ORIGINATION FORM # **Proposed Revisions to the Specifications** (Please provide all information - incomplete forms will be returned) | Date: | 0 | Office: | | | | | |---|------------------------|----------------------------------|------------------|---------------------------|--|--| | Originator: | Specification Section: | | | | | | | Telephone: | Α | rticle/Subarti | icle: | | | | | email: | Α | Associated Section(s) Revisions: | | | | | | | | | | | | | | Will the proposed revision require changes to: | | | | | | | | Publication | Yes | No | Office S | Staff Contacted | | | | Standard Plans Index | | | | | | | | Traffic Engineering Manual | | | | | | | | FDOT Design Manual | | | | | | | | Construction Project Administration Manual | | | | | | | | Basis of Estimate/Pay Items | | | | | | | | Structures Design Guidelines | | | | | | | | Approved Product List | | | | | | | | Materials Manual | | | | | | | | | | 1 | | | | | | Will this revision necessitate any of the following | ng: | | | | | | | Design Bulletin Construction Bulletin | E: | stimates Bulle | etin | Materials Bulletin | | | | Are all references to external publications curre | ent? | Yes | No | | | | | If not, what references need to be updated? (Pl | ease inclu | ıde changes iı | n the redline do | ocument.) | | | | | | | | | | | | Why does the existing language need to be cha | ngod2 | | | | | | | willy does the existing language need to be tha | iigeu: | Summary of the changes: | Are these changes applicable to all Department If not, what are the restrictions? | jobs? | Yes | No | | | | RON DESANTIS GOVERNOR KEVIN J. THIBAULT, P.E SECRETARY ## MEMORANDUM **DATE:** May 5, 2021 **TO:** Specification Review Distribution List **FROM:** Daniel Strickland, P.E., State Specifications Engineer SUBJECT: Proposed Specification: LAP1200000 Earthwork and Related Operations for LAP (Class-D) In accordance with Specification Development Procedures, we are sending you a copy of a proposed specification change. This change was proposed by Dino Jameson from the State Materials Office to update and match the current LAP Big 4 Specifications. Please share this proposal with others within your responsibility. Review comments are due within four weeks and should be sent to Mail Station 75 or online at http://fdotewp1.dot.state.fl.us/programmanagement/development/industryreview.aspx. Comments received after June 2, 2021, may not be considered. Your input is encouraged. DS/ra Attachment # EARTHWORK AND RELATED OPERATIONS FOR LAP (<u>CLASS - DOFF-SYSTEM</u>). (REV 41-208-2118) (FA 1-9-18) #### **SECTION 120** ## EARTHWORK AND RELATED OPERATIONS FOR LAP (CLASS - DOFF-SYSTEM) ## 120-1 Description. **120-1.1 General:** Perform earthwork and related operations based on the type of work specified in the Contract and the Earthwork Categories as defined below. Meet the applicable requirements for materials, equipment and construction as specified. Earthwork and related operations consist of excavation for the construction of the roadway, excavation for structures and pipe, constructing backfill around structures and pipe, and constructing embankments as required for the roadway, ditches, and channel changes. **120-1.2 Earthwork Categories:** Performance of Earthwork Operations will fall into one of the following Earthwork Categories: **120-1.2.1 Earthwork Category 1:** Includes the earthwork and related operations associated with the construction of sidewalks and bike paths along with any drainage structures associated with these facilities. 120-1.2.2 Earthwork Category 2: Includes the earthwork and related operations associated with the construction of turn lanes and other non-mainline traffic lanes, widening, roadway shoulders, concrete box culverts, retaining walls, and other drainage structures on the non-mainline pavement. **120-1.2.3 Earthwork Category 3:** Includes the earthwork and related operations associated with the construction of new mainline pavement, along with concrete box culverts, retaining walls, and other drainage structures on the mainline pavement. 120-1.3: Unidentified Areas of Contamination: When encountering or exposing any abnormal condition indicating the presence of contaminated materials, cease operations immediately in the vicinity and notify the Engineer. The presence of tanks or barrels; discolored earth, metal, wood, ground water, etc.; visible fumes; abnormal odors; excessively hot earth; smoke; or other conditions that appear abnormal may indicate the presence of contaminated materials and must be treated with extreme caution. Make every effort to minimize the spread of contamination into uncontaminated areas. Immediately provide for the health and safety of all workers at the job site and make provisions necessary for the health and safety of the public that may be exposed to any potentially hazardous conditions. Ensure provisions adhere to all applicable laws, rules or regulations covering potentially hazardous conditions and will be in a manner commensurate with the gravity of the conditions. The Engineer will notify the Department of a contamination assessment/remediation process plan to determine the course of action necessary for site security and the steps necessary under applicable laws, rules, and regulations for additional assessment and/or remediation work to resolve the contamination issue. ## 120-2 Classificationses of Excavation. 120-2.1 General Excavation of Unsuitable Material: Excavation of unsuitable material consists of the removal of muck, clay, rock or any other material that is unsuitable in its original position and that is excavated below the finished grading template. For stabilized bases and sand bituminous road mixes, the finished grading template is the top of the finished base, shoulders and slopes. For all other bases and rigid pavement, the finished grading template is the finished shoulder and slope lines and bottom of completed base or rigid pavement. The Engineer may classify excavation specified under this Section for payment as any of the following: regular excavation, subsoil excavation, lateral ditch excavation, and channel excavation. If the proposal does not show subsoil excavation or lateral ditch excavation as separate items of payment, include such excavation under the item of regular excavation. If the proposal shows lateral ditch excavation as a separate item of payment but does not show channel excavation as a separate item of payment, include such excavation under the item of lateral ditch excavation. Otherwise, include channel excavation under the item of regular excavation. 