100 Introduction

FDOT Design Manual

PURPOSE:

This Florida Department of Transportation (FDOT) Design Manual (FDM), sets forth geometric and other design criteria, as well as procedures, for FDOT projects. The information contained herein applies to the preparation of contract plans for roadways and structures.

AUTHORITY:

Sections 20.23(3)(a) and 334.048(3), Florida Statutes.

SCOPE:

This procedure impacts anyone preparing roadway and structures construction plans for the Department.

PROCEDURE:

The criteria in this manual represent requirements for the State Highway System which must be met for the design of FDOT projects unless approved Design Exceptions or Design Variations are obtained in accordance with procedures outlined in this manual.

Roadway and structures design is primarily a matter of sound application of acceptable engineering criteria and standards. While the criteria contained in this manual provide a basis for uniform design practice for typical roadway design situations, precise standards which would apply to individual situations must rely on good engineering practice and analyses.

Special requirements for Non-Conventional Projects, e.g., Design-Build Projects and all Non-Design-Bid-Build Public-Private-Partnership Projects, may be shown in a “Modification for Non-Conventional Projects” box as shown in the following example:

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete the last three paragraphs above and see the RFP:</td>
</tr>
</tbody>
</table>

100-Introduction
These boxes are located at the beginning of the chapter or after a section, paragraph or table which is to be modified. The requirements listed within these boxes are only applicable to Non-Conventional Projects.

The Author of a Request for Proposal (RFP) for a Non-Conventional project must use the standard boilerplate language as a starting point in developing RFPs on all Department Design-Build projects. Section V of the Design-Build Boilerplate establishes Department, FHWA and AASHTO criteria, procedures, guidelines and design codes that serve as design constraints to be used in the performance of the work. The governing regulations list in Section V cannot be modified without the approval of the State Construction Office. The standard boilerplate language is available at the FDOT Construction Office website:

https://www.fdot.gov/construction/DesignBuild/DBDocuments/DBDocsMain.shtm

Pre-scoping questions have been developed to aid in the establishment of project constraints and requirements to be included in the RFP. The Pre-scoping questions can be found at:

Situations will exist where these criteria will not apply. The inappropriate use of and adherence to these criteria does not exempt the engineer from the professional responsibility of developing an appropriate design. The engineer is responsible for identifying those criteria which may not apply to a particular design, and for obtaining the necessary Design Exception or Design Variation to achieve proper design.
1. **ORGANIZATION**

 Background

 In January 2018, the **FDM** replaced the Plans Preparation Manual (PPM) that has circulated since January 1998.

 Organization

 The **FDM** is a four-part manual. **Part 1** contains development and processes, **Part 2** contains design criteria, and **Part 3** contains material concerning traditional plans preparation and assembly. **Part 9** is currently under development to provide material concerning the preparation and assembly of model-centric plans.

2. **DISTRIBUTION**

 This document is available electronically on the FDM web page:

 \[https://www.fdot.gov/roadway/فد\]

 FDM users can register to receive notification of updates and **Roadway Design Bulletins** online through the Department’s Contact Management Database at:

 \[https://fdotewp1.dot.state.fl.us/ContactManagement/Utilities/login.aspx\]

 For information on updates and **Roadway Design Bulletins**, contact:

 Roadway Design Office, Mail Station 32
 Telephone (850) 414-4310
 FAX Number (850) 414-5261

 \[https://www.fdot.gov/roadway/فد\]

3. **REVISIONS AND UPDATES**

 FDM users are encouraged to submit comments and suggestions for changes to the manual to the State Roadway Design Office. When ideas or suggestions are received they will be reviewed by appropriate Roadway or Structures Design staff in a timely manner and will be coordinated with other offices affected by the proposed change. Items warranting immediate change will be made with the approval of the State Roadway Design Engineer and/or State Structures Design Engineer in the form of a **Design Bulletin**.

 Roadway Design Bulletins are numbered based on the two-digit calendar year and bulletin number (YY- ##). Notices are sent to all users who are registered to

100-Introduction
receive notifications for Roadway Design Bulletins and updates to the FDM. Design Bulletins affecting the FDM will remain effective until either:

1. An official manual revision is published; or
2. The Design Bulletin is made void.

Roadway Design Bulletins are posted online at:

https://www.fdot.gov/roadway/bulletin/

Structures design issues, which are subject to modification and revision, will be processed in coordination with the State Structures Design Office. See the Structures Manual for more information on this process.

Proposed revisions are distributed in draft form to each District’s Roadway Design Engineer or Structures Design Engineer. These experienced engineers provide the necessary technical and practical input on how the revision will potentially affect their District’s operations and customers. Periodically, these engineers meet collectively with the State Roadway Design Office or the State Structures Design Office to discuss comments on the proposed revisions. Proposed revisions with comments are then presented to the District Design Engineers (DDE) for review and comment. Once the comments are addressed, the Florida FHWA Division Office is given the opportunity to review the revisions as per the Department’s Stewardship Agreement with FHWA.

The State Roadway Design Office will also coordinate proposed revisions or additions with affected offices within the Central Office. Substantive revisions that result in policy change may be coordinated with the Executive Committee for adoption.

Revisions and updates are adopted or rejected by the State Roadway Design Engineer (for Roadway Design issues) or the State Structures Design Engineer (for Structures Design issues). Requirements mandated by FHWA or State Rules will be coordinated with the DDEs and affected offices within the Central Office and are considered compulsory.

Notification of the adopted revisions and addenda will be distributed to registered users of the manual through the Department’s Contact Management Database.
4. DEVELOPMENTAL DESIGN CRITERIA

Developmental Design Criteria (DDC) provides a process for the Department to develop future *FDM* criteria for new or innovative design concepts and technologies.

A Design Memorandum will be released to notify the Districts of the initial availability of each *DDC*.

The *DDC* is published separately from the *FDM*; however, they will be listed with hyperlinks to the *DDC* on the *FDM* webpage along with the *FDM* chapters.

A Central Office Monitor (Monitor) is assigned to each *DDC*. The Monitor oversees the development of the criteria, monitors the use of the *DDC* on projects, and makes revisions and updates as needed.

The *DDC* must be used to the extent practicable on projects containing the applicable design elements; however, must not adversely affect the production schedule. Determination of applicability versus project schedule is at the discretion of the District Design Engineer. Include the Monitor as a lead reviewer in the Electronic Review Comments (ERC) system when the *DDC* is used.

The Department’s Design Variation process is not applicable to *DDC*. When requesting deviations from *DDC*, designers must contact the assigned Monitor to obtain written approval. Written approvals for deviations will be used by the Monitor to further develop *DDC* language. Designers are not required to submit written documentation when requesting deviations. The sole purpose of this process is to aid the Monitor in understanding the challenges faced by designers in following the *DDC*.

Revisions to *DDC* may be made by the Department at any time and the last revision date will be noted within each chapter. Revisions to *DDC* are not retroactive for projects where the design effort for applicable design elements is substantially complete as determined by the District Design Engineer.

Modification for Non-Conventional Projects:

Delete item 4 above and see the RFP.
TRAINING:
None required.

FORMS:
All forms related to this manual are found in *FDM 103*.
102 Glossary of Terms

102.1 General

The following definitions used in the FDOT Design Manual (FDM) are assigned for consistency of understanding and interpretation of the processes and criteria contained within. These definitions may not be consistent with AASHTO, MUTCD, NCHRP, or other documents referenced in this manual. When definition of terms conflict with other FDOT manuals, use the definitions provided in this chapter.

102.2 FDM Definitions

Access Classification
A classification of a roadway that determines the standards to apply to the design of medians, median openings, connections, and signal spacing. See FDM 201 for additional information.

AADT
Annual Average Daily Traffic (AADT), is the total volume of vehicle traffic of a roadway for a year divided by 365 days.

Area Designation (Rural, Urban, Urbanized)

Rural: Places outside the boundaries of concentrated populations that accommodate higher speeds, longer trip lengths and freedom of movement, and are relatively free of street and highway networks.

Urban: A geographic region comprising as a minimum the area inside the United States Bureau of the Census boundary of an urban place with a population of 5,000 or more persons, expanded to include adjacent developed areas as provided for by Federal Highway Administration (FHWA) regulations. The FHWA Urban Boundary maps are available online at:

https://www.fdot.gov/roadway/BufferMaps/Default.shtm

Urbanized: A geographic region comprising as a minimum the area inside an urban place of 50,000 or more persons, as designated by the United States Bureau of the Census, expanded to include adjacent developed areas as provided for by Federal Highway Administration regulations. Urban areas with
a population of fewer than 50,000 persons which are located within the expanded boundary of an urbanized area are not separately recognized.

As-Built Plans
The Contract Plans after construction is completed, all revisions including those occurring during construction, have been included and with the title on the key sheet changed to Final Plans.

Blended Transitions
Blended transitions are areas where the elevation of a roadway and a sidewalk, or shared use path, are the same along the width of a pedestrian crossing. Blended transitions can vary in geometrics. For flush shoulder roadways, blended transitions are the portion of the sidewalk, or shared use path, that meets the traveled way, bicycle lane, or paved shoulder. For curbed roadways, blended transitions are elevation transitions of the roadway such as a raised crosswalk, raised intersection, or depressed corner. Detectable warnings must be placed in the same locations as that of a curb ramp.

Bicycle Way
Any road, path, or way which by law is open to bicycle travel, regardless of whether such facilities are signed and marked for the preferential use by bicyclists or are to be shared with other transportation modes. Examples include bicycle lanes, paved shoulders, shared use paths, and traffic lanes.

C-D Road
Collector-Distributor Roads are limited access roadways provided within a single interchange, or continuously through two or more interchanges on a freeway segment. They provide access to and from the freeway and reduce and control the number of ingress and egress points on the through freeway. They are similar to continuous frontage roads except that access to abutting property is not permitted.

Context Classification
Description of the land use and transportation context where a roadway is found. Roadways are designed to match the characteristics and demands defined by the appropriate Context Classification criteria. See *FDM 200* for additional information.

Control Vehicle
An infrequent vehicle allowed to encroach into adjacent lanes, curbs, and sidewalks of intersections or driveways when making turning movements. Geometric design of intersections and driveways are based on the design vehicle.
Conventional Project
Projects for which the preparation of the contract documents is a ‘stand-alone’ effort resulting in Plans, Specifications and Estimates (PS&E) package that is advertised for a Construction Contract. These projects are often referred to as “design-bid-build” projects.

Design Speed
A principal design control that regulates the selection of many of the project standards and criteria used for design. There are three categories of design speed:

- **High Speed**: Design Speeds 50 mph and greater.
- **Low Speed**: Design Speeds of 45 mph and less.
- **Very Low Speed**: Design Speeds 35 mph and less.

Design Vehicle
Vehicles with representative weight, dimensions, and operating characteristics used to establish highway design controls for accommodating vehicles of designated classes. The design vehicle is the largest frequent user of a given roadway; see *FDM 201.5*.

Functional Classification
The grouping of streets and highways into classes, or systems, according to the character of service they are intended to provide.

- **Arterial**: Divided or undivided roadways that provide continuous routes which serve through traffic, high-traffic volumes, and long average trip lengths. Arterials include expressways without full control of access, US numbered highways and principal state roads that connect cities and towns. Arterials are further classified by context.

- **Collector**: Divided or undivided roadway which serves to link arterials with local roads or major traffic generators. They serve as transition link between mobility needs and land use needs. Collectors may include minor state roads, major county roads, and major urban and suburban streets. Collectors on the SHS are further classified by context.

- **Freeway**: The terms Freeway, Interstate, Toll Road, and Expressway are often used synonymously when establishing criteria within this manual. A Freeway is a divided highway that provides full control of access (i.e., Limited Access) and is intended for long distance trips. Interstate is a federally-funded network of freeways that must meet national design criteria and operational standards. Toll Road is a general term for any road that requires the user to pay to use all
or a portion of the road. Expressways are freeways situated in major metropolitan areas with primary service for commuters; and may or may not be tolled. Movement of traffic, free of interference and conflicts, is of primary importance for these types of facilities. Essential elements include medians, grade separations, interchanges, and, in some cases, collector-distributor roads and frontage roads. Freeways may be further classified as rural, urban, or urbanized.

Grade Separation
A crossing of two roadways, or a roadway with a railroad or pedestrian pathway, at different levels.

Highway
A highway is a high-speed roadway (divided or undivided) intended for travel between destinations like cities and towns.

Intersection
Intersection types can be categorized by intersection basic type, functional classification, control type, area type, or a combination of these classifiers, depending on the element of design.

Lanes

Auxiliary Lane: The designated widths of roadway pavement marked to separate speed change, turning, passing, and weaving maneuvers from through traffic. They may also provide short capacity segments.

Bicycle Lane: A bicycle lane (bike lane) is a portion of a curbed roadway which has been designated by striping and special pavement markings for use by bicyclists.

Express Lane: An express lane is a type of managed travel lane physically separated from general use lanes, or general toll lanes, within a roadway corridor. Express lanes use dynamic pricing through electronic tolling in which toll amounts are set based on traffic conditions.

General Use Lane: Any untolled traffic lane that is not set aside for a specific purpose such as Express lanes.
HOV Lane: Special designated travel lanes reserved for high occupancy vehicles (HOV); e.g. buses and carpool vehicles. They may be adjacent to general use lanes or separated.

Travel Lane: A travel lane is the designated portion of a roadway intended to carry motorized through traffic. Generally, travel lanes equate to the basic number of lanes for a facility; e.g. 4-lane divided highway has 4 travel lanes.

Traffic Lane: The term traffic lane may be used synonymously with traveled way in this manual. See definition for traveled way.

Local Agency Funding Agreement (LFA)
An agreement used when Local Agencies provide funds to the Department for a specific project, often that are not on the State Highway System. The conveyance of funds and work to be accomplished are documented with a signed Local Agency Funding Agreement. The Agreement typically includes provisions for additional funding for contingency. These Agreements must be coordinated through the Comptroller’s office and is covered by procedure locally funded agreements (non-PTO) – financial provisions and processing (Topic Number: 350-020-300-n).

Local Road
Roadways which provide high access to abutting property, low average traffic volumes, and short average trip lengths. Local roads may include minor county roads, minor urban and suburban subdivision streets, and graded or unimproved roads.

Low Volume and High Volume
Certain operating characteristics and driver expectancy on highways. Standards for these controls are based on area type and are given in *Table 102.1.1*.
Table 102.1.1 AADT Thresholds for Low and High-Volume Roadways

<table>
<thead>
<tr>
<th>Facility</th>
<th>Urban</th>
<th>Rural</th>
<th>Urban</th>
<th>Rural</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low Volume AADT</td>
<td>High Volume AADT</td>
<td>Low Volume AADT</td>
<td>High Volume AADT</td>
</tr>
<tr>
<td>Freeway</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Lane Facility</td>
<td>57,000</td>
<td>69,000</td>
<td>46,000</td>
<td>56,000</td>
</tr>
<tr>
<td>6-Lane Facility</td>
<td>86,000</td>
<td>103,000</td>
<td>69,000</td>
<td>83,000</td>
</tr>
<tr>
<td>8-Lane Facility</td>
<td>114,000</td>
<td>138,000</td>
<td>92,000</td>
<td>111,000</td>
</tr>
<tr>
<td>Arterial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Lane Facility</td>
<td>16,000</td>
<td>20,000</td>
<td>9,000</td>
<td>14,000</td>
</tr>
<tr>
<td>4-Lane Facility</td>
<td>37,000</td>
<td>43,000</td>
<td>38,000</td>
<td>47,000</td>
</tr>
<tr>
<td>6-Lane Facility</td>
<td>55,000</td>
<td>64,000</td>
<td>58,000</td>
<td>71,000</td>
</tr>
<tr>
<td>8-Lane Facility</td>
<td>69,000</td>
<td>80,000</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Collector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Lane Facility</td>
<td>11,000</td>
<td>16,000</td>
<td>8,000</td>
<td>13,000</td>
</tr>
<tr>
<td>4-Lane Facility</td>
<td>37,000</td>
<td>45,000</td>
<td>30,000</td>
<td>38,000</td>
</tr>
</tbody>
</table>

LOW VOLUME ROADWAYS: Design Year AADT is ≤ low volume AADTs shown.

HIGH VOLUME ROADWAYS: Design Year AADT is ≥ high volume AADTs shown.

Maintenance Agreement

An agreement with a Local Agency for the maintenance responsibilities of a federally funded project. This agreement is required for construction projects let by FDOT for work not on the State Highway System and must be obtained prior to the authorization for construction of the project.

Match Existing

This term is used when the construction a proposed element (e.g. roadway, sidewalk, striping) may need to be adjusted at the termini to harmonize with the existing element being connected to. For Resurfacing Projects, this term is used when the existing
pavement cross slopes are not intentionally modified or changed; i.e. applicable to constant depth milling and resurfacing.

Paratransit
Comparable transportation service required by the American with Disabilities Act (ADA) for individuals with disabilities who are unable to use fixed route transportation systems. The specific requirements and parameters for this service, including eligibility and service requirements, are contained in 49 CFR Part 37, Subpart F.

Pedestrian Access Route
A continuous and unobstructed path of travel provided for individuals with disabilities within or coinciding with a pedestrian way.

Pedestrian Way
A space for pedestrian travel separated from traffic lanes. Sidewalks, shared use paths, footpaths and shoulders are pedestrian ways; however, footpaths and shoulders are not Pedestrian Access Routes, since they lack specific improvements or provisions to accommodate persons using mobility aids.

Projects of Division Interest (PoDI)
PoDIs are projects that have an elevated risk, contain elements of higher risk, or present a meaningful opportunity for FHWA involvement to enhance meeting program or project objectives. Project selection is risk-based. Stewardship and oversight activities will be directed toward addressing identified risks. This may include retaining certain project approvals, where permissible, or directing stewardship or oversight activities to a specific phrase or element of the project. Additional information is included in FDM 128.

Production Date
The committed completion date for final plans (as described in FDM 301.2.5) and Certifications (e.g., utilities, permits, R/W, environmental). Marks the date that the project is ready for the Plans, Specifications, and Estimates (PS&E) Submittal(s).

Ramp
A turning roadway that connects a Freeway to a crossing roadway within an interchange. The components of a ramp are a terminal at each leg and a connecting road. The geometry of the connecting road ramp usually involves some curvature and a grade.

Roadway
Roadways consist of prepared surfaces (asphalt or concrete pavement) for use by vehicles, including shoulders and adjacent bicycle lanes. A divided roadway provides a separation between opposing traffic lanes.
Shoulder Break
Point of intersection of the shoulder slope plane and the embankment or ditch slope plane; i.e. where the full-width shoulder slope of 0.05 or 0.06 “breaks” to a front slope of 1:X.

Strategic Intermodal System (SIS)
A transportation system comprised of facilities and services of statewide and interregional significance, including appropriate components of all modes. The highway component includes all designated SIS Highway Corridors, Emerging SIS Highway Corridors, SIS Intermodal Connectors, and Emerging SIS Highway Intermodal Connectors.

Streets
The local system which provides direct access to residential neighborhoods and business districts, connects these areas to the higher order road systems and offers the highest access to abutting property; sometimes deliberately discouraging through-traffic movement and high speeds.

Traveled Way
The traveled way is the portion of the roadway for the movement of vehicles, exclusive of shoulders and bicycle lanes. The traveled way includes travel lanes and auxiliary lanes.

Truck Traffic
Truck traffic is sometimes used as a qualifying control. Truck traffic is expressed as a percent of the AADT or daily count (24 hr.).
103 Standard Forms

103.1 General

This chapter contains fillable portable document format (PDF) of the standard forms found in the FDOT Design Manual (FDM). The form number assigned to each form corresponds to the FDM chapter in which it is discussed. Refer to the related chapter for instruction on the use of each form.
Bridge Development Report Submittal Checklist

Project Name __

Financial Project ID __

FA No. __________________________ Projects of Division Interest __________

<table>
<thead>
<tr>
<th>NHS</th>
<th>yes</th>
<th>no</th>
</tr>
</thead>
</table>

Date __________________________ FDOT Project Manager __________________________

<table>
<thead>
<tr>
<th>ITEMS</th>
<th>STATUS(^{(b)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Typical Sections for Roadway and Bridge (^{(a)})</td>
<td>Select Status</td>
</tr>
<tr>
<td>2. Roadway Plans in Vicinity of Bridge (^{(a)})</td>
<td>Select Status</td>
</tr>
<tr>
<td>3. Maintenance of Traffic Requirements (^{(a)})</td>
<td>Select Status</td>
</tr>
<tr>
<td>4. Bridge Hydraulics Report (^{(c)})</td>
<td>Select Status</td>
</tr>
<tr>
<td>5. Geotechnical Report (^{(c)})</td>
<td>Select Status</td>
</tr>
<tr>
<td>6. Bridge Corrosion Environmental Report (^{(c)})</td>
<td>Select Status</td>
</tr>
<tr>
<td>7. GRS Abutments Feasibility Assessment (^{(d)})</td>
<td>Select Status</td>
</tr>
<tr>
<td>8. Precast Feasibility Assessment</td>
<td>Select Status</td>
</tr>
<tr>
<td>9. Existing Bridge Plans</td>
<td>Select Status</td>
</tr>
<tr>
<td>10. Existing Bridge Inspection Report</td>
<td>Select Status</td>
</tr>
<tr>
<td>11. Existing Bridge Load Rating</td>
<td>Select Status</td>
</tr>
<tr>
<td>12. Wildlife Connectivity</td>
<td>Select Status</td>
</tr>
<tr>
<td>13. Utility Requirements</td>
<td>Select Status</td>
</tr>
<tr>
<td>14. Railroad Requirements</td>
<td>Select Status</td>
</tr>
<tr>
<td>15. Retaining Wall and Bulkhead Requirements</td>
<td>Select Status</td>
</tr>
<tr>
<td>16. Lighting Requirements</td>
<td>Select Status</td>
</tr>
<tr>
<td>17. ADA Access Requirements</td>
<td>Select Status</td>
</tr>
<tr>
<td>18. Other</td>
<td>Select Status</td>
</tr>
</tbody>
</table>

\(^{(a)}\) Must be approved by District before BDR submittal.

\(^{(b)}\) Select appropriate status: Provided, Not Applicable, Comments Attached

\(^{(c)}\) See approval requirements for these documents in **FDM 121**.

\(^{(d)}\) GRS = Geosynthetic Reinforced Soil
Florida Department of Transportation
District ___

Attn:
Reference: Independent Peer Review Category 2 Structures
Financial Project ID: xcbcvcb
Federal Aid Number: cvbcvcb
Contract Number:

Submittal: 90% Bridge Plans
Submittal
Bridge Number(s):

Dear

Pursuant to the requirements of the Contract Documents, hereby certifies that an independent peer review of the above-referenced submittal has been conducted in accordance with FDM 121 and all other governing regulations. Component plans that were included in the peer review are as follows:

__
__
__
__
__
__
__
__

Outstanding / Unresolved Comments and Issues:
Certification Statement:
I certify that the component plans listed in this letter have been verified by independent review and are in compliance with all requirements presented in the Contract Documents. Independent Peer Review comments and comment resolutions have been included in this submittal under separate cover.

I have also attached a current copy of the Firm's Independent Peer Review Prequalification Letter issued by the Department with the “Approved Rates” Section redacted.

Please do not hesitate to contact me if you have any questions.

Name of Independent Peer Review Firm ______________________
Name of Independent Peer Reviewer ______________________
Title ______________________
Signature ______________________
Florida Professional Engineer Lic. No. ______________________
Certification Letter

Florida Department of Transportation
District ___

Attn: ______________________

Reference: Independent Peer Review Category 2 Structures
Financial Project ID: ______________
Federal Aid Number: ______________
Contract Number: ______________

Submittal: Final Bridge ____________ Plans
 Submittal ________________
 Bridge Number(s): ________________

Dear ____________________________,

Pursuant to the requirements of the Contract Documents, hereby certifies that an independent peer review of the above-referenced submittal has been conducted in accordance with FDM 121 and all other governing regulations. Component plans that were included in the peer review are as follows:

__
__
__
__
__
__
__
__

Certification Statement:

I certify that the component plans listed in this letter have been verified by independent review, that all review comments have been adequately resolved, and that the plans are in compliance with all Department and FHWA requirements presented in the Contract Documents.

I have been provided with all 90% Department or Department Representative Electronic Review Comments (ERC). I certify that I have reviewed the comments and have considered these concerns in the Independent Peer Review. See attached 90% ERC comments.

I have also attached a current copy of the Firm's Independent Peer Review Prequalification Letter issued by the Department with the “Approval Rates” section redacted.
Please do not hesitate to contact me if you have any questions.

Name of Independent Peer Review Firm

Name of Independent Peer Reviewer

Title

Florida Professional Engineer Lic. No.

[Insert Signature, Date and Seal here.]
Submittal/Approval Letter

To: District or Turnpike Design Engineer

Date: ____________________________

Financial Project ID: ____________________ New Const. [] RRR []

Federal Aid Number: ____________________

Project Name: ________________________________

State Road Number: ____________________ Co./Sec./Sub. ____________________

Begin Project MP: ____________________ End Project MP: ____________________

FHWA Project of Division Interest: Yes [] No []

Request for: Design Exception [] Design Variation [] Design Variation Memorandum []

Community Aesthetic Feature: Conceptual [] Final []

Re-submittal: Yes [] No [] Original Ref# ________ - __________ - __________

Requested for the following element(s):

- [] Design Speed
- [] Lane Width
- [] Shoulder Width
- [] Cross Slope
- [] Design Loading Structural Capacity
- [] Vertical Clearance
- [] Maximum Grade
- [] Stopping Sight Distance
- [] Superelevation
- [] Horizontal Curve Radius
- [] Other _______________________

__

Recommended by:

__________________________ Date _____________

Name:

Responsible Professional Engineer or Landscape Architect (Landscape-Only Projects)

Approvals:

Name: District or Turnpike Design Engineer

Date: _____________

Name: District Structures Design Engineer

Date: _____________

Name: State Roadway Design Engineer

Date: _____________

Name: State Structures Design Engineer

Date: _____________

Name: Chief Engineer

Date: _____________

Name: FHWA Division Administrator

Date: _____________
Initial Meeting and Methodology Checklist

The Applicant should prepare the following list of items to discuss at the initial meeting. The District Review Team may require the Applicant to address these items in the Concept Report.

Project Information

☐ Project Location
☐ Project Limits
☐ Project Length
☐ Project Purpose
☐ Conceptual plan (including transitions to and from the lane repurposing section)
☐ Existing and long-range future AADT (the latter based on historical growth and the regional travel demand model)
☐ Consistency of the proposed project with the applicable Long-Range Transportation Plan (LRTP), Transportation Improvement Program (TIP), Transit Development Plan (TDP), comprehensive plan, master plans, visions, and Complete Streets initiatives
☐ Status of the roadway as an Evacuation Route, freight route, and part of the Strategic Intermodal System (SIS)
☐ Status of the roadway as a major transit corridor per the LRTP or TDP
☐ Proposed use(s) for the right-of-way after lanes are eliminated (e.g., widened sidewalks, bicycle lanes, landscaping, on-street parking, transit lanes)
☐ Impact on bicycle/pedestrian infrastructure and connectivity
☐ Impact on parking
☐ Impact on transit routes, stop locations (including appropriateness of turn radii and lane widths), include total number of stops and routes in the area.
☐ Existing right-of-way width and any proposed changes to the right-of-way width
☐ Anticipated changes in jurisdictional responsibility for ownership or maintenance of the roadway
☐ Anticipated changes in functional classification and access management classification

☐ Jurisdiction(s) in which the Project is Located
☐ Proposed Change in Lane Configuration
☐ Project Schedule
☐ Context Classification
☐ Public Involvement, agency outreach and endorsement.
☐ Existing design and posted speeds
☐ Existing and future typical section
☐ Target speed with anticipated changes in posted speed limits and design speeds
☐ Need for design variations or design exceptions
☐ Plan for obtaining input and review from businesses, residents, and other stakeholders
☐ Plan for receiving endorsement from elected officials
☐ Funding source and cost estimates
☐ Size of impact area-parallel and cross streets
☐ Potential implementation strategy and partner commitments
☐ Impact on School crossing locations and midblock crossing
☐ Need to add, remove, or modify traffic signals
☐ Near and long-range multimodal level of service (LOS) and queuing analysis for intersections and segments in the impact area under build and no-build scenario
☐ Mitigation to address the significant adverse impact on state roads and regional transportation system
☐ Crash data summary and analysis for the segments and intersections within the project limits
☐ Case-specific special considerations to be determined (e.g., railroad crossing improvements)
To: ____________________ From: ____________________ Date: _______________

Systems Management Administrator District Lane Elimination Coordinator

The intent of this notice is to inform Central Office that District ______________ has received a request for lane repurposing on the State Highway System.

PROJECT INFORMATION
State Road and Project Location__

Roadway ID:________ Project Limits (MP) From ____________to ______________

Roadway ID:________ Project Limits (MP) From ____________to ______________

Context Classification:__

Applicant: __

Project Description: __

Proposed Change in Cross Section: From _______________lanes to _______________lanes

SIS NIS

ACTIONS AND OUTCOMES TO DATE:
District staff participated in a meeting with __ on__________________ to formally commence the lane repurposing review process. At that meeting, District staff provided an overview of the lane repurposing review process and the Applicant shared initial information about the lane repurposing project. The District determined the specific review process and analysis methodology for the lane repurposing request.

NEXT STEPS:
The Applicant will submit a Draft Concept Report (containing a proposed typical section) as the lane repurposing review process proceeds. If the District reviewers find the Draft Concept Report acceptable, the Applicant submits a formal Application Package (including the Final Concept Report) to the District. If the Application Package is complete and acceptable, the lane repurposing request will be approved at the District level. The Final Application Package along with signed Form-C will be sent to Central Office for final approval.

Concurrences

__________________________________ Date: ________________

District Planning and Environmental Administrator

__________________________________ Date: ________________

District Design Engineer

__________________________________ Date: ________________

District Traffic Operations Engineer
Form 126-C

Lane Repurposing Final Review and Approval Notice to Central Office

The intent of this message is to inform Central Office that District ______________ has completed the review for the following lane repurposing project on the State Highway System.

PROJECT INFORMATION
State Road and Project Location:__
Roadway ID:_________ Project Limits (MP): From ___________ to ______________
Context Classification:______________ Access Management Classification: ______________
Target Speed:_______ Design Speed: _________ Posted Speed:_______
Transit Facilities (stops and routes): Yes No
Applicant: __
Project Description: __
Proposed Change in Cross Section: From _______________ lanes to ______________ lanes
□ SIS □ NHS
Attachments: Concept Report Plan Views Typical Sections

District Concurrences:

__________________________ Date: ________________
District Planning and Environmental Administrator

__________________________ Date: ________________
District Design Engineer

__________________________ Date: ________________
District Traffic Operations Engineer

Central Office Concurrence:

__________________________ Date: ________________
Chief Planner

Final Approval:

__________________________ Date: ________________
Chief Engineer
Design Plans Phase Review

DATE: ____________
TO: ____________________
FROM: ____________________
COPIES: ____________________
SUBJECT: Response to ____________ Phase Review

REF:
Financial Project ID __________________________
FA Project Number __________________________
County __________________________

APPROVED: CONCURRENCE:

Responsible Professional Eng.
(Name of Consultant Firm)

* District Design Engineer
* District Structures Design Engineer
* District Project Management Engineer

* As appropriate
Design Plans Component Review

DATE: ____________

TO: ______________

FROM: _____________

COPIES: ______________

SUBJECT: Response to _____________ Component Review

REF: Financial Project ID __________________________
 FA Project Number __________________________
 County __________________________

APPROVED: CONCURRENCE:

________________________ ________________________
Responsible Professional Eng. * District Design Engineer
 (Name of Consultant Firm) * District Structures Design Engineer
 * District Project Management Engineer

* As appropriate
Special Provisions

DATE:

TO:

FROM:

COPIES:

SUBJECT:

REF: Financial Project ID
 FA Project Number
 County

APPROVED: CONCURRENCE:

Responsible Professional Eng. *
(Name of Consultant Firm)

* As appropriate

* District Design Engineer
* District Structures Design Engineer
* District Project Management Engineer
18 KIP Equivalent Single Axle Loads (ESAL)

Financial Project ID ________________
State Road No. ________________
County ________________

I have reviewed the 18 KIP Equivalent Single Axle Loads to be used for pavement design on this project. I hereby attest that these have been developed in accordance with the FDOT *Project Traffic Forecasting Procedure* using historical traffic data and other available information.

Name

Signature

Title

Organizational Unit

Date
Project Traffic

Financial Project ID ______________________
State Road No. ______________________
County ______________________

I have reviewed the Project Traffic to be used for design on this project. I hereby attest that it has been developed in accordance with the FDOT Project Traffic Forecasting Procedure using historical traffic data and other available information.

Name

Signature

Title

Organizational Unit

Date
Sample Local Agency Maintenance Agreement
For Work Performed by the Department
Sheet 1 of 3

Financial Project ID: ________________
Federal Aid No. ________________
Local Agency: ________________
Project Description: ________________

Bridge No.: ________________

MAINTENANCE AGREEMENT

THIS AGREEMENT, made and entered into on this ____ day of ______, 20____, by and between the STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION (hereinafter called “DEPARTMENT”), and ________________, Florida (hereinafter called “LOCAL AGENCY”);

WITNESSETH:

WHEREAS, the DEPARTMENT is preparing to undertake a project within the LOCAL AGENCY and LOCAL AGENCY identified and known to the parties by Financial Project I.D. ________________ which will be of benefit to the LOCAL AGENCY; and

WHEREAS, approval of federal aid necessary to the project requires agreement by the LOCAL AGENCY to maintain the project;

NOW, THEREFORE, in consideration of the premises, the parties hereby agree as follows:

1. The DEPARTMENT will undertake the project and obtain approval of the Federal Highway Administration for federal participation.

2. Upon completion and acceptance, the LOCAL AGENCY will assume responsibility for maintenance of the project and will conduct such maintenance in accordance with approved state standards.

3. To the extent permitted by law, LOCAL AGENCY must indemnify, defend, and hold harmless the DEPARTMENT and all of its officers, agents, and employees from any claim, loss, damage, cost, charge, or expense arising out of any act, error, omission or negligent act by LOCAL AGENCY, its agents, or employees, during the performance of the Agreement, except that neither LOCAL AGENCY, its agents, or its employees will be liable under this paragraph for any claim, loss, damage, cost, charge, or expense arising out of any act, error, omission, or negligent act by the DEPARTMENT or any of its officers, agents, or employees during the performance of the Agreement. Nothing herein must waive the rights of sovereign immunity of either party.
4. In the event there are cost overruns, supplemental agreements (specifically incurred in the areas located off the State Highway System), and or liquidated damages not eligible to be paid for by federal funds due to the Federal Highway Administration determining that said costs are non-participating costs, the LOCAL AGENCY must be responsible for one-hundred percent (100%) of the funds required to make up the shortfall not paid by federal funds. The Project is off of the “State Highway System,” therefore, in accordance with Section 339.08(1), Florida Statutes, State funding cannot be used for payments of non-participating costs on this Project. (Examples of non-participating items could be fishing piers; premium costs due to design or CEI errors or omissions; material or equipment called in for the plans but not used in the construction, as referenced in the Federal Aid Policy Guide 23, CFR Section 635.120).

a. Should such shortfalls occur, due to a determination that said costs are non-participating, the LOCAL AGENCY agrees to provide, without delay, a deposit within fourteen (14) calendar days of notification from the Department, to ensure that cash on deposit with the Department is sufficient to fully fund the shortfall. The Department must notify the LOCAL AGENCY as soon as it becomes apparent there is a shortfall; however, failure of the Department to so notify the LOCAL AGENCY must not relieve the LOCAL AGENCY its obligation to pay for its full participation of non-participating costs during the Project and on final accounting, as provided herein below. If the LOCAL AGENCY cannot provide the deposit within fourteen (14) days, a letter must be submitted to and approved by the Department’s project manager indicating when the deposit will be made. The LOCAL AGENCY understands the request and approval of the additional time could delay the project, and additional non-participating costs may be incurred due to the delay of the project.

5. The DEPARTMENT intends to have its final and complete accounting of all costs incurred in connection with the work performed hereunder within three hundred sixty days (360) of final payment to the Contractor. The Department considers the Project complete when the final payment has been made to the Contractor, not when the construction work is complete. All non-participating Project cost records and accounts must be subject to audit by a representative of the LOCAL AGENCY for a period of three (3) years after final close out of the Project. The LOCAL AGENCY will be notified of the final non-participating cost of the project. Both parties agree that in the event the final accounting of total non-participating costs pursuant to the terms of this Agreement is less than the total deposits to
date, a refund of the excess will be made by the Department to the LOCAL AGENCY. If the final accounting is not performed within three hundred and sixty (360) days, the LOCAL AGENCY is not relieved from its obligation to pay.

6. In the event the final accounting of total non-participating costs are greater than the total deposits to date, the LOCAL AGENCY will pay the additional amount within forty (40) calendar days from the date of the invoice from the Department. The LOCAL AGENCY agrees to pay interest at a rate as established pursuant to Section 55.03, Florida Statutes, on any invoice not paid within forty (40) calendar days until the invoice is paid.

7. Any payment of funds under this Agreement provision will be made directly to the Department for deposit.

IN WITNESS WHEREOF, the parties hereto have set their hands and seals on the day and year first above written.

LOCAL AGENCY OFFICIAL

By: ________________
Title: ________________

STATE OF FLORIDA
DEPARTMENT OF TRANSPORTATION

By: ________________
District Secretary

ATTEST:

Clerk
(Seal)

Executive Secretary
(Seal)

LEGAL APPROVAL:

LOCAL AGENCY Attorney

Senior Attorney

(Type Name)
Items of Work Checklist

DATE: ______________________

TO: _______________________, District Specifications

FROM: _______________________, Project Manager

COPIES TO:

SUBJECT: ITEMS OF WORK

Financial Project ID: ________________________ (GOES WITH ________________________)

County (Section): _______________________

* Project Description: _______________________

The plans package for the above referenced project includes the following items of work to be performed:

☐ Milling & Resurfacing ☐ Highway Signing
☐ Base Work ☐ Guardrail
☐ Shoulder Treatment ☐ Landscaping
☐ Drainage Improvements ☐ Box or Three-sided Culverts
☐ Curb & Gutter ☐ Bridges
☐ Traffic Signals ☐ MSE Walls
☐ Lighting ☐ Sidewalks/Shared Use Path
☐ Other (Please Specify)

Please include the county, project description and all items of work that apply in the Intent and Scope so they may be added to the advertisement description.

* The project description should only include the road number and the limits or location of the project.
Layer 3 Switch Worksheet

Chassis Based Switches

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Management Blades</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backplane Capacity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Copper Ports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol Requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number Fiber Ports #1</td>
<td>Fiber Port Speed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number Fiber Ports #2</td>
<td>Fiber Port Speed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number Fiber Ports #3</td>
<td>Fiber Port Speed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number Power Supplies</td>
<td>Voltage (AC/DC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Optics Needed

<table>
<thead>
<tr>
<th></th>
<th>Optic #1</th>
<th>Optic #2</th>
<th>Optic #3</th>
<th>Optic #4</th>
<th>Optic #5</th>
</tr>
</thead>
<tbody>
<tr>
<td># Required</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed Requirement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance Required</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Require OEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stack Aggregation Switches

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Fiber Ports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Copper Ports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol Requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number Power Supplies</td>
<td>Voltage (AC/DC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Optics Needed

<table>
<thead>
<tr>
<th></th>
<th>Optic #1</th>
<th>Optic #2</th>
<th>Optic #3</th>
<th>Optic #4</th>
<th>Optic #5</th>
</tr>
</thead>
<tbody>
<tr>
<td># Required</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed Requirement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance Required</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Require OEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Transportation Management Plan (TMP) Form

Responsible Professional Engineer:________________________________

FDOT Project Manager:___

State Road: __

Project Location: __

Roadway ID: ___

Project Limits (MP): From ____________________ to ________________

Project Description: __

__

Financial Project ID: _____________
Federal Aid Number. _____________

FHWA Projects of Division Interest Y es ☐ No ☐

In accordance with the requirements of the FDOT Design Manual (FDM) Chapter 240, the following items determine the scope and need of a Transportation Management Plan (TMP). Complete the following checklist and provide brief descriptions of the items included, as appropriate.

Indicate if the project meets one or both of the following qualifying conditions as “significant project”:

☐ A project that, alone or in combination with other concurrent projects nearby, is anticipated to cause sustained work zone impacts.

☐ All Interstate system projects within the boundaries of a designated Transportation Management Area (TMA) that occupy a location for more than three days with either intermittent or continuous lane closures.

If either or both above qualifying conditions are met, indicate compliance with the following documents in development of a TMP for the Project:

☐ FDOT Design Manual
☐ FDOT Standard Plans
☐ FDOT Standard Specifications for Road and Bridge Construction
☐ FDOT Basis of Estimates Manual
☐ Manual on Uniform Traffic Control Devices for Streets and Highways, (MUTCD), Part VI
☐ Policy on Geometric Design of Highways and Streets, AASHTO
☐ Roadside Design Guide, AASHTO, Chapter 9
TMP Components:

Indicate that the following TMP Components have been addressed on the project:

- Temporary Traffic Control Plan (TTCP)
 - Work Zone Speed Established
 - Speed Reduction Required (Y/N) Select
 - If Yes, is the “Work Zone Speed less than Existing Posted Speed” documentation completed (Y/N) Select

 Select** Lane Closure Analysis**

 - If included, was the “Lane Closure Analysis Worksheet” and any restrictions requiring approval completed (Y/N) Select

 Select** Traffic Pacing**

 - If included, was the “Traffic Pacing Worksheet” completed (Y/N) Select

 Select** Portable Changeable Message Signs**

 - If included, was the “Portable Changeable Message Sign Worksheet” completed (Y/N) Select

Select** Bicycle, Pedestrian, and Transit Accommodations**

Railroads

- Was the District Railroad Coordinator consulted (Y/N) Select

Select** Utilities**

- Was the District Utility Coordinator consulted (Y/N) Select

Select** Signals**

- Was the District Traffic Operations Engineer consulted (Y/N) Select

Select** Speed and Law Enforcement Officer**

- Was the District Construction Office consulted or any usage requiring approval completed (Y/N) Select
Transportation Operations Plan (TOP):

Briefly describe TOP components included on the project. If a comprehensive plan has been prepared, indicate below, and attach.

TOP Description:

Public Information Plan (PIP):

Briefly describe PIP components included on the project. If a comprehensive plan has been prepared, indicate below, and attach.

PIP Description:
Portable Changeable Message Signs Worksheet

Location of board: __

Used: from _______ at _______

to _______ at _______

Message programmed by: __

MESSAGE 1

___ ___ ___ ___ ___ ___ ___ ___ ___

___ ___ ___ ___ ___ ___ ___ ___ ___

___ ___ ___ ___ ___ ___ ___ ___ ___

MESSAGE 2

___ ___ ___ ___ ___ ___ ___ ___ ___

___ ___ ___ ___ ___ ___ ___ ___ ___

___ ___ ___ ___ ___ ___ ___ ___ ___

Timing:

Message 1 will run: ____ seconds.
Message 2 will run: ____ seconds.
STANDARD ABBREVIATIONS FOR USE

ON CHANGEABLE MESSAGE SIGNS

Standard abbreviations easily understood are:

<table>
<thead>
<tr>
<th>WORD</th>
<th>ABBREV.</th>
<th>WORD</th>
<th>ABBREV.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boulevard</td>
<td>BLVD</td>
<td>Normal</td>
<td>NORM</td>
</tr>
<tr>
<td>Center</td>
<td>CNTR</td>
<td>Parking</td>
<td>PKING</td>
</tr>
<tr>
<td>Crossing</td>
<td>XING</td>
<td>Pedestrian</td>
<td>PED</td>
</tr>
<tr>
<td>Crosswalk</td>
<td>XWALK</td>
<td>Road</td>
<td>RD</td>
</tr>
<tr>
<td>Emergency</td>
<td>EMER</td>
<td>Service</td>
<td>SERV</td>
</tr>
<tr>
<td>Entrance</td>
<td>ENT</td>
<td>Shoulder</td>
<td>SHLDR</td>
</tr>
<tr>
<td>Enter</td>
<td>EXPWY</td>
<td>Slippery</td>
<td>SLIP</td>
</tr>
<tr>
<td>Expressway</td>
<td>FRWY,</td>
<td>Speed</td>
<td>SPD</td>
</tr>
<tr>
<td>Freeway</td>
<td>FWY</td>
<td>Traffic</td>
<td>TRAF</td>
</tr>
<tr>
<td>Highway</td>
<td>HWY</td>
<td>Travelers</td>
<td>TRVLRS</td>
</tr>
<tr>
<td>Information</td>
<td>INFO</td>
<td>Warning</td>
<td>WARN</td>
</tr>
<tr>
<td>Left</td>
<td>LFT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td>MAINT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other abbreviations are easily understood whenever they appear in conjunction with a particular word commonly associated with it. These words and abbreviations are as follows:

<table>
<thead>
<tr>
<th>WORD</th>
<th>ABBREV.</th>
<th>PROMPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access</td>
<td>ACCS</td>
<td>Road</td>
</tr>
<tr>
<td>Ahead</td>
<td>AHD</td>
<td>Fog*</td>
</tr>
<tr>
<td>Blocked</td>
<td>BLKD</td>
<td>Lane*</td>
</tr>
<tr>
<td>Bridge</td>
<td>BRDG</td>
<td>[Name]*</td>
</tr>
<tr>
<td>Chemical</td>
<td>CHEM</td>
<td>Spill</td>
</tr>
<tr>
<td>Construction</td>
<td>CONST</td>
<td>Ahead</td>
</tr>
<tr>
<td>Exit</td>
<td>EX, EXT</td>
<td>Next*</td>
</tr>
<tr>
<td>Express</td>
<td>EXP</td>
<td>Lane</td>
</tr>
<tr>
<td>Hazardous</td>
<td>HAZ</td>
<td>Driving</td>
</tr>
<tr>
<td>Interstate</td>
<td>I</td>
<td>[Number]</td>
</tr>
<tr>
<td>Major</td>
<td>MAJ</td>
<td>Accident</td>
</tr>
<tr>
<td>Mile</td>
<td>MI</td>
<td>[Number]</td>
</tr>
<tr>
<td>Minor</td>
<td>MNR</td>
<td>Accident</td>
</tr>
<tr>
<td>Minute(s)</td>
<td>MIN</td>
<td>[Number]</td>
</tr>
<tr>
<td>Oversized</td>
<td>OVRSZ</td>
<td>Load</td>
</tr>
<tr>
<td>Prepare</td>
<td>PREP</td>
<td>To Stop</td>
</tr>
<tr>
<td>Pavement</td>
<td>PVMT</td>
<td>Wet*</td>
</tr>
<tr>
<td>Quality</td>
<td>QLTY</td>
<td>Air*</td>
</tr>
<tr>
<td>Route</td>
<td>RT</td>
<td>Best*</td>
</tr>
<tr>
<td>Turnpike</td>
<td>TRNPK</td>
<td>[Name]*</td>
</tr>
<tr>
<td>Vehicle</td>
<td>VEH</td>
<td>Stalled*</td>
</tr>
<tr>
<td>Cardinal Directions</td>
<td>N, E, S, W</td>
<td>[Number]</td>
</tr>
<tr>
<td>Upper, Lower</td>
<td>UPR, LWR</td>
<td>Level</td>
</tr>
</tbody>
</table>

* = Prompt word given first
The following abbreviations are understood with a **prompt** word by about 75% of the drivers. These abbreviations may require some public education prior to usage.

<table>
<thead>
<tr>
<th>WORD</th>
<th>ABBREV.</th>
<th>PROMPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>COND</td>
<td>Traffic*</td>
</tr>
<tr>
<td>Congested</td>
<td>CONG</td>
<td>Traffic</td>
</tr>
<tr>
<td>Downtown</td>
<td>DWNTN</td>
<td>Traffic</td>
</tr>
<tr>
<td>Frontage</td>
<td>FRNTG</td>
<td>Road</td>
</tr>
<tr>
<td>Local</td>
<td>LOC</td>
<td>Traffic</td>
</tr>
<tr>
<td>Northbound</td>
<td>N-BND</td>
<td>Traffic</td>
</tr>
<tr>
<td>Roadwork</td>
<td>RDWK</td>
<td>Ahead [Distance]</td>
</tr>
<tr>
<td>Temporary</td>
<td>TEMP</td>
<td>Route</td>
</tr>
<tr>
<td>Township</td>
<td>TWNNSHP</td>
<td>Limits</td>
</tr>
</tbody>
</table>

* = Prompt word given first

Certain abbreviations are prone to inviting confusion because another word is abbreviated or could be abbreviated in the same way. **DO NOT USE THESE ABBREVIATIONS:**

<table>
<thead>
<tr>
<th>ABBREV.</th>
<th>INTENDED WORD</th>
<th>WORD ERRONEOUSLY GIVEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRNG</td>
<td>Warning</td>
<td>Wrong</td>
</tr>
<tr>
<td>ACC</td>
<td>Accident</td>
<td>Access (Road)</td>
</tr>
<tr>
<td>DLY</td>
<td>Delay</td>
<td>Daily</td>
</tr>
<tr>
<td>LT</td>
<td>Light (Traffic)</td>
<td>Left</td>
</tr>
<tr>
<td>STAD</td>
<td>Stadium</td>
<td>Standard</td>
</tr>
<tr>
<td>L</td>
<td>Left</td>
<td>Lane (Merge)</td>
</tr>
<tr>
<td>PARK</td>
<td>Parking</td>
<td>Park</td>
</tr>
<tr>
<td>RED</td>
<td>Reduce</td>
<td>Red</td>
</tr>
<tr>
<td>POLL</td>
<td>Pollution (Index)</td>
<td>Poll</td>
</tr>
<tr>
<td>FDR</td>
<td>Feeder</td>
<td>Federal</td>
</tr>
<tr>
<td>LOC</td>
<td>Local</td>
<td>Location</td>
</tr>
<tr>
<td>TEMP</td>
<td>Temporary</td>
<td>Temperature</td>
</tr>
<tr>
<td>CLRS</td>
<td>Clears</td>
<td>Color</td>
</tr>
</tbody>
</table>
RECORD WORKING DRAWING TRANSMITTAL

Date ________________________

TO: ________________________________

FROM: ________________________________

(Final Review Office)

PROJECT NAME ________________________________

FINANCIAL PROJECT ID ________________________________

FEDERAL AID PROJECT NO. ________________________________

CONTRACT ID NUMBER ________________________________

COUNTY (SECTION) ________________________________

STATE ROAD NUMBER ________________________________

BRIDGE NUMBER ________________________________

CONTRACTOR ________________________________

ENGINEER OF RECORD ________________________________

We are transmitting herewith the following Record Working Drawings for archiving:

1. ________________________________

2. ________________________________

3. ________________________________

4. ________________________________

5. ________________________________

6. ________________________________

For the Final Review Office:

__ _____________

(Signature) (Date)

For the Receiving Office:

__ _____________

(Signature) (Date)
103 Standard Forms

103.1 General

This chapter contains fillable portable document format (PDF) of the standard forms found in the FDOT Design Manual (FDM). The form number assigned to each form corresponds to the FDM chapter in which it is discussed. Refer to the related chapter for instruction on the use of each form.
Bridge Development Report Submittal Checklist

<table>
<thead>
<tr>
<th>ITEMS</th>
<th>STATUS (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Typical Sections for Roadway and Bridge (a)</td>
<td>Select Status</td>
</tr>
<tr>
<td>2. Roadway Plans in Vicinity of Bridge (a)</td>
<td>Select Status</td>
</tr>
<tr>
<td>3. Maintenance of Traffic Requirements (a)</td>
<td>Select Status</td>
</tr>
<tr>
<td>4. Bridge Hydraulics Report (c)</td>
<td>Select Status</td>
</tr>
<tr>
<td>5. Geotechnical Report (c)</td>
<td>Select Status</td>
</tr>
<tr>
<td>6. Bridge Corrosion Environmental Report (c)</td>
<td>Select Status</td>
</tr>
<tr>
<td>7. GRS Abutments Feasibility Assessment (d)</td>
<td>Select Status</td>
</tr>
<tr>
<td>8. Precast Feasibility Assessment</td>
<td>Select Status</td>
</tr>
<tr>
<td>9. Existing Bridge Plans</td>
<td>Select Status</td>
</tr>
<tr>
<td>10. Existing Bridge Inspection Report</td>
<td>Select Status</td>
</tr>
<tr>
<td>11. Existing Bridge Load Rating</td>
<td>Select Status</td>
</tr>
<tr>
<td>12. Wildlife Connectivity</td>
<td>Select Status</td>
</tr>
<tr>
<td>13. Utility Requirements</td>
<td>Select Status</td>
</tr>
<tr>
<td>14. Railroad Requirements</td>
<td>Select Status</td>
</tr>
<tr>
<td>15. Retaining Wall and Bulkhead Requirements</td>
<td>Select Status</td>
</tr>
<tr>
<td>16. Lighting Requirements</td>
<td>Select Status</td>
</tr>
<tr>
<td>17. ADA Access Requirements</td>
<td>Select Status</td>
</tr>
<tr>
<td>18. Other</td>
<td>Select Status</td>
</tr>
</tbody>
</table>

(a) Must be approved by District before BDR submittal.
(b) Select appropriate status: Provided, Not Applicable, Comments Attached
(c) See approval requirements for these documents in *FDM 121*.
(d) GRS = Geosynthetic Reinforced Soil
Standard Peer Review Certification Letter

Florida Department of Transportation
District ___

Attn:

Reference: Independent Peer Review Category 2 Structures
Financial Project ID:
Federal Aid Number: cvbcvb
Contract Number:

Submittal: 90% Bridge Plans
Submittal
Bridge Number(s):

Dear

Pursuant to the requirements of the Contract Documents, hereby certifies that an independent peer review of the above-referenced submittal has been conducted in accordance with FDM 121 and all other governing regulations. Component plans that were included in the peer review are as follows:

__
__
__
__
__
__
__

Outstanding / Unresolved Comments and Issues:
Certification Statement:
I certify that the component plans listed in this letter have been verified by independent review and are in compliance with all requirements presented in the Contract Documents. Independent Peer Review comments and comment resolutions have been included in this submittal under separate cover.

I have also attached a current copy of the Firm's Independent Peer Review Prequalification Letter issued by the Department with the "Approved Rates" Section redacted.

Please do not hesitate to contact me if you have any questions.

Name of Independent Peer Review Firm __________________________
Name of Independent Peer Reviewer __________________________
Title __________________________
Signature __________________________
Florida Professional Engineer Lic. No. __________________________
Certification Letter

Florida Department of Transportation
District ___

Attn: ___

Reference: Independent Peer Review Category 2 Structures
Financial Project ID: ____________________
Federal Aid Number: ____________________
Contract Number: _____________________

Submittal: Final Bridge _______ Plans
Submittal _____________________
Bridge Number(s): _______________________

Dear ________________________________,

Pursuant to the requirements of the Contract Documents, hereby certifies that an independent peer review of the above-referenced submittal has been conducted in accordance with FDM 121 and all other governing regulations. Component plans that were included in the peer review are as follows:

__
__
__
__
__
__
__
__

Certification Statement:

I certify that the component plans listed in this letter have been verified by independent review, that all review comments have been adequately resolved, and that the plans are in compliance with all Department and FHWA requirements presented in the Contract Documents.

I have been provided with all 90% Department or Department Representative Electronic Review Comments (ERC). I certify that I have reviewed the comments and have considered these concerns in the Independent Peer Review. See attached 90% ERC comments.

I have also attached a current copy of the Firm's Independent Peer Review Prequalification Letter issued by the Department with the “Approval Rates” section redacted.
Please do not hesitate to contact me if you have any questions.

Name of Independent Peer Review Firm: ______________________

Name of Independent Peer Reviewer: ______________________

Title: ______________________

Florida Professional Engineer Lic. No.: ______________________

[Insert Signature, Date and Seal here.]
Submittal/Approval Letter

To: District or Turnpike Design Engineer

Date: __________________________

Financial Project ID: _________________ New Const. ☐ RRR ☐
Federal Aid Number: _________________
Project Name: ___
State Road Number: _________________ Co./Sec./Sub. ________________
Begin Project MP: _________________ End Project MP: ________________
FHWA Project of Division Interest: Yes ☐ No ☐
Request for: Design Exception ☐ Design Variation ☐ Design Variation Memorandum ☐
Community Aesthetic Feature: Conceptual ☐ Final ☐
Re-submittal: Yes ☐ No ☐ Original Ref# ___________ - _____ - ______

Requested for the following element(s):
☐ Design Speed ☐ Lane Width ☐ Shoulder Width ☐ Cross Slope
☐ Design Loading Structural Capacity ☐ Vertical Clearance ☐ Maximum Grade ☐ Stopping Sight Distance
☐ Superelevation ☐ Horizontal Curve Radius ☐ Other _______________________

Recommended by:

_____________________________ Date __________________
Name: _________________________
Responsible Professional Engineer or Landscape Architect (Landscape-Only Projects)

Approvals:

_____________________________ Date __________________
Name: _________________________
District or Turnpike Design Engineer

_____________________________ Date __________________
Name: _________________________
District Structures Design Engineer

_____________________________ Date __________________
Name: _________________________
State Roadway Design Engineer

_____________________________ Date __________________
Name: _________________________
State Structures Design Engineer

_____________________________ Date __________________
Name: _________________________
Chief Engineer

_____________________________ Date __________________
Name: _________________________
FHWA Division Administrator
Initial Meeting and Methodology Checklist

The Applicant should prepare the following list of items to discuss at the initial meeting. The District Review Team may require the Applicant to address these items in the Concept Report.

Project Information

- [] Project Location
- [] Project Limits
- [] Project Length
- [] Project Purpose
- [] Conceptual plan (including transitions to and from the lane repurposing section)
- [] Existing and long-range future AADT (the latter based on historical growth and the regional travel demand model)
- [] Consistency of the proposed project with the applicable Long-Range Transportation Plan (LRTP), Transportation Improvement Program (TIP), Transit Development Plan (TDP), comprehensive plan, master plans, visions, and Complete Streets initiatives
- [] Status of the roadway as an Evacuation Route, freight route, and part of the Strategic Intermodal System (SIS)
- [] Status of the roadway as a major transit corridor per the LRTP or TDP
- [] Proposed use(s) for the right-of-way after lanes are eliminated (e.g., widened sidewalks, bicycle lanes, landscaping, on-street parking, transit lanes)
- [] Impact on bicycle/pedestrian infrastructure and connectivity
- [] Impact on parking
- [] Impact on transit routes, stop locations (including appropriateness of turn radii and lane widths), include total number of stops and routes in the area.
- [] Existing right-of-way width and any proposed changes to the right-of-way width
- [] Anticipated changes in jurisdictional responsibility for ownership or maintenance of the roadway
- [] Anticipated changes in functional classification and access management classification
- [] Jurisdiction(s) in which the Project is Located
- [] Proposed Change in Lane Configuration
- [] Project Schedule
- [] Context Classification
- [] Public Involvement, agency outreach and endorsement.
- [] Existing design and posted speeds
- [] Existing and future typical section
- [] Target speed with anticipated changes in posted speed limits and design speeds
- [] Need for design variations or design exceptions
- [] Plan for obtaining input and review from businesses, residents, and other stakeholders
- [] Plan for receiving endorsement from elected officials
- [] Funding source and cost estimates
- [] Size of impact area-parallel and cross streets
- [] Potential implementation strategy and partner commitments
- [] Impact on School crossing locations and midblock crossing
- [] Need to add, remove, or modify traffic signals
- [] Near and long-range multimodal level of service (LOS) and queuing analysis for intersections and segments in the impact area under build and no-build scenario
- [] Mitigation to address the significant adverse impact on state roads and regional transportation system
- [] Crash data summary and analysis for the segments and intersections within the project limits
- [] Case-specific special considerations to be determined (e.g., railroad crossing improvements)
Lane Repurposing Initial Notice to Central Office

To: __________________________ From: __________________________ Date: ______________

Systems Management Administrator District Lane Elimination Coordinator

The intent of this notice is to inform Central Office that District ______________ has received a request for lane repurposing on the State Highway System.

PROJECT INFORMATION
State Road and Project Location__

Roadway ID:_________ Project Limits (MP) From ____________ to ______________
Roadway ID:_________ Project Limits (MP) From ____________ to ______________
Context Classification:__
Applicant: __
Project Description: __

Proposed Change in Cross Section: From _______________ lanes to _______________ lanes
SIS NIS

ACTIONS AND OUTCOMES TO DATE:
District staff participated in a meeting with ______________________________________ on__________________ to formally commence the lane repurposing review process. At that meeting, District staff provided an overview of the lane repurposing review process and the Applicant shared initial information about the lane repurposing project. The District determined the specific review process and analysis methodology for the lane repurposing request.

NEXT STEPS:
The Applicant will submit a Draft Concept Report (containing a proposed typical section) as the lane repurposing review process proceeds. If the District reviewers find the Draft Concept Report acceptable, the Applicant submits a formal Application Package (including the Final Concept Report) to the District. If the Application Package is complete and acceptable, the lane repurposing request will be approved at the District level. The Final Application Package along with signed Form-C will be sent to Central Office for final approval.

Concurrences

__________________________________ District Planning and Environmental Administrator
Date: ________________

__________________________________ District Design Engineer
Date: ________________

__________________________________ District Traffic Operations Engineer
Date: ________________
Form 126-C

Lane Repurposing Final Review and Approval Notice to Central Office

The intent of this message is to inform Central Office that District ______________ has completed the review for the following lane repurposing project on the State Highway System.

