 4 -- Look at Origins and Destinations. Finding where trips begin and end can help to determine the anticipated pattern (e.g. Recreational, Commuting, or Mixed) for assigning a factor group. Even general observations such as bicyclists wearing backpacks or having saddle bags, the type of bicycle utilized, or the clothing type are good indications of traveler type. Making such observations of environment or users helps locate specifically where equipment should be placed to capture these trips. Look for downtown business districts, hospitals, transit stops, major employers, universities, public recreation lands, and bodies of water as examples of non-motorized travel generators. Look for sites to populate all factor groups with an emphasis on finding sites uniquely qualified to capture those patterns.

Check the boxes to the right that apply during on-site observation evaluation and provide more specific details in the notes box below:

<table>
<thead>
<tr>
<th>Check</th>
<th>Origin/Destination Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>●</td>
<td>Downtown Business District</td>
</tr>
<tr>
<td></td>
<td>Hospitals Nearby</td>
</tr>
<tr>
<td></td>
<td>Transit Stop Nearby</td>
</tr>
<tr>
<td></td>
<td>Major Employers Nearby</td>
</tr>
<tr>
<td></td>
<td>Universities Nearby</td>
</tr>
<tr>
<td></td>
<td>Public Recreational Lands Nearby</td>
</tr>
<tr>
<td></td>
<td>Bodies of Water Nearby</td>
</tr>
<tr>
<td></td>
<td>Other Nearby Origin/Destination Observations</td>
</tr>
</tbody>
</table>

NOTES: Choke point on bridge.
STEP 5 - Evaluate Infrastructure by making site specific observations and make additional site observations of bicyclists and pedestrians and the surrounding environmental conditions. For some sites, specific factors that could make it a complicated install include proximity to transit stops, no funneling point, etc. If these complicated installation conditions exist on site, refine the site location (i.e. moved up, down, or over a block), or drop the site lower in ranking and provide a descriptive explanation.

<table>
<thead>
<tr>
<th>ENTER SITE DRAWING:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>CHECK BOXES BELOW IF OBSERVED WHILE ON-SITE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Trees Present Nearby</td>
</tr>
<tr>
<td>☐ Polls Present Nearby</td>
</tr>
<tr>
<td>☐ Bollards Present Nearby</td>
</tr>
<tr>
<td>☐ Parallel Parked Vehicles Present Nearby</td>
</tr>
<tr>
<td>☐ Obstacles (in trail or road) Nearby</td>
</tr>
<tr>
<td>☐ Outdoor Siting Areas Nearby</td>
</tr>
<tr>
<td>☐ Vehicles Queuing in Roadway Nearby</td>
</tr>
</tbody>
</table>
Virtual Site Visit Map:

Site Visit Photos:
Appendix C – Program Brochure
FDOT’s goal is to install 1-2 Continuous Count stations per district, per year. The data will be published and shared on Florida Traffic Online.

FDOT CO is providing partnering agencies with short-term count equipment and training. In return, FDOT CO will receive localized non-motorized count data.

FDOT is accepting voluntary bicycle and pedestrian data from agencies statewide. TDA will evaluate and analyze the data, identify trends, and submit the data to the Federal Highway Administration (FHWA).

FDOT TDA will host an annual meeting where the latest non-motorized data will be shared, and provide periodic webinars highlighting best practices and lessons learned regarding non-motorized traffic monitoring methods and technology.

For more information, please contact Eric Katz | P: 850.414.4704 | C: 305.609.2784 | eric.katz@dot.state.fl.us
STATEWIDE NON-MOTORIZED TRAFFIC MONITORING PROGRAM

PROJECT OVERVIEW: The Florida Department of Transportation’s Transportation Data and Analytics Office (TDA) began the development of a Statewide Non-Motorized Traffic Monitoring Program in May 2018 with the need to provide bicycle and pedestrian (non-motorized) volumes and supporting statistics to new and existing data customers. The intent of developing the non-motorized data program is similar to the motorized traffic volume data program in that non-motorized data can be used for all the same types of analyses such as safety studies, public health studies, planning and programming non-motorized facilities, pavement and trail maintenance, and more.

PROJECT PURPOSE: To collect statistically valid bicycle and pedestrian traffic volume data so that statistics can be calculated and published annually.

PHASE 1 GOAL: Develop a reliable, reputable, efficient and all-inclusive (both data user and contributor driven) non-motorized data collection program.

PHASE 1 RESULTS: In June 2018, FDOT distributed a statewide survey requesting recommendations for non-motorized count locations. The survey response produced 406 locations to consider. In August/September of 2018, the FDOT team evaluated 55 proposed locations across the state. The following map displays recommendations for Continuous and Short-term count locations across FDOT’s 7 Districts. Continuous counters are intended to count 365 days a year, while Short-term counters are intended to count for 2 week periods. The table to the right represents examples of non-motorized traffic monitoring technologies FDOT will be considering for installation.
Appendix D – Working Group Slide Shows 1 and 2
FDOT Bicycle and Pedestrian Statewide Program Development Project

Working Group Meeting

July 26, 2018

Meeting Agenda

- Project Status / Overview
- Why Count Non-Motorized Traffic?
- Present Findings of Survey
- Present Virtual Site Visit Findings
- Present Summarized Training Materials
- Provide Glance at Recommendations Report
Florida DOT (FDOT) Program Overview

- Non-motorized Program Goals
- Work Order Task #1 – To identify, develop and document Non-motorized traffic monitoring methods resulting in the creation of a FDOT statewide bicycle and pedestrian counting program
- Work Order Task #2 – To identify, implement, and document installation of continuous counting monitoring sites
- Work Order Task #3 – To identify, implement, and document data publication methods
 - Statistically valid Program
 - Create Statistics calculating annualized traffic volume statistics
 - QA/QC Methods
 - Modeled after the Motorized Traffic Monitoring Program

Work Order Task #1 - RESULTS

To identify, implement and document site selection methods creating a statewide bicycle and pedestrian counting program

- Documented Methods in the Recommendations Report (to be covered in depth during this course)
- Identified Top 56 sites to consider for Continuous Counting Station (CCS) equipment installation (to be done in Work Order Task #2)
 - Thank you partners for the incredible survey response!
- Will deliver Non-motorized Counting Program Development Methods Training to Statewide Stakeholders
WHY COUNT?