120-2.2 Regular Excavation: Regular excavation includes roadway excavation and borrow excavation, as defined below for each. 120-2.2.1 Roadway Excavation: Roadway excavation consists of the excavation and the utilization or disposal of all materials necessary for the construction of the roadway, ditches, channel changes, etc., except as may be specifically shown to be paid for separately and that portion of the lateral ditches within the limits of the roadway right-of-way as shown in the Plans. 120-2.2.2 Borrow Excavation: Borrow excavation consists of the excavation and utilization of material from authorized borrow pits, including only material that is suitable for the construction of roadway embankments or of other embankments covered by the Contract. A Cost Savings Initiative Proposal (CSIP) submittal based on using borrow material from within the project limits will not be considered. 120-2.3 Subsoil Excavation: Subsoil excavation consists of the excavation and disposal of muck, clay, rock, or any other material that is unsuitable in its original position and that is excavated below the finished grading template. For pond and ditches that identify the placement of a blanket material, consider the finished grading template as the bottom of the blanket material. Subsoil excavation also consists of the excavation of all suitable material within the above limits as necessary to excavate the unsuitable material. Consider the limits of subsoil excavation indicated in the Plans as being particularly variable, in accordance with the field conditions encountered. The quantity of material required to replace the excavated material and to raise the elevation of the roadway to the bottom of the template will be paid for under embankment or borrow excavation (Truck Measure). 120-2.42 Lateral Ditch Excavation: Lateral ditch excavation consists of all excavation of inlet and outlet ditches to structures and roadway, changes in channels of streams, and ditches parallel to the roadway right-of-way. Dress lateral ditches to the grade and cross-section shown in the Pplans. 120-2.53 Channel Excavation: Channel excavation consists of the excavation and satisfactory disposal of all materials from the limits of the channel as shown in the P_p lans. **120-2.6 Excavation for Structures and Pipe:** Excavation for structures consists of the excavation for bridge foundations, box culverts, pipe culverts, storm sewers and all other pipe lines, retaining walls, headwalls for pipe culverts and drains, catch basins, drop inlets, manholes, and similar structures. ## 120-3 Preliminary Soils Investigations. When the Plans contain the results of a soil survey, do not assume such data is a guarantee of the depth, extent, or character of material present. ## 120-43 Excavation Requirements. ## 120-43.1 Removal of Unsuitable Materials and Existing Roads 120-4.1.1 Subsoil Excavation and Replacement of Unsuitable Materials: Where rock, muck, clay, or other material within the limits of the roadway is unsuitable in its original position, excavate such material to the cross-sections
shown in the Pplans or indicated by the Engineer, and backfill with suitable material. Shape backfill materials to the required cross-sections. Where the removal of plastic soils below the finished earthwork grade is required, meet a construction tolerance, from the lines shown in the Plans as the removal limits, of plus or minus ±0.2 foot in depth and plus or minus ±6 inches (each side) in width. 120-4.1.2x.x Construction over Existing Old Road: Where a new roadway is to be constructed over an old one, completely remove the existing pavement for the entire limits of the width and depth. If the Plans provide that paving materials may be incorporated into the fill, distribute such material in a manner so as not to create voids. Recompact the old road meeting the requirements of 120-10.2. **120-43.2 Lateral Ditch Excavation:** Excavate inlet and outlet ditches to structures and roadway, changes in channels of streams and ditches parallel to the roadway. Dress lateral ditches to the grade and cross-section shown in the **Pplans**. **120-43.3 Channel Excavation:** Excavate and dispose of all materials from the limits of the channel as shown in the Pplans. Excavate for bridge foundations, box culverts, pipe culverts, storm sewers and all other pipe-lines, retaining walls, headwalls for pipe culverts and drains, catch basins, drop inlets, manholes, and similar structures. # 120-43.4 Excavation for Structures and Pipe. 120-43.4.1 Requirements for all Excavation: Excavate foundation pits to permit the placing of the full widths and lengths of footings shown in the plans, with full horizontal beds. Do not round or undercut corners or edges of footings. Perform all excavation to foundation materials, satisfactory to the Engineer, regardless of the elevation shown on the plans. Perform all excavation in stream beds to a depth at least 4 feet below the permanent bed of the stream, unless a firm footing can be established on solid rock before such depth is reached, and excavate to such additional depth as may be necessary to eliminate any danger of undermining. Wherever rock bottom is secured, excavate in such manner as to allow the solid rock to be exposed and prepared in horizontal beds for receiving the masonry. Remove all loose and disintegrated rock or thin strata. Have the Engineer inspect and approve all foundation excavations prior to placing masonry. Perform all excavation to foundation materials, satisfactory to the Engineer, regardless of the elevation shown in the Plans. Remove rock, boulders or other hard lumpy or unyielding material to a depth of 12 inches below the bottom of pipes and box culverts elevations. Remove muck or other soft material to the depth indicated in the Plans or as directed by the Engineer. ## 120-43.4.2 Earth Excavation: 120-43.4.2.1 Foundation Material other than the Rock: When masonry is to rest on an excavated surface other than rock, take special care to avoid disturbing the bottom of the excavation, and do not remove the final foundation material to grade until just before placing the masonry. In case the foundation material is soft or mucky, the Engineer may require excavation to a greater depth and to backfill to grade with approved material. 