230 Signing and Pavement Marking

230.1 General

Traffic control devices are necessary to help ensure highway safety. Traffic control devices provide for an orderly and predictable movement of motorized and non-motorized traffic throughout the highway transportation system. They also provide guidance and warnings to ensure the safe and informed operation of individual elements of the traffic stream. The design and layout of signs and pavement markings should complement the basic highway design.

FHWA’s *Manual on Uniform Traffic Control Devices (MUTCD)* contains detailed information of all standard highway signs and pavement marking messages. Each sign is identified by a unique designation. Signs and pavement markings not included in the MUTCD or in the Standard Plans are to be detailed in the plans. Sign and pavement marking design must comply with Standard Specifications, Standard Plans, TEM, MUTCDS, and the MUTCD.

Examples of typical signing and pavement marking configurations are included in FDM 230.6.

230.1.1 Structural Supports

AASHTO’s *LRFD Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals* and FDOT Modifications to LRFDLTS-1 provide structural design criteria.

Refer to FDM 261 for information regarding structural support requirements. Refer to FDM 325 for information regarding plan requirements.

230.1.2 School Zones

The Department’s *Manual on Speed Zoning for Highways, Roads and Streets in Florida* (a.k.a., Speed Zoning Manual), Chapter 15, provides school zone signing and pavement marking requirements.

Public or private elementary, middle schools (Jr. High), and federally funded facilities providing a full-time educational program are to comply with the pavement markings, signs, and other traffic control devices referenced in the Speed Zoning Manual. The use of these devices at high schools must be justified by an engineering study.
Standard Plans, Index 700-120 provides details relating to enhanced highway signing assemblies.

230.1.3 Vertical Clearance

See FDM 210.10.3 for vertical clearance requirements for sign structures.

230.2 Signing

230.2.1 Sign Placement

Refer to the MUTCD, Standard Plans, and FDM 215 for acceptable sign locations. Provide a four-foot clear width, not including the width of curb, when a sign is located within a sidewalk.

230.2.2 Overhead Signs on Limited Access Facilities

Section 2A.17 of the MUTCD lists thirteen optional conditions where overhead signs have value on limited access facilities. Signs are to be ground mounted except at locations required by the MUTCD or noted below:

Use overhead exit direction signs when any of the following conditions exists:

(1) Interchange Spacing ≤ 3 Miles
(2) Left Exit
(3) Three or More Through Lanes

Use overhead advance guide signs when any of the following conditions exists:

(1) Interchange Spacing ≤ 3 Miles
(2) Left Exit
(3) Limited access facility to limited access facility Interchange (1/2 mile and 2 mile, 1 mile required by MUTCD)

This criteria is not intended to restrict the use of overhead signs where there is insufficient space for post mounted signs or where there is restricted sight distance.

Place overhead advance guide signs over the shoulder with the edge of the sign aligned with the edge of the traveled way unless otherwise shown in the MUTCD. Place overhead
exit signs over the ramp traffic lane(s). If a barrier is present to shield another hazard, place the upright behind the barrier with proper setback for barrier performance.

230.2.3 Local Street Names on Guide Signs

Standard practice is to use route numbers on guide signs to designate roadways. When the local name for a roadway is more familiar than the route number, the local street name may be used as supplemental information to route numbers. The decision to use a local name should be coordinated with the District Traffic Operations Engineer.

230.2.4 External Lighting of Overhead Signs

Provide external lighting of overhead signs only for the following conditions:

1. Horizontal curves with radii of 880 feet or less in rural context classifications.
2. Horizontal curves with radii of 2,500 feet or less in urban context classifications.
3. In sag vertical curves with a K value of 60 or less for all context classifications.

Show sign lighting requirements on the Guide Sign Worksheet when sign lighting is required. Include sign lighting calculations in the Lighting Design Analysis Report.

See [FDM 231.2](#) for sign lighting criteria.

230.2.5 Signs on Barriers and Traffic Railings

For information regarding attachments to bridge traffic railings, concrete median barrier walls, or concrete shoulder barrier walls, refer to [FDM 215.5](#).

Utilize [Standard Plans, Index 700-013](#) when attaching the following permanent sign supports to a median traffic railing:

- No U-Turns (R3-4) w/ Official Use Only (FTP 65-06)
- Left Lane Ends (W9-1)
- Lane Ends Merge Right (W9-2)
- Merge Symbol (W4-2)
- Warning, Regulatory, or Advisory Speed signs used as a countermeasure or mitigation for safety conditions
• Shoulder Use Signs

No other permanent signs are to be attached to median traffic railings. Standard Plans, Index 700-013 may be used for temporary or work zone signs when Standard Plans, Index 102-600 cannot accommodate post mounted signs within existing conditions.

230.2.6 Signing for Temporary Bridges with Steel Decks

Place “Slippery When Wet” signs (W8-5) in advance of temporary bridges with steel decks. Refer to TEM, Section 2.1

230.2.7 Object Markers and Delineators

An object marker is used to mark obstructions within or adjacent to the roadway. The MUTCD describes four object markers and how they are to be used. A Type 1 (style OM1-3 only) or Type 3 (all styles) object marker is used to mark obstructions within the roadway. A Type 2 (style OM2-2V only) or Type 3 (all styles) object marker is used to mark obstructions adjacent to the roadway. A Type 4 (style OM4-3 only) object marker (end-of-roadway marker) is used to alert users of the end of the road.

