

Model Task Force & Transportation Data and Analytics Workshop

Performance Measures Prediction of Future Performance

Dan Beaty & Dave Schmitt

Outline

- Introduction
- Where We Are
 - Use of Travel Demand Models
 - Types of Performance Measures
- Forward Thinking
 - Definitions
 - Issues from Explanatory Modeling / Data Interactions
 - Where Data and Models Successfully Work Together
- Discussion

Section 1 – Where We Are

Introduction

Issue: Prediction of Future Performance

- Current Performance Measures
 - Measure Past or at best Real Time Performance
 - Can be used for Trend Analysis
- Projecting Performance Measures
 - Can assisting in Development of Improvements
 - Can allow for Testing of Improvements before they are implemented

Definitions

- <u>Trend data/Time series models</u> forecasting based on the continuation of past/current trends
 - Example: average rate of traffic growth over past 5 years +10%
 - \rightarrow Traffic growth will be +10% in next 5 years
- Explanatory models forecasting based on identified relationships
 - Example 1: Population growth +10%
 - \rightarrow Traffic growth should be +10%
 - Example 2: Population growth +10% and new Amazon warehouse
 - \rightarrow Traffic growth should be +400%

Use of Travel Demand Models

- Travel Demand Model Types
 - 4 Step Models
 - Daily Traffic
 - Peak Period or Peak Hour Traffic
 - Activity Based
 - Periods or down to 15 minutes increments of Traffic
 - Can test incidents, policies etc.

Types of Performance Measures

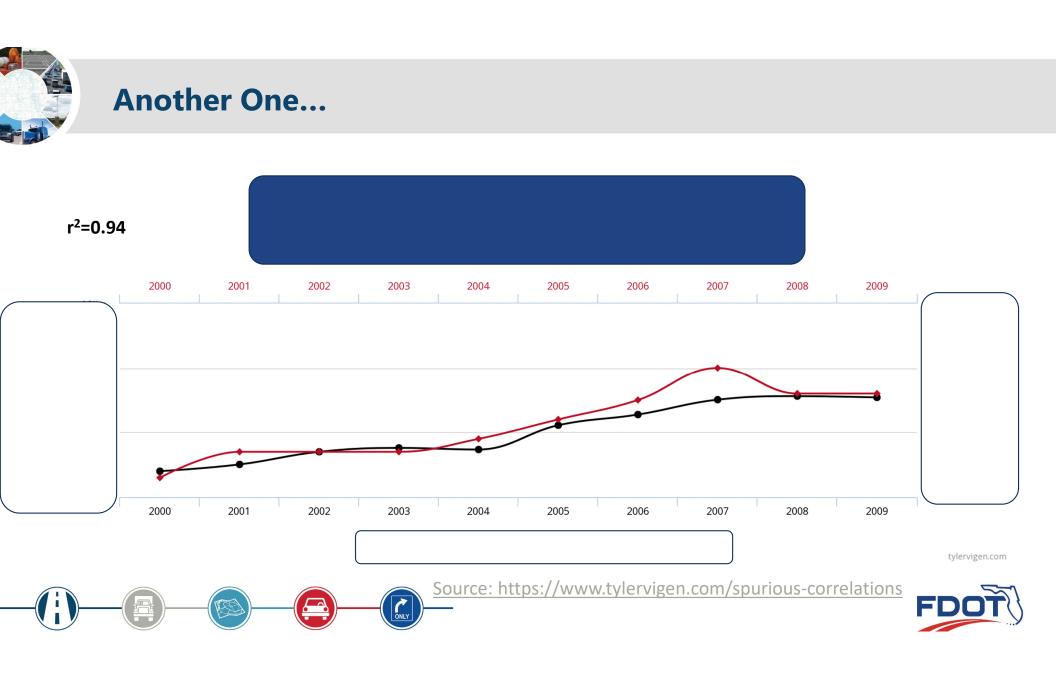
- Mobility
- Reliability
- Land Use/Urban Design
- Safety & Infrastructure
- Energy/Environment