120-43.4.2.2 Foundation Piles: Where foundation piles are used, complete the excavation of each pit before driving the piles. After the driving is completed, remove all loose and displaced material, leaving a smooth, solid, and level bed to receive the masonry. **120-43.4.2.3 Removal of Obstructions:** Remove boulders, logs, or any unforeseen obstacles encountered in excavating. **120-43.4.3 Rock Excavation:** Clean all rock and other hard foundation material, remove all loose material, and cut all rock to a firm surface. Either level, step vertically and horizontally, or serrate the rock, as may be directed by the Engineer. Clean out all seams, and fill them with concrete or mortar. **120-4.4.4 Pipe Trench Excavation:** Excavate trenches for pipes culverts and storm sewers to the elevation of the bottom of the pipe and to a width sufficient to provide adequate working room. Remove soil not meeting the classification specified as suitable backfill material in 120-8.3.2.2 to a depth of 4 inches below the bottom of the pipe elevation. Remove rock, boulders or other hard lumpy or unyielding material to a depth of 12 inches below the bottom of the pipe elevation. Remove muck or other soft material to a depth necessary to establish a firm foundation. Where the soils permit, ensure that the trench sides are vertical up to at least the mid-point of the pipe. For pipe-lines placed above the natural ground line, place and compact the embankment, prior to excavation of the trench, to an elevation at least 2 feet above the top of the pipe and to a width equal to four pipe diameters, and then excavate the trench to the required grade. For pipe trenches utilizing trench boxes, ensure that the trench box used is of sufficient width to permit thorough tamping of bedding material under and around the pipes as specified in 125 8.1.6. Do not disturb the installed pipe and its embedment when moving trench boxes. Move the trench box carefully to avoid excavated wall displacement or damage. As the trench box is moved, fill any voids left by the trench box and continuously place and compact the backfill material adjacent to and all along the side of the trench box walls to fill any voids created by the trench box. ## 120-54 Disposal of Surplus and Unsuitable Material. 120-<u>5</u>4.1 Ownership of Excavated Materials: Dispose of surplus and excavated materials as shown in the <u>pP</u>lans, or, if the <u>pP</u>lans do not indicate the method of disposal, <u>then</u> take ownership of the materials and dispose <u>of</u> them outside the right-of-way. 120-54.2 Disposal of Muck on Side Slopes: As an exception to the provisions of 120-5.1, when approved by the Engineer, in rural undeveloped areas, the Contractor may place muck (A-8 material) on the slopes, or store it alongside the roadway, provided there is a clear distance of at least 6 feet between the roadway grading limits and the muck, and the Contractor dresses the muck to present a neat appearance. In addition, the Contractor may also dispose of this material by placing it on the slopes in developed areas where, in the opinion of the Engineer, this will result in an aesthetically pleasing appearance and will have no detrimental effect on the adjacent developments. Where the Engineer permits the disposal of muck or other unsuitable material inside the right-of-way limits, do not place such material in a manner which will impede the inflow or outfall of any channel or side ditches. The Engineer will determine the limits adjacent to channels within which such materials may be disposed. As an exception to the provisions of 120-4.1, when approved by the Engineer, muck (A-8 material) may be placed on the slopes, or stored alongside the roadway, provided there is a clear distance of at least 6 feet between the roadway grading limits and the muck, and the muck is dressed to present a neat appearance. In addition, this material may also be disposed of by placing it on the slopes where, in the opinion of the Engineer, this will result in an aesthetically pleasing appearance and will have no detrimental effect on the adjacent developments. Where the Engineer permits the disposal of muck or other unsuitable material inside the right-of-way limits, do not place such material in a manner which will impede the inflow or outfall of any channel or of side ditches. The Engineer will determine the limits adjacent to channels within which such materials may be disposed. 120-54.3 Disposal of Paving Materials: Unless otherwise noted, take ownership of paving materials, such as paving brick, asphalt block, concrete slab, sidewalk, curb and gutter, etc., excavated in the removal of existing pavements, and dispose of them outside the right-of-way. If the materials are to remain the property of the Agency, place them in neat piles as directed. Existing limerock base that is removed may be incorporated in the stabilized portion of the subgrade. If the construction sequence will allow, incorporate all existing limerock base into the project as allowed by the Contract Documents. 120-54.4 Disposal Areas: Where the Contract Documents require disposal of excavated materials outside the right-of-way, and the disposal area is not indicated in the Contract Documents, furnish the disposal area without additional compensation. Provide areas for disposal of removed paving materials out of sight of the project and at least 300 feet from the nearest roadway right-of-way line of any road. If the materials are buried, disregard the 300-foot limitation. ## 120-65 Materials for Embankment. 120-<u>6</u>5.1 General Requirements for Embankment Materials: Construct embankments using suitable materials excavated from the roadway or delivered to the jobsite from authorized borrow pits. <u>Embankment material shall not contain muck, stumps, roots, brush, vegetable matter, rubbish, reinforcement bar or other material that does not compact into a suitable and enduring roadbed.</u> Remove all waste material designated as undesirable. Use material in embankment construction in accordance with Plan details or as the Engineer directs. Construct the embankment using maximum particle sizes as follows: - 1. In top 12 inches: 3₋₋1/2 inches (in any dimension). - 2. 12 to 24 inches: 6 inches (in any dimension). - 3. In the depth below 24 inches: not to exceed 12 inches (in any dimension) or the compacted thickness of the layer being placed, whichever is less. Spread all material so that the larger particles are separated from each other to minimize voids between them during compaction. Compact around these rocks in accordance with 120-97.2. When and where approved by the Engineer, larger rocks (not to exceed 18 inches in any dimension) may be placed outside the one to