“Developing Non-Motorized Data Programs”

Presentation Outline

- State of the Practice
 - Why count?
 - Current traffic data programs
 - Motorized versus non-motorized
- National Resources & Conferences
Why Count? 6 Key Reasons to Count!

1. Accurate Data for Measuring Performance
2. Enhanced Safety
3. New Funding Options
4. Better Operations
5. Proper Maintenance
6. Federal requirements and customer service

Reason #1 - Accurate data for measuring performance...

Commuter facilities are eligible for federal transportation funding!
Reason #1 - Accurate data for measuring performance…

Commuter facilities are eligible for federal transportation funding!

Accurate data for decision making…

- Commuter travel day of the week (DOW) travel pattern
- Monday-Friday travel is much higher in the evenings
- Morning, lunchtime, and evening peaks

- Weekend travel patterns are recreational
- Total volume ranges are 150 to 300 any day of the week or weekend

Commuter facilities are eligible for federal transportation funding!
Why Count?
Reason #2 – Enhanced Safety

- Need the denominator for...
 - accurate statistics
 - clarity in crash impact studies
 - insight for developing mitigation strategies

- Sometimes, its dangerous not to count…
Florida Department of Transportation

Durango, Colorado
Animas River Trail

Why Count?
Reason #3 – New Funding Options

• TE/TA, CMAQ and FTA Funds
• General fund (DOT funding allocations)
• What gets counted, counts!

Commuter facilities are eligible for federal transportation funding!
Why Count?
Reason #4 – Better Operations

- Appropriate signal timing – adequate green time for multi-use pathway crossings
- Construction re-routing
- Event planning

Why Count?
Reason #5 – Proper Maintenance

- Path or Bike Lane Sweeping
- Snow Plowing Pathways
Why Count?
Reason #6 - For Federal Requirements and Customer Service Reasons...

• **Air Quality** – Hydrocarbons

• **Physical Activity** – Obesity
 - 2/3rds of Americans are overweight or obese
 - Health risk factors: Type 2 diabetes, coronary heart disease, etc.

• **Multi-Modal Transportation**
 - TDM – Transportation demand modeling
 - VMT – Vehicle miles traveled
 - Bicycle / pedestrian programs

Federal Counting Program Review

• **FHWA / Office of Planning / Travel Monitoring and Surveys Team**
 1. Chapter 4 – Traffic Monitoring Guidebook
 2. TMAS accepts bike/ped volume data

• **FHWA / Office of Planning / Systems Planning and Analysis Team**
 1. Participation in NATMEC
 2. Participation in TRB’s bike/ped data subcommittee
Travel Volume Trends – Federal Reporting

TMAS accepts bicycle / pedestrian count data...

Travel Monitoring Program Federal Funding Formula

• Why Count?
 • Increased data quality typically increases funding...
What If...?

Linear Miles of Alt Mode Accommodations * Non-motorized Travelers = Federal Funding Incentives

Will your program be ready?

State Travel Monitoring Programs Expand Count Programs...

“DOT’s are statewide motorized (and non-motorized) data stewards”
How States Expand Traffic Data Collection Programs?

- Communication and establish partnerships
- Health organizational funding / grants
 - Kaiser Permanente
 - $50,000 Health-Initiative Grant – 8 Permanent Sites
- DVRPC
 - $55,000 CDC Grant for Counting (2011) – Mobile Sites
 - $82,000 William Penn Foundation Grant (2013) – 12 Permanent Sites
- Allocate year-end “left-over” money
 - $20,000 mobile count equipment purchased
- Assign dedicated and enthusiastic staff (champions)

Why Expand Existing Programs?

- Motorized programs are a model
- Methods are already established
- Leverage existing investments in technology
- To establish a funding stream
Counting Program Examples

- Colorado – traffic data committee
- Minnesota – partner program
- Oregon – partner program
- North Carolina – research methods
- MARC – Kansas City (Mid-America Regional Council)
- DVRPC – Delaware Valley Regional Planning Commission
- ARC – Atlanta Regional Commission

How are Agencies Building Programs?

- Participating in committees
- Establishing agency partnerships
 - Traffic Data Committee
- Developing loaner equipment programs
- Allocating funding
Counting History and Industry Trends

• NBPD project – based on manual counting
• Upgrade to automated counting
• Formal non-motorized data collection program development
A Better Way to Count Using Automation...

A counter just counted me crossing the infrared detection area on the bike path.

Continuous Count Installation
Count Program Development

- Data collection strategic plan development
- Document site selection criteria
- Program forecast and budgeting
Analyzing Bicycle / Pedestrian Data?

- Weather patterns
- Commuter patterns
- Day of the week patterns
- Seasonal patterns
- Other?

What does the data tell us?

