

RICK SCOTT GOVERNOR 605 Suwannee Street Tallahassee, FL 32399-0450 RACHEL D. CONE INTERIM SECRETARY

May 10, 2017

Khoa Nguyen Director, Office of Technical Services Federal Highway Administration 3500 Financial Plaza, Suite 400 Tallahassee, Florida 32312

Re: State Specifications Office

Section: 346

Proposed Specification: 3460500 Portland Cement Concrete.

Dear Mr. Nguyen:

We are submitting, for your approval, two copies of the above referenced Supplemental Specification.

The changes are proposed by Jose Armenteros of the State Materials Office (SMO) to modify the language for consistency with proposed revisions to Materials Manual Section 8.4, Volume II.

Please review and transmit your comments, if any, within two weeks. Comments should be sent via email to dan.hurtado@dot.state.fl.us.

If you have any questions relating to this specification change, please call me at 414-4130.

Sincerely,

Signature on file

Dan Hurtado, P.E. State Specifications Engineer

DH/dt

Attachment

cc: Florida Transportation Builders' Assoc.

State Construction Engineer

PORTLAND CEMENT CONCRETE.

(REV 3-20-174-4-175-10-17)

ARTICLE 346-5 is deleted and the following substituted:

346-5 Sampling and Testing Methods.

Perform concrete sampling and testing in accordance with the following methods:

TABLE 5	
Description	Method
Slump of Hydraulic Cement Concrete	ASTM C143
Air Content of Freshly Mixed Concrete by the Pressure Method*	ASTM C231
Air Content of Freshly Mixed Concrete by the Volumetric Method*	ASTM C173
Making and Curing Test Specimens in the Field**	ASTM C31
Compressive Strength of Cylindrical Concrete Specimens***	ASTM C39
Obtaining and Testing Drilled Core and Sawed Beams of Concrete	ASTM C42
Initial Sampling of Concrete from Revolving Drum Truck Mixers or Agitators	FM 5-501
Low Levels of Chloride in Concrete and Raw Materials	FM 5-516
Density (Unit Weight), Yield and Air Content (Gravimetric) of Concrete	ASTM C138
Temperature of Freshly Mixed Portland Cement Concrete	ASTM C1064
Sampling Freshly Mixed Concrete***	ASTM C172
Static Segregation of Self-Consolidating Concrete using Column Techniques	ASTM C1610
Slump Flow of Self_Consolidating Concrete	ASTM C1611
Relative Viscosity of Self–Consolidating Concrete	<u>ASTM C1611</u>
Visual Stability Index of SelfConsolidating Concrete	<u>ASTM C1611</u>
Passing Ability of Self-Consolidating Concrete by J-Ring	ASTM C1621
Rapid Assessment of Static Segregation Resistance of Self-Consolidating	ASTM C16712
Concrete Using Penetration Test	
Aggregate Distribution of Hardened Self-Consolidating Concrete	<u>FM 5-617</u>
Hardened Visual Stability Index of Self-Consolidating Concrete	<u>FM 5-615</u>
Fabricating Test Specimens with Self-Consolidating Concrete	ASTM C1758
Concrete Resistivity as an Electrical Indicator of its Permeability	AASHTO T358

^{*}The Department will use the same type of meter for Verification testing as used for QC testing. When using pressure type meters, use an aggregate correction factor determined by the concrete producer for each mix design to be tested. Record and certify test results for correction factors for each type of aggregate at the concrete production facility.

^{**} Provide curing facilities that have the capacity to store all QC, Verification, "hold" and Independent Verification cylinders simultaneously for the initial curing. Cylinders will be delivered to the testing laboratory in their molds. The laboratory will remove the specimens from the molds and begin final curing.

^{***}The Verification technician will use the same size cylinders as the Quality Control technician.

^{****} Take the test sample from the middle portion of the batch in lieu of collecting and compositing samples from two or more portions, as described in ASTM C172.

PORTLAND CEMENT CONCRETE. (REV 5-10-17)

ARTICLE 346-5 is deleted and the following substituted:

346-5 Sampling and Testing Methods.

Perform concrete sampling and testing in accordance with the following methods:

TABLE 5	
Description	Method
Slump of Hydraulic Cement Concrete	ASTM C143
Air Content of Freshly Mixed Concrete by the Pressure Method*	ASTM C231
Air Content of Freshly Mixed Concrete by the Volumetric Method*	ASTM C173
Making and Curing Test Specimens in the Field**	ASTM C31
Compressive Strength of Cylindrical Concrete Specimens***	ASTM C39
Obtaining and Testing Drilled Core and Sawed Beams of Concrete	ASTM C42
Initial Sampling of Concrete from Revolving Drum Truck Mixers or Agitators	FM 5-501
Low Levels of Chloride in Concrete and Raw Materials	FM 5-516
Density (Unit Weight), Yield and Air Content (Gravimetric) of Concrete	ASTM C138
Temperature of Freshly Mixed Portland Cement Concrete	ASTM C1064
Sampling Freshly Mixed Concrete****	ASTM C172
Static Segregation of Self-Consolidating Concrete using Column Techniques	ASTM C1610
Slump Flow of Self-Consolidating Concrete	ASTM C1611
Relative Viscosity of Self-Consolidating Concrete	ASTM C1611
Visual Stability Index of Self-Consolidating Concrete	ASTM C1611
Passing Ability of Self-Consolidating Concrete by J-Ring	ASTM C1621
Rapid Assessment of Static Segregation Resistance of Self-Consolidating	ASTM C1712
Concrete Using Penetration Test	
Aggregate Distribution of Hardened Self-Consolidating Concrete	FM 5-617
Hardened Visual Stability Index of Self-Consolidating Concrete	FM 5-615
Fabricating Test Specimens with Self-Consolidating Concrete	ASTM C1758
Concrete Resistivity as an Electrical Indicator of its Permeability	AASHTO T358

^{*}The Department will use the same type of meter for Verification testing as used for QC testing. When using pressure type meters, use an aggregate correction factor determined by the concrete producer for each mix design to be tested. Record and certify test results for correction factors for each type of aggregate at the concrete production facility.

^{**} Provide curing facilities that have the capacity to store all QC, Verification, "hold" and Independent Verification cylinders simultaneously for the initial curing. Cylinders will be delivered to the testing laboratory in their molds. The laboratory will remove the specimens from the molds and begin final curing.

^{***}The Verification technician will use the same size cylinders as the Quality Control technician.

^{****} Take the test sample from the middle portion of the batch in lieu of collecting and compositing samples from two or more portions, as described in ASTM C172.