A delineator is a guidance device rather than a warning device. The MUTCD and Standard Plans, Index 711-003 illustrate the use of delineators along the edge of limited access traffic lanes and interchange ramps. A delineator may be a flexible or a non-flexible type. District maintenance offices generally have a preference on which should be specified.

Modification for Non-Conventional Projects:

Delete the last sentence of the above paragraph and see RFP for requirements.
230.2.8 Tubular Markers

Tubular markers are the Department’s standard device for the purpose of channelization. The color of tubular markers must be the same color as the pavement marking that they emphasize. They are typically used for channelization at the following locations unless signing (e.g., R4-7 or R4-8) is otherwise required:

1. Multilane intersections where additional visibility is required for the marking of an island,
2. Marking median openings,
3. Nose of traffic separators,
4. Where the island is obstructed due to crest vertical curves,
5. Intersections where the alignment thru the intersection is not straight,
6. Hardened center lines,
7. To preclude lane changing where it is not practicable to provide a barrier (e.g. managed lanes, separated bicycle lanes, acceleration lanes), and
8. To restrict vehicle movements and control turning speeds.

230.2.9 Enhanced Highway Signing Assemblies

Flashing beacons, highlighted signs, and electronic speed feedback signs may be used to increase the conspicuity of warning and regulatory signs.

For school signing requirements, see Chapter 15 of the Speed Zoning for Highways, Roads, and Streets in Florida.

Typical applications with these enhancements are shown in Standard Plans, Index 700-120.

230.2.10 Internally Illuminated Street Name Signs

Do not exceed nine feet in width for an internally illuminated street name sign. For span wire systems, the sign is to be mounted to the strain poles. On mast arm supports, the sign may be mounted to the support or to the arm. When mounted to the arm, the distance between the upright and the near side edge of the sign is not to exceed ten feet.
Design the street name sign in accordance with the TEM, Section 2.2. Utilize the following text attributes in order of preference:

1. 10-inch upper case with 8-inch lower case, Type EM font
2. 10-inch upper case with 8-inch lower case, Type E font
3. 8-inch upper case with 6-inch lower case, Type EM font
4. 8-inch upper case with 6-inch lower case, Type E font

230.2.11 Tourist-Oriented Directional Signs

Tourist-Oriented Directional Signs are guide sign assemblies with individual panels displaying the identity and directional information for a business, service, or activity facilities. These panels are unique in size, content, and have specific criteria for that must comply with Rule 14-51, Florida Administrative Code and MUTCD, Chapter 2K.

Maximum sign panel dimensions for single and multi-column ground-mounted signs are shown in Figure 230.2.1. Place Tourist-Oriented Directional Signs in accordance with Standard Plans, Index 700-101.

Figure 230.2.1 Tourist-Oriented Directional Sign Panel Dimensions
230.2.12 Florida National Scenic Trail Signs

Provide signage and pavement markings as shown in Exhibit 230-b at all locations where the Florida National Scenic Trail crosses along the SHS.

Use RS-034 signs to guide the public to designated trailhead parking when available and adjacent to the crossing.

230.3 Pavement Markings

The MUTCD was adopted by the Department as the uniform system of traffic control for use on the streets and highways of the State. This action was in compliance with Chapter 316.0745 of the Florida Statutes. The MUTCD is the national standard, and its requirements must be met, as a minimum, on all roads in the State. Where Department manuals indicate criteria which is more stringent than the MUTCD, Department criteria is to be followed. See FDM 220 for signing and pavement marking requirements for at-grade railroad crossings.

230.3.1 Selection of Pavement Marking Material

Use the flowchart, shown in Figure 230.3.1, as a tool to assist in determining the appropriate pavement marking material.

Once the pavement marking material is selected from Figure 230.3.1, verify the project meets the criteria discussed in FDM 230.3.1.1 through 230.3.1.5.
Figure 230.3.1 Pavement Marking Material Selection

1. **Begin Pavement Marking Material Selection**
 - Use Refurbishment Thermoplastic or other material as determined with the District Maintenance Engineer
 - Asphalt Pavement
 - Concrete Pavement
 - Remove existing pavement markings
 - Transverse/Other, Traffic Channelizing, or Longitudinal (Solid/Skip)

2. **Is pavement concrete or asphalt?**
 - Yes: See FDM 230.3.4
 - No: Are existing permanent markings being replaced?

3. **Are existing permanent markings being replaced?**
 - Yes: Use Prefomed Thermoplastic See FDM 230.3.1.3
 - Special Emphasis Crosswalk (24” Longitudinal Bars), Route Shields, Bicycle, Exit Numbers, or Railroad Dynamic Envelopes, Wrong-Way Arrows
 - No: Use Standard Thermoplastic See FDM 230.3.1.1
 - Transverse Markings/Traffic Channelizing
 - Meets criteria for Audible and Vibratory Treatment?
 - Yes: Use Profiled Thermoplastic, or Standard Thermoplastic with Ground-in Rumble Strips See FDM 230.3.1.2
 - Bridge Surface?
 - Yes: Use Permanent Tape See FDM 230.3.1.4
 - No: Longitudinal Solid
 - Yes: Longitudinal Skip
 - Special Emphasis Crosswalk (24” Longitudinal Bars), Route Shields, Bicycle, Exit Numbers, or Railroad Dynamic Envelopes
 - No: Transverse Markings/Traffic Channelizing, Wrong-Way Arrows
 - Special Emphasis Crosswalk (24” Longitudinal Bars), Route Shields, Bicycle, Exit Numbers, or Railroad Dynamic Envelopes
230.3.1.1 Standard and Refurbishment Thermoplastic

Use Standard Thermoplastic traffic stripes and markings unless Profiled Thermoplastic, Preformed Thermoplastic, or Permanent Tape is required.