two slope and at least 4 feet or more below the bottom of the base. Compact around these rocks to a firmness equal to that of the supporting soil. Where constructing embankments adjacent to bridge end bents or abutments, do not place rock larger than $3\frac{1}{2}\frac{1}{2}$ inches in diameter within 3 feet of the location of any end-bent piling. 120-65.2 Use of Materials Excavated Ffrom the Roadway and Appurtenances: Assume responsibility for determining the suitability of excavated material for use on the project in accordance with the applicable Contract Documents. Consider the sequence of work and maintenance of traffic phasing in the determination of the availability of this material. 120-<u>6</u>5.3 Authorization for Use of Borrow: Use borrow <u>pit</u> only when sufficient quantities of suitable material are not available from roadway and drainage excavation, to properly construct the embankment, subgrade, and shoulders, and to complete the backfilling of structures and pipe. Do not use borrow material until so ordered by the Engineer, and then only use material from approved borrow pits. 120-65.3.1 Haul Routes for Borrow Pits: Provide and maintain, at no expense to the Agency, all necessary roads for hauling the borrow material. Where borrow area haul roads or trails are used by others, do not cause such roads or trails to deteriorate in condition. Arrange for the use of all non-public haul routes crossing the property of any railroad. Incur any expense for the use of such haul routes. Establish haul routes which will direct construction vehicles away from developed areas when feasible, and keep noise from hauling operations to a minimum. Advise the Engineer in writing of all proposed haul routes. 120-65.3.2 Borrow Material for Shoulder Build-up: When so indicated in the Pplans, furnish borrow material with a specific minimum bearing value, for building up of existing shoulders. Blend materials as necessary to achieve this specified minimum bearing value prior to placing the materials on the shoulders. Take samples of this borrow material at the pit or blended stockpile. Include all costs of providing a material with the required bearing value in the Contract unit price for borrow material. **120-<u>6</u>5.4 Materials Used at Pipes, Culverts, etc.:** Construct embankments over and around pipes, culverts, and bridge foundations with selected materials. ## 120-76 Embankment Construction. **120-76.1 General:** Construct embankments in sections of not less than 300 feet in length or for the full length of the embankment. <u>Do not construct another LOT over an untested LOT</u> without the Engineer's approval in writing. For construction of mainline pavement lanes, turn lanes, ramps, parking lots, concrete box culverts and retaining wall systems, a LOT is defined as a single lift of finished embankment not to exceed 500 feet. For construction of shoulder-only areas, shared use paths, and sidewalks areas, a LOT is defined as a single lift of finished embankment not to exceed 2000 feet. <u>Isolated compaction operations will be considered as separate LOTs. For multiple phase construction, a LOT shall not extend beyond the limits of the phase.</u> ## **120-76.2** Dry Fill Method: 120-76.2.1 General: Construct embankments to meet compaction requirements in 120-7 and in accordance with the acceptance program requirements in 120-109. Restrict the compacted thickness of the last embankment lift to 6 inches maximum. As far as practicable, distribute traffic over the work during the construction of embankments so as to cover the maximum area of the surface of each layer. Construct embankment in the dry whenever normal dewatering equipment and methods can accomplish the needed dewatering. 120-6.2.1.1 For A-3 and A-2-4 Materials with up to 15% fines: Construct the embankment in successive layers with lifts up to a maximum compacted thickness of 12 inches. Ensure the percentage of fines passing the No. 200 US Standard sieve in the A-2-4 material does not exceed 15%. 120-6.2.1.2 For A-1 Plastic materials (As designated in Standard Plans Index 120-001) and A-2-4 Materials with greater than 15% fines: Construct the embankment in successive layers with lifts up to a maximum compacted thickness of 6 inches. # 120-7.2.1.1x.x. Maximum Compacted Lift Thickness Requirements: Construct the embankment in successive layers with lifts up to a maximum listed in the table below based on the embankment material classification group. | <u>Table 120-1</u> | | | | | |--------------------|--|---------------------------------------|--|--| | Group | AASHTO Soil Class | Maximum Lift Thickness | Thick Lift Control Test Section Requirements | | | 1 | <u>A-3</u>
<u>A-2-4 (No. 200 Sieve ≤ 15%)</u> | 12 inches | Not Needed | | | 2 | A-1 A-2-4 (No. 200 Sieve > 15%) A-2-5, A-2-6, A-2-7, A-4, A-5, A-6 A-7 (Liquid Limit < 50) | 6 inches without Control Test Section | Maximum of 12 inches | | <u>120-7.2.1.2 Thick Lift Requirements:</u> For embankment materials classified as Group 2 in Table 120-1 above, the option to perform thick lift construction in successive layers of not more than 12 inches compacted thickness may be used after meeting the following requirements: - 1. Demonstrate the possession and control of compacting equipment sufficient to achieve density required by 120-10.5 for the full depth of a thicker lift. - 2. Construct a test section of the length of one full LOT of not less than 500 feet. - 3. Perform five tests at random locations within the test section. - a. All five tests must meet the density required by 120-10.5. - b. Identify the test section with the compaction effort and soil classification in the project's records. - 4. Obtain Engineer's approval for the compaction effort after completing a successful test section. In case of a change in compaction effort or soil classification, failing density test, construct a new test section. The Contractor may elect to place material in 6 inches compacted thickness at any time. Construct all layers approximately parallel to the centerline profile of the road. The Engineer reserves the right to terminate the Contractor's use of thick lift construction. Whenever the Engineer determines that the Contractor is not achieving satisfactory results, revert to the 6-inch compacted lifts. 120-76.2.1.3 Equipment and Methods: Provide normal dewatering equipment including, but not limited to, surface pumps, sump pumps and trenching/digging machinery. Provide normal dewatering methods including, but not limited to, constructing shallow surface drainage trenches/ditches, using sand blankets, sumps, and siphons. When normal dewatering does not adequately remove the water, the Engineer may require the embankment material to be placed in the water or in low swampy ground in accordance with 120-<u>9</u>7.2.4. 