Hard to see patterns with all days of the week displayed?
Day of the week data analyses

8 hour rain event

Sunny Sunday

Data reveals distinct patterns...

<table>
<thead>
<tr>
<th></th>
<th>MONDAYS</th>
<th>TUESDAYS</th>
<th>WEDNESDAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLUME</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEEKS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>500</td>
<td>1,000</td>
<td>1,500</td>
</tr>
<tr>
<td>3-4</td>
<td>1,000</td>
<td>1,500</td>
<td>2,000</td>
</tr>
<tr>
<td>5-6</td>
<td>1,500</td>
<td>2,000</td>
<td>2,500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>THURSDAYS</th>
<th>FRIDAYS</th>
<th>SATURDAYS</th>
<th>SUNDAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLUME</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEEKS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>500</td>
<td>1,000</td>
<td>1,500</td>
<td>2,000</td>
</tr>
<tr>
<td>3-4</td>
<td>1,000</td>
<td>1,500</td>
<td>2,000</td>
<td>2,500</td>
</tr>
<tr>
<td>5-6</td>
<td>1,500</td>
<td>2,000</td>
<td>2,500</td>
<td>3,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Distinct patterns begin to tell a story…

- Directional data - more southbound traffic
- Traffic volume range ~580 to 1250
- Weather effect on traffic
- Seasonal pattern - September to October drop

The story answers policy questions …

- More southbound traffic everyday of the week …
- Now funding allocations justify improvements…
Every Monday for a Year
Cherry Creek Trail, Colorado
(September, 2009 - April, 2010)

Florida Department of Transportation

12/10/2018

9/14/09 Total
9/14/09 OUT
9/14/09 IN
9/21/09 Total
9/21/09 OUT
9/21/09 IN
9/28/09 Total
9/28/09 OUT
9/28/09 IN
10/5/09 Total
10/5/09 OUT
10/5/09 IN
10/12/09 Total
10/12/09 OUT
10/12/09 IN
10/19/09 Total
10/19/09 OUT
10/19/09 IN
10/26/09 Total
10/26/09 OUT
10/26/09 IN

Every Sundays for a Year
Cherry Creek Trail, Colorado
Sundays

Florida Department of Transportation
Recreational versus Commuter Travel…
Cherry Creek Trail, Colorado
Average Total Volumes
(September, 2009 – April, 2010)

Data analyses for – 2 hour counts…
Cherry Creek Trail, Colorado
2-hour Duration
(September, 2009 - April, 2010)
Seasonal Patterns

Compare data for the same months?

Every month one direction is higher!

Southbound lower in December only!
Traffic data – site/date specific analysis

What happens when comparing motorized to non-motorized data?

% Traffic change
motorized versus non-motorized

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>Non-Motorized Traffic</th>
<th>Bike to Work Day - % Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bike to Work Day - % Change</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cherry Creek Trail and Cook Park Rec Center</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>C-470 Trail and Ken Caryl</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>C-470 Trail and Quebec</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>C-470 Trail and Santa Fe, DENVER</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Platte River Trail, South of REI, DENVER</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>C-470 Trail and Bridge over 285</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>C-470 Trail and Quebec</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>C-470 Trail and Cook Park Rec Center</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Cherry Creek Trail and Holy Bridge</td>
<td>0.00%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>Motorized Traffic</th>
<th>Bike to Work Day - % Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bike to Work Day - % Change</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range of % Change</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ON SH 6, 6TH AVE W/O SH 88, FEDERAL BLVD, DENVER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ON SH 470 NW/O SH 85, SANTA FE DR, LITTLETON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ON SH 470 NW/O SH 8, MORRISON RD, MORRISON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ON I-70 E/O DAHLIA ST, DENVER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ON I-70 E/O SH 95, SHERIDAN BLVD, DENVER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ON I-270 SE/O YORK ST, COMMERCE CITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ON SH 121, WADSWORTH BLVD N/O SH 470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ON SH 83, PARKER RD S/O QUINCY AVE, AURORA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ON SH 470 E/O QUEBEC ST, LONE TREE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL % Change</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What does the data tell us?

- All 6 non-motorized sites increased by 42% or more
- 5 of 8 Motorized sites decreased -0.82% to 21.49%
- Reduction in motorized traffic by **-0.35 to -2.93%**

Increase non-motorized traffic,
Motorized traffic volumes will *decrease.*
Survey Findings
Module #3 - FDOT Survey Monkey

- 264 Total Survey Respondents
- 406 Locations recommended

Module #3 - FDOT Survey Monkey

What is the purpose of collecting data at this location? Please click all that apply.
Module #3 - FDOT Survey Monkey

Q37
What is the roadway surface type at the recommended location?

Module #3 - FDOT Survey Monkey

Q43
Is your organization willing to provide data collection funding/resources for data collection activities? For example, provide support as a data contributor, data tester, and/or data user? (A Yes answer does not constitute an obligation for support.)
Florida DOT Bicycle and Pedestrian Counting Geographic Area

406 Locations in relation to FDOT Districts

Bike/Ped Survey District Count

<table>
<thead>
<tr>
<th>District</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>District 7</td>
<td>49</td>
</tr>
<tr>
<td>District 6</td>
<td>57</td>
</tr>
<tr>
<td>District 5</td>
<td>81</td>
</tr>
<tr>
<td>District 4</td>
<td>72</td>
</tr>
<tr>
<td>District 3</td>
<td>37</td>
</tr>
<tr>
<td>District 2</td>
<td>81</td>
</tr>
<tr>
<td>District 1</td>
<td>29</td>
</tr>
</tbody>
</table>
Top 56 Locations - Reviewed