Standard Thermoplastic is not used on bridge structures with concrete riding surfaces due to vibration and durability issues. Standard Thermoplastic is required for longitudinal solid lines on concrete surfaces other than bridges due to the lower cost; however, for areas where durability may be an issue (e.g., high truck traffic), Permanent Tape may be used.

Standard Thermoplastic is placed at a thickness of 0.10 to 0.15 inches. Refurbishment Thermoplastic is the placement of new thermoplastic material on existing pavement markings and is placed at a thickness of 0.06 inches. Refurbishment Thermoplastic is not to be used on concrete riding surfaces; e.g., concrete pavement and bridge structures. Remove existing stripes and markings from concrete surfaces before placing new stripes and markings.

Coordinate with the District Maintenance Engineer to determine if Refurbishment Thermoplastic is appropriate. If Refurbishment Thermoplastic cannot be applied without exceeding the maximum thickness of 0.150 inch, remove the existing stripes and markings before placing new stripes and markings. Refer to Standard Specification 711 for additional information on Standard and Refurbishment Thermoplastic.

Coordinate with the District Maintenance Engineer to determine if black paint contrast is required for skip lines, messages, arrows, and Railroad Dynamic Envelopes.

Consider the use of Durable Paint for refurbishment markings on asphalt pavement where the longer service life of Refurbishment Thermoplastic is not required. The performance of Refurbishment Thermoplastic has been evaluated by the Department for a period of 36 months. Contact the District Maintenance Engineer to determine if Durable Paint is acceptable.

230.3.1.2 Profiled Thermoplastic or Standard Thermoplastic with Ground-In Rumble Strips

Audible and vibratory treatments provide a lane departure warning. Striping material selection, and audible and vibratory treatment used are often related. Audible and vibratory treatment can be either Profiled Thermoplastic, or Standard Thermoplastic with ground-in rumble strips.
See *FDM 210.4.6* for audible and vibratory treatment on arterials and collectors.

See *FDM 211.4.4* for audible and vibratory treatment on LA Facilities.

Contrast marking is not used with Profiled Thermoplastic markings.

For more information refer to:

230.3.1.3 Preformed Thermoplastic

Use Preformed Thermoplastic on all pavement types for the following markings:

1. Bicycle Markings and Shared Use Path Markings (see *Standard Plans, Index 711-002*, Sheet 1)
2. 24-inch longitudinal bars of Special Emphasis Crosswalks (see *Standard Plans, Index 711-001*)
3. Route Shields
4. Ramp Exit Numbers
5. Railroad dynamic envelopes. When installed on concrete riding surfaces, a 4-inch-wide black contrast border is required on both sides of each 12-inch wide marking.

Use Preformed Thermoplastic on concrete riding surfaces (i.e., concrete pavement and bridge structures) for the following markings:

1. White dotted Lines (2'-4') with trailing black contrast (i.e., two feet white preformed thermoplastic plus two feet black Preformed Thermoplastic). Use only the alternating skip pattern.
2. Lane-Use Arrows, Wrong-Way Arrows, Messages, and Symbols. Black contrast border is required for design speeds 45 mph and less. Black contrast block is required for design speeds greater than 45 mph. Border or block is to provide a minimum 1.5 inches from message to the outside edge. Provide details of black contrast borders and blocks in the plans. For intricate symbols such as the Helmeted Bicyclist Symbol, use black contrast block for all design speeds.
3. 24-inch longitudinal bars of Special Emphasis Crosswalks. Black contrast border is required on left and right sides of longitudinal bars. Contrast border is to provide
a 4-inch width from the outside edge of the longitudinal bars. Provide details of black contrast border in the plans.

(4) 12-inch transverse lines of Standard and Special Emphasis Crosswalks may be used where crossings are marked and for added visibility of the markings. When used, a 4-inch black contrast border is required on both sides of each 12-inch transverse line. Provide details of black contrast border in the plans.

(5) 24-inch stop lines may be used where stop lines are marked and for added visibility of the markings. When used, a 4-inch black contrast border is required on both sides of the 24-inch stop line. Provide details of black contrast border in the plans.

Refer to Standard Specification 711 for more information on Preformed Thermoplastic.

230.3.1.4 Permanent Tape

Use Permanent Tape on all concrete riding surfaces (i.e., concrete pavement and bridge structures) for the following markings:

(1) White skip lines (10'-30') with trailing black contrast; i.e., ten feet white tape plus ten feet black tape. Only use the alternating skip pattern.

(2) White dotted lines (6'-10') with trailing black contrast; i.e., six feet white tape plus six feet black tape. Only use the alternating skip pattern.