PROJECT INFORMATION
State Road and Project Location:__

Roadway ID:_________ Project Limits (MP): From ___________ to ______________

Roadway ID:_________ Project Limits (MP): From ___________ to ______________

Context Classification:____________ Access Management Classification: ______________

Target Speed:_______ Design Speed: _________ Posted Speed:________

Transit Facilities (stops and routes): Yes No

Applicant: __

Project Description: __

__

Proposed Change in Cross Section: From _______________ lanes to ______________lanes

☐ SIS ☐ NHS

Attachments: Concept Report Plan Views Typical Sections

District Concurrences:

__ Date: _________________

District Planning and Environmental Administrator

__ Date: _________________

District Design Engineer

__ Date: _________________

District Traffic Operations Engineer

Central Office Concurrence:

__ Date: _________________

Chief Planner

Final Approval:

__ Date: _________________

Chief Engineer
Design Plans Phase Review

DATE: ____________

TO: ____________________

FROM: ____________________

COPIES: ____________________

SUBJECT: Response to ____________ Phase Review

REF:
 Financial Project ID __________________________
 FA Project Number __________________________
 County __________________________

APPROVED: ____________________

CONCURRENCE: ____________________

Responsible Professional Eng. ____________________
 (Name of Consultant Firm)

* As appropriate

* District Design Engineer
* District Structures Design Engineer
* District Project Management Engineer
DATE: ____________

TO: ____________________

FROM: ____________________

COPIES: ____________________

SUBJECT: Response to ____________ Component Review

REF: Financial Project ID ____________________
FA Project Number ____________________
County ____________________

APPROVED: ____________________

CONCURRENCE: ____________________

Responsible Professional Eng.
(Name of Consultant Firm)

* District Design Engineer
* District Structures Design Engineer
* District Project Management Engineer

* As appropriate
Special Provisions

DATE:

TO:

FROM:

COPIES:

SUBJECT:

REF: Financial Project ID
 FA Project Number
 County

APPROVED: CONCURRENCE:

Responsible Professional Eng. * District Design Engineer
(Name of Consultant Firm) * District Structures Design Engineer
* As appropriate * District Project Management Engineer
18 KIP Equivalent Single Axle Loads (ESAL)

Financial Project ID ________________
State Road No. ________________
County ________________

I have reviewed the 18 KIP Equivalent Single Axle Loads to be used for pavement design on this project. I hereby attest that these have been developed in accordance with the FDOT Project Traffic Forecasting Procedure using historical traffic data and other available information.

__
Name

__
Signature

__
Title

__
Organizational Unit

__
Date
I have reviewed the Project Traffic to be used for design on this project. I hereby attest that it has been developed in accordance with the FDOT Project Traffic Forecasting Procedure using historical traffic data and other available information.

Name

Signature

Title

Organizational Unit

Date
Sample Local Agency Maintenance Agreement
For Work Performed by the Department
Sheet 1 of 3

Financial Project ID: ________________
Federal Aid No. ________________
Local Agency: ________________
Project Description: ________________

Bridge No.: ________________

MAINTENANCE AGREEMENT

THIS AGREEMENT, made and entered into on this ____ day of ____, 20____, by and between the STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION (hereinafter called “DEPARTMENT”), and ______________________, Florida (hereinafter called “LOCAL AGENCY”);

WITNESSETH:

WHEREAS, the DEPARTMENT is preparing to undertake a project within the LOCAL AGENCY and LOCAL AGENCY identified and known to the parties by Financial Project I.D. ______________ which will be of benefit to the LOCAL AGENCY; and

WHEREAS, approval of federal aid necessary to the project requires agreement by the LOCAL AGENCY to maintain the project;

NOW, THEREFORE, in consideration of the premises, the parties hereby agree as follows:

1. The DEPARTMENT will undertake the project and obtain approval of the Federal Highway Administration for federal participation.

2. Upon completion and acceptance, the LOCAL AGENCY will assume responsibility for maintenance of the project and will conduct such maintenance in accordance with approved state standards.

3. To the extent permitted by law, LOCAL AGENCY must indemnify, defend, and hold harmless the DEPARTMENT and all of its officers, agents, and employees from any claim, loss, damage, cost, charge, or expense arising out of any act, error, omission or negligent act by LOCAL AGENCY, its agents, or employees, during the performance of the Agreement, except that neither LOCAL AGENCY, its agents, or its employees will be liable under this paragraph for any claim, loss, damage, cost, charge, or expense arising out of any act, error, omission, or negligent act by the DEPARTMENT or any of its officers, agents, or employees during the performance of the Agreement. Nothing herein must waive the rights of sovereign immunity of either party.
4. In the event there are cost overruns, supplemental agreements (specifically incurred in the areas located off the State Highway System), and or liquidated damages not eligible to be paid for by federal funds due to the Federal Highway Administration determining that said costs are non-participating costs, the LOCAL AGENCY must be responsible for one-hundred percent (100%) of the funds required to make up the shortfall not paid by federal funds. The Project is off of the “State Highway System,” therefore, in accordance with Section 339.08(1), Florida Statutes, State funding cannot be used for payments of non-participating costs on this Project. (Examples of non-participating items could be fishing piers; premium costs due to design or CEI errors or omissions; material or equipment called in for the plans but not used in the construction, as referenced in the Federal Aid Policy Guide 23, CFR Section 635.120).

a. Should such shortfalls occur, due to a determination that said costs are non-participating, the LOCAL AGENCY agrees to provide, without delay, a deposit within fourteen (14) calendar days of notification from the Department, to ensure that cash on deposit with the Department is sufficient to fully fund the shortfall. The Department must notify the LOCAL AGENCY as soon as it becomes apparent there is a shortfall; however, failure of the Department to so notify the LOCAL AGENCY must not relieve the LOCAL AGENCY its obligation to pay for its full participation of non-participating costs during the Project and on final accounting, as provided herein below. If the LOCAL AGENCY cannot provide the deposit within fourteen (14) days, a letter must be submitted to and approved by the Department’s project manager indicating when the deposit will be made. The LOCAL AGENCY understands the request and approval of the additional time could delay the project, and additional non-participating costs may be incurred due to the delay of the project.

5. The DEPARTMENT intends to have its final and complete accounting of all costs incurred in connection with the work performed hereunder within three hundred sixty days (360) of final payment to the Contractor. The Department considers the Project complete when the final payment has been made to the Contractor, not when the construction work is complete. All non-participating Project cost records and accounts must be subject to audit by a representative of the LOCAL AGENCY for a period of three (3) years after final close out of the Project. The LOCAL AGENCY will be notified of the final non-participating cost of the project. Both parties agree that in the event the final accounting of total non-participating costs pursuant to the terms of this Agreement is less than the total deposits to
date, a refund of the excess will be made by the Department to the LOCAL AGENCY. If the final accounting is not performed within three hundred and sixty (360) days, the LOCAL AGENCY is not relieved from its obligation to pay.

6. In the event the final accounting of total non-participating costs are greater than the total deposits to date, the LOCAL AGENCY will pay the additional amount within forty (40) calendar days from the date of the invoice from the Department. The LOCAL AGENCY agrees to pay interest at a rate as established pursuant to Section 55.03, Florida Statutes, on any invoice not paid within forty (40) calendar days until the invoice is paid.

7. Any payment of funds under this Agreement provision will be made directly to the Department for deposit.

IN WITNESS WHEREOF, the parties hereto have set their hands and seals on the day and year first above written.

__,
LOCAL AGENCY OFFICIAL

BY: ________________________________
Title: ________________________________
__,
(Type Name)

ATTEST:
__,
Clerk (Seal)

ATTEST:
__,
Executive Secretary (Seal)

LEGAL APPROVAL:
__,
LOCAL AGENCY Attorney

__,
(Type Name)
Items of Work Checklist

DATE: ______________________

TO: ______________________, District Specifications

FROM: ______________________, Project Manager

COPIES TO:

SUBJECT: ITEMS OF WORK

Financial Project ID: ______________________ (GOES WITH ______________________)

County (Section): ______________________

* Project Description: ______________________

The plans package for the above referenced project includes the following items of work to be performed:

☐ Milling & Resurfacing
☐ Base Work
☐ Shoulder Treatment
☐ Drainage Improvements
☐ Curb & Gutter
☐ Traffic Signals
☐ Lighting
☐ Other (Please Specify)

☐ Highway Signing
☐ Guardrail
☐ Landscaping
☐ Box or Three-sided Culverts
☐ Bridges
☐ MSE Walls
☐ Sidewalks/Shared Use Path

Please include the county, project description and all items of work that apply in the Intent and Scope so they may be added to the advertisement description.

* The project description should only include the road number and the limits or location of the project.
Layer 3 Switch Worksheet

Chassis Based Switches

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Management Blades</td>
<td></td>
<td></td>
<td>Backplane Capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Copper Ports</td>
<td></td>
<td></td>
<td>Protocol Requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number Fiber Ports #1</td>
<td></td>
<td>Fiber Port Speed</td>
<td>Fiber Port Speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number Fiber Ports #2</td>
<td></td>
<td>Fiber Port Speed</td>
<td>Fiber Port Speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number Fiber Ports #3</td>
<td></td>
<td>Fiber Port Speed</td>
<td>Fiber Port Speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number Power Supplies</td>
<td></td>
<td>Voltage (AC/DC)</td>
<td>Voltage (AC/DC)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Optics Needed

<table>
<thead>
<tr>
<th></th>
<th>Optic #1</th>
<th>Optic #2</th>
<th>Optic #3</th>
<th>Optic #4</th>
<th>Optic #5</th>
</tr>
</thead>
<tbody>
<tr>
<td># Required</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed Requirement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance Required</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Require OEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stack Aggregation Switches

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Fiber Ports</td>
<td></td>
<td></td>
<td>Number of Copper Ports</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol Requirements</td>
<td></td>
<td></td>
<td>Voltage (AC/DC)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Optics Needed

<table>
<thead>
<tr>
<th></th>
<th>Optic #1</th>
<th>Optic #2</th>
<th>Optic #3</th>
<th>Optic #4</th>
<th>Optic #5</th>
</tr>
</thead>
<tbody>
<tr>
<td># Required</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed Requirement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance Required</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Require OEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Transportation Management Plan (TMP) Form

Responsible Professional Engineer: ______________________________

FDOT Project Manager: ______________________________

State Road: ___

Project Location: ___

Roadway ID: ___

Project Limits (MP): From ____________________ to ________________

Project Description: ___

Financial Project ID: _____________

Federal Aid Number. _____________

FHWA Projects of Division Interest Yes [] No []

In accordance with the requirements of the FDOT Design Manual (FDM) Chapter 240, the following items determine the scope and need of a Transportation Management Plan (TMP). Complete the following checklist and provide brief descriptions of the items included, as appropriate.

Indicate if the project meets one or both of the following qualifying conditions as “significant project”:

☐ A project that, alone or in combination with other concurrent projects nearby, is anticipated to cause sustained work zone impacts.

☐ All Interstate system projects within the boundaries of a designated Transportation Management Area (TMA) that occupy a location for more than three days with either intermittent or continuous lane closures.

If either or both above qualifying conditions are met, indicate compliance with the following documents in development of a TMP for the Project:

☐ FDOT Design Manual

☐ FDOT Standard Plans

☐ FDOT Standard Specifications for Road and Bridge Construction

☐ FDOT Basis of Estimates Manual

☐ Manual on Uniform Traffic Control Devices for Streets and Highways, (MUTCD), Part VI

☐ Policy on Geometric Design of Highways and Streets, AASHTO

☐ Roadside Design Guide, AASHTO, Chapter 9
FDOT Accessing Transit Handbook, Chapter 4.6.

TMP Components:

Indicate that the following TMP Components have been addressed on the project:

- Temporary Traffic Control Plan (TTCP)
 - Work Zone Speed Established
 - Speed Reduction Required (Y/N) Select
 - If Yes, is the “Work Zone Speed less than Existing Posted Speed” documentation completed (Y/N) Select
 - Lane Closure Analysis
 - If included, was the “Lane Closure Analysis Worksheet” and any restrictions requiring approval completed (Y/N) Select

- Traffic Pacing
 - If included, was the “Traffic Pacing Worksheet” completed (Y/N) Select

- Portable Changeable Message Signs
 - If included, was the “Portable Changeable Message Sign Worksheet” completed (Y/N) Select

- Bicycle, Pedestrian, and Transit Accommodations
 - Railroads
 - Was the District Railroad Coordinator consulted (Y/N) Select
 - Utilities
 - Was the District Utility Coordinator consulted (Y/N) Select
 - Signals
 - Was the District Traffic Operations Engineer consulted (Y/N) Select
 - Speed and Law Enforcement Officer
 - Was the District Construction Office consulted or any usage requiring approval completed (Y/N) Select
Transportation Operations Plan (TOP):

Briefly describe TOP components included on the project. If a comprehensive plan has been prepared, indicate below, and attach.

TOP Description:

Public Information Plan (PIP):

Briefly describe PIP components included on the project. If a comprehensive plan has been prepared, indicate below, and attach.

PIP Description:
Portable Changeable Message Signs Worksheet

Location of board: ________________________________

Used: from ______ at ______
 to ______ at ______

Message programmed by: ________________________________

MESSAGE 1

| | | | | | | | | |
|---|---|---|---|---|---|---|---|
| | | | | | | | |
| | | | | | | | |

MESSAGE 2

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Timing:

Message 1 will run: ____ seconds.
Message 2 will run: ____ seconds.
STANDARD ABBREVIATIONS FOR USE
ON CHANGEABLE MESSAGE SIGNS

Standard abbreviations easily understood are:

<table>
<thead>
<tr>
<th>WORD</th>
<th>ABBREV.</th>
<th>WORD</th>
<th>ABBREV.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boulevard</td>
<td>BLVD</td>
<td>Normal</td>
<td>NORM</td>
</tr>
<tr>
<td>Center</td>
<td>CNTR</td>
<td>Parking</td>
<td>PKING</td>
</tr>
<tr>
<td>Crossing</td>
<td>XING</td>
<td>Pedestrian</td>
<td>PED</td>
</tr>
<tr>
<td>Crosswalk</td>
<td>XWALK</td>
<td>Road</td>
<td>RD</td>
</tr>
<tr>
<td>Emergency</td>
<td>EMER</td>
<td>Service</td>
<td>SERV</td>
</tr>
<tr>
<td>Entrance,</td>
<td>ENT</td>
<td>Shoulder</td>
<td>SHLDR</td>
</tr>
<tr>
<td>Enter</td>
<td>EXPWY</td>
<td>Slippery</td>
<td>SLIP</td>
</tr>
<tr>
<td>Expressway</td>
<td>FRWY,</td>
<td>Speed</td>
<td>SPD</td>
</tr>
<tr>
<td>Freeway</td>
<td>FWY</td>
<td>Traffic</td>
<td>TRAF</td>
</tr>
<tr>
<td>Highway</td>
<td>HWY</td>
<td>Travelers</td>
<td>TRVLRS</td>
</tr>
<tr>
<td>Information</td>
<td>INFO</td>
<td>Warning</td>
<td>WARN</td>
</tr>
<tr>
<td>Left</td>
<td>LFT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td>MAINT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other abbreviations are easily understood whenever they appear in conjunction with a particular word commonly associated with it. These words and abbreviations are as follows:

<table>
<thead>
<tr>
<th>WORD</th>
<th>ABBREV.</th>
<th>PROMPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access</td>
<td>ACCS</td>
<td>Road</td>
</tr>
<tr>
<td>Ahead</td>
<td>AHD</td>
<td>Fog*</td>
</tr>
<tr>
<td>Blocked</td>
<td>BLKD</td>
<td>Lane*</td>
</tr>
<tr>
<td>Bridge</td>
<td>BRDG</td>
<td>[Name]*</td>
</tr>
<tr>
<td>Chemical</td>
<td>CHEM</td>
<td>Spill</td>
</tr>
<tr>
<td>Construction</td>
<td>CONST</td>
<td>Ahead</td>
</tr>
<tr>
<td>Exit</td>
<td>EX, EXT</td>
<td>Next*</td>
</tr>
<tr>
<td>Express</td>
<td>EXP</td>
<td>Lane</td>
</tr>
<tr>
<td>Hazardous</td>
<td>HAZ</td>
<td>Driving</td>
</tr>
<tr>
<td>Interstate</td>
<td>I</td>
<td>[Number]</td>
</tr>
<tr>
<td>Major</td>
<td>MAJ</td>
<td>Accident</td>
</tr>
<tr>
<td>Mile</td>
<td>MI</td>
<td>[Number]*</td>
</tr>
<tr>
<td>Minor</td>
<td>MNR</td>
<td>Accident</td>
</tr>
<tr>
<td>Minute(s)</td>
<td>MIN</td>
<td>[Number]*</td>
</tr>
<tr>
<td>Oversized</td>
<td>OVRSZ</td>
<td>Load</td>
</tr>
<tr>
<td>Prepare</td>
<td>PREP</td>
<td>To Stop</td>
</tr>
<tr>
<td>Pavement</td>
<td>PVMT</td>
<td>Wet*</td>
</tr>
<tr>
<td>Quality</td>
<td>QLTY</td>
<td>Air*</td>
</tr>
<tr>
<td>Route</td>
<td>RT</td>
<td>Best*</td>
</tr>
<tr>
<td>Turnpike</td>
<td>TRNPK</td>
<td>[Name]*</td>
</tr>
<tr>
<td>Vehicle</td>
<td>VEH</td>
<td>Stalled*</td>
</tr>
<tr>
<td>Cardinal Directions</td>
<td>N, E, S, W</td>
<td>[Number]</td>
</tr>
<tr>
<td>Upper, Lower</td>
<td>UPR, LWR</td>
<td>Level</td>
</tr>
</tbody>
</table>

* = Prompt word given first
The following abbreviations are understood with a prompt word by about 75% of the drivers. These abbreviations may require some public education prior to usage.

<table>
<thead>
<tr>
<th>WORD</th>
<th>ABBREV.</th>
<th>PROMPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>COND</td>
<td>Traffic*</td>
</tr>
<tr>
<td>Congested</td>
<td>CONG</td>
<td>Traffic</td>
</tr>
<tr>
<td>Downtown</td>
<td>DWNTN</td>
<td>Traffic</td>
</tr>
<tr>
<td>Frontage</td>
<td>FRNTG</td>
<td>Road</td>
</tr>
<tr>
<td>Local</td>
<td>LOC</td>
<td>Traffic</td>
</tr>
<tr>
<td>Northbound</td>
<td>N-BND</td>
<td>Traffic</td>
</tr>
<tr>
<td>Roadwork</td>
<td>RDWK</td>
<td>Ahead [Distance]</td>
</tr>
<tr>
<td>Temporary</td>
<td>TEMP</td>
<td>Route</td>
</tr>
<tr>
<td>Township</td>
<td>TWNNSHP</td>
<td>Limits</td>
</tr>
</tbody>
</table>

* = Prompt word given first

Certain abbreviations are prone to inviting confusion because another word is abbreviated or could be abbreviated in the same way. **DO NOT USE THESE ABBREVIATIONS:**

<table>
<thead>
<tr>
<th>ABBREV.</th>
<th>INTENDED WORD</th>
<th>WORD ERRONEOUSLY GIVEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRNG</td>
<td>Warning</td>
<td>Wrong</td>
</tr>
<tr>
<td>ACC</td>
<td>Accident</td>
<td>Access (Road)</td>
</tr>
<tr>
<td>DLY</td>
<td>Delay</td>
<td>Daily</td>
</tr>
<tr>
<td>LT</td>
<td>Light (Traffic)</td>
<td>Left</td>
</tr>
<tr>
<td>STAD</td>
<td>Stadium</td>
<td>Standard</td>
</tr>
<tr>
<td>L</td>
<td>Left</td>
<td>Lane (Merge)</td>
</tr>
<tr>
<td>PARK</td>
<td>Parking</td>
<td>Park</td>
</tr>
<tr>
<td>RED</td>
<td>Reduce</td>
<td>Red</td>
</tr>
<tr>
<td>POLL</td>
<td>Pollution (Index)</td>
<td>Poll</td>
</tr>
<tr>
<td>FDR</td>
<td>Feeder</td>
<td>Federal</td>
</tr>
<tr>
<td>LOC</td>
<td>Local</td>
<td>Location</td>
</tr>
<tr>
<td>TEMP</td>
<td>Temporary</td>
<td>Temperature</td>
</tr>
<tr>
<td>CLRS</td>
<td>Clears</td>
<td>Color</td>
</tr>
</tbody>
</table>
RECORD WORKING DRAWING TRANSMITTAL

Date ________________________

TO: __________________________

FROM: _________________________

(Final Review Office)

PROJECT NAME __________________

FINANCIAL PROJECT ID ___________

FEDERAL AID PROJECT NO. __________

CONTRACT ID NUMBER _____________

COUNTY (SECTION) ________________

STATE ROAD NUMBER ______________

BRIDGE NUMBER ___________________

CONTRACTOR ______________________

ENGINEER OF RECORD ______________

We are transmitting herewith the following Record Working Drawings for archiving:

1. ______________________________

2. ______________________________

3. ______________________________

4. ______________________________

5. ______________________________

6. ______________________________

For the Final Review Office: ____________________________ ____________

(Signature) (Date)

For the Receiving Office: ____________________________ ____________

(Signature) (Date)
104 Public Involvement

104.1 General

FDOT's policy on Public Involvement Opportunities, Topic No. 000-525-050 states:

“The Department recognizes the importance of involving the public in information exchange when providing transportation facilities and services to best meet the State's transportation needs. Therefore, it is the policy of the Florida Department of Transportation to promote public involvement opportunities and information exchange activities in all functional areas using various techniques adapted to local area condition and project requirements.”

Detailed information on Public Involvement activities and requirements can be found in the Project Development and Environment Manual (PD&E Manual) Part 1, Chapter 11 and the Public Involvement Handbook.

Typically, when a project reaches the design phase, many of the project commitments and community issues have already been identified. However, there are times when design alternatives need to be reevaluated to determine their community impacts. Any commitments made in previous phases are communicated to designers, who are responsible for carrying them out. If constraints arise that require design changes which affect FDOT's ability to meet commitments, then the process would require follow-up with the affected community. In such cases, additional public involvement and community impact assessment may be necessary to address public concerns.

Projects may have the following potential community impacts that are not identified until the design phase:

1. Impacts on public safety, including people with disabilities
2. School crossings or other areas of high pedestrian activity
3. Aesthetic features such as landscaping or tree replacement
4. Medians or access changes
5. Intersections and driveways, including audible signalized intersections
6. Accessibility of corridor businesses and neighborhoods
7. Significant improvements to bicycle, pedestrian and transit facilities
8. Lighting
9. Maintenance of Traffic
104.2 Public Information and Outreach

Start developing and implementing a public information and outreach campaign when the design phase begins. Ongoing monitoring throughout the life of the project will be necessary. The following steps should be used when planning and implementing a public information and outreach campaign.

1. **Determine appropriate size and nature.** The size and nature of a public information and outreach effort is determined by the characteristics of a project, its location, and the anticipated impacts. Address the size and duration of the project, the amount of delay anticipated, special traffic and safety conditions such as heavy truck traffic, changes to bicycle and pedestrian routes and facilities, and disruptions to other modes and key facilities such as airports, stadiums, and hospitals.

2. **Identify resources.** Typically, public information and outreach spending is included in the project budget. In addition, the Department may need to tap existing resources, such as an operating 511 system and the Lane Closure Information System (LCIS), and leverage external resources such as free media coverage.

3. **Identify partners.** Working with a range of partners to design and implement an information and outreach campaign will strengthen the strategies employed and may reduce the costs and resources. Partners may include state and local agencies, major employers, business and neighborhood associations, and local clubs and advocacy groups.

4. **Identify target audiences.** Identifying target audiences is a key in developing an effective communication strategy. This determines the types of messages that should be conveyed and the best method of communicating those messages.

5. **Develop the message(s).** The messages communicated should provide project information to maintain safety and minimize delay, and should indicate that the agency cares about the traveling public, including transit riders, pedestrians, cyclists, and motorists. More specific messages might include details of the work zone, travel times through the work zone, alerts regarding the need for cyclists to share or control a travel lane, and alternate routes and modes of transportation.

6. **Determine communication strategies.** How information is communicated will depend on the audiences, the messages to be conveyed, and the campaign budget. The *Public Involvement Handbook* discusses a wide range of strategies for communicating information about a project.
Determine communication timing. Begin public information and outreach before work commences to develop partnerships and inform the public about the project, its anticipated impacts, and additional sources of ongoing project information. Early contact and coordination with bicycle groups (such as Metropolitan Planning Organization Bicycle/Pedestrian Advisory Committees or bike clubs) helps mitigate friction.

104.3 Community Awareness Plan (CAP)

The CAP identifies and documents the notification method to project stakeholders of potential impacts of a proposed construction project. Project stakeholders typically include local governments, affected property owners, tenants, and the public. The CAP establishes and maintains a strategy for early, meaningful, and continuous public involvement during the design and construction phases. Specifically, the intent of the CAP is to develop an approach to achieve the following objectives:

(1) Resolve controversial issues during the design phase.
(2) Develop and maintain stakeholder support for the project.

At a minimum, the CAP should include the following elements:

(1) **Project Description**: Identify the project background, existing conditions, and proposed project scope. Include special features or amenities to be included in the project when describing the scope of work.

(2) **Description of the Community**: Describe the area surrounding the project limits and properties that might be affected. Include special demographic data that would assist in determining the need for translation services or bilingual staff at a public meeting.

(3) **Potential Controversial Issues**: Identify community issues or concerns. Some level of controversy can be expected from the following: access changes, driveway modifications, parking removal, right-of-way acquisition, new signalized intersections, landscaping changes or removal, loss of aesthetic feature, or temporary construction impacts (e.g., lane closures, detours).

(4) **Special Commitments**: List commitments made prior to or during the design phase.

(5) **Traffic Control and Access Impacts**:
 (a) Temporary Traffic Control Plan – Describe the temporary traffic control plan, including lane closures, night work, or detours. Identify special community events that must be considered.
(b) Access Impacts – Describe temporary or permanent access changes, including driveway modifications.

(c) Construction Schedule – Identify when construction activities are expected to begin.

(d) Preliminary Contract Time – Include an estimate of the contract duration.

(6) **CAP Level:** Identify the public involvement level and justify the level selected.

(7) **Identification of Project Stakeholders:** List the property owners, tenants, elected and appointed officials, local, state, and federal agency representatives, and interested organizations.

(8) **Proposed Public Involvement Notification Methods and Activities During Design:** Describe the outreach efforts to conduct during the design phase, the anticipated schedule, and how the public will be notified.

(9) **Proposed Public Involvement Notification Methods and Activities During Construction:** Provide a timeline of public involvement activities for the construction phase.

104.3.1 CAP Levels

FDOT CAP Guidelines for all design and construction projects identify four levels of public involvement based on the type of project:

Level 1: Project is noncontroversial, causes negligible accessibility impacts, and causes minimal traffic disruption.

Level 2: Project has general public acceptance, little impact on accessibility or traffic, and a moderate degree of traffic disruption. Examples include urban resurfacing, bridge repair projects, and other construction activities that may require lane closures.

Level 3: Project may be controversial, will significantly impact traffic flow, or will significantly affect accessibility to properties (temporary or permanent). Examples are parking removal, median openings or closures, access management issues, traffic signal removal, roadway widening, major reconstruction, and projects including detours.

Level 4: Project involves road widening or major reconstruction, bridge widening or replacement, new interchange, or closures (temporary or permanent) of the roadway, ramps, bridges, or railroad crossings.
104.4 Recommended Activities

A public information and outreach campaign involves communicating with road users, the general public, area residences and businesses, and appropriate public entities about a road project and its implications for safety and mobility.

104.4.1 Design Activities

The District Public Information Officer (PIO) should also have final approval of informational documents intended for public distribution.

Typical activities corresponding to the CAP level are provided as follows:

CAP Level 1

(1) Provide Phase II plans to city, county officials, and staff to solicit comments and concurrence.

CAP Level 2, 3, 4

(1) When requested, provide presentation(s) to city, MPO, County Commission, legislators and community groups regarding design, impact and construction status.

(2) Provide plans for all phase reviews to city, county officials, and staff to solicit comments and concurrence.

(3) Provide plans for all phase reviews to maintenance, construction, and appropriate Operations Center.

(4) Following Phase II review:

 (a) Send Notice of Access Impact (driveway closures/modifications) to affected property owners. If done by mass mailing, all proposed access revisions must be clearly stated in the mailing.

 (b) Project Information Workshop(s) with city and county staff, elected officials, property owners, and interested public to solicit comments. Mass mailing of invitation or project flyers are typically coordinated by the Department Project Manager and the District PIO.
104.4.2 Construction Activities

Typical activities corresponding to the level type are provided as follows:

CAP Level 1,2,3,4

1. Two to four weeks prior to beginning construction activities, conduct a mass mailing of project information with construction dates and specific traffic impact information. Project flyers are typically coordinated by the Construction Project Manager and the District PIO.

2. One week prior to beginning construction activities, include information regarding the project start date, pertinent project information and specific traffic impacts in the District PIO’s Weekly Traffic Report (news release).

3. Throughout the construction phase, include specific traffic impacts in the District PIO’s Weekly Traffic Report (news release). It is the Construction Project Manager’s responsibility to provide the District PIO with this information in a timely manner to meet media deadlines.

CAP Level 2,3,4

1. After Letting, conduct a ‘Hand Off’ meeting including representatives from Design, Construction, Utilities, Traffic Operations and Maintenance. This meeting is typically scheduled by the Design Project Manager.

2. When requested, provide presentations to city and county officials, legislators, community groups and property owners regarding project status, as needed or requested.

CAP Level 3,4

1. During the development of Scope of Services for C.E.I., determine if a consultant PIO is required for the project. This decision will be made by the Design Project Manager, Construction Project Manager, and the District PIO. The District PIO should be involved in writing Requests for Proposals and Scopes of Services language that pertain to contracting with community involvement and public information consultants.

2. For project websites, Construction staff typically maintains the website in accordance with the Project Website Guidelines.
104.5 Combined PD&E and Design Projects

For projects that overlap the PD&E and Design phases, prepare a Public Involvement Plan (PIP) in accordance with Part 1, Chapter 11 of the PD&E Manual. At the conclusion of the PD&E phase, update the PIP to include the following:

1. Summary of community concerns and issues
2. List of special commitments
3. Summary of the Temporary Traffic Control Plan
4. Description of access impacts
5. Construction schedule
6. Estimated construction duration
7. Proposed public involvement activities during construction

104.6 Noise and Perimeter Walls

See FDM 264.4 for Public Involvement requirements for noise and perimeter walls.
105 Aesthetic Design

105.1 General

Merriam-Webster defines aesthetic as “pleasing in appearance; beautiful.” Aesthetics has to do with human perception of whether places or objects are beautiful or ugly; elegant or tasteless; elaborate or plain. It is difficult to define aesthetics because it is a subjective topic. However, humans can generally arrive at a consensus of what is “pleasing in appearance.”

Successful implementation of aesthetics can be summarized in a quote by Alvar Aalto: “Beauty is the harmony of function and form.” In the design of transportation facilities, the roadway should blend with its physical and social environment.

Aesthetic design should achieve a balance between form, function, color, texture, durability, and cost. It is important that designers be sensitive to the aesthetic implications of their work and also to their personal aesthetic capabilities and limitations.

Florida’s beauty is a combination of the natural and built environment; credited with attracting millions to visit, invest, live, and work here. Transportation facilities are the largest, most visited, and most visible land use in Florida; the largest public spaces in most communities. Quality transportation design should not diminish the visual quality of a place and the experience of being there.

105.2 Aesthetic Design

Aesthetics is an integral part of the transportation design process and should not require additional tasks. Aesthetic designs are not an afterthought to embellish or provide adornments, frills, decorations, or add-ons to cover ugly parts. Affordable, biddable, constructible, and maintainable designs can artfully respond to the Department’s and communities’ safety, mobility, and aesthetic ideals. Even when there are no known aesthetic issues or when a project is minor, transportation facilities must not be ugly and detract from Florida’s beauty.

It is important to achieve a balance between form, function, color, texture, durability, and cost in the design of transportation facilities. Implementation of aesthetic principals in transportation design involves the balanced combination and implementation of the following elements:
• **Form**
• **Color**
• **Orientation**
• **Scale**
• **Perspective**
• **Aspect**
• **Proportion**
• **Context**
• **Exposure**
• **Location**
• **Viewsheds**
• **Materials**
• **Durability**
• **Lightness, darkness, shade, shadow, and reflection**

The placement of transportation elements (e.g., signs, signal control boxes, handrails) should be carefully considered during design. It may be possible to strategically place these items to avoid disturbing a scenic view.

105.3 Policies

Constitution of the State of Florida, Article II, Section 7(A):

“It shall be the policy of the state to conserve and protect its natural resources and scenic beauty.”

Section 334.044 (26) Florida Statutes:

“The department shall have the powers and duties to...conserve the natural roadside growth and scenery; and to provide for the implementation and maintenance of roadside conservation, enhancement, and stabilization programs.”

Aesthetic effects and roadway design considerations are discussed in the *PD&E Manual (Topic No. 650-000-001), Part 2, Chapter 5 and the FDOT Drainage Manual section 5.4.4.2 Detention and Retention Ponds.*

105.4 Guidelines

Integrating aesthetics into transportation projects accomplish the following:

1. Support safety, mobility and enjoyment of all users, and can be integrated with functional elements.
2. Provide facilities that are compatible with the surrounding natural and built environment, based on the context of the roadway; e.g., the urban scale, surrounding architecture, forests, farms, parks, neighborhoods, landscape, community features, water bodies, views, and vistas.
(3) Avoid, minimize, and mitigate insensitive solutions that detract from Florida’s beauty.

(4) Coordinated to provide a clear sense of order, clarity, and continuity.

(5) Use materials and design solutions sensitive to scale, form, materials, color, pattern, texture, and architectural style of existing and proposed elements.

(6) Address maintenance needs and responsibilities.

Roadways should blend into the landscape, avoiding large cuts and fills into the existing terrain. Horizontal and vertical alignment should be coordinated so that a driver has an opportunity to gain a sense of the local environment. Combinations of horizontal and crest vertical curves, and broken-back curves should be avoided. Excessively long tangent sections become monotonous. Curvature or other features should be added to maintain drivers’ interest and awareness.

Vistas of exceptional beauty should be accentuated by the roadway geometrics. Ideally, such vistas should be on the outside of horizontal curves, without excessive roadside appurtenances and signs to clutter the view. Consider the view from, and the view of the transportation facility.

Preferred design solutions may require additional right of way (R/W). Aesthetics is an acceptable design objective. The Department has a wide discretion to select the amount and location of the property to be acquired. Courts can inquire whether the Department has adequately considered alternatives, costs, environmental factors, long-range planning and safety. As long as these factors are adequately considered, courts generally are not authorized to substitute their design judgment for that of Department unless the Department acts illegally in bad faith or abuses its discretion.

Often, the most attractive and elegant design solution can be low cost or no cost, and add little or no time to the project schedule.

105.5 Process

Although beauty is subjective, two or more people can usually find consensus on what is attractive or beautiful and what is not. Seek and use the opinions of others to inform the final design.

Consideration of aesthetics begins early, and is as integral to the design process as safety and mobility. Within the time and budget available, identify and build on opportunities to improve the project aesthetics.
Visualize and evaluate each design element as it will appear from the road, the sidewalk, the bike lane, and from adjacent properties; day and night. Visualize how the element will appear after ten or more years of weather, minimal care, and typical use.

105.6 Safety and Scenic Beauty

General principles of aesthetic design include form, scale, order, and proportion. Due to the need for uniformity in roadway design, there is often a lack of contrast and variety. This can contribute to driver monotony, a real safety concern. By integrating aesthetic design principles throughout the design process, the need for uniformity can be balanced with the need for variety and interest.
106 Exempt Public Documents

106.1 General

This chapter describes the Department’s policy concerning the distribution of sensitive documents used in the design and construction of structures.

106.2 Exempt Documents

In an effort to protect Florida’s transportation infrastructure, the 2002 Legislature enacted Section 119.071(3)(b), Florida Statute (F.S.), which provides that building plans, blueprints, schematic drawings, and diagrams, including draft, preliminary, and final formats, which depict the internal layout and structural elements of a building, arena, stadium, water treatment facility, or other structure owned or operated by an agency are exempt from the requirements of Florida’s Public Records Law.

Therefore, plans, blueprints, schematic drawings and diagrams of structures owned by the Department are exempt from the public records provisions of Chapter 119, F.S. This exemption includes draft, preliminary and final documents and includes paper, electronic, and other formats.

106.3 Distribution of Exempt Documents

Procedure 050-020-026 (Distribution of Exempt Documents Concerning Department Structures and Confidential and Exempt Security System Plans) describes the process for the distribution of documents deemed as Exempt Documents.

For the purpose of Procedure 050-020-026, the term “structure” includes bridges and culverts with an opening of more than 20 feet between undercopings of abutments or spring lines of arches or extreme ends of openings for multiple boxes, and those other bridges subject to safety inspection under Section 335.074, F.S. A roadway is not otherwise a structure.

Entities or persons outside the Department requesting or receiving copies of any portion of plans or other documents considered Exempt Documents must complete a request form (Form No. 050-020-26). The entity or person receiving the Exempt Documents must maintain the exempt status of the Exempt Documents. This procedure applies to all Department internal or contracted staff who have access to such Exempt Documents in their Department work.
110 Initial Engineering Design Process

110.1 General

This chapter discusses the engineering design process which begins with the approval of the Project Location and Design Concept Acceptance and ends with the construction letting. It may include an update process when the construction plans and specifications are ready and on hold in the district and require revising to make them contract ready. Throughout this design process, quality control will be performed by those responsible for the engineering design and plans preparation activities.

The engineering and design activities and the schedules depend on the type of project and the required effort to accomplish the desired objectives. There are three basic types of projects:

(1) **New Construction** - A highway or bridge project along a new corridor on new horizontal and vertical alignments.

(2) **Add Lanes and Reconstruction** - A highway project along an existing facility to add lanes, widen or replace bridges, or improve intersections to improve capacity, safety, or operation.

(3) **Other Projects** - May include Resurfacing, Restoration and Rehabilitation (RRR), operational improvements, safety enhancements, or improvements to extend the service life of an existing highway or bridge. These projects generally do not require a PD&E phase. The scopes are so varied that it is difficult to define them, except project by project. They can vary in magnitude from installing highway lighting for enhanced safety or resurfacing pavement to extend the service life, to minor lane and shoulder widening, bridge rail modification or intersection improvements. These projects may also include transit facilities, bike paths, sidewalks and landscaping.

Figure 110.1.1 shows the major activities included in the initial engineering design process.
Figure 110.1.1 Major Activities – Initial Engineering Process

<table>
<thead>
<tr>
<th>Review & Confirm:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project objectives/ scope</td>
</tr>
<tr>
<td>PD&E study preferred alternative</td>
</tr>
<tr>
<td>Typical section data accuracy</td>
</tr>
<tr>
<td>Environmental evaluation</td>
</tr>
<tr>
<td>PD&E commitments (e.g., noise barriers, pond sites)</td>
</tr>
<tr>
<td>Budget (WP) & staff-hour estimates</td>
</tr>
<tr>
<td>Schedule & production dates</td>
</tr>
<tr>
<td>Approvals & authorizations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prepare, Document & Approve:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Typical section standards</td>
</tr>
<tr>
<td>2. Design controls - speed, design period, vehicle, traffic volumes, LOS, access class & function, bike & pedestrian LOS, ADA</td>
</tr>
<tr>
<td>3. Design project standards & assumptions, Pavement Type Selection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compare & Confirm:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project design standards vs. R/W</td>
</tr>
<tr>
<td>PD&E preferred alternative vs. standards</td>
</tr>
<tr>
<td>Design controls vs. standards</td>
</tr>
<tr>
<td>Objectives & scope vs. standards</td>
</tr>
<tr>
<td>Documentation & approval</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field Review and Verify:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adequacy of survey data</td>
</tr>
<tr>
<td>Updates required</td>
</tr>
<tr>
<td>Transfer survey data to design files</td>
</tr>
<tr>
<td>Adequacy of R/W survey data</td>
</tr>
<tr>
<td>Surveyor signs off on location files</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Review, Confirm & Approve:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alignment and topo in CADD</td>
</tr>
<tr>
<td>Alignment vs. standards</td>
</tr>
<tr>
<td>New alignments</td>
</tr>
<tr>
<td>Design Exceptions & Design Variations</td>
</tr>
<tr>
<td>Initiate utility contact</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Review & Establish Needs:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental issues</td>
</tr>
<tr>
<td>PD&E and Environmental commitments (i.e., Noise barrier locations, etc.)</td>
</tr>
<tr>
<td>Landscape</td>
</tr>
<tr>
<td>Aesthetics</td>
</tr>
<tr>
<td>Retention/outfalls</td>
</tr>
<tr>
<td>Permits, mitigation, R/W field review</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Develop:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary project layout: grades, superelevation rates, transitions, vertical curves, geometry calculations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Review:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grades vs. soil data vs. Base Clearance Water Elevation</td>
</tr>
<tr>
<td>Clearances above and below</td>
</tr>
<tr>
<td>Existing drainage structure size used on existing facility vs. grades</td>
</tr>
<tr>
<td>Existing landscape condition</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Develop:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing ground cross sections</td>
</tr>
<tr>
<td>Approval of alignment & grades along project, computations</td>
</tr>
<tr>
<td>Soil data on existing ground cross sections</td>
</tr>
<tr>
<td>Landscape locations & potential conflicts</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Develop:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roadway cross section templates</td>
</tr>
<tr>
<td>Special ditch profiles</td>
</tr>
<tr>
<td>Check impact on utilities</td>
</tr>
<tr>
<td>Check impact on existing vegetation</td>
</tr>
<tr>
<td>Drainage outfalls</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Develop:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric layout - intersections, interchanges, transitions & connections</td>
</tr>
<tr>
<td>Verify and confirm access management design</td>
</tr>
<tr>
<td>Confirm bike, pedestrian, transit & ADA needs vs. project standards</td>
</tr>
<tr>
<td>Noise barrier geometry</td>
</tr>
<tr>
<td>Landscape Plan and Tree Disposition</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field Review:</th>
</tr>
</thead>
<tbody>
<tr>
<td>All preliminary engineering activities & decisions</td>
</tr>
<tr>
<td>Approvals documented</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Finalize:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alignments, grades, geometry, reports</td>
</tr>
<tr>
<td>RW requirements, Summary of Pay Items</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Review & Confirm:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary project design report</td>
</tr>
<tr>
<td>Project objectives/ scope</td>
</tr>
<tr>
<td>Project design controls/standards</td>
</tr>
<tr>
<td>Environmental issues/permits</td>
</tr>
<tr>
<td>Budget, staff-hour estimate & production dates</td>
</tr>
<tr>
<td>Engineering support data & services</td>
</tr>
</tbody>
</table>

To Final Engineering Design
110.2 Initial Engineering Design

Generally, the initial engineering process should accomplish or complete the following activities:

(1) Completely and fully define and document the objectives of the project and the scope of activities to accomplish them. This will almost always require an on-site review.

(2) Document the surrounding context as it relates to aesthetics and accommodating trees (existing and proposed) and other long-lived plants.

(3) Develop and document a realistic staff-hour estimate and production schedule to accomplish the scope of activities identified.

(4) Coordinate with the District Interchange Review Coordinator to determine if a re-evaluation of the approved Interchange Access Request (IAR) is necessary. The Interchange Access Request Users Guide (IARUG) provides the requirements for performing a re-evaluation of the Interchange Access Request (IAR).

(5) Establish and document the design controls, criteria, assumptions, project design standards, Design Exceptions, and Design Variations. Significant changes to previously approved PD&E concept may result in a re-evaluation of the Environmental Document. Discuss with the District Environmental Management Office.

(6) Review Project Commitment Record (PCR) that was completed during PD&E and identify all prior PD&E commitments that will be addressed during design; e.g., the need to design and locate noise barriers (with insertion loss calculations), special pond site requirements, landscape or aesthetic considerations, pedestrian and bicycle commitments, access commitments, wildlife management commitments, wetland issues, transit issues.

(7) Identify and document additional engineering, data gathering, and support services.

(8) Determine and document the structural design requirements.

(9) Determine and document if R/W is required.

(10) Establish and document the review procedure and number of submittals, if different from guidelines provided in this manual.

(11) Establish preliminary geometry, grades, and cross sections.

(12) Identify and implement needed public involvement activities. See FDM 104.

(13) Develop Pavement Type Selection Report based on FDOT Pavement Type Selection Manual (Topic No. 625-010-005).
If a PD&E phase has been completed, some of the activities listed above may have been performed to varying levels during that phase. The information contained in the preliminary engineering report should be considered as the starting point for the initial engineering phase. When there was no PD&E phase, the initial engineering design activities must establish the project scope, controls, criteria, and standards, data gathering requirements, right of way (R/W) needs, and major design elements necessary to determine that the project is viable and R/W can be cleared.

110.3 Scope, Objectives, Schedule and Budget

The Department’s project manager is responsible for the development, review and approval of the project objectives, scope of work, and schedule in accordance with the Project Management Guide. They must also verify that required funds are in the work program.

The project objectives and scope are best confirmed and completed by:

1. Reviewing the PD&E study recommendations, conclusions and commitments.
2. Performing a field review of the project with the project manager and personnel from appropriate FDOT offices, such as Roadway Design, Traffic Operations, Safety, Right of Way, Utilities, Landscape, Survey, Maintenance and Construction.
3. Requesting a review of the draft scope of services activities by FDOT offices, such as Maintenance, Construction, Design, Traffic Operations, Access Management, Public Transportation, Pedestrian and Bicycle, and Environmental Management.
4. Developing the scope of services sufficient to advertise for professional services. After the scope of services is completed and approved, the schedule and budget may be confirmed and updated by the engineer/project manager and approved by the appropriate district manager. The scope of services should anticipate and include:
 a. The most cost-effective methods that may be used in Subsurface Utility Engineering (SUE) for locating subsurface anomalies, structures, and utilities.
 b. Opportunities to accommodate existing trees, proposed trees, and other long-lived plants.

After consultant selection or in-house assignment, the designer or consultant should review and confirm the scope of services.
110.4 Project Design Controls and Standards

Selection of appropriate project design controls and standards ensure that the facility will function safely at the level desired and expected by motorists, pedestrians and cyclists. The Engineer of Record (EOR) is responsible for establishing project design controls and standards to be used in the development of the construction plans. Place documentation for the selected project design controls and standards in Project Documentation (see FDM 111.7).

The design controls as addressed in this manual include:

- design speed
- design vehicle
- design period
- traffic volumes
- level of service
- functional classification
- access classification
- context classification

Other factors that control the selection of project design controls and standards include right of way constraints, utility conflicts, and preservation of large trees.

The Preliminary Engineering Report (PER) or project concept report may include some of the project design controls and standards to be used on the project. These design parameters should be reviewed, confirmed as valid and consistent with the overall corridor or system, and documented.

See FDM 201.5 for information on selecting the appropriate design speed for the project.

Either a Design Exception or Design Variation, as described in FDM 122, must be obtained when selected project design controls and standards do not meet Department's criteria.

110.4.1 Sole Sourced Products or Processes

Sole sourcing products or processes occurs when the EOR specifies a proprietary product or process within the construction contract documents which results in the exclusion of other products or processes that may perform the same or similar function. Sole sourcing must be justified by the EOR and approved by the District Design Engineer. Identify these features as early in the design process as possible and provide the approved justification prior to the Phase III submittal.

Provide justifications that factually and technically support the sole sourcing of the proprietary product or process. Address why sole sourcing is reasonable and necessary.
to fulfill the project’s needs. Complete the Sole Sourcing Approval along with supporting documents and justification as needed in the PSEE module.

110.5 Support Services

Review information or support services that have been provided to determine the completeness and currency of data used in previous studies/reports.

Technical data required for the design of a roadway project can be available from various sources, such as:

1. Surveys - design, topographical, aerial, drainage, right of way location, soil, utilities
2. Traffic Data
3. Pavement Design
4. Environmental Documents (including Noise Study Report and wildlife connectivity recommendations)
5. Original Plans
6. Crash Data
7. Roadway Characteristics Inventory (RCI)

During the design process, the project will require coordination with different sections or offices. When engineering decisions, information, or other support services are required from FDOT functional areas, it is the project manager’s responsibility to coordinate and facilitate the request and expedite a timely response. The functional areas include but are not limited to:

1. Planning and Programs
2. Surveying and Mapping
3. Traffic Plans
4. Geotechnical
5. Drainage
6. Maintenance
7. Construction
8. Utilities
9. Estimates and Specifications
10. Right of Way
11. FHWA
12. Value Engineering
13. Traffic Operations
14. Environmental Management
15. Access Management
16. Structures
17. Safety
18. Plans Review
19. Public Transportation
20. Landscape Architecture

110-Initial Engineering Design Process
(21) Central Office

110.5.1 Project Aviation Requirements

Federal regulations exist to protect the national airspace system and must be considered when planning, designing and constructing a Department project. The Department must comply with the requirements of Title 14 Code of Federal Regulations (CFR), Part 77 (14 CFR, Part 77) regarding the construction or alteration of existing or proposed permanent and temporary structures.

Place the FAA Determination in accordance with FDM 111.7.2.12.

110.5.1.1 Required Coordination

Responsibility for complying with 14 CFR, Part 77 ultimately rests with the Department. However, the responsibility for filing FAA notifications rests with the Engineer of Record. The FAA notification process is a complex and lengthy process; therefore, coordinate with both of the following as early as possible in the initial phases of the project for assistance:

- District Aviation Coordinator
- Airspace and Land Use Manager

Aviation and Spaceports Office
https://www.fdot.gov/aviation/

110.5.1.2 FAA Notification Guidelines

The FAA provides a Notice Criteria Tool via the Obstruction Evaluation/Airport Airspace Analysis (OE/AAA) website (https://oeaaa.faa.gov/). Unless exempt from filing notice per 14 CFR, Part 77, this tool must be used to determine if the construction activity or alteration requires notice to the FAA.

If notice is required, use FAA Form 7460-1, “Notice of Proposed Construction or Alteration”. Form 7460-1 should be submitted electronically through the FAA’s Obstruction Evaluation/Airport Airspace Analysis (OE/AAA) website:

https://oeaaa.faa.gov/

The website allows filing multiple “points” in a matrix on a single Form 7460-1. Early submission is recommended to avoid required design changes or delays in letting or construction.
Submission of Form 7460-1 will result in the FAA issuing a Determination whether the obstruction constitutes a hazard to air navigation in accordance with 14 CFR, Part 77. Construction may not commence until the FAA issues a Determination. If the obstruction is determined to be a hazard, the construction may not proceed according to Chapter 333, F.S.

FAA Emergency Notification:

Emergency notifications are rarely granted. In such a case, the required notification may be sent by telephone or any expeditious means to the nearest FAA Flight Service Station, and within 5 days thereafter, a completed copy of the FAA Form 7460-1, must be submitted to the FAA Southern Regional Office in Atlanta.

110.5.2 Projects Involving Existing Bridges

Special coordination efforts are required of the Design Project Manager on projects that involve demolition, renovation, repair, repainting or replacement of any bridge.

110.5.2.1 Projects Involving Steel Bridges

For all projects that involve the repair, repainting or replacement of a steel bridge, the Design Project Manager must contact the State Corrosion Engineer in the State Materials Office and the District Contamination Impact Coordinator (DCIC) to determine if the bridge contains lead or other hazardous elements. The State Corrosion Engineer and DCIC will furnish a Modified Special Provision for disposition of the lead based paint waste for that particular project.

The Design Project Manager must provide the Modified Special Provision to the Engineer of Record who is preparing the contract plans and specifications. The Engineer of Record must ensure that the project specifications include Modified Special Provision and that they prohibit the use of lead based paint. A mandatory pre-bid conference is not required unless special conditions exist and the district determines one is needed.

110.5.2.2 Projects Involving Bridges with Asbestos-Containing Materials

There may be asbestos-containing materials (ACM) used in bridges. Projects involving bridges that are to be either partially or fully demolished or renovated require an asbestos survey to be conducted by a licensed Asbestos Consultant. This should be completed as early in the project as possible to determine the nature and extent of ACM and if
abatement is required. Some bridge elements potentially containing asbestos include (but are not limited to) the following:

1. Tender House Roof Materials (e.g., felts, flashings, mastics)
2. Tender House Floor Materials (e.g., tiles, sheet flooring, mastics)
3. Tender House Wall Materials (e.g., drywall muds, joint compounds)
4. Tender House Window Materials (e.g., caulks, gaskets)
5. Bridge Equipment Materials (e.g., gaskets, packings, linings, insulation)
6. MSE Wall Gaskets
7. Beam/Deck Bearing Pads
8. Asbestos-cement pipes (e.g., scuppers)
9. Bascule Bridge Machinery Brake Pads
10. Troweled-on or Sprayed-on Decorative Coatings

110.5.2.3 Projects Involving Bridge Demolition

At or before the 30% plans phase, the Department will determine if it has a need for the debris resulting from the demolition of a bridge. If no such need exists, and in response to Section 1805, SAFETEA-LU Legislation, the Department is then required to notify local, State and Federal government agencies of the availability of the bridge debris for their beneficial use (use as shore erosion control or stabilization, ecosystem restoration, and marine habitat restoration). For any projects that involve the complete demolition of a bridge, the Design Project Manager is required to notify these agencies of the availability of the resulting debris. The Bridge Development Report (BDR)/30% Structure Plans (see FDM 121) will include the approximate volume of debris and the estimated timeframe in which the material will be available.

The Design Project Manager must coordinate with the receiving agency and the District Construction Engineer to develop a Joint Project Agreement. The receiving agency will be responsible for all additional costs associated with the processing, delivery, placement and use of the material. The following items must be determined in order for the Joint Project Agreement to be developed:

1. The volume of raw (unprocessed) debris (a more detailed quantity than original estimate).
2. The estimated timeframe for the debris availability.
(3) The location of the receiving agency’s staging/storage site to which the raw debris is to be delivered. Any further work involving processing and final placement of the material is expected to be the responsibility of the receiving agency and not part of the FDOT’s contract for bridge demolition.

(4) An estimated cost to transport the debris to that site. This estimate will be amount the receiving agency must pay the FDOT.

Once this information is determined, the contract plans will include the instructions for the delivery of the debris.

If no agency expresses interest in the debris material, then the material will be disposed of in accordance with FDOT Specifications.

Requirements for the original notification to agencies (including a sample Notification Letter) and the resulting Joint Project Agreement are found on the Project Management website.

The demolition of bridges with ACM requires that Asbestos Abatement Plans be developed by a licensed Asbestos Consultant. FDM 110.5.2.2 and the Construction Project Administration Manual (CPAM), Section 10.4 contain additional requirements for projects involving demolition of bridges with ACM.

110.5.3 Projects Involving Bridges Over Navigable Water

For projects involving bridges over navigable water, the Design Project Manager must provide the District Structures Maintenance Engineer (DSME) sufficient notification prior to engaging in any action in, on, or around the bridge(s). This includes any field reviews involving persons conducting activities that may be perceived as suspicious (e.g., parking on the bridge, repeated viewing from a boat or other vehicle, carrying cameras and other electronic equipment like a GPS, etc.) This will allow the DSME to notify the U.S. Coast Guard prior to such activities taking place.

110.5.4 Wildlife Connectivity

Wildlife connectivity features include new or modified structures; e.g. bridges, bridges with shelves, specially designed culverts, enlarged culverts, or drainage culverts. Exclusionary devices such as fencing, walls or other barriers may be included to funnel wildlife to a crossing. Disciplines that may be involved in this effort include Structures, Roadway, Drainage, Environmental Management, Permitting, Right of Way and Utilities.
Wildlife connectivity needs are usually identified during the PD&E study. However, coordinate with the District Environmental Management Office and District Permit Office early in the design phase for determination of the type, size and other parameters for the wildlife crossing feature. For further guidance on wildlife connectivity refer to the FDOT Wildlife Crossing Guidelines, commitments section of the Environmental Document, and any other documentation regarding the wildlife connectivity related to the project.

In the event that wildlife connectivity needs are not identified until after the design process has begun, immediately start the coordination process with the District Environmental Management Office and District Permit Office.

110.5.5 Interstate Projects Affecting Logo Structures

Determine if the construction activities on Interstate mainline or ramp projects may impact logo sign structures. Any affected logo structures must be identified so those logo structures can be properly addressed in the plans. Once the affected logo structures are identified, the designer must coordinate with the State Outdoor Advertising and Logo Manager, the Logo Program Contractor, and the District Traffic Operations Office to determine if the logo structures need to be relocated or redesigned during construction. Through this coordination, the following questions must be answered:

(1) Will the construction activities require the relocation of any logo structures during construction?
(2) Where will the logo structures be reinstalled?
(3) Will an upgrade of the sign panel, support or foundation of the affected logo structure be required?

The disposition (e.g., relocate, furnish & install) of affected logo structures must be addressed in the plans and paid for as specified in the Basis of Estimates Manual.

Refer to the Logo Sign Program web page for additional information:

https://www.fdot.gov/rightofway/LogoSignProgram.shtm

110.5.6 Buy America Provisions

All manufacturing processes for steel or iron materials, including application of a coating, utilized in all highway construction projects must occur in the United States, in accordance with the Buy America provisions, established in 23 CFR 635.410. Buy America requirements are covered in FDOT Standard Specifications, Section 6. The allowable
levels of foreign steel or iron and contractor certification requirements are identified in Specification 6-5.2.

While Specification 6-5.2 applies to contractors, designers also have a responsibility to ensure Buy America provisions are met. When Buy America provisions are not met, the entire project is not eligible for Federal funds. The design engineer of record needs to do sufficient research to determine that any steel or iron called for in the plans is manufactured in the United States. This is necessary when the plans include the following:

(1) Non-standard or special grade steel components and shapes.
(2) New proprietary products containing steel or iron materials.
(3) Sole source products containing steel or iron materials.
(4) Special machinery with steel or iron components.
(5) Heavy sections of steel sheet pile wall.

It is not necessary to conduct such research for the following:

(1) Standard domestic steel beams and shapes of standard grades as shown on the National Steel Bridge Alliance (NSBA) website.
(2) Standard concrete reinforcing steel sizes and grades.
(3) Standard steel drainage pipe sizes and gages.
(4) Items covered in the Standard Plans including:
 (a) Standard mast arm assemblies.
 (b) Standard steel guardrail, posts, and end treatments.
 (c) Standard drainage grate.
 (d) Standard steel fences.
 (e) Standard steel sign supports and structures.

If it is determined that a steel or iron product being proposed is not manufactured in the United States, then the Designer must determine if the estimated costs of such foreign steel or iron is within the thresholds stated in the specification. If the costs exceed such threshold, the Designer must explore alternatives that utilize domestic steel or iron, or seek a waiver from FHWA. Generally, it is preferred to select a different engineering solution utilizing domestic products.
Should a waiver become necessary, it must be obtained before the contract letting to ensure federal funding is not jeopardized. Submit Buy America waiver requests to the Central Office for concurrence by the Directors of Design and Construction and notify the Office of Work Program of the requests. Upon concurrence, requests will then be forwarded to the FHWA Florida Division Office for approval and coordinated with the FHWA headquarters in Washington, D.C. for further concurrence. Originals will be returned to the District by the Central Office. These issues must be identified early in the plans preparation process.

110.5.7 Traffic Monitoring Sites

One or more traffic monitoring sites should be considered for addition to each construction project which has a type of work consistent with the construction of such sites. Examples of compatible work types include traffic signals, resurfacing, reconstruction, and other work that involves either pavement surfaces or electrical systems. Inquiries about monitoring sites should be addressed to the Traffic Data Section Manager of the Transportation Statistics Section, Office of Planning.

110.5.8 Fire Suppression Systems

The Department has determined that the details for standpipes, valves and hydrants that have been used on past projects for fire suppression systems located within traffic railings and roadway barriers present significant snag hazards for errant vehicles and thus are not crashworthy. The Department has also determined that there is insufficient justification for incorporating fire suppression systems into, on or attached to traffic railings and roadway barriers in an attempt to improve safety during an extreme event, (e.g. a vehicle fire).

FDOT owned fire suppression systems are not allowed on bridges, retaining walls or limited access facilities unless they are approved by the Chief Engineer due to special circumstances. Commonly occurring traffic related incidents will not be considered as special circumstances or as justification for the installation of any fire suppression system. If an FDOT fire suppression system is approved, agreements must be executed with a local agency to bear all installation costs, repair costs and maintenance functions.

Any fire suppression system that is not owned by FDOT is defined by Section 337.401, (F.S.) as a utility and is not to be issued a utility permit unless approved by the Chief Engineer in accordance with Rule 14-46.001, Florida Administrative Code and the Utility Accommodation Manual.
110.5.9 Trees, Landscape, and Landscape Irrigation Systems

Consistent with Department policy, determine how the project can be designed to accommodate existing desirable trees and proposed trees. Determine if commitments have been made to preserve or provide trees, landscape, or landscape irrigation systems. Determine if a landscape project is programmed or proposed as a component or standalone by the Department or a local agency.

The District Landscape Architect will determine the level of preservation, tree relocation, or invasive species eradication involved. Projects that impact a small number of existing trees typically only require a Tree Disposition Plan (per FDM 323.4). Projects that impact many desirable trees typically require Selective Clearing and Grubbing plans (see FDM 229 and 323).

Coordinate with the District Landscape Architect to determine the following:

- Whether design alternatives could reduce impacts to existing vegetation.
- Whether existing trees will be saved or relocated (if avoidance is not an option). This will determine the prioritization of the level of required funding.