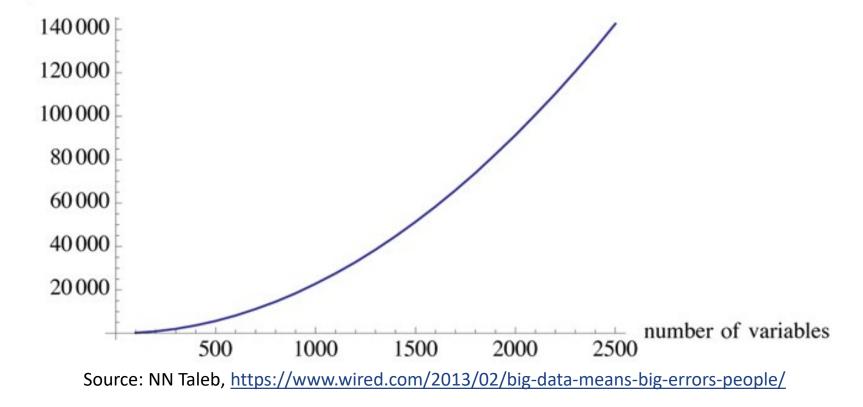
Issues that Hinder Predictability of Future Performance

- Data is collected at different times using different definitions
 - Example 1: Job vs. job shift vs. employee
 - Example 2: Point speeds vs. average speed
- Trend depends on selected time frame:
 - Over past 5 years = average growth is +10%
 - Over past 10 years = average growth is -1%
 - So which is appropriate?

Issues that Hinder Predictability of Future Performance

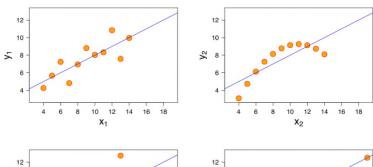
- Selection bias, when the data outside our sample is not the same our collected sample
 - Example: assume LBS data is <5% sample...is the sample same or different from the other 95%? How do you know?
- More data → tendency for overfitting → challenges when forecasting
 - Example 1: separate volume / travel time relationships for each facility type
 - Example 2: separate volume / travel time relationships for each facility
 - New facility being constructed...which relationship to use?
- Data = Signal + Noise, but separating the two is challenging
 - Noise > signal in many cases
 - Spurious correlations (<u>https://www.tylervigen.com/spurious-correlations</u>)




Spurious Correlations...

Spurious Correlations

10


6

10 12 14 16

 X_3

δ ⁸

On a Serious Note (2)

10

10 12 14 16 18

 X_4

y 4

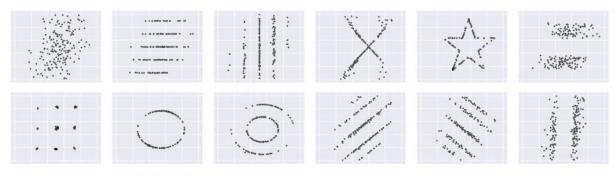


Figure 1. A collection of data sets produced by our technique. While different in appearance, each has the same summary statistics (mean, std. deviation, and Pearson's corr.) to 2 decimal places. (x = 54.02, y = 48.09, $sd_x = 14.52$, $sd_y = 24.79$, Pearson's r = +0.32)

Four very different datasets, but same regression line

18

Ten very different datasets, but same mean, standard deviation, variance and correlation... ...to 2 decimal places

Sources:

http://footballphilosophy.org/encyclopedia/correlation/ (left) "Same Stats, Different Graphs". Matejka and Fitzmuarice. Autodesk Research. (right)

Where Data and Models Successfully Work Together

- Prediction of Future Performance
- More diverse datasets + recently collected data \rightarrow Better models
- Identifying relationships to better inform Travel Demand Models
 - Example: before/after impacts from new facility or traffic solution
 - How much did new facility improve mobility?
 - What contributed to improvements?