(3) White dotted lines (3'-9') with trailing black contrast; i.e., three feet white tape plus three feet black tape). Only use the alternating skip pattern.

(4) Yellow skip lines (10'-30'). Do not use contrast.

Use Permanent Tape for solid center lines and edge lines on bridges with concrete riding surfaces. Do not use contrast on edge lines.

Remove existing stripes and markings from concrete surfaces before placing new permanent tape.

Refer to Standard Specification 713 for more information on Permanent Tape.

230.3.1.5 Two Reactive Components

Two Reactive Components may be used as an alternative to Standard Thermoplastic markings for edge lines and skip lines on asphalt pavement and only edge lines on concrete pavement.
Two Reactive Components pavement markings may be feasible for large projects. The use of Two Reactive Components pavement markings must be approved by both the District Maintenance Engineer and the District Construction Engineer.

For existing asphalt pavement, contact the District Maintenance Engineer to determine if black paint contrast is required for skip lines, messages and arrows.

230.3.2 Refurbishment Applications

For refurbishment markings, consider the following factors:

1. Remaining service life of the pavement
2. Thickness and conditions of existing markings
3. Traffic volumes
4. Cost of markings
5. Other special requirements such as contrast needs or audible and vibratory treatment

230.3.3 No-Passing Zones

Follow the procedures contained in the MUTS for determining the limits of no-passing zones.

Limits of pavement markings for no-passing zones will be established by one of the following methods:

1. On projects where existing roadway conditions (vertical and horizontal alignments) are to remain unaltered by construction, the no-passing zones study will be accomplished as part of the design phase. The limits of the no-passing zones will be shown on the plans.
2. On projects with new or altered vertical and horizontal alignments, limits for no-passing zones will be established during construction. The required traffic study and field determination of limits will be performed by the designer during post design. Sufficient time must be included to accomplish the required field operations without delaying or interfering with the construction process.

For 2-Lane, 2-way roadways, a no-passing zone study should be conducted if any of the following conditions apply subsequent to the last roadway resurfacing project:
• Newly constructed intersections
• Multiple new residential or commercial driveway connections
• New sight distance obstructions due to vegetation, tree growth or buildings
• History of wrong way/head-on crashes or observations/complaints of near misses

230.3.4 Work Zone Pavement Markings

Use Standard Paint for work zone markings on asphalt and concrete pavement. The performance of Standard Paint has been evaluated by the Department for a period of 6 months.

Consider using Durable Paint or Refurbishment Thermoplastic when a work zone phase is expected to last for more than a year under heavy traffic volumes. The performance of Durable Paint has been evaluated by the Department for a period of 18 months.

Use Removable Tape for transitions on the final structural course or dense-graded friction course. Removable Tape may be used for other markings to avoid the removal of paint and scaring of final surface. Do not use Removable Tape for application durations of more than 6 months. Do not use Removable Tape on open-graded friction course.

230.3.5 Raised Pavement Markers (RPMs)

Retroreflective RPMs, Class B, are the standard type of RPM.

Internally illuminated RPMs are similar to retroreflective RPMs, but are internally illuminated with LEDs. Internally illuminated RPMs may be used in lieu of retroreflective RPMs to enhance delineation and driver awareness as a mitigation strategy for substandard conditions as defined in the TEM, Section 4.6.

Place all RPMs in accordance with the Standard Plans, Index 706-001 and the MUTCD.

230.4 Wrong-Way Signs and Pavement Markings

Deploy the enhanced signing and pavement markings in this section to improve positive guidance, to minimize driver confusion, and to reduce wrong-way movements. The height of WRONG WAY (R5-1a) signs must be in accordance with Standard Plans, Index 700-101. Include red retroreflective strips on DO NOT ENTER (R5-1) and WRONG WAY (R5-1a) sign columns in accordance with the MUTCD 2A.21. Include white retroreflective strips on ONE WAY (R6-1) sign columns in Exhibits 230-5, 230-6, and 230-7 in accordance with the MUTCD 2A.21. These wrong-way prohibitive signs and pavement...
markings are used to enhance driver awareness. They are in addition to other required signs and pavement markings that are not shown in exhibits.

230.4.1 Exit Ramp Intersections

The standard for signing and pavement marking and advanced countermeasure installation at exit ramp intersections are illustrated in Exhibits 230-1a and 230-1b. The description of the layouts are as follows:

1. Include MUTCD “optional” signs; second DO NOT ENTER (R5-1), second WRONG WAY (R5-1a), and ONE WAY (R6-1) signs.
2. Include NO RIGHT TURN (R3-1) and COMBINATION U-TURN & LEFT TURN PROHIBITION (R3-18) signs.
3. Use 42 inches by 30 inches WRONG WAY (R5-1a) signs.
4. Modify distances between signs and detectors as appropriate for multi-lane ramps.
5. Include yellow 2’-4’ dotted guideline striping on left edge line and white dotted guide line striping on right edge or lane line for left turns between ramps entrances/exits and cross-streets.
6. Include retroreflective yellow paint on ramp median nose where applicable. Include RPMs on ramp median nose in accordance with Standard Plans, Index 706-001.
7. Include a straight arrow and route interstate shield pavement marking in left-turn lanes extending from the far-side ramp intersection through the near-side ramp intersection to prevent premature left turns. Refer to TEM, Section 4.2.4 “Route Shields for Wrong-Way Treatment” for additional information.
8. Include a straight arrow and ONLY pavement message in outside lane approaching the ramp exit.
9. Install wrong-way vehicle detection system and a pair of Light-emitting Diode (LED) Highlighted WRONG-WAY (R5-1a) Signs. For long ramps or for ramps with limited sight distance, two sets of the pairs of Highlighted Signs may be used, as illustrated in Exhibits 230-1a and 230-1b. The Highlighted Sign assembly may be solar powered or AC powered. If powered by AC, provide a power service assembly, conduits, and power conductors from the Highlighted Sign to the local cabinet. The Highlighted Sign must be integrated back to the District’s Traffic Management Center (TMC). Connectivity between the Highlighted Sign and the TMC may be provided by either fiber optic or wireless communications. If fiber optic communications are used, include the fiber optic cable, conduit, and
transmission equipment. If wireless communications are used, include the antenna and communication devices.