110.5.10 Projects Involving Trails

For projects involving trails (e.g., Florida National Scenic Trail, SUN Trail, bike routes, etc.) intersecting or along the right-of-way, coordinate with the trail owner to ensure the use of the trail is not interrupted during construction.

110.6 Preliminary Geometry

To establish geometry, the following activities should be accomplished or near completion:

(1) Supporting data such as surveys, traffic and pavement evaluation data.
(2) Typical sections and pavement design.
(3) Standards, Design Variations, and Design Exceptions.
(4) PD&E commitments addressed.
(5) Need for R/W phase addressed.
(6) Utility initial contact and survey data.
(7) Transit initial contact and facility location.
The initial engineering design activities to establish the preliminary project plans are:

1. Set and calculate the horizontal alignment.
2. Set the proposed profile grade lines.
3. Develop preliminary cross sections at selected intervals or control locations.
4. Develop preliminary layout of roadway, intersections, interchanges, transitions, and connections.
5. Field review all proposed preliminary engineering layout and decisions for conflicts, R/W needs, connections, updates and additional needs.

The initial engineering review is used to obtain confirmation and approval of the objectives, scope, standards, decisions, and assumptions to be used as the basis for the engineering and design.

The above activities should result in the following:

1. Structures can now be given the horizontal and vertical alignment and clearance requirements for bridges.
2. R/W Engineering can be furnished with mainline R/W requirements for the project.
3. Plan-profile sheets can be clipped.
4. Traffic plans development can be initiated.
5. Cross sections, grades and alignments, as required, can be provided to the drainage section.
6. Work sheets, as needed, can be provided to the permits section for initial evaluation.
7. Utility/Agency Owners (UAOs) can be provided plans, profiles and cross sections as required to identify/verify and designate their existing utilities as well as indicate proposed installations.
8. The list of pay items can be loaded into Designer Interface by identifying the items of work involved at this stage of design.
9. The need for noise barriers has been confirmed and locations established.
111 Final Engineering Design Process

111.1 General

The final engineering design process follows the initial engineering design process and review. The primary objective of the final engineering design phase is to prepare contract plans and specifications that can be used to bid and construct the project with a minimum number of field changes, delays, and cost overruns.

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete the above paragraph and replace with the following:</td>
</tr>
<tr>
<td>The primary objective of the final engineering design phase is to prepare contract plans and specifications sufficient to meet the contract requirements.</td>
</tr>
</tbody>
</table>

On projects requiring Federal authorization where the Design Phase and the PD&E Phase overlap, the Department must receive Location Design Concept Acceptance (LDCA), prior to acceptance of the Phase II submittal (prior to advancing into Final Design). To advance past Phase II coordinate with the Environmental Management Office who will work with FHWA (see Part 1, Chapter 4 of the PD&E Manual). The Design Project Manager must coordinate with the PD&E Project Manager, and the District Environmental Management Office to ensure that the Department has received LDCA for the project. The Design Project Manager will need to convey this information to the district federal aid staff in the District Work Program Office. Figure 111.1.1 shows the major activities included in the final engineering design process.

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete the first two sentences of the above paragraph and replace with the following:</td>
</tr>
<tr>
<td>On projects requiring Federal authorization where the Design Phase and the PD&E Phase overlap, the Department must receive Location Design Concept Acceptance (LDCA), prior to release of the final RFP.</td>
</tr>
</tbody>
</table>
Figure 111.1.1 Major Activities – Final Engineering Design Process

Verify:
... Location Design Concept Acceptance has been received (Required prior to Final Design on appropriate projects requiring Federal authorization or approval)

Perform Final Engineering:
... Horizontal & vertical geometry
... Geometric layout & calculations
 intersections, interchanges, side roads, connections, transitions
... Access management design

Coordinate Disciplines:
... Horizontal & vertical geometry to bridges
... Foundation studies
... Roadway geotechnical data
... Utility meetings & design
... Permits, environment, & design
... BHR & BDR to Structures
... Drainage requirements
... R/W requirements for demolition, relocation, and title search activities
... Traffic design plans: signals, markings, lighting
... Aesthetics/Landscape Architecture

Coordinate and Advance:
... Roadway engineering & plans
... Bridge engineering & plans
... Traffic control plan design
... Mitigation plan design
... Utility adjustment design
... Summary of pay items
... Estimated quantities & tabulations
... R/W & agreements design
... Permit design & engineering
... Building & site design
... Special design & details
... Construction advertisement re-evaluation

Develop Final Drainage Design:
... Project surface runoff
... Storm drain systems
... Retention pond sites
... Outfalls
... Grades & special ditches
... Reports & calculations

Perform Roadway Structural Design:
... Box culverts
... Retaining walls - MSE
... Noise walls
... Foundations, lighting, mast arms, etc.
... Buildings, parking & toll plaza facilities
... Approach slabs

Finalize Design & Plans:
... Roadway & bridge design
... Drainage - design, tabulations & reports
... Permit approvals
... Traffic guidance plans design
... TTC phase plans design
... Mitigation designs
... R/W & agreements
... Pay items & quantities
... Assembly of plans components
... Utility adjustment design, agreements & plan details

QC / QA:
... Supplemental Specs.
... Special Provisions
... Modified Special Provisions
... Developmental Specifications
... Technical Special Provisions
... Plans / Specification Concurrence
... Constructability and biddability review

Prepare and Document:
... Contract plans package
... Plan pay items - Specifications
... Transmittal package
... Environmental certification
111.2 Final Engineering Design

The Engineer of Record (EOR) and Design Project Manager must coordinate activities to ensure that the quality, accuracy, and appropriate decisions go into the performance of each step. The project quality control should include a plan-do-check routine for each set of activities or operations.

The major design activities include, but are not limited to, the following:

1. Pavement design
2. Drainage design
3. Structural (bridge) design
4. Structural (roadway) design
5. Roadway design including access management, earthwork, selective clearing and grubbing, geometrics, ADA
6. Traffic plans design including signing, marking, signals, lighting
7. Utility adjustment design
8. Permit preparation design including ponds, mitigation
9. Temporary Traffic control plans (work zone) design
10. R/W requirements design
11. Building and site design including landscaping, ADA, transit
12. Estimates and Quantities preparation
13. Specifications and special provisions
14. Landscape design including accommodating existing and proposed vegetation.
15. Noise barrier design

Modification for Non-Conventional Projects:
Delete item 12 above.

111.2.1 Work Program Administration (WPA) System

Project stationing information is to be checked and entered into the Work Program Administration (WPA) system during final engineering design. This information is
important for tying construction records, such as material coring, sampling and testing to other databases. The information is entered by stations, which are related to roadway milepost for later information retrieval.

The begin and end stations, and station equations are entered into the WP50 computer screen under FM on the FDOT CL/SUPERSESSION Main Menu for each WPA location. After logging onto SUPERSESS, the WP50 designees enter on FM (Financial Management System). On the FM Main Menu, press ENTER: 3 for WPA (Work Program Administration). On WPA Main Menu, press ENTER: 25 for WP50 (Station Definition).

Update access to WP50 screen is granted through the Work Program Development Office in Tallahassee. Listed below are the important edit and browse features:

(1) Only enter FM Item Segment number on the top line.
(2) The RDWYLOC sequence number displays on the top line of the screen and on the first line of the header information. It’s entered on the top line to retrieve a particular location.
(3) The transaction type “00” is entered on the top line to browse station equation information for that RDWYLOC. The transaction type “02” is entered on the top line to update station equation information for that RDWYLOC. The transaction type “99” is entered on the top line to erase station equation information for that RDWYLOC.
(4) Press the F8 key will forward from one RDWYLOC to the next RDWYLOC on the same Item Segment number. Press ENTER key to update or delete data on the screen depending on the transaction type but will not page forward.
(5) Press F3 key will take the user to the FM main menu while press F15 key will take the user back to the SUPERSESS main menu.

After entering the station information, it is important to verify the milepost limits in WPA are still accurate. This can be accomplished by reviewing the WP50 computer screen.

If the project length has changed, the District Work Program Office should be advised to correct the mileposts.

111.3 Contract Plans Preparation

The products of the engineering design activities are component sets of contract plans. The major component sets may include:

(1) Roadway
(2) Signing and Pavement Marking
(3) Signization
(4) Intelligent Transportation Systems (ITS)
(5) Lighting
(6) Landscape
(7) Architectural Plans
(8) Structures Plans

Each Utility Work by Highway Contractor Agreement may have a separate phase for each Financial Project Identification Number (FPID). The plan set for each agreement is placed in the back of the contract plans set under the associated FPID.

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete the two sentences above and see the RFP.</td>
</tr>
</tbody>
</table>

These component sets, the specifications package, and the pay items list with calculated quantities are assembled and packaged as the construction contract letting documents.

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete the sentence above and replace with the following:</td>
</tr>
<tr>
<td>These component sets and the specifications package are assembled and packaged as the construction contract documents.</td>
</tr>
</tbody>
</table>

111.4 Standard Specifications and Special Provisions

The EOR must develop engineering designs that can be constructed, controlled, measured and paid for under the current [Standard Specifications](#).

In the event the work required is not covered by the Standard Specifications or the supplements and special provisions thereto, the EOR must develop Modified Special Provisions or Technical Special Provisions to be made part of the contract for the project.

Guidance on the preparation of Specification packages can be found in the [Specifications Handbook](#).
111.5 Pay Items and Summaries of Quantities

The Estimated Quantities Report (See FDM 902) contains completed quantity summary.

Modification for Non-Conventional Projects:
Delete FDM 111.5.

111.6 PS&E Submittal Package

A Plans, Specifications, and Estimates (PS&E) submittal package consists of the final Plans, Specifications, and Estimates, along with any other contract and transmittal documents. FDM 131 provides further guidance on the contents of the transmittal.

Modification for Non-Conventional Projects:
Delete FDM 111.6.

111.7 Project Documentation

The submittal of project documentation is required for all projects. Place required project documents in Project Suite Enterprise Edition (PSEE) within the Design Development Documentation Module concurrent with the second PS&E submittal. Place only final documents in this folder structure; do not submit working files or draft documents. Standard file format is PDF; however, an Excel spreadsheet may be placed in the folder structure if protected to prohibit changes.

When the PSEE module is fully populated and no additional plan changes are expected, the Department will lock the Design Development Documentation Module, typically not later than the project advertisement date.

Place PD&E documents in the Office of Environmental Management’s SWEPT (Statewide Environmental Project Tracker) application.

111.7.1 File Naming Convention

Although the filename is limited to 240 characters, the number of characters used should not exceed 48. Filename is not to contain spaces or special characters (!@#$%^&*+).
Filenames are not case sensitive; however, the use of uppercase letters to begin each word in the filename is encouraged. Recommended filenames for submitted documents are provided in Table 111.7.1.

Additional document description may be provided using a hyphen before the identifying information, for example:

- TempRetainingWallDesignCalculations-TempRetWall2
- DesignVariation-Sidewalk
- StructuresGeotechReport-MSERetWall
- RoadwayGeotechReport-PondSoilSurvey

111.7.2 Documents

Include the list of documents contained in Table 111.7.1 when the document must be produced to support the development of the contract plans. Include other final supporting documents, reports, or calculations not listed in this table if applicable.

111.7.2.1 Correspondence

Include any correspondence (e.g., memorandums, meeting minutes, emails) when design decisions are expressed. Assemble a single PDF that contains all applicable documents pertaining to the subject in chronological order. Include document subject in the name using a hyphen (e.g., Correspondence-GreenBikeLanes.pdf).
Table 111.7.1 – Document Summary Table

<table>
<thead>
<tr>
<th>PSEE Folder</th>
<th>Document Type</th>
<th>Document</th>
<th>File Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICE Report</td>
<td>ICE Report</td>
<td>ICE Report</td>
<td>ICEReport</td>
</tr>
<tr>
<td>Variations-Exceptions</td>
<td>Design Variation Package</td>
<td>Design Variation</td>
<td>DesignVariationPackage</td>
</tr>
<tr>
<td></td>
<td>Design Exception Package</td>
<td>Design Exception</td>
<td>DesignExceptionPackage</td>
</tr>
<tr>
<td></td>
<td>Design Memorandum</td>
<td>Design Memorandum</td>
<td>DesignMemo</td>
</tr>
<tr>
<td>APPROVALS</td>
<td>Project Correspondance</td>
<td>Correspondance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lane Elimination Approval</td>
<td>LaneEliminationApproval</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Federal Aviation Administration (FAA) Determination</td>
<td>FFAADetermination</td>
<td></td>
</tr>
<tr>
<td>Approval Docs</td>
<td>Intersection Number Request Form</td>
<td>IntersectionNumberRequestForm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contract Time Memorandum</td>
<td>ContractTimeMemo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Permit Exemption Letter</td>
<td>PermitExemptionLetter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Structure Number Request Form</td>
<td>StructureNumberRequestForm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Value Engineering Report</td>
<td>ValueEngineeringReport</td>
<td></td>
</tr>
<tr>
<td>Typical Section Package</td>
<td>Typical Section Package</td>
<td>TypicalSectionPackage</td>
<td></td>
</tr>
<tr>
<td>ROADWAY</td>
<td>AutoTurn Analysis</td>
<td>AutoTurnAnalysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Superelevation Analysis</td>
<td>SuperelevationAnalysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cross Slope Evaluation</td>
<td>CrossSlopeEvaluation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barrier Length of Need Analysis</td>
<td>LengthofNeedAnalysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sight Distance Analysis</td>
<td>SightDistanceAnalysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lane Closure Analysis</td>
<td>LaneClosureAnalysis</td>
<td></td>
</tr>
<tr>
<td>PSEE Folder</td>
<td>Document Type</td>
<td>Document</td>
<td>File Name</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>---</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>ROADWAY</td>
<td>Roadway Docs</td>
<td>Work Zone Speed Study</td>
<td>WorkZoneSpeedStudy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Summary of Pay Items Report</td>
<td>SummaryPayItemsReport</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cross Section Sheet</td>
<td>CrossSectionSheet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transportation Management Plan</td>
<td>TransportationManagementPlan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project KMZ File</td>
<td>ProjectKMZFile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADA Assessment Report</td>
<td>ADA-AssessmentReport</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Roadway Operational Assessment Report</td>
<td>RoadwayOperationalAssessmentReport</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Existing Roadway Characteristics Assessment Report</td>
<td>ERCAR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Community Awareness Plan</td>
<td>CommunityAwarenessPlan</td>
</tr>
<tr>
<td>DRAINAGE</td>
<td>Drainage Docs</td>
<td>Location Hydraulics Report</td>
<td>LocationHydraulicsReport</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bridge Hydraulics Report</td>
<td>BridgeHydraulicsReport</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pond Siting Report</td>
<td>PondSitingReport</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drainage Report</td>
<td>DrainageReport</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Base Clearance Water Evaluation Report</td>
<td>BaseClearanceWaterEvaluation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pipe Inspection Report</td>
<td>PipeInspectionReport</td>
</tr>
<tr>
<td>SandPM</td>
<td>SandPM Docs</td>
<td>Attachment to Barrier Calculations</td>
<td>AttachmentToBarrierCalculations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multi-Post Sign Report</td>
<td>MultiPostSignReport</td>
</tr>
<tr>
<td>PSEE Folder</td>
<td>Document Type</td>
<td>Document</td>
<td>File Name</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>SandPM</td>
<td>SandPM Docs</td>
<td>Concept Signing Plan</td>
<td>ConceptSigningPlan</td>
</tr>
<tr>
<td>SIGNALS</td>
<td>Signals Docs</td>
<td>Sub-Surface Utility Location Form (mast arm location)</td>
<td>SubSurfaceUtilityLocationForm</td>
</tr>
<tr>
<td>SIGNALS</td>
<td>Signals Docs</td>
<td>Signal Warrant Report</td>
<td>SignalWarrantReport</td>
</tr>
<tr>
<td>SIGNALS</td>
<td>Signals Docs</td>
<td>Signal Analysis Report</td>
<td>SignalAnalysisReport</td>
</tr>
<tr>
<td>SIGNALS</td>
<td>ITS Docs</td>
<td>ITS Concept of Operations</td>
<td>ITSConceptOfOperations</td>
</tr>
<tr>
<td>ITS</td>
<td>ITS Docs</td>
<td>ITS Power Design Analysis Report</td>
<td>ITSPowerDesignAnalysis</td>
</tr>
<tr>
<td>LIGHTING</td>
<td>Lighting Docs</td>
<td>Voltage Drop Calculations</td>
<td>VoltageDropCalculations</td>
</tr>
<tr>
<td>LIGHTING</td>
<td>Lighting Docs</td>
<td>Lighting Justification Report</td>
<td>LightingJustificationReport</td>
</tr>
<tr>
<td>LIGHTING</td>
<td>Lighting Docs</td>
<td>Lighting Design Analysis Report</td>
<td>LightingDesignAnalysisReport</td>
</tr>
<tr>
<td>LIGHTING</td>
<td>Lighting Docs</td>
<td>Intersection Lighting Retrofit Report</td>
<td>IntersectionLightingRetrofitReport</td>
</tr>
<tr>
<td>LANDSCAPE</td>
<td>Landscape Docs</td>
<td>Landscape Maintenance Plan</td>
<td>LandscapeMaintenancePlan</td>
</tr>
<tr>
<td>LANDSCAPE</td>
<td>Landscape Docs</td>
<td>Landscape Maintenance Cost Estimate</td>
<td>LandscapeMaintenanceCostEstimate</td>
</tr>
<tr>
<td>LANDSCAPE</td>
<td>Landscape Docs</td>
<td>Irrigation Feasibility Report</td>
<td>IrrigationFeasibilityReport</td>
</tr>
<tr>
<td>LANDSCAPE</td>
<td>Landscape Docs</td>
<td>Landscape Opportunity Plan</td>
<td>LandscapeOpportunityPlan</td>
</tr>
</tbody>
</table>
Table 111.7.1 – Document Summary Table Cont.

<table>
<thead>
<tr>
<th>PSEE Folder</th>
<th>Document Type</th>
<th>Document</th>
<th>File Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRUCTURES</td>
<td>Structures Docs</td>
<td>Bridge Structure Design Calculations</td>
<td>BridgeStructureDesignCalculations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temporary Detour Bridge Calculations</td>
<td>TempDetourBridgeCalculations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bridge Load Rating Report</td>
<td>BridgeLoadRatingReport</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temporary Retaining Wall Design Calculations</td>
<td>TempRetainingWallDesignCalculations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temporary Shoring Design Calculations</td>
<td>TempShoringDesignCalculations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Retaining Wall Design Calculations</td>
<td>RetainingWallDesignCalculations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overhead Sign Structure</td>
<td>OverheadSignStructureDesignCalculations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mast Arm Design Calculations</td>
<td>MastArmDesignCalculations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Box Culvert Design Calculations</td>
<td>BoxCulvertDesignCalculations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High Mast Lighting Design Calculations</td>
<td>HighMastLightingDesignCalculations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bridge Development Report</td>
<td>BridgeDevelopmentReport</td>
</tr>
<tr>
<td>TOLLS</td>
<td>Tolls Docs</td>
<td>Toll Siting</td>
<td>TollSitingTechMemo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tolls Concept of Operations</td>
<td>TollConceptOfOperations</td>
</tr>
<tr>
<td>PSEE Folder</td>
<td>Document Type</td>
<td>Document</td>
<td>File Name</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>TOLLS</td>
<td>Tolls Docs</td>
<td>Tolls Building Foundation Calculations</td>
<td>TollBldgFdnCalcs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tolls Building Screen Wall Calculations</td>
<td>TollBldgScreenWallCalcs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Express Lanes Diagrams and Concept Plans</td>
<td>ELDiagramsAndConceptPlans</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Express Lanes Separation Treatment Selection Memo</td>
<td>ELSeparationTreatmentSelectionMemo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Express Lanes Concept of Operations</td>
<td>ELCaptionOfOperations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tolls Mechanical Design Analysis Report</td>
<td>TollMechanicalDAR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tolls Structural Design Analysis Report</td>
<td>TollStructuralDAR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tolls Gantry Design Analysis Report</td>
<td>TollGantryDAR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tolls Power Design Analysis Report</td>
<td>TollPowerDAR</td>
</tr>
<tr>
<td>ARCHITECTURAL</td>
<td>Architect Docs</td>
<td>Electrical Calculations</td>
<td>ElectricalCalculations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mechanical Calculations</td>
<td>MechanicalCalculations</td>
</tr>
<tr>
<td>PSEE Folder</td>
<td>Document Type</td>
<td>Document</td>
<td>File Name</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>ARCHTECTURA</td>
<td>Architect Docs</td>
<td>Plumbing Calculations</td>
<td>PlumbingCalculations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Structural Calculations</td>
<td>StructuralCalculations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water Feature Hydraulic Calculations</td>
<td>WaterFeatureHydraulicCalculations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Civil Site Design Documentation</td>
<td>CivilSiteDesignDocumentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electrical Design Analysis Report</td>
<td>ElectricalDesignAnalysisReport</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mechanical Design Analysis Report</td>
<td>MechanicalDesignAnalysisReport</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sign Structure Geotechnical Report</td>
<td>SignStructureGeotechReport</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal Structure Geotechnical Report</td>
<td>SignalStructureGeotechReport</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ITS Geotechnical Report</td>
<td>ITSGeotechReport</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lighting Geotechnical Report</td>
<td>LightingGeotechReport</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Structures Geotechnical Report</td>
<td>StructuresGeotechReport</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Architectural Geotechnical Investigation Report</td>
<td>ArchitecturalGeotechInvestigationReport</td>
</tr>
</tbody>
</table>
112 Update Engineering Design Process

112.1 General

Conduct the update engineering design process when a period of time has elapsed (typically nine months minimum) since final contract plans, specification and estimates (PS&E) package was completed. The requirements of the update process depends on:

1. Type of project
2. Adequacy and appropriateness of the original design controls and standards
3. Original scope and objectives.

Determining the extent of the update process, as shown in Figure 112.1.1, requires input from both engineering and management.

Figure 112.1.1 Major Activities - Update Engineering Design Process

Review and Confirm:
- Project objectives and scope
- Environmental evaluation
- Project design standards
- Engineer of Record
- R/W requirements and status
- WP budget & staff-hour estimate
- Schedule and production date
- Approvals and authorizations
- In-house & consultant activities

Update and Document:
- Project design report
- Plans, specifications and estimate
- R/W and agreements
- Utility adjustments & agreements
- Permits and agreements
- MOT plans and estimate
- Special provisions

Assemble, Review and Update:
- Transmittal package
- Electronic deliverables
- Plans, Summary of pay items, specifications

Field review and verify:
- Location survey adequacy
- Contract drawings adequacy
- Permit dates and adequacy
- Scope of required revisions
- Required Design Exceptions/Design Variations
112.2 Design Update Review and Decision Process

Conduct an engineering review of the PS&E package and supporting documents to determine the activities required to update the package and get it ready for letting.

(1) Review and compare the original project objectives, scope and standards with current corridor conditions, as well as growth rate and patterns, to determine if the project design is still valid.

(2) Review and compare the original environmental evaluations and commitments against current requirements.

(3) Review and compare the permit date and terms against current requirements.

(4) Review R/W certifications and agreements and confirm the status of documents.

(5) Compare contract plans against current requirements, including Standard Plans, Standard Specifications, pay items and design criteria.

(6) Review agreements with outside entities such as Utility Agency/Owners (UAs), maintaining agencies and local agencies to determine if the agreements are still valid.

(7) Resubmit Design Exceptions and Design Variations with updated documentation based on current data and conditions.

If it is determined that engineering updates are required, the scope, staff-hour estimate, schedule, cost estimate, and other activities described in FDM 110 should be followed to the extent necessary to define the scope and schedule for the update process.

112.3 Updating Engineering Design and Documents

The actual engineering design activities necessary to update the PS&E package will vary from project to project. Develop a fully defined scope of work to determine resources and schedule needed for the update. Fully describe the required activities in the professional services contract, if one is to be used.

All reports, calculations, assumptions, and engineering decisions that support the changes to plans, specifications, or other documents must be sealed by the Engineer of Record (EOR) updating the PS&E package. Changes to the plans are approved by the EOR and require concurrence by the District Design Engineer, District Structures Design Engineer, or District Consultant Project Management Engineer, as appropriate for the type of change. Updated documentation of approvals and concurrences must be in the project file.
112.4 Revised PS&E Package

In addition to the required engineering changes, the contract transmittal package must be reviewed and updated to current status.

(1) All component plans sets are made current and sealed.
(2) Specifications and special provisions are made current.
(3) The CADD files are revised.
(4) The pay item summaries (estimates) are made current.
(5) The contract file is made current.
113 Right of Way Requirements

113.1 General

To assist the roadway designer's understanding of right of way (R/W) requirements, which must be addressed during the project development and design phases of projects, the following terms are briefly defined as an introduction.

Right of Way is real property or an interest therein, donated or acquired by purchase or condemnation, to accommodate transportation improvements. Fee simple is the strongest interest available to the Department and is sought for most permanent highway facilities. When improvements are designed which will fall outside of the existing R/W boundaries, additional lands must be identified and acquired. All necessary right of way and easements must be in Department ownership prior to advertisement of the project for letting.

Limited Access R/W is purchased for facilities such as Interstate and Expressways. This limits public access to interchange connection-points designed with entrance and exit ramps and limits access to motorized vehicular traffic. Pedestrians and bicycles are restricted in the interest of traffic capacity and safety.

Controlled Access R/W is acquired for the remaining State Highway System. This allows the general public and landowners along the corridors reasonable access, but in a controlled pattern that will facilitate the movement of through traffic.

Perpetual Easements grant a right of use over, under or through the property of another. They are used when permanent structures or improvements are to be constructed and maintained on parcels where acquisition of fee title would be impractical; e.g., sight triangles or drainage facilities. Condemnation powers may be utilized to acquire Perpetual Easements.

Temporary Easements (a temporary right of use over, under or through the property of another) are used when it is necessary to temporarily occupy a parcel for a specific purpose such as construction of improvements requisite of the project, construction of temporary detours, stock piling materials or parking equipment. A Temporary Easement may also be necessary when it is determined that reestablishing access causes a compensable impact to the use of the abutting land or causes a safety issue due to a change in grade. No improvement which requires maintenance by the Department beyond the term of the easement can be constructed on a temporary easement.

License Agreements are used to gain access to adjoining properties for sloping, grading, tying in, harmonizing and reconnecting existing features of the licensor's property with the
highway improvements to be constructed. This work is for the benefit of the property owner. The Department does not compensate for license agreements. If the owner refuses to execute the agreement, the Department will not perform the work outside of Department right of way.

Licenses are included here as real property interests for convenience, but they are not real property interests. A license, with respect to real property, is a privilege to go on the premises for a certain purpose but does not vest any title in the licensee.

The most economical means of constructing the project should always be the objective. The designer must design the highway facility within the existing R/W, obtain a license agreement, or request acquisition of R/W to accommodate project elements.

113.2 Procedures for Establishing Right of Way Requirements

The procedures for addressing R/W requirements require engineering analyses, economic comparisons and professional judgments. Consultation with the District R/W Surveyor and District R/W Manager is required. One excellent method of providing the consultation is the "R/W Partnering" concept with all parties that have a vested interest participating in the decision making process.

Alternate design studies will be required in many locations to determine if additional R/W should be purchased, a retaining wall constructed or modified slopes and barrier system should be considered. A reasonable estimate of R/W costs or damages expected must be obtained from the R/W Office in order to make such a design study. Alternate construction methods may be shown on the plans as preferred and alternate methods.

113.2.1 Open Cut and Fill Roadway Sections

R/W requirements along the project boundaries are dictated by the actual construction limits plus a reasonable maintenance buffer. The roadway cut and fill slopes, drainage ditch slopes and other construction elements are used to define the construction limits, which are generally shown on the roadway cross sections. R/W requirements are determined by reviewing the plotted cross sections after the roadway and drainage design elements have been established and major revisions are highly unlikely.

A joint field review of the proposed R/W is strongly encouraged and should be conducted at this point. The design details and the property information must be reviewed by the designer, personnel from the R/W Office and the R/W Mapping Office. This review should be scheduled during the Phase II design process as defined in this manual and should address such issues as:
(1) Will additional R/W be required for project access, maintenance of the facility, or transit facility needs? Check pond sites, high embankment slopes, bridges, outfalls, canals and similar sites.

(2) Can acquisitions be avoided or design modified to avoid substantial damages to remainder property or businesses? Examples include designing retaining walls or by adjusting slopes or grades to reduce the difference in elevation between the remainder and the project grade at the R/W line.

(3) Can the roadway grades be revised or connections relocated so access to the remainders can be constructed without damaging the use of the remainder, thereby minimizing or avoiding severance and business damages caused by altering the access?

(4) Can drainage facilities (e.g., outfalls, ponds, ditches) be maintained without additional R/W space? Can uneconomic remainders be used for stormwater treatment?

(5) Has consideration been given to joint use ponds (including golf course ponds) and/or regional treatment facilities?

(6) Check the suitability and cost effectiveness of storm water treatment facilities and the status of permit approval.

(7) What types of legal instruments are likely to be required to secure the appropriate property rights for the project?

(8) Review the status of R/W activities by others in the project area. Avoid multiple acquisitions from the same owner at ramp terminals, intersections and by future FDOT projects.

(9) Check for potentials of hazardous materials, "4F" parcels, utility easements, landlocked remainders and parcels, which could be eliminated.

(10) Check for acquisitions involving existing treatment systems which could be mitigated within the FDOT system.

(11) Discuss the possibility of advance acquisition of any parcel where development is imminent.

(12) Check for incidental work which will fall outside of R/W such as trenching, wall forms, or equipment maneuvering space.

(13) Check for availability of offsite property owned by FDOT which could be used for mitigation sites.

(14) Discuss status of any R/W being claimed by maintenance pursuant to Section 95.361, F.S. (Maintenance Statute).
113.2.2 Curbed Roadway Sections

Establishing R/W requirements for curbed roadway sections will generally follow very similar procedures as the open roadway section projects. The analysis and decision making is complicated by more property owners, generally higher property values, businesses, and more complex access management problems.

The roadway and drainage design must be developed to a point where all major elements of the project (including transit facilities, signalization poles, lighting poles and overhead sign foundations) are firmly fixed. On projects with sidewalks and driveway connections, the design elements can be accurately established only if proper survey data has been obtained for the designer’s use. Profile elevations along the proposed R/W line and back of sidewalk and half-sections or profiles at each driveway location should be obtained as a minimum standard practice.

The design engineer must perform the design work required to establish the project profile grades and the back of sidewalk grades to minimize the grade differences at the R/W line. Areas of superelevation must be analyzed very carefully. Split profile grades or other design strategies may be required to accommodate the proposed construction of the facility within minimum R/W limits.

The developed drainage and roadway design elements should be plotted on the plan sheets and the cross sections, which will establish the preliminary R/W requirements along the project boundaries as indicated by the construction limits. A good quality control review and a joint review with R/W appraisers and R/W Mapping personnel at this time will assist in determining the final R/W requirements. The same issues listed earlier in these procedures should be addressed.

113.2.3 Access Management

Access to the Department’s facilities is an important element of the design and R/W determination procedures. Follow the Access Management Rules (14-96 and 14-97) and the procedures and directives adopted (Topic Numbers 625-010-020 and 625-010-021) to implement the objectives of those rules. Identification of access and median opening location in relation to individual parcels should be completed before appraisal.

The following activities should be accomplished by the Designer:

(1) The access classification of the roadway segment and the connection category of the driveways must be determined. The designer must be aware of the nature, type, frequency of trips and number of vehicles utilizing the driveway.
(2) The designer must make a determination as to which driveways are in conformance, which are to be maintained, which are to be closed and which are to be modified to bring them into compliance.

(3) The designer must obtain sufficient field survey data to establish the highway grades, horizontal alignment and the existing ground elevations in the vicinity of the driveway location. The data necessary to accurately design the driveway connection and determine an acceptable tie-in with the existing surface should be obtained as a minimum.

(4) The designer should develop the most economical driveway design which will conform to the standards and the requirements of the access management objectives. Alternate designs and locations may be required to meet the property needs. Generally, the best option can be reached by negotiating with the property owner and/or tenant in a give and take atmosphere; however, Right of Way must take the lead in such negotiations.

Driveway connections must be addressed in consultation with R/W personnel. This fact should not be overlooked on projects, such as resurfacing, on which there may not be any other R/W requirements. R/W related decisions to be made about driveway connections, probably on a case-by-case basis, include:

(1) License Agreements (LA) are used where restoration of the driveway connection is not necessary to project construction or maintenance of the finished facility. The LA allows the Department entry to the property at no cost in order to harmonize and reestablish the driveway connection. Refusal of the property owner to execute the LA does not unduly affect construction of the project. If refusal would adversely affect the construction of the project, then a Temporary Construction Easement should be used and the engineer should be prepared to testify in court as to necessity.

(2) In the situation where a team consisting of the engineer, the R/W Mapper, the District Right of Way Manager (DRWM), and Legal (or their designees) decides that (1) harmonization and restoration of the driveway connection is likely to cause a diminution in the use of the property, and (2) no taking for the benefit of the project is necessary, then the DRWM must decide on the appropriate method of compensating the property owner, whether by a TCE or some other means.

(3) The Office of R/W will see that the proper instruments are executed to enter onto the property for purposes of construction and to compensate the owner for damages, if any are due. If other acquisition of that property is proposed, these instruments should include the entry and compensation, if any, for the driveway.
(4) If there is no acquisition from a property, yet the property owner feels their property has been negatively affected by a project, the property owner can negotiate or claim damages through the inverse condemnation process.

(5) Design should always, in their consultation with R/W personnel, make a determination if a fee taking or permanent easement is in the public interest to protect the facility. If a permanent easement will protect the facility and still give the owner some utility in the easement area, this may reduce the severance and business damages incurred.

113.2.4 Procedures for Decision Making

To assist in the decision process related to R/W requirements and instruments to be used, the following guidelines from the Office of Right of Way may be used during the joint review process. Close coordination with the District Right of Way Office and the Office of General Counsel is required during this decision-making process.

A License Agreement is the default method for driveway harmonization; use of a Temporary Construction Easement must be justified in terms of project integrity, cost or potential impact of the project on the property.

(1) License agreements should be used only if the following conditions can be met:
 (a) The improvements or changes contemplated have no compensable impact to the use of the property, and are for the sole benefit of the property owner; and
 (b) None of the improvements are required for the construction, operation and maintenance of the transportation facility and removal of, or change to the improvements will not be detrimental to the facility.

(2) Temporary Easements should be used under the following conditions:
 (a) When it is necessary to temporarily occupy a parcel for a specific purpose such as construction of improvements requisite of the project, construction of temporary detours, stockpiling materials or parking equipment;
 (b) When it is determined that reestablishing access creates a compensable impact to the use of the abutting land;
 (c) Where grading, tying-in, harmonizing, and/or connecting an access point is required to maintain the safety and design of the facility;
 (d) The contemplated improvements or uses of the property owner's land are required only during the period of construction of the transportation facility;

113-Right of Way Requirements
(e) Removal or alteration of the improvements to the property owner’s land subsequent to construction would not be detrimental to the facility; and,

(f) After construction is complete, there will be no need for periodic re-entry onto the property by the Department for maintenance or other purposes.

(3) Fee Simple R/W purchase should be used when the following conditions exist:

(a) The planned improvements to the property owner’s land are required as a part of construction of the transportation facility;

(b) The improvement on that land must remain in place as a part of the facility; and,

(c) Periodic re-entry to the property is required for maintenance or repair.

Perpetual Easements may be considered as an alternative to fee simple purchase in the R/W process if the owner may continue to enjoy some benefits of the property without impairing the Department’s use and the total acquisition costs to the Department are less than the cost of acquiring fee.

113.2.5 Transmittal of Right of Way Requirements

R/W requirements should be finalized before transmitting them to the R/W Mapping Office for preparation of R/W maps. All R/W requirement transmittals should be in writing and clearly indicate in the memo and on the plans which parcels have been finalized and which parcels are still pending. An effort should be made to transmit final R/W requirements in usable segments. Priority should be given to the major, expensive or complex acquisitions that are going to require more time to acquire and complete the relocation of the occupants. Advanced design effort and final R/W requirement determination may expedite meeting production ready dates. It is desirable to transmit requirements as early as possible in the plans development.

All R/W requirements that are firm (primarily mainline construction limits) should be transmitted by Phase II. All other requirements that generally involve more detailed design completion (e.g., outfalls, pond locations, corner clips, access needs) must be submitted by the Phase III stage completion of the roadway design plans.

All R/W requirements must be transmitted by the completion of the Phase III roadway design plans.
113.3 Process for Establishing Right of Way Requirements

Establishing right of way requirements is a design process, but requires close coordination with other functions that have input to the project development and design of the project.

The Engineer of Record is responsible and must ensure that representatives from the appropriate functional areas are involved in the determination process. They must also ensure that a review of the final R/W requirements is performed. The "R/W Partnering" concept is an excellent method of ensuring that the proper consultation and input is received.

Generally, the R/W needs-determination will involve Roadway, Bridge and Drainage Design, Permits, Utilities, R/W appraisers, R/W Mapping and Legal functions. On consultant designed projects, the Department project manager's role as lead coordinator is especially critical.

113.3.1 New or Major Reconstruction Projects

These projects generally have Project Development and Environmental (PD& E) activities and Right of Way activities identified in the Work Program.

The project development process must address R/W requirements and perform sufficient preliminary engineering design to obtain preliminary cost estimates from the R/W Office. This may require that the PD& E consultant or in-house scope of services include work such as:

(1) Preliminary roadway grades & geometric design.
(2) Conceptual Drainage design and layout.
(3) Analysis of major access management issues.
(4) R/W Survey, property lines and limited topography.
(5) R/W Mapping and property research activities.
(6) Preliminary R/W cost estimates work.
(7) Analysis of the transit, pedestrian/bicycle R/W needs.

This early identification of potential R/W requirements, approximate costs and work effort to complete R/W activities will greatly improve both cost estimates and schedules of projects. Also, involving R/W mapping and appraisers will assist in developing better project alternatives.
R/W requirements identified during the project development phase should not be considered firmly set. The R/W Office cannot be requested to begin R/W mapping or appraisal activities based on these requirements, without extraordinary efforts by the designer to support the acquisition process as in advance acquisition.

113.3.2 Reconstruction Projects with Anticipated Right of Way Requirements

These projects may not have a formal PD&E study, but they were determined during Work Program development to require some R/W acquisition. Most projects will require some environmental re-evaluation effort and all projects should have some preliminary engineering to better define objectives, scope and R/W requirements. The following general process, as it relates to R/W requirements should be established by design:

PHASE I

1. R/W Mapping will provide preliminary maps showing properties and all existing R/W lines for the project. These should be requested by the designer or by the Department project manager, on consultant projects.
2. The roadway designer will define project horizontal and vertical alignment and relate the existing R/W lines to the project as necessary to set R/W limits.

PHASE II

1. The roadway designer will identify proposed R/W requirements as indicated by the completed design details such as the following:
 (a) Limits of construction slopes for roadway and bridges
 (b) Cross section elements, transit facilities, ditches, curb returns and sidewalks
 (c) Driveway and street connections
2. The drainage designer will identify proposed R/W requirements as indicated by the completed drainage features, which may include:
 (a) Retention or Detention Ponds
 (b) Mitigation of environmental issues
 (c) Drainage outfalls, sediment basins

The designer will review all proposed R/W requirements with the R/W Mapping Office. This should be performed during the Phase II design activities in order to make decisions on how each parcel of proposed R/W will be acquired. These
decisions will impact which design approach is taken. The issues to be discussed and decisions to be considered are detailed in FDM 113.2.

(3) As R/W requirements are determined, the information is furnished to the R/W Mapping Office by memo documenting clearly which R/W is final and which is pending. The R/W Mapping Office will use only the final requirements transmitted to prepare R/W maps. See FDM 113.2.5.

PHASE III

(1) By the completion of Phase III design, all R/W requirements will be identified and transmitted to the R/W Mapping Office.

(2) After transmittal of final R/W requirements to the R/W Mapping Office, design changes that affect R/W must be coordinated with the R/W Mapping Office, in a timely manner.

The R/W shown on the roadway plans must be in exact agreement with the R/W Maps.

It is essential that close coordination be maintained with R/W personnel in order to ensure that design changes affecting R/W are transmitted promptly.

113.3.3 Projects without an Identified Right of Way Phase

Many improvements to highway projects are intended to be accomplished within the existing R/W. The widening or widening and resurfacing projects are examples. Such projects must be evaluated very carefully and very early in the roadway design process.

The addition of R/W requirements can have a tremendous impact on the schedule and on the anticipated costs of a highway improvement project. R/W Mapping should be consulted on all projects to ensure that the proposed construction lies completely within the existing R/W and no Trustees of the Internal Improvement Trust Fund parcels or maintenance surveys are required.

For all projects determined to be completely within existing R/W the Department project manager or District R/W Surveyor as appropriate, must notify the District R/W Manager, in writing, that no R/W is required. This notification will serve as the basis for the District R/W Manager's certification that all necessary R/W is available for construction.

If unanticipated R/W requirements are identified during design, the production management staff and the R/W Mapping Office should be notified as soon as the requirements are determined. The production management staff will then give direction
as to continuing with the design and acquisition. If acquisition continues, it will follow the previously discussed procedures.
Figure 113.3.1 Right of Way Requirements
Generalized Process Flow Diagram

(Each function must have well defined written procedures for the development, quality control, coordination and regular exchange of product evaluation.)

Planning and Project Scope Analysis
R/W ADDRESSED IN SCOPE

Work Program Development
IDENTIFY R/W PHASE

Project Development
Preliminary Engineering
* Surveys
* Drainage
* Roadway
R/W REQUIREMENTS & COSTS
PRELIMINARY

Final Design & Contract Plans
* Engineering
* Geometric Layout
* Cross Sections
R/W REQUIREMENTS FINALIZED
TRANSMITTED TO R/W MAPPING

R/W Mapping Office
COMPLETE R/W MAPS
R/W MAPS APPROVED

R/W Office or Consultant
R/W APPRAISALS

R/W Office & Attorneys
LAND ACQUISITION

R/W Office
CERTIFIES R/W CLEARED

PLANS AND CONTRACT PACKAGE
TRANSMITTED FOR LETTING
114 Resurfacing, Restoration and Rehabilitation (RRR)

114.1 General

Resurfacing, restoration and rehabilitation (RRR) work is defined as work undertaken to extend the service life of an existing highway and enhance highway safety. This includes the placement of additional surface materials and other work necessary to return an existing roadway to a condition of structural and functional adequacy. This chapter contains processes and requirements necessary to evaluate existing roadways for safety and performance.

114.1.1 Proposed Improvements (Type of Work)

The following items must be included in each RRR project unless written authorization to deviate from this policy is obtained at a Director level position in the District:

(1) Safety improvements needed to address crash problems.
(2) Pavement Resurfacing/Rehabilitation.
(3) Modifications necessary to Comply with the Americans with Disabilities Act (ADA).
(4) Paved Shoulders.
(5) Improvements to roadside barriers and guardrail necessary to meet minimum standards.
(6) Improvements to bridge rails necessary to meet minimum standards.
(7) Traffic Signal Mast Arms within the mast arm policy area (see FDM 232.8) where existing strain poles require replacement/relocation.

Other improvements may be included with the RRR projects; e.g., lighting, safety and operational improvements, signalization, minor roadway widening.

114.1.2 SIS Facilities

Projects on controlled access SIS Corridor and Connector facilities should be designed using new construction criteria. RRR criteria may be applied on a project to the extent permitted by the Action Plan for that corridor, consistent with the schedule for phased improvements to bring the facility up to new construction criteria. For controlled SIS Corridors and Connectors with no Action Plan, RRR criteria may be applied if minimum
design speed criteria shown in *FDM 201* are met, or a Design Variation or Design Exception for design speed is approved.

114.1.3 Interstate, Expressway, and Freeway Resurfacing

The processes and requirements contained in this chapter are applicable for Interstate, Expressway, and Freeway (i.e., LA Facility) resurfacing projects.

114.1.4 Pavement Only Projects and Ride Only Projects

Pavement Only Projects (POPs) are also known as “Maintenance Resurfacing Projects.” They include milling and resurfacing to restore the functional condition of the pavement but are not intended to increase the structural capacity. For POP pavement design requirements, refer to Chapter 7 of the *Flexible Pavement Design Manual*.

Ride Only Projects are those where the existing pavement is in good structural condition but is deficient in ride due to the presence of irregularities such as manholes, utility valves, or utility tie-in patches in the wheel path. These projects may entail either an entire resurfacing of the project limits, or spot resurfacing of damaged areas. The intent of Ride Only Projects is to correct the ride deficiency rating.

This chapter does not apply to projects programmed as POPs or Ride Only Projects other than meeting ADA curb ramp and detectable warning requirements. Work Program Instructions, Chapter 27, states that POP projects cannot be on the “high crash list.”

114.2 Planning and Programming RRR Projects

The principal objectives of a RRR project are:

1. To preserve or extend the life of the existing pavement.
2. Improve capacity (without adding continuous through lanes).
3. Improve operating characteristics.
4. Provide safety modifications.

RRR projects are typically identified and programmed based on projections of deficient pavement condition and are funded under the Department’s Pavement Resurfacing program. Districts are tasked with meeting assigned lane mile resurfacing targets. Resurfacing funds are allocated annually to each District based on an estimated cost per lane mile. The amount allocated includes funds necessary for pavement resurfacing,
rehabilitation, minor reconstruction, and pavement milling and recycling. Refer to *Part III, Chapter 27, Resurfacing*, of the *Work Program Instructions* for funding resurfacing projects.

Due to limitations on resurfacing funds, improvements other than those necessary to address a safety need or to meet minimum design criteria must be carefully considered before inclusion in the project. Project Managers should seek other available funding sources (e.g., safety funds, discretionary funds) to include safety improvements in resurfacing projects. This coordination should be done at the time of scoping.

114.2.1 Right of Way (R/W) Acquisition

RRR projects do not typically involve R/W acquisition; however, review RRR projects to determine if additional R/W is required to meet project needs. Conditions that may warrant R/W acquisition include:

1. Correcting substandard roadway elements,
2. Need for transit stops,
3. Access management requirements,
4. New or improved drainage conveyance or treatment facilities, and
5. Intersection improvements (see *FDM 212* for conventional intersection criteria and guidance, and *FDM 213* for roundabout criteria and guidance).

When R/W acquisition is warranted, the design should be expedited to determine actual R/W requirements. Coordinate the requirements with the District Right of Way Office.

114.2.2 Survey Guidelines

Types of survey work typically included in RRR Projects are as follows:

1. Mill and resurface only, EOP to EOP, no other improvements [Level 1].
2. Resurface with trench widening (Roadway only) [Level 1 if lump sum excavation].
3. Resurface adding turn lanes (spot improvements) [Level 2].
4. Resurface adding shoulder pavement [Level 2].
5. Combination of numbers 2-4 [Level 2].
6. Resurface with access management improvements [Level 2].
7. Resurface with cross slope or superelevation correction [Level 2].
(8) Add shoulder pavement only [Level 2 or 3].
(9) (E) Extend drainage structures [Level 3].
(10) (E) Guardrail, end treatments, (safety) [Level 2].
(11) (E) Side drain closure; mitered ends [Level 3].
(12) Intersection improvements [Minor = Level 2; Major = Level 3].
(13) (E) Correct horizontal or vertical alignment [Level 3].
(14) (E) ADA compliance [Level 2].
(15) Approaches to structures [Level 4].
(16) RRR with R/W acquisition [Level 3].

(E) = Element of an item

114.2.2.1 Minimum Levels of Survey Effort

(1) LEVEL 1

Review by District Surveyor to check for Public Land Corners. Check sections for cross slope at 1000 feet in tangents. For curves, check 50 feet before PC, at PC, 50 and 100 feet after PC and at middle of curve or 300 foot intervals. (Reverse at PT). May use assumed datum if approved by the District Location Surveyor and the Project Manager/Designer. The cross sections will have a common bench mark elevation throughout the curve. In other words, do not assume an elevation at the centerline of the highway for each cross section. A minimum of two (2) bench marks should be set off of the highway near the R/W Line and may be on assumed elevations or NAVD 88 datum. If the surveyor elects to use temporary assumed bench marks, they must last throughout the life of construction and cannot be set in trees, power poles or concrete monuments. Establish begin and end points of project and reference.

(2) LEVEL 2

Minor spot improvements such as turn lane at existing crossover or turn lane on 2-lane. No additional R/W required. Where R/W is adequate, establish horizontal and vertical control in the improvement area. May use assumed vertical datum if approved by the District Location Surveyor and the Project Manager/Designer. The cross sections will have a common bench mark elevation throughout the curve. In other words, do not assume an elevation at the centerline of the highway for each cross section. A minimum of two (2) bench marks should be set off of the
highway near the R/W Line and may be based on assumed elevations or NAVD 88 datum. If the surveyor elects to use temporary assumed bench marks, they must last throughout the life of construction and cannot be set in trees, power poles or concrete monuments. If R/W is constrained, re-establish existing R/W line. Level 1 required throughout other portions of project. Cross section level to be determined by Project Manager/Designer with input from the District Location Surveyor and Resident Engineer. TOPO with supplemental cross sections or elevations in area(s) of deficient criteria or proposed improvement(s). Reference control points outside R/W. Subsurface utility locates if required.

(3) **LEVEL 3**

Continuous improvements through length of project such as widening or paved shoulder; or major spot improvements (structure replacement; major intersection improvement). May require R/W purchase. Horizontal Control baseline, centerline or network. Vertical Control on NAVD 88. TOPO with supplemental elevations (limits to be determined). Digital Terrain Model (DTM) at specified locations. R/W Control Survey and Maps (if R/W purchased). Subsurface utility locates.

(4) **LEVEL 4**

Full Digital Terrain Model (DTM) and TOPO for entire project.

114.3 RRR Design Process

The RRR design process is a team effort that requires familiarity with criteria for design, safety, maintenance, and traffic operations. To assure that these issues are addressed, the following assessments should be performed:

1. Current safety conditions and ADA deficiencies.
2. Need for operational improvements.
3. Drainage issues.
4. Public involvement activities.
5. Design Speed compliance with *Tables 201.5.1 and 201.5.2.*
6. Compliance with Access Management requirements.
114.3.1 Assessment of Existing Conditions

Before beginning design of the project, perform office and field reviews to assess current conditions. The assessment includes both physical conditions and operating conditions.

114.3.1.1 Office Reviews

Review old plan sets, as-built drawings, Straight Line Diagrams, and other historical records to assess many of the existing conditions. This assessment should include:

1. Geometrics.
2. Radius, length, and superelevation of curves.
3. Typical shoulder treatments.
4. Cross drain and structure locations.
5. Location and design of intersections.
6. Existing cross slope and superelevation data.
7. Operating Conditions, including:
 (a) A summary of legal posted speeds on the project.
 (b) District Drainage and Maintenance concerns of past, present or anticipated problems.
 (c) Conditions attributable to current control of access.
 (d) A summary of known operational issues on the corridor e.g., signal timing, detection failure.

A review of historical crash and travel statistics should be performed by a qualified safety specialist. This safety assessment, with written recommendations, should include:

1. Identification of significant crash locations, with:
 (a) Determination of possible causes, and
 (b) Suggested cost effective modifications or mitigation measures
2. Review of correspondence files for letters of public concern.
114.3.1.2 Field Reviews

Perform a field review to observe physical, operational and safety conditions, and to verify office review findings.

(1) Verify geometric and physical conditions by observing the following:
 (a) Pavement condition
 (b) Alignment
 (c) Cross slope and superelevation
 (d) Lane width
 (e) Traffic control markings and signs
 (f) Side slopes and clear zones
 (g) Shoulder type and width
 (h) Intersection and bridge elements
 (i) Sight distances
 (j) Drainage (including erosion or siltation problems)
 (k) Highway appurtenances
 (l) ADA features
 (m) Transit stops
 (n) Pedestrian and bicycle features

(2) Verify the following operating conditions:
 (a) Verify posted regulatory speeds and posted advisory speeds.
 (b) Observe reported and suspected problem areas; e.g., signal timing, pedestrian detection, signal head placement.
 (c) Evaluate access features.

(3) Verify safety conditions by observing the following:
 (a) Known crash locations.
 (b) Indicators of road departure or other unsafe operations; e.g., tire marks on walls or curb, tire tracks on front slope, guardrail repairs.
114.3.1.3 Identified Improvements

Coordinate with the District Project Manager identified improvements necessary to correct deficiencies. Possible improvements that may be included in the project include:

1. Remove, relocate or make crashworthy roadside obstacles.
2. Remove unwarranted guardrail.
3. Upgrade or replace nonstandard guardrail, end treatments and crash cushions.
4. Replace or retrofit obsolete bridge rails.
5. Improve side slopes; slope flattening/stabilizing.
6. Correct shoulder drop-off.
7. Provide or widen paved shoulders.
8. Correct pavement cross slope and superelevation.
10. Increase sight distance at intersections.
11. Improve pavement markings.
12. Improve pavement drainage.
13. Provide or upgrade sidewalks, transit stops and bikeways.
14. Replace or upgrade railroad crossing.
15. Provide or upgrade signalization.
16. Provide or upgrade lighting.
17. Upgrade signing and other traffic control devices.
18. Provide or upgrade curb cuts, ramps and other disability access features.
19. Reconstruct or close driveways to comply with Access Management standards.

114.3.1.4 Design Exceptions and Design Variations

RRR projects with existing features not meeting minimum criteria values require processing a Design Exception or Design Variation for the feature to remain. Refer to FDM 122 for the Design Exception and Design Variation procedures.
114.3.1.5 Design Documentation

Include in the design file all documentation that substantiates the design process and decisions made. Documentation may include the following information:

1. A short paragraph which states the overall project purpose. Factors such as principal reason for the project, anticipated project cost, principal work type, general R/W needs or provisions, and any special project priorities are appropriately addressed here.

2. Documents that detail the existing conditions on the project. Findings of office reviews, field reviews and surveys are assembled here, to document existing geometric and roadside features, operating conditions, traffic volumes, posted speeds, existing pavement markings, signing, and safety. A brief overall summary of findings is recommended.

3. Document the selected standards based on project intent and conditions. When RRR criteria cannot be met, a Design Exception/Design Variation is required.

4. A summary of safety issues that have been identified for the project and the recommended solution of those issues.

5. Reviews of the project design for safety improvements, documenting what was finally accomplished or ruled out of the project subsequent to the scope of work having been completed.

6. Those items in the original scope of work for the project which cannot be reasonably accomplished and must be deleted or delayed.

114.3.2 Intersections

Evaluate intersections to determine if a traffic engineering study is needed. The following items should be considered:

1. Traffic Signal Mast Arms or single point attachment span wires within the mast arm policy area where existing strain poles require replacement/relocation. See FDM 232.8 for information on mast arm policy.

2. Addition of right and left turning lanes.

3. Realignment of intersection.

4. Adequate turning radii for left and right turning lanes.

5. Use of channelization to reduce excessive areas of conflict at large intersections.

6. Placement of crosswalks as related to sidewalks and stop bars.
(7) Locations of pedestrian, bicycle, and transit facilities.
(8) Locations of utilities, signal poles, controller cabinets, lighting poles and drainage structures as related to sidewalks and curb ramps.
(9) Warrants for traffic control systems.
(10) Addition of signal backplates where it would not require structural modifications to mast arms or span wire systems. See Traffic Engineering Manual (TEM), Section 3.9 for use of flexible backplates where needed.
(11) Addition of auxiliary heads where it would not require structural modifications to mast arms or span wire systems.
(12) Installation of buried conduit for future traffic control systems.
(13) Lighting for intersection illumination.
(14) Adequate sight distance.
(15) ADA needs.

Include corrective measures in projects having T-intersections with significant crash histories (three or more crashes of a specific type within the most recent five years) or other evidence of safety or operational problems.

When there are proposed changes in intersection control, a roundabout alternative must be considered. See FDM 213 for additional information.

The additional cost associated with improvements requested by local governments that exceed the Department’s criteria should be paid for by the local government making the request; e.g., installation of mast arm signal supports in areas beyond the mast arm policy area.

114.3.3 Drainage

Conduct a site visit to evaluate the physical condition of the existing drainage system and to determine if hydraulic and/or safety improvements are needed. In addition to the site visit, contact the local maintenance office to coordinate these findings and to discuss the drainage history along the section of roadway to be resurfaced. If drainage improvements are warranted, perform the required hydraulic analysis to determine the most cost effective repair strategy to restore the design intent of the existing drainage system. When siltation is noted during site review, follow pipe inspection criteria in the Drainage Manual. Chapter 3. The Drainage Manual (Topic No. 625-040-002) contains design criteria and methods which provide guidance in formulating suitable drainage features, either through modification or replacement.
See *FDM 215* for roadside safety requirements of drainage features.

Consult with drainage and environmental permit specialists when the roadway modifications impact existing ditch cross sectional area, storage and infiltration or increase discharge rates and volumes. Stormwater management, using retention or detention storage, may be required to mitigate for water quality, rate, and volume changes associated with the proposed roadway improvements. The drainage specialist will perform the drainage analysis to determine if improvements are required and will provide the necessary drainage design, flood data information, Stormwater Pollution Prevention Plan (SWPPP), and all information required to obtain the necessary environmental permits.

114.3.4 Pedestrian, Bicyclist, and Transit

Pedestrian and bicycle features must meet the requirements contained in *FDM 222, 223, and 224*.

Transit features must meet the requirements contained in *FDM 225*.

Coordinate with the District Pedestrian/Bicycle Coordinator and the District Modal Development Office when deficiencies in these features are identified during the field review.

114.3.5 At-grade Railroad Crossing

Federal-aid projects must be reviewed to determine if a railroad-highway grade crossing is in or near the limits of the project. If such railroad-highway grade crossing exists, see *FDM 220* for requirements.

Review physical and operational characteristics of at-grade railroad crossings for compliance with minimum standards. Discuss identified deficiencies with the District Railroad Coordinator. Resurfacing funds must not be used where the primary purpose is to improve an at-grade railroad crossing.

114.3.6 Lighting

Lighting features must meet the requirements contained in *FDM 231*.

Lighting may be installed at specific locations to reduce the effects of ambient light conditions or to improve safety at the following locations:
(1) Busy or high crash intersections
(2) Transit stops.
(3) Channelized intersections.
(4) Car pool parking lots.
(5) Pedestrian and bicycle crossings.
(6) Ramp terminals.

Coordinate project needs with the District Lighting Engineer.

114.3.7 Signals, Signing, and Pavement Markings

Signal features must meet the requirements contained in FDM 212 and FDM 232.

Signing and Pavement Marking features must meet the requirements contained in FDM 230.

Coordinate project needs with the District Traffic Operations Engineer.

114.3.8 Bridge Structures

See FDM 260.9 for information on evaluating existing bridge structures.

Review bridges in sufficient detail to clearly establish cost effective and appropriate improvements to be included in the project. RRR program funds can be used only for minor bridge improvements; e.g., rail retrofits, ADA improvements.

Bridges that require substantial improvements, or replacement, should be programmed with the appropriate bridge program funds.

114.3.8.1 Pier Protection

The requirements for Pier Protection are outlined in FDM 215.

114.3.9 Roadside Safety Hardware

See FDM 215 for RRR requirements of Roadside Safety Hardware.
114.3.10 Sign, Signal, Lighting, and ITS Support Structures

See *FDM 261.7* for information on evaluating ancillary structures.
115 Standard Plans and Standard Specifications

115.1 General

This chapter describes the relationship between the plans development process, the Standard Plans for Road and Bridge Construction (Standard Plans), and the Standard Specifications for Road and Bridge Construction (Standard Specifications).

115.1.1 Effective Dates

The Standard Plans are published annually and are effective based on construction letting dates. The effective dates for each version are provided on the Standard Plans website. Identify the governing version for each project in accordance with FDM 302. See the Structures Detailing Manual for additional requirements for bridges.

The Standard Specifications are published biannually and are effective based on construction letting dates.

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete FDM 115.1.1 and see the RFP for the governing Standard Plans and Standard Specifications.</td>
</tr>
</tbody>
</table>

115.2 Standard Plans

The Standard Plans (formerly referred to as the Design Standards) are standard construction details that are published as sets of Indexes. The Standard Plans provide consistent designs and details for the preparation of construction contract documents.

Standard Plans are developed with consideration for durability, maintainability, and broad applicability. However, they may not be suitable for use on all projects or site conditions. The Engineer of Record (EOR) must determine the appropriate application of Standard Plans for each project.

The Standard Plans comprise the latest and best practices of the Department as follows:

(1) Are in compliance with:
(a) Department criteria, policy, preferences and specifications,
(b) \textit{AASHTO} publications.
(c) Federal laws and regulations.
(d) Basis of Estimates, Approved Products List, and Construction Specification consistency and coordination.

(2) Provide detail clarity, and are based on proven designs with considerations for constructability and long-term maintenance.

(3) Reserve structural capacity; redundancy of design.

(4) Clarify material usage.

(5) Promote contractor familiarity.

(6) Standardize formwork for concrete components.

Incorporate the \textit{Standard Plans} as appropriate unless a need to develop project-specific designs is documented. Place documentation in the Project Documentation folder; see \textit{FDM 111.7}.