Purpose for Top 56 Proposed Locations

<table>
<thead>
<tr>
<th>Category</th>
<th>Sites within traffic group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bike/Ped Facility Usage</td>
<td>61</td>
</tr>
<tr>
<td>Safety</td>
<td>36</td>
</tr>
<tr>
<td>General Data Collection</td>
<td>34</td>
</tr>
<tr>
<td>Before and After</td>
<td>19</td>
</tr>
<tr>
<td>Traffic Ops</td>
<td>15</td>
</tr>
<tr>
<td>Design</td>
<td>15</td>
</tr>
<tr>
<td>Economic Study</td>
<td>13</td>
</tr>
<tr>
<td>Transit Study</td>
<td>7</td>
</tr>
<tr>
<td>Other</td>
<td>8</td>
</tr>
</tbody>
</table>

Module #3 – Preliminary Factor Groupings...Survey Findings...

- Rural
- Mixed
- University
- Shopping Mall

Traditional Factor Group Designation Table

<table>
<thead>
<tr>
<th>#</th>
<th>Group Name</th>
<th>Group Traffic Pattern</th>
<th>Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Urban</td>
<td>Mixed</td>
<td>6, 19, 21, 47</td>
</tr>
<tr>
<td>2</td>
<td>Urban</td>
<td>Commuter</td>
<td>38, 39, 41, 45</td>
</tr>
<tr>
<td>3</td>
<td>Urban</td>
<td>Recreational</td>
<td>16, 27</td>
</tr>
<tr>
<td>4</td>
<td>Rural</td>
<td>Mixed</td>
<td>8, 23, 24, 52, 55</td>
</tr>
<tr>
<td>5</td>
<td>Rural</td>
<td>Commuter</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Rural</td>
<td>Recreational</td>
<td>6, 7, 50, 51</td>
</tr>
<tr>
<td>7</td>
<td>Mixed</td>
<td>Mixed</td>
<td>5, 22, 35, 53, 54</td>
</tr>
<tr>
<td>8</td>
<td>Mixed</td>
<td>Commuter</td>
<td>26, 31</td>
</tr>
<tr>
<td>9</td>
<td>Mixed</td>
<td>Recreational</td>
<td>1, 2, 3, 34</td>
</tr>
</tbody>
</table>

Florida-centric Factor Group Designation Table

<table>
<thead>
<tr>
<th>#</th>
<th>Group Name</th>
<th>Group Traffic Pattern</th>
<th>Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>University</td>
<td>Mixed</td>
<td>9, 10, 11, 12</td>
</tr>
<tr>
<td>2</td>
<td>University</td>
<td>Commuter</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>University</td>
<td>Recreational</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Beachfront</td>
<td>Mixed</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>Beachfront</td>
<td>Commuter</td>
<td>42</td>
</tr>
<tr>
<td>6</td>
<td>Beachfront</td>
<td>Recreational</td>
<td>36, 40</td>
</tr>
<tr>
<td>7</td>
<td>Riverfront</td>
<td>Mixed</td>
<td>17, 19</td>
</tr>
<tr>
<td>8</td>
<td>Riverfront</td>
<td>Commuter</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Riverfront</td>
<td>Recreational</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Bridge/causeway</td>
<td>Mixed</td>
<td>46, 50</td>
</tr>
<tr>
<td>11</td>
<td>Bridge/causeway</td>
<td>Commuter</td>
<td>13, 15, 37</td>
</tr>
<tr>
<td>12</td>
<td>Bridge/causeway</td>
<td>Recreational</td>
<td>40, 43, 48</td>
</tr>
</tbody>
</table>
Module #3 - Context Classifications

<table>
<thead>
<tr>
<th>Zone Code</th>
<th>Context Classification Zone</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Natural</td>
<td>3</td>
</tr>
<tr>
<td>C2</td>
<td>Rural</td>
<td>6</td>
</tr>
<tr>
<td>C2T</td>
<td>Rural Town</td>
<td>6</td>
</tr>
<tr>
<td>C3R</td>
<td>Suburban Residential</td>
<td>6</td>
</tr>
<tr>
<td>C3C</td>
<td>Suburban Commercial</td>
<td>11</td>
</tr>
<tr>
<td>C4</td>
<td>Urban General</td>
<td>18</td>
</tr>
<tr>
<td>C5</td>
<td>Urban Center</td>
<td>4</td>
</tr>
<tr>
<td>C6</td>
<td>Urban Core</td>
<td>2</td>
</tr>
</tbody>
</table>

Module #3 - Geographic Distribution...Survey Findings...

<table>
<thead>
<tr>
<th>District</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>District 1</td>
<td>14</td>
</tr>
<tr>
<td>District 2</td>
<td>6</td>
</tr>
<tr>
<td>District 3</td>
<td>10</td>
</tr>
<tr>
<td>District 4</td>
<td>8</td>
</tr>
<tr>
<td>District 5</td>
<td>6</td>
</tr>
<tr>
<td>District 6</td>
<td>7</td>
</tr>
<tr>
<td>District 7</td>
<td>5</td>
</tr>
</tbody>
</table>

Florida Department of Transportation
Virtual Site Visit Findings

- Safety is an issue
- Riverfront and Causeways might need their own Factor Groups
- There are a good mix of sites that were recommended (low, medium, high volumes) and (recreational, commuter, mixed)

Site selected for Potential Continuous Bicycle /Pedestrian Counting
Eau Gallie Causeway, Melbourne, Florida

Site selected for Potential Continuous Bicycle /Pedestrian Counting
Shingle Creek Trail, Kissimmee, Florida

Virtual Site Visit Findings...Safety is an issue...