230.4.2 Diverging Diamond Intersections

Signing of Diverging Diamond Intersections is an evolving practice and not explicitly addressed in the MUTCD, however typical signing and pavement markings at diverging diamond crossovers and exit ramp intersections are illustrated in Exhibit 230-2 and described as follows:

(1) Include DO NOT ENTER (R5-1), WRONG WAY (R5-1a), and ONE WAY (R6-1) signs.

(2) Include NO RIGHT TURN (R3-1), NO LEFT TURN (R3-2), and COMBINATION U-TURN & LEFT TURN PROHIBITION (R3-18) signs.

(3) Include KEEP RIGHT (R4-7), KEEP LEFT (R4-8), and OBJECT MARKER (OM3) signs.

(4) Use 42 inches by 30 inches WRONG WAY (R5-1a) signs.

(5) Include white 2’-4’ dotted guideline striping for through movements at the crossover location turns as well as at ramp entrances/exits.

(6) Include retroreflective yellow paint on crossover and ramp median nose where applicable. Include RPMs on ramp median nose in accordance with Standard Plans, Index 706-001.

(7) Include a straight arrow pavement marking in all through lanes for the crossover maneuver in both directions on the downstream side of the crossover intersections.

(8) Include Wrong-Way Arrow pavement markings in all through lanes for the crossover maneuver in both directions on the upstream side of crossover intersections.

(9) Include route interstate shield pavement marking in the left turn lane(s) prior to and after the crossover intersection. Refer to TEM, Section 4.2.4 “Route Shields for Wrong-Way Treatment” for additional information.

(10) Include a left turn arrow and ONLY pavement message in exclusive left turn lanes approaching ramp entrances.

See FDM D217 for more information on Diverging Diamond Interchanges.
230.4.3 Divided Arterials and Collectors

Use Wrong-Way Arrow pavement markings, DO NOT ENTER (R5-1) signs, and WRONG WAY (R5-1a) signs at intersections with median widths of 20 feet or greater. See Exhibits 230-3 and 230-4 for recommended configurations.

At intersections with positive offset left-turns, use DO NOT ENTER (R5-1) signs with dimensions of 48 inches by 48 inches. See FDM 212.14.4 for further information on offset left turn lanes.

Place the median DO NOT ENTER (R5-1) sign with the face oriented toward the connection it is intended to regulate. For median nose widths less than 10 feet, the median DO NOT ENTER (R5-1) sign is optional.

For Context Classifications C1, C2, C3C, and C4 place Wrong-Way Arrow pavement markings in all lanes prior to connection (i.e., side streets, commercial driveways, or driveways) controlled by a traffic control device. Place Wrong-Way Arrow pavement markings no closer than 300 ft spacing. For all other Context Classifications, consider placing Wrong-Way Arrow pavement markings as described above where high-risk locations are present. Coordinate with the District Traffic Operations Engineer (DTOE) to evaluate high-risk locations using factors such as land-use, presence of lighting, history of impaired driving, crash history, and an over-represented population of licensed drivers 65 and older. Determination of high-risk locations is at the discretion of the DTOE.

At intermediate ends of medians, consider the use of KEEP RIGHT (R4-7) sign on medians less than 20 feet.

230.4.4 One-Way Pairs and Divided Arterials/Collectors with One-Way Egress

One-Way Egress is a condition where a two-way or one-way side street, commercial driveway, or driveway connects to a one-way arterial/collector or divided arterial/collector without a median opening.

See Exhibit 230-5 for recommended configurations.

Place a ONE WAY (R6-1) sign at connection (i.e., side streets, commercial driveways, or driveways) controlled by a traffic control device with one-way egress. ONE WAY (R6-1) sign shall be placed on far side median or shoulder depending on facility type.
At driveway controlled by a traffic control device with one-way egress, place a RIGHT TURN ARROW (FTP-55R-06) sign or a LEFT TURN ARROW (FTP-55L-06) sign below the STOP (R1-1) sign. Verify this sign has not already been installed by District driveway permit. At side street connections, place a Mandatory Lane Control (R3-5) sign below the STOP (R1-1) sign.