The \textit{Standard Plans} may be supplemented or amended by one or more of the following:

- \textit{Standard Plans Errata}
- \textit{Standard Plans Revisions}
- \textit{Standard Plans Interim Revisions}
- \textit{Developmental Standard Plans}
- \textit{Modifications to Standard Plans}
- \textit{Standard Plans Instructions}
- \textit{Data Tables}

\section*{115.2.1 Standard Plans Errata}

The Errata process implements minor changes to the \textit{Standard Plans} before the next regularly-scheduled version is published (i.e., out-of-cycle). These changes do not affect cost or implementation of the Index (e.g., correcting editorial or typographical errors). Errata are published on the \textit{Standard Plans} website next to the Index.
115.2.2 Standard Plans Revisions

Standard Plans revisions are implemented with the regularly scheduled annual version (i.e., in-cycle). These revisions may include additions, updates, corrections, clarifications, or deletions to the *Standard Plans*. Documentation of *Standard Plans* revisions is posted in Revision History sheets on the *Standard Plans* website.

115.2.3 Standard Plans Interim Revisions

Standard Plans Interim Revisions (SPIR) are changes requiring implementation before the regularly-scheduled version of the *Standard Plans* is published (i.e., out-of-cycle). The SPIR is posted on the website with the version of the *Standard Plans* that is specifically affected. Interim revisions are typically incorporated into the proceeding annual publication.

SPIRs are made effective through the release of a *Design Bulletin*, which includes the revised Index and implementation requirements. When a SPIR is applicable to a project, it must be referenced in accordance with *FDM 302*.

115.2.4 Developmental Standard Plans

Developmental Standard Plans integrate new or innovative concepts into the *Standard Plans*. A Central Office Monitor is assigned to each *Developmental Standard Plan*. The Central Office Monitor oversees the development of the Index, monitors the usage process, and makes changes as needed. The use of a *Developmental Standard Plan* requires the approval of the Central Office Monitor.

Developmental Standard Plans are typically released with a *Design Bulletin* or as part of criteria included within the *FDM*.

Follow the process illustrated in *Figure 115.2.1* when seeking approval to use a Developmental Index. When a project-specific use has been approved by the Central Office Monitor, the project’s FPID number is listed on the *Developmental Standard Plans* website with the appropriate Developmental Index. Include the Developmental Index in the project plans in accordance with *FDM 302*.

115-Standard Plans and Standard Specifications
Figure 115.2.1 Developmental Standard Plans Usage Process

- Designer (district or consultant) downloads the watermarked Developmental Standard Plans (DSP), Instructions (DSPI), and blank Data Tables (if applicable) from the Developmental Standard Plans website
- Designer obtains applicable Developmental Specifications from the Specifications website

Using DSPI or FDM, Designer makes preliminary determination of whether or not it is appropriate to include the DSP in the project

- Designer contacts the DSP Monitor to confirm project-specific applicability
- Monitor discusses applicability with CO and Districts

Does DSP have FDOT approval?

No
Use other Standard Plans or develop project-specific design

Yes

Monitor has the project FPID added to the Developmental Standard Plans website to record the authorized use for the DSP on the project. DSP Monitor, or representative, sends the Designer a non-watermarked PDF of each DSP Index permitted for use on the project.

Once FPID is listed on the webpage, Designer includes the following in the contract plans:

- Completed Data Tables (if applicable)
- Appropriate cross references to DSP
- Appropriate pay items and estimated quantities for DSP
- Appropriate specifications (if required) in specification package (Requested separately thought the District Specification Office)
- The PDF of the DSP manually included in the plan set in accordance with FDM 302.

Plans Reviewer confirms permitted use of DSP by verifying the Project’s FPID Number is listed with the DSP on the Standard Plans website

115-Standard Plans and Standard Specifications
115.2.5 Modifications to Standard Plans

Modifications to Standard Plans may be needed if the Standard Plans do not meet a project specific need. When this occurs, modifications of a Standard Plan requires the approval of the District Design Engineer. To facilitate the process, CADD files are available on the Standard Plans website. When Modifications to Standard Plans are needed, the modifications must be performed under the direct supervision of a Florida Licensed Professional Engineer and one of the following methods must be used:

(1) **Method 1:** Produce a new project-specific drawing using the details within the CADD files as a guide or template. No reference to the related Standard Plan is called out in the plans. The details in the plans which were created from the CADD files cease to be a Standard and the engineer responsible for the modifications to the drawings becomes the EOR for the application of the entire design.

(2) **Method 2:** Modify the details and notes within the CADD files for the project-specific requirements. No reference to the related Standard Plan is called out in the plans. The plans must clearly depict evidence that modifications have been made to the original Standard Plan to avoid any confusion. It may be appropriate to place a plan note indicating that the details are based on modifications to the original Standard Plan. The details in the plans which were created from the CADD file cease to be a Standard and the engineer responsible for the modifications to the drawings becomes the EOR for the application of the entire design, including the applicability and correctness of the unaltered portions of the CADD file.

(3) **Method 3:** If the required modifications are minor (e.g., modifications to reinforcing, changes to specific sectional details, or accommodations for unique design elements), use the CADD file to create details showing the modifications to the Standard Plans on a separate sheet in the plans. Include a reference to the related Standard Plans in the Index of Sheets. Place the modified details in the plans on a sheet entitled, “Modifications to Standard Plans, Index ### - ###.” The engineer responsible for the modifications to the Standard Plan becomes the EOR for the details on this sheet and for effects the modification has on other components within the Standard Plans.
115.2.6 Standard Plans Instructions

The Standard Plans Instructions (SPIs) provides instructions for incorporating the Standard Plans into the Contract Plans. SPIs include design criteria, usage limitations, plan content requirements, and pay item information. SPIs may also provide examples and sample drawings.

Instructions are organized by Standard Plans Index number and included on the Standard Plans website adjacent to the associated Index. Some instructions apply to an entire series of Indexes. Instructions for the Indexes in each respective series are included in the instructions for the lead Index of the series.

It is the responsibility of the EOR using these instructions to determine the applicability of an Index in the design of a project. The inappropriate use of and adherence to these instructions does not exempt the engineer from the responsibility of developing an appropriate design.

115.2.7 Data Tables

Many Standard Plans require Data Tables that must be completed and included in the plans. The Data Tables provide information that supplements or completes individual Standard Plans. The Data Tables are presented as CADD Cells and are included with the FDOT CADD Software. Modifications of these tables are discouraged.

Current Data Tables can be found on the Standard Plans website (under “Supporting Documents”) when they are not available in the FDOT CADD Software.

Data Tables include a “Table Date” in the upper right corner of each table, and they may include a “Notes Date” for each set of corresponding notes. “Table Date” or “Notes Date” reflect the latest modification of the CADD cell and are not to be changed or deleted. Compare the “Table Date” or “Notes Date” with the SPI to confirm that the current Data Table is being used.

115.2.8 Local Agency Standards and Details

Local agency standards are permitted on off-system projects for items requested by the local maintaining agencies that differ from the Department’s Standard Plans. Use only local agency standards developed by a Florida Licensed Professional Engineer. Usage of local agency standards requires approval of the District Design Engineer.
Use one of the following methods to incorporate local agency standards and details into the Contract Plans:

A. Include as *Modifications to Standards Plans*, as described above.

B. Add project-specific details and notes based on the local agencies standard into the Contract Plans. The engineer responsible for including these details and notes in the Contract Plans becomes the EOR for the application of the entire design. This option should only be used for items completely independent of the Department’s *Standard Plans*.

C. Attach the local agencies standard(s) (without modification) in the Contract Plans. Only include the standard(s) specific to the project. Insert the local agency standard(s) into the Contract Plans in accordance with the requirements for *Developmental Standard Plans* provided in *FDM 302*. Reference the agency standards where required using plan notes or callouts.

Consider the need for a Modified Special Provision or Technical Special Provision where the local agency standards conflict with, or are not addressed by, the FDOT *Standard Specifications*. Coordinate the need for project-specific pay items with the District Specifications Office.

115.3 Standard Specifications

The governing Specifications for a project include the *Standard Specifications* and any revisions thereto. These revisions typically take the form of Special Provisions, Supplemental Specifications, Modified Special Provisions (MSPs), Technical Special Provisions (TSPs), and Developmental Specifications. Revisions to the *Standard Specifications* are compiled into the *Specifications Package*, which is part of the contract documents.

The process of compiling and formatting the *Specifications Package* is described in the Department’s *Specification Package Preparation Procedure (Topic No.: 630-010-005)* and the *Specifications Handbook*. These documents also include the definitions of the various components and an explanation of the roles and responsibilities of the different individuals involved (e.g., EOR, District, Central Office).

The governing *Standard Specifications* for every project must be identified in the plans in accordance with *FDM 302*.

These publications are available on the State Specification Office website at: https://www.fdot.gov/programmanagement/PackagePreparation/Default.shtm
116 Alternative Intersection and Interchange Review

116.1 General

Alternative Intersection evaluations are governed by the Intersection Control Evaluation process. See the Intersection Control Evaluation (ICE) Manual for requirements at the following web address:

https://www.fdot.gov/traffic/TrafficServices/Intersection_Operations.shtm

See FDM 301 for Alternative Intersection and Interchange phase submittal requirements.

Alternative intersections and interchanges provide a fresh approach to addressing congestion and safety concerns on the State Highway System. They are typically more complex than conventional designs and there is little guidance available to designers. For these reasons, all proposed Alternative Intersection and Interchange designs require a detailed review early and throughout the design process.

Configurations subject to this detailed review are listed as follows:

- Roundabout
- Median U-Turn (MUT)
- Restricted Crossing U-Turn (RCUT)
- Jug Handle
- Displaced Left Turn
- Continuous Green-T
- Quadrant Roadway
- Diverging Diamond Interchange (DDI)

117 Monitor Existing Structures

117.1 General

Monitor Existing Structures includes settlement, vibration, and groundwater monitoring of existing structures during construction as described in Section 108 of the Standard Specifications. Structures requiring consideration for monitoring typically include buildings, bridges, and retaining walls which are adjacent to construction activities. When there is a concern regarding vibration, structures to be monitored may also include historic features and buildings in which sensitive business operations are conducted; e.g., eye surgery, medical treatments, rehabilitation operations, recording and broadcasting operations, places of worship, antique shops, or museums.

When appropriate, include a note on the General Notes sheet that:

(1) Restricts hours of construction operations.
(2) Restricts the type of construction equipment to be used.

Pay item 108-1 is to be used to mitigate the risk for damage occurring to an existing structure due to settlement.

Pay item 108-2 is to be used to mitigate the risk for interfering with the intended use of an existing structure. This pay item is not typically used for residential properties.

Pay item 108-3 is to be used only when recommended by a geotechnical firm and concurred with by the District Geotechnical Engineer. The use of this pay item is not common.

117.2 Inspection and Settlement Monitoring

There are three general types of construction activities of concern:

- Foundations for miscellaneous structures
- Work associated with structures other than miscellaneous structures
- Compaction operations
117.2.1 Miscellaneous Structures

Activities that may cause harm to existing structures include the construction of foundations for mast arm signal poles, strain poles, cantilever signs, overhead truss signs, high mast light poles and ITS.

Based on visual field observations, the EOR will identify existing structures that are recommended to be monitored during these activities. The Department will make the final determination of the existing structures to be monitored. If a determination is made to monitor a structure, include pay item 108-1, and list the structure in the Monitor Existing Structures Excel summary table used to create the Estimated Quantities (EQ) Report.

117.2.2 Structures other than Miscellaneous Structures

Activities that may cause harm to existing structures include the construction of retaining walls, noise walls, sheet pile walls, deep excavations and foundations for bridges and other structures.

(1) If any existing structure is within the distances specified in Section 108-2 of the Standard Specifications, include pay item 108-1 and list no structures in the Monitor Existing Structures Excel summary table used to create the EQ Report. Use 250 feet as the limit for pile driving.

(2) Based on visual field observations, the EOR may recommend monitoring existing structures located beyond the distances specified in Section 108-2 during these activities. The Department will make the final determination of the existing structures to be monitored. If a determination is made to monitor a structure outside of the specified distances, include pay item 108-1, and list the structure in the Monitor Existing Structures Excel summary table used to create the EQ Report.

117.2.3 Roadway Compaction Operations

Activities that may cause harm to existing structures include embankment and asphalt vibratory compaction.

(1) If an existing structure is within the distances specified in Section 108-2 of the Standard Specifications, include pay item 108-1, and list no structures in the Monitor Existing Structures Excel summary table used to create the EQ Report.

(2) Based on visual field observations, the EOR may recommend monitoring existing structures located beyond the distances specified in Section 108-2 during these activities. The Department will make the final determination of the existing
structures to be monitored. If a determination is made to monitor a structure outside of the specified distances, include *pay item 108-1*, and list the structure in the Monitor Existing Structures Excel summary table used to create the EQ Report.

117.3 Vibration Monitoring

Activities that may cause harm to existing structures include pile driving, sheet pile and casing installation, and embankment and asphalt vibratory compaction.

Based on visual field observations, the EOR will identify existing structures that are recommended to be monitored during these activities. The Department will make the final determination of the existing structures to be monitored. If a determination is made to monitor a structure, include *pay item 108-2*, and list the structure in the Monitor Existing Structures Excel summary table used to create the EQ Report.

117.4 Groundwater Monitoring

Based on visual field observations, the EOR will identify existing structures that are recommended to be monitored during anticipated dewatering operations. The Department will make the final determination of the existing structures to be monitored. If a determination is made to monitor a structure, include *pay item 108-3*, and list the structure in the Monitor Existing Structures Excel summary table used to create the EQ Report.
120 Design Submittals

120.1 General

The design process will require various submittals to transfer technical information and decisions between the Engineer of Record (EOR), certain Department personnel, and functional areas. The Department Project Manager is responsible for the adequacy of the submittals or requests and for the coordination of reviews between the Department and the EOR. Each office head including the District Construction and Maintenance Engineers should assume direct responsibility for assigning reviewers and meeting the review schedules. The contract scope of work should list the information to be furnished by FDOT functional areas and submittals (number and type) required of the EOR. Figure 120.1.1, shown on the following page, is a partial list of functional areas with typical submittals and requests.
During the design process, various items of information may be required from different sections or departments. The following is a list of some of those items and their source:

Figure 120.1.1 List of Requests and Contacts

Sheet 1 of 2

A) **Planning**
- Request pavement design (18 Kip ESAL)
- Request project traffic data
- Request turning movements for intersections
- Request updates of project traffic data (as needed)
- Request Context Classification
- Railroad contact (Phase I and III)
- Plans transmittal letter data (railroad)
- Notification that project is in vicinity of a traffic monitoring site

B) **Traffic Plans/Traffic Operations**
- Request turns and counts for intersection design
- Notification that project includes milling
- Signing & pavement marking plans (Phase I, II, III)
- Traffic signal plans (Phase I, II, III) & signal warrant
- Lighting plans (Phase I, II) & justification report
- Pedestrian and bicycle project traffic
- Safety/crash analysis and recommendations
- Operational and capacity review of design plans

C) **Geotechnical**
- Request pavement design soil information
- Request roadway soil survey
- Soils data
- Request foundation investigations
- Request dynaflect testing
- Phase III review, if unsuitable soils exist.
- Soils and foundation recommendations
- PH and soils resistivity for culvert material selection
- Request pavement composition and milling recommendations
- Review if any changes are made in alignment, grade or typical section.
- Bridge Geotechnical Report

D) **Surveying and Mapping**
- Request survey

E) **Drainage**
- Request grade and high water review
- Conceptual drainage plan & assumptions
- Bridge Hydraulics Report
- Request drainage design
- Request final drainage review
- Permit review
- SWPPP
- Erosion Control Plan

F) **Maintenance**
- Pavement design comments
- Phase I Plans review & response
- Phase II Plans review & response
- Phase III Plans review & response

G) **Construction**
- Pavement design comments
- Phase I Plans review & response
- Phase II Plans review (constructability) & response
- Phase III Plans review (biddability) & response
- Submit traffic control plan request
- Contract time

H) **R/W Surveying and Mapping**
- Submit title search request
- Request existing Right of Way maps
- Transmit Right of Way requirements
- Final Right of Way check
- Plans transmittal letter data

I) **Utilities**
- Preliminary (First) contact (Phase I)
- Pre-Design conference and contact (Phase II)
- Final contact (Phase III)
- Horizontal and vertical verification of utilities
- Plans transmittal letter data (utilities)
- Number of sets of final prints for utility companies

120-Design Submittals
Figure 120.1.1 List of Requests and Contacts
Sheet 2 of 2

J) Estimates and Specifications
 Preliminary estimate (LRE)
 Preliminary estimate (Phase I)
 Preliminary estimate (Phase II)
 Preliminary estimate (Phase III)
 Complete estimate (Phase IV)

K) Right of Way Department
 Project schedule updates as needed
 R/W estimates as needed
 Pre-Proposal appraisal conference
 Field questions from R/W agents as needed
 Plans transmittal letter data
 Phase I Plans Review (by Appraiser)
 Phase II Plans Review (by Appraiser)
 Phase III Plans Review (by Appraiser)
 Phase IV Plans Review (by Appraiser)

L) FHWA (if Project of Division Interest (PoDi)
 Phase I Plans review & response
 Phase II Plans review & response
 Phase III Plans review & response
 Phase IV Plans review & response
 Submit for typical section approval
 Submit for pavement design approval
 Submit Design Exception request letters
 R/W review

M) Value Engineering ($25,000,000+)
 Phase I & II reviews

N) Environmental
 Contamination Evaluation
 SWPPP
 Erosion Control Plan
 Mitigation Plans
 Asbestos-Containing Materials Survey
 Phase I Plans review & response
 Phase II Plans review & response
 Phase III Plans review & response
 Phase IV Plans review & response
 PD&E Re-evaluation
 Project Commitment Record
 Preliminary Engineering Report (as applicable)
 Approved Environmental Document (as applicable)

O) Materials
 Environmental Classifications
 Type of Structural Steel (existing)
 Existence of Lead-Based Paint

P) Bridge
 Phase I, Bridge Analysis, review & response
 Phase II Plans review & response
 BDR/30% Plans review and response
 60% Plans review & response
 90% Plans review & response
 100% Plans review & response

Q) Public Transportation/Modal Development
 Notification that project contains a transit route
 Request transit agency contact(s)
 Request facility locations and information
 Identify any special transit needs
 Phase I Plans review & response
 Phase II Plans review & response
 Phase III Plans review & response
 Number of sets of final prints for transit agencies

R) Landscape
 Notification of Local Agency for landscape
 coordination and agreements
 Existing Vegetation Inventory and Disposition
 Landscape Opportunity Concept
 Soils Analysis, existing and proposed
 Irrigation Feasibility Study
Modification for Non-Conventional Projects:

Delete *FDM 120.1* above and replace with the following:

See RFP and *FDM 301* for a list of submittal requirements.

120.2 Design Documentation Submittals

Certain engineering processes require the submittal of information to specific Department personnel for the purpose of making timely decisions and confirming project objectives. Submittals will take place as these activities are completed so that issues do not go unresolved before subsequent activities begin. The following are submittals that should take place during initial engineering. Ideally these engineering type submittals are done in lieu of traditional phase plans reviews.

120.2.1 Field Survey Data

Evaluate the following typical field survey data for sufficient breadth and accuracy to complete the proposed design. Bring deficiencies to the attention of the Department.

1. Design location survey data including horizontal and vertical control, alignments, reference points, utilities, natural and manmade features, and topography or general shape of the terrain.
2. Digitized aerial survey data, especially for large areas such as drainage maps. Drainage design survey data from site inspection and historical records.
3. Right of Way and related property (land) survey data, including property owners and acreage.
4. Geotechnical studies and foundation and soils report, including physical properties and classifications of soils, together with recommendations related to foundations, pavement and drainage design.
5. Bridge data sheet surveys, channel alignment survey data, and bathymetric data.
120.2.2 Traffic Data

In the development of roadway plans, traffic data is used to justify:

- Number of through lanes,
- Geometric improvements to intersections,
- Traffic signal timings, and
- Pavement design.

The number of through lanes is usually determined during the project development phase, based on Annual Average Daily Traffic (AADT) and factors included in the typical section. Vehicular traffic data shown on the plans Typical Section sheet includes:

- AADT for the following:
 - Current Year (refers to when the traffic data is collected),
 - Opening Year (as defined in the FDOT Project Traffic Forecasting Handbook), and
 - Design Year (as defined in the FDOT Project Traffic Forecasting Handbook)
- Design hour factor (K is the Department’s Standard "K" factor as defined in the FDOT Traffic Forecasting Handbook),
- Directional distribution (D is the percent of two-way peak-hour traffic that occurs in the peak direction), and
- Truck factors (T is the percent that trucks constitute of vehicular traffic) for the peak hour and a 24-hour period.

The source and methods used to produce this data must be documented.

120.2.2.1 Traffic Counts

Intersection improvements and signal timings require additional information on turning volumes. The FDOT Project Traffic Forecasting Procedure (Topic No.: 525-030-120) describes the input data required, explains the procedure to forecast turning volumes, and provides examples. A Project Traffic Report will be required. Traffic counts provide input on the number of motor vehicles, bicycles and pedestrians using an intersection. At proposed (non-existing) major intersections, turning volumes are estimated using transportation planning models or other means. Forecasts provide designers the
information required to determine the need for turning lanes, turning bay length, signal timings, and pedestrian crossings. Also, the designer establishes Right of Way requirements based on documented needs to satisfy design year volumes.

120.2.2.2 18 kip Equivalent Single Axle Loads (ESAL)

In pavement design, the designer requires AADT forecasts for the year a project opens to traffic and for the design year. AADT, together with percent trucks (24-hour period) and other factors used by the Department, provides information on the pavement loadings (18kip ESAL) used in pavement design. The FDOT Project Traffic Forecasting Procedure provides additional information.

120.2.3 Typical Section Package

The purpose of the typical section package is to establish and document the following:

- Project Controls
- Cross Sectional Elements
- Design Variations and Design Exceptions

Prepare a typical section package for projects that alter cross section elements and for resurfacing projects. The typical section package must be prepared and sealed by the EOR.

There are two formats available in the FDOT CADD Software for the development of typical section packages:

1. Digitally signed and sealed Typical Section Packages as described in this chapter. The Typical Section Package consists of a Cover Sheet and Proposed Typical Section Sheets as illustrated in Exhibits 120-1 through 120-4.

2. 2017 PPM Typical Section Packages as described in PPM Volume 1, Chapter 16. This format may be used for projects that do not require context classification and are manually signed and sealed.

120.2.3.1 Approval Process

The typical section package will be approved as part of the Project Development & Environment (PD&E) process. Typical section package preparation and coordination between the responsible PD&E Engineer of Record (EOR) and the District Design
Engineer typically occurs during the development of project alternatives prior to the preferred alternative selection. The PD&E EOR will prepare, seal, and submit the typical section package for concurrence. Typical section concurrence signatures are obtained after the preferred alternative is selected. Include a copy of the approved typical section package as part of the PD&E Final Preliminary Engineering Report.

For projects that do not contain a PD&E phase or have significantly changed during the design process, the typical section package is prepared, sealed and submitted by the Design EOR. Typical section package concurrence signatures should be obtained prior to the final engineering process.

120.2.3.2 Cover Sheet

The Cover Sheet contains the following:

1. Project Identification: Place the Financial Project ID number(s) immediately under the heading “TYPICAL SECTION PACKAGE” at the top of the sheet. When the project involves Federal funds, place the words “(Federal Funds)” under the Financial Project ID. Place the county name and roadway section number associated with the Straight Line Diagrams under the Financial Project ID or “(Federal Funds)”. Include a description of work type under the state road number.

2. Project location map: See FDM 302.4 for requirements.

3. PD&E or Design EOR Signature Block: See FDM 130 for requirements.

4. Sheet Index: Provide an index of sheets contained in the package that the EOR is responsible for.

5. Typical Section Concurrence Block: Concurrence from the District Design Engineers for all typical sections is required. Other concurrence signatures may be included; e.g., District Structures Design Engineer for bridge typical sections, County Engineer for local roadway typical sections.

6. Concurrence of the typical section package by the FHWA Transportation Engineer is required on Projects of Division Interest (PoDI). Refer to FDM 128 for additional information concerning PoDIs.

7. Design Speed and Posted Speed Concurrence Block: The District Design Engineer and District Traffic Operations Engineer will discuss and agree to the posted speed. The selected design speed will be jointly approved by the District Design Engineer and the District Traffic Operations Engineer with a declaration that the posted speed is not expected to exceed the selected design speed.

8. Context Classification Concurrence Block: Context classification is determined by FDOT district staff on all projects. Coordinate with the FDOT Project Manager to
obtain context classification(s). Concurrence from the District Intermodal Systems Development (ISD) Manager or Planning and Environmental Management Administrator for the context classification assigned to each typical section is required.

120.2.3.3 Typical Section Sheet

Provide Typical Section Sheets for the state roadway and bridges for project limits that include:

- A change in the number of through lanes,
- A change in Project Controls; Functional Classification, Context Classification, or Design Speed,
- Change in facility type (e.g. flush shoulder roadway to curbed roadway), and
- A crossroad which may affect an existing structure.

Provide Typical Section Sheets for intersecting roadways when work of significant length is required.

Provide Typical Section Sheets for each proposed electronic toll point on toll facilities. These typical sections are intended to represent the required 100 feet of loop pavement underneath the toll gantry.

The Proposed Typical Section Sheet contains the following:

1. Project Controls: Indicate the applicable control that applies to the typical section (context classification, functional classification, highway system, and access classification),

2. Criteria: Indicate the type of construction,

3. Design Variations and Design Exceptions: List anticipated Exceptions and Variations that relate to the typical section,

4. Traffic Data: provide the following,
 (a) Current Year and AADT
 (b) Estimated Opening Year and AADT
 (c) Estimated Design Year and AADT
 (d) K, D, T (24-hour) factors.
 (e) Design Hour T factor
(f) Design Speed and Posted Speed

(5) Roadway Typical Section Drawing: provide the following,

(a) Name of Roadway and Mile Post Limits (station limits or street names may be used when Mile Post data is not available)

(b) Centerline Construction and/or Baseline Survey (label)

(c) Lanes (label type, dimension width, show cross slope)

(d) R/W Line (graphically show, label and dimension from centerline const.)

(e) Shoulder (label and dimension width, show cross slope, paved shoulder is dimensioned and labeled separately)

(f) Curb (graphically show curb, label curb type)

(g) Median (graphically show median, dimension width, show slopes)

(h) Slopes (label and dimension)

(i) Border Width (label and dimension for new construction / reconstruction)

(j) Ditches (show typical front slope and typical back slope, dimension typical ditch width and depth, and label)

(k) Natural Ground Line (graphically show and label)

(l) Pavement and Roadbed (graphically show)

(m) Barriers (graphically show, dimension, and label)

(n) Sidewalk or Shared Use Path (graphically show, dimension width, and label)

(6) Bridge Typical Section Drawing: provide the following.

(a) Bridge Description w/ Crossing Information

(b) Centerline Construction and/or Baseline Survey (label)

(c) Lanes (label type, dimension width, show cross slope)

(d) R/W Line (graphically show, label, and dimension from centerline const.)

(e) Shoulder (label and dimension width, show cross slope)

(f) Gutter (graphically show, dimension width)

(g) Median (graphically show, dimension width)

(h) Barriers (graphically show including railing, dimension width, and label)

Sidewalk or Shared Use Path (graphically show, dimension width, and label)
STATE OF FLORIDA
DEPARTMENT OF TRANSPORTATION

TYPICAL SECTION PACKAGE

FINANCIAL PROJECT ID 123456-1-52-01
BAY COUNTY (46080)
STATE ROAD NO. 22 (WEWA HWY)
RECONSTRUCTION OF SR 22 FROM 2-LANE TO 4-LANE

APPROVED BY:

Leia I. Crosswell
2017.10.09 16:40:48 - 4'00'

STATE OF FLORIDA
PROFESSIONAL ENGINEER
No 99995

THE ABOVE NAMED PROFESSIONAL ENGINEER SHALL BE RESPONSIBLE FOR THE
FOLLOWING SHEETS IN ACCORDANCE WITH RULE 61G15-23.004, F.A.C.

TYPICAL SECTION PACKAGE

SHEET NO SHEET DESCRIPTION
1 COVER SHEET
2 TYPICAL SECTION NO. 1
3 TYPICAL SECTION NO. 2
4 TYPICAL SECTION NO. 3

TYPICAL SECTION CONCURRENCE

Lan B. Solo
2017.10.10 08:11:45 - 4'00'
FHM TRANSPORTATION ENGINEER

J.T. Hutt
2017.10.10 15:11:45 - 4'00'
FHM TRANSPORTATION ENGINEER

DESIGN SPEED AND POSTED SPEED CONCURRENCE:

Garth Paul
2017.10.10 14:10:15 - 4'00'
FHM TRANSPORTATION ENGINEER

Lan B. Solo
2017.10.11 08:12:33 - 4'00'
FHM TRANSPORTATION ENGINEER

CONTEXT CLASSIFICATION CONCURRENCE:

Ray-Rey Olay
2017.10.10 12:01:30 - 4'00'
FHM TRANSPORTATION ENGINEER

CONCURRENCE:

STATE OF FLORIDA
DEPARTMENT OF TRANSPORTATION

EXHIBIT 120-1 Date: 1/1/19
PROJECT CONTROLS

CONTEXT CLASSIFICATION

() C1 : NATURAL
() C3 : SUBURBAN COMM.
() C2 : RURAL
() C4 : URBAN GENERAL
() C2T : RURAL TOWN
() C5 : URBAN CENTER
() C3R : SUBURBAN RES.
() C6 : URBAN CORE
() N/A : L.A. FACILITY
() N/A : FL GREENBOOK

FUNCTIONAL CLASSIFICATION

() INTERSTATE
() MAJOR COLLECTOR
() FREeways/EXPY.
() MINOR COLLECTOR
() PRINCIPAL ARTERIAL
() LOCAL
() MINOR ARTERIAL

HIGHWAY SYSTEM

() NATIONAL HIGHWAY SYSTEM
() STRATEGIC INTERMODAL SYSTEM
() STATE HIGHWAY SYSTEM
() OR-STATE HIGHWAY SYSTEM

ACCESS CLASSIFICATION

() 1 - FREEWAY
() 2 - RESTRICTIVE w/Service Roads
() 3 - RESTRICTIVE w/660 ft. Connection Spacing
() 4 - NON-RESTRICTIVE w/2640 ft. Signal Spacing
() 5 - RESTRICTIVE w/440 ft. Connection Spacing
() 6 - NON-RESTRICTIVE w/1320 ft. Signal Spacing
() 7 - BOTH MEDIAN TYPES

CRITERIA

() NEW CONSTRUCTION / RECONSTRUCTION
() RESURFACING (LA FACILITIES)
() RWR (ARTERIALS & COLLECTORS)

POTENTIAL EXCEPTIONS AND VARIATIONS RELATED TO TYPICAL SECTION:

DESIGN VARIATIONS:
- X: BORDER WIDTH

TYPICAL SECTION No. 1

TRAFFIC DATA

CURRENT YEAR = 2018 AADT = 22,800
ESTIMATED OPENING YEAR = 2020 AADT = 25,800
ESTIMATED DESIGN YEAR = 2040 AADT = 30,800
K = 6% D = 55% T = 2% (24 HOUR)
DESIGN HOUR T = 1%
DESIGN SPEED = 35 MPH
POSTED SPEED = 30 MPH

NOT TO SCALE

Date: 7/1/19
Traffic Data

- **Current Year:** 2018
 - AADT: 22800

- **Estimated Opening Year:** 2020
 - AADT: 25800

- **Estimated Design Year:** 2040
 - AADT: 30600

- **Design Hour T:** 1%

- **Design Hour D:** 6%

- **Design Hour K:** 55%

- **Traffic Railing:**
 - 30'-4''

- **Raised Median:**
 - 17''

- **Walk Side:**
 - 6'

Project Controls

Context Classification

- C1: Natural
- C3: Suburban Comm.
- C2: Rural
- C4: Urban General
- C3R: Rural Town
- C5: Urban Center
- C3R: Suburban Res.
- C6: Urban Core
- N/A: L.A. Facility
- N/A: FL Greenbook

Functional Classification

- Interstate
- Major Collector
- Freeway/Expy.
- Minor Collector
- Principal Arterial
- Local
- Minor Arterial

Highway System

- National Highway System
- Strategic Intrastate System
- State Highway System
- Off-State Highway System

Access Classification

- Freeway
- Restricted w/Service Roads
- Restricted w/600 ft. Connection Spacing
- Non-Restricted w/2640 ft. Signal Spacing
- Restricted w/440 ft. Connection Spacing
- Non-Restricted w/1320 ft. Signal Spacing
- Both Median Types

Criteria

- New Construction / Reconstruction
- Resurfacing (L.A. Facilities)
- Raw (Arterials & Collectors)

Potential Exceptions and Variations Related to Typical Section:

- N/A: LA Facility
- N/A: FL Greenbook

Typical Section No. 2

SR 22 Over Callaway Bayou
MP 3.422 to MP 3.471

Traffic Data

- **Current Year:** 2018
 - AADT: 22800

- **Estimated Opening Year:** 2020
 - AADT: 25800

- **Estimated Design Year:** 2040
 - AADT: 30600

- **Design Hour T:** 1%

- **Design Hour D:** 6%

- **Design Hour K:** 55%

- **Traffic Railing:**
 - 30'-4''

- **Raised Median:**
 - 17''

- **Walk Side:**
 - 6'

The official record of this sheet is the electronic file digitally signed and sealed under Rule 61 G 15 - 23.004, F.A.C.
TRAFFIC DATA

CURRENT YEAR = 2018 AADT = 22800
ESTIMATED OPENING YEAR = 2020 AADT = 25800
ESTIMATED DESIGN YEAR = 2040 AADT = 30600
K = 6% D = 55% T = 2% (24 HOUR)
DESIGN HOUR T = 1%
DESIGN SPEED = 60 MPH
POSTED SPEED = 55 MPH

NOT TO SCALE

SR 22
MP 3.725 TO MP 7.560

PROJECT CONTROLS

CONTEXT CLASSIFICATION

() C1: NATURAL
() C3: SUBURBAN COMM.
() C2: RURAL
() C4: URBAN GENERAL
() C7: RURAL TOWN
() C5: URBAN CENTER
() C3R: SUBURBAN RES.
() C6: URBAN CORE
() N/A: L.A. FACILITY
() N/A: FL GREENBOOK

FUNCTIONAL CLASSIFICATION

() INTERSTATE
() MAJOR COLLECTOR
() FREEWAY/EXPY.
() MINOR COLLECTOR
() PRINCIPAL ARTERIAL
() LOCAL
() MINOR ARTERIAL

HIGHWAY SYSTEM

() NATIONAL HIGHWAY SYSTEM
() STRATEGIC INTERMODAL SYSTEM
() STATE HIGHWAY SYSTEM
() I-STATE HIGHWAY SYSTEM

ACCESS CLASSIFICATION

() 1: FREEWAY
() 2: RESTRICTIVE w/Service Roads
() 3: RESTRICTIVE w/660 ft. Connection Spacing
() 4: NON-RESTRICTIVE w/2640 ft. Signal Spacing
() 5: RESTRICTIVE w/440 ft. Connection Spacing
() 6: NON-RESTRICTIVE w/1320 ft. Signal Spacing
() 7: BOTH MEDIANS TYPES

CRITERIA

() NEW CONSTRUCTION / RECONSTRUCTION
() RESURFACING (LA FACILITIES)
() RAW (ARTERIALS & COLLECTORS)

POTENTIAL EXCEPTIONS AND VARIATIONS RELATED TO TYPICAL SECTION:
120.2.4 Preliminary Drainage Design

On projects where the drainage design is a critical element the following items should require a preliminary submittal:

(1) Determination of water elevations affecting the roadway grade. These include base clearance water elevations and design flood elevations.
(2) Pond Siting Report.
(3) Documentation of preliminary drainage coordination with permitting agencies.
(4) Information that is essential to proper evaluation of drainage design concepts such as seasonal high ground water, soil types, existing cross drain peak design stages, historical pavement failure, floodplain elevation, present water elevations, and drainage areas.
(5) Documentation of coordination with the Landscape Architect and District Maintenance Engineer regarding aesthetics, including the accommodation of existing and proposed trees, particularly where additional R/W or Design Exceptions or Design Variations may be required.

120.2.5 Preliminary Geometry and Grades

On projects where connections to the facility make grades a critical element, back of sidewalk profiles, project profile grades, determination of water elevations affecting the roadway grade, and driveway and side street geometry should require a preliminary submittal. The Department may require the designer to present the project geometry and grade to a geometry and grade technical review team to encourage productive dialogue and proper communication regarding these design issues. If a bridge exists within the project limits, the early input of the structural designer as to approach grades and clearance needs should be coordinated to ensure proper bridge design.

120.2.6 Preliminary Traffic Control Plan

On projects where the traffic control plan is a critical element the following items should require a preliminary submittal.

(1) Typical sections of each construction phase with information that is essential to proper evaluation of each construction phase; e.g., location and nature of proper construction drainage; regulatory speed; location of work zone; proposed traffic control devices; number, width and location of maintained traffic; maximum drop-off; maintenance of existing lighting.
(2) Documentation addressing possible innovative construction techniques; e.g., need for temporary detours, hazardous material excavation, temporary structures.

(3) Documentation of coordination with the local community; e.g., city and county transportation engineers, businesses, police, hospitals, civic centers or arena operations, fire department, schools, mass transit.

(4) When a temporary bridge is used, the designer must coordinate with the State Bridge Evaluation Engineer in Tallahassee (Office of Maintenance) to ensure that a detour route for overweight vehicles is included in the plans. If no detour route is available, the temporary bridge may have to be designed to support multi-trip overweight vehicles.

120.2.7 Pavement Selection and Design

The pavement selection and design should be completed as early in the process as possible. The Rigid and Flexible Pavement Design Manuals are available through Pavement Management Publications.

120.2.8 Preliminary Utilities

On projects where utility coordination is a critical element, the following early involvement activities should be required.

(1) Prior to Phase I plans submittal, early involvement can be obtained by coordinating a review of the utility information in the topographic survey. This review may be accomplished by distribution of the topographic survey to all Utility Agency/Owners (UAOs) through the District Utility Office for mark-ups and confirmation of existing facilities.

(2) Once the designer has reviewed the early topographic survey mark-ups a meeting should be held with the UAOs, District Utility Office and the designer to discuss errors, omissions, and future plans of the utilities already identified within the corridor. This will allow the designer the ability to prioritize which utilities will ultimately impact the design.

120.3 Structures Submittals

Structures design elements go through decision-making reviews at various stages of the design as listed below:
120.3.1 Coordination of Structural Design - (Bridges and Retaining Walls)

Requests for structural design should include roadway plan and profile sheets showing horizontal and vertical alignment and cross sections within 500 feet of each end of the bridge or ends of retaining walls. Horizontal curvature that is on or near the end of the bridge or retaining wall must be shown. Nonstandard superelevation transition details or other special profiles must be included if any part or all of the transition is on the bridge or wall. The approved proposed typical section is required.

Provisions for access to property near the end of bridges and adjustments to avoid costly Right of Way takings should be resolved.

120.3.2 Bridges

Bridge design begins when the Phase I bridge geotechnical report is complete and proceeds on a schedule which allows simultaneous review of the final (90%) bridge plans and the Phase III roadway plans. All structures design work is coordinated through the District Structures Design Engineer or the State Structures Design Office in the Central Office, depending on the category or complexity of the structure. Determine the typical section of the facility crossing, the horizontal and vertical clearance requirements, and the profile grades prior to beginning structures design. For complete details and requirements for structural designs and plans preparation, the reader is referred to FDM 121 and the Structures Detailing Manual issued by the State Structures Design Office.

Generally, the completion and review of bridge designs are accomplished in the following phases:

(1) BDR/30% Structures Plans
(2) 60% Structures Plans
 (a) Foundation submittal for all Structures and full submittal
 (b) Full submittal for Category 2 or unusual structures only
(3) 90% Structures Plans
(4) 100% Structures Plans

These reviews should be coordinated with the phase reviews of the roadway plans. Submit the latest set of structural plans with the Phase II roadway plans submittal. This joint submittal at Phase II roadway plans review is to ensure that roadway and bridge
structures plans are consistent; i.e., widths, superelevation transitions, vertical and horizontal alignment, and work zone traffic control agree. The precise number and type of plans submittals depends on the complexity of the design and the sensitivity of the project. Each submittal must include written responses to the comments received on the previous submittal.

Modification for Non-Conventional Projects:

Delete \textit{FDM 120.3.2} above and replace with the following:

\textbf{120.3.2 Bridges}

For bridge submittal requirements see RFP and \textit{FDM 121}.

\textbf{120.3.3 Other Structural Submittals and Reviews}

In addition to bridge plans, structures plans may include retaining walls, sheet piling, noise barriers, box or three-sided culverts, pedestrian overpasses, temporary bridges, and special structural appurtenances. Special structural appurtenances that include transit related furnishings and amenities would require review by the local transit agency.

For projects where bridges and other structures plans are involved, preliminary and final plan submittals (usually along with bridge plans) should be handled according to the instructions for structures plans submittals covered in \textit{FDM 121} and \textit{FDM 262}.

For projects where retaining walls are required along with roadway plans (no bridge in the project), follow the procedure outlined in \textit{FDM 262}. The submittal of detailed control plans should occur as early in the design process as possible.

\textbf{120.4 Plans Phase Reviews}

The number of submittals and phase reviews is determined on a project-by-project basis and defined in the scope. Submittals allow functional areas to review the development of the project as contained in the scope.

Formal plans phase review requirements are covered in the District Quality Control Plan. Reviews should include Department personnel that can assist in making timely decisions and confirm that the requirements have been met for their discipline. Reviews are driven by the engineering process and occur when input or a decision is needed. Some of these activities are discussed in \textit{FDM 120.2}. Reviews are complete when the comments from
all the various offices have been resolved and have been documented as required in *FDM 128*.

Constructability and biddability reviews by the District Construction Office will be included at appropriate stages of the phase review process. Procedures for these reviews are provided in the *Construction Project Administration Manual*.

Minor projects, such as resurfacing, typically have two plans phase reviews. The two reviews consist of a decision-making phase review on the scope and intent of the project and a final plans phase review for constructability and biddability. One of these will be an on-site review.

On complex projects plans phase reviews may be required at the Phase I, II and III stages and a final check at Phase IV. Two on-site reviews are typically required with one of these held early in the initial engineering phase.

FDM 301.2 outlines, in detail, the sequence for contract plans preparation and assembly required by the several design phase submittals. Also included in the chapter is information required to be presented on various plan sheets included with each submittal.

When the plans are in compliance with all phase review requirements and are considered final, they are to be submitted in accordance with the process described in *FDM 131*.

Modification for Non-Conventional Projects:

Delete *FDM 120.4* above and replace with the following:

120.4 Plans Phase Reviews

FDM 301.3 outlines, in detail, the sequence for contract plans preparation and assembly required by the design phase submittals.

120.4.1 Review of Non-Department-Owned Projects

Perform a Department review of those portions of non-Department-owned projects located on Department-owned Right of Way, regardless of funding source or owner. Perform the review to the same extent as reviews for Department projects to assure compliance with the Department’s design criteria. See *FDM 121.18* and *FDM 121.12* for review requirements of non-Department-owned projects containing a structure located on, under or over Department-owned Right of Way.
121 Bridge Project Development

121.1 General

Structural designs for new construction are developed under the direction of the Structures Design Office (SDO) and the District Structures Design Offices (DSDO).

Designs are to be developed in accordance with:

- This manual,
- The Structures Manual (Topic No. 625-020-018) (which includes the Structures Design Guidelines, the Structures Detailing Manual),
- The Standard Plans (Topic No. 625-010-003),
- The AASHTO-LRFD Bridge Design Specifications as referenced in the Structures Manual,
- Applicable FHWA Directives, and
- Other criteria as specified by the Department.

Structural designs for repair or rehabilitation of bridges are generally developed under the direction of the District Structures Maintenance Engineer (DSME) and may not include all the submittal types discussed in this chapter.

Modification for Non-Conventional Projects:
Delete the above paragraph.

Structure designs for other agencies or authorities such as the Jacksonville Transportation Authority or various Expressway Authorities may meet the Department’s criteria or additional criteria as specified by the authority.

For projects involving bridges over navigable water, notify the DSME a minimum of 90 days prior to engaging in any action in, on, or around the bridge. Refer to FDM 110.5.3 for further information.
121.2 Organization

The SDO is a subdivision of the Office of Design under the direction of the Chief Engineer and the Assistant Secretary for Engineering and Operations. The SDO is under the direction of the State Structures Design Engineer (SSDE). Each District, including the Turnpike, has a staff of structural design engineers that comprise the DSDO, and which is under the direction of the District Structures Design Engineer (DSDE).

121.3 Definitions

All structures are grouped into the following two categories based upon design difficulty, structural complexity, type of construction materials used and history of use in Florida.

121.3.1 Category 1 Structures

The following structure types are classified as Category 1 Structures:

1. Box or three-sided culverts
2. Bridges with simple or continuous span reinforced concrete slab superstructures
3. Bridges with prestressed concrete slab superstructures
4. Bridges with simple span non-post-tensioned concrete beam or concrete girder superstructures with cast in place decks
5. Widenings for the structure types listed above
6. Steel truss pedestrian bridges utilizing proprietary designs
7. Retaining walls
8. Roadway signing, signalization, and lighting supports
9. Overhead sign structures and toll gantries
10. Noise walls and perimeter walls

121.3.2 Category 2 Structures

All structure types not listed above are classified as Category 2 Structures unless exempted by the SDO. In addition to, or in lieu of, the criteria listed above, a structure is classified as a Category 2 Structure when any of the following are present:
(1) Bridge substructures containing any of the following:
 (a) Post-tensioned components
 (b) Straddle piers
 (c) Integral caps
(2) Bridges designed for vessel collision or bridges with superstructures subject to application of wave loads
(3) Bridges with non-redundant foundations or bridges with micropile foundations
(4) Any component designed using Fiber Reinforced Polymer (FRP) composite materials except precast elements included in the Standard Plans
(5) Braided underpass structures where the beams or flat slab superstructure element is not oriented parallel to traffic of the overlying roadway and a portion of the superstructure and substructure extends beyond the limits of the overlying traffic barriers
(6) Design concepts, components, elements, details, or construction techniques not normally used by Florida DOT including but not limited to:
 • New bridge types
 • New materials used to construct bridge components
 • New bridge construction methods
 • Non-standard or unusual bridge component-to-component configurations and connection details
 • Department issued Developmental Standard Plans or modified versions of Developmental Design Standards
 • Items not covered by the Department's Standard Specifications
 • All atypical precast structural elements (The following are not considered to be atypical: AASHTO Beams, and precast elements included in the Standard Plans.)
 • Prefabricated Bridge Elements and Systems (PBES) not meeting all requirements of Chapter 25 of the Structures Detailing Manual

The Department supports the use of accelerated project construction techniques including the expanded use of precast/prefabricated bridge elements and systems as a way to reduce costs, construction time, and user impacts; however, the use of precast/prefabricated bridge elements can create long term durability and quality issues depending on the details utilized. Therefore, the designs and details for these elements must be approved by the Department prior to use.
Modification for Non-Conventional Projects:

Items listed in numbers 4 through 6 above are not allowed unless they are specifically permitted in the RFP or unless they are submitted and approved during the Alternative Technical Concept (ATC) process.

121.4 Abbreviations and Acronyms Used in Structures Design

Terminology used in the area of Structures Design is often written in the form of abbreviations or acronyms. Following is a list of acronyms frequently encountered in this manual and in other references used in structures design and include those commonly used for offices, organizations, materials, systems, features, equipment, conditions, and expertise:

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AASHTO</td>
<td>American Association of State Highway and Transportation Officials</td>
</tr>
<tr>
<td>ACI</td>
<td>American Concrete Institute</td>
</tr>
<tr>
<td>ACIA</td>
<td>Assigned Commercial Inspection Agency</td>
</tr>
<tr>
<td>ADA</td>
<td>Americans with Disabilities Act</td>
</tr>
<tr>
<td>AISC</td>
<td>American Institute of Steel Construction</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>APL</td>
<td>Approved Products List</td>
</tr>
<tr>
<td>AREMA</td>
<td>American Railway Engineering and Maintenance Association</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>AWS</td>
<td>American Welding Society</td>
</tr>
<tr>
<td>BBS</td>
<td>Bulletin Board System</td>
</tr>
<tr>
<td>BDR</td>
<td>Bridge Development Report</td>
</tr>
<tr>
<td>BHR</td>
<td>Bridge Hydraulics Report</td>
</tr>
<tr>
<td>BHRIS</td>
<td>Bridge Hydraulics Recommendation Sheet</td>
</tr>
<tr>
<td>CADD</td>
<td>Computer Aided Design and Drafting</td>
</tr>
<tr>
<td>CEI</td>
<td>Construction Engineering and Inspection</td>
</tr>
<tr>
<td>C.I.P. (C-I-P)</td>
<td>Cast-in-Place (Concrete)</td>
</tr>
<tr>
<td>CSIP</td>
<td>Cost Savings Initiative Proposal</td>
</tr>
<tr>
<td>CPAM</td>
<td>Construction Project Administration Manual</td>
</tr>
<tr>
<td>CVN</td>
<td>Charpy V-Notch (Impact Testing)</td>
</tr>
<tr>
<td>DSDE</td>
<td>District Structures Design Engineer</td>
</tr>
<tr>
<td>DSDO</td>
<td>District Structures Design Office</td>
</tr>
<tr>
<td>DSME</td>
<td>District Structures Maintenance Engineer</td>
</tr>
<tr>
<td>EOR</td>
<td>Engineer of Record</td>
</tr>
</tbody>
</table>
121.5 Responsibility

The DSDO has total project development and review responsibility for projects involving Category 1 Structures. The SDO has total project development and review responsibility for projects involving Category 2 Structures. This responsibility for Category 2 Structures extends to widening and rehabilitation projects and repairs of bridge components that qualify the structure as a Category 2 Structure. For large projects with multiple bridges, review responsibilities will be coordinated between the DSDO and the SDO based on the category of the individual bridge, work load demands and project make-up.
The District Project Manager must coordinate with the DSDE who will review and concur with the bridge aspect of all projects during the PD&E process in accordance with Part 2, Chapter 3 of the PD&E Manual.

The DSDE or the SSDE, as appropriate, must concur/approve all bridge related work after location design approval is granted.

To assure a uniform approach to a project, the Engineer of Record must coordinate with the appropriate structures design office (i.e., DSDO or SDO) to discuss structures related phase review comments and get concurrence on how to proceed.

Modification for Non-Conventional Projects:

Delete *FDM 121.5* and replace with the following:

121.5 Responsibility

Submit RFP’s on those projects where it is anticipated that Category 2 bridges will be designed and constructed to the SSDE for review and approval. Submit RFP’s on those projects where it is anticipated that Category 1 bridges will be designed and constructed to the DSDE for review and approval.

The DSDO has total component structure plan review responsibility for projects involving Category 1 Structures. The SDO has total component structure plan review responsibility for projects involving Category 2 Structures. This responsibility for Category 2 Structures extends to widening and rehabilitation projects and repairs of bridge components that qualify the structure as a Category 2 Structure. The DSDE or the SSDE, as appropriate, determine when structure component plans should be “Released for Construction.”

The District Project Manager must coordinate with the DSDE who will review and concur with the bridge aspect of all projects during the PD&E process in accordance with Part 2, Chapter 3 of the PD&E Manual.
121.6 Projects of Division Interest

See *FDM 128* for FHWA requirements.

121.7 Bridge Project Development

The following sections will define, clarify and list the information necessary to produce an acceptable and reproducible set of contract documents (special provisions, bridge contract drawings) ready for advertisement and construction.

Bridge project development normally includes five phases of development. The first phase of development, bridge analysis, occurs during the Project Development and Environment (PD&E) process. After location design approval is granted, the second phase, Bridge Development Report/30% Structures Plans, is initiated. After approval of the BDR, the final phases of work will begin. The third phase is the 60% Structures Plans that consists of the substructure foundation submittal for all projects and 60% Structures Plans for most Category 2 Structures. The fourth phase includes the 90% Structures Plans and specifications. The fifth phase includes the 100% Structures Plans and specifications. For efficiency, one engineering firm (one design team) should be responsible for the BDR and the final plans and specifications.

For Category 2 bridges and some Category 1 bridges, step negotiations are suggested. Step negotiations are desirable because the final bridge type cannot be determined until the BDR is complete. Utilizing this scenario, the first step of the negotiations would include the BDR/30% Structures Plans. After submittal of the BDR/30% Structures Plans, negotiations for final three phases of work (60% Structures Plans, 90% Structures Plans and 100% Structures Plans) would begin. Negotiations should not be finalized until the BDR/30% Structures Plans are approved by the DSDO or the SDO as appropriate.

Modification for Non-Conventional Projects:

Delete *FDM 121.7* and replace with the following:

121.7 Bridge Project Development

Bridge project development normally includes four phases of development. The first phase of development, bridge analysis, occurs during the Project Development and Environment (PD&E) process. The second phase includes the development of the bridge related project constraints based on project specific requirements and development of the bridge concept plans for inclusion into the RFP. A series of pre-
scoping questions has been compiled and are available on the Office of Construction website to aid in the development of project specific constraints. Depending on the complexity of the project and at the discretion of the Department, this second phase may include a Bridge Feasibility Assessment for the purpose of developing the structures concept plans. The third phase involves the project procurement process. See *Procurement and Administration Procedure (Topic No. 625-020-010)* for specific requirements. The fourth phase includes component structure plan reviews in accordance with the requirements of the RFP.

121.8 Bridge Analysis

121.8.1 General

The Bridge Analysis is performed during the PD&E phase by qualified bridge engineers. The findings of the bridge analysis must be approved by the District Structures Design Office or the State Structures Design Office, as applicable, in accordance with the responsible review authority specified in [*FDM 121.5*](#appdx). The function of the bridge analysis is to determine the general attributes for the recommended bridge. The specific attributes of the bridge will be defined in the BDR.

For bridges over water, a location Hydraulics Report will be prepared in conjunction with the bridge analysis. General site geotechnical knowledge is also required (usually from existing bridge plans) or, in some cases, it may be desirable to obtain borings.

121.8.2 Contents

The bridge analysis provides conceptual guidance for the bridge design consultant. Conceptual guidance on how the bridge should fit into the uniqueness of the site should be provided. Bridge design and structure type should be left to the design team in the later phases of work. Include the following in the bridge analysis:

1. Environmental and site considerations, including the need for wildlife connectivity (see [*FDM 110.5.4*](#appdx)).
2. Vertical and horizontal clearances (existing and proposed).
3. Load Rating of existing bridge, if any portion is retained.
(4) Disposition of existing structure. (Final disposition of demolished bridge debris will depend on whether or not a local, State or Federal agency has agreed to receive the debris. See FDM 110.5.2.3).

(5) Vertical and horizontal geometry.

(6) Typical section.

(7) Conceptual ship/barge impact data (sample of recreational and commercial traffic).

(8) Identification of historical significance of bridge and surrounding structures.

(9) Aesthetic level for bridge and bridge approaches.

(10) Location Hydraulics Report.

(11) Bridge deck drainage considerations.

(12) Stream bottom profile.

(13) Conceptual geotechnical data.

(14) For sites with movable bridge options, a life cycle cost comparison will be prepared and compared to fixed bridge options (Ref: AASHTO Movable Bridge Inspection, Evaluation, and Maintenance Manual, 2nd Edition).

(15) Phase Construction Impacts.

(16) Construction time.

121.9 Bridge Development Report (BDR)/30% Structures Plans

The BDR is intended to establish all the basic parameters that will affect the work done in the Design and Plans Preparation phase. Initiate the BDR after location design approval (For those sites not requiring location design approval, a categorical exclusion will be required before initiation of the BDR). Once approved, the BDR will define the continuing work by the Engineer of Record (EOR). It is mandatory that the EOR obtain and coordinate the information and requirements of the offices and engineering disciplines whose input is essential to the preparation of an effective BDR. Changes to the parameters after the BDR is approved could result in schedule delays and supplemental agreements; therefore, it is critical that District Offices, FHWA (if involved), the SDO and other involved agencies recognize the purpose and importance of the BDR. The BDR phase of work will contain sufficient detail for the justification of the proposed bridge type. For most projects, the 30% Structures Plans will be included as an appendix to the BDR. The BDR is developed from information outlined on the Bridge Development Report Submittal Checklist shown in Form 121-A (see FDM 103). This information is often provided by others; however, the EOR is responsible for ensuring that all of the information is adequate and appropriate. If the data is not
sufficient, the EOR must obtain the required information before the BDR can be completed and submitted.

When alternate designs are considered, consistency between the alternates is essential in ensuring equitable competition and optimum cost-effectiveness. This consistency includes uniformity of design criteria, material requirements and development of unit costs.

The BDR should contain only supportable and defendable statements. Subjective opinions or unsubstantiated statements are not acceptable. All arguments are to be clearly and logically defensible with calculations, sketches or other technical data.

The quantity of work necessary to prepare the BDR depends upon the project's complexity; however, the usual work effort for bridge types normally encountered is:

1. **Minor Bridge Widening**: The BDR will be a minor work effort; however, viable structural possibilities and economical options should be thoroughly investigated to determine if replacement of the bridge would be more appropriate than its widening. This is particularly true at sites where the existing bridge condition is marginal, where there has been a record of serious flooding or scouring, when the widening is part of a route improvement with a high potential for attracting traffic, if the existing bridge has a history of structural problems (including vessel collision), or if the inventory rating is less than required by AASHTO and cannot be improved. Load rating considerations that are to be included in the BDR recommendations are provided in Section 7.1.1 of the Structures Design Guidelines.

2. **Minor Grade Separations or Small Water Crossings**: The BDR will be a thorough document that adequately addresses all viable structure types; however, the BDR will not usually be an extensive document since the viable types of superstructure and substructure are generally limited. The report is to consider scour, vessel collision, and wildlife connectivity.

3. **Major Bridges (including Movable) and Major Interchanges**: The BDR will be an extensive and comprehensive document that thoroughly considers all viable structure types and considers all design parameters (such as scour, vessel collision and wildlife connectivity).
121.9.1 Contents

The major items to be considered in the BDR are:

(1) General: The bridge length, height and pier locations are subject to vertical and horizontal design clearance requirements such as those for clear zone, navigation, wildlife connectivity, and hydrology. After these considerations are met, span lengths are governed by economics and aesthetic considerations. Superstructure depths (grade separation structures in particular) are to be kept to the minimum that is consistent with good engineering practice. Recommended span/depth ratios for steel superstructures are shown in AASHTO.

The length of the bridge will be affected by:

- Opening required by the Bridge Hydraulic Report.
- Environmental Considerations, including wildlife connectivity (see FDM 110.5.4).
- Railroad clearances and cross sections.
- Width of waterway or width of cross section of roadway being spanned including the use of retaining walls, or fender systems.

(2) Statical System: Address the economic and engineering advantages of both simple span and continuous spans.

(3) Superstructure: Some superstructure types that could be considered are prestressed concrete girders, inverted-tee sections, reinforced or prestressed concrete slabs, steel rolled sections or plate girders, steel or concrete box girders, and post tensioned slabs, bulb-tees or boxes.

(4) Substructures: Some substructure types that could be considered are pile bents and multi-column or hammerhead piers. Variations of column shapes may be appropriate for aesthetic or economical requirements.

(5) Foundations: Some foundation types that could be considered are steel and concrete piles, drilled shafts, geosynthetic reinforced soil (GRS) abutments and spread footings. Assess GRS abutments to determine feasibility for all new bridges. If GRS abutments are determined not to be the most suitable alternative for the project, provide a statement in the BDR indicating so and the reasons why (e.g. sinkhole-prone area or differential settlement limit exceeded).

(6) Vessel Collision: Vessel collision forces will often have a major effect on the structural configuration and overall economics. See vessel collision requirements in the Structures Design Guidelines.
(7) **Scour:** The 100 year and 500 year predicted scour elevations will often have a major effect on the foundation design. See the foundations and geotechnical requirements in the *Structures Design Guidelines*.

(8) **Temporary Traffic Control:** Show how traffic will be maintained during construction for each of the bridge alternates considered. Assess the impacts of the traffic carried on the structures as well as under the structures being constructed. Consider all major overhead work items such as bridge demolition and girder placement. Show stability towers locations, phased construction sequences, girder splice locations, for each alternate being considered. Compare traffic user impacts for each of the alternates.

(See *FDM 240.4* for additional requirements)

(9) **Precast Feasibility Assessment:** Investigate the use of either partial or full precast bridge alternate(s) with the specific purpose of accelerating bridge construction and reducing user impacts. As part of this investigation:

- Conduct a feasibility assessment responding to questions similar to those listed in *FDM 121.19*.

- Based on responses to the feasibility questions, explain whether a precast alternate should be considered an advantage on the project or what site constraints, economic impacts, or other factors (e.g., haul distance from precast yard, project variability) precluded or limited its application. If precasting is determined not to be applicable for the project, provide a statement in the BDR indicating so and the reasons why. This statement fulfills the requirements of this section.

- Only if precasting is found to be viable, evaluate preliminary precast alternates and associated MOT schemes against conventional methods using the assessment matrix and referenced links given in *FDM 121.19*. Provide enough detail in the preliminary evaluation in order to estimate total direct and indirect costs. Indirect costs, typically referred to as road user costs, include fuel use and man-hour losses resulting from detours, anticipated traffic flow reduction, and reduced speed limits. Determine indirect costs using the Department’s software at the following link:

 http://infonet.dot.state.fl.us/tlconstruction/SchedulingEng/AddSoftwareScheduling.htm

 At this stage, a meeting with the District Structures Design Engineer is recommended to discuss the preliminary evaluation and cost estimates before finalizing the alternates for inclusion in the BDR.
See Chapter 25 of the Structures Detailing Manual for design considerations as it relates to Prefabricated Bridge Elements and Systems (PBES).