Miami Beach: Normandy Dr.

Naples, FL: US 41
Virtual Site Visit Findings...Some recommendations are not good for statewide counting program...

Miami Beach: 5th St. @ Alton Rd.

Training Materials Summarized
Instructor-led Training Course Modules (Classroom)

1. Module 1 - Introductions & Course Modules Overview
2. Module 2 – Bicycle and Pedestrian General Program Counting Concepts and National Resources
3. Module 3 - Site Selection Concepts and Methods
4. Module 4 – Virtual Site Visit Methods, Lessons Learned
5. Module 5 – On-Site Evaluation, Prioritization and On-Site Visit Methods
Module #3 - Site Selection Considerations...

- Are there current data collection programs in place?
- Are there existing strategic plans for data collection and travel monitoring?
- What is the scope, goals, objectives, and geographic area within the data collection program?
- How is the data going to be used?
 - Engineering design, planning, operations
 - Determine trends and share data
 - Comparing usage – before/after facility upgrades
 - Safety
- Are existing data sharing programs in place?
 - City/County/State/Federal

Module #3 - FDOT Site Selection Methodology

- Create and send a survey
- Develop a worksheet and track responses
- Analyze responses
- Conduct virtual site visits
- Conduct on-site visits
- Prioritize and organize sites within the worksheet
- Finalize site selection
On-Site Visits, Conducted Soon...

- Evaluate Site Specific Conditions
- Determine Baseline Activity Levels and Behaviors
- Test for Interference
- Watch Traffic, Look for Origin and Destinations
- Look for Choke Points (a natural funneling point such as bridges, tunnels or overpasses)
- Note all Observations during the On-Site visit

An Agency’s Site Selection Process Customized

- Is dynamic
 - Can change with shifting political and agency priorities
 - Can change with technology availability
 - Can change with funding availability
- Needs to consider integration with other agencies
 - Data formatting
 - Funding
 - Technology
 - Collection methods (manual versus automated)
Recommendations Report...

- Drafted...on-going progress...

Florida Department of Transportation
FDOT Traffic Monitoring Handbook

The intent of this handbook is to provide guidance to those that collect, code, and use traffic data in an accurate and consistent manner statewide. In coordination with the district offices, the Office of Transportation Data and Analytics (TDA) administers the capture and analysis of traffic count data.

http://www.fdot.gov/statistics/tsopubs.shtm
Questions

?
Statewide Non-Motorized Traffic Monitoring Program

Working Group Meeting #2

Agenda

• Review last meeting
• Current state of program
 • Continuous count program
 • Short-term count program
 • Repository count program
 • Statewide Training & Technical assistance
• FHWA TMAS
• Data Analysis samples
• Questions
Working Group Meeting #1 Review

- Why Do We Count?
 - Volume
 - Design
 - Safety
 - Traffic Ops
 - Maintenance
 - Economic Impact
 - Public Health
- National Resources
- Best Practices and Lessons Learned
- Statewide Survey results

FDOT Non-Motorized Traffic Monitoring Program

Statewide Continuous Count Program
1-2 Continuous Counter installations per district, per year. Data will be published and publicly accessible.

Statewide Short-Term Count Loaner Program
MOU with partnering agencies. FDOT CO provides equipment and training. Partnering agency provides FDOT CO with good data.

Statewide Repository
Voluntary program in which FDOT TDA will accept bike/ped count data statewide. TDA staff will evaluate the data, identify trends, and submit to FHWA.

Statewide Training and Technical Assistance
Continuous Counter Survey Recommendations

- 264 Total Survey Respondents
- 406 Total Recommendations

Florida Department of Transportation

Continuous

- Statewide Road trip
 - Visited 55 sites of 406 survey sites
 - Coordinated with local agencies

Chris Raby
Park Manager
Recreation and Parks

4 locations discussed— all Withlacoochee Trail sites
When proposing sites they were anticipated to be continuous counting sites

Diamond Counters - Laser beam counter (sounds like it is active infrared), currently they only gather a total weekly counts

400,000 people that use trail per year (A Quick AVERAGE DAILY COUNT IS 400,00/365 = 1,096 PER DAY)

All 4 locations have recreational.

Site that goes through the City of Floral might not be best... not much going on in this town.

Need to consider complaints with a tube across the trail. Users will need a sign of some sort warning about the tube counts.

Chris stated he has a saw to cut the pavement. Should follow up and ask if it is a hand saw or not?

Chris is willing to meet us on site to conduct on-site visits.

Chris will follow up on finding out if the diamond counter stores hourly count data and if that is available

Chris asked that FDOT provide notice prior to installation of any count equipment data so he can notify the district of the plans to install any equipment

Scott Wright
Planner II
Public Works Department

4 locations discussed—

NW 3rd Avenue at NW 6th St—Best of the 4 sites.
Continuous counter preferred; well used during week but no data available

6 months ago did a manual count on 8th with probably infrared sensor; Yes, willing to share data;

6th St Rail Trail at Depot Rail—2nd favorite site;
newly constructed roadway;
2 trails converge at this location

NW 3rd Avenue at Waldo Road—3rd favorite site;
safety issues;
close parallel facility

NW 3rd and 12th—Least favorite for counts

One permanent counter on SW 2nd ave and 16 iteris cameras which can detect bike/ped
Yes, they are open to sharing data
Yes, they believe they can talk to the traffic department for installation help need to follow up
Yes, they are open to sharing resources and data.
Yes, they can meet us at the sites.

Laura Carter
Operations Manager
Space Coast TPO

4 Locations discussed

Location 1—Continues counter preferred—schools, time of day, peak hour, FDOT corridor study—before and after study.
No past counts.
Past FDOT Study. Report with data will be provided.

Location 2—West has intersection Hollywood and Evans, will be receiving upgrades, major transit stop on Evans Rd.
No Past counts.
Intersection counts available

Location 3—County wide safety study in 2014, identified with high crash rates.
Ranks very high

Location 4—Corridor Safety Study—No past counts
No past counts for these locations but will check any past studies
Yes, they are open to compiling and analyzing data
Yes, they can meet us at the sites
Not available Aug 27th
Program starts around when school starts
Continuous Count site evaluation

- Evaluation Forms
 - Take note of geography, land use, roadway characterizes, existing bicycle and pedestrian behaviors, and potential x, y coordinates
- First state in the country

1. **Evaluation Forms**
 - Take note of geography, land use, roadway characterizes, existing bicycle and pedestrian behaviors, and potential x, y coordinates
 - First state in the country
Continuous Count site evaluation

On-site Visits

Cross Seminole Trail is an example of when your virtual site visit research can challenges your initial assumptions about a site.
Continuous

- On-site visit results
 - 30 Sites qualify as good Continuous Count Sites
- Local agencies are offering support

Short Term Counter Loaner Program
Short-term count program

- Will start with local Tallahassee agencies
 - City of Tallahassee
 - Capital Region TPA
 - District 3 DOT

Statewide Repository – Collecting data now!

- Capital Circle Test site
- St. Marks Trail - Tallahassee
- Key West – Overseas Heritage Trail
- Miami-Dade
- Broward
- Palm Beach
Test site – equipment evaluation

Statewide Repository – St. Marks Trail
Statewide Repository – Overseas Heritage Trail

Statewide Training and Technical Assistance

- On-going technical assistance and support to districts and local agencies
- Periodic Webinars
 - February 2019
- Annual Statewide Training
 - Targeting mid to late April 2019
Review

- CONTINUOUS DATA COLLECTION
 - Preparing and Coordinating CCS installations
 - Work with Stakeholders
 - Purchase Equipment
 - MOU

- SHORT-TERM LOANER PROGRAM
 - MOU
 - Install Counters/Collect data
 - Analyze STC data

- EXISTING DATA REPOSITORY
 - Gathering existing data from Stakeholders
 - Analyzing data

- STATEWIDE TRAINING & TECHNICAL ASSISTANCE
 - Draft: Report Results
 - Statewide Meeting
 - TransPlex 2019

Questions and/or Comments

Now includes the ability to upload Nonmotorized Data...
Prepopulated Fields by Organization...

Export Capabilities...
TMAS – Current Status

- October 22 – “GO LIVE” date
 - FHWA wants data
 - Florida candidates for uploading data include:
 - Key West
 - Miami
 - Palm Beach TPA
 - Others...

- 3 agencies have uploaded data (Colorado DOT, Delaware Valley Regional Planning Commission (DVRPC), Pennsylvania DOT)

- Functionality includes Quality Control and Quality Checking (QA/QC) tools, Error handling, searching for data, exporting data into CVS or TMG formats, Federal review/error checking of data, etc.

What Datasets are Currently in the Repository?
BIKE DATA ANALYZED:

1. Key West
2. St Mark’s Trail
3. Viscaya
4. Flagler Drive and Okeechobee Road Trinity Pl
5. Atlantic Greenway
6. Oleta River State Park
7. Rickenbacker and Toll Booth
8. Grand Avenue, SW 37th Avenue North
9. Broward Boulevard
10. US27 & I-75
11. Okchobee Road and Palmetto
May, 2018 Data for the Saint Mark’s Trail shows how the trail is performing!
- Monday – Friday commuter traffic pattern
- Saturday – Sunday recreational traffic pattern
- Over 2 times the volume at the peak hour on weekend versus weekday
Key West – Overseas Heritage Trail

- 13 locations
- Maximum 300,000 annually in Key West location
- 5 locations over 100K!
- 1,139,497 ANNUAL TOTAL for all counting locations
Key West – 3 years of Data (2015-2017)

Key West - Trail Counts
3 Years of data from July, 2015-June, 2017
Total Monthly Volumes

Key West Non-motorized Traffic Data Travel Trend
Colorado Seasonal Patterns on the Cherry Creek Trail

Miami - M-Path @ Vizcaya Metrorail Station
Miami - M-Path @ Vizcaya Metrorail Station

- Recreational pattern on weekend
- Commuter on weekday
- Total volumes similar on weekend and weekday
- Mixed traffic volume factor group designation

<table>
<thead>
<tr>
<th>Day of the Week (DOW)</th>
<th>TOTAL</th>
<th>Channel 1</th>
<th>Channel 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday</td>
<td>208</td>
<td>102</td>
<td>106</td>
</tr>
<tr>
<td>Friday</td>
<td>201</td>
<td>106</td>
<td>95</td>
</tr>
<tr>
<td>Saturday</td>
<td>231</td>
<td>121</td>
<td>110</td>
</tr>
</tbody>
</table>
West Palm Beach - Flagler Drive @ Okeechobee Rd

Site #22 - Flagler Dr Okeechobee Rd Trinity Pl
THURSDAY
12-1-2016

Site #22 - Flagler Dr Okeechobee Rd Trinity Pl
SATURDAY
12-3-2016
West Palm Beach - Flagler Drive @ Okeechobee Rd