For Context Classifications C1, C2, C3C, and C4 place Wrong-Way Arrow pavement markings in all lanes prior to connection (i.e., side streets, commercial driveways, or driveways) controlled by a traffic control device with one-way egress. Place Wrong-Way Arrow pavement markings no closer than 300 ft spacing. For all other Context Classifications, consider placing Wrong-Way Arrow pavement markings as described above where high-risk locations are present. Coordinate with the District Traffic Operations Engineer (DTOE) to evaluate high-risk locations using factors such as land-use, presence of lighting, history of impaired driving, crash history, and an over-represented population of licensed drivers 65 and older. Determination of high-risk locations is at the discretion of the DTOE.

230.4.5 Undivided One-Way Streets

For two-way street approaches, place the following signs and pavement markings as illustrated in Exhibit 230-6:

1) Place the corresponding turn prohibition (R3 Series) symbolic sign on the right-hand side of the approach street.

2) Place DO NOT ENTER (R5-1) signs on both sides of the one-way street.

3) Place Wrong-Way Arrow pavement markings in all lanes upstream of side street.

4) Add turn and through lane-use arrow on approaches to the one-way street.

For one-way approaches, place the following signs and pavement markings as illustrated in Exhibit 230-7:

1) Place the corresponding turn prohibition (R3 Series) symbolic sign. Where overhead structures exist, consider placement of a secondary turn prohibition sign over the lane or closest to the direction it is prohibiting.

2) Place DO NOT ENTER (R5-1) signs on both sides of the one-way street.

3) Place Wrong-Way Arrow pavement markings in all lanes prior to the side street.
230.4.6 Two-Way Signalized Intersections

Provide the following signing and pavement markings as illustrated in *Exhibit 230-8* for intersections serving two-way traffic where the distance from the side street stop bar to the arterial receiving lane meets or exceeds 60 ft:

1) Place yellow 2’-4’ dotted guide center line for left turn movement onto a two-way state route.

2) Where design or conditions deem it appropriate to provide enhanced positive guidance for the driver, include yellow 2’-4’ dotted guide center line for left turn movement off the state route.

3) For multiple left turn lanes, place white 2’-4’ dotted guideline for right edge or lane line. For single left turn lane, white 2’-4’ dotted guideline may be provided on right edge line.

If a two-way street crosses a one-way street at a signalized intersection, the criteria of *FDM 230.4.5* applies.
STANDARD SIGNING AND PAVEMENT MARKING
AT EXIT RAMP INTERSECTIONS

LEGEND
- Wrong-Way Arrows
- Wireless Antenna
- Lane Assignment Arrows

Installation Details

1. Include vertical red retroreflective strips on all WRONG WAY sign posts. (See FDM 230.4)

2. Distance varies, place the LED Highlighted signs in between the other (regular) Wrong Way signs.

3. Include if connecting road is undivided or has traversable median.

NOT TO SCALE

EXHIBIT 230-1a
06/01/2021
Installation Details

1. Include vertical red retroreflective strips on all WRONG WAY sign posts. (See FDM 230.4)

2. On narrow medians, consider placing WRONG WAY sign(s) facing toward the ramp it is intended to regulate.

 - Distance varies, place the LED Highlighted signs in between the other (regular) Wrong Way signs.

 - Include if connecting road is undivided or has traversable median.
WRONG-WAY SIGNING AND PAVEMENT MARKING AT 4-LEG INTERSECTIONS ALONG DIVIDED ARTERIALS/COLLECTORS

Installation Details

* If median nose width is <10 ft, this R5-1 is optional. See FDM 230.4.3

Legend

- Direction of travel
- Wrong Way Arrow
- Lane Assignment Arrow

WRONG WAY
R5-1
R5-1a

Median Width ≥ 20'

200' min.
50' typ.

50' typ.
200' min.

Median Width ≥ 20'

WRONG WAY
Legend

Direction of travel
Wrong Way Arrow
Lane Assignment Arrow

R5-1
R5-1a

Median Width ≥ 20'

200' typ.
50' typ.

50' typ.
200' typ.

Median Width ≥ 20'

* Optional

EXHIBIT 230-3
06/01/2021

EXHIBIT 230-4
06/01/2021
ONE-WAY PAIRS AND DIVIDED ARTERIALS/COLLECTORS WITH ONE-WAY EGRESS

Installation Details

1) R6-1 shall be placed on far side median or shoulder depending on facility type.

2) RIGHT TURN ARROW (FTP-55R-06) or LEFT TURN ARROW (FTP-55L-06) typically added by district driveway permit.

3) Mandatory Movement Lane Control (R3-5) sign must be added to side street.

* See FDM 230.4.4 for how often to place Wrong-Way arrows based on context classification.

Legend

Direction of travel
Wrong Way Arrow

TYPICAL TWO-WAY APPROACH TO UNDIVIDED ONE-WAY STREET

Installation Details

1) Wrong-Way signing and pavement markings for signalized and stop control.

2) Place Wrong-Way arrows four feet upstream of stop bar, if present.

Legend

Direction of travel
Wrong Way Arrow
Lane Assignment Arrow

TYPICAL ONE-WAY APPROACH TO UNDIVIDED ONE-WAY STREET

Installation Details

1) Wrong-Way signing and pavement markings for signalized and stop control.

2) Place Wrong-Way arrows four feet upstream of stop bar, if present.

Legend

Direction of travel
Wrong Way Arrow
Installation Details

1. Center line extensions in the intersection shall be dotted guide yellow lines.

2. $d \geq 60$ ft. The distance of the left turn from the side street stop bar to the arterial receiving lane meets or exceeds 60 ft. See FDM 230.4.6.