Report the estimated total direct costs and estimated total indirect costs, as well as the sum of both, for each alternate as three separate dollar amounts in a summary table in the same section as the completed assessment matrix (see Table 121.19.2).

The SDO has developed several training videos for the purpose of educating designers on factors for consideration related to use of Prefabricated Bridge Elements and Systems (PBES) for Accelerated Bridge Construction (ABC). The main emphasis of the training videos is to demonstrate the sort of factors and project constraints that influence whether bridge components should be used. Also discussed are overall prefabricated ABC strategies and implications, including examples showing how labor, material, and equipment costs are considered.

These training videos have been posted on a website along with notification of upcoming developments and helpful links to related external websites. The Department’s SDO website for Every Day Counts can be viewed at: https://www.fdot.gov/structures/edc/.

Providing both the direct and indirect costs of the project in the BDR enables Department management to make informed decisions to maximize construction dollars while at the same time minimizing construction time and economic impacts to Florida’s traveling public.

Also, demonstrate in the BDR text that consideration was given to identify and employ other innovative techniques aimed at reducing costs, shortening project delivery time, enhancing safety during construction, and protecting the environment.

(10) Quantity estimates: For minor bridges rough quantities (such as reinforcing steel based on weight per volume of concrete) may be sufficient. For major and complex bridges the degree of accuracy may require more exact calculations keeping in mind that the intent is to establish relative and equitable costs between alternates and not necessarily to require the accuracy of the Final Estimate. For major and complex structures it may be necessary to develop unit costs from an analysis of fabrication, storage, delivery and erection costs of the different components. Provide calculated debris volume quantities for projects involving the demolition of bridges.

(11) Unit costs: Data available from the Department or contractors and suppliers should be used to arrive at unit costs. Record the sources of all price data for later
reference. Base cost should be obtained from the BDR Estimating Section of
the Structures Manual.

(12) Develop cost curves: For each alternative establish the most economical span
arrangement, i.e., minimum combined superstructure and substructure cost.

(13) Retaining Wall Study: If retaining walls are present, include a retaining wall study
in the BDR. This study will conform to the work as specified in FDM 262 and the
Structures Manual.

(14) Movable Bridges: Include information in the BDR on the type of equipment for the
machinery and electrical drive systems, together with a general description of the
control system to be utilized. Include a written description and preliminary layouts
of system components. Utilize acronyms and terminology as defined in AASHTO

(15) Bicycle and Pedestrian Facilities: Describe in the BDR the facilities to be provided
and the means to be used to comply with ADA requirements and FDM 222, 223,
and 224.

For rehabilitation project plans, include the BDR stage in the plans and written
descriptions of those system components to be modified from the existing configuration,
along with plans of the existing configuration. Submittal of information described in the
previous paragraph is not required unless the electrical and mechanical configuration is
modified from the existing configuration.

121.9.2 Format

The report is to use standard, letter-size pages with any larger sheets or drawings folded
to fit the report size. The report is to be neatly written and the contents presented in a
logical sequence with narrative, as required, to explain the section contents. Provide an
Executive Summary to compare the relative features and costs of the alternates
considered and recommend alternate(s) to be carried forward into the Final Structures
Plans Preparation phase.

The BDR is to be as self-contained as possible by including all arguments that establish,
justify, support, or prove the conclusions. It is acceptable to make reference to other
documents that will be included in the final submittal package; however, include any
documentation that will help emphasize a point, support a statement, or clarify a
conclusion. Such documentation may include drawings, clear and concise views, or other
such illustrated information.
Address construction time requirements in the BDR and the effect that components, systems, site constraints and conditions, or other site characteristics or criteria have upon the construction time, whether additive or deductive.

For most projects, the 30% Plans must be an appendix to the BDR.

121.9.3 Aesthetics

1. General: Integrate three basic elements in any bridge design: efficiency, economy and elegance. Regardless of size and location, the quality of the structure, its aesthetic attributes and the resulting impact on its surroundings is to be carefully considered. Achieving the desired results involves:
 - Full integration of the three basic elements listed previously.
 - The EOR's willingness to accept the challenge and opportunity presented. A successful bridge design will then be elegant or aesthetically pleasing in and of itself and will be compatible with the site by proper attention to form, shapes and proportions. Attention to details is of primary importance in achieving a continuity of line and form. Use the rule of "form following function."

Consider the totality of the structure as well as its individual components and the environment of its surroundings. A disregard for continuity or lack of attention to detail can negate the best intent. Formulas cannot be established; however, ACI's *Aesthetic Considerations for Concrete Bridges* and TRB's *Bridge Aesthetics Around the World*, as well as authors such as David P. Billington can guide the designer. A book developed by the Maryland Department of Transportation entitled *Aesthetic Bridges* provides excellent guidance. In bridge aesthetics the designer is dealing with the basic structure itself; not with enhancement, additions or other superficial touches. The EOR is expected to be well read on the subject of bridge aesthetics and committed to fulfilling both the structural and aesthetic needs of the site.

The challenge differs for major and minor structures. Indeed, the challenge may be greater the smaller the project. Major structures, because of their longer spans, taller piers, or curving geometry often offer inherent opportunities not available for minor bridges.

Some basic guidelines where aesthetics may play a more important role are:

(a) Bridges highly visible to large numbers of users (maritime and motorists).
(b) Bridges located in or adjacent to parks, recreational areas, or other major public gathering points.
(c) Pedestrian bridges.
(d) Bridges in urban areas in or adjacent to commercial and residential areas.
(e) Multi-bridge projects, such as interchanges, or corridors should attain conformity of theme and unifying appearance. Avoid abrupt changes in structural features.

Considering these guidelines, the District will determine the level of aesthetic effort warranted on a project early in its development. When significant aesthetic expense is proposed, such as is the case with Level Three (Level of Aesthetics), Federally funded projects require legitimate written justification.

(2) Levels of Aesthetics:

Normally the District will establish one of the following three general levels of aesthetic consideration and effort at each structure’s site:

- **Level One:** Consists of cosmetic improvements to conventional Department bridge types, such as the use of color pigments in the concrete, texturing the surfaces, modifications to fascia walls, beams, and surfaces, or more pleasing shapes for columns and caps.

- **Level Two:** The emphasis is on full integration of efficiency, economy and elegance in all bridge components and the structure as a whole. Consideration should be given to structural systems that are inherently more pleasing, such as hammerhead or "T" shaped piers, oval or polygonal shaped columns, integral caps, piers in lieu of bents, smooth transitions at superstructure depth change locations, box-type superstructures, concealed drain pipes, conduits and utilities.

- **Level Three:** The emphasis in this level applies more to the overall aesthetics when passing through or under an interchange or at other sites such as historic or highly urbanized areas where landscaping or unique neighborhood features are to be considered. The bridge itself must comply with Level Two requirements. This level of work may require, at the District’s option, a sub-consultant (architect to consider adjacent building styles, and landscape themes) with the necessary expertise and credentials to perform the desired work.

These aesthetic levels are not exclusive. For example, where the EOR believes a specific landscape feature might significantly enhance bridge site elegance, even on a Level 1 design, the recommendation should be offered for the Department's
consideration. For aesthetic Levels 2 and 3, public input into this issue may be appropriate. The EOR may recommend particular public involvement to the Department for consideration or the district might specify such efforts at specific times during the BDR and final plan development phase of the project.

Include a summary of aesthetic considerations for the structure and the site in the BDR. The summary consists of sketches or drawings of recommended treatment as well as the options considered in the aesthetic study but not recommended as appropriate. Also include an estimate of cost to implement the recommended aesthetic treatment in the summary.

The default condition for new steel bridges is uncoated weathering steel where site conditions permit (See **SDG 1.3.2**). Use an Inorganic Zinc Coating System where site conditions preclude uncoated weathering steel and may be used elsewhere with approval of the Chief Engineer. Use of a High Performance Coating System to any extent for Steel bridges requires written approval from the Chief Engineer.

121.9.4 Construction and Maintenance Considerations

Evaluate all viable structure concepts for constructability. Consider items such as member sizes, handling, fabricating, and transporting members as well as maintenance of traffic, construction staging, equipment access, equipment requirements. Perform a special evaluation to insure against potential problems that may occur in obtaining permits and equipment to transport long and heavy members from point of manufacture to the project site. Contact the Department's Road Use Permits Office for questions concerning the feasibility of transporting long and heavy structural components. Also, take into account considerations for future maintenance inspection in the structure's design. Include those considerations described in **FDM 121.15** and the requirements of the **Structures Manual**. All special construction and maintenance requirements should be identified and appropriately considered in any concepts recommended for design. A design is able to be inspected properly when it permits safe inspector access to all portions of the structure using equipment available to District Structures Maintenance personnel.

121.9.5 Historical Significance Considerations

When an older bridge is considered for rehabilitation or replacement, the Environmental Management Office will evaluate the historical significance of the structure. A structure may be historically significant due to some of the following characteristics:
The structure may be an historic example in the development of engineering.
(2) The crossing may be historically significant.
(3) The bridge may be associated with an historical property or area.
(4) The bridge might be associated with significant events or circumstances.
(5) National Register of Historic Places or on a state or local historical register. If it is determined that the structure is historically significant, then the project should be developed to preserve the historic character of the structure.

121.9.6 Bridge Security

Perform a refined evaluation of all new Category 2 bridges identified in a PD&E study as critical, landmark or signature bridges to determine if anti-terrorist countermeasures are to be included as part of the design. Contact the SDO and the State Maintenance Office for guidance and assistance. Minimize the bridge vulnerability through alternative designs developed in the BDR. Design countermeasures to minimize the effectiveness of explosives. Minimize vulnerability to shape charges and vehicle bombs. Maximize the use of structural redundancy and continuity to limit structural damage.

Countermeasures designed into the bridge alternatives must meet one or more of the following objectives:

(1) Protect structure from blast effects,
(2) Maximizing explosive standoff distance,
(3) Denial of access,
(4) Minimizing time-on-target,
(5) Selective protection of the structural integrity of key members, or
(6) Structural redundancy.

Use one or more of the following countermeasure strategies in the design:

(1) Deter attacks by the possibility of exposure, capture or failure of the attacker due to visible countermeasures,
(2) Detect potential attacks before they occur and provide the appropriate response force,
(3) Defend the bridge by delaying and distancing the attacker from the bridge and protecting the bridge from the effects of weapons, fire and vehicle and vessel impacts, or
(4) Design the bridge to minimize the potential effects of Weapons of Mass Destruction (WMDs) and conventional explosives, fire and vehicle and vessel impacts.

Structural members that are fracture critical or are cable stays, cable stay pylons, hollow boxes, single columns, twin wall columns and thin wall columns require design modification to reduce the potential impact of explosions. Access into cable stay pylons, box superstructures and movable bridge machinery require heavy doors with secure lock systems. Bridges with essential communication utilities and or gas lines require the design to minimize risk to the utility.

121.9.7 Alternative Designs

The use of alternative designs for some larger or complex projects may result in more competitive bids and lower costs. Accordingly, the EOR is to evaluate benefits from alternatives for the particular structure being developed and provide a recommendation for or against preparing alternative designs. Support the alternative designs recommended by the evaluations included in the BDR. As a guide, consider the following in evaluating justification for alternative designs:

(1) Alternative designs are to be considered for all structures that cost more than $25 Million and a difference in alternate material (steel versus concrete) construction costs that are within twice the cost of producing the alternate plans. For example, alternative designs would be warranted if the additional preliminary engineering cost for final plans preparation is $1.5 million per alternate and the difference between the construction cost estimates utilizing the Department estimating practices in the BDR was less than $3 million.

(2) For bridges that cost less than $25 million consider alternative designs when project issues reflect possible advantages (i.e., TTCP, A+B) from competitive bids.

(3) For bridges estimated to cost more than $10 million consider evaluation of alternative designs whenever a unique design concept is proposed until such time that a bid history is established for the unique design.

(4) Projects containing multiple bridges with a reasonable mixture of concrete and steel designs do not require alternate designs.

Steel box structures and steel plate girders should be evaluated including the differences in corrosion potential. Box Girders are preferred over plate girders when located in extremely aggressive environments.
121.9.8 Conclusions and Recommendations

With due consideration for all applicable data, the engineer is required to recommend the final bridge design system for the site. Thorough justification for the selection will be presented which examines each element of data, and the total estimated construction cost of the recommended design must be indicated in the BDR. For most projects, support the recommended design by thirty percent plans (preliminary) as an appendix to the BDR.

The following sections will define, clarify and list the information necessary to produce an acceptable and reproducible set of contract documents (special provisions, bridge contract drawings) ready for advertisement and construction. The production of a bridge project commences with the Bridge Development Report (BDR) and ends with complete Contract Documents.

121.9.9 30% Structures Plans

The 30% Structures Plans should be submitted with the Bridge Development Report for most structures. The consultant’s scope of services should clearly state at what point are the 30% plans to be submitted. If the 30% Structures Plans are submitted separately, the BDR is required to contain enough information and drawings to depict the information needed to properly determine the type, size and location of the bridge. Include the Phase 1 Geotechnical Report and the Hydraulic Report with the submittal containing the BDR.

The 30% Structures Plans should show, as a minimum, the following information:

1. General Notes Sheet: As many general notes as possible should be included on this sheet at this stage. Add subsequent notes, when necessary, as the design progresses (for example of General Notes, see Chapter 5 of the **Structures Detailing Manual**).

2. Plan and Elevation Sheet: provide contents as required by the Structures Detailing Manual.

3. Substructures: For end bents, piers or intermediate bents, show substructure elements and sizes including all deviations from the typical dimensions, foundation type including element spacing and the arrangement of piles or drilled shafts.

4. Superstructure: Include cross section showing lanes, shoulders, railings, slab thickness, beam type and spacing and web depth for steel girders. If applicable, show geometric changes in shapes of various components. Also show construction phases and maintenance of traffic data, outline of the existing...
structure and portions to be removed, and utilities (existing and proposed as available).

(5) Retaining Walls: Submit preliminary control drawings when proprietary or standard cast-in-place walls are proposed. Include control drawings for all critical temporary walls.

(6) Bridge Hydraulics Recommendation Sheet.

(7) Report of core borings.

(8) Proposed construction sequence and methods indicate construction easements and methods of construction access.

(9) Preliminary aesthetic details.

(10) Preliminary post-tensioning layouts.

(11) Preliminary foundation layouts and pile/shaft data table.

(12) Sidewalks: If provided, show preliminary accessible elements.

(13) Any other special details required by the Engineer or details which are not normally used on Department projects.

In addition to these requirements, the following items will be included for moveable bridges: preliminary electrical and mechanical equipment layouts in plan and elevation, submarine cable routing, and single line electrical diagrams including service voltage. Rough size all equipment and submit the supporting calculations.

Include requests for Design Exceptions and Design Variations for structural design criteria in the 30% Structures Plans Submittal. Design Exceptions and Design Variations are required to be approved in accordance with FDM 122 with concurrence of the DSDO or SDO as appropriate.
Modification for Non-Conventional Projects:

Delete *FDM 121.9* and replace with the following.

121.9 Bridge Feasibility Assessment/Structures Concept Plans

At the discretion of the Department, a Bridge Feasibility Assessment may be necessary during the RFP development phase for the purpose of developing the structures concept plans. When required, the assessment must target specific critical bridge components to ensure that the preliminary information presented in the concept plans can meet all of the project constraints depicted in the RFP.

For aesthetic and wildlife connectivity requirements, see RFP.

121.10 Bridge Development Report (BDR) Submittal Checklist

The Bridge Development Report (BDR) Submittal Checklist (*Form 121-A*, see *FDM 103*) contains a list of the key supporting elements that are required for the preparation, submittal and review of a BDR. Include this Checklist with the BDR when submitted for review. The BDR Checklist consists of the following items:

1. **Typical Sections for Roadway and Bridge:**
 - The approved typical sections for both the bridge and roadway are required.

2. **Roadway Plans:**
 - Preliminary roadway plans covering the bridge vicinity are required.

3. **Maintenance of Traffic Requirements:**
 - Show the number of required lanes and the lane widths of all affected roadways in the Maintenance of Traffic Plan.

4. **Bridge Hydraulics Report and Bridge Hydraulics Recommendation Sheet:**
 - Prepare the Bridge Hydraulics Report (BHR) and Bridge Hydraulics Recommendation Sheet (BHRS) in accordance with the *Drainage Manual*. Concurrence of the BHR by the District Drainage Engineer with the District Structures Design Engineer for Category 1 Structures and State Structures Design Engineer for Category 2 Structures is required.
(5) Geotechnical Report:

Prepare the Bridge Geotechnical Report (Phase I) in accordance with Chapter 3 of the Structures Design Guidelines and the Department’s Soils and Foundation Handbook. Document a thorough investigation of all viable foundation types for the bridge and retaining walls. Concurrence of the District Geotechnical Engineer is required for Category 1 Structures and of both the State and District Geotechnical Engineers for Category 2 Structures.

(6) Bridge Corrosion Environment Report:

Prepare a Bridge Corrosion Report to determine the environmental classifications for the structure in accordance with the Structures Design Guidelines and receive approval from the District Materials Office.

(7) Geosynthetic Reinforced Soil (GRS) Feasibility Assessment:

Assess GRS abutments to determine feasibility for all new bridges.

(8) Precast Feasibility Assessment:

Investigate the use of either partial or full precast prefabricated bridge alternate(s) with the specific purpose of accelerating bridge construction and reducing user impacts.

(9) Existing Bridge Plans:

A set of prints of the existing (preferably as-built) bridge plans should be included for replacement structures and widenings. This is of particular importance for widenings and phase construction. These plans are not usually necessary for completely separate alignments or new interchanges unless the existing structures either will be used for new construction activities or will infringe upon the Contractor's allowed work zone.

(10) Existing Bridge Inspection Report:

A copy of the latest existing Bridge Inspection Report and Structures Inventory and Appraisal Form is required for all widenings and rehabilitations and may be required for new structures. Identify the existing paint system(s) on all significant metal elements of existing structures. Clearly delineate the presence of lead-based paint and asbestos.

(11) Existing Bridge Load Rating:

A copy of the latest existing Bridge Load Rating is required for all widenings and rehabilitations.
(12) Wildlife Connectivity:
Describe the decision to include or exclude wildlife connectivity features into the design. The discussion for excluding a wildlife connectivity feature should summarize coordination with the Environmental Management or Permit office (or may be an attached summary memo from one of these offices). The discussion for including wildlife connectivity should refer to the Wildlife Crossing Guidelines, commitments made during PD&E and any other documentation regarding the wildlife connectivity related to the bridge (or may be an attached summary memo from the Environmental Management or Permit office).

(13) Utility Requirements:
Identify proposed utility attachments to the structure as well as all existing and proposed utilities in the vicinity of the structure. Follow the requirements of the Department's Utility Accommodation Manual regarding attachments to the structure.

(14) Railroad Requirements:
Identify existing and future railroad requirements. This will include all clearances and crash wall or other construction parameters. Include copies of correspondence with the Railroad Agency.

(15) Retaining Wall and Bulkhead Requirement:
Identify permanent and temporary retaining wall requirements, and show the proposed type of wall. Also identify the type, location and extent of temporary walls to accommodate phased construction and maintenance of traffic.

For water crossings where erosion and wave action is anticipated, identify the type, location and extent of bulkhead production. Include the proposed tie-back and anchor system in the submittal.

(16) Lighting Requirements:
Identify proposed lighting on or under the structure.

(17) ADA Access Requirements:
Identify ADA access requirements that affect the structure.

(18) Other:

Modification for Non-Conventional Projects:
Delete FDM 121.10.
121.11 Final Plans and Specifications Preparation

121.11.1 General

Within this phase of work, for both Category 1 and 2 Structures, there are three phases of work; viz., 60% Substructure submittal or 60% Structure Plans, 90% Structure Plans and 100% Structures Plans and Specifications. For projects where preapproved proprietary wall systems cannot be used and fully designed proprietary wall plans are required, submit approved control drawings to the appropriate proprietary wall companies as soon as possible and no later than the 60% substructure submittal. Send a copy of this submission to the DSDO or SDO as appropriate.

At any time during the project development, the reviewer may require submittal of design calculations. All Electronic Review Comments (ERC) must be resolved to the Department’s satisfaction.

121.11.2 60% Substructure Submittal / 60% Structures Plans

This submittal phase is divided into two distinct parts; viz., the 60% Substructure Submittal (required for all projects) and the 60% Structures Plans for Category 2 Structures and some Category 1 Structures.

(1) 60% Substructure Submittal:

This submittal is required for every project and should be made a part of the 60% Structures Plans phase when that phase is part of the project. The submission is only a partial plans set. The purpose of this submittal is to communicate essential project information to the Geotechnical and Hydraulic Engineers so that all remaining calculations can be performed using actual structural shapes, loads, and dimensions. Plan sheets required for this submittal include: Plan & Elevation, Bridge Hydraulics Recommendation Sheet, Boring Logs, Foundation layout, Substructure Plans, and draft technical specifications.

60% Substructure Submittal Contents:

- Foundation Layouts
- Foundation Installation Notes
- Pile/Drilled Shaft Installation Table
- Footing Concrete Outlines (All Variations)
• Pier Concrete Outline (All Variations)
• Wall Plans - Control Drawings
• Pile Details
• Lateral Stability Analysis Completed
• Phase II Geotechnical Report
• Draft Technical Specifications
• Reinforcement of Footing and Column
• Post-Tensioning Details
• Plan and Elevation Sheet
• Bridge Hydraulics Recommendation Sheet
• Boring Logs

(2) 60% Structures Plans:

When a 60% Structures Plans submittal is required, all comments from earlier reviews will have been resolved. At this phase, the design should be 90% complete and the plans, 60% complete. In addition to the documents required for the 60% Substructure Submittal, the 60% Structures include the following details as applicable in the plans: final concrete outlines of all individual components, major reinforcing steel, final post-tensioning layouts, steel box/I-girder details, segmental concrete box details, bearing details, seismic details, details of congested areas, details of unique features, accessible pedestrian facilities details, and other details as required. For moveable bridges the following additional information is required: electrical calculations (for generator size, service voltage drop, short circuit, service size, automatic transfer switch), single line diagram showing equipment sizes and utilities, conduit and wire sizes, panelboard schedules, and light fixture schedules.

121.11.3 90% Structures Plans

Upon approval of the BDR/30% Structures Plans or 60% Structures Plans, as applicable, 90% Structures Plans begin. At this stage of plans development, the EOR will have resolved the 30% and 60% Structures Plans review comments and developed the plans for completion. The design and plan production is required to be 100% complete. This submittal will include prints of the completed plans, Estimated Quantities Report, design calculations, Final Phase II Geotechnical Report, Addendums to Hydraulic Report and, if
appropriate, Technical Special Provisions. No sheet or detail should be missing at this stage.

121.11.4 100% Structures Plans and Specifications

After resolution of the 90% Structures Plan comments, the EOR will make all authorized changes necessary to complete the plans and Technical Special Provisions. The EOR will provide a list of all changes made to the Plans or Specifications that were not directly related to the 90% Structures Plans review comments. The intent is to help minimize the Department's review time and to help the Department's review office to focus on only those new items or details proposed by the EOR. This will, in turn, help to expedite the project's authorization.

The 100% Structures Plans submittal is divided into two distinct phases. First, plans and technical special provisions are submitted 30 days prior to the District's Plans Production Date. Second, once notified by the Department, the plans and all other documents are submitted to the District.

Within the 30-day period allotted, the EOR will receive notification either of additional changes/corrections to be made or to submit the Final Plans as they are. If at any time during the 30-day period the EOR finds additional changes/corrections that should be made, the structures design office responsible for plans approval (either the DSDO) or the SDO as appropriate) is required to be notified for discussion and resolution.

Once all changes/corrections are made, or if no changes/corrections are necessary, the EOR will submit all work to the District prior to or on the Plans Production Date. Submittal of this stage of the work will include the plans, sealed in accordance with FDM 130, sealed Technical Special Provisions (if required), and Estimated Quantities Report.

Modification for Non-Conventional Projects:

Delete *FDM 121.11*. See the RFP for plans submittal requirements.
121.12 Independent Peer Review of Bridges

An Independent Peer Review (IPR) is used to validate the design of structures or portions thereof as defined below. The designated IPR firm will have no involvement with the project other than conducting the IPR and is required to be pre-qualified in accordance with Rule 14-75 of the Florida Administrative Code.

(1) The Department may require an IPR for conventional projects. Consult with the SDO when determining the need for such reviews. Consideration of when to require an IPR include, but is not limited to, the following:
- The introduction of new complex details or structure types.
- Work being performed that is outside the normal structure type designed by the selected consultant.
- Structures using complex details within standard bridge types (e.g. integral piers, straddle piers, skewed superstructures).

(2) An IPR is required for Cost Savings Initiatives involving Category 2 Structures. The IPR function must be performed by a single independent engineering firm other than the engineer responsible for the design. The IPR must include:
- The superstructure and substructure for bridges consisting of Category 2 superstructures.
- Only the substructure for bridges where the superstructure is Category 1, but the substructure is Category 2.
- The superstructure and substructure for bridges designed for vessel collision. The IPR must include all spans or continuous units subject to vessel collision.
- The superstructure and substructure on bridges for which the superstructure is subject to application of wave loads. The IPR must include all spans or continuous units for which the superstructure is subject to application of wave loads.

(3) An IPR is required for the following structures and components of non-Department-owned projects constructed within, under or over State Road right-of-way, regardless of funding source:
- Category 1 (excluding miscellaneous structures) or Category 2 Structures
- Existing bridge retrofits and modifications regardless of bridge category
- Bridge cladding components and attachments
Modification for Non-Conventional Projects:

Delete the above paragraph and replace with the following:

An Independent Department Review (IDR) is required for all Category 2 Structures. When a firm is designated by the Department to conduct the IDR, the firm will have no other involvement with the project other than conducting the IDR.

The peer review is intended to be a comprehensive, thorough independent verification of the original work. An independent peer review is not simply a check of the EOR’s plans and calculations; it is an independent verification of the complete design, including but not limited to an evaluation of all nodal forces, using different programs and independent processes than what was used by the EOR. In addition, all independent peer reviews must include but are not limited to the independent confirmation of the following when applicable:

1. Compatibility of bridge geometry with roadway geometrics including typical sections, horizontal alignment, and vertical alignment. Minimum lateral offsets and vertical clearance requirements.
3. Conflicts with underground and overhead utilities.
4. Compliance with AASHTO, Department and FHWA design requirements.
5. Conformity to Department Standard Plans.
6. Structural Analysis Methodology, design assumptions, and independent confirmation of design results including verification of the design thru all phases of construction.*
7. Global and local analyses including nodal forces, considering all structural members, connections/nodes and boundary conditions consistent with the structure type.*
8. Design results/recommendations (independent verification of the design).*
9. Completeness and accuracy of bridge plans.
11. Constructability assessment limited to looking at fatal flaws in design approach.

* When Category 2 elements are designed with software using refined analyses (e.g. Grid, Finite Element Method), the peer review consultant is required to verify the design results by a different program/method.
In addition to the requirements of FDM 121.11.3 and 121.11.4, include the following documents with plan submittals for Category 2 bridges requiring an independent peer review:

(1) 90% Plan Submittals

- A tabulated list of all review comments from the independent review engineer and responses from the originator of the design.

- A standard peer review certification letter following the format presented in Form 121-B (see FDM 103) signed by the independent review engineer. All outstanding/unresolved comments and issues presented in this letter are required to be resolved and implemented prior to the 100% plan submittal.

- A copy of the Department-issued Professional Services Qualification Letter, Part 1, containing the Work Types in which the independent PEER review firm has been qualified to work. The DSDE, for Category 1 bridge projects, or the SSDE, for Category 2 bridge projects, will confirm with the Procurement Office the independent PEER review firm’s prequalification status of the appropriate Work Type.

(2) 100% Plan Submittals

- A certification letter following the format presented in Form 121-C (see FDM 103) signed and sealed by the independent review engineer stating that all review comments have been adequately addressed and that the design is in compliance with all Department and FHWA requirements.

- A copy of the Department-issued Professional Services Qualification Letter, Part 1, containing the Work Types in which the independent PEER review firm has been qualified to work. The DSDE, for Category 1 bridge projects, or the SSDE, for Category 2 bridge projects, will confirm with the Procurement Office the independent PEER review firm’s prequalification status of the appropriate Work Type.

Modification for Non-Conventional Projects:

Delete FDM 121.12 (2).
121.13 Plans Assembly

Consult the Structures Detailing Manual for plans assembly, materials, content of plans, and other drafting information.

121.14 Plans Submittal

121.14.1 Schedule

The District Project Manager is responsible for establishing the schedule of submittals with input from the EOR and either the DSDE for Category 1 or Structures Design Office for Category 2 projects.

121.14.2 Submittal Schedule

(1) BDR/30% Structures Plans
(2) 60% Substructure Submittal/60% Structures Plans
(3) 90% Structures Plans
(4) 100% Structures Plans

Modification for Non-Conventional Projects:
Delete FDM 121.14.1 and 121.14.2. See the RFP for requirements.

121.14.3 Summary of Phase Submittals

Submittals made at various stages of project development are required to conform to a uniform standard of completeness for each phase. Use Table 121.14.1 to prepare deliverables for each stage of project development for fixed bridges. Use Table 121.14.1 and Table 121.14.2 to prepare deliverables for each stage of project development for moveable bridges.

Table 121.14.1 and Table 121.14.2 give a listing of specific structure plan sheets to be submitted at Bridge Development Report, 30%, 60%, 90% and 100% Plans stage. For specific sheet content requirements, see Structures Detailing Manual Examples for
Design-Bid-Build Projects. For sheets not covered by specific example, see general description below for required level of completion.

1. **Preliminary (P):** Basic shapes, geometry and layout of specified members are shown. Rebar and elevations are not required for Preliminary submittals. For example, the outline drawing of an end bent with complete dimensions including stationing, beam and pedestal layout but without pile layout dimensions or rebar.

2. **Substantially Complete (S):** Shapes, geometry and layout have been finalized. Design is 90% complete with most rebar, plate sizes, bolt patterns, concrete strengths finalized and incorporated into the plans. For example, an end bent drawing with rebar, complete dimensions, pile and beam layout but without elevations.

3. **Complete but Subject to Change (C):** The design, drawings and details are complete for the specified component. Only reviewer-initiated changes should be expected at this level. For example, an end bent drawing would be complete, including all rebar callouts, elevations, dimensions.

4. **Final (F):** All drawings and designs are complete. No changes are expected at this level. Plans are ready to be signed and sealed by the EOR.

Modification for Non-Conventional Projects:

Delete *FDM 121.14.3* and replace with the following:

121.14.3 Design-Build Technical Proposal and Component Plan Submittals

Component Plan Submittals are required to conform to a uniform standard of completeness for each submittal. Use *Table 121.14.3* to prepare deliverables for each component submittals for fixed bridges. Use *Table 121.14.3* and *Table 121.14.4* to prepare deliverables for component submittals for moveable bridges. Unless otherwise shown in the RFP, Technical Proposals are required to include the requirements of *Table 121.14.3* and *Table 121.14.4*.

Submit component submittals per *Table 121.14.3* and *Table 121.14.4* (e.g., foundation, substructure and superstructure) for each bridge. Partial submittals of individual elements within a bridge (e.g., End Bent 1, Pier 3, I-girder details) are not permitted.

Table 121.14.3 and *Table 121.14.4* give a listing of specific structure plan sheets to be submitted at Technical Proposal, 90% and Final Plans stage. For specific sheet content requirements, see *Structures Detailing Manual Examples for Non-*
Conventional Projects. For sheets not covered by specific example, see general description below for required level of completion.

1. **Preliminary (P):** Basic shapes, geometry and layout of specified members are shown. Rebar and elevations are not required for Preliminary submittals. For example, the outline drawing of an end bent with complete dimensions including stationing, beam and pedestal layout but without pile layout dimensions or rebar.

2. **Substantially Complete (S):** Shapes, geometry and layout have been finalized. Design is 90% complete with most rebar, plate sizes, bolt patterns, concrete strengths finalized and incorporated into the plans. For example, an end bent drawing with rebar, complete dimensions, pile and beam layout but without elevations.

3. **Complete but Subject to Change (C):** The design, drawings and details are complete for the specified component. Only reviewer-initiated changes should be expected at this level. For example, an end bent drawing would be complete, including all rebar callouts, elevations, and dimensions.

Final (F): All drawings and designs are complete. No changes are expected at this level. Plans are ready to be signed and sealed by the EOR.
Table 121.14.1 Summary of Phase Submittals

Provide the sheets listed as applicable based on structure type.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>BDR</th>
<th>30%</th>
<th>60% Substr. Submittal</th>
<th>60% Structures Plans*</th>
<th>90%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover Sheet</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Sheet</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheet Index</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Notes</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Plans Index Sheets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Finish Details</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riprap Details</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope Protection Details</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan and Elevation</td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical Section</td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulics Recommendation</td>
<td>P</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction Sequence</td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borings</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foundation Layout</td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pile/Shaft Data Table</td>
<td>P</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End Bent</td>
<td>P</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End Bent Details</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wing Wall Details</td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pier</td>
<td>P</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pier Details</td>
<td>P</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Footing</td>
<td>P</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate Bent</td>
<td>P</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate Bent Details</td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drilled Shaft Details</td>
<td>P</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finish Grade Elevations</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camber/Build-up/Deflection Diagrams</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Framing Plan</td>
<td>P</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superstructure Plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superstructure Details</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erection Sequence</td>
<td>P</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P/S Beam Data Tables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross Frames/Diaphragm Details</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steel Girder Details</td>
<td>P</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P/T Systems</td>
<td>P</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bearing Details</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expansion Joint Details</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach Slab Details</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reinforcing Bar List</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conduit and Inspection Lighting</td>
<td>P</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wall Control Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wall Details</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporary Critical Wall Drawings</td>
<td>P</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wall Data Tables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp. Bridge Plan and Elevation</td>
<td>P</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp. Bridge Foundation Layout</td>
<td>P</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

121-Bridge Project Development
Table 121.14.1 Summary of Phase Submittals (continued)

Provide the sheets listed as applicable based on structure type.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>BDR</th>
<th>30%</th>
<th>60% Substr. Submittal</th>
<th>60% Structures Plans*</th>
<th>90%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment Joint Coordinates/Deck Elev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segment Layout</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical Segment Dimensions</td>
<td>P</td>
<td>P</td>
<td></td>
<td>C</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Typical Segment Reinforcing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pier Segment Dimensions</td>
<td>P</td>
<td>P</td>
<td></td>
<td>C</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Pier Segment Reinforcing **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abutment Segment Dimensions</td>
<td>P</td>
<td>P</td>
<td></td>
<td>C</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Abutment Segment Reinforcing **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expansion Joint Segment Dimensions</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expansion Joint Segment Reinforcing **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deviation Segment Dimensions</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deviation Segment Reinforcing **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post Tensioning Layout</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P/T Details</td>
<td>P</td>
<td>P</td>
<td></td>
<td>C</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Transverse P/T Details</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulkhead Details</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainage Layout</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainage Details</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load Rating Summary Sheet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Developmental Standard Plans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Existing Bridge Plans</td>
<td>F ‡‡</td>
<td>F ‡‡</td>
<td>F ‡‡</td>
<td>F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Status Key:
- **P** – Preliminary
- **S** – Substantially Complete
- **C** – Complete but subject to change
- **F** – Final
- *** –** 60% Structures Plan submittals are required for all Category 2 and some Category 1 bridges. See **FDM 121.11.2** for additional information
- **** – May require integrated drawings
- ***** –** Control Plans only showing geometry, stationing, and offsets
- **‡ –** Where required for project
- **‡‡ –** Widenings and projects with phased construction

121-Bridge Project Development
Table 121.14.2 Summary of Phase Submittals - Movable Bridges

For approach span requirements, see Table 121.14.1.

Provide the sheets listed as applicable based on machinery and electrical components utilized.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>BDR</th>
<th>30%</th>
<th>60% Structures Plans*</th>
<th>90%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bascule Pier Notes</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Span Elevation</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Leaf Clearance Diagrams</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bridge Railing Clearance Diagrams</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Pier North Elevation View</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Pier South Elevation View</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Pier East Elevation View</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Pier West Elevation View</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Pier Deck Plan</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Pier Deck Elevations</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Pier Trunnion Level Plan</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Pier Machinery Level Plan</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Pier Pit Plan</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Pier Footing Plan</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Pier Longitudinal Sections</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Pier Transverse Sections</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Pier Railing Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Pier Stair Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Pier Trunnion Access Platform Details</td>
<td>‡</td>
<td>‡</td>
<td>S</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Pier Finger Joints</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Pier Deck Level Reinforcing</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Pier Trunnion Level Reinforcing</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Pier Machinery Level Reinforcing</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Pier Pit Reinforcing</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Pier Footing Reinforcing</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Pier North Elevation Reinforcing</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Pier South Elevation Reinforcing</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Pier East Elevation Reinforcing</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Pier West Elevation Reinforcing</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 121.14.2 Summary of Phase Submittals - Movable Bridges (Continued)

Provide the sheets listed as applicable based on machinery and electrical components utilized.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>BDR</th>
<th>30%</th>
<th>60% Structures Plans*</th>
<th>90%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bascule Pier Longitudinal Section Reinforcing</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Pier Transverse Section Reinforcing</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Pier Reinforcing Bar List</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control House General Notes</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control house Reflected Ceiling Plan</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control House Access Bridge Dimensions</td>
<td>‡</td>
<td>‡</td>
<td>S</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Control House Access Bridge Reinforcing</td>
<td>‡</td>
<td>‡</td>
<td>S</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Control House Access Bridge Bar List</td>
<td>‡</td>
<td>‡</td>
<td>S</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Control Tower Floor Plans</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Control Tower Sections</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Control Tower Reinforcing Plans</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Tower Reinforcing Elevations</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Tower Section Reinforcing</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Tower Bar List</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Tower Schedules</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Tower Elevations</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Control Tower Building Sections</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Tower Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Tower Stair Plans</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Tower Stair Sections</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Tower Roof</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Tower Door and Window Types and Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Tower Architectural Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Tower HVAC Notes</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Tower HVAC and Plumbing Floor Plans</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Tower HVAC and Plumbing Elevations</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Leaf Notes</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Leaf Framing Plan and Longitudinal Section</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Leaf Transverse Sections at Floorbeams</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Leaf Transverse Sections at Trunnion</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>C</td>
<td>F</td>
</tr>
</tbody>
</table>
Table 121.14.2 Summary of Phase Submittals - Movable Bridges (Continued)
Provide the sheets listed as applicable based on machinery and electrical components utilized.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>BDR</th>
<th>30%</th>
<th>60% Structures Plans*</th>
<th>90%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bascule Leaf Transverse Sections at Counterweight Girders</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Main Girder Elevation</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Main Girder Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main Girder Web Geometry and Camber Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main Girder Force Diagrams</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main Girder Reaction Influence Lines</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main Girder Moment Influence Lines</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floorbeam Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Counterweight Girder Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stringer Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lateral Bracing Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Counterweight Bracing Plan and Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Counterweight Bracing Sections and Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Counterweight Plan</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Counterweight Longitudinal Sections</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Counterweight Transverse Sections</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Counterweight Details and Reinforcing Bar List</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bridge Deck Panel Layout</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bridge Deck Panel Sections</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bridge Deck Panel Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armored Joint Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Span Lock Housing Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Leaf Jacking Details and Notes</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical General Notes</td>
<td>P</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Mechanical Equipment Schedules</td>
<td>P</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Drive Machinery Layout</td>
<td>P</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Machinery Support Details</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trunnion Assembly Details</td>
<td>P</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Open Gearing Details</td>
<td>P</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>
Table 121.14.2 Summary of Phase Submittals - Movable Bridges (Continued)
Provide the sheets listed as applicable based on machinery and electrical components utilized.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>BDR</th>
<th>30%</th>
<th>60% Structures Plans*</th>
<th>90%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rack/Rack Frames and Rack Pinion Details</td>
<td>P</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Mechanical Bearing Details</td>
<td>P</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Drive Hydraulic Cylinders Details</td>
<td>P</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Hydraulic System Layout/Piping Details</td>
<td>P</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Hydraulic Cylinder Support Assemblies</td>
<td>P</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Hydraulic System Details</td>
<td>P</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Live Load Shoe Details</td>
<td>P</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Centering Device Details</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Span Lock Assembly Details</td>
<td>P</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Control Tower – Control Console and Operator’s Visualization Geometry Analysis Including CCTV Locations</td>
<td>P</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Electrical General Notes</td>
<td>P</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Electrical Site Plan</td>
<td>P</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Conduit Riser Diagram</td>
<td>P</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Single Line Diagram</td>
<td>P</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Electrical Symbol Legend</td>
<td>P</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Lighting and Equipment Plan (Including Control Tower Lighting, Fire Detection and Lighting Panel Schedules)</td>
<td>P</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Lightning Protection, Bonding, and Grounding Plan</td>
<td>P</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Navigation Lighting Plan</td>
<td>P</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Communication Equipment Plan</td>
<td>P</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Control Panel Details</td>
<td>P</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Control Console Details</td>
<td>P</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Block Diagram of Operating Sequence</td>
<td>P</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Control System Architecture Diagram</td>
<td>P</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Schematic Diagrams of all Control Systems and Interlocks</td>
<td>P</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Control System I/O Points</td>
<td>P</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Ladder Logic for PLC</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submarine Cable/Submarine Cable Termination Cabinet Details</td>
<td>P</td>
<td>S</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

121-Bridge Project Development
Table 121.14.2 Summary of Phase Submittals - Movable Bridges (Continued)

Provide the sheets listed as applicable based on machinery and electrical components utilized.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>BDR</th>
<th>30%</th>
<th>60% Structures Plans*</th>
<th>90%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire and Security Panel Schematic Diagram</td>
<td>P</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>CCTV Plan and Elevation</td>
<td>P</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Limit Switch Development</td>
<td>P</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Conduit and Cable Schedule</td>
<td>P</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Electrical Equipment Layout - Including but not limited to Generators, Motors, Control Console, Control Panels, and Motor Control Center.</td>
<td>P</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>CCTV Layout</td>
<td>P</td>
<td>S</td>
<td>F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Status Key:

P – Preliminary
S – Substantially Complete
C – Complete but subject to change
F – Final
*
60% Structures Plan submittals are required for all movable bridges. See FDM 121.11.2 for additional information
‡ – Where required for project
Table 121.14.3 Summary of Design-Build Technical Proposal and Component Plan Submittals

Provide the sheets listed as applicable based structure type.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>Technical Proposal</th>
<th>90%</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover Sheet</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Key Sheet</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Sheet Index</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>General Notes</td>
<td>S</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Standard Plans Index Sheets</td>
<td></td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Surface Finish Details</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Riprap Details</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Slope Protection Details</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Plan and Elevation</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Typical Section</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Hydraulics Recommendation</td>
<td></td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>Construction Sequence</td>
<td></td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>Borings</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Foundation Layout</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Pile/Shaft Data Table</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Drilled Shaft Details</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Temp. Bridge Foundation Layout</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Existing Bridge Plans</td>
<td>F‡‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foundation Related Temporary Critical Wall Drawings</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
</tbody>
</table>

Include in all submittals additional details and backup information necessary to substantiate the loading on the foundations. Include a copy of the Geotechnical Report in all submittals.

‡‡ – Widenings and projects with phased construction

90% and Final submittals for category 2 bridges require an Independent Department Review.
Table 121.14.3 Summary of Design-Build Technical Proposal and Component Plan Submittals (Continued)

Provide the sheets listed as applicable based on structure type.

Substructure Submittal

<table>
<thead>
<tr>
<th>ITEM</th>
<th>Technical Proposal</th>
<th>90%</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>End Bent</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>End Bent Details</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Wing Wall Details</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Pier</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Pier Details</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Footing</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Intermediate Bent</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Intermediate Bent Details</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Reinforcing Bar List</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
</tbody>
</table>

90% and Final submittals for category 2 bridges require an Independent Department Review.
Table 121.14.3 Summary of Design-Build Technical Proposal and Component Plan Submittals (Continued)

Provide the sheets listed as applicable based structure type.

Superstructure Submittal

<table>
<thead>
<tr>
<th>ITEM</th>
<th>Technical Proposal</th>
<th>90%</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finish Grade Elevations</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Camber/Build-up/Deflection Diagrams</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Framing Plan</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Superstructure Plan</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Superstructure Details</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Erection Sequence</td>
<td>P‡</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>P/S Beam Data Tables</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Cross Frames/Diaphragm Details</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Steel Girder Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>P/T Systems</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bearing Details</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Expansion Joint Details</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Approach Slab Details</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Reinforcing Bar List</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Conduit and Inspection Lighting Details</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Vermin Guard</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Wall Control Drawings</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Wall Details</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Non-Foundation Related Temporary Critical Wall Drawings</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Wall Data Tables</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Temp. Bridge Plan and Elevation</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Segment Joint Coordinates/Deck Elev.</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Segment Layout</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Typical Segment Dimensions</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Typical Segment Reinforcing</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Pier Segment Dimensions</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Pier Segment Reinforcing **</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Abutment Segment Dimensions</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Abutment Segment Reinforcing **</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Expansion Joint Segment Dimensions</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Expansion Joint Segment Reinforcing **</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Deviation Segment Dimensions</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Deviation Segment Reinforcing **</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Post Tensioning Layout</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
</tbody>
</table>
Table 121.14.3 Summary of Design-Build Technical Proposal and Component Plan Submittals (Continued)

Provide the sheets listed as applicable based on structure type.

Superstructure Submittal (Continued)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>Technical Proposal</th>
<th>90%</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>P/T Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Transverse P/T Details</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulkhead Details</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Drainage Layout</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Drainage Details</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Load Rating Summary Sheet</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Developmental Standard Plans</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Existing Bridge Plans</td>
<td>F‡‡</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

90% and Final submittals for category 2 bridges require an Independent Department Review.

Status Key:

- **P** – Preliminary
- **S** – Substantially Complete
- **C** – Complete but subject to change
- **F** – Final
- **‡** – May require integrated drawings
- **‡‡** – For geometrically constrained sites, show temporary stability towers in the vicinity of the underlying roadways consistent with the Traffic Control Plans. Also show temporary stability towers within navigable waterways.
- **‡‡** – Widenings and projects with phased construction
Table 121.14.4 Summary of Design-Build Technical Proposal and Component Plan Submittals – Movable Bridges

For approach span and foundation submittal requirements see Table 121.14.3. Provide the sheets listed as applicable based on machinery and electrical components utilized.

Substructure Submittal

<table>
<thead>
<tr>
<th>ITEM</th>
<th>Technical Proposal</th>
<th>90%</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bascule Pier Notes</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Span Elevation</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Leaf Clearance Diagrams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bridge Railing Clearance Diagrams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Pier North Elevation View</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Pier South Elevation View</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Pier East Elevation View</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Pier West Elevation View</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Pier Deck Plan</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Pier Deck Elevations</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Pier Trunnion Level Plan</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Pier Machinery Level Plan</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Pier Pit Plan</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Pier Footing Plan</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Pier Longitudinal Sections</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Pier Transverse Sections</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Pier Railing Details</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Pier Stair Details</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Pier Trunnion Access Platform Details</td>
<td></td>
<td>‡</td>
<td>C</td>
</tr>
<tr>
<td>Bascule Pier Finger Joints</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Pier Deck Level Reinforcing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Pier Trunnion Level Reinforcing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Pier Machinery Level Reinforcing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Pier Pit Reinforcing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Pier Footing Reinforcing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Pier North Elevation Reinforcing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Pier South Elevation Reinforcing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Pier East Elevation Reinforcing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Pier West Elevation Reinforcing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Pier Longitudinal Section Reinforcing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Pier Transverse Section Reinforcing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Pier Reinforcing Bar List</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

90% and Final submittals for category 2 bridges require an Independent Department Review.
Table 121.14.4 Summary of Design-Build Technical Proposal and Component Plan Submittals – Movable Bridges (Continued)

Provide the sheets listed as applicable based on machinery and electrical components utilized.

Superstructure Submittal

<table>
<thead>
<tr>
<th>ITEM</th>
<th>Technical Proposal</th>
<th>90%</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control House General Notes</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Control house Reflected Ceiling Plan</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Control House Access Bridge Dimensions</td>
<td>‡</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Control House Access Bridge Reinforcing</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Control House Access Bridge Bar List</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Control Tower Floor Plans</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Control Tower Sections</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Control Tower Reinforcing Plans</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Control Tower Reinforcing Elevations</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Control Tower Section Reinforcing</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Control Tower Bar List</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Control Tower Schedules</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Control Tower Elevations</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Control Tower Building Sections</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Control Tower Details</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Control Tower Stair Plans</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Control Tower Stair Sections</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Control Tower Roof</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Control Tower Door and Window Types and Details</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Control Tower Architectural Details</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Control Tower HVAC Notes</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Control Tower HVAC and Plumbing Floor Plans</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Control Tower HVAC and Plumbing Elevations</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Bascule Leaf Notes</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Bascule Leaf Framing Plan and Longitudinal Section</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
</tbody>
</table>
Table 121.14.4 Summary of Design-Build Technical Proposal and Component Plan Submittals – Movable Bridges (Continued)

Provide the sheets listed as applicable based on machinery and electrical components utilized.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>Technical Proposal</th>
<th>90%</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bascule Leaf Transverse Sections at Floorbeams</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Leaf Transverse Sections at Trunnion</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Leaf Transverse Sections at Counterweight Girders</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Main Girder Elevation</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Main Girder Details</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Main Girder Web Geometry and Camber Details</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Main Girder Force Diagrams</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Main Girder Reaction Influence Lines</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Main Girder Moment Influence Lines</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Floorbeam Details</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Counterweight Girder Details</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Stringer Details</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Lateral Bracing Details</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Counterweight Bracing Plan and Details</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Counterweight Bracing Sections and Details</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Counterweight Plan</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Counterweight Longitudinal Sections</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Counterweight Transverse Sections</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Counterweight Details and Reinforcing Bar List</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bridge Deck Panel Layout</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bridge Deck Panel Sections</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bridge Deck Panel Details</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Armored Joint Details</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Span Lock Housing Details</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Bascule Leaf Jacking Details and Notes</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Mechanical General Notes</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Mechanical Equipment Schedules</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Drive Machinery Layout</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Machinery Support Details</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
</tbody>
</table>

121-Bridge Project Development
Table 121.14.4 Summary of Design-Build Technical Proposal and Component Plan Submittals – Movable Bridges (Continued)

Provide the sheets listed as applicable based on machinery and electrical components utilized.

Superstructure Submittal (Continued)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>Technical Proposal</th>
<th>90%</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trunnion Assembly Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Open Gearing Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Rack/Rack Frames and Rack Pinion Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Mechanical Bearing Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Drive Hydraulic Cylinders Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Hydraulic System Layout/Piping Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Hydraulic Cylinder Support Assemblies</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Hydraulic System Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Live Load Shoe Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Centering Device Details</td>
<td>C</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Span Lock Assembly Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Control Tower – Control Console and Operator’s Visualization Geometry Analysis Including CCTV Locations</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Electrical General Notes</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Electrical Site Plan</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Conduit Riser Diagram</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Single Line Diagram</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Electrical Symbol Legend</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Lighting and Equipment Plan (Including Control Tower Lighting, Fire Detection and Lighting Panel Schedules)</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Lightning Protection, Bonding, and Grounding Plan</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Navigation Lighting Plan</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Communication Equipment Plan</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Control Panel Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Control Console Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Block Diagram of Operating Sequence</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Control System Architecture Diagram</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Schematic Diagrams of all Control Systems and Interlocks</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
</tbody>
</table>
Table 121.14.4 Summary of Design-Build Technical Proposal and Component Plan Submittals – Movable Bridges (Continued)

Provide the sheets listed as applicable based on machinery and electrical components utilized.

Superstructure Submittal (Continued)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>Technical Proposal</th>
<th>90%</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control System I/O Points</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Ladder Logic for PLC</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Submarine Cable/Submarine Cable Termination Cabinet Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Fire and Security Panel Schematic Diagram</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>CCTV Plan and Elevation</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Limit Switch Development</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Conduit and Cable Schedule</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Electrical Equipment Layout - Including but not limited to Generators, Motors, Control Console, Control Panels, and Motor Control Center.</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>CCTV Layout</td>
<td></td>
<td>S</td>
<td>F</td>
</tr>
</tbody>
</table>

Status Key:

- **P** – Preliminary
- **S** – Substantially Complete
- **C** – Complete but subject to change
- **F** – Final
- ‡ – Where required for project.
121.15 Review for Constructability and Maintainability

121.15.1 Purpose

The purpose of this review is to provide reasonable and practical use of fabrication and construction techniques and equipment without overloading and overstressing components, provide for proper material handling and transportation, provide safe maintenance of traffic and provide an appropriate construction sequence. Additionally, provide features which will retard bridge deterioration, permit reasonable access to all parts of the bridge for inspection and performance evaluation and provide features to facilitate replacement of damaged and deteriorated bridge components.

121.15.2 Responsibility

For Category 1 and 2 Structures, it will be the responsibility of the District Project Manager, or his/her designee, to coordinate a review of both the 30% and 90% Structures Plans submittals by the appropriate District Construction and Maintenance personnel for constructability and maintainability. For Category 1 Structures, technical issues will be resolved to the satisfaction of the appropriate DSDE. For Category 2 Structures, technical issues will be resolved to the satisfaction of the SDO.

The Construction and Maintenance Offices should be given adequate time to perform these reviews. All comments from these reviews will be addressed prior to the next submittal and its subsequent review.

Modification for Non-Conventional Projects:

Delete FDM 121.15 and see the RFP for requirements.

121.16 Review for Biddability

121.16.1 Purpose

To prevent construction problems, the District Construction Office will review the plans to make certain the plans are clearly understandable and contain all pertinent notes. During the biddability review, the Construction Office will check for the interface with the roadway segment of the project, utility agreements and environmental permits.
121.16.2 Responsibility

For Category 1 and 2 Structures, it will be the responsibility of the District Project Manager to coordinate a review of the 90% Structures Plan submittal. This review should occur at the same time as the Phase III Plans submittal for the roadway segments of the project.

Additionally, for Category 2 Structures, it will be the responsibility of the SDO to coordinate a review of the 90% Structures Plans submittal.

The Construction Offices should be given adequate time to perform these reviews. All comments from these reviews are required to be addressed prior to the 100% Structures Plans Stage submittal.

Modification for Non-Conventional Projects:

Delete FDM 121.16.

121.17 Bridge Load Rating

Perform load rating analysis of new or existing bridges in accordance with the AASHTO Manual for Bridge Evaluation as amended by the Structures Manual, Volume 1 and the Bridge Load Rating Manual (Topic 850-010-035).

For new bridges the Engineer of Record is required to load rate the bridge(s) and submit the calculations with the 90% plan submittal.

Prior to developing the scope-of-work for bridge widening or rehabilitation projects, the Department or their consultant will determine the suitability of the bridge project using the load rating. If the existing load rating is inaccurate or was performed using older methods (e.g., load factor), perform a new load rating using the procedures outlined in the Structures Manual, Volume 1 - Structures Design Guidelines, Chapter 7. Submit load rating calculations for the entire structure (existing and new) with the 90% plan submittal for the project.

Modification for Non-Conventional Projects:

Delete FDM 121.17 and see the RFP for requirements.
121.18 Review of Non-Department-Owned Projects (New Construction)

For portions of transportation projects on, under or over a Department-owned right-of-way, regardless of funding source or owner, a Department review will be required. FHWA review will be required whenever a privately funded or LAP structure crosses over an interstate route, or when such work otherwise affects such a route; i.e., lane closures, access, R/W changes. The extent of the Department and FHWA review is that:

1. Plans will meet all current clearance requirements (vertical and horizontal).
2. Review and approve the maintenance of traffic scheme for construction.
3. Securely fasten all attachments to the structure over the highway.
4. Design will be sealed by a licensed professional engineer employed by a Department prequalified engineering firm.
5. Designs will be in accordance with applicable Department publications.
6. Plans will meet all District permit requirements and procedures.
7. Submit to FHWA for approval only projects over or affecting a NHS facility.
8. Department review for these structures will be performed by the DSDO for Category 1 and the SDO for Category 2 Structures. Structural reviews will be performed to the same extent as reviews performed on Department projects to assure compliance with the Department’s design criteria.
121.19 Precast Alternate Development

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete FDM 121.19.</td>
</tr>
</tbody>
</table>

121.19.1 Precast Feasibility Assessment Questions:

Several negative responses to the following questions may indicate precasting is not feasible for the project. In this case, provide a statement in the BDR stating that precasting is not feasible and indicate the reasons why in order to satisfy the requirements of *FDM 121.9.1, #9*.

1. Will precasting reduce traffic impacts? Factors may include: average traffic volumes being affected, detour lengths and durations, lane reductions and duration.
2. Is this structure likely to be on the critical path for construction of the project or is this structure on a hurricane evacuation route which requires accelerated delivery?
3. Is the size of the project large enough to benefit from economy of scale, assembly line construction processes, and is it large enough to capitalize on a construction learning curve?
4. Is precasting practical given the project aesthetics when component lifting weights are considered?
5. Is precasting practical given project variability? Factors may include: formwork reuse, multiple construction methods and steps, and variable equipment requirements.
6. Does the project site have space within FDOT R/W to use as a near-site casting yard and can precast elements be hauled from likely near-site casting yard locations to the site?
7. Can precast elements be hauled from likely off-site prestressed yard locations to the site?
8. Are the lifting weights practical given the assumed equipment, construction access, and construction methods?
9. Can connection details be developed with the following characteristics:
 - Durable?
• Easily inspected during construction?
• Accommodates shaft/pile placement tolerances?
• Accommodates fit up?
• Accommodates differential camber (full-depth deck panels)?

121.19.2 Assessment Matrix

Table 121.19.1 is a tool that may be used in documenting the decision making process for evaluation of precast construction versus conventional cast-in-place construction. Table 121.19.2 is a sample Alternate Cost Summary Table indicating how to summarize the component cost estimates and their sum.

Table 121.19.1 Sample Assessment Matrix

<table>
<thead>
<tr>
<th>Selection Factor</th>
<th>Factor Weight (%)</th>
<th>Score (0 to 5)</th>
<th>Weighted Score*</th>
<th>Score (0 to 5)</th>
<th>Weighted Score*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Direct Costs</td>
<td>40</td>
<td>4</td>
<td>160</td>
<td>5</td>
<td>200</td>
</tr>
<tr>
<td>Total Indirect Costs</td>
<td>10</td>
<td>5</td>
<td>50</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>Factor 3 - Constructability</td>
<td>25</td>
<td>3</td>
<td>75</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>Factor 4 – Traffic Impacts</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Factor 5 - Construction Duration</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Factor 6 - Durability</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Factor 7 – Environmental Impacts</td>
<td>10</td>
<td>5</td>
<td>50</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Factor 8 – Aesthetics</td>
<td>15</td>
<td>5</td>
<td>75</td>
<td>3</td>
<td>45</td>
</tr>
<tr>
<td>Factor 9 – Other</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Factor 10 – Other</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL (Σ Factor Weights = 100%)</td>
<td>100</td>
<td></td>
<td>410</td>
<td></td>
<td>405</td>
</tr>
<tr>
<td>TOTAL (Excluding Indirect Cost Factor)**</td>
<td>90</td>
<td></td>
<td>360</td>
<td></td>
<td>365</td>
</tr>
</tbody>
</table>

*Weighted Score = Factor Weight x Score **See following explanation, Instructions “6.”

121.19.3 Assessment Matrix Instructions

(1) List Selection Factors to be used to evaluate the applicability of alternates to meet the goals of the project. Factors are project specific and always include Total Direct Costs and Total Indirect Costs (road user costs) and may include some of the following: Constructability, Traffic Impacts (e.g., Maintenance of Traffic,
Detours, Traffic Delays), Construction Duration, Durability, Environmental Impacts, and Aesthetics. Include other Factors as required to capture any unique project characteristics that are not otherwise addressed. Note that as many or as few criteria may be used in the assessment matrix as deemed appropriate by the designer; though, a sufficient number of Selection Factors (i.e., criteria) are required to provide a thorough evaluation of the alternates being considered to meet the objectives of the project. When choosing selection factors and applying factor weights avoid double counting benefits. For instance, indirect costs and traffic impacts may be related selection factors.

Costs of precast versus conventional may be affected by:

- Savings associated with labor rates and insurance costs for reduced time working from a barge on a large water project.
- Savings associated with structural efficiencies resulting from precasting (e.g., composite dead loads in the case of shored deck casting).
- Savings associated with simultaneous substructure and superstructure component construction.
- Savings associated with increased productivity rates of precasting.

(2) Construct a two-dimensional table allowing one row for each Selection Factor and two columns for each alternate, one for Score and one for Weighted Score.

(3) Factor Weights to distinguish the level of importance of each criterion relative to the other criteria in achieving the project objectives. Weighting the various factors will usually require Department/District input. Distribute the Factor Weights such that their sum is equal to 100%.

(4) Score the relative difference between alternates. Range of scores can vary for a given project (e.g., 0 to 5 or 0 to 10). Scoring may be accomplished by a committee and then the average score for each Selection Factor entered into the matrix.

(5) Calculate the Weighted Score by multiplying the Factor Weight by Score for each alternate.