- No volume on the west sidewalk southbound
- Commuter pattern during the weekday
- Recreational pattern during the weekend
- Much higher peak volumes on the weekend
- Recreational factor group designation

Miami - Oleta River State Park
Miami - Oleta River State Park

- No recognizable traffic patterns
- Very low volumes

<table>
<thead>
<tr>
<th>Day of the Week</th>
<th>Y2H15098454 Channel 1 IN</th>
<th>Y2H15098454 Channel 2 OUT</th>
<th>Y2I15098451 Channel 1 IN</th>
<th>Y2I15098451 Channel 2 OUT</th>
<th>TOTAL BY DOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>THURSDAY</td>
<td>7</td>
<td>1</td>
<td>6</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>FRIDAY</td>
<td>11</td>
<td>1</td>
<td>10</td>
<td>17</td>
<td>43</td>
</tr>
<tr>
<td>SATURDAY</td>
<td>12</td>
<td>2</td>
<td>10</td>
<td>19</td>
<td>46</td>
</tr>
</tbody>
</table>

Florida Department of Transportation
Miami - Rickenbacker Toll booth

11 - Rickenbacker and Toll Booth
Thursday
December 22, 2016
HOUR OF THE DAY

11 - Rickenbacker and Toll Booth
Saturday
December 24, 2016
HOUR OF THE DAY
Miami - Rickenbacker Toll booth

• Very low volume on west bike lane in the south direction
• Commuters not coming back at night? Volumes are high in the morning but not in the evening?
• Causeway factor group

Miami - Atlantic Greenway
Miami - Atlantic Greenway

- Commuter pattern during the weekday
- Recreational pattern during the weekend
- Higher peak volumes on the weekend
- Mixed or recreational factor group designation
Sites analyzed...

1. St Mark’s Trail
2. Key West
3. Viscaya
4. Flagler Drive and Okeechobee Road Trinity Pl
5. Oleta River State Park
6. Rickenbacker and Toll Booth
7. Atlantic Greenway
8. Grand Avenue, SW 37th Avenue North
9. Broward Boulevard
10. US27 & I-75
11. Okeechobee Road and Palmetto

Review

• TMAS Takeaways
 • FHWA software system ready for data!
 • FHWA software tools to help ensure quality data

• Data Analysis Takeaways
 • Factor group designations are possible
 • Volumes will be lower in the summer and higher in the winter
 • Some sites might not be suitable for continuous counting equipment
Questions/Comments

• Eric Katz – eric.katz@dot.state.fl.us
 Transportation Data and Analytics Office
 Statewide Non-Motorized Traffic Monitoring Program Coordinator
 (850) 414-4704
 Florida Department of Transportation
 605 Suwannee St.
 Tallahassee, Florida 32399

• Elizabeth “Liz” Stolz – estolz@marlinengineering.com
 Director of Traffic Data Programs
 (303) 501-5300
Appendix E – Survey Form
1. What agency do you represent? Please provide contact information – Name, Phone, Email, Agency

<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
</tr>
<tr>
<td>Agency</td>
</tr>
<tr>
<td>City/Town</td>
</tr>
<tr>
<td>Email Address</td>
</tr>
<tr>
<td>Phone Number</td>
</tr>
</tbody>
</table>

2. Are any bicycle and pedestrian counts being conducted by your agency?

☐ Yes
☐ No

3. If yes, please provide duration of counts (click all that apply)

☐ 0-4 hours
☐ 5-24 hours
☐ 2 days
☐ 7 days
☐ Continuous
☐ Not Sure
☐ Other (please specify)

4. Availability of data? Click all that apply

☐ Electronic file or webpage
☐ Hard copy report
☐ Not Sure
☐ Other (please specify)

5. Format of the data? Click all that apply

☐ Microsoft Excel
☐ Microsoft Access
6. Frequency of data collection? Click all that apply
- Cyclical (same location(s) over multiple periods of time)
- Non-Cyclical (different location(s) over multiple periods of time)
- One-time count
- Not Sure
- Other (please specify)

7. Type of data collection technology used? Click all that apply
- Video camera
- Tube counts
- Passive infrared
- Active Infrared
- Bluetooth detectors
- Loop detection
- Microwave or ultrasonic
- Manual counts
- Not Sure
- Other (please specify)

Within this section, you will be asked to provide recommended locations for an FDOT data collection device. For each location, detailed follow-up questions about the location will follow. You will be offered up to 5 locations to recommend. If you have less than 5 locations to recommend, simply select "No" when asked if you have another location to recommend, and the survey will skip you towards the next section.

8. Within your jurisdiction, where do you recommend FDOT place a data collection device? Please provide the facility name, intersection, and GPS coordinates (if possible).
9. What is the roadway surface type at the recommended location?
- Asphalt
- Concrete
- Cobblestone/Brick
- Gravel/dirt
- Other (please specify)

10. What is the purpose of collecting data at this location? Please click all that apply
- Safety study
- Design study
- Before and After infrastructure installation study
- Economic study
- Transit study
- Bicycle/Pedestrian facility usage study
- Traffic operations study
- General data collection purposes
- Other (please specify)

11. What agency is responsible for managing this facility?
- Local community (non-government)
- City/Town
- County
- State
- Federal
- Not sure
- Other (please specify)
12. What pedestrian volumes are estimated at this location?
- Low (0-100 per day)
- Medium (101-500 per day)
- High (500+ per day)

13. What bicycle volumes are estimated for this location?
- Low (0-100 per day)
- Medium (101-500 per day)
- High (500+ per day)

14. Do you have a second location to recommend? If you answer "No", you will be skipped to the next section of the survey.
- Yes
- No

15. Within your jurisdiction, where do you recommend FDOT place a data collection device? Please provide the facility name, intersection, and GPS coordinates (if possible).
For example: Capital Cascades Trail; Suwannee Street @ E Lafayette Street; 30.4376617,-84.2754362,21z

Location

16. What is the roadway surface type at the recommended location?
- Asphalt
- Concrete
- Cobblestone/Brick
- Gravel/dirt
- Other (please specify)

17. What is the purpose of collecting data at this location? Please click all that apply
18. What agency is responsible for managing this facility?
- Local community (non-government)
- City/Town
- County
- State
- Federal
- Not sure
- Other (please specify) ________________

19. What pedestrian volumes are estimated at this location?
- Low (0-100 per day)
- Medium (101-500 per day)
- High (500+ per day)

20. What bicycle volumes are estimated for this location?
- Low (0-100 per day)
- Medium (101-500 per day)
- High (500+ per day)

21. Do you have a third location to recommend? If you answer "No", you will be skipped to the next section of the survey.
22. Within your jurisdiction, where do you recommend FDOT place a data collection device? Please provide the facility name, intersection, and GPS coordinates (if possible).

For example: Capital Cascades Trail; Suwannee Street @ E Lafayette Street; 30.4376617,-84.2754362,21

Location

23. What is the roadway surface type at the recommended location?

- Asphalt
- Concrete
- Cobblestone/brick
- Gravel/dirt
- Other (please specify)

24. What is the purpose of collecting data at this location? Please click all that apply

- Safety study
- Design study
- Before and After infrastructure installation study
- Economic study
- Transit study
- Bicycle/Pedestrian facility usage study
- Traffic operations study
- General data collection purposes
- Other (please specify)

25. What agency is responsible for managing this facility?

- Local community (non-government)
- City/Town
26. What pedestrian volumes are estimated at this location?
- Low (0-100 per day)
- Medium (101-500 per day)
- High (500+ per day)

27. What bicycle volumes are estimated for this location?
- Low (0-100 per day)
- Medium (101-500 per day)
- High (500+ per day)

28. Do you have a fourth location to recommend? If you answer "No", you will be skipped to the next section of the survey.
- Yes
- No

29. Within your jurisdiction, where do you recommend FDOT place a data collection device? Please provide the facility name, intersection, and GPS coordinates (if possible).

For example: Capital Cascades Trail; Suwannee Street @ E Lafayette Street; 30.4376617,-84.2754362,21z

Location

30. What is the roadway surface type at the recommended location?
- Asphalt
- Concrete
- Cobblestone/brick
31. What is the purpose of collecting data at this location? Please click all that apply

☐ Safety study
☐ Design study
☐ Before and After infrastructure installation study
☐ Economic study
☐ Transit study
☐ Bicycle/Pedestrian facility usage study
☐ Traffic operations study
☐ General data collection purposes
☐ Other (please specify)

32. What agency is responsible for managing this facility?

☐ Local community (non-government)
☐ City/Town
☐ County
☐ State
☐ Federal
☐ Not sure
☐ Other (please specify)

33. What pedestrian volumes are estimated at this location?

☐ Low (0-100 per day)
☐ Medium (101-500 per day)
☐ High (500+ per day)

34. What bicycle volumes are estimated for this location?

☐ Low (0-100 per day)
35. Do you have a fifth location to recommend? If you answer "No", you will be skipped to the next section of the survey.

☐ Yes
☐ No

This is your fifth and final location to recommend. If you have more than five locations to recommend, please email additional locations directly to Eric.Katz@dot.state.fl.us

OK

36. Within your jurisdiction, where do you recommend FDOT placing a data collection device? Please provide the facility name, intersection, and GPS coordinates (if possible).

For example: Capital Cascades Trail; Suwannee Street @ E Lafayette Street; 30.4376617, -84.2754362, 21z w 0

Location

37. What is the roadway surface type at the recommended location?

☐ Asphalt
☐ Concrete
☐ Cobblestone/brick
☐ Gravel/dirt
☐ Other (please specify)

38. What is the purpose of collecting data at this location? Please click all that apply

☐ Safety study
☐ Design study
☐ Before and After infrastructure installation study
☐ Economic study
☐ Transit study
39. **What agency is responsible for managing this facility?**
- Local community (non-government)
- City/Town
- County
- State
- Federal
- Not sure
- Other (please specify)

40. **What pedestrian volumes are estimated at this location?**
- Low (0-100 per day)
- Medium (101-500 per day)
- High (500+ per day)

41. **What pedestrian volumes are estimated at this location?**
- Low (0-100 per day)
- Medium (101-500 per day)
- High (500+ per day)

42. **Has anyone currently working at your agency (not a contracted 3rd party) installed or managed count devices?**
- Yes
- No
- Not sure
43. Is your organization willing to provide data collection funding/resources for data collection activities? For example, provide support as a data contributor, data tester, and/or data user? (A Yes answer does not constitute an obligation for support.)
 □ Yes
 □ Maybe
 □ No

44. If yes, what kind of funding/resources?

45. Thank you for your participation in this very important survey. If you have any final comments or suggestions about collecting bicycle and/or pedestrian data, please provide it in the space below or contact Eric Katz, Statewide Non-motorized Traffic Count Program Coordinator at Eric.Katz@dot.state.fl.us.