Legend

- Arterial/Collector Traffic
- Lane Assignment Arrow

NOT TO SCALE

EXHIBIT 230-8

06/01/2021
230.5 Signing and Pavement Marking Coordination

Coordination with other offices and agencies is a very important aspect of signing and pavement marking design. The offices discussed in this section are those that are typically involved in developing signing and marking plans; however, there may be other offices or agencies involved.

The District Utilities Engineer provides the coordination between the designer and the various utilities. The Utilities Section may assist in identifying or verifying conflicts with overhead and underground utilities. The District Utilities Engineer should be contacted as early in the design phase as possible.

The Structures EOR provides the design of the sign structure and foundation for overhead cantilever and overhead truss sign assemblies. The Structures EOR should be contacted early in the design phase to allow adequate time for coordination with the Geotechnical Engineer in obtaining the necessary soils information.

Contact the State Outdoor Advertising and Logo Manager on any project affecting business logo structures. Refer to FDM 110.5.5 for requirements and additional information.

230.6 Typical Signing and Pavement Marking Configurations

The following sub-sections describe standard signing and pavement marking applications for midblock crosswalks, Florida scenic trails, median openings along divided arterials/collectors, roadway transitions, stop controlled intersections along divided arterials/collectors, and residential and minor street terminations.
230.6.1 Midblock Crosswalks

Typical signing and pavement markings for stop controlled and signal controlled midblock crosswalks are illustrated in **Exhibit 230-9** and described as follows:

1. Include **PEDESTRIAN TRAFFIC** (W11-2), **DIAGONAL ARROW** (W16-7p), **AHEAD** (W16-9p), and **STOP HERE FOR PEDESTRIANS** (R1-5p) signs.
2. Include 24” white stop line placed 40 feet plus or minus 10 feet in advance of the marked crosswalk.
3. Include 6” solid white lane lines 100 feet in length upstream of each approach and terminating at the stop line.
4. Include special emphasis crosswalk markings consistent with **Standard Plans, Index 711-001**.

230.6.2 Florida Scenic Trails

Typical signing and pavement markings for Florida Scenic Trails are illustrated in **Exhibit 230-10** and described as follows:

1. Include **FLORIDA NATIONAL SCENIC TRAIL 1000 FEET**, **PEDESTRIAN CROSSING** (W11-2), **DIAGONAL ARROW** (W16-7p), and **AHEAD** (W16-9p) signs.
2. Include **FLORIDA NATIONAL SCENIC TRAIL**, **TRAIL MARKER**, and **HIKING TRAIL** (RS-068) signs.
3. Include special emphasis crosswalk markings consistent with **Standard Plans, Index 711-001**.

230.6.3 4-Leg Stop Controlled Intersections Along Divided Arterials/Collectors

Typical signing and pavement markings for stop controlled median openings along divided highways are illustrated in **Exhibit 230-11** and described as follows:

1. Include **DIVIDED HIGHWAY CROSSING** (R6-3), **STOP** (R1-1), and **ONE WAY** (R6-1) signs.
(2) Include YIELD (R1-2) and ONE WAY (R6-1) signs in the median when the median nose width is 30 feet or greater.

(3) Divided highway signs (R6-3) may be on the same structure with the STOP and ONE WAY signs or on a separate structure.

(4) See the MUTCD and Standard Plans, Index 711-001 for additional pavement marking details.

(5) See FDM 230.4 for Wrong-Way signs and pavement markings.

230.6.4 3-Leg Stop Controlled Intersections Along Divided Arterials/Collectors

Typical signing and pavement markings for 3-leg stop controlled intersections along divided arterials/collectors are illustrated in Exhibit 230-12 and described as follows:

(1) Include DIVIDED HIGHWAY CROSSING (R6-3a), STOP (R1-1), and ONE WAY (R6-1) signs.

(2) Include YIELD (R1-2) and ONE WAY (R6-1) signs in the median when the median nose width is 30 feet or greater.

(3) Include OBJECT MARKER (OM1-3) as shown and in accordance with Specification 705 and Standard Plans, Index 700-010.

(4) See the MUTCD and Standard Plans, Index 711-001 for additional pavement marking details.

(5) Provide sheeting on signs and object markers in accordance with Specification 993.

(6) See FDM 230.4 for Wrong-Way signs and pavement markings.

230.6.5 Residential and Minor Street Terminations

Typical signing and pavement markings for residential and minor street terminations are illustrated in Exhibit 230-13 and described as follows:

(1) For minor street terminations, include STOP (R1-1), LARGE ARROW (W1-6), and TWO DIRECTIONAL LARGE ARROW (W1-7), signs. Include OBJECT MARKER (OM1-3) as shown and in accordance with Specification 705 and Standard Plans, Index 700-010.
230.6.6 Roadway Transitions (2 Lane Undivided to 4 Lane Divided)

Typical signing and pavement markings for roadway transitions from 2-lane undivided to 4-lane divided are illustrated in Exhibit 230-14 and described as follows:

(1) Include DIVIDED HIGHWAY (W6-1), DIVIDED HIGHWAY ENDS (W6-2), TWO WAY TRAFFIC (W6-3), DO NOT ENTER (R5-1), KEEP RIGHT (R4-7) and LANE ENDS (W4-2) signs.

(2) For left roadway centered on existing roadway scheme, include LANE ENDS MERGE LEFT (W9-2L), and RIGHT LANE ENDS (W9-1) signs.

(3) For right roadway centered on existing roadway scheme, include LANES ENDS MERGE RIGHT (W9-2R), and LEFT LANE ENDS (W9-1L) signs.

230.6.7 Channelized Turn Lanes

Typical signing and pavement markings for channelized turn lanes are illustrated in Exhibit 230-15 and described as follows:

(1) Include STOP (R1-1) sign.

(2) For yielding right turn lanes include YIELD (R1-2) sign.

(3) Include right or left turn lane arrows as applicable.
TYPICAL SIGNING AND PAVEMENT MARKING
FOR MIDBLOCK CROSSWALKS

Note:
The details shown do not depict the signing and markings for multi-lane roadways with divided medians. For these applications, additional signs shall be installed in the median side. Minimum width of Mid-Block Crosswalks is 10'.

<table>
<thead>
<tr>
<th>SPEED MPH</th>
<th>A-SUGGESTED DISTANCE (Ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 or less</td>
<td>200</td>
</tr>
<tr>
<td>26 to 35</td>
<td>250</td>
</tr>
<tr>
<td>36 to 45</td>
<td>300</td>
</tr>
</tbody>
</table>

LEGEND

- Direction of Traffic
- Bike Lane
TYPICAL SIGNING AND PAVEMENT MARKING
FOR FLORIDA NATIONAL SCENIC TRAILS

NOTE: The FLORIDA NATIONAL SCENIC TRAIL sign will be provided by the US Forest Service.

LEGEND

FLORIDA NATIONAL SCENIC TRAIL SIGN

NOT TO SCALE
TYPICAL SIGNING AND PAVEMENT MARKING FOR AT 4-LEG STOP CONTROLLED INTERSECTIONS ALONG DIVIDED ARTERIALS/COLLECTORS

Figure 1
NOSE WIDTHS LESS THAN 30'

Figure 2
NOSE WIDTHS 30' AND GREATER

Legend
Direction of travel

Installation Details

1) Divided Highway signs (R6-3) may be on the same structure with the STOP and ONE WAY signs or on a separate structure.

2) See the MUTCD and Standard Plans, Index 711-001, for additional pavement marking details.

3) For additional signing and pavement marking details to discourage Wrong-Way Driving, see FDM 230.4.3
TYPICAL SIGNING AND PAVEMENT MARKING FOR AT 3-LEG STOP CONTROLLED INTERSECTIONS ALONG DIVIDED HIGHWAYS

Figure 1
NOSE WIDTHS LESS THAN 30'

Figure 2
NOSE WIDTHS 30' AND GREATER

Legend
→ Direction of travel

Installation Details
1) Major streets to be evaluated on a case-by-case basis.
2) Install Object Markers in accordance with Index 706-010
3) See Index 710-001 for pavement markings.
4) Provide sheeting on signs and object markers in accordance with Specification 993.
5) For additional signing and pavement marking details to discourage Wrong-Way Driving, see FDM 230.4.3

EXHIBIT 230-12
06/01/2021
TYPICAL SIGNING AND PAVEMENT MARKING FOR RESIDENTIAL AND MINOR STREET TERMINATIONS

Installation Details

1) Major streets to be evaluated on a case-by-case basis.
2) Install Object Markers in accordance with Index 700-000
3) See Index 711-001 for pavement markings.
4) Provide sheeting on signs and object markers in accordance with Specification 993.

Legend

- Direction of travel

Figure 1

TRAFFIC CONTROLS FOR MINOR STREET TERMINATION

Figure 2

TRAFFIC CONTROLS FOR CUL-DE-SAC OR DEAD END

EXHIBIT 230-13

06/01/2021
TYPICAL SIGNING AND PAVEMENT MARKINGS FOR ROADWAY TRANSITIONS

LEFT ROADWAY CENTERED ON EXISTING ROADWAY

White Delineators Shall Be Used Throughout The Transition Where Design Speeds Are Greater Than 50 mph.

W4-2

18' Yellow
6' Double Yellow

15:1 Std. Taper (4:1 Minimum Not Less Than 50')

RIGHT ROADWAY CENTERED ON EXISTING ROADWAY

White Delineators Shall Be Used Throughout The Transition Where Design Speeds Are Greater Than 50 mph.

W4-2

18' Yellow
6' Double Yellow

15:1 Std. Taper (4:1 Minimum Not Less Than 50')

SCHEMES FOR TRANSITION - 2 LANE / 4 LANE ROADWAY

SPEED LIMITS (MPH)
- 60
- 55
- 50
- 45
- 40
- 35
- 30
- 25
- 20
- 15
- 10
- 5

POSTED SPEED LIMIT (MPH)
- 50 OR MORE
- 45
- 40
- 35
- 30 OR LESS

DESIGN SPEED 'S' (MPH)
- 40 OR LESS
- 45 OR GREATER

LENGTH 'L' (FT.)
- L = W5/100
- L = W5

NOTE:
W9-1 & W9-2 are supplemental to the W4-2 sign and may be deleted if space is not available. The W9-1 should be used if only one supplemental sign is installed.