(6) Total the Weighted Score columns: (1) Provide the absolute total of each column, which includes the Indirect Costs Score and, (2) Provide the column total excluding the contribution from the “Total Indirect Costs.” It is useful for management to compare the impacts, both relative and in hard dollar amounts, of indirect costs on bridge construction projects when making their decisions. The column with the largest total weighted score theoretically indicates the alternate which most closely meets the project objectives as implicated by the matrix construct.
Table 121.19.2 Sample Alternate Cost Summary

<table>
<thead>
<tr>
<th>Alternate</th>
<th>Direct Costs* ($)</th>
<th>Indirect Costs**</th>
<th>Sum: Direct + Indirect ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lane Closures</td>
<td>Detour Time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Days (#)</td>
<td>$/Day</td>
</tr>
<tr>
<td>Precast 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precast 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* In calculation of Direct Costs, give specific consideration to factors that will:

1. Increase the cost of the bridge, as necessary to accommodate:
 - Self-propelled modular transporters (SPMTs)
 - Large capacity cranes
 - Special erection equipment
 - Casting yard setup

2. Decrease the cost of the bridge, as necessary to accommodate:
 - Reduced labor rates (e.g., work from barges)
 - Reduced maintenance of traffic (MOT) work restrictions
 - Reduced worker compensation insurance rates (e.g., work from barges)
 - Increased production rates due to assembly line processes.
 - Increased production rates due to multiple crews working simultaneously

** Use engineering judgment and knowledge of construction processes to estimate the number of days required for each lane closure, detour, or facility closure for each alternate. Coordinate this estimate with the preliminary construction schedule and MOT scheme.
121.19.4 Referenced Links

1. Connection Details for Prefabricated Bridge Elements and Systems
 https://www.fhwa.dot.gov/bridge/prefab/if09010/

2. Manual on Use of Self-Propelled Modular Transporters to Remove and Replace Bridges
 https://www.fhwa.dot.gov/bridge/pubs/07022/

3. Framework for Decision-Making
 https://www.fhwa.dot.gov/bridge/prefab/framework.cfm

4. Prefabricated Bridge Elements and Systems Cost Study: Accelerated Bridge Construction Success Stories

5. FDOT RUC (Road User Cost) software (only available through infonet)
 http://infonet.dot.state.fl.us/tconstruction/SchedulingEng/AddSoftwareScheduling.htm
122 Design Exceptions and Design Variations

122.1 General

The Department’s design criteria and standards contained in the FDOT Design Manual are usually within the desirable ranges established by AASHTO. The values given have been accepted by the Federal Highway Administration (FHWA) and govern the design process. When it becomes necessary to deviate from the Department’s criteria, early documentation and approval are required. There are two approval processes used by designers: Design Exceptions and Design Variations.

A Design Exception or Design Variation is required when the Department’s criteria are not met. This requirement applies to all entities affecting planning, design, construction, and maintenance.

122.1.1 Safety Projects

For projects using safety funds and developed to improve specific safety problems, only the elements identified under the scope of work for the safety improvement project are subject to these approval processes. Existing non-compliant features, within the limits of a safety improvement project do not require approval to remain, if the project does not create a non-compliant condition. The Safety Study must identify all applicable Variations and Exceptions required based on the proposed scope. For these projects, all applicable Design Variations and Design Exceptions must be approved prior to the beginning of the design phase.

122.1.2 Drainage Projects

For drainage projects, only elements identified in the scope of services for the drainage project are subject to these approval processes. The existing features, within the limits of the drainage project that do not meet design criteria, do not require approval to remain (if the project does not create a nonconforming condition).

122.1.3 Maintenance Projects

Maintenance Resurfacing, Ride Only (a.k.a., Ride Rehabilitation) and Skid Hazard Projects do not require Design Exceptions or Design Variations other than for ADA curb ramp requirements. If compliance with ADA curb ramp requirements is determined to be technically infeasible, documentation as a Design Variation is required. Maintenance
Resurfacing Projects can only be programmed on routes that meet the requirements identified in Chapter 27 of the Work Program Instructions.

122.1.4 Landscape Projects

For Landscape-only projects, intersection sight distance Design Variations may be processed by the Responsible Landscape Architect of Record. For design projects with landscaping, intersection sight distance Design Variations must be processed by a Professional Engineer. In cases where intersection sight distance falls below stopping sight distance, a Design Exception for stopping sight distance must be processed by the respective professional according to the above guidelines.

122.2 Identification

Identify the proper approval process as early as possible in the Planning and Design phases to allow time to research alternatives and begin the analysis and documentation activities. Identification should be done during the PD&E process for major projects and the scope development process for minor projects. Approval must be obtained no later than Phase I design submittal.

122.2.1 Design Exceptions

Design Exceptions are required when existing or proposed design elements do not meet both the Department’s governing criteria and AASHTO’s new construction criteria for the Controlling Design Elements.

The 10 Controlling Design Elements for high-speed (Design Speed ≥ 50 mph) roadways and limited access ramps (all design speeds) are:

1. Design Speed
2. Lane Width
3. Shoulder Width
4. Horizontal Curve Radius
5. Superelevation Rate
6. Stopping Sight Distance
7. Maximum Grade
8. Cross Slope
9. Vertical Clearance
10. Design Loading Structural Capacity
The two Controlling Design Elements for low speed (Design Speed < 50 mph) roadways are:

1. Design Speed
2. Design Loading Structural Capacity

FDM 122.5 provides AASHTO’s minimum requirements for the above elements.

122.2.2 Design Variations

Design Variations are required when existing or proposed design elements do not meet the Department’s criteria.

There are 2 methods to document Design Variations:

- Formal Design Variation
- Design Variation Memorandum

A **Formal Design Variation** is used for any of the following design elements:

1. Clear Zone
2. Sight Distance
3. American with Disabilities Act (ADA)
4. Design elements requiring signature by individual or office noted in *FDM 122.7.4*.

A **Design Variation Memorandum** is used for design elements that are not included in the above list for Formal Design Variations.

122.3 Justification for Approval

Sufficient detail and explanation must be provided to those reviewing the request to justify approval. Develop a detailed justification showing good engineering judgement when allowing a design element to remain that does not meet these requirements. At some point, this justification may be used to defend design decisions made by the Department and the designer. All deviations from Department criteria and standards must be uniquely identified, located, and justified; no blanket approvals are given.

Examples of valid justifications are as follows:

1. The required criteria are not applicable to the site-specific conditions.
(2) The project can be as safe by not following the criteria.
(3) The environmental or community needs prohibit meeting criteria.

In some instances, the required criteria may be impractical, and the proposed design wisely balances all design impacts. The impacts that may be associated with this level of justification are:

(1) Safety and Operational performance
(2) Level of Service
(3) Right of Way impacts
(4) Community impacts
(5) Environmental impacts
(6) Costs
(7) Usability by all modes of transportation, Long term and cumulative effects on adjacent sections of roadway

The justification should not be developed solely on the basis that:

(1) The Department can save money,
(2) The Department can save time, or
(3) The proposed design is similar to other designs.
122.4 Documentation for Approval

Supporting documentation that is generated during the approval process is to accompany each submittal. The level of detail for Design Exceptions and Design Variations should be commensurate with the complexity of the design element and the relevance of information to engineering decisions.

Design Exceptions and Formal Design Variations should include the following documentation:

1. Submittal/Approval Letter (Form 122-A, see FDM 103)

2. Project Description: general project information, location map, context classification, existing roadway characteristics, project limits (mileposts), county section number, work mix, objectives, and obstacles. Include any associated or future limitations that exist as a result of public or legal commitments.

3. Project Schedule and Lifespan: Provide (1) the Plans Production date, and (2) the Letting date for the project. Explain why the proposed Design Exception/Variation is either a temporary or permanent condition. Include any future work planned or programmed to address the condition.

4. Exception/Variation Description:
 (a) Specific design criteria that will not be met (provide criteria values from both AASHTO and FDOT). Detailed explanation of why the criteria or standard cannot be complied with or is not applicable. Description of the proposed value and why it is appropriate.
 (b) A plan view, plan sheet, or aerial photo of the location, showing the design speed, posted speed, right of way lines, and property lines of adjacent property. A photo of the area of the deficiency.
 (c) Typical section or cross-section of the location.
 (d) The milepost and station location (including left/right side).

5. Alternative Designs Considered: meeting Department criteria, meeting AASHTO criteria, partial correction, and the no-build (existing) condition.

6. Impacts of the Exception/Variation to:
 (a) Safety Performance:
 i. Review and evaluation of the most recent 5 years of crash data from the current date of analysis.
 ii. Description of the anticipated impact on safety, long and short-term effects. Description of any anticipated cumulative effects.
iii. For non-existing or proposed conditions, a comparison of the predicted or expected crash frequency should be included along with a discussion of the 5-year crash history. Some resources that are available for this comparison include:

1. Highway Safety Manual (HSM)
2. Interactive Highway Safety Design Model (IHSDM)
3. Enhanced Interchange Safety Analysis Tool (iSATE)
4. Roadside Safety Analysis Program (RSAP)

(b) Operational Performance:
 i. Description of the anticipated impact on operations, long and short-term effects. Description of any anticipated cumulative effects.
 ii. Traffic information: Design Year AADT and 24-hour truck volume.
 iii. Compatibility of the design with adjacent sections of roadway.
 iv. Effects on capacity (proposed criteria vs. AASHTO) using an acceptable capacity analysis procedure and calculate reduction for design year, level of service.

(c) Right of Way
(d) Community
(e) Environment
(f) Usability by all modes of transportation

(7) Costs: Description of the anticipated costs associated with the Design Exception or Variation. Provide a Benefit-Cost (B/C) ratio, where applicable.

(8) Mitigation Measures: Description and explanation of practical mitigation measures or alternatives that were considered and selected treatments implemented on the project.

(9) Summary and Conclusions

Design Variation Memorandums should include the following documentation, which may be presented in the format of succinct bullets:

(1) Submittal/Approval Letter (Form 122-A, see FDM 103).
(2) Design criteria versus proposed criteria.
(3) Reason the design criteria are not appropriate.
(4) Justification for the proposed criteria.
(5) Review and evaluation of the most recent 5 years of crash data from the current date of analysis.

(6) Background information which documents or justifies the request.

For Lateral Offset Design Variations, provide a tabulation of stations (or mileposts) and lateral offsets for aboveground fixed objects.

Additional information can be found on the Crash Location Verification Status Dashboard.

122.5 AASHTO Controlling Elements

AASHTO criteria, required documentation, and mitigation strategies for the controlling elements is provided in the following sections. Detailed discussions on criteria and mitigation are provided in the AASHTO Green Book: A Policy on Geometric Design of Highways and Streets, 2011, and the FHWA Guide: Mitigation Strategies for Design Exceptions, July 2007. The AASHTO criteria provided are in no way intended to replace Department design criteria.

The criteria used for determining Design Exceptions on Interstate projects must be based on AASHTO’s A Policy on Design Standards Interstate System 2005.
122.5.1 Design Speed

122.5.1.1 AASHTO Criteria

Table 122.5.1 AASHTO Design Speed (Minimum)

<table>
<thead>
<tr>
<th>Type Facility</th>
<th>Other Factors</th>
<th>Design Speed (mph)</th>
<th>AASHTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeways</td>
<td>Urban</td>
<td>50</td>
<td>pg. 8-1, 8-2</td>
</tr>
<tr>
<td></td>
<td>Rural</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Urban Arterials</td>
<td>Major</td>
<td>30</td>
<td>pg. 2-58</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Rural Arterials</td>
<td>Rolling terrain</td>
<td>50</td>
<td>pg. 7-2</td>
</tr>
<tr>
<td></td>
<td>Level terrain</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Urban Collectors</td>
<td>Major or Minor</td>
<td>30</td>
<td>pg. 6-11</td>
</tr>
<tr>
<td>Rural Collectors</td>
<td>Level ADT < 400</td>
<td>40</td>
<td>pg. 6-2, Table 6-1</td>
</tr>
<tr>
<td></td>
<td>ADT 400 - 2000</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADT > 2000</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rolling ADT < 400</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADT 400 - 2000</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADT > 2000</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Ramps</td>
<td>Highway Design Speeds (mph)</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>55</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70</td>
<td>35</td>
</tr>
<tr>
<td>Loop Ramps</td>
<td>Minimum</td>
<td>25</td>
<td>pg. 10-89</td>
</tr>
<tr>
<td>Connections</td>
<td>Direct</td>
<td>40</td>
<td>pg. 10-90</td>
</tr>
<tr>
<td></td>
<td>Semi-Direct</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
122.5.1.2 Documentation

Provide the length of section with reduced design speed compared to the overall length of the project. Include any existing or proposed measures used within the transitions to adjacent roadway sections having higher or lower design (or operating) speeds.

122.5.1.3 Mitigation

A potential mitigation strategy is to use cross-sectional elements to reduce operating speeds to the design speed.

122.5.2 Lane Width

122.5.2.1 AASHTO Criteria

<table>
<thead>
<tr>
<th>Table 122.5.2</th>
<th>AASHTO Lane Width (Minimum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type Facility</td>
<td>Lane Width (feet)</td>
</tr>
<tr>
<td>Freeway (including Auxiliary)</td>
<td>12</td>
</tr>
<tr>
<td>Rural Arterial</td>
<td>11</td>
</tr>
<tr>
<td>Urban Arterial</td>
<td>10</td>
</tr>
<tr>
<td>Urban Collector</td>
<td>10</td>
</tr>
<tr>
<td>Rural Collector</td>
<td>10</td>
</tr>
<tr>
<td>Low Speed</td>
<td>10</td>
</tr>
<tr>
<td>Residential</td>
<td>9</td>
</tr>
<tr>
<td>Auxiliary (Non-Freeway)</td>
<td>10</td>
</tr>
<tr>
<td>Continuous TWLTL</td>
<td>10</td>
</tr>
</tbody>
</table>

Notes:
(1) DSIS = AASHTO’s A Policy on Design Standards Interstate System (January 2005).

122.5.2.2 Documentation

Provide locations of alternative routes that meet criteria and a proposal for handling drainage. Include a typical section or plan of the proposed signing and pavement markings associated with the lane width exception.
122.5.2.3 Mitigation

Potential mitigation strategies for lane width are:

(1) Select optimal combination of lane and shoulder widths based on site characteristics to optimize safety and operations by distributing available cross-sectional width

(2) Signing to provide advanced warning of lane width reduction

(3) To improve the ability to stay within the lane:
 (a) Wide, recessed, or raised pavement markings
 (b) Delineators
 (c) Object Markers
 (d) Tubular Markers
 (e) Lighting
 (f) Audible and vibratory treatment, (See FDM 210.4.6 for arterials and collectors. See FDM 211.4.4 for LA Facilities.)

(4) To improve the ability to recover if the driver leaves the lane:
 (a) Paved or partially-paved shoulders
 (b) Safety edge treatment

(5) To reduce crash severity if the driver leaves the roadway (See FDM 215):
 (a) Remove or relocate fixed objects
 (b) Traversable slopes
 (c) Breakaway safety hardware
 (d) Shield fixed objects and steep slopes
122.5.3 Shoulder Width

122.5.3.1 AASHTO Criteria

Table 122.5.3 AASHTO Shoulder Widths (Minimum)

<table>
<thead>
<tr>
<th>Type Facility</th>
<th>Other Factors</th>
<th>Median or Left (feet)</th>
<th>Right (feet)</th>
<th>AASHTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeway</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 lanes</td>
<td>4 paved</td>
<td>10 paved</td>
<td></td>
<td>pg. 8-3</td>
</tr>
<tr>
<td>≥ 6 lanes</td>
<td>10 paved</td>
<td>10 paved</td>
<td></td>
<td>pg. 8-3</td>
</tr>
<tr>
<td>Rural Arterial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADT > 2000</td>
<td></td>
<td></td>
<td>8</td>
<td>pg. 7-5, Table 7-3</td>
</tr>
<tr>
<td>ADT 400-2000</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ADT < 400</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4 lane Divided</td>
<td>4 paved</td>
<td></td>
<td>8</td>
<td>pg. 7-13</td>
</tr>
<tr>
<td>6+ lane Divided</td>
<td>8</td>
<td></td>
<td>8</td>
<td>pg. 7-14</td>
</tr>
<tr>
<td>Urban Arterial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Type (Gravel, Other)</td>
<td></td>
<td></td>
<td>2</td>
<td>pg. 4-10</td>
</tr>
<tr>
<td>High Type (Asphalt, Conc.)</td>
<td></td>
<td></td>
<td>10</td>
<td>pg. 4-10</td>
</tr>
<tr>
<td>Heavily Traveled/High Speed/High Trucks</td>
<td></td>
<td></td>
<td>10</td>
<td>pg. 4-10</td>
</tr>
<tr>
<td>Rural & Urban Collector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADT > 2000</td>
<td></td>
<td></td>
<td>8</td>
<td>pg. 6-6, Table 6-5</td>
</tr>
<tr>
<td>ADT 1500-2000</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ADT 400-1500</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>ADT < 400</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Table 122.5.4
AASHTO Bridge Widths (Minimum)

<table>
<thead>
<tr>
<th>Type</th>
<th>Facility</th>
<th>Other Factors</th>
<th>Bridge Widths</th>
<th>AASHTO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Freeway</td>
<td>New Bridges</td>
<td>Approach Roadway Width</td>
<td>pg. 8-4</td>
</tr>
<tr>
<td>Rural</td>
<td>Arterial</td>
<td>New Bridges (Short)</td>
<td>Approach Roadway Width</td>
<td>pg. 7-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>New Bridges (Long) (> 200 ft.)</td>
<td>Travel Lanes + 4 ft. each side</td>
<td>pg. 7-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Existing bridges</td>
<td>Travel Lanes + 2 ft. each side</td>
<td>pg. 7-6</td>
</tr>
<tr>
<td>Urban</td>
<td>Arterial</td>
<td>New and Existing Bridges (Short)</td>
<td>Curb to curb width of street</td>
<td>pg. 7-38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>New and Existing Bridges (Long) without shoulders or parking on arterial</td>
<td>Curb to curb width of street</td>
<td>pg. 7-38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>New and Existing Bridges (Long) with shoulders or parking on arterial</td>
<td>Travel Lanes + 4 ft. each side</td>
<td>pg. 7-38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Facility</th>
<th>Other Factors</th>
<th>Bridge Widths</th>
<th>AASHTO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rural and Urban Collector</td>
<td>ADT Under 400</td>
<td>Traveled Way + 2 ft. each side (1)</td>
<td>22 ft. (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADT 400-1500</td>
<td>Traveled Way + 3 ft. each side (1)</td>
<td>22 ft. (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADT 1500-2000</td>
<td>Traveled Way + 4 ft. each side (1),(3)</td>
<td>24 ft. (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADT > 2000</td>
<td>Approach Roadway Width (1),(3)</td>
<td>28 ft. (2)</td>
</tr>
</tbody>
</table>

Notes:
1. If the approach roadway has paved shoulders, then the surfaced width must be carried across the bridge.
2. Bridges longer than 100 ft. are to be analyzed individually.
3. For bridges > 100 ft. in length, the minimum bridge width of traveled way plus 3 ft. on each side is acceptable.
122.5.3.2 Documentation

Provide a proposal to address stalled vehicles, enforcement activities, emergency operations, and drainage in the documentation for the exception.

122.5.3.3 Mitigation

Potential mitigation strategies for shoulder width are:

(1) Select optimal combination of lane and shoulder width based on site characteristics to optimize safety and operations by distributing available cross-sectional width

(2) Signing to provide advanced warning of lane width reduction

(3) To improve the ability to stay within the lane:
 (a) Wide, recessed or raised pavement markings
 (b) Delineators
 (c) Object Markers
 (d) Lighting
 (e) Audible and vibratory treatment, (See FDM 210.4.6 for arterials and collectors. See FDM 211.4.4 for LA Facilities.)

(4) To improve the ability to recover if the driver leaves the lane:
 (a) Paved or partially-paved shoulders
 (b) Safety edge treatment

(5) To reduce crash severity if driver leaves the roadway (See FDM 215):
 (a) Remove or relocate fixed objects
 (b) Traversable slopes
 (c) Breakaway safety hardware
 (d) Shield fixed objects and steep slopes
122.5.4 Horizontal Curve Radius

122.5.4.1 AASHTO Criteria

Table 122.5.5 AASHTO Horizontal Alignment
Minimum Radius (feet) with Superelevation (page 3-32, Table 3-7)

<table>
<thead>
<tr>
<th>Type Facility</th>
<th>Super-elevation e-max</th>
<th>Minimum Curve Radius (feet) for Design Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural Highway and High-Speed Urban Street</td>
<td>0.04</td>
<td>42 86 154 250 371 533 711 926 1190 1500 --- ---</td>
</tr>
<tr>
<td></td>
<td>0.06</td>
<td>39 81 144 231 340 485 643 833 1060 1330 1660 2040</td>
</tr>
<tr>
<td></td>
<td>0.08</td>
<td>38 76 134 214 314 444 587 758 960 1200 1480 1810</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>36 72 126 200 292 410 540 694 877 1090 1340 1630</td>
</tr>
<tr>
<td></td>
<td>0.12</td>
<td>34 68 119 188 272 381 500 641 807 1000 1220 1480</td>
</tr>
</tbody>
</table>

Minimum Radius (feet) for Section with Normal Cross Slope (2001 AASHTO, page 168, Exh. 3-26)

<table>
<thead>
<tr>
<th>Type Facility</th>
<th>Minimum Curve Radius (feet) for Design Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeway, Arterial, and Collector</td>
<td>960 1700 2460 3350 4390 5570 6880 8350 9960 11720 13180 14730</td>
</tr>
</tbody>
</table>

Minimum Radius (feet) for Intersection Curves (2001 AASHTO, page 201, Exh. 3-43)

<table>
<thead>
<tr>
<th>Design Speed (mph)</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Radius (feet)</td>
<td>25</td>
<td>50</td>
<td>90</td>
<td>150</td>
<td>230</td>
<td>310</td>
<td>430</td>
<td>540</td>
</tr>
<tr>
<td>Assumed Minimum Superelevation Rate</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
<td>0.06</td>
<td>0.08</td>
<td>0.09</td>
<td>0.10</td>
</tr>
</tbody>
</table>
122.5.4.2 Documentation

No additional documentation beyond what is covered in FDM 122.4 is required.

122.5.4.3 Mitigation

Potential mitigation strategies for horizontal curve radius are:

(1) To provide advanced warning:
 (a) Signing
 (b) Pavement marking messages
 (c) Dynamic curve warning systems

(2) To provide delineation:
 (a) Chevrons
 (b) Delineators
 (c) Tubular Markers
 (d) Linear Barrier Delineators

(3) To improve the ability to stay within the lane:
 (a) Widen the roadway
 (b) Skid-resistant pavement
 (c) Enhanced pavement markings
 (d) Lighting
 (e) Audible and vibratory treatment, (See FDM 210.4.6 for arterials and collectors. See FDM 211.4.4 for LA Facilities.)

(4) To improve the ability to recover if driver leaves the lane:
 (a) Paved or partially paved shoulders
 (b) Safety edge

(5) To reduce the crash severity if driver leaves the roadway (See FDM 215):
 (a) Remove or relocate fixed objects
 (b) Traversable slopes
 (c) Breakaway safety hardware
 (d) Shield fixed objects and steep slopes
122.5.5 Superelevation Rate

122.5.5.1 AASHTO Criteria

Table 122.5.6 AASHTO Superelevation (Maximum)

<table>
<thead>
<tr>
<th>Type Facility</th>
<th>Superelevation Rate</th>
<th>AASHTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highways (Rural)</td>
<td>12%</td>
<td>pg. 3-30</td>
</tr>
<tr>
<td>Urban</td>
<td>6%</td>
<td>pg. 3-31</td>
</tr>
<tr>
<td>Urban: Low Speed w/severe constraints</td>
<td>None</td>
<td>pg. 3-31</td>
</tr>
<tr>
<td>Ramps and Turning Roadways at Intersections</td>
<td>10%</td>
<td>pg. 9-114</td>
</tr>
</tbody>
</table>

Note:
(1) Maximum Superelevation is pro-rated value (based upon radius) from rate tables cited above.

122.5.5.2 Documentation

Provide side friction factors for each curve at the PC, Midpoint, and PT of the curve, and at the location of maximum provided superelevation. For multi-lane facilities, provide values for each lane. Use the following equation:

\[f = \frac{V^2 - 15Re}{V^2e + 15R} \]

where:
\(f \) = Side Friction Factor
\(V \) = Design Speed (mph)
\(R \) = Radius (feet)
\(e \) = Superelevation (ft/ft) at the station evaluated
122.5.5.3 Mitigation

Potential mitigation strategies for superelevation rate exceptions are:

(1) To provide advanced warning:
 (a) Signing
 (b) Pavement marking messages
 (c) Dynamic curve warning systems

(2) To provide delineation:
 (a) Chevrons
 (b) Linear Barrier Delineators
 (c) Tubular Markers

(3) To improve the ability to stay within the lane:
 (a) Widen the roadway
 (b) Skid-resistant pavement
 (c) Enhanced pavement markings
 (d) Lighting
 (e) Audible and vibratory treatment, (See FDM 210.4.6 for arterials and collectors. See FDM 211.4.4 for LA Facilities.)

(4) To improve the ability to recover if driver leaves the lane:
 (a) Paved or partially paved shoulders
 (b) Safety edge

(5) To reduce the crash severity if driver leaves the roadway: (See FDM 215)
 (a) Remove or relocate fixed objects
 (b) Traversable slopes
 (c) Breakaway safety hardware
 (d) Shield fixed objects and steep slopes
122.5.6 Stopping Sight Distance

122.5.6.1 AASHTO Criteria

Table 122.5.7 AASHTO Stopping Sight Distance (Minimum)
(AASHTO page 3-4, Table 3-1)

<table>
<thead>
<tr>
<th>Design Speed (mph)</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stopping Sight</td>
<td>80</td>
<td>115</td>
<td>155</td>
<td>200</td>
<td>250</td>
<td>305</td>
<td>360</td>
<td>425</td>
<td>495</td>
<td>570</td>
<td>645</td>
<td>730</td>
</tr>
<tr>
<td>Distance (feet)</td>
<td></td>
</tr>
</tbody>
</table>

| Computed for Design | | | | | | | | | | | | |

Table 122.5.8 AASHTO Vertical Alignment
(AASHTO Table 3-34, Table 3-36, and Table 6-3, and based on a 2’ object height)

<table>
<thead>
<tr>
<th>Design Speed (mph)</th>
<th>Minimum K Value for Vertical Curves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crest</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>7</td>
</tr>
<tr>
<td>25</td>
<td>12</td>
</tr>
<tr>
<td>30</td>
<td>19</td>
</tr>
<tr>
<td>35</td>
<td>29</td>
</tr>
<tr>
<td>40</td>
<td>44</td>
</tr>
<tr>
<td>45</td>
<td>61</td>
</tr>
<tr>
<td>50</td>
<td>84</td>
</tr>
<tr>
<td>55</td>
<td>114</td>
</tr>
<tr>
<td>60</td>
<td>151</td>
</tr>
<tr>
<td>65</td>
<td>193</td>
</tr>
<tr>
<td>70</td>
<td>247</td>
</tr>
</tbody>
</table>

Note:
(1) Rate of vertical curvature, K, is the length of curve per percent algebraic difference of the intersecting grades. (K = L/A)
Table 122.5.9 AASHTO Minimum Passing Sight Distance
(AASHTO page 3-9, Table 3-4)

<table>
<thead>
<tr>
<th>Design Speed (mph)</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passing Sight Distance (feet)</td>
<td>400</td>
<td>450</td>
<td>500</td>
<td>550</td>
<td>600</td>
<td>700</td>
<td>800</td>
<td>900</td>
<td>1000</td>
<td>1100</td>
<td>1200</td>
</tr>
</tbody>
</table>

122.5.6.2 Documentation

Provide profiles in the area of vertical alignment related Design Exception or Design Variations for stopping sight distance. Provide plan views with sight triangles for horizontal stopping sight distance evaluations.

122.5.6.3 Mitigation

Potential mitigation strategies for stopping sight distance are:

1. To mitigate sight distance restrictions
 - (a) Signing and speed advisory plaques (crest vertical curves)
 - (b) Lighting
 - (c) Adjust placement of lane within the roadway cross section (horizontal)
 - (d) Cross-sectional elements to manage speed

2. To improve the ability to avoid crashes:
 - (a) Cross-sectional elements
 - (b) Wider clear recovery area

3. To improve driver awareness on approach to intersections:
 - (a) Advance warning signs
 - (b) Dynamic warning signs
 - (c) Larger or additional STOP/YIELD signs
 - (d) Intersection lighting
122.5.7 Maximum Grade

122.5.7.1 AASHTO Criteria

Table 122.5.10 AASHTO Grades (Maximum)

<table>
<thead>
<tr>
<th>Type Facility</th>
<th>Type Terrain</th>
<th>Grades (%) for Design Speed (mph)</th>
<th>AASHTO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>Freeway (1)</td>
<td>Level</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Rolling</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Rural Arterial</td>
<td>Level</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Rolling</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Urban Arterial</td>
<td>Level</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Rolling</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Rural Collector(2)</td>
<td>Level</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Rolling</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Urban Collector(2)</td>
<td>Level</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Rolling</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

Notes:

1. Grades one percent steeper than the values shown may be used in urban areas.
2. Short lengths of grade in rural and urban areas, such as grades less than 500 ft. in length, one-way downgrades, and grades on low-volume rural and urban collectors may be up to 2 percent steeper than the grades shown above.

122.5.7.2 Documentation

No additional documentation beyond what is in *FDM 122.4* is required.

122.5.7.3 Mitigation

Potential mitigation strategies for maximum grade are:

1. Signing to provide advanced warning
2. To improve ability to stay within the lane:
 (a) Enhanced pavement markings
(b) Delineators
(c) Tubular Markers
(d) Audible and vibratory treatment, (See FDM 210.4.6 for arterials and collectors. See FDM 211.4.4 for LA Facilities.)

(3) To improve ability to recover if driver leaves the roadway (See FDM 215):
 (a) Paved or partially-paved shoulders
 (b) Safety edge
 (c) Remove or relocate fixed objects
 (d) Traversable slopes
 (e) Breakaway safety hardware
 (f) Shield fixed objects

122.5.8 Cross Slope

122.5.8.1 AASHTO Criteria

<table>
<thead>
<tr>
<th>Type Facility</th>
<th>Other Factors</th>
<th>Minimum</th>
<th>Maximum</th>
<th>AASHTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeways</td>
<td>---</td>
<td>0.015</td>
<td>0.025 (1)</td>
<td>pg. 8-2</td>
</tr>
<tr>
<td>Arterials</td>
<td>Rural</td>
<td>0.015</td>
<td>0.02</td>
<td>pg. 7-4</td>
</tr>
<tr>
<td></td>
<td>Urban</td>
<td>0.015</td>
<td>0.03</td>
<td>pg. 7-29</td>
</tr>
<tr>
<td>Divided Highways</td>
<td>---</td>
<td>0.015</td>
<td>0.02 (1)</td>
<td>pg. 7-13</td>
</tr>
<tr>
<td>Collectors</td>
<td>Rural</td>
<td>0.015</td>
<td>0.02</td>
<td>pg. 6-3</td>
</tr>
<tr>
<td></td>
<td>Urban</td>
<td>0.015</td>
<td>0.03</td>
<td>pg. 6-13</td>
</tr>
<tr>
<td>Shoulders</td>
<td>Paved</td>
<td>0.02</td>
<td>0.06</td>
<td>pg. 4-11</td>
</tr>
<tr>
<td></td>
<td>Gravel</td>
<td>0.04</td>
<td>0.06</td>
<td>pg. 4-11</td>
</tr>
<tr>
<td></td>
<td>Turf</td>
<td>0.06</td>
<td>0.08</td>
<td>pg. 4-11</td>
</tr>
</tbody>
</table>

Note:
(1) Values given are for up to two lanes in one direction. Additional outside lanes may have cross slopes of 0.03.
122.5.8.2 Documentation

Provide a proposal for handling drainage and details on how the cross-slope impacts intersections.

122.5.8.3 Mitigation

Potential mitigation strategies for deficient cross slope are:

1. Signing to provide warning of slick pavement
2. To improve surface friction:
 a. Pavement grooving (PCC Pavement)
 b. Open-graded friction courses (HMA pavement)
3. To improve drainage:
 a. Transverse pavement grooving (PCC Pavement)
 b. Open-graded friction courses (HMA pavement)
 c. Pavement edge drains
 d. Modified shoulder cross slope to mitigate cross-slope break on the high side of superelevated curves.
122.5.9 Vertical Clearance

122.5.9.1 AASHTO Criteria

Table 122.5.12 AASHTO Vertical Clearance (Minimum)

<table>
<thead>
<tr>
<th>Type Facility</th>
<th>Vertical Clearance (feet)<sup>(2)</sup></th>
<th>AASHTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeways</td>
<td>16<sup>(1)</sup>,<sup>(4)</sup></td>
<td>pg. 8-4, 10-21</td>
</tr>
<tr>
<td>Arterials (New Structures):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>16<sup>(1)</sup></td>
<td>pg. 7-6, 10-21</td>
</tr>
<tr>
<td>Urban</td>
<td>16<sup>(1)</sup></td>
<td>pg. 7-38, 10-21</td>
</tr>
<tr>
<td>Arterials (Existing Structures):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>14</td>
<td>pg. 7-7, 10-21</td>
</tr>
<tr>
<td>Urban</td>
<td>14</td>
<td>pg. 7-38, 10-21</td>
</tr>
<tr>
<td>Other Highways</td>
<td>14</td>
<td>pg. 5-8, 8-4</td>
</tr>
<tr>
<td>Sign Trusses</td>
<td>17</td>
<td>pg. 7-7,38, 8-4</td>
</tr>
<tr>
<td>Pedestrian Overpass</td>
<td>17</td>
<td>pg. 7-7,38, 8-4</td>
</tr>
<tr>
<td>Tunnels:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freeways</td>
<td>16</td>
<td>pg. 4-53</td>
</tr>
<tr>
<td>Other Highways</td>
<td>14</td>
<td>pg. 4-53</td>
</tr>
<tr>
<td>Railroads</td>
<td>23<sup>(3)</sup></td>
<td>pg. 10-22</td>
</tr>
</tbody>
</table>

Notes:
(1) 14 feet allowed in highly developed urban areas if alternate route has 16 feet.
(2) An allowance of 6 inches should be added to vertical clearance to accommodate future resurfacing.
(3) See FDM 220.3.4 and the latest version of American Railway Engineering and Maintenance-of-Way Association (AREMA) guidelines, or the design office of the high speed rail line of interest for specific high speed guidelines and specifications. Over Electrified Railroad, the minimum vertical clearance is 24 feet 3 inches. (See Topic No. 000-725-003: South Florida Rail Corridor Clearance.)
(4) Design Exceptions to the 16-ft vertical clearance standard on rural Interstate routes or on a single Interstate route through urban areas must be coordinated with Surface Deployment and Distribution Command Transportation Engineering Agency (SDDCTEA) as described in FDM 122.5.9.2.

122.5.9.2 Documentation

A written evaluation of the vertical clearance deficiency and recommendation by the State Office of Maintenance is required and should be attached to all Vertical Clearance Variations and Exceptions.
Provide locations of alternative routes that meet criteria.

For Interstate Projects, the District is responsible for completing an Interstate Vertical Clearance Exception Coordination form, for Design Exceptions to vertical clearance requirements above interstate facilities (mainlines and ramps). The District will submit the form to the Surface Deployment and Distribution Command Transportation Engineering Agency (SDDCTEA) via e-mail for approval, copying the FHWA Florida Division. Allow for 10 working days after SDDCTEA receipt for action before requesting notification of disposition (via email or fax). A copy of the approval must be provided with the Design Exception. A request for coordination must take place before the District Design Engineer can recommend the Design Exception.

122.5.9.3 Mitigation

Potential mitigation strategies for vertical clearance are:

1. Signing to provide advance warning
2. To prevent impacts with low structures:
 a. Alternate routes
 b. Large vehicle restrictions.
 c. Bridge Jacking may be a consideration to address bridges with minor deficiencies.
122.5.10 Design Loading Structural Capacity

122.5.10.1 AASHTO Criteria

Table 122.5.13 AASHTO Structural Capacity (Minimum Loadings)

<table>
<thead>
<tr>
<th>Type Facility</th>
<th>AASHTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeways, Arterials, and Collectors</td>
<td>See AASHTO LRFD for minimum loadings.</td>
</tr>
</tbody>
</table>

122.5.10.2 Documentation

(1) Load rating calculations for the affected structure.
(2) Verification of safe load-carrying capacity (load rating) for State unrestricted legal loads or routine permit loads.
(3) Verification of Federal legal loads for bridges and tunnels on the Interstate.
(4) A written evaluation and recommendation by the Office of Maintenance.

122.5.10.3 Mitigation

Potential mitigation strategies for design loading structural capacity are determined on a case by case basis.

122.6 Crash Analysis

For areas with crash histories or when a benefit to cost analysis is required, provide a time value analysis between the benefit to society (quantified in dollars) and the costs to society (quantified in dollars) over the life of the Design Exception. The benefit to society is quantified by the savings associated with the projected reduction in crashes. The cost to society is a summary of the construction, operation, maintenance, and other costs anticipated over the life of the project. The Discount (interest) rate to be utilized in benefit/cost analysis is 4%.

Both Historical (HCM) and Predictive (RSAP and HSM) methods are acceptable for performance of a benefit/cost analysis.

In accordance with the Department’s Highway Safety Manual Implementation Policy (Topic No. 000-500-001), “the transportation analyst is encouraged to use the Highway Safety Manual (HSM) methods, where applicable, to measure safety benefits from proposed improvements.”
122.6.1 Historical Crash Method (HCM)

This method can be used for sites with a crash history. It is the ratio (benefit/cost) of the estimated annual reduction in crash costs to the estimated annual increase in combined construction and maintenance costs. The annualized conversion will show whether the projected expenditure of funds for the crash benefit will exceed the direct cost for the improvement.

The HCM uses the *Highway Safety Improvement Program Guideline (HSIPG)* cost per crash by facility type in *Table 122.6.1* to estimate benefit to society, while the cost to society is estimated by the expected cost of right of way, construction, and maintenance.

<table>
<thead>
<tr>
<th>Type Facility</th>
<th>Divided Roadway</th>
<th>Undivided Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urban</td>
<td>Suburban</td>
</tr>
<tr>
<td>2-3 Lanes</td>
<td>$107,732</td>
<td>$201,527</td>
</tr>
<tr>
<td>4-5 Lanes</td>
<td>$123,406</td>
<td>$225,315</td>
</tr>
<tr>
<td>6+ Lanes</td>
<td>$123,598</td>
<td>$166,258</td>
</tr>
<tr>
<td>Interstate</td>
<td>$153,130</td>
<td>n/a</td>
</tr>
<tr>
<td>Turnpike</td>
<td>$128,253</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Notes:

1. Average Cost/Crash: **$159,093**
2. The above values were derived from 2013 through 2017 traffic crash and injury severity data for crashes on state roads in Florida using the formulation described in *FHWA Technical Advisory “Motor Vehicle Accident Costs”, T7570.2, dated October 31, 1994*. Base costs derived from a memorandum from USDOT: “Guidance on Treatment of the Economic Value of a Statistical Life (VSL) in the U.S. Department of Transportation Analyses”, dated August 8, 2016 updating the value of life saved from $9.4 million to $9.6 million for 2015 data with a growth factor applied to increase the base cost to $9.7 million in the current analyses. Costs are computed for the actively state-maintained State Highway System (SHS) only.
3. Link to *Revised Departmental Guidance 2013*

When utilizing predictive methods or crash severity distributions for analysis, the following crash severity level costs should be used:
Table 122.6.2 FDOT KABCO Crash Costs

<table>
<thead>
<tr>
<th>Crash Severity</th>
<th>Comprehensive Crash Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatal (K)</td>
<td>$10,670,000</td>
</tr>
<tr>
<td>Severe Injury (A)</td>
<td>$872,612</td>
</tr>
<tr>
<td>Moderate Injury (B)</td>
<td>$174,018</td>
</tr>
<tr>
<td>Minor Injury (C)</td>
<td>$106,215</td>
</tr>
<tr>
<td>Property Damage Only (O)</td>
<td>$7,700</td>
</tr>
</tbody>
</table>

Note:

122.6.2 Roadside Safety Analysis Program (RSAP)

This method complements the *AASHTO Roadside Design Guide*, dated June 2011. When hazards cannot be removed or relocated, designers need to determine if a safety device, such as a guardrail or a crash cushion, is warranted to protect motorists from the roadside obstacle. This method can be used to perform a benefit/cost analysis comparing a potential safety treatment with the existing or baseline conditions (i.e., the do-nothing option) or alternative safety treatments. Based on the input of information available to the user (e.g. offsets, traffic, slopes, crash history, traffic accident severity levels), the program will offer results which can be used in comparing design alternatives.

122.6.3 Highway Safety Manual

The *AASHTO Highway Safety Manual (HSM)* provides analytical tools and techniques for quantifying the potential effects on crashes as a result of decisions made in planning, design, operations and maintenance. The new techniques and knowledge in the HSM reflect the evolution in safety analysis from descriptive (historical) methods to quantitative, predictive analyses. In the *HSM*, crash frequency is the fundamental basis for safety analysis and is used to reduce crashes and severities through the selection of alternative treatments.

The *HSM* includes Safety Performance Functions (SPFs) for many roadway segment and intersection applications. SPFs are equations used to estimate or predict the expected...
average crash frequency per year at a location as a function of traffic volume and roadway characteristics. Adjust SPFs to local conditions by applying calibration factors shown in Table 122.6.3. The use of HSM SPF and Crash Modification Factors (CMF), with an Empirical Bayes (EB) adjustment, provides research-based solutions for use in Benefit/Cost comparisons. Crash distributions presented in Table 122.6.4 and KABCO costs as specified in Table 122.6.2 should be used in determining benefits from an HSM analysis.

Table 122.6.3 HSM Calibration Factors for Florida

<table>
<thead>
<tr>
<th>Type Facility</th>
<th>Abbreviation</th>
<th>Calibration Factor (Cx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDOT Roadway Calibration Factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural 2-lane Undivided</td>
<td>R2U</td>
<td>1.00</td>
</tr>
<tr>
<td>4-lane Divided</td>
<td>R4D</td>
<td>0.68</td>
</tr>
<tr>
<td>Urban 2-lane Undivided</td>
<td>U2U</td>
<td>1.02</td>
</tr>
<tr>
<td>3-lane with a Center Two-Way Left Turn Lane</td>
<td>U32LT</td>
<td>1.04</td>
</tr>
<tr>
<td>4-lane Undivided</td>
<td>U4U</td>
<td>0.73</td>
</tr>
<tr>
<td>4-lane Divided</td>
<td>U4D</td>
<td>1.63</td>
</tr>
<tr>
<td>5-lane with a Center Two-Way Left Turn Lane</td>
<td>U52LT</td>
<td>0.70</td>
</tr>
<tr>
<td>FDOT Intersection Calibration Factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural 2-lane 3-Leg Stop-Controlled</td>
<td>RTL3ST</td>
<td>1.27</td>
</tr>
<tr>
<td>2-lane 4-Leg Stop-Controlled</td>
<td>RTL4ST</td>
<td>0.74</td>
</tr>
<tr>
<td>2-lane 4-Leg Signalized</td>
<td>RTL4SG</td>
<td>0.92</td>
</tr>
<tr>
<td>Multilane 3-Leg Stop-Controlled</td>
<td>RML3ST</td>
<td>2.20</td>
</tr>
<tr>
<td>Multilane 4-Leg Stop-Controlled</td>
<td>RML4ST</td>
<td>1.64</td>
</tr>
<tr>
<td>Multilane 4-Leg Signalized</td>
<td>RML4SG</td>
<td>0.45</td>
</tr>
<tr>
<td>Urban 3-Leg Stop-Controlled Intersection</td>
<td>USA3ST</td>
<td>1.14</td>
</tr>
<tr>
<td>4-Leg Stop-Controlled Intersection</td>
<td>USA4ST</td>
<td>1.87</td>
</tr>
<tr>
<td>3-Leg Signalized w/o Ped. CMFs</td>
<td>USA3SG w/o Ped.</td>
<td>2.58</td>
</tr>
<tr>
<td>3-Leg Signalized w/ Ped. CMFs</td>
<td>USA3SG w/ Ped.</td>
<td>2.50</td>
</tr>
<tr>
<td>4-Leg Signalized</td>
<td>USA4SG</td>
<td>2.27</td>
</tr>
</tbody>
</table>
Table 122.6.4 HSM Crash Distribution for Florida

<table>
<thead>
<tr>
<th>Type Facility</th>
<th>Abbreviation</th>
<th>K</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural Roadways</td>
<td>2-lane Undivided</td>
<td>R2U</td>
<td>0.028</td>
<td>0.094</td>
<td>0.181</td>
<td>0.187</td>
</tr>
<tr>
<td></td>
<td>4-lane Undivided</td>
<td>R4U</td>
<td>0.033</td>
<td>0.093</td>
<td>0.164</td>
<td>0.186</td>
</tr>
<tr>
<td></td>
<td>4-lane Divided</td>
<td>R4D</td>
<td>0.028</td>
<td>0.090</td>
<td>0.187</td>
<td>0.196</td>
</tr>
<tr>
<td>Urban & Suburban Arterials</td>
<td>2-lane Undivided</td>
<td>U2U</td>
<td>0.009</td>
<td>0.050</td>
<td>0.150</td>
<td>0.224</td>
</tr>
<tr>
<td></td>
<td>3-lane TWLTL</td>
<td>U32LT</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-lane Undivided</td>
<td>U4U</td>
<td>0.004</td>
<td>0.031</td>
<td>0.110</td>
<td>0.204</td>
</tr>
<tr>
<td></td>
<td>4-lane Divided</td>
<td>U4D</td>
<td>0.008</td>
<td>0.046</td>
<td>0.142</td>
<td>0.234</td>
</tr>
<tr>
<td></td>
<td>5-lane TWLTL</td>
<td>U52LT</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freeways</td>
<td>Rural</td>
<td></td>
<td>0.017</td>
<td>0.065</td>
<td>0.143</td>
<td>0.163</td>
</tr>
<tr>
<td></td>
<td>Urban</td>
<td></td>
<td>0.006</td>
<td>0.035</td>
<td>0.113</td>
<td>0.206</td>
</tr>
<tr>
<td></td>
<td>Ramps</td>
<td></td>
<td>0.004</td>
<td>0.032</td>
<td>0.107</td>
<td>0.210</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td></td>
<td>0.007</td>
<td>0.041</td>
<td>0.124</td>
<td>0.217</td>
</tr>
</tbody>
</table>

Notes:
- K – Fatality
- A - Incapacitating Injury
- B - Non-incapacitating Injury
- C - Possible (or minor) Injury
- O - Property Damage Only

Tools and spreadsheets for use with these analytical methods have been developed and are available on the following websites:

- https://www.fdot.gov/roadway/QA/Tools.shtm
122.7 Design Approval Request

122.7.1 Submittal Package

The submittal package for a Design Exception or a Design Variation will include the same items. However, the required documentation and necessary level of detail will vary depending on the design element being evaluated (as described in FDM 122.4). The Design Exception or Design Variation submittal package is to include the following items:

1. Submittal/Approval Letter (cover letter): Form 122-A (see FDM 103).
2. Signed and Sealed Report: The signed and sealed documents including all required documentation and justification (see FDM 122.4 for documentation requirements). Multiple design elements and signed and sealed reports may be included in one submittal package.
3. Appendices (as needed): Include any support documentation to facilitate an understanding of the report. Supplemental documents do not alter the sealed analysis or design.

Sign and seal the report in accordance with FDM 130. A Submittal/Approval Letter (Form 122–A, see FDM 103) is to be attached to the Signed and Sealed Report and submitted to the District or Turnpike Design Engineer. The District or Turnpike Design Engineer then approves or denies the request and notifies the Responsible Engineer. When further approvals are required, the District or Turnpike Design Engineer will forward the Submittal/Approval Letter and Sealed Report to the State Roadway Design Office.

122.7.2 Design Exception Approval

The request will be reviewed by the State Roadway Design Engineer and may be forwarded for approval to the Chief Engineer, the State Structures Design Engineer, the Planning Office, and FHWA, as appropriate.

Each request will be reviewed on a case by case basis and approved on its merits. When approval is obtained, the State Roadway Design Office will email the disposition to the District or Turnpike Design Engineer along with the signed Submittal/Approval Letter. The State Roadway Design Office will keep an electronic copy filed under the assigned reference number.

When a request is denied, the State Roadway Design Office will notify the District or Turnpike Design Engineer of the disposition. Denied requests can be resubmitted when all deficiencies, noted in the denial notification, have been addressed. This may require
only a new Submittal/Approval Letter if the Sealed Report does not need to be amended; however, if the Sealed Report requires revision, a new Sealed Report and attached Submittal/Approval Letter must be submitted.

Documentation requirements for Design Exceptions are in *FDM 122.4*.

122.7.3 Design Variation Approval

Design Variations are typically approved at the District level; however, there are specific elements requiring Central Office approval noted in *FDM 122.7.4* (see *Table 122.7.1*). Design Variations requiring Central Office approval must follow the processes in *FDM 122.7.2*.

Design Variations approved at the District level may be submitted as either a Formal Design Variation or a Design Variation Memorandum for approval by the District or Turnpike Enterprise Design Engineer.

Documentation requirements for Design Variations (both Formal and Memorandums) are in *FDM 122.4*.

122.7.4 Signature Requirements

Obtain all required approvals as described in this section. Approvals from multiple individuals may be required for certain issues. The Director of Design must resolve any approval authority issues if conflicting objectives arise. Approval signatures are required by the following Department and FHWA personnel as specified:

Chief Engineer:

1. Design Exceptions for Design Speed on SIS facilities, following review by the Chief Planner.
2. Design Variations for Design Speed on SIS facilities, following review by the Chief Planner.
3. Design Variations for omission of Emergency Shoulder Use (ESU) evacuation requirements for any phase of construction.
4. Design Variation for Shared Use Paths in LA R/W not meeting the criteria in *FDM 224.1.1*, following review by the Chief Planner.
5. Design Exceptions or Variations involving lateral offsets or vertical clearances for railroads not meeting the requirements of *Rule 14-57 F.A.C.* or the clearance...
criteria for the South Florida Rail Corridor (Topic No. 000-725-003 - South Florida Rail Corridor Clearance Policy for 25 KV service).

FHWA Division Administrator:

(1) Design Exceptions on Projects of Division Interest (PoDIs).

District (or Turnpike) Design Engineer:

(1) Design Exceptions

(2) Design Variations

State Roadway Design Engineer:

(1) Design Exceptions for elements other than Design Loading Structural Capacity.

(2) Design Variations involving the use of fencing around stormwater management facilities.

(3) Authority for approval of Design Exceptions and Design Variations on Florida Turnpike facilities has been delegated to the Turnpike Design Engineer by the State Roadway Design Engineer.

(4) Design Exceptions or Variations involving lateral offsets or vertical clearances for railroads not meeting the requirements of Rule 14-57 F.A.C. or the clearance criteria for the South Florida Rail Corridor (Topic No. 000-725-003 - South Florida Rail Corridor Clearance Policy for 25 KV service).

State Structures Design Engineer:

(1) Design Exceptions for Design Loading Structural Capacity of bridges and Vertical Clearance impacting Category 1 and 2 bridge structures.

(2) Design Variations for Design Loading Structural Capacity of bridges and Vertical Clearance impacting Category 2 structures.

(3) Design Variations for Design Loading Structural Capacity due to deficient load ratings impacting both Category 1 and 2 bridge structures.

(4) Design Variations for Traffic Railing impacting Category 1 and 2 bridge structures.

(5) Design Exceptions or Variations involving lateral offsets or vertical clearances for railroads not meeting the requirements of Rule 14-57 F.A.C. or the clearance criteria for the South Florida Rail Corridor (Topic No. 000-725-003 - South Florida Rail Corridor Clearance Policy for 25 KV service).
(6) Authority for approval of Design Exceptions and Design Variations for Vertical Clearance on Florida Turnpike facilities has been delegated to the Turnpike Design Engineer by the State Structures Design Engineer.

District (or Turnpike) Structures Design Engineer:

(1) Design Exceptions for Design Loading Structural Capacity of all structural items and Vertical Clearance impacting Category 1 and 2 bridge structures.

(2) Design Variations for Design Loading Structural Capacity of all structural items and Vertical Clearance impacting Category 1 bridge structures.
<table>
<thead>
<tr>
<th>Design Element</th>
<th>State Roadway Design Engineer</th>
<th>State Structures Design Engineer</th>
<th>Chief Planner</th>
<th>Chief Engineer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Speed Exception</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Speed Exception-SIS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Design Speed Variation-SIS</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Design Variation: ESU Omission during Construction</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Design Variation: Shared Use Path in LA R/W</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lane Width Exception</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoulder Width Exception</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Grade Exception</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross Slope Exception</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superelevation Rate Exception</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal Curve Radius Exception</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stopping Sight Distance Exception</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Variation: Traffic Railing (Category 1 and 2 Structures)</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Design Variation: Fencing on Traffic Railing between pedestrians and travel lanes on LA Facilities</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Design Variation: Crossovers on Limited Access Facilities</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Design Variation: Patterned Pavement Technical Special Provisions</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Design Variation: Use of fencing around stormwater management facilities</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Table 122.7.1 Central Office Approvals (Cont.)

<table>
<thead>
<tr>
<th>Design Element</th>
<th>State Roadway Design Engineer</th>
<th>State Structures Design Engineer</th>
<th>Chief Planner</th>
<th>Chief Engineer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Loading Structural Capacity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Design Exception</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Design Variation: Category 2 Structures</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Design Variation: Deficient Load Ratings (Category 1 and 2 Structures)</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical Clearance Exception</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Non-Bridge Items</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Bridge Structures (Category 1 and 2)</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>-RR-South Fla Rail Corridor</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Vertical Clearance Variation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Category 2 Structures</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-RR-South Fla Rail Corridor</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lateral Offset Variation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Category 1 and 2 Structures</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-RR-South Fla Rail Corridor</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
123 Engineering Design Estimate Process

123.1 General

The construction cost estimate (Authorization Estimate) is one of the last activities performed during the design phase. Use the following items to develop a construction cost estimate:

1. The contract plans set, including all component sets; e.g., structures, architectural.
2. The specifications, including the supplemental specifications and technical special provisions.
3. The Standard Plans referenced on the key sheet of the contract plans.

Modification for Non-Conventional Projects:

Delete FDM 123.1 and replace with the following:

123.1 General

The construction cost estimate (Authorization Estimate) is one of the last activities performed on design projects prior to beginning the procurement process. Use the following items to develop a construction cost estimate:

1. The Concept Plans including a Estimated Quantities Report, if available;
2. The Request for Proposal.

123.2 Basis of Estimates

The Standard Specifications establish the method of measurement, basis of payment, and pay items for work specified for road and bridge construction. The Basis of Estimates Manual contains design aids, notes, the pay item structure, a list of currently open pay items, and computation information to aid the engineer in preparing the cost estimate.

Pay items for the various categories of construction work should be identified as those components are completed. For example, pay items for base and pavement work may be identified as the pavement design is completed; signal pay items may be identified as the signal design is completed. The engineer doing the design and specifications should
be knowledgeable about what work is to be done and which pay items are needed. The quantity take-off is generally performed at a later date when the plans are final and the tabulations and calculations are completed. The persons doing the quantity take-off should also ensure that all pay items have been identified.

Use the *Basis of Estimates Manual* to identify pay items on all types of projects, e.g., resurfacing, widening, safety, bridge. If any work on a project is not covered by existing specifications, then a technical special provision and possibly a new pay item description, unit of measure, and basis of payment may be required. If a desired pay item is not available, contact the FDOT Project Manager or District Estimates Office for assistance. Additional details for requesting pay items are available in *Chapter 6* of the *Basis of Estimates Manual*.

Modification for Non-Conventional Projects:

| Delete FDM 123.2. |

123.3 Designer Interface for AASHTOWare Project
Preconstruction™ (formerly Trns•port)

The Designer Interface, available through the Program Management Office webpage via the Webgate login, is used to build categories and to add pay items and quantities to categories. Contact the District Estimates Office for more information.

Modification for Non-Conventional Projects:

| Delete FDM 123.3 and replace with the following: |

| 123.3 Designer Interface for AASHTOWare Project **Preconstruction™ (formerly Trns•port)** |

Use *Chapter 11* of the *Basis of Estimates Manual* to select the design-build pay items.
123.4 Estimated Quantities

123.4.1 Summary of Quantities

See FDM 902 for information on compiling and reporting quantities. See the Basis of Estimates Manual for further details. Place detailed documentation on calculations in the project’s Calculations folder and included in the CADD_[FPID].ZIP file with the Final Plans Submittal. See the CADD Manual for details.

123.4.1.1 Plan Quantity

The Department’s current practice is to provide for final payment under the plan quantity concept for a large number of commonly used items. Refer to the Standard Specifications to determine if an item is paid by plan quantity. This concept requires that the estimated quantities be calculated and documented as accurately as possible. Do not include contingencies in the quantity calculation for plan quantity pay items. The designer is responsible for the final pay quantity for all plan quantity items.

123.4.1.2 Final Measurement Concept

The designer is responsible to estimate a quantity for all final measure items. Because there are many variables associated with these items, the final pay quantity will be determined by measurements performed in the field when the item is being used or constructed.

123.4.2 Breakdown of Quantities

Pay item quantities are loaded into the Designer Interface system by category, to reflect the work shown in each design group. When incidental work from one design group is included in the component plans for another group, the pay items must continue to be loaded in the appropriate category for the work to be completed. When a contract contains more than one Financial Project ID, pay item quantities for each project are loaded separately. The Estimated Quantities Report must show separate quantities for each project. Only the Summary of Pay Items run from the Department’s WebGate Reporting menu will show the project totals, as well as the combined proposal/contract total. Additional information is available in Chapter 9 of the Basis of Estimates Manual.
123.5 Contract Time

Contract duration is the time required for the complete construction of the contract. Pay items measured per day need an accurate estimate of construction duration. Before completion of the design project, the plans package is submitted to the District Construction Office scheduling engineer for establishing the contract duration. Large complex projects should have the desired contract duration established earlier in the design process.

Modification for Non-Conventional Projects:

Delete FDM 123.5.

123.6 Alternative Contracting Practices

The Construction Office web page defines various contracting techniques used by the Department (https://www.fdot.gov/construction/AltContract/AltContract.shtm). When alternative contracting is called for by the Department, coordinate the PS&E preparation with the FDOT Project Manager.

Modification for Non-Conventional Projects:

Delete the previous paragraph and replace with the following:

The Construction Office web page defines various contracting techniques used by the Department (https://www.fdot.gov/construction/AltContract/AltContract.shtm). When design-build contracting method is called for by the Department, coordinate the estimate preparation with the FDOT Project Manager.
124 QA/QC Management Plan

124.1 General

Quality Assurance (QA) and Quality Control (QC) are two processes used to ensure that deliverables are complete, orderly, correct, and appropriate for the intended purposes. The quality of the deliverable must meet or exceed industry standards; i.e., "Due Diligence" ("Due or Ordinary Care").

Quality Control (QC) is the process of checking, reviewing, and revising deliverables to comply with Department requirements. Quality Assurance (QA) is enforcing and verifying that quality control procedures have been established and performed.

This chapter describes the Department’s QA/QC Management Plan for the development of deliverables. A deliverable is any professional service document (e.g., Plans, Specifications, Reports) that is produced for the Department.

Modification for Non-Conventional Projects:

Delete FDM 124.1 and insert the following:

124.1 General

See the RFP for Quality Management Plan (QMP) requirements which describes the Quality Control (QC) procedures to be utilized to verify, independently check, and review all design drawings, specifications, and other contract documents. The QMP must establish a Quality Assurance (QA) program to confirm that the Quality Control procedures are followed.

The Department reserves the right to conduct an audit of the Design Build Firm’s QMP process to ensure the submitted plan for the project is being properly executed. All documentation for QA/QC (e.g., check prints, design calculations) must be kept on file until construction of the project is complete at a minimum.
124.2 Quality Control Plan

A Quality Control Plan establishes the review procedures that are to be performed on each deliverable. The Quality Control Plan includes the following elements:

- QA/QC Staffing Plan
- Review procedures for each deliverable type (e.g., reports, plans, model)
- Certificate of Compliance

A project-specific Quality Control Plan is not required for Department (in-house) design projects; however, these projects must follow the procedures outlined in this chapter.

Consultant design projects must either:

1. Develop a project-specific Quality Control Plan acceptable to the Department. The Quality Control Plan is completed and accepted before any design efforts begin; typically, within 20 days after Notice to Proceed.

2. Adopt the Quality Control Plan requirements outlined in FDM 124 by submitting a declaration email to the Department PM. Attach the proposed QA/QC Staffing Plan to the declaration email. With this option, the prime consultant is responsible for ensuring that subconsultants also adhere to the procedures outlined in this chapter.

124.2.1 QA/QC Staffing Plan

The QA/QC Staffing Plan contains a list of required deliverables and associated discipline area. The plan must identify the following staff:

- Engineer of Record (EOR) (professional that will sign and seal the document)
- Lead Technical Professional
- Quality Control (QC) Reviewer
- Quality Assurance (QA) Manager

Include the above information for the entire design team; i.e., include information for Geotechnical, Landscaping, Survey and Mapping, Environmental, and Utility staff.

The QC Reviewer must not be involved in the development of the deliverable. Assigned staff are to be experienced, qualified and professionally licensed.

The Lead Technical Professional is the professional responsible for the development of the deliverable, which is often the Engineer of Record.
For consultant design projects, provide the Department PM with an updated staffing plan whenever staffing changes are necessary.