120-76.2.2 Placing in Unstable Areas: Whene depositing the material in water, or in low swampy ground that will not support the weight of hauling equipment, construct the embankment by dumping successive loads in a uniformly distributed layer of a thickness not greater than necessary to support the hauling equipment while placing subsequent layers. Once sufficient material has been placed so that the hauling equipment can be supported, construct the remaining portion of the embankment in layers in accordance with the applicable provisions of 120-97.2.43 and 120-79.2.6. 120-67.2.3 Placing on Steep Slopes: When constructing an embankment on a hillside sloping more than 20 degrees from the horizontal, before starting the fill, deeply plow or cut into steps the surface of the original ground on which the embankment is to be placed. 120-76.2.4 Placing Outside Standard Minimum Slope: The standard minimum slope is defined as the plane described by a one (vertical) to two (horizontal) slope downward from the roadway shoulder point or the gutter line, in accordance with Standard Plans, Index 120-001 and 120-002. Where material that is unsuitable for normal embankment construction is to be used in the embankment outside the standard minimum slope (approximately one to two), place such material in layers of not more than 18 inches in thickness, measured loose. The Contractor may also place material, which is suitable for normal embankment, outside such standard minimum slope; in 18-inch layers. Maintain a constant thickness for suitable material placed within and outside the standard minimum slope, unless placing in a separate operation. # 120-76.3 Hydraulic Method: 120-76.3.1 Method of Placing: When the hydraulic method is used, as far as practicable, place all dredged material in its final position in the embankment by such method. Place and compact any dredged material that is reworked handled, or moved and placed in its final position by any other method, as specified in 120-79.2. The Contractor may use bBaffles or any other form of construction he may be used select, provided if the slopes of the embankments are not steeper than indicated in the Plans. Remove all timber used for temporary bulkheads or baffles from the embankment; and fill and thoroughly compact all voids the holes thus formed. When placing fill on submerged land, construct dikes prior to beginning of dredging, and maintain the dikes throughout the dredging operation. **120-76.3.2 Excess Material:** Do not use excess material placed outside the prescribed slopes, below the normal high-water level, to raise the fill. Remove only the portion of this material required for dressing the slopes. 120-76.3.3 Protection of Openings in Embankment: Leave openings in the embankments at the bridge sites. Remove any material which invades these openings or existing channels without additional compensation to provide the same depth of channel as existed before the construction of the embankment. Do not excavate
or dredge any material within 200 feet of the toe of the proposed embankment. ## 120-8 Backfilling Around Structures and Pipe. ## 120-8.1 Requirements for all-Structures and Pipes: **120-8-1.1 General:** Backfill around structures and pipe in the dry whenever normal dewatering equipment and methods can accomplish the needed dewatering. A LOT is defined as one lift of backfill material placement, not to exceed 500 feet in length or a single run of pipe connecting two successive structures, whichever is less. Backfill for structures and pipe compacted in one operation will be considered as one LOT within the cover zone. Backfill around structures compacted separately from the pipe will be considered as separate LOTs. Backfill on each side of the pipe for the first lift will be considered a separate LOT. Backfill on opposite sides of the pipe for the remaining lifts will be considered separate LOTs, unless the same compaction effort is applied. Same compaction effort is defined as the same type of equipment (make and model) making the same number of passes on both sides of the pipe. For multiple phases of backfill, a LOT shall not extend beyond the limits of the phase. When placing backfill within a trench box, each lift of backfill is considered a LOT. Placement of backfill within a trench box limits will be considered a complete operation before trench box is moved for next backfill operation. When the trench box is moved for next backfill operation this will start new LOTs for each lift. Follow the density testing frequency in 125 9.3.1. 129-8.1.2 Equipment and Methods: Provide normal dewatering equipment including, but not limited to, surface pumps, sump pumps, wellpoints and header pipe and trenching/digging machinery. Provide normal dewatering methods including, but not limited to, constructing shallow surface drainage trenches/ditches, using sand blankets, perforated pipe drains, sumps, and siphons. **120-8.1.3 Backfill Materials:** Backfill to the original ground surface or subgrade surface of openings made for structures, with a sufficient allowance for settlement. The Engineer may require that the material used for this backfill be obtained from a source entirely apart from the structure. Do not allow heavy construction equipment to cross over culvert or storm sewer pipes until placing and compacting backfill material to the finished earthwork grade or to an elevation at least 4 feet above the crown of the pipe. **120-8.1.4** Use of A-7 Material: In the backfilling of trenches, A-7 material may be used from a point 12 inches above the top of the pipe up to the elevation shown in the Standard Plans as the elevation for undercutting of A-7 material. **120-8.1.5 Time of Placing Backfill:** Do not place backfill against any masonry or concrete abutment, wingwall, or culvert until the Engineer has given permission to do so, and in no case until the masonry or concrete has been in place seven days or until the specified 28-day compressive strength occurs. 120-8.1.6 Placement and Compaction: When the backfill material is deposited in water, compact per 120-8.2.5 and 120-8.3.4. Place the material in horizontal layers not exceeding 6 inches compacted thickness; in depth above water level, behind abutments, wingwalls and end bents or end rest piers, under the haunches of the pipes, and around box culverts, and all structures including pipe culverts. When the backfill material is deposited in water, compact as specified in 125 8.2.5 and 125 8.3.4The Engineer may approve placing material in thicker lifts of no more than 12 inches compacted thickness above the soil envelope if a test section demonstrates the required density can be achieved. Approval will be based on five passing density tests over the test section consisting of a lift of backfill from structure to structure. The Engineer will identify the test section with the compaction effort and soil classification in the Agency Logbook. In case of a change in compaction effort or soil classification, construct a new test section. The Engineer reserves the right to terminate the Contractor's use of thick lift construction and have him revert to the 6 inch compacted lifts whenever it is determined that satisfactory results are not being obtained. 120-8.1.6.1 Thick Lift Requirements: The Contractor may elect to place material in thicker lifts of no more than 12 inches compacted thickness above the Soil Envelope if the embankment material is classified as Group 1 in the table below. If the embankment material is classified as Group 2 in the table below and the Contractor chooses to place material in thicker lifts of no more than 12 inches compacted thickness above the soil envelope, then the Contractor must demonstrate with a successful test section that density can be achieved. Thick lift around structures is only allowed above the soil envelope of the connecting pipe. Notify the Engineer in writing prior to beginning construction of a test section. Construct a test section of the length of one LOT. Perform five quality control tests at random locations within the test section. All five tests must meet the density required by 120-9.2. Identify the test section with the compaction effort and soil classification in the project's records. In case of a change in compaction effort or soil classification, construct a new test section. When a test fails the requirements of 120-9.2, construct a new test section. The Contractor may elect to place material in 6 inches compacted thickness at any time. | <u>Table 120-2</u> | | | | | | |--------------------|--|---------------------------------------|-----------------|--|---| | <u>Group</u> | AASHTO Soil Class | Maximum Lift Thickness | | Thick Lift Control Test Section Requirements | | | | | Within Cover | Above Soil | Within Cover | Above Soil | | | | <u>Zone</u> | <u>Envelope</u> | Zone Zone | <u>Envelope</u> | | 1 | <u>A-3</u>
<u>A-2-4 (No. 200 Sieve ≤ 15%)</u> | <u>6 inches</u> | 12 inches | <u>N/A</u> | Not Needed | | 2 | A-1 A-2-4 (No. 200 Sieve > 15%) A-2-5, A-2-6, A-2-7, A-4, A-5, A-6 A-7 (Liquid Limit < 50) | 6 inches without control test section | | <u>N/A</u> | Maximum of 12
inches per 120-
7.2.1.2 | ## 120-8.2 Additional Requirements for Structures Other than Pipe: **120-8.2.1 Density:** Where the backfill material is deposited in water, obtain a 12 inch layer of comparatively dry material, thoroughly compacted by tamping, before the Engineer verifies layer and density requirements. Meet the requirements of the density Acceptance Criteria. **120-8.2.2 Box Culverts:** For box culverts over which pavement is to be constructed, compact around the structure to an elevation not less than 12 inches above the top of the structure, using rapid-striking mechanical tampers. **120-8.2.3 Other Limited Areas:** Compact in other limited areas using mechanical tampers or approved hand tampers, until the cover over the structure is at least 12 inches thick. When hand tampers are used, deposit the materials in layers not more than 4 inches thick using hand tampers suitable for this purpose with a face area of not more than 100 in². Take special precautions to prevent any wedging action against the masonry, and step or terrace the slope bounding the excavation for abutments and wingwalls if required by the Engineer. **120-8.2.4 Culverts and Piers:** Backfill around culverts and piers on both sides simultaneously to approximately the same elevation. 120-8.2.5 Compaction Under Wet Conditions: Where wet conditions do not permit the use of mechanical tampers, compact using hand tampers. Use only A-3 material for the hand tamped portions of the backfill. When the backfill has reached an elevation and condition such as to make the use of the mechanical tampers practical, perform mechanical tamping in such manner and to such extent as to transfer the compaction force into the sections previously tamped by hand. 120-8.3 Additional Requirements for Pipe Greater than 125 Inches Inside Diameter or Greater: **120-8.3.1 General:** Trenches for pipe may have up to four zones that must be backfilled. Lowest Zone: The lowest zone is backfilled for deep undercuts up to within 4 inches of the bottom of the pipe. Bedding Zone: The zone above the Lowest Zone is the Bedding Zone. Usually, it will be the backfill which is the 4 inches of soil below the bottom of the pipe. When rock or other hard material has been removed to place the pipe, the Bedding Zone will be the 12 inches of soil below the bottom of the pipe. Cover Zone: The next zone is <u>the</u> backfill that is placed after the pipe has been laid and will be called the Cover Zone. This zone extends to 12 inches above the top of the pipe. The Cover Zone and the Bedding Zone are considered the Soil Envelope for the pipe. Top Zone: The Top Zone extends from 12 inches above the top of the pipe to the base or final grade. ## 120-8.3.2 Material: **120-8.3.2.1 Lowest Zone:** Backfill areas undercut below the Bedding Zone of a pipe with coarse sand, or other suitable granular material, obtained from the grading operations on the project, or a commercial material if no suitable material is available. **120-8.3.2.2 Soil Envelope:** In both the Bedding Zone and the Cover Zone of the pipe, backfill with materials classified as A-1, A-2, or A-3. Material classified as A-4 may be used if the pipe is concrete pipe. **120-8.3.2.3 Top Zone:** Backfill the area of the trench above the soil envelope of the pipe with materials allowed on Standard Plans, Index 120-001. ## **120-8.3.3 Compaction:** **120-8.3.3.1 Lowest Zone:** Compact the soil in the Lowest Zone to approximately match the density of the soil in which the trench was cut. 120-8.3.3.2 Bedding Zone: If the trench was not undercut below the bottom of the pipe, loosen the
soil in the bottom of the trench immediately below the approximate middle third of the outside diameter of the pipe. If the trench was undercut, place the bedding material and leave it in a loose condition below the middle third of the outside diameter of the pipe. Compact the outer portions to meet the density requirements of the Acceptance Criteria. Place the material in lifts no greater than 6 inches (compacted thickness). **120-8.3.3.3 Cover Zone:** Place the material in 6 inches layers (compacted thickness), evenly deposited on both sides of the pipe, and compact with mechanical tampers suitable for this purpose. Hand tamp material below the pipe haunch that cannot be reached by mechanical tampers. Meet the requirements of the density Acceptance Criteria. 120-8.3.3.4 Top Zone: Place the material in layers not to exceed 12 inches in compacted thickness. Meet the requirements of the density Aacceptance Ccriteria. 120-8.3.4 Backfill Under Wet Conditions: Where wet conditions are such that dewatering by normal pumping methods would not be effective, the procedure outlined below may be used when specifically authorized by the Engineer in writing. Granular material may be used below the elevation at which mechanical tampers would be effective, but only material classified as A-3. Place and compact the material using timbers or hand tampers until the backfill reaches an elevation such that it's moisture content will permit the use of mechanical tampers. When the backfill has reached such elevation, use normally acceptable backfill material. Compact the material using mechanical tampers in such manner and to such extent as to transfer the compacting force into the material previously tamped by hand. The Engineer may permit the use of coarse aggregate below the elevation at which mechanical tampers would be effective. Use coarse aggregate from approved sources for Aggregate Size Number 89, 8, 78, 7, 68, 6, or 57. Place the coarse aggregate such that it will be stable and firm. Fully wrap the aggregate with an appropriate geosynthetic filter fabric, as specified by the Engineer. Do not place coarse aggregate within 4 feet of the ends of the trench or ditch. Use normally accepted backfill material at the ends. ## 120-97 Compaction Requirements. **120-97.1 Moisture Content:** Compact the materials at a moisture content such that the specified density can be attained. If necessary to attain the specified density, add water to the material, or lower the moisture content by manipulating the material or allowing it to dry, as is appropriate, to attain the specified density. ## 120-97.2 Compaction of Embankments: 120-<u>9</u>7.2.1 Earthwork Category 1 and 2 Density Requirements: The Engineer will accept a minimum density of 95% of the maximum density as determined by <u>AASHTO-FM</u> <u>1-T0-99 Method C</u> for all earthwork items requiring densities. 120-<u>9</u>7.2.2 Earthwork Category 3 Density Requirements: The Engineer will accept a minimum of 100% of the maximum density as determined by <u>AASHTO-FM 1-T0-99</u> <u>Method C</u> for all densities required under category 3. Except for embankments constructed by the hydraulic method as specified in 120-76.3, and for the material placed outside the standard minimum slope as specified in 120-76.2.4, and for other areas specifically excluded herein, compact each layer of the material used in the formation of embankments to the required density stated above. Uniformly compact each layer using equipment that will achieve the required density, and as compaction operations progress, shape and manipulate each layer as necessary to ensure uniform density throughout the embankment. **120-97.2.3 Compaction Over Unstable Foundations:** Where the embankment material is deposited in water or on low swampy ground, and in a layer thicker than 12 inches (as provided in 120-67.2.2), compact the top 6 inches (compacted thickness) of such layer to the density as specified in 120-910.5. 120-97.2.4 Compaction Where Plastic Material Has Been Removed: Where unsuitable material is removed and the remaining surface is of the soil classifications A-4, A-5, A-6, or A-7 Soil Groupsper AASHTO M145, as determined by the Engineer, compact the surface of the excavated area by rolling with a sheepsfoot roller exerting a compression of at least 250 psi on the tamper feet, for the full width of the roadbed (subgrade and shoulders). Perform rolling before beginning any backfill and continue until the roller feet do not penetrate the surface more than 1 inch. Do not perform such rolling where the remaining surface is below the normal water table and covered with water. Vary the procedure and equipment required for this operation at the discretion of the Engineer. 120-97.2.5 Compaction of Material To Be Used In Base, Pavement, or Stabilized Areas: Do not compact embankment material which will be incorporated into a pavement, base course, or stabilized subgrade, to be constructed as a part of the same Contract. Compaction for Pipes, Culverts, etc.: Compact the backfill of trenches to the densities specified for embankment or subgrade, as applicable, and in accordance with the requirements of this section. Thoroughly compact embankments over and around pipes, culverts, and bridges in a manner which will not place undue stress on the structures, and in accordance with the requirements of this section. **120-97.2.6 Compaction of Grassed Shoulder Areas:** For the upper 6_-inch layer of all shoulders which are to be grassed, since no specific density is required, compact only to the extent directed. 120-97.2.7 Compaction of Grassed Embankment Areas: For the outer layer of all embankments where plant growth will be established, do not compact. Leave this layer in a loose condition to a minimum depth of 6 inches for the subsequent seeding or planting operations. 120-97.3 Compaction of Subgrade: If the plans do not provide for stabilizing, compact the subgrade in both cuts and fills to the density specified in 120-109.5. For cut areas, determine Standard Proctor Maximum Density in accordance with FM 1-T099 at a frequency of one per mile or when there is a change in soil type, whichever occurs first. For undisturbed soils, do not apply density requirements where constructing narrow widening strips or paved shoulders-is 5 feet or less in width. Where trenches for widening strips are not of sufficient width to permit the use of standard compaction equipment, perform compaction using vibratory rollers, trench rollers, or other type compaction equipment approved by the Engineer. Maintain the required density until the base or pavement is placed on the subgrade. ## 120-10 Acceptance Program. **120-10.1 Density over 105%:** When a computed dry density results in a value greater than 105% of the applicable Proctor maximum dry density, the Engineer will perform a second density test within 5 feet. If the second density results in a value greater than 105%, investigate the compaction methods, examine the applicable Maximum Density and material description. If necessary, the Engineer will test an additional sample for acceptance in accordance with AASHTO-FM 1-T0-99, Method C. **120-10.2 Maximum Density Determination:** The Engineer will determine the maximum density and optimum moisture content by sampling and testing the material in accordance with the specified test method listed in 120-109.3. **120-10.3 Density Testing Requirements:** Compliance with the requirements of 120-<u>109.5</u> will be determined in accordance FM 1-T 238. The in-place moisture content will be determined for each density in accordance with FM 5-507 (Determination of Moisture Content by Means of a Calcium Carbide Gas Pressure Moisture Tester), or ASTM D 4643 (Laboratory Determination of Moisture Content of Granular Soils <u>Bby</u> Use of a Microwave Oven). 120-10.4 Soil Classification and Organic Content: The Engineer will perform soil classification tests in accordance with AASHTO T-88T88, T89, T90, and FM 1-T267., The Engineer will and classify soils in accordance with AASHTO M-145 (Standard Specification for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes) in order to determine compliance with embankment utilization requirements. The Engineer will verify the organic content test with the criteria specified in Standard Plans, Index 120-001. **120-10.5 Acceptance Criteria:** The Engineer will accept a minimum density in accordance with 120-<u>9</u>7.2 with the following exceptions: - 1) embankment constructed by the hydraulic method as specified in 120-76.3; - 2) material placed outside the standard minimum slope as specified in 120-76.2.4; - 3) other areas specifically excluded herein. **120-10.6 Frequency:** The Engineer will conduct sampling and testing at a minimum frequency listed in the table below. | Test Name | Frequency | | | |---|--|--|--| | Proctor Maximum Density | One per soil type | | | | Density | 1 per <u>LOT500' RDWY</u> (Alt <u>ernate</u> Lift) | | | | Soil Classification and Organic Content | One per Maximum Density | | | #### 120-11 Maintenance and Protection of Work. While construction is in progress, <u>always</u> maintain adequate drainage for the roadbed at <u>all times</u>. Maintain a shoulder at least 3 feet wide adjacent to all pavement or base construction in <u>order</u> to provide support for the edges. Maintain and protect all earthwork construction throughout the life of the Contract, and take all reasonable precautions to prevent loss of material from the roadway due to the action of wind or water. Repair any slides, washouts, settlement, subsidence, or other mishap which may occur prior to final acceptance of the work. Maintain all channels excavated as a part of the Contract work against natural shoaling or other encroachments to the lines, grades, and cross-sections shown in the plans,
until final acceptance of the project. ## 120-12 Construction. **120-12.1 Construction Tolerances:** Shape the surface of the earthwork to conform to the lines, grades, and cross-sections shown in the plans. In final shaping of the surface of earthwork, maintain a tolerance of 0.3 foot above or below the plan cross-section with the following exceptions: - 1. Shape the surface of shoulders to within 0.1 foot of the plan cross-section. - 2. Shape the earthwork to match adjacent pavement, curb, sidewalk, structures, etc. - 3. Shape the bottom of ditches so that the ditch impounds no water. - 4. When the work does not include construction of base or pavement, shape the entire roadbed (shoulder point to shoulder point) to within 0.1 foot above or below the plan cross-section. Ensure that the shoulder lines do not vary horizontally more than 0.3 foot from the true lines shown in the plans. **120-12.2 Operations Adjacent to Pavement:** Carefully dress areas adjacent to pavement areas to avoid damage to such pavement. Complete grassing of shoulder areas prior to placing the final wearing course. Do not manipulate any embankment material on a pavement surface. When shoulder dressing is underway adjacent to a pavement lane being used to maintain traffic, exercise extreme care to avoid interference with the safe movement of traffic. #### 120-13 Method of Measurement. 120-13.1 Excavation: Excavation will be paid for by volume, in cubic yards, calculated by the method of average end areas, unless the Engineer determines that another method of calculation will provide a more accurate result. The material will be measured in its original position by field survey or by photogrammetric means as designated by the Engineer. Measurement for payment will include the excavation of unsuitable material, lateral ditch excavation, channel excavation, and excavation for structures and pipe. Payment will not be made for excavation or embankment beyond the limits shown in the plans or authorized by the Engineer. **120-13.2 Embankment:** Measurement will be made on a loose volume basis, as measured in trucks or other hauling equipment at the point of dumping on the road. Payment will not be made for embankment beyond the limits shown in the plans or authorized by the Engineer. ## 120-14 Basis of Payment. **120-14.1 General:** Prices and payments for the work items included in this Section will be full compensation for all work described herein, including excavating, dredging, hauling, placing, and compacting; dressing the surface of the earthwork; and maintaining and protecting the complete earthwork. **120-14.2 Excavation:** The total quantity of all excavation specified under this Section will be paid for at the Contract unit price for Excavation. No payment will be made for the excavation of any materials which are used for purposes other than those shown in the plans or designated by the Engineer. No payment will be made for materials excavated outside the lines and grades given by the Engineer, unless specifically authorized by the Engineer. **120-14.3 Embankment**: The total quantity of embankment specified in this Section will be paid for at the Contract unit price for embankment. No payment will be made for materials which are used for purposes other than those shown in the plans or designated by the Engineer. No payment will be made for materials placed outside the lines and grades given by the Engineer.