An example of a QA/QC Staffing Plan is shown in Table 124.2.1.
<table>
<thead>
<tr>
<th>Element/Task</th>
<th>Deliverable</th>
<th>Lead Tech. Professional</th>
<th>QC Reviewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Management (PM: Luke S. Walker, PE) (QA Manager: Dew Wright, PE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Schedule</td>
<td>Schedule</td>
<td>Luke S. Walker, PE</td>
<td>Dep Abillaba, PE</td>
</tr>
<tr>
<td>Quality Assurance</td>
<td>Quality Control Plan</td>
<td>Luke S. Walker, PE</td>
<td>Dep Abillaba, PE</td>
</tr>
<tr>
<td>Variations/Exceptions</td>
<td>Sidewalk Variation</td>
<td>Luke S. Walker, PE</td>
<td>Dep Abillaba, PE</td>
</tr>
<tr>
<td>Typical Section</td>
<td>Typical Section Package</td>
<td>Luke S. Walker, PE</td>
<td>Dep Abillaba, PE</td>
</tr>
<tr>
<td>Pavement Design</td>
<td>Pavement Design Package</td>
<td>Luke S. Walker, PE</td>
<td>Dep Abillaba, PE</td>
</tr>
<tr>
<td>Project Control</td>
<td>Roadway Plans</td>
<td>Chad Bane, PE</td>
<td>Anna King, PSM</td>
</tr>
<tr>
<td>Roadway Design</td>
<td>Roadway Plans</td>
<td>Chad Bane, PE</td>
<td>Dep Abillaba, PE</td>
</tr>
<tr>
<td></td>
<td>3D Corridor Model</td>
<td>Mora d’ Minbas, E.I.</td>
<td>Sabrina Ren, PE</td>
</tr>
<tr>
<td>Drainage Design</td>
<td>Roadway Plans</td>
<td>Flow Fast, PE</td>
<td>Dep Abillaba, PE</td>
</tr>
<tr>
<td>Quantity Computations</td>
<td>QTDSRD files</td>
<td>Mora d’ Minbas, E.I.</td>
<td>Sabrina Ren, PE</td>
</tr>
<tr>
<td>Specifications, TSP</td>
<td>Specifications Package</td>
<td>Luke S. Walker, PE</td>
<td>Dep Abillaba, PE</td>
</tr>
<tr>
<td>Signing & Pavement Marking (EOR: Tara Full, PE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signing Design</td>
<td>S&PM Plans</td>
<td>Tara Full, PE</td>
<td>Luke S. Walker, PE</td>
</tr>
<tr>
<td>Pavt Marking Design</td>
<td>S&PM Plans</td>
<td>Tara Full, PE</td>
<td>Luke S. Walker, PE</td>
</tr>
<tr>
<td>Quantity Computations</td>
<td>S&PM Plans</td>
<td>Chad Bane, PE</td>
<td>Luke S. Walker, PE</td>
</tr>
<tr>
<td>Survey and Mapping (SOR: Anna King, PSM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Survey</td>
<td>Survey Files</td>
<td>Anna King, PSM</td>
<td>Bob Afett, PSM</td>
</tr>
<tr>
<td>Terr Mobile LiDAR</td>
<td>SURVRD01.dgn file</td>
<td>Anna King, PSM</td>
<td>Bob Afett, PSM</td>
</tr>
</tbody>
</table>
124.2.2 Quality Control Review

This check and back check review process is performed by the applicable design group (in-house design units or consultants) before the deliverable is submitted for the Department’s ERC Review. The Quality Control Review may be conducted on either a printed paper copy or a PDF of the deliverable.

A formal and documented Quality Control Review is to be performed on all draft and final Reports, Documents and Plans where the final deliverable is signed and sealed. The project schedule must allocate time to complete this review prior to submittal date; typically, one to three weeks (depending upon complexity of the deliverable).

The deliverable that has completed the Quality Control Review is referred to as the “QC Document”. Documents that contain multidisciplinary information must show documentation of all applicable discipline reviews. For a paper review, scan the QC Document to PDF.

For consultant design projects, the QC Document must be included with the submittal of any deliverable in which the final document is to be signed and sealed; e.g., Typical Section Package, Pavement Design Package, Specifications Package, Plans (all phase submittals), Lighting Justification Report.

For all projects, the Department PM must place the QC Document in the project file.

124.2.2.1 5-Step Review

The 5-step review described in this section pertains to a review of a paper print of the QC Document. It is expected that minor differences to the 5-step review process described will occur based on office or business adopted practices; however, each of the five steps must be carried out.

A color scheme other than the one described in this section may be used. Specify the colors used within the QC stamp.

Step 1 – Origination

The Lead Technical Professional assembles the review document and applies a QC Stamp to the cover of a bound set of documents or to individual sheets, if unbound. The QC Stamp may be digitally generated. An example of a QC Stamp is shown in Figure 2.4.1.
The Lead Technical Professional enters a description for the QC Document in the block provided; e.g., Phase II Plans, Draft Typical Section Package. By initialing and dating the Origination block, The Lead Technical Professional affirms that the documents are ready for checking.

Figure 124.2.1 Example QC Stamp

<table>
<thead>
<tr>
<th>QC Stamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submittal:</td>
</tr>
<tr>
<td>Step</td>
</tr>
<tr>
<td>Origination</td>
</tr>
<tr>
<td>Checked</td>
</tr>
<tr>
<td>Correct - Yellow Highlight</td>
</tr>
<tr>
<td>Change - Red Comments</td>
</tr>
<tr>
<td>Concurrence</td>
</tr>
<tr>
<td>Agree - Green Check</td>
</tr>
<tr>
<td>No change - Green 'X'</td>
</tr>
<tr>
<td>Changes Made</td>
</tr>
<tr>
<td>Green Highlight</td>
</tr>
<tr>
<td>Changes Verified</td>
</tr>
<tr>
<td>Blue Check</td>
</tr>
</tbody>
</table>

Step 2 – Checking

The QC Reviewer checks the QC Document:

- Yellow highlight is used to identify the elements of the document that are deemed to be acceptable. Items not checked are not to be highlighted.

- Red mark is used to identify the elements of the document that are deemed to be in error or are questionable (i.e., provide comments).

Black pen (or similar) is used to perform interim manual calculations or make notes for reference on the document.

By initialing and dating the Checked block, the QC Reviewer affirms the completion of the checking process.

Step 3 – Concurrence

The Lead Technical Professional indicates agreement with the suggested change by placing a green check mark by the QC comment. This affirms that this change is to be
made. The Lead Professional indicates disagreement with the suggested change by placing a green “X” mark over the QC comment. This affirms that this change is not to be made. This is done only after the Lead Professional has discussed the comment with the QC Reviewer and they reach this conclusion together. Clarification of comment resolution may be provided near the QC comment using blue ink.

By initialing and dating the Concurrence block, the Lead Professional affirms completion of this Concurrence step.

Step 4 – Changes Made

The Lead Professional makes the agreed-upon changes and uses green highlight to identify that the change has been made.

By initialing and dating the Changes Made block, the Lead Professional affirms that all agreed-upon changes have been made.

Step 5 – Changes Verified

The QC Reviewer verifies that comments have been appropriately interpreted and addressed by placing a blue check by the QC comment. The QC Reviewer will coordinate any unresolved issues with the Lead Professional for final resolution, and Step 4 will be repeated when necessary.

By initialing and dating the Changes Verified block, the QC Reviewer affirms that all agreed-upon changes have been verified.

124.2.2.2 PDF Review

When conducting a Quality Control Review within a PDF document, use an electronic comment review, resolution, and documentation process mimicking the 5-Step Review Process. Place the QC Stamp only on the first sheet of the QC Document. **Bluebeam** offers a collaborative approach to performing digital QC reviews and is recommended for multidiscipline reviews; other software applications may be used that provide similar workflow.

124.2.2.3 3D Model Review

3D model reviews should be conducted and documented by using an electronic comment review, resolution, and documentation process that incorporates the 5-step structure.
Perform a 3D model review as outlined in Chapter 9 of the CADD Manual. As a minimum, a 3D model review should assess the following:

1. Geographical Coordinate System is defined in the model(s)/design file
2. 3D Baseline/Centerline is displayed in the model(s)
3. Referenced 3D model break lines match the 2D planimetric lines
4. Completeness of model(s), visually:
 - Gaps along the model
 - Spikes or lips along seams
 - Overlapping components
 - Transition between corridors and templates
 - Transition between varying slope values
 - Transitions at curb ramps and driveway locations
 - Slope harmonization with existing surface
 - Median Crossovers
 - Separator Islands
5. Verify Typical Section Elements:
 - Depths (pavement, base, concrete, etc.)
 - Widths (lane, shoulder, sidewalk, etc.)
 - Cross Slope (lane, shoulder, sidewalk, etc.)
6. Verify Station Offset Elevation at Critical Locations:
 - EOP at Drainage Nodes
 - Begin / End Taper Transitions
 - PC/PT of curves
7. Verify Vertical Clearance
8. Clash Detection - Interference Checking
9. 3D Deliverable Created:
 - XML files for Corridor Alignments
 - XML files for Existing and Proposed Surfaces (verified against 3D design)
 - Dgn or Dwg files for 2D and 3D lines
 - Icm file for OpenRoads Design Delivery
124.2.3 Certificate of Compliance

For consultant produced deliverables, the firm’s designated person for overseeing quality control activities (e.g., Quality Control Officer, Quality Assurance Manager) must review and certify that established quality control procedures have been performed. The purpose of the Certificate of Compliance is to attest that the level of effort used to complete the quality control review adheres to industry standards.

Coordinate requirements for the Certificate of Compliance with the Department PM.

124.3 Independent Peer Review

An independent peer review is supplemental to the Quality Control Review and is performed on selected consultant projects. This review is conducted by an independent team of qualified reviewers on specific design elements or portions of a project. Members of the independent peer review team are not assigned to the same organizational unit that managed and produced the project.

124.4 Field Review

A field review (A.K.A. Plans-in-Hand Review) is supplemental to the Quality Control Review. The review is held at the project site for the purpose of verifying the compatibility of the design with the field conditions encountered during construction. A record of the field review includes the following:

- Date and time.
- List of attendees.
- Documented site conditions and observations; may include marked up plan sheets, photographs or any other method deemed appropriate.

For consultant projects, provide the Department PM with a copy of the review record.
125 Quality Assurance

125.1 General

This chapter describes the planned and coordinated evaluation procedures conducted by FDOT Districts and the Central Office for the purpose of verifying and enforcing that established requirements are being met. Evaluation procedures ensure compliant and consistent performance by the districts and central office units that implement transportation programs.

Section 20.23(3)(a), Florida Statutes (F.S.), requires the establishment of departmental policies, rules, procedures and standards.

Section 334.048, F.S. states the Legislative intent with respect to the Central Office role in the Department's management accountability and monitoring systems, including corrective actions when appropriate.

125.2 District Quality Assurance Activities

Districts must conduct Quality Assurance (QA) Audits on consultant prepared plans and documents to verify that a Quality Control (QC) review was performed for each deliverable (see FDM 124). To complete the requirements of the QA Audit, districts must verify that the completed QC document demonstrates that the review procedures were completed, e.g., QC check prints, Bluebeam or Adobe QC PDF file, 3D-CADD file check list and notes.

Districts must also verify that the Certificate of Compliance was provided (see FDM 124.2.3).

125.2.1 Electronic Review Comment (ERC) Reviews

ERC Reviews are conducted by the Department utilizing the ERC system in accordance with FDOT Electronic Review Comments (ERC) System User Manual. The ERC system is an application used to track the review process (comments and responses) for project submittals in a database. The purpose of an ERC Review is to assure that the submitted documents meet Department requirements.

Documents are uploaded into the ERC system only after the required quality control procedures have been performed. It is expected that comments associated with poor
quality work are minimal; the focus of the ERC Review is to validate that the designs and reports are acceptable to the Department.

Discipline experts (reviewers of the document) are assigned through the ERC system, along with the required due date for providing comments. All comments must be adequately addressed before closing out the ERC Review.

125.3 Central Office Quality Assurance Review (QAR) Program

The Office of Design (Central Office) has a formal Quality Assurance Review (QAR) Program which is led by the Office of Design QAR Program Manager. The Office of Design evaluates the District Design Offices for compliance with Department policies, procedures, and manuals through this program.

The Office of Design QAR Program is conducted by Central Office staff; typically, by Roadway Design, Structures Design, and Production Support offices, but may include other offices as necessary. The overall goal of the QAR Program is to achieve an objective assessment on the Department's performance in following established requirements.

The Office of Design QAR Program consists of:

1. Development and adoption of an annual QAR Plan

2. Conducting QARs on various topics (which cover specific requirements contained within Policies, Procedures, and Manuals) and reporting the findings to the districts and other stakeholders, accomplished through the development and distribution of a QAR Memorandum

3. Annual QAR Plan Summary Report

125.3.1 QAR Plan Development

Annual QAR Plans are developed based on Fiscal Year, i.e., the FY 19/20 QAR Plan begins July 1, 2019 and completed by June 30, 2020. An example of a QAR Plan is shown in Exhibit 125.1.

The development and adoption of a QAR Plan occurs between February and April preceding the fiscal year that the plan will cover.
125.3.1.1 FY QAR Plan Development Meeting

For planning the upcoming fiscal year’s QAR activities, the Office of Design QAR Plan Development Meeting is held in early February and is led by the Office of Design QAR Program Manager. Representatives from the Roadway Design, Structures Design and Production Support offices attend the QAR Plan Development Meeting; staff from other FDOT offices and FHWA may also be in attendance. Agenda topics discussed at this meeting include:

1. Status of current fiscal year QAR Plan

2. QAR Topics to be considered for the upcoming fiscal year QAR Plan, based on the following priorities:
 a) Safety concerns
 b) Construction issues
 c) Conformance with new, changed, or existing departmental policies, rules, procedures and standards
 d) Non-compliance or needed improvement identified on previous QARs
 e) Opportunities to streamline processes and apply innovation

3. Cycle period to complete QARs for all districts. The following general practice applies, based on complexity of QAR and available resources:
 a) For each QAR topic identified, the established practice is to complete the reviews for all districts in a single fiscal year; however, a two or three-year cycle may be appropriate for topics requiring extensive evaluations, or ongoing Department programs; e.g., ADA, Pavement Design.
 b) Typically, QARs are conducted on contract documents, or design processes that were completed in the fiscal year preceding the fiscal year of the QAR Plan. Each project will be evaluated for compliance based on the manuals, policies, and procedures in place at the time the document or design was completed.
 c) QAR evaluations should be conducted in the 1st (July-September), 2nd (October-December), and 3rd (January-March) quarters of each fiscal year QAR Plan.
 d) The Final QAR Memorandum is to be completed and distributed by the end of the quarter following the quarter in which the QAR evaluation was performed; e.g., Final QAR Memorandum is distributed by December 31st for a QAR conducted in the 1st quarter.
4. Assess QAR topics for future fiscal year plans; typically, a one to two-year look ahead.

125.3.1.2 DRAFT FY QAR Plan

QAR representatives from the Roadway Design, Structures Design, and Production Support offices reconvene in early March to complete the DRAFT FY QAR Plan. The focus of this meeting is to select the proposed QAR Topics to be included in the plan.

To complete the DRAFT FY QAR Plan, the following information is identified:

1. **Office Unit** – Unit responsible for conducting the QAR.

2. **QAR Leader** – Individual who will take the lead in conducting the QAR.

3. **Authority** – Department policy, rule, procedure, or standard governing the QAR Topic.

4. **QAR Topic/Purpose**
 a. **Topic**: The area or subject of the planned QAR evaluation.
 b. **Purpose**: The QAR objective and specific requirements being evaluated.

5. **QAR Cycle** – The fiscal year quarter in which the QAR will begin. The FY QAR Plan should not subject any district to excessive reviews within the planned year, or within a single quarter.

125.3.1.3 FY QAR Plan Adoption

The DRAFT FY QAR Plan is presented to the District Design Engineers (DDE) and District Consultant Project Management Engineers (DCPME) in early April. Following the presentation, districts have two weeks to request additional information as to the intent of the QAR Topic or suggest changes to the QAR Cycle.

The FY QAR Plan is formally adopted in early May.

125.3.2 Conducting a QAR

Conducting a QAR involves the following activities:
1. Conducting a QAR Kick-off Meeting

2. Evaluation of projects for compliance with the QAR purpose statement

3. Documenting the findings in a Draft QAR Memorandum

4. Resolution of Findings

5. Distribution of Final QAR Memorandum

Depending on complexity, a QAR may be conducted by remote review, district visit, or a combination of the two methods. Conducting a QAR involves Central Office and district staff working together to complete the review activities.

125.3.2.1 QAR Kick-off Meeting

The QAR Leader should contact the appropriate district staff at the beginning of the quarter in which the QAR is to be conducted to schedule the QAR kick-off meeting. The QAR Kick-off meeting agenda should include the following:

1. QAR topic and purpose
2. Identification of Central Office and district staff that will participate in the QAR
3. Proposed schedule
4. Selected projects to be evaluated and the best method for obtaining the data.
5. Agree-upon date to complete the gathering of the required information.

125.3.2.2 Evaluation of Projects

Central Office staff will evaluate district documentation in accordance with the QAR purpose statement. Evaluation of provided documents is typically conducted through office reviews; however, a field review or district visit may be appropriate.

The findings should be tabulated with a clear indication that the project was in full compliance, compliant with opportunity for improvement, partial compliance, or non-compliance. An explanation as to what triggered any partially or non-compliance determination is to be provided.

Project evaluations should be completed by the end of the quarter in which the QAR is to be conducted. The findings of the QAR are documented within a draft QAR Memorandum which is shared with the district.
125.3.2.3 QAR Memorandum

A district-specific QAR Memorandum is to be developed for each QAR Topic. The memorandum contains the following sections:

1. Executive Summary
2. Projects Selected for Review
3. Evaluation Method (Optional)
4. Findings
5. Observations (Optional)
6. Recommendations

Executive Summary

This section should be succinct (1-3 paragraphs) and should not extend to a 2nd page.

1. First paragraph should state which design office conducted the review (include other offices if it was a joint review) and the quarter in which the review took place. Include the names of the Central Office and district key staff that participated in the review.

2. Second paragraph should provide the stated purpose of the review; e.g., “The specific purpose of this QAR was to verify inclusion of applicable documents in the required E&O file.”

3. Last paragraph should provide the results of the evaluation by indicating that the district was in full compliance, compliant with opportunity for improvement, partial compliance, or non-compliance.

Projects Selected for Review

This section should provide a description of how the projects were selected to be included in the QAR.

1. First paragraph should describe the general project attributes that qualified it for inclusion of the QAR evaluation, e.g., “This QAR included projects with a letting date between July 1, 2017 and June 30, 2018 and proposed a new or extended bridge culvert. Eight projects were identified that met these parameters”.

2. Subsequent paragraphs should include discussion on why projects were added or subtracted from the list to be evaluated.
3. Last paragraph should state the number of projects that were selected for evaluation.

Evaluation Method (Optional)

This optional section is used to provide a description of the process used to evaluate the compliance of selected projects.

Findings

This section should indicate how the district performed overall and whether the projects met the stated requirements. At a minimum, this section should include:

1. First paragraph should begin with “The following table provides a summary of the findings for each project evaluated as part of this QAR.” The table may be omitted if there were only one or two projects identified.

2. Flexibility in content and format of tabulated findings should be exercised to clearly convey the information. Only include information that is the basis for why the district did or did not comply with requirements along with statements about what was missing or incomplete. Do not include comments concerning the quality of the document or submittal.

3. Subsequent paragraphs should include discussion concerning the assessment of specific projects if additional information would help to clarify findings.

Observations (Optional)

This optional section is used to provide comments concerning faults or best practices in district processes, quality of project deliverables, or any other topic that may have contributed to the findings. It may include discussion on benefits of compliance (improved safety and operational performance or cost savings) and missed opportunities identified through the QAR.
Recommendations

This section should list actions the district should consider for improving compliance with the stated requirements. Include suggested participation in training opportunities directly related to the QAR Purpose. This section may also include recommendations for Central Office improvements (e.g., new, improved or additional training, clarification to departmental policies, rules, procedures and standards).

125.3.2.4 Resolution of Findings

The Draft QAR Memorandum is shared with district staff involved in the QAR, followed by a discussion of findings and recommendations. The resolution of findings is typically face-to-face to assure open dialog between Central Office and district staff. Video conference or teleconference may be used in lieu of face-to-face meeting when deemed appropriate.

125.3.2.5 Distribution of Final QAR Memorandum

The memorandum is finalized after agreed-upon edits from the resolution of findings have been made. The Final QAR Memorandum is typically sent from the manager of the Roadway Design, Structures Design, or Production Support office, as appropriate.

The memorandum is addressed to the District Secretary, with the following recipients copied:

1. Director, Office of Design
2. District Director of Transportation Development
3. District Design Engineer
4. Office of Design QAR Program Manager
5. FHWA Design Program Manager
6. FHWA Quality Assurance Manager

125.3.2.6 Quality Management Dashboard

Quality Management Dashboard (QMD) is a Department enterprise application that is used to store QAR information. The QAR Leader will upload QAR findings and recommendations into the QMD after the Final QAR Memorandum is distributed.
125.3.3 QAR Summary Report

When all the district QAR Memorandums have been completed on a QAR topic, the QAR Leader will summarize findings for that QAR topic in a QAR Summary Report. This report should be no more than one page and is not intended to repeat the individual district QAR Memorandums. This report will summarize recommendations, action items, lessons learned, and best practices identified through that year’s QARs for that QAR topic. The QAR Leader will submit this QAR Summary Report to the Office of Design QAR Program Manager prior to June 30th.

The Office of Design QAR Program Manager will compile the individual QAR Summary Reports into a Summary of Recommendations and Action Items Report that should be provided to FHWA no later than August 31st of each year.

The Office of Design QAR Program Manager maintains a library of the Annual QAR Plans, QAR Memorandums, QAR Summary Reports, and a QAR Findings Log.
Office of Design
FY 2019/2020 QAR Plan

Production Support Office

<table>
<thead>
<tr>
<th>Office Unit</th>
<th>Leader</th>
<th>Authority</th>
<th>Topic / Purpose</th>
<th>QAR Cycle by District</th>
</tr>
</thead>
</table>
| Value Engineering | Kurt Lieblong | Topic No. 625-030-002 | **Topic**: Value Engineering (VE) Procedures
Purpose: Assess the determination of eligible projects, work plan submission, team member criteria and the 6 phases of the VE job plan. | 1,4,5,6
2,3,7,T |
| Landscape Architecture | Jeff Caster | Work Program Instructions | **Topic**: Part III - Ch 16: Landscape Installation
Purpose: Evaluate compliancy with requirements for the inclusion of landscape plans in a construction contract. | 1,6
4,T |

Roadway Design Office

| Standard Plans | Darwood Sheppard | Topic No. 625-010-003 | **Topic**: Longitudinal Barriers
Purpose: Determine if new standards and associate policies are being implemented | 5
2
4,T |
|------------------------|-------------------|-----------------------|--|------------------------|
| Pavement Management | Rhonda Taylor | Work Program Instructions | **Topic**: Pavement Resurfacing
Purpose: Evaluate compliancy and consistency in selecting and programming projects in the resurfacing program. | ALL |
| | | Topic No. 625-010-002
Topic No. 625-010-005
Topic No. 625-010-006 | **Topic**: Pavement Design Policy
Purpose: Evaluate compliancy and consistency with state standards in developing pavement designs. | 4
7 |
| Drainage | Carlton Spirio | Topic No. 625-040-002 | **Topic**: Bridge Hydraulic Reports
Purpose: Evaluate consistency in format and content. | 3
T
1,5 |
| Quality Assurance | Jeremy Fletcher | Topic No. 625-020-016 | **Topic**: Americans with Disabilities Act (ADA)
Purpose: Evaluate design content in Architectural Plans and accessibility issues with existing facilities. | 5
2
3 |

Structures Design Office

| Structures | Scott Arnold | Topic No. 625-000-002 | **Topic**: FDM 121 Bridge Project Development
Purpose: Follow-up from the 2015 QAR | 2,3,6,7 |
126 Lane Repurposing Projects

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete FDM 126.</td>
</tr>
</tbody>
</table>

126.1 General

Lane repurposing projects (a.k.a., “road diets”, “lane elimination”, or “lane reduction”) are intended to reduce the number of travel lanes to achieve systemic improvements. Generally, the purpose of these projects is to reconfigure the existing cross section to enhance other uses and travel modes. Lane repurposing projects typically contribute to the economic development, livability and vitality of a community. The recovered travel way can be used to accommodate other uses such as separated or buffered bicycle lanes, wider sidewalks, landscaping, on-street parking, bulb-outs, traffic calming, transit, and pedestrian refuge islands. Guidance on the development and review processes for repurposing lanes on the SHS is provided in the Department’s *FDOT Lane Repurposing Guidebook*.

A local government entity (e.g., municipality, county, Metropolitan Planning Organization (MPO), Transportation Planning Organization (TPO) or the Department can submit a request for the repurposing of travel lanes on the State Highway System (SHS)). A private entity may only submit a request through a local government entity. Proposed lane repurposing projects may be part of a larger community vision. With sufficient advanced planning, lane repurposing projects are often done in conjunction with Resurfacing, Restoration and Rehabilitation (RRR) projects. It is preferred that lane repurposing projects be identified ahead of time through a planning exercise such as a district area wide multimodal mobility plan, community vision plan, or downtown redevelopment plan.

If the project has a PD&E phase, the requirements of this chapter are followed during the PD&E study prior to the selection of a preferred alternative. See *Part 1, Chapter 2* of the *PD&E Manual* for additional information.

126.2 Requirements

Lane repurposing projects must comply with AASHTO and Department design criteria. A Design Exception or Design Variation is required when an existing or proposed design element does not comply with the governing criteria. See *FDM 122* for information on Design Exceptions and Design Variations.
Lane repurposing projects should be consistent with the Long-Range Transportation Plan (LRTP), Transportation Improvement Program (TIP), and Transit Development Plan (TDP).

Analyze impacts of a lane repurposing project with consideration for the following:

- Utilities
- Access management
- Businesses
- Traffic operations
- Safety
- Pedestrian and bicyclist activities
- Transit and freight routes
- Environmental impacts
- Evacuation routes
- Emergency responders
- Functional classification
- Context classification
- Landscaping (shade or architectural)
- Speed (target, design and posted)
- Traffic impact due to diversion to parallel routes

Four-lane undivided roadways with AADT ≤ 20,000 are typically good candidates for a lane repurposing (e.g., converting to a two-lane, two-way road with a center-left-turn-lane). However, projects are evaluated for lane repurposing feasibility on a case-by-case basis.

If exclusive bus lanes/business access & transit (BAT) lanes are proposed in the lane repurposing project, coordinate with Office of Modal Development/Public Transit and local transit agency.

In addition to impacts of lane repurposing projects, conduct public involvement activities in accordance with the Public Involvement Handbook.

126.2.1 Federal-Aid Projects

Follow the National Environmental Policy Act (NEPA) for lane repurposing projects that use federal funding.
126.2.2 Roadway Functional Reclassification

A lane repurposing project can potentially change the functional classification of a roadway, which could affect planning, funding eligibility, traffic analyses, project prioritization, and state and federal reporting requirements.

A request for a change in functional classification requires review and approval by the Department and FHWA. Approval is typically requested during the preliminary review process. More information is provided in the Department’s Urban Boundary and Functional Classification Handbook. This handbook can be found at the FDOT Transportation Data and Analytics website:

A proposed change in functional classification of a roadway on the National Highway System (NHS) requires coordination between the Department, local officials, and FHWA.

126.3 Application Process

The application process consists of three main steps: coordination between Applicant and the District, a preliminary review and approval by District, and the final review and approval by Central Office (CO). FDM 103 includes the Forms 126-A, B, and C that are utilized during this process. Form 126-A is used as guidance for project meetings, reports and methodology, Form 126-B establishes the initial notification to CO Systems Implementation Office (SIO) and Form 126-C confirms the final review and approval from CO.

126.3.1 Project Initiation

(1) The applicant submits the lane repurposing request to the District Lane Repurposing Coordinator.

(2) The applicant submits required information in the Initial Meeting and Methodology Checklist (Form 126-A) to the district prior to the initial meeting.

(3) The District Lane Repurposing Coordinator schedules the initial meeting to discuss the proposed lane repurposing project with the District Review Team, which includes the following district offices:

 (a) Planning

 (b) Environmental Management
(c) Modal Development
(d) Design
(e) Traffic Operations

(4) The applicant attends this initial meeting to discuss the process and requirements of the lane repurposing request.

(5) The District Lane Repurposing Coordinator submits the initial notification to Central Office Systems Implementation Office. This will include:
(a) Initial Meeting and Methodology Checklist (Form 126-A)
(b) Meeting Minutes
(c) The applicant completes and submits the Initial Meeting and Methodology Checklist (see FDM 103, Form 126-A.) Initial Notice to Central Office (Form 126-B), with concurrence from the District Planning and Environmental Administrator, District Design Engineer and District Traffic Operations Engineer.

126.3.2 District Preliminary Review

The District Preliminary Review is as follows:

(1) The applicant will submit a draft concept report containing a proposed typical section to the District Lane Repurposing Coordinator for review.

(2) The District Lane Repurposing Coordinator will coordinate the review of the project and concept report with the District Review Team.

After District reviewer’s acceptance, a Final Concept Report must be submitted along with Form 126 C and signed at the District level to Central Office for review. The District Lane Repurposing Coordinator will work closely with Central Office staff during this review phase.

126.3.3 Final Review and Approval

The Final Review and Approval process is as follows:

(1) The District Lane Repurposing Coordinator submits the Final Review and Approval Notice to Central Office Systems Implementation Office (Form 126-C), signed by the District Planning and Environmental Administrator, the District Design Engineer, and the District Traffic Operations Engineer, along with the Final Concept Report.
(2) The Systems Implementation Office coordinates the review of the lane repurposing request with the different offices in Central Office (e.g., Design, Traffic Engineering and Operations) and obtains concurrence from the Chief Planner.

(3) The Systems Implementation Office submits the lane repurposing request for obtaining the final approval or denial to the Chief Engineer. The Chief Engineer has the final authority to approve, deny or object (with comments) to the lane repurposing request.

(4) The Systems Implementation Office submits notification to the District Lane Repurposing Coordinator of the Chief Engineer’s decision.

(a) Approved: application process is complete.

(b) Denied: includes an explanation for the denial.

(c) Objection with comments: the applicant may resubmit the lane repurposing proposal to the District once the comments have been addressed. The resubmittal must include an updated and signed Form 126-C (included in FDM 103).
127 Community Aesthetic Features

127.1 General

A Community Aesthetic Feature (CAF) is an enhancement installed within the Department’s right of way to represent or reflect the surrounding community’s identity, culture, and values. A CAF may also enhance the sense of place through which a highway passes.

A CAF placed within FDOT Right of Way (R/W) or attached to an FDOT structure or facility must be approved by the Department. These features are designed, maintained, and paid for by a local governmental agency. A CAF is typically constructed by the sponsoring entity but may be included as part of a Department project.

The **Community Aesthetic Feature Agreement (Form Number 625-010-10)** must be executed by the local governmental entity and the Department prior to any construction within the Department’s R/W. This agreement provides for the removal and/or relocation of the CAF at the local governmental entity’s expense should it not be maintained by the local governmental entity, or if the Department needs the R/W for transportation purposes. A Deposit, Performance Bond, or Letter of Credit is required as part of the **Community Aesthetic Feature Agreement**. A waiver of the Deposit, Performance Bond or Letter of Credit is allowed for certain minor installations as indicated within the CAF agreement.

See **F.S. 334.187** for Bond and Letter of Credit requirements.

Final plans for placing a CAF within the Department’s R/W must be accompanied by a resolution of the local governmental entity indicating their full financial responsibility for the feature’s design, construction and maintenance during its lifespan. The resolution must indicate the office or position title (e.g., Mayor, City Manager) within the local agency with approval authority to execute the CAF agreement.

127.2 Requirements

A CAF must meet the Department’s requirements governing safety, access, and maintenance of the highway. A CAF is classified in the following categories:

1. Public Art (Stand Alone or Affixed)
2. Local ID Markers (Stand Alone or Affixed)
While there are some criteria unique to each category, all CAFs must meet the following requirements:

1. Except where parking is available, select a site and lay out the site plan to deter drivers from stopping within the roadway. If drivers are expected to stop or park, provide for parking in the plan. If public access is available, Department Standards and Specifications must be met, including ADA requirements. Prohibit public access to the CAF when located within limited access R/W.

2. The feature must not contain any signs as defined in the 2009 Manual on Uniform Traffic Control Devices (MUTCD), Part 1, Chapter 1A.13, traffic control features, auditory devices, reflective surfaces, flashing lights, moving parts or moving illumination.

3. The feature must not contain any advertising per the MUTCD and 23 C.F.R., 1.23 which prohibits advertising on, or commercial use of the R/W. Commercial advertising on state R/W is also prohibited by Chapter 479, Florida Statutes, including charitable, fraternal, religious, or political signs, symbols, logos, banners, web links, or any other such devices. Governmental seals or logos are permitted as part of a Local ID Marker.

4. Lighting of the feature must not be directed at motorists, bicyclists or pedestrians. For roadway and intersection lighting criteria see FDM 231. When located near an airport, the feature must not create a hazard as defined by Section 333.01(3), F.S.

5. In absence of feature lighting, messages or text included on Local ID Markers must be retroreflective. Decorative or accent lighting must not include any strobe effects, flashing lights, moving parts, or moving illumination.

6. CAF installations that are visible from the Interstate mainline, require FHWA approval.

7. Do not install Public Art or Local ID Markers in both the median and roadside at a given location. Median placements are allowed on roadways with restricted right of way or restricted roadside conditions.

8. CAFs within the median of a limited access facility are prohibited.

9. One Stand-Alone feature will be allowed per mainline interchange approach (for a maximum of two installations). The local governmental entity must select one site from amongst the ramp and the mainline, along the outside of a ramp, or the area inside a loop ramp.

10. The feature must meet applicable building codes and design criteria for similar structures or landscaping placed adjacent to the highway’s R/W, including wind loading commensurate with highway signs in the area.
(11) The feature must not cause adverse impacts or create public controversy related to any of the following:
 (a) Property access
 (b) Air quality
 (c) Noise
 (d) Water quality
 (e) Wetlands
 (f) Floodplain encroachments
 (g) Imperiled, endangered or threatened species or their critical habitat
 (h) Historical resources

(12) The CAF, including amenities like landscape or fencing, must not obstruct signs or interfere with a sight distance, sight triangle, or permitted view zone (billboards).

(13) The CAF final design must be signed and sealed by a responsible professional licensed in Florida, excluding art wraps.

(14) Attachments to fencing on structures is not permitted.

127.2.1 Public Art (Stand-Alone)

Additional requirements for Public Art (Stand-Alone) are as follows:

(1) All roadways
 (a) The location must be outside the appropriate lateral offset or clear zone as defined in FDM Table 215.2.3 and 215.2.4, and should be as close to the right of way line as practical.
 (b) The structure may not display messages with text or contain any words or alpha-numeric characters.
 (c) The artist’s insignia may be inscribed or etched on a small plaque affixed to the artwork or placed on the artwork itself. The insignia must not be visible from the roadway so as to avoid distraction to drivers or bicyclists.
 (d) The object’s highest point must not be greater in elevation than 25 feet above the nearest point of the traveled way.

(2) Curbed roadways
 The feature may be placed within the median of curbed roadways, where:
(a) The Design Speed is less than or equal to 45 mph, and
(b) The R/W or roadside is restricted, and
(c) A minimum 4-foot offset from the face of curb is provided.

127.2.2 Public Art (Affixed)

Additional requirements for Public Art (Affixed) are as follows:

1. The feature may not display any messages with text or contain any words or alphanumeric characters.
2. The artist’s insignia may be inscribed or etched on a small plaque affixed to the artwork or placed on the artwork itself. The insignia must not be visible from the roadway so as to avoid distraction to drivers or bicyclists.
3. For bridges, the feature must not reduce the vertical clearance over the roadway.
4. For art wraps affixed to roadside features:
 (a) Do not obstruct traffic control cabinet vents or access panels with the art wrap.
 (b) Art wrap themes can be approved for general use by a local government entity.
 (c) A CAF Agreement will be required for these features.
 (d) Any maintaining agency, other than a local government, must coordinate approvals and maintenance through the appropriate local government entity.
 (e) Official seals or logos representing the local governmental entity are permitted. Alpha-numeric characters are allowed if they are part of official seals or logos. Seals or logos must be less than 200 square inches each. Only one seal or logo per face is permitted.
 (f) Maps on traffic control cabinet wraps are not permitted to face the roadway.
 (g) A Deposit, Bond, or Letter of Credit is not required for art wraps on traffic control cabinets.
 (h) The DDE should coordinate with the District Traffic Operations Office during the review process for traffic control cabinet wraps.
127.2.3 Local ID Marker (Stand-Alone)

Additional requirements for a Local ID Marker (Stand-Alone) are as follows:

(1) All roadways:
 (a) Local ID Markers are intended to represent the geographic boundary for a county, municipality, sovereign nation, or unincorporated area. The Markers should be located in close proximity to the actual geographic boundary of that area. Remove existing standard geographic boundary guide signs, and unofficial signs or structures, at or near the location.
 (b) Local ID Markers for an unincorporated or community area must provide a map, or sufficient enough description to clearly designate the geographic boundary of the area. Also provide documentation of approval of such boundary by the local governing authority.
 (c) The location must be outside the appropriate clear zone and lateral offset as defined in FDM 215.2.3 and 215.2.4 and should be as close to the R/W line as practical.
 (d) The structure may contain text such as the name of the municipality, county, or community area (as defined in Chapter 14-51.041, F.A.C.) with a short phrase or message. Text such as “Exiting” or “Leaving” are prohibited.
 (e) The object’s highest point must not be greater in elevation than 25 feet above the nearest point of the roadway.

(2) Curbed roadways:
 The feature may be placed within the median of curbed roadways, where:
 (a) The Design Speed is less than or equal to 45 mph, and
 (b) The R/W or roadside is restricted, and
 (c) A minimum 4-foot offset from the face of curb is provided.

(3) Limited Access Facilities:
 (a) Provide a minimum 50-foot offset (100-foot preferred) from the edge of the traveled way, whether guardrail is present or not. The 50-foot to 100-foot lateral offset will help to minimize driver distraction and reduce the likelihood that vertical structures will become storm debris blown across the roadway.
 (b) Letter height must not exceed four feet.
 (c) Short phrases or messages are prohibited.
127.2.4 Local ID Marker (Affixed)

Additional requirements for a Local ID Marker (Affixed) are as follows:

(1) All roadways:
 (a) The feature may contain text such as the name of the municipality, county or community area (as defined in Chapter 14-51.041(2)(c), F.A.C.) with a short phrase. Text such as “Exiting” or “Leaving” are prohibited.
 (b) For bridges, the feature must not reduce the vertical clearance over the roadway.

(2) Limited Access Facilities:
 (a) Letter height must not exceed four feet.
 (b) Short phrases or messages are prohibited.

127.3 Approval Process

The application process is conducted in two phases, the Concept Phase and the Final Phase.

When any of the requirements in FDM 127.2 are not met, a Design Variation must be approved by the District Secretary.

127.3.1 Concept Phase

The Concept Phase includes District coordination with the applicant to ensure:

(1) The appropriate Community Aesthetic Feature category is selected,
(2) The corresponding requirements are achievable and acceptable, and
(3) The conditions of the Community Aesthetic Feature Agreement are acceptable.

The local agency will submit a concept drawing and documentation to the District Office. The concept submittal must include a Submittal/Approval Letter, which can be found in FDM 103, Form 122-A. The Submittal/Approval Letter is to be signed by a representative of the requesting entity, the District Design Engineer (or Turnpike Design Engineer), and the District Secretary.

Upon review by the District Design Engineer and the District Secretary, conceptual approval may be granted. If the concept and proposed Design Variations are deemed...
acceptable, the signed **Submittal/Approval Letter**, indicating conceptual approval, will be returned to the local agency.

For applications involving the Interstate System, the District should coordinate with the FHWA District Transportation Engineer.

The package submitted to the District Office for conceptual approval must include the following:

1. The designation of the feature category.
2. A conceptual drawing/rendering showing the top, front, and side views of the feature with labeled dimensions, material designations including connections, proposed lighting configuration, and any alpha-numeric characters.
3. A draft site plan and cross section view dimensioning the location of the feature in relationship to the edge of traveled way and the R/W.
4. The design speed of all adjacent roadways.
5. A citation of the Governing Design Standards (or Governing Standard Plans), criteria, and building code to which the feature will be designed.
6. If the feature is to be affixed to a bridge:
 a. Identify the bridge owner.
 b. Declare what the impact is to the bridge loading.
7. For Local ID Markers, include a site map or provide a dimension from the jurisdictional boundary associated with the marker.
8. The Signature/Approval Letter signed by the applicant.

127.3.2 Final Phase

The Final Phase includes the preparation and review of all final documents. The local agency will submit the **Submittal/Approval Letter** and final documents for approval to the District Design Office. The District Secretary will review the application and either grant approval to place the feature or deny the submittal with comments.

The package submitted to the District Design Office for final approval must include the following:

1. Site Plans, including a Traffic Control Plan if temporary maintenance of traffic will be required to place and/ or maintain the feature.
2. Structural Plans including a wind load analysis.
(3) Local Governmental Entity Resolution.

(4) Design Variations for any requirements in **FDM 127.2** that are not met.

(5) **Community Aesthetic Feature Agreement** signed by the local governmental entity.

(6) **Signature/Approval Letter** signed by the applicant.

Upon receiving final approval by the District Design Engineer (or Turnpike Design Engineer), the District Secretary, and, if applicable, FHWA, the District will notify the local governmental entity that placement of the feature may proceed. The final approval is valid for one year, at which time the local governmental entity may request an extension from the District.

127.4 Place Name Signs

Customized Place Name Signs are considered Local ID Markers which are addressed in **FDM 127.2.3 and 127.2.4**.

The placement of Place Name Signs within FDOT R/W is regulated by the Department. Requirements for Place Name Signs within FDOT R/W are located in **Rule Chapter 14-51, F.A.C., Part IV Place Name Signs**.

All signs placed within the Department’s R/W must meet the requirements contained in the **MUTCD, Part 2**. Signs for general information, services, tourist destinations, and recreational/cultural interest areas all have specific chapters in the **MUTCD**, which specify color, size and lettering requirements. Destination signs are classified in the **MUTCD** as Guide Signs.

127.5 Blue Star Memorial Markers and Flag Poles

Blue Star Memorial Markers and Flag Poles are not considered Community Aesthetic Features and are not covered by this chapter. These markers are managed through the Local FDOT Maintenance and Traffic Operations offices.
128 Federal-Aid Project Certification

128.1 General

The Florida Department of Transportation (FDOT) has a Stewardship and Oversight Agreement with the Federal Highway Administration (FHWA) setting forth the respective roles, responsibilities, and accountability of FDOT and FHWA in the administration of Federal-aid highway funds. See FHWA-FDOT Stewardship and Oversight Agreement, Topic No. 700-000-005, and Title 23 United States Code 106 (23 USC 106). Under this agreement, FHWA grants to FDOT general responsibilities and approvals for design, plans, specifications, estimates, contract awards, contract administration, and project inspections on Federal-aid highway projects except for those projects FHWA and FDOT used the risk-based approach to select as projects of Division Interest” (PoDI), and as discussed in FDM 128.2. For those projects that FDOT has oversight responsibility, FDOT will act on FHWA’s behalf by complying with all applicable FHWA policies, regulations, Title 23 USC, and non-Title 23 USC requirements. Notwithstanding this, FHWA may become involved with any Federal-aid project and retains overall responsibility for all aspects of Federal-aid programs. As such, FHWA has full access to and the legal authority to review any aspect or record of any Federal-aid project at any time. In accordance with Title 2 Code of Federal Regulations Part 200 (2 CFR Part 200), records will be retained for a minimum of three years or until litigation, claims or audit findings initiated before the three-year period have been resolved.

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete the second sentence of the above paragraph and replace with the following:</td>
</tr>
<tr>
<td>See FHWA-FDOT Stewardship and Oversight Agreement, Topic No. 700-000-005, Title 23 United States Code 106 (23 USC 106), and Title 23 Code of Federal Regulations 636 (23 CFR 636).</td>
</tr>
</tbody>
</table>
128.2 Selection of Federal-Aid Projects

In accordance with the Stewardship and Oversight Agreement, annually in July, FHWA and FDOT will use risk-based approach to negotiate which new projects will be selected as Projects of Division Interest (PoDI). The FHWA Transportation Engineer will coordinate the project selection with their assigned FDOT District Office. Ideally, the projects will be selected from projects listed in the Statewide Transportation Improvement Program (STIP) to be approved by FHWA the following October 1st, and will include projects selected from all four years of the STIP. The projects selected should be on the Federal-aid system to primarily include the Interstate and National Highway System (NHS) routes, but non-NHS projects can be selected. The projects should be selected considering the factors below:

1. All major projects as defined by FHWA’s major project criteria (cost ≥ $500 million)
2. Controversial and Congressional interest Projects
3. Demonstration (demo) and pilot projects
4. Interstate projects:
 a. With Design Exceptions to the 10 controlling criteria
 b. For new or modified access points
 c. For major reconstruction and widening
5. Projects utilizing innovative contracting methods (e.g., design build, public-private partnerships)
6. Special Experimental Projects (SEP):
 a. Projects requiring SEP-14 approval for alternative contracting methods
 b. Projects requiring SEP-15 approval for public-private partnerships
7. Unusually complex or controversial projects
8. Major unique and/or unusual structures
9. A priority focus for projects on the NHS
10. A desire to have a mix in project size and scope
All federally funded projects must comply with applicable non-Title 23 U.S.C. requirements which include, but are not limited to:

1. National Environmental Policy Act (NEPA) of 1969 pursuant to 40 C.F.R. Parts 1500 - 1508, 23 C.F.R. Section 771 and Section 6002 of SAFETEA-LU
2. Section 4 (f) of the DOT Act of 1966
3. Clean Air Act Amendments of 1990
4. Civil Rights Act of 1964
5. Civil Rights approvals
6. Disadvantaged Business Enterprise Program (DBE)
8. Hardship acquisition and protecting buying
10. Davis-Bacon wage rates
11. Waiver for Buy America requirements
12. SEP-14/SEP15 contracting methods
13. Executive Orders
14. FHWA Guidance and technical advisories
15. Addition/modification of access points to the Interstate (Interchange, locked gate access points, median crossovers for construction)
16. Project by project obligation of federal funds
17. Modifications to Federal-aid project agreements
18. Final Vouchers
128.3 FDOT Responsibilities

The final design documents, reports and plans for projects not selected as PoDI will be developed in accordance with all applicable Department manuals, guidelines and procedures, and in compliance with all applicable Federal Statutes, Regulations, Executive Orders, and FHWA Directives and Standards. The Department is responsible for assuring that all appropriate criteria have been adhered to, and for documenting its findings in lieu of FHWA reviews. Several of the major areas and the method to be used by the Department to document the acceptability of various final design activities in place of an FHWA review and approval are:

(1) **Typical Section Package:**

The typical section package should be prepared as described in FDM 120.2.3 and 120.3.2. Concurrence by the District Design Engineer documents the acceptability of the package. Concurrence from the District Structures Design Engineer may also be required on unusual bridge typical sections.

(2) **Pavement Design Package:**

The pavement design is developed and approved by the responsible professional engineer in accordance with Department pavement design procedures. Concurrence from the District Design Engineer is required to document the acceptability of the package in lieu of FHWA review and concurrence.

(3) **Bridge Hydraulics Report:**

The hydraulics report is developed and approved by the responsible professional engineer in accordance with appropriate design standards. Concurrence from the District Drainage Engineer is required to document the acceptability of the package in lieu of FHWA review and concurrence.

(4) **Bridge Development Report:**

The bridge development report is developed and approved by the responsible professional engineer in accordance with appropriate design standards. Concurrence from the District Design, Structures Design, or Project Management Engineer is required to document the acceptability of the report in lieu of FHWA review and concurrence.

Modification for Non-Conventional Projects:

Delete item (4).
(5) **Design Plans Phase Reviews:**

Plan reviews should be conducted as described in *FDM 120*. Concurrence in the resolution of phase review comments from the District Design, Structures Design, or Project Management Engineer is required to document the acceptability of the reviews in lieu of FHWA review and concurrence. (See *Form 128-A, in FDM 103*)

Modification for Non-Conventional Projects:

Delete the above paragraph and replace with the following:

Plan reviews will be conducted as described in *FDM 301*. (See *Form 128-B, in FDM 103*)

(6) **Design Exceptions:**

Design Exceptions on projects not selected as PoDI require approval and concurrence as described in *FDM 122*.

(7) **Special Provisions:**

Special provisions, which include project specific and technical special provisions, will be developed and approved by the responsible professional engineer. Concurrence from the District Specifications Engineer is required to document the acceptability of the special provisions in lieu of FHWA review and concurrence. (See *Form 128-C, in FDM 103*)

(8) **Plans, Specifications, and Estimates:**

The Plans, Specifications, and Estimates (PS&E) Package and contract file will be emailed to Central Office Final Plans section as described in *FDM 131*. The District Director of Transportation Development will certify that the design and PS&E Package has been prepared according to the appropriate certification procedures. The date of this certification will be noted on the Transmittal of PS&E Package. The Transmittal will also identify the individuals that reviewed the Plans Package, Specification Package, and Authorization Estimate, and the dates of their respective reviews. The Department's official estimate will be approved by the District Estimates Engineer.

Modification for Non-Conventional Projects:

Delete Item 8.
(9) **Authorization to Advertise:**

The PS&E Package must be approved by the Specifications and Estimates Office prior to requesting FHWA authorization for construction to advertise. The Contract File Package (consisting of the documents listed on the Contract File Index completed by the district), FHWA Summary Sheet, Cost Estimate, Right of Way Certification, Utility Certification, Environmental Certification, and Railroad Certification Agreement (if applicable), along with confirmation of the PS&E approval will be reviewed by the appropriate district and central offices and by the Federal Aid Management Office prior to submittal of the federal authorization request.

Modification for Non-Conventional Projects:

Delete Item 9 and replace with the following:

(9) **Use of Federal Funds on Design-Build Projects**

The District Design-Build team approves the Design Criteria Package before the release of the *Final Request for Proposal* to the Design-Build Firms. The Design-Build authorization request should be processed immediately upon notice of receipt of package approval. Upon receipt of the approved FHWA authorization, District Federal-Aid Coordinators should notify the District Design-Build firm so that the RFPs and Design Criteria packages can be distributed. See *Chapter 7.1 of the Procurement and Administration Procedure (Topic No. 625-020-010)* procedure.

(10) **Revisions:**

Revisions to the PS&E Package will be processed as described in *FDM 132*. Concurrence from the District Design, Structures Design, or Project Management Engineer is required to document the acceptability of the revision in lieu of FHWA review and concurrence.

Modification for Non-Conventional Projects:

Delete Item 10.

In special cases where programs or projects are developed in the Central Office, an appropriate Central Office Manager will provide any necessary concurrences in lieu of a District Manager.
Modification for Non-Conventional Projects:

Delete the above paragraph.

(11) Environmental Review:

Pursuant to **Title 23 U.S.C., Chapter 3, Section 327 and the Memorandum of Understanding (MOU)** executed on December 14, 2016, the Department had assumed FHWA’s responsibilities under the National Environmental Policy Act (NEPA) for highway projects on the State Highway System (SHS) and Local Agency Program (LAP) projects off the SHS. Based on this MOU, the Department responsibilities include environmental review, interagency consultation, and other activities pertaining to the review or approval of NEPA actions. The Department is the Lead Federal Agency for highway projects, and approval authority is held by the State Office of Environmental Management. (OEM).

128.4 Certification Documentation and Reviews

FHWA will perform periodic reviews of projects developed under the Stewardship and Oversight Agreement and may have access to review project phases and records at any time. Adequate documentation throughout the design phase is critical. All approvals and concurrences outlined in the previous section must be sufficiently documented. A complete, well-organized design project file should be able to support a compliance review. All correspondence and documents must include the Federal-aid project number. The Quality Assurance procedures described in **FDM 125** will be used by the Central Office to monitor district compliance with the certification requirements.

128.5 Certification Statement

A Federal-aid project certification statement by the District Director of Transportation Development for each project is no longer required; however, Districts are responsible for ensuring that all Federal-aid requirements are met as described in this chapter.
130 Signing and Sealing Documents

130.1 General

The act of signing, dating and sealing transmitted plans, specifications, reports or other documents is collectively referred to as signing and sealing.

This chapter provides the Department’s requirements for signing and sealing plans and documents in conformance with Florida Statutes (F.S.) and Florida Administrative Code (F.A.C.). The Laws and Rules referenced in this chapter are primarily those governing Professional Engineers. Other licensed professionals that are required to sign and seal plans or documents are to follow the Laws and Rules applicable to their profession.

It is the licensee’s responsibility to comply with the signing and sealing requirements applicable to their profession’s Laws and Rules. It is the District’s responsibility to verify that documents are signed, sealed and transmitted in accordance with this chapter.

130.2 Signing and Sealing Contract Plans

The transmitted contract plans signed and sealed by the responsible professional(s) become the Record Set. Every sheet of the Record Set must be signed and sealed, except for the following sheets that may be appended to the contract plans set:

- Existing Bridge Plans,
- Developmental Standard Plans, and
- Plans that are prepared by an employee of a Utility or other employees exempted under Section 471.003, F.S., except as follows.
 - Utility plans that modify or detail attachments to a bridge or other structure belonging to the Department must sign and seal the sheets affecting such bridge or structure.
 - Plans prepared by nonexempt parties for a Utility must be signed and sealed.

Every sheet of the Record Set must include a title block that contains information for the professional engineer that will sign and seal the sheet, showing:
(1) The name, address, and license number of the engineer, or
(2) If practicing through a duly authorized engineering business, the name and license number of the engineer, and the name and address of the engineering business, or
(3) If employed by a local, State or Federal agency, the name and license number of the engineer, and the name and address of the agency.

A non-engineering licensed professional that will sign and seal the sheet must show similar information in the title block related to their profession.

130.2.1 Digital Signing and Sealing

Digital Delivery is the standard method of electronically transmitting contract documents to the Department. This includes the creation of Portable Document Format (PDF) files of contract plans and specifications, which are signed and sealed with a Digital Signature. The CADD Manual defines the type of digital certificate to be used for Digital Signature. A representation of the professional’s seal next to the Digital Signature Appearance is required for Contract Plans.

Place the following OFFICIAL RECORD note on each plan sheet that is digitally signed and sealed:

“THE OFFICIAL RECORD OF THIS SHEET IS THE ELECTRONIC FILE DIGITALLY SIGNED AND SEALED UNDER RULE 61G15-23.004, F.A.C.”

For standard size (11”x17”) plan sheets, the OFFICIAL RECORD note appears along the right edge of the plan sheet just outside the border. For large format (36”x48” or 36”x72”) plan sheets, the OFFICIAL RECORD note appears in the information block located in the bottom right portion of the sheet.

The rule number referenced in the note above applies to the engineering professional that is signing and sealing the sheet. A non-engineering licensed professional should use the rule number that applies to their profession:

- Surveyors, Rule 5J-17.062, F.A.C.
- Geologists, Rule 61G16-2.005, F.A.C.
- Landscape Architects, Rule 61G10-11.011, F.A.C.
- Architects, Rule 61G1-16.005, F.A.C.
Electronically transmit the Contract Plans as individual signed and sealed PDFs of component plans. The list of component plans for Digital Delivery is comprised of the following:

(1) Roadway Plans
(2) Signing and Pavement Marking Plans
(3) Signalization Plans
(4) Intelligent Transportation System (ITS) Plans
(5) Lighting Plans
(6) Landscape Plans
(7) Architectural Plans
(8) Structures Plans
(9) Toll Facilities Plans

The component plans listed above may require insertion of sheets that were prepared early in, or prior to the design process (“early works”). The following early plan sheets may be contained in a separate signed and sealed PDF that is to be included as part of the Contract Plans:

GR-# Soil Survey and Report of Core Borings
TR-# Tree Survey
UTV-# Verified Utility Locate

No other plans sheets than those listed above are to be submitted separate from the component plans, except for manually signed and sealed documents as discussed in FDM 130.2.2.

See FDM 302 for instruction on how to show early plan sheets on the Key Sheet.

130.2.1.1 Single Digital Signature

Component plans that will be signed and sealed by a single professional (signatory) may place a signature block, as shown in Figure 130.2.1, on the component Key Sheet in lieu of using a Signature Sheet. Listing the sheets contained in the PDF to be signed and sealed is not required.
130.2.1.2 Multiple Digital Signatures

A Signature Sheet is required for component plans that will be signed and sealed by more than one professional. See *FDM 303* for Signature Sheet requirements.

130.2.2 Manual Signing and Sealing

Digital Delivery is the standard practice for signing and sealing, and transmittal of contract documents. Transmittal of contract documents that have been manually signed and sealed is only accepted when Digital Delivery is not possible. The following approval is required for acceptance of manually signed and sealed documents:

(1) District Plans, Specifications, and Estimates (PS&E) Engineer for District Lettings.
(2) State Final Plans Engineer for Central Office Lettings.

The district is to receive one set of manually signed and sealed contract documents to be retained as the record set. Place a note on the first sheet of the documents and scan into a pdf file. The note is to read: “This is a scanned copy of the original signed and sealed document”. Use the scanned pdf file for the Letting process.

If the scanned pdf are sheets that are to be included with a component of the Contract Plans, follow the process for “early works”, see *FDM 130.2.1*.

Figure 130.2.1 Signature Block
The requirements for manually signing and sealing are covered in the Laws and Rules for each licensee’s profession. Do not include the note along the right edge of plan sheets that is used when documents are digitally signed and sealed.

130.3 Signing and Sealing Other Documents

Other documents to be signed and sealed include reports, calculations, specifications and criteria packages, used in the development of design plans. Sign and seal Specifications Packages in accordance with the Specifications Handbook.

130.3.1 Digital Signing and Sealing

Signing and sealing PDF documents with a Digital Signature is the standard practice. Place a signature block on the first sheet of the PDF document. A representation of the professional’s seal next to the Digital Signature Appearance is optional for other documents.

When including a representation of the professional’s seal, use the signature block as shown in Figure 130.2.1.

When omitting a representation of the professional’s seal, use the following signature block:

[NAME], State of Florida, Professional Engineer, License No. [NUMBER]

This item has been digitally signed and sealed by [NAME] on the date indicated here.

Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

130.3.2 Manual Signing and Sealing

For manually signed and sealed documents:

- Bound documents must include a cover page that is signed and sealed. If a document is to be signed and sealed by more than one professional, provide an index on the cover page to convey a list of pages that each licensee is responsible for.

- Un-bound documents require each sheet to be signed and sealed.
The following signed and sealed documents are to be placed in the district’s Project File(s):

(1) Specifications Package
(2) Pavement Design Package
(3) Typical Section Package
(4) Drainage Computations
(5) Hydraulics Reports
(6) Bridge Development Report
(7) Traffic Engineering Reports
(8) Environmental Reports
(9) Geotechnical Reports
(10) Value Engineering Record
(11) Permit Documentation
(12) Design Exceptions and Design Variations

Modification for Non-Conventional Projects:

Delete the items No. (6) and (10) above.

130.4 Signing and Sealing Revisions

Design revisions are modifications to the PS&E Submittal after it has been accepted by Central Office Final Plans. Revisions made after the award of the contract are referred to as post-let revisions. Revisions should be prepared by the same professional that Signed and Sealed the plan sheet contained in the Record Set or the original document. When it is necessary to have revisions signed and sealed by a different professional, provide exculpatory language defining the professional’s limits of responsibility.

Modification for Non-Conventional Projects

Delete the first sentence of the above paragraph and replace with the following:
Design revisions are modifications to the plans submittal after it has been stamped Released for Construction.
130.4.1 Contract Plans Set

Prepare design revisions as outlined in FDM 132. Sign and seal the revision package PDF in accordance with FDM 130.2.

Prepare post-let revisions as outlined in FDM 132 and Chapter 5 of the Construction Project Administration Manual (CPAM). Sign and seal the revision package PDF in accordance with FDM 130.2.

130.4.2 Specifications

Prepare a Supplemental Specifications Package when it becomes necessary to revise either the Specifications Package or a previous Supplemental Specifications Package. Sign and seal the Supplemental Specifications Package in accordance with the Specifications Handbook.

130.4.3 Other Design Documents

Sign and seal each revised sheet and place immediately behind the cover sheet of the original signed and sealed document.

130.5 Support Documents

Engineering decisions are often made on the basis of support documents furnished by non-engineering staff or offices. Two support documents that require certification that they were prepared in accordance with Department procedures are shown in Form 130-A and Form 130-B; see FDM 103 for forms.
131 Plans Processing

131.1 General

This chapter describes the critical activities required to process the contract plans, specifications and estimate for letting. It identifies the transmittal forms, certifications and other documents prepared by the District and the various offices involved in processing a Plans, Specifications & Estimates (PS&E) submittal package.

This chapter also outlines the steps to resubmit a project that has been withdrawn from letting.

Projects must be electronically delivered in Digital Delivery format in accordance with FDM 130 and the CADD Manual.

Other specific requirements for processing the electronic delivery, including information on the Electronic Delivery software, can be found in the CADD Manual.

131.1.1 Definitions

(1) **Contract Documents:** Contract Documents are treated as one instrument which includes all the following:

(a) Advertisement for Proposal, Proposal, Certification as to Publication and Notice of Advertisement for Proposal,

(b) Appointment of Agent by Non-resident Contractors,

(c) Non-collusion Affidavit,

(d) Warranty Concerning Solicitation of the Contract by Others,

(e) Resolution of Award of Contract,

(f) Executed Form of Contract,

(g) Contract Bond,

(h) Standard Specifications and Plans (including revisions thereto issued during construction), and

(i) Addenda, or other information mailed or otherwise transmitted to the prospective bidders prior to the receipt of bids, work orders, and supplemental agreements.
Modification for Non-Conventional Projects:

Delete *FDM 131.1.1* item (1) and replace with the following:

(1) **Contract Documents:** Contract Documents are treated as one instrument which includes all the following:
 - Advertisement, Request for Proposal (RFP),
 - Technical and Price Proposal,
 - Certification as to Publication and Notice of Advertisement for Proposal, Appointment of Agent by Nonresident Contractors,
 - Non-collusion Affidavit,
 - Warranty Concerning Solicitation of the Contract by Others,
 - Resolution of Award of Contract,
 - Executed Form of Contract,
 - Contract Bond,
 - Design Liability Insurance,
 - Standard Specifications and Plans (including revisions thereto issued during construction),
 - Addenda, written statements or transcripts or minutes of oral representation by Design-Build Firm made at oral presentations, or other information mailed or otherwise transmitted to the prospective bidders prior to the receipt of bids, work orders and supplemental agreements, whether or not set forth at length in the form of contract.

<table>
<thead>
<tr>
<th>2</th>
<th>Plans: Plans include 2D Contract Plans Set(s) and 3D Build Information Model (BIM) files. Plans show the location, character, dimensions, and details of the work.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Final Plans: Plans are considered final after changes noted during the Phase IV submittal review are completed and verified.</td>
</tr>
<tr>
<td>4</td>
<td>Mandatory Specification Revision: A required change to the Specifications, Design Standards, or other contract documents, caused by changes in Federal Regulations, State Statutes, Rules, safety improvements, technological changes, or omissions and implemented on a time-critical schedule, effective with a specific letting month and year.</td>
</tr>
<tr>
<td>5</td>
<td>Plans, Specifications, and Estimates (PS&E) Submittal Package: This package is transmitted by the District Final Plans Office to State Program 131-Plans Processing</td>
</tr>
</tbody>
</table>
Management Office, Final Plans section, or to District Contracts Office for letting. The package consists of signed and sealed Final Plans and BIM.zip, Specification Package, the Estimated Quantities Report, and other contract and transmittal documents. PS&E Submittals are numbered consecutively, and re-submittals are required until the project is accepted by the District Program Management Office.

(6) **Authorization Estimate:** The Authorization Estimate is a report generated by the Design Quantities and Estimates (DQE) that is automatically saved to a server for access by authorized users. The Authorization Estimate must be posted to the server no later than the PS&E Transmittal Date.

(7) **Production Date:** The committed completion date for Final Plans and certifications (e.g., utilities, permits, R/W, environmental); these documents must be ready for compilation into the Contract File Index.

(8) **PS&E Phase:** The plans processing period between Phase IV plans and delivery of PS&E Package to State Program Management Office, Final Plans section, or to District Contracts Office.

(9) **PS&E Review(s):** Review(s) consisting of the Final Plans, Specifications and Estimate along with any other contract and transmittal documents.

(10) **PS&E Transmittal Date:** The committed date for the transmittal of the PS&E Submittal Package to State Program Management Office, Final Plans section, or to District Contracts Office.

(11) **Supplemental Specifications Package:** A signed and sealed document modifying the Specifications Package after it has been accepted by State Program Management Office, Final Plans section, or District Contracts Office.

131.2 District Plans Processing

There are plans processing activities that occur in the Districts prior to submitting the PS&E Submittal Package to State Program Management Office, Final Plans section, or to District Contracts Office. The schedule for these activities vary by District; contact the District Final Plans Office for specific requirements.

Review of contract documents during the PS&E Phase often require modifications to the plans, specifications or quantities. Modifications made prior to the District Estimates Office changing the Estimated Quantities Report Project Preconstruction (PrP) Workflow/Phase input or Central Office acceptance of the PS&E Submittal Package are Plan Changes.

Plan Changes include modifications, deletions, or addition of data on individual sheets, or adding and deleting entire sheets. Plan Changes also include modifications, deletions,
or addition of data to BIM files. Plan Changes are not Plan Revisions (as described FDM 132); therefore, do not note Plan Changes in the Revision Block on the sheets.

131.2.1 Authorization Estimate

The Authorization Estimate (used for budgeting construction dollars in the Work Program) is one of the last activities performed during the design phase. Using the final quantities loaded into AASHTOWare Project Preconstruction™ by the EOR, District Estimates Office will adjust unit prices (when appropriate). The District Estimator typically considers the following items when adjusting costs:

- Order of magnitude of the quantity (exceeding high or low)
- Availability of materials
- Accessibility to project location
- Complexity of work, or Traffic Control Plan
- Specialty work or materials
- Contract time restrictions

When finalized, post the Authorization Estimate to the server. Posting must be no later than PS&E Transmittal Date.

131.2.2 Processing the PS&E Submittal Package

District Final Plans Office initiates the collection and processing of PS&E Submittal documents using the PS&E Module within Project Suite Enterprise Edition (PSEE). When the PS&E Submittal package is complete and ready for submission, control of the PSEE model will be transferred to the appropriate office. Transfer control of the PS&E Module no later than the PS&E Transmittal Date to:

- State Program Management Office, Final Plans section, or
- District Contracts Office for district-let projects

Upon receiving control of the PS&E Module, the appropriate office (indicated above) will check the package for completeness. If incomplete, the District Final Plans Office is notified to provide a corrected submittal.

Transfer control of the AASHTOWare Project Preconstruction™ (PrP) project files to the State Program Management Office, Final Plans section when transferring control of the PS&E Module.
131.2.2.1 Revisions to PS&E Submittal Package

Revisions are modifications to the PS&E Submittal Package after it has been accepted by State Program Management Office, Final Plans section, or District Contracts Office. See FDM 132 for information on revisions to the PS&E Submittal Package.

131.2.2.2 Re-submittal of Withdrawn Projects

Modification for Non-Conventional Projects:
Delete FDM 131.2.2.2.

When a District withdraws the PS&E Submittal Package for major revisions before the letting, the project must be resubmitted as a new PS&E Submittal Package with all required components. Show the new Proposal/Contract ID number on the Key Sheet(s).

Project documents in Central Office from the previous submittal will be deleted. A project withdrawn for a period of nine months or longer will be updated according to the process outlined in FDM 112.

Districts must coordinate with Central Office Production Management or District Contract Administration to reschedule a letting.
131.3 Central Office Plans Processing

Figure 131.3.1 illustrates the Central Office activities for processing the contract documents for Letting.

Figure 131.3.1 Plans Processing for Central Office Letting

- **PROCESSING LIST**
 - The Processing List is a web-based application that tracks status of contract packages until authorized for advertisement.
 - Final Plans monitors Contract Package, Plans, and Specifications from their arrival in Central Office through Advertisement.

- **CONTRACT SUBMITTAL TO CENTRAL OFFICE**
 - Post the PS&E package to Central Office Final Plans and email Contract File Index and Transmittal memo to CO-CPKG.

- **PRODUCTION MANAGEMENT**
 - Advise Contracts Administration which projects to advertise

- **DISTRICT REVISIONS**
 - (Per Figure 132.2.1)

- **CONTRACTS ADMINISTRATION**
 - Prepare advertisement
 - Makes Contract Proposal, Plans, & Specifications available via online ordering to contractors
 - Receive bids from contractors

- **MONTHLY LETTING**
 - Contractors submit bids for projects

- **CONTRACT FILE**
 - State funded projects to Production Management
 - Federal funded projects to Federal Aid Office

- **Are Revisions Needed?**
 - Yes
 - No
132 Plan Revisions

132.1 General

This section describes the critical activities required to process the contract plans, specifications and estimate for letting. It identifies the transmittal forms, certifications and other documents prepared by the District and the various offices involved in processing a Plans, Specifications & Estimates (PS&E) Submittal Package. This chapter also outlines the revision process.

If the original professional engineer is not available to prepare a revision and is replaced by a new one, an additional signature sheet should be created listing the sheets containing the revisions they are responsible for.

Other specific requirements for processing the electronic delivery, including information on the Electronic Delivery software, can be found in the CADD Manual.

132.2 Revisions to the PS&E Submittal Package

Revisions are modifications to the PS&E Submittal Package after it has been accepted by the State Program Management Office, Final Plans section or District Contracts Office.

The Department’s Project Manager ensures a revision is completed using the PS&E Module within Project Suite Enterprise Edition (PSEE) as follows:

(1) All revisions require a completed Revision Memo as outlined in the PS&E Module. When access to AASHTOWare Project Preconstruction™ is required, obtain concurrence from the District Director of Transportation Development (or designee) and forward to the State Program Management Office, Final Plans section (CO-FINALPLANS). Concurrence may be in the form of an email that includes a summary of the revision or a signed Revision Memo. Access will then be returned to the District for a period not to exceed 2 business days.

(2) In accordance with the Stewardship and Oversight Agreement or the project-specific Project of Division Interest (PoDI), obtain an email concurrence from FHWA prior to making revisions or requesting District access to the AASHTOWare Project Preconstruction™. Include the name of the FHWA contact and the concurrence date on the Revision Memo. Major changes to plans or specifications on PoDI Projects made during the advertising period will require the FHWA Division Administrator’s approval prior to issuing addenda. Major changes increase the
project cost (>\$50,000), alter project termini, change the character of the project or modify scope of the work.

(3) If information on the Transmittal Memo changes due to Project updates, the Transmittal Memo must be updated within the PS&E Module whether it is a formal Revision or not.

(4) For revisions to plan sheets use a conspicuous unique numbered symbol (e.g., a numbered triangle) beside the revision that corresponds to the Plans Revision Number on the Revision Memo. Begin the revision numbering with “1” and number subsequent revisions to the contract plans set, sequentially. Place the revision date, corresponding numbered symbol for the revision, and a brief description of the revision in the Revision Block on each modified sheet. The same applies to adding sheets; however, the added sheets may be numbered with alphabetic suffix (e.g., 22A, 22B, 22C). If a sheet is being deleted, the sheet numbers for the following sheets remain unchanged. See FDM 302 for instructions on recording a revision on the Key Sheet.

(5) The responsible professional Signs and Seals each revised document in accordance with the requirements of FDM 130.

(6) Complete the Revision Memo within the PS&E Module providing a Revision Number and describing modifications. Record the revision date for each revised sheet, using the date shown in the revision block on the sheet.

(7) District Specifications must review the revision for any effect on the specifications.

(8) When the revision package is complete and ready for submission, control of the PS&E Module will be transferred to the appropriate office (see FDM 131.2.1). The receiving office will check the revisions for completeness.

(9) Approval from the District Secretary is required on the Revision Memo if the revision is submitted within 15 working days of the letting.

(10) Approval from the Director of the Office of Design is required if the revision is submitted within five working days of the letting. Since there is no assurance that all prospective contractors will get these documents on time to be considered in their bids, approval for a revision within five working days of the letting is uncommon. If approval is not granted, the project will either be let as is, or be withdrawn from letting. Withdrawing or moving the project to a later letting after advertisement requires approval by the District Secretary and the Chief Engineer.

(11) Mandatory Specification Revisions issued from Central Office will be processed by Supplemental Specifications Package. Mandatory Specification Revision Approval is not required unless additional revisions are included in the package.
Figure 132.2.1 District Revisions

Rev. Oct. 2020

1. **Revision Needed** (from Figure 131.3.1)
 - **Is this a Mandatory Revision?**
 - **Yes**
 - Prepare Supplemental Specification Package.
 - **No**
 - Obtain approval from District Director of Transportation Development or Designee.
 - **FHWA Oversight?**
 - **Yes**
 - Get concurrence from FHWA
 - **No**
 - Notify CO-Final Plans for AASHTOWare Project Preconstruction access when pay items are involved.
 - Revise Plans, Specs, Pay Items and Quantities.
 - Prepare Revision Memo.
 - Obtain necessary approval from District Specifications Engineer & Director of Transportation Development (or Designee).
 - **Within 5 days of letting?**
 - **Yes**
 - Obtain approval from Director, Office of Design through the Final Plans Office.
 - **No**
 - Let as is?
 - **No**
 - Withdraw
 - **Yes**
 - Monthly Letting (Per Figure 131.3.1)
 - **Within 15 days of letting?**
 - **Yes**
 - Obtain approval from District Secretary.
 - **No**
 - Transmit Revision to Final Plans.
132.3 Revisions after Award

This section outlines the process for incorporating revisions after award (a.k.a., “Post-Let Revisions”), and outlines the steps for review by the Department. It is the responsibility of the Department’s Project Manager to coordinate a review of design revision submittals performed by the appropriate District and Central Office discipline phase reviewers.

Signed and Sealed revised plan sheets will be delivered to the Department’s Project Manager prior to construction of any component. The Department’s Project Manager will send a copy of Signed and Sealed revised plan sheets to the appropriate discipline reviewers for review and comment. Discipline reviewers must respond in writing to the Department’s Project Manager and give recommendations for acceptance for incorporation into the contract documents. The Department’s Project Manager must issue the revised plan sheets as part of the contract documents after receiving recommendations from the discipline reviewers.

Revisions must comply with the following:

1. The responsible professional must Sign and Seal each revised document in accordance with the requirements of FDM 130.

2. Modify or delete data on individual sheets by striking through or crossing out. Do not delete data by erasing. Add new data adjacent to crossed out data. If a sheet does not have sufficient space for the revision, add new sheets as required.

3. “Cloud” any revisions after award in a conspicuous manner. If an entire sheet is being deleted, circle and strike through the entire drawing area and retain the deleted sheet in the plans package as a revised sheet. If there are multiple revisions after award, keep all previous revisions “clouded.”

4. Place a conspicuous sequentially-numbered unique symbol (e.g., a numbered triangle) beside the revision. Begin the revision numbering with "1" and number subsequent revisions sequentially. For sheets which have been revised pre-award, begin the numbering where the pre-award numbering left off. For large complex projects, when requested by the Department, number revisions by addendum issuance in order to more easily differentiate changes for work order/supplemental agreement processing. In this case, a shape other than a triangle may be utilized.

5. Place the revision date, corresponding numbered symbol for the revision, and a brief description of the revision in the Revision Block.
Modification for Non-Conventional Projects:

Delete **FDM 132.3** and replace with the following:

132.3 Revisions after Initial “Released for Construction” Stamping Revisions after Award

This section outlines the process for submitting component plan phase submittals as well as the review component plan phase submittals by the Department’s discipline reviewers. It also outlines “Released for Construction” stamping process prior to beginning work as well as the plans process for incorporating design revisions initiated by the Design Build Firm after initial “Released for Construction” stamping.

Discipline reviewers must respond in writing to the Department’s Project Manager and give recommendations for stamping once all comments have been satisfactorily resolved. The Department’s Project Manager will initial, date and stamp each revised sheet as “Released for Construction” after receiving recommendations from the discipline reviewers.

Revisions must comply with the following:

1. The responsible professional must Sign and Seal each revised document in accordance with the requirements of FDM 130.

2. Modify or delete data on individual sheets by striking through or crossing out. Do not delete data by erasing. Add new data adjacent to crossed out data. If a sheet does not have sufficient space for the revision, add new sheets as required.

3. “Cloud” any revisions after award in a conspicuous manner. If an entire sheet is being deleted, circle and strike through the entire drawing area and retain the deleted sheet in the plans package as a revised sheet. If there are multiple revisions after award, keep all previous revisions “clouded.”

4. Place a conspicuous unique numbered symbol (e.g., a numbered triangle) beside the revision. Begin the revision numbering with “1” and number subsequent revisions sequentially.

5. Place the revision date, corresponding numbered symbol for the revision, and a brief description of the revision in the Revision Block.
132.4 Final “As-Built” Plans Process

See the Construction Project Administration Manual (CPAM) for preparing the Final “As-Built” contract documents during construction.

132.5 Re-advertised and Reissued Process

A re-advertised and reissued PS&E Package occurs when a PS&E Package has been advertised/withdrawn or moved beyond advertisement. For a re-advertised and reissued PS&E Package, the Specification Package is to be revised to the current Specifications workbook. The word "REISSUED" precedes the Specifications Package date, as applicable throughout the document.
133 Retention of Electronic Documents

133.1 General

The documents and files created throughout the life of a project must be retained in electronic format. There are several different storage systems used for retaining these records. See Figure 133.1.1. As-built documents that are to be scanned for electronic storage should meet both requirements of the Construction Project Administration Manual (CPAM), Section 5.12 and the Transportation Technology User’s Manual (FDOT Procedure No. 325-000-002).

Figure 133.1.1 Storage of Electronic Documents

<table>
<thead>
<tr>
<th>Active VAULT</th>
<th>Archive VAULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic Vault for Storage of electronically signed, or digital delivery files</td>
<td></td>
</tr>
<tr>
<td>For Storage of: - Project CD - Plans and Specs CD - Revisions CD - Cat II Bridge As-Built Files</td>
<td></td>
</tr>
<tr>
<td>Files stored in the PEDDS Database cannot be written.</td>
<td></td>
</tr>
<tr>
<td>File management system for in-house CADD file check in/out.</td>
<td></td>
</tr>
<tr>
<td>Allows for multiple users to work on same files.</td>
<td></td>
</tr>
<tr>
<td>Working files only.</td>
<td></td>
</tr>
<tr>
<td>Can be used during Construction Phase to prepare As-Built Plans.</td>
<td></td>
</tr>
<tr>
<td>Design Records</td>
<td></td>
</tr>
<tr>
<td>Groups Architecture Community Involvement Drainage Environmental Permits Estimates FDOT Publications Geotechnical/Materials Lighting Product Evaluation Project Management ROW Design Documentation</td>
<td></td>
</tr>
<tr>
<td>Does not include Plans</td>
<td></td>
</tr>
<tr>
<td>NOTE: Contract Plans are not stored in the Design EDMS.</td>
<td></td>
</tr>
<tr>
<td>Electronic Data Management System (EDMS)</td>
<td></td>
</tr>
<tr>
<td>Design EDMS</td>
<td>Contract EDMS</td>
</tr>
<tr>
<td>Contract Records</td>
<td></td>
</tr>
<tr>
<td>Groups</td>
<td></td>
</tr>
<tr>
<td>Supporting Construction Contract Documents: - Award Letter - Correspondence - Daily Diaries - Execution Letter - Final Estimates - Package - Work Progress</td>
<td></td>
</tr>
<tr>
<td>NOTE: Contract Plans are not stored in the Contracts EDMS.</td>
<td></td>
</tr>
<tr>
<td>Design Records</td>
<td></td>
</tr>
<tr>
<td>Groups Claims Compliance Contract Changes Includes Design Errors and Omissions, Field SA/Work Orders, and SA/Change Orders Contract Documents As-Built Plans Daily Diary Estimates Final Estimates General Correspondence Job Correspondence Material Sampling and Reporting Pre-Letting Includes Design Correspondence Quality Assurance/Quality Control Service Contracts Working Drawing Transmittals Structure Sublet Work Time Correspondence Unpaid Bills Utility</td>
<td></td>
</tr>
<tr>
<td>Construction Records</td>
<td></td>
</tr>
<tr>
<td>Groups Bridge Plans and Specifications Bridge Record Bridge Working Drawings Correspondence Geotechnical High Mast Record Sign Record Structural Calculations - As-Bid Plans - As-Built Plans - Repair As-Bid Plans - Repair As-Built Plans - Widening As-Bid Plans - Widening As-Built Plans</td>
<td></td>
</tr>
<tr>
<td>Maintenance Records</td>
<td></td>
</tr>
<tr>
<td>Groups</td>
<td></td>
</tr>
</tbody>
</table>

133-Retention of Electronic Documents
140 Lump Sum Projects

Modification for Non-Conventional Projects:
Delete FDM 140.

140.1 General

The purpose of Lump Sum projects is to reduce the costs of contract administration associated with quantity, verification and measurement. This contracting technique requires the Contractor to submit a lump sum price to complete a project as opposed to bidding on individual pay items. The Contractor will be provided a set of bid documents (plans, specifications) and will develop a Lump Sum bid for all work specified in the contract drawings.

The decision to use the Lump Sum Contracting Technique on a project should be made by the District Design Engineer in consultation with the District Construction Engineer. Lump Sum Projects should be identified during the scope development process, rather than during or after the design process. Conversion of partially complete plans and completed “plans on the shelf” that were originally developed as conventional bid item type projects to the Lump Sum Technique may require significant rework and is generally not recommended.

The contingency pay item is recommended on a Lump Sum project. This tool is used to compensate the Contractor for any additional work requested, which is not covered in the contract documents. District Construction should be consulted for the contingency amount.

140.2 Project Selection

Lump Sum contracting should be used on simple projects. “Simple” is defined by the work activity, not by the project cost. “Simple” projects are:

(1) Projects with a well-defined scope for all parties (Design and Construction)

(2) Projects with low risk of unforeseen conditions (i.e., projects that do not involve such things as significant underground utilities, earthwork variations, underground drainage pipes, bricks under pavement in urban areas)

(3) Projects with low possibility for change during all phases of work – Design and Construction (i.e., limited possibilities for added driveways, median modifications due to developments, or changes due to political involvement)
Examples of projects that may be good Lump Sum contracting candidates:

1. Bridge painting
2. Bridge projects
3. Fencing
4. Guardrail
5. Minor Intersection improvements (with known utilities)
6. Landscaping
7. Lighting
8. Mill/Resurface (including Interstate) without complex overbuild requirements
9. Minor road widening
10. Sidewalks
11. Signing
12. Signalization

Examples of projects that may not be good Lump Sum contracting candidates are listed below. Use of Lump Sum contracting on these type projects requires written approval by the State Roadway Design Engineer:

1. Urban construction/reconstruction
2. Rehabilitation of movable bridges
3. Projects with subsoil earthwork
4. Concrete pavement rehabilitation projects
5. Major bridge rehabilitation/repair projects where there are many unknown quantities
6. JPA Projects with local agency funds

140.3 Plans Preparation

Plan content should conform to the requirements of Part 3 or Part 9, subject to the guidance provided herein. Designers should detail plans, either by detailed drawings or plan notes, to clearly describe the work to be performed by the contractor. Notes and requirements must provide specific direction and details that can be properly bid on by the Contractor; avoid notes containing “as directed by the Engineer”.

The following are some of the desired elements in a set of Lump Sum plans:
(1) **Typical Sections.**

(2) Milling, resurfacing and overbuild details to show any cross slope corrections, including existing pavement cross slope information.

(3) Document quantities for all work to be performed on the project by location in the Estimated Quantities Report.

(4) Plan sheets to accurately depict existing conditions and detail all work to be performed by contractor. (i.e., show all limits of milling and resurfacing, pipe installations, limits of sod when different from typical section, all concrete work, guardrail removal/installation).

(5) Details of work not covered by typical section or the *Standard Plans* (e.g., curb and gutter installation, traffic separator limits, special curb ramps, modifications to storm inlets).

(6) Cross sections when shoulder break is moved. When cross sections are provided, earthwork columns should not be used.

(7) Anticipated pile tip/drilled shaft elevations on bridge projects. Note: This is the predicted elevation to achieve axial capacity and satisfy all other design requirements and is usually deeper than the minimum tip elevation shown for piles.

140.4 Preliminary Estimate

If there is only one project in the contract, code in the pay item for Lump Sum (Alternative Bidding) (999-2) and the Initial Contingency Amount (Do Not Bid) Pay item (999-25). If there is more than one project in a single contract (strung projects), code both pay items on each project.

Provide data to the District Estimates Office to be used in the estimate process. The data necessary for preparing the preliminary estimate may differ with project type and complexity. Preliminary estimates for Lump Sum projects may be determined in a number of ways: data from the designer, historic data, long-range estimate (LRE), and by reviewing data from similar, current projects. The intent of Lump Sum Contracting is not to shift the responsibilities or work involved in estimating quantities from the designer to the District Estimates Office. The cooperative effort of the designer in providing data in an electronic spreadsheet or other means acceptable to the District Estimates Office will be helpful in improving the Lump Sum Preliminary Estimate Process. Contact the appropriate District for specific requirements.
140.5 Specifications

The Design Project Manager will provide an “Items of Work” checklist to the District Specifications Office. This checklist is Form 140-A, which is found in FDM 103. The Specifications Office will include the work items identified on the checklist in the “Intent and Scope” in the Specifications Package. The checklist must include, as a minimum, the major work items shown in the sample included with these guidelines.

Lump Sum Projects require Special Provisions that modify the first nine articles of the Standard Specifications. These Special Provisions are in the Specifications Workbook and must be included as part of the Specifications package.

Article 9-2 of the Special Provisions for Lump Sum Projects must be completed with predetermined unit prices for asphalt materials, concrete, and base when applicable. These unit prices will serve as a basis for calculating pay reductions for deficiencies accepted by the Project Engineer. In the case of asphalt overbuild, the predetermined unit price for the material used for overbuild will serve as a basis for pay adjustments for thicknesses that differ from the thickness shown in the plans. All predetermined unit prices should be based on an analysis of similar type projects let in the District and the Districtwide average of projects let within the six months prior to the letting date of the project.

For projects including bridges, Article 9-2 of the Special Provisions for Lump Sum Projects must be completed with predetermined unit prices for piling and drilled shafts as applicable. These unit prices will serve as a basis for pay adjustments for the actual quantities installed as additions or deletions from the individual element lengths shown in the plans. All predetermined unit prices should be based on an analysis of similar type projects let in the District and the Districtwide average of projects let within the six months prior to the letting date of the project.

140.6 Contracts Administration

Contracts Administration will include the information provided in the Specifications Package “Intent and Scope” in the job advertisement. This information can be used by the contractors/subcontractors to determine what type of work is contained in the project, in lieu of a list of pay items.
140.7 Construction Contract Administration

Monthly payments will be made based on a payout schedule mutually agreed upon by the Department and the Contractor. The payout schedule will include only major tasks similar to what has been used on design-build projects.

Lump Sum contracts are not fixed price. Changed conditions, extra work and unforeseen work must be negotiated and resolved with the Contractor utilizing Supplemental Agreements and Work Orders on Contingency Supplemental Agreements.

Construction inspection personnel should not be required to document quantities except for asphalt and other items subject to pay adjustments (items with predetermined unit prices). Measurement and completion of “Final” Estimated Quantities Report is not required. Focus should be on inspection and achieving a quality final product. For example, the Project Engineer will not be concerned with how many square yards of sod it takes or the number of miles of final striping. The Project Engineer will be charged with ensuring that the sod, striping, embankment, and pipe meets the lines and grades of the plans and specifications.

140.8 Materials Sampling and Testing

The Laboratory Information Management System (LIMS), relies on the pay items identified in AASHTOWare Project Preconstruction™ (formerly TRNS*PORT), which are populated via the Designer Interface, to generate a Job Guide Schedule based on the Sampling, Testing and Reporting Guide (STRG). On Lump Sum projects, since there is no detailed pay item list to identify the various types of work, LIMS will output a generic Job Guide Schedule. Some materials will not actually be used depending on the project scope. Personnel should use the Job Guide Schedule entries applicable to their project and input sample data and field test results into LIMS system in accordance with standard procedures. Materials not included on the Job Guide Schedule will be accepted in accordance with Section 6 of the Standard Specifications and other pertinent contract documents.
200 Context Based Design

200.1 General

Designs for highway and bridge projects are based on established design controls for the various elements of the project such as width of roadway, side slopes, horizontal and vertical alignment, drainage considerations and intersecting roads.

The design criteria presented in this manual are based on:

- Functional Class
- Context Class
- Design Speed

200.2 Highway Functional Classification

Functional classification is the grouping of highways by the character of service and connectivity they provide. The AASHTO publication *A Policy on Geometric Design of Highways and Streets* presents an excellent discussion on highway functional classifications. *Table 200.2.1* summarizes the primary characteristics of each functional classification.

<table>
<thead>
<tr>
<th>Functional Classification</th>
<th>Primary Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited Access Facilities</td>
<td>• Limited access
• Through traffic movements
• Primary freight routes
• Guided by FHWA Design Standards</td>
</tr>
<tr>
<td>Principal Arterial</td>
<td>• Through traffic movements
• Longer distance traffic movements
• Primary freight routes</td>
</tr>
<tr>
<td>Minor Arterial</td>
<td>• Connections between local areas and network principal arterials
• Connections for through traffic between arterial roads
• Access to public transit and through movements
• Pedestrian and bike movements</td>
</tr>
<tr>
<td>Collector</td>
<td>• Carry traffic with trips ending in a specific area
• Access to commercial and residential centers
• Access to public transportation
• Pedestrian and bicycle movements</td>
</tr>
<tr>
<td>Local Roads</td>
<td>• Direct property access—residential and commercial
• Pedestrian and bicycle movements</td>
</tr>
</tbody>
</table>
This manual provides design criteria for roads on the State Highway System (SHS) based on the following functional classification groups:

(1) Limited Access (LA) Facilities (Interstate, Freeways, and Expressways)
(2) Arterials and Collectors

The *Florida Greenbook* provides criteria for local roads.

200.3 Design Speed

See *FDM 201* for discussion on Design Speed.

200.4 Context Classification

Projects are uniquely planned and designed to be in harmony with the surrounding land use characteristics and the intended uses of the roadway. To this end, a context classification system comprising eight context classifications has been adopted. Table 200.4.1 describes the context classifications that will determine key design criteria elements for arterials and collectors.

Criteria for LA Facilities are independent of the adjacent land uses; therefore, context classifications shown in Table 200.4.1 do not apply to these facilities.

Additional information on context classifications and guidance on the determination of the context classification is provided in the *FDOT Context Classification Guide*.

Contact the District Complete Streets Coordinator to obtain the appropriate context classification for project roadway segments.
Table 200.4.1 Context Classifications

<table>
<thead>
<tr>
<th>Context Classification</th>
<th>Description of Adjacent Land Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 Natural</td>
<td>Lands preserved in a natural or wilderness condition, including lands unsuitable for settlement due to natural conditions.</td>
</tr>
<tr>
<td>C2 Rural</td>
<td>Sparsely settled lands; may include agricultural land, grassland, woodland, and wetlands.</td>
</tr>
<tr>
<td>C2T Rural Town</td>
<td>Small concentrations of developed areas immediately surrounded by rural and natural areas; includes many historic towns.</td>
</tr>
<tr>
<td>C3R Suburban Residential</td>
<td>Mostly residential uses within large blocks and a disconnected/sparse roadway network.</td>
</tr>
<tr>
<td>C3C Suburban Commercial</td>
<td>Mostly non-residential uses with large building footprints and large parking lots. Buildings are within large blocks and a disconnected/sparse roadway network.</td>
</tr>
<tr>
<td>C4 Urban General</td>
<td>Mix of uses set within small blocks with a well-connected roadway network. May extend long distances. The roadway network usually connects to residential neighborhoods immediately along the corridor or behind the uses fronting the roadway.</td>
</tr>
<tr>
<td>C5 Urban Center</td>
<td>Mix of uses set within small blocks with a well-connected roadway network. Typically concentrated around a few blocks and identified as part of the community, town, or city of a civic or economic center.</td>
</tr>
<tr>
<td>C6 Urban Core</td>
<td>Areas with the highest densities and with building heights typically greater than four floors within FDOT classified Large Urbanized Areas (population >1,000,000). Many are regional centers and destinations. Buildings have mixed uses, are built up to the roadway, and are within a well-connected roadway network.</td>
</tr>
</tbody>
</table>
201 Design Controls

201.1 General

Designs for highway and bridge projects are based on established design controls for the various elements of the project such as width of roadway, side slopes, horizontal and vertical alignment, drainage considerations and intersecting roads. Selection of the appropriate criteria and standards is influenced by traffic volume and composition, desired levels of service, functional classification, terrain features, context classification, and environmental considerations.

The identification of applicable design controls is needed to achieve:

1. Optimum safety.
2. Desired capacity and Level of Service.
3. Design consistency.
4. Cost effective designs.

201.1.1 Capacity and Level of Service

The AASHTO publication *A Policy on Geometric Design of Highways and Streets*, the Transportation Research Board *Highway Capacity Manual*, and FDOT’s *Quality/Level of Service (Q/LOS) Handbook* provide detailed analysis and calculation procedures used in determining the number and configuration of lanes required and the resulting levels of service provided. As illustrated in those texts the following factors greatly influence capacity and Level of Service:

- Roadway gradients and roadside developments
- Number, spacing, and types of crossings and intersections
- Traffic volumes and composition
- Signalization progression and interconnectivity

Design of signalized intersections should ensure an adequate Level of Service through the design year of the facility, especially when right of way acquisition is being considered. The capacity of an at-grade arterial or collector is primarily controlled by its ability to move traffic through signalized intersections, rather than the mid-block through lane capacity.
Use the operational analysis methods in the Highway Capacity Manual for design of signalized intersections. Information or assumptions on basic intersection geometrics, lane utilization, and movement-specific traffic volumes are provided by the designer. The primary output of the operational analysis method is Level of Service and delay at a signalized intersection; however, this method can be used to determine geometric requirements, signal timing, or service flow volumes.

Signal timing is interactive with geometric design. Changes to geometrics, such as adding a turn lane, must consider changes to the signal timing simultaneously. Department-approved software, including the Highway Capacity Software, should be used to simulate the operation of independent or interconnected signals. Output from these programs can be used for the analysis and evaluation of proposed designs.

201.1.2 Design Consistency

Design consistency is achieved when the geometric features of the roadway are consistent with the operational characteristics expected by the driver. Design consistency alleviates driver uncertainty and inappropriate driver response. Following the criteria contained in this manual will assure design consistency; however, special attention should be given at locations where sudden changes in design speed, alignment or cross section occur, and in the development of intersection designs.

Roadways may traverse through a variety of context classifications. As the context changes, the design speed for the roadway will also change. Changes in design speed may also occur based on FDOT policy or to conform to operational or geometric conditions. Consistent signing and pavement marking designs in transition areas is an important aspect in meeting driver expectancy. See **FDM 201.5** for information on design speed.

Two examples of sudden change in cross section are where a narrow bridge exists and when the number of travel lanes increase or decrease. The FDOT **Standard Plans** provide guidance on accepted practices in these areas. Changes in the cross section may also occur when there is a change in the context classification.

Critical design elements that affect design consistency, driver expectancy, and vehicular operation include:

- Horizontal and vertical alignment
- Embankments, slopes, and guardrail applications
- Bridge width and roadway shoulders
• Pavement crown, cross slope, and superelevation
• Signing and delineation
• Placement of signal, lighting, and utility poles

201.2 Context Classification

Context classification is a design control that determines key design criteria elements for arterials and collectors. Criteria for LA Facilities are independent of the adjacent land uses; therefore, context classifications do not apply to these facilities and they are assigned the code “LA” for “Limited Access” where a context classification is required, such as in the Roadway Characteristics Inventory. However, where a limited access facility connects to the non-limited access state road system, the context classification of the non-limited access facility must be considered to provide a context-appropriate transition between access classifications. Each state road has been assigned a context classification, and this information can be obtained from the District Complete Streets Coordinator. The following is a list of the Department’s adopted context classifications:

• C1 – Natural
• C2 – Rural
• C2T – Rural Town
• C3R – Suburban Residential
• C3C – Suburban Commercial
• C4 – Urban General
• C5 – Urban Center
• C6 – Urban Core

Additional information on context classification is included in FDM 200. Contact the District Complete Streets Coordinator to obtain the appropriate context classification for project roadway segments.

201.3 Traffic and Design Year

To provide for an interconnected transportation system that insures the mobility of people and goods, designs should satisfy capacity needs at an acceptable level of service through the design year. Forecasted traffic demand and volume are used to establish the number of travel and turn lanes, turn lane storage, signal timing, and right of way requirements. Forecasted traffic should account for anticipated future land use development.

The design year is the year for which the proposed improvement is designed. The FDOT Project Traffic Forecasting Handbook states that the design year is usually 20 years
from the Opening Year, but design period may range in years from the present to 20 years depending on the project type.

Design year period typically used on FDOT projects are as follows:

- 20 years for new construction and reconstruction projects
- 15 years for lighting projects
- 10 years for signalization projects
- 10 years for improvements included with RRR projects
- 0-10 years for safety and operational improvements

Traffic forecasting is also used in pavement design to determine the vehicular loadings on the pavement. The proposed pavement design must provide structural strength through the pavement’s service life. Refer to the FDOT *Pavement Design Manuals* for guidance on selecting an appropriate design period for flexible and rigid pavements.

Traffic forecasts are developed during the Project Development and Environmental (PD&E) study of a project. A Project Traffic Analysis Report is generally required. When a PD&E study is not conducted, traffic forecasts must be prepared early in the design phase. Project traffic used for design must be attested to by completing *Form 130b*, located in *FDM 103*.
Traffic data used for design includes:

(1) AADT for the current year, opening year and design year.
(2) Existing hourly traffic volumes over minimum of 24-hour period, including peak hour turning movements and pedestrian counts.
(3) Directional distribution factor (D).
(4) Standard K factor (K).
(5) Truck factors (T) for daily and peak hour.
(6) Design speed and proposed posted speed.
(7) Design vehicle for geometric design.
(8) Peak turning movements at signalized and problem intersections and major traffic generators.
(9) Movements for future traffic generators that are scheduled during the service life should be considered.

201.4 Access Management

Regulation of access is necessary to preserve the functional integrity of the State Highway System and to promote the safe and efficient movement of people and goods within the state. Under *Florida Statutes 335.18*, the Legislature authorized FDOT to develop rules to administer the "State Highway System Access Management Act". These are Rule 14-96 and Rule 14-97; see Tables 201.4.1, 201.4.2 and 201.4.3. Designs are to comply with the statute, the rules, adopted procedures and directives, and the district program.

Table 201.4.1 Rule 14-97 - Freeway Interchange Spacing

<table>
<thead>
<tr>
<th>Access Class</th>
<th>Area Type</th>
<th>Segment Location</th>
<th>Interchange Spacing (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Area Type 1</td>
<td>CBD & CBD Fringe For Cities In Urbanized Areas</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Area Type 2</td>
<td>Existing Urbanized Areas Other Than Area Type 1</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Area Type 3</td>
<td>Transitioning Urbanized Areas, and Urban Areas Other Than Area Type 1 or 2</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>Area Type 4</td>
<td>Rural Areas</td>
<td>6.0</td>
</tr>
</tbody>
</table>
Table 201.4.2 Rule 14-97 - Arterial Access Classifications & Standards

<table>
<thead>
<tr>
<th>Access Class</th>
<th>Median Type</th>
<th>Connection Spacing (feet)</th>
<th>Median Opening Spacing (feet)</th>
<th>Signal Spacing (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>>45 mph</td>
<td>≤45 mph</td>
<td>Directional</td>
</tr>
<tr>
<td>2</td>
<td>Restrictive with Service Roads</td>
<td>1320</td>
<td>660</td>
<td>1320</td>
</tr>
<tr>
<td>3</td>
<td>Restrictive</td>
<td>660</td>
<td>440</td>
<td>1320</td>
</tr>
<tr>
<td>4</td>
<td>Non-Restrictive</td>
<td>660</td>
<td>440</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Restrictive</td>
<td>440</td>
<td>245</td>
<td>660</td>
</tr>
<tr>
<td>6</td>
<td>Non-Restrictive</td>
<td>440</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Both Median Types</td>
<td>125</td>
<td>330</td>
<td>660</td>
</tr>
</tbody>
</table>

Notes:
1. "Restrictive" physically prevent vehicle crossing.
2. "Non-Restrictive" allow turns across at any point.
3. Speeds shown in this table are posted speeds.

Connection Spacing Near Interchange Ramps:
Connections and median openings located within 1,320 feet of interchange ramps require the following spacing (measured from the ramp furthest from the interchange):
- 440 feet ≤ 45 mph
- 660 feet > 45 mph
- 1,320 feet on Access Class 2 Facilities > 45 mph

Table 201.4.3 Rule 14-97 - Interim Access Management Standards

<table>
<thead>
<tr>
<th>Posted Speed (mph)</th>
<th>Connection Spacing (feet)</th>
<th>Median Opening Spacing (feet)</th>
<th>Signal Spacing (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Directional</td>
<td>Full</td>
</tr>
<tr>
<td>35 mph or less</td>
<td>245</td>
<td>660</td>
<td>1320</td>
</tr>
<tr>
<td>36 - 45 mph</td>
<td>440</td>
<td>660</td>
<td>1320</td>
</tr>
<tr>
<td>Over 45 mph</td>
<td>660</td>
<td>1320</td>
<td>2640</td>
</tr>
</tbody>
</table>
In addition, FDOT adopted the *Median Opening and Access Management Decision Process (Topic No. 625-010-021)*, which further defines the principles and processes for FDOT to implement the Access Management Statute and Rules.

Each district has established an Access Management Review Committee to guide actions in access management and median decisions through all FDOT’s processes. Various district offices are responsible for driveway permit connections and administering other parts of the program.

Each roadway on the State Highway System is assigned an access classification which determines what roadway features and access connection modifications are appropriate to adhere to the program.

During the PD&E phase, a conceptual access management plan is prepared for the preferred alternative. Access management issues are addressed in the Preliminary Engineering Report. Designs are to implement access management decisions and commitments made during the PD&E phase.

For projects that did not go through a PD&E phase, access connections within the project limits are to be evaluated for compliance with the assigned access classification. Driveways, signal, and median opening spacing should be considered in the analysis of safety and operational problems. Modifications or closures to access may be the solution in certain cases.

Rule 14-97.003(3)(b) gives FDOT the authority to alter, relocate or replace connections in order to meet current FDOT standards.

Rule 14-96.011 allows FDOT to revoke a permit "...if the connection causes a safety or operational problem on the State Highway System substantiated by an engineering study…".

Rule 14-97.003(3)(b) provides guidance on the treatment of existing features in the highway improvement process:

> “Existing lawful connections, median openings, and signals are not required to meet the access management standards. Existing access management features will generally be allowed to remain in place, but shall be brought into conformance with access management standards when significant change occurs or as changes to the roadway design allow.”

Where revisions are necessary due to operational or safety problems, it may not be possible to upgrade a median opening or driveway connection to the current standards because of existing conditions or constraints. In these cases, provide the best solution, based on good engineering practice.
Median Opening and Access Management Decision Process (Topic No. 625-010-021) requires the following:

1. Any significant change to driveway access will be shown in the plans or the driveway will be replaced in the same location, width and configuration (number of lanes).
2. Access design and impacts to a right of way acquisition parcel should be determined prior to the right of way phase.
3. Changes to access details or decisions must be coordinated with District Right of Way and General Counsel’s offices in addition to the Access Management Review Committee.

Properties that abut a roadway on the State Highway System has a right to reasonable access to the roadway. A means of reasonable access cannot be denied except on the basis of safety and operational concerns as provided in Section 335.184, Florida Statutes. Nothing in Section 335.184 limits FDOT’s authority to restrict the operational characteristics of a particular means of access. Service roads provide reasonable access.

It should be noted that if there are any conflicts between this manual and the statute and rules, the statute and rules will govern.

201.5 Design Speed

Design speed is a principal design control that regulates the selection of many of the project standards and criteria used for design. The selection of an appropriate design speed must consider many factors. The AASHTO publication, A Policy on Geometric Design of Highways and Streets, has a thorough discussion on design speed.

There are three categories of design speed:

- **High Speed**: Design Speeds 50 mph and greater.
- **Low Speed**: Design Speeds of 45 mph and less.
- **Very Low Speed**: Design Speeds 35 mph and less.

201.5.1 Design Speed Selection

Design speed should be selected early in the design process. Select a context-appropriate design speed to attain a desired degree of safety, mobility, and efficiency. Select design speeds in increments of 5 mph.
The District Design Engineer (DDE) and the District Traffic Operations Engineer (DTOE) jointly approve the selected design and posted speeds. This approval is a declaration that the posted speed will not exceed the selected design speed. This is to be documented on the Typical Section Package as described in FDM 120.2.3.

Table 201.5.1 provides an allowable range of mainline design speeds on the State Highway System. Table 201.5.2 provides the minimum design speeds allowed on ramps.

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>See RFP for design speed.</td>
</tr>
</tbody>
</table>
Table 201.5.1 Design Speed

Limited Access Facilities
(Interstates, Freeways, and Expressways)

<table>
<thead>
<tr>
<th>Area</th>
<th>Allowable Range (mph)</th>
<th>SIS Minimum (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural and Urban</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Urbanized</td>
<td>50-70</td>
<td>60</td>
</tr>
</tbody>
</table>

Arterials and Collectors

<table>
<thead>
<tr>
<th>Context Classification</th>
<th>Allowable Range (mph)</th>
<th>SIS Minimum (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 Natural</td>
<td>55-70</td>
<td>65</td>
</tr>
<tr>
<td>C2 Rural</td>
<td>55-70</td>
<td>65</td>
</tr>
<tr>
<td>C2T Rural Town</td>
<td>25-45</td>
<td>40</td>
</tr>
<tr>
<td>C3 Suburban</td>
<td>35-55</td>
<td>50</td>
</tr>
<tr>
<td>C4 Urban General</td>
<td>30-45</td>
<td>45</td>
</tr>
<tr>
<td>C5 Urban Center</td>
<td>25-35</td>
<td>35</td>
</tr>
<tr>
<td>C6 Urban Core</td>
<td>25-30</td>
<td>30</td>
</tr>
</tbody>
</table>

Notes:

1. SIS Minimum Design Speed may be reduced to 35 mph for C2T Context Classification when appropriate design elements are included to support the 35 mph speed, such as on-street parking.

2. SIS Minimum Design Speed may be reduced to 45 mph for curbed roadways within C3 Context Classification.

3. For SIS facilities on the State Highway System, a selected design speed less than the SIS Minimum Design Speed requires a Design Variation as outlined in *SIS Procedure (Topic No. 525-030-260)*.

4. For SIS facilities not on the State Highway System, a selected design speed less than the SIS Minimum Design Speed may be approved by the District Design Engineer following a review by the District Planning (Intermodal Systems Development) Manager.
Table 201.5.2 Ramp Design Speeds

<table>
<thead>
<tr>
<th>Ramp Connection Type</th>
<th>Minimum Design Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loops and Semi-Direct</td>
<td>30</td>
</tr>
<tr>
<td>Outer Cloverleaf</td>
<td>35</td>
</tr>
<tr>
<td>Intermediate Portions of Long Ramps</td>
<td>40</td>
</tr>
<tr>
<td>Direct Connection</td>
<td>50</td>
</tr>
</tbody>
</table>

Express Lane Direct Connections:

1. Design speeds higher than the minimum shown above should be used when practical. A design speed of 60 mph is desirable.
2. Design Variations for Design Speed will not be approved for Express Lane Direct Connections with a design speed below 40 mph.

201.5.1.1 Collector-Distributor Roads

The design speed for collector-distributor roads must not be less than 10 mph below the design speed of the primary facility when direct ingress or egress to the Limited Access facility is provided.

201.5.1.2 Express Lanes

Express lanes design speed will be the same design speed as the adjacent general use lanes or general toll lanes in roadways that have buffer and wide buffer separation. In cases of barrier and grade separation the design speed can be equal to or greater than that of the adjacent general use lanes or general toll lanes, but never less than the general use lanes or general toll lanes. Minimum ramp design speeds for Express Lanes ramps are included in *Table 201.5.2*.

201.5.2 Post-Construction Speed Study

The District Traffic Operations Engineer (DTOE) typically conducts a speed investigation within one year after a new construction or reconstruction project is completed. A change in posted speed limit may be proposed based on engineering and traffic investigations described in the Department’s *Manual on Speed Zoning for Highways, Roads and Streets in Florida* (a.k.a. Speed Zoning Manual).
When a speed study indicates that a higher posted speed is warranted, a modification of posted speed limit may be made under the authority of the District Traffic Operations Engineer (per the Traffic Regulation Approval Process, *FDOT Procedure No. 750-010-011*).

To assign a posted speed higher than the design speed, the DTOE, working with the District Design Engineer (DDE) must process a Design Exception or Design Variation for each design element that does not meet the criteria for the higher speed.

Further explanation on how posted speed limits are developed can also be found on the State Traffic Operations web page:

https://www.fdot.gov/traffic/FAQs/

201.5.3 RRR Projects

The design speed used for a RRR project is the design speed used in the original design of the highway.

When the posted speed is greater than the design speed used in the original design of the highway:

1. Process a Design Variation or Design Exception for each design element that does not meet the criteria for the higher posted speed. Refer to Design Variations and Design Exceptions that were processed when the higher posted speed was implemented.

2. Use criteria based on the posted speed:
 - (a) when correcting a specific highway feature that has a significant crash history
 - (b) for any new highway feature

3. For replacement of highway features, use criteria based on the posted speed to the greatest extent possible, but not less than the design speed.

When the design speed used in the original design of the highway is higher than the existing posted speed, the design speed may be reduced to match the existing posted speed, as long as the values in *Table 201.5.1* are still met. Speed management strategies (per *FDM 202*) should be used in conjunction with reduction of design speed. No Design Variation is required to lower the design speed to match the existing posted speed.
The typical section package must reflect the design speed used in the original design of the highway and the current posted speed. Also list the required Design Variations and Design Exceptions in the typical section package. See *FDM 120.2.3.3*, Typical Section Sheet.

If the existing design speed or posted speed meets AASHTO’s criteria but is not within the allowable range shown in *Table 201.5.1*, a Design Variation is not required to maintain the existing design or posted speed. When posted speed exceeds the allowable range, roadway elements that encourage lower operating speeds should be included with the project. See *FDM 202* for examples of roadway elements that encourage lower operating speeds.

201.6 Design Vehicle

The Design Vehicle is the largest vehicle that is accommodated without encroachment on to curbs (when present) or into adjacent travel lanes. The type of Design Vehicle is influenced by the functional and context classification of a roadway, the role of the roadway in the network, and the land uses served.

The selected Design Vehicle affects:

- Horizontal and vertical alignments
- Lane widths and lane assignments
- Roundabout inscribed circle diameter
- Intersection turning radii and sight distance
- Auxiliary lane storage length, and acceleration and deceleration lengths

When considering dual left turn or right turn lanes, the Design Vehicle should generally be considered as turning simultaneously with a passenger car.

AASHTO’s A Policy on Geometric Design of Highways and Streets provides general guidance on the selection of a design vehicle. *AASHTO* also provides the dimensions and turning characteristics for a variety of standard design vehicles; e.g., P, SU, WB-40, WB-62.

Florida Statutes allow truck-trailer combinations that are similar to the AASHTO WB-62 Interstate Semitrailer with some slight modifications. This modified WB-62 design vehicle is defined as the Florida Interstate Semitrailer (WB-62FL) and is often used as the design vehicle on the SHS. In addition, the Florida’s Turnpike and other truck routes allow...
tandem tractor trailers. Use the AASHTO WB-109D as the design vehicle for tandem truck routes.

201.6.1 Control Vehicle

The Control Vehicle is one that is infrequent and is accommodated by allowing:

- Encroachment into opposing lanes if no raised median is present
- Minor encroachment on to curbs and areas within the curb return if no critical infrastructure such as traffic signal poles are present.

Control Vehicles may be appropriate at intersections for curbed roadways within C4, C5 and C6 context classifications. When considering U-turns, the Control Vehicle may be used as the Design Vehicle.

201.6.2 WB-62FL

When designing for a WB-62FL at intersections, the design elements (e.g., control radii, return radii) can be based on the criteria tables and figures in *AASHTO* for a WB-62. In addition, when designing features for complex or constrained intersections (e.g., roundabouts, multi-lane turns, directional median openings, ramps) the geometric design elements should be checked against the turning movement of a WB-62FL. The Florida Interstate Semitrailer WB-62FL is illustrated in *Figure 201.6.1*.

![Figure 201.6.1 WB-62FL](image)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tractor Width</td>
<td>8.00 feet</td>
</tr>
<tr>
<td>Trailer Width</td>
<td>8.50 feet</td>
</tr>
<tr>
<td>Tractor Track</td>
<td>8.00 feet</td>
</tr>
<tr>
<td>Trailer Track</td>
<td>8.50 feet</td>
</tr>
<tr>
<td>Lock to Lock Time</td>
<td>6.00 seconds</td>
</tr>
<tr>
<td>Steering Angle</td>
<td>28.40 degrees</td>
</tr>
<tr>
<td>Articulating Angle</td>
<td>70.00 degrees</td>
</tr>
</tbody>
</table>
202 Speed Management

202.1 General

This chapter describes strategies that may be used to achieve desired operating speeds across all context classifications. The strategies described in this chapter are national best practices for low speed facilities and are allowable on arterials and collectors when consistent with the context classification of the roadway.

The FDM recognizes a range of design speeds for each context classification. For very low speed conditions (35 mph or less) the context classification design speed range indicates the upper end of desirable operating speeds. For instance, the design speed range for C4 is 30-45 mph, but in conditions where on-street parking is present, a 35 mph or lower design speed should be used. Additionally, when the current design speed of a roadway exceeds the allowable range for the context classification, or exceeds the target speed for conditions within the roadway, the strategies described in this chapter can be used to achieve a lower operating speed.

202.1.1 Lane Elimination Projects

Lane elimination projects (a.k.a., “road diets”) are intended to reconfigure the existing cross section to allow other uses. This type of project typically does not move existing curbs, but with the removal of a travel lane(s) may provide space to implement the speed management strategies discussed in this chapter. Lane elimination alone is not a speed management strategy but is included here to facilitate the use of other strategies.

See FDM 126 for information on lane elimination projects.

202.2 Speed Management Concepts

Low speed areas will typically have characteristics where conventional controls, such as centerline horizontal curvature, have limited applicability, such as:

- C6, C5 and C2T segments, which may be only a few blocks long and may already be built out, with limited possibility for roadway realignment
- C4 and C3 segments which are only a few blocks long and where reconstruction is not planned (such as a RRR project)
- Any project where interventions are part of a RRR project rather than a reconstruction or realignment, so curb lines are assumed to be fixed.
The strategies shown in Table 202.3.1 are intended to be implemented on RRR projects but may also be incorporated into New Construction or Reconstruction projects. For new construction or reconstruction projects, provide a centerline curvature to support the desired lower speed, in addition to the other techniques described in this chapter. Shorter segments with smaller curve radii will generally yield better results, compared to applying speed management strategies to a facility originally designed for high speeds. In town centers, respecting the existing or proposed street grid will help provide frequent intersections for speed management as well as circulation for traffic and pedestrians.

Table 202.3.1 indicates the appropriate context classification, Target Speed range, and potential techniques that may be applicable to achieve the indicated Target Speed. The strategies shown in this table are not exhaustive. Creativity, judgment, and experience in the use of low speed strategies are encouraged. Successful strategies typically incorporate one or more of the following speed management concepts:

- **Enclosure**: Enclosure is the sense that the roadway is contained in an “outside room” rather than in a limitless expanse of space. Drivers’ sense of speed is enhanced by providing a frame of reference in this space. The same sense of enclosure that provides a comfortable pedestrian experience also helps drivers remain aware of their travel speed. Street trees, buildings close to the street, parked cars, and terminated vistas help to keep drivers aware of how fast they are traveling. This feedback system is an important element of speed management.

- **Engagement**: Engagement is the visual and audial input connecting the driver with the surrounding environment. Low speed facilities utilize engagement to help bring awareness to the driver resulting in lower operating speeds. As the cognitive load on a driver’s decision-making increases, drivers need more time for processing and will manage their speed accordingly. Uncertainty is one element of engagement – the potential of an opening car door, for instance, alerts drivers to drive more cautiously. On-street parking and proximity of other moving vehicles in a narrow-lane are important elements of engagement, as are architectural detail, shop windows, and even the presence of pedestrians.

- **Deflection**: Deflection is the horizontal or vertical movement of the driver from the intended path of travel. Deflection is used to command a driver’s attention and manage speeds. Being a physical sensation, deflection is the most visceral and powerful of the speed management strategies. Whereas enclosure and engagement rely in part on psychology, deflection relies primarily on physics. Examples includes roundabouts, splitter medians (horizontal deflection), and raised intersections (vertical deflection). Deflection may not be appropriate if they hinder truck or emergency service vehicle access.
202.2.1 Target Speed

Target Speed is the highest speed at which vehicles should operate on a thoroughfare in a specific context, consistent with the level of multi-modal activity generated by adjacent land uses, to provide both mobility for motor vehicles and a supportive environment for pedestrians, bicyclists, and public transit users.

References:
- FHWA webpage: https://www.fhwa.dot.gov/planning/css/design/controls/factsheet3_ite.cfm
- Speed Zoning Manual 9.4

Setting a Target Speed is more useful in context classifications with a wide range of acceptable design speeds. Ideally, the Target Speed, Speed Limit, and Design Speed should all be the same where speeds are 45 mph or less. However, Design Speed and Speed Limit will often take time to change and may even need to be changed over the course of several projects. Target Speed can be set immediately and serves as the “target or goal” for Design Speed and Speed Limit changes over time. **Table 202.4.1** indicates the speed management strategies that should be used to achieve a desired Target Speed. When used, the Target Speed should be established by consensus of the District Design Engineer, District Traffic Operations Engineer, and District ISD Manager or OMD Manager. The district planning office should include the Target Speed along with other documentation of the Context Classification for a project.

The Design Speed of the roadway should be changed to match the Target Speed when possible, recognizing this may have to occur incrementally depending the magnitude of the difference between the current Design Speed and the Target Speed. See **FDM 201** for information on Design Speed and changes in Design Speed on RRR projects. Speed studies per the Speed Zoning Manual should be conducted as well to determine if the Target Speed strategies are working and to reset the speed limit as the operating speeds change over time.

202.3 Speed Management Strategies

When selecting appropriate strategies from **Table 202.3.1**, consider:
- context classification
- desired operating speed
- community vision
- multimodal needs (safety, operations)
- design and emergency vehicles
- access management
Descriptions of each speed management strategy are provided in the following sections of this chapter. Typically, the strategies provided in Table 202.3.1 are most effective when several are used together. Use existing conditions to the greatest extent possible to support speed management. In particular, existing street grids with short blocks and frequent intersections represent excellent speed management opportunities already in place. Accentuate and use such opportunities where they exist.
202.3.1 Roundabouts

Roundabouts are effective as a transition from a higher speed context to a lower speed context. On the State Highway System (SHS), modern roundabouts are standard, but smaller roundabouts (sometimes referred to as “mini-roundabouts”) may be appropriate in contexts where operating speeds of 25 mph or less are desired. See FDM 213 for roundabout design criteria.

When used in series, roundabouts can help maintain a low speed condition as an alternative to vertical deflection, stop signs, or traffic signalization. To limit the potential of drivers accelerating between roundabouts in series, spacing should not exceed one mile on low speed roadways and half-mile on very low speed roadways.

202.3.2 On-Street Parking

In addition to providing parking supply and separating pedestrians from the travel lane, on-street parking can be used to manage speeds when the parking lane is located directly adjacent to the travel lane. For best effect, the parking lane should be of the standard size for the type of parking used (parallel or reverse angle), and the travel lane should be of the minimum width that will accommodate the design vehicle. Effective speed management can be achieved by maximizing the engagement between the parking lane and the travel lane. Where parking is used for speed management, avoid the following:

- Installing a bicycle lane between the parking lane and the travel lane
- Travel lanes wider than 11 feet.

Consider providing additional strategies such as curb extensions, and shorts blocks, with on street parking.

See FDM 210.2.3 for on-street parking design criteria.

202.3.3 Chicanes

A chicane is a very low speed treatment using deflection of the roadway centerline to achieve horizontal deflection within existing curb. Chicanes place vertical barriers (e.g., curbs, on-street parking) to require vehicle operators to make frequent horizontal movements. To be effective, the chicane deflection should be the width of a parking lane or no less than half of the travel lane width. Transition distance between chicanes is typically 100 feet or more.
An example of a chicane strategy is the placement of on-street parking on alternating sides of the street. This alternating on-street parking pattern may be placed from one block to the next, or within a single block (depending on block length and transition distances). This creates a centerline shift, as illustrated in Figure 202.3.1.

To accommodate a WB-62FL Design Vehicle, chicanes should not be shorter than one block. For smaller trucks, buses and emergency vehicles, chicanes should not be shorter than half a-block.

![Figure 202.3.1 Concept Sketch - Midblock Chicane](image)

202.3.4 Lane Narrowing

Use of narrow lanes (less than 12') alone has limited effect on operating speeds. This effect can, however, enhance engagement as traffic volumes increase. The visible narrowing of travel lanes may be used as a transition device to clearly indicate a change in context. For instance, narrowing two 12-foot lanes to two 11-foot or 10-foot lanes by shifting the lane lines slightly and introducing a hatch in the newly-created edge space has been shown to alert drivers of a change in condition or context. To maximize effectiveness, lane narrowing should be used in conjunction with other low speed strategies (e.g., introduction of parking, creation of a median, beginning a chicane).

See *FDM 210.2* for lane width criteria on the SHS.
202.3.5 Horizontal Deflection

Horizontal deflection is the redirection of the driver in the horizontal plane through the introduction of a curve, splitter island, or other redirection device. Horizontal deflection is the operating principle behind roundabouts and chicane treatments. Designers may conceive additional ways to introduce horizontal deflection using these same principles.

FDM 210.8.1 has criteria for horizontal deflection of tangent sections of roadway. *FDM 212.7* provides criteria for horizontal deflection through intersections.

202.3.6 Street Trees

To be most effective as a speed management strategy, street trees should be close to the roadway and should form a continuous “wall” effect. When used this way, the street trees reinforce a sense of enclosure. As with most of these strategies, street trees along the roadway will be more effective when used in conjunction with other strategies. For speed management purposes, designers are encouraged to use street trees whenever possible.

FDM 212.11 and *FDM 215.2.4* provide criteria on the placement of street trees. The installation of street trees may require a maintenance agreement with local agency.

202.3.7 Short Blocks

Short blocks of 500 feet or less manage speed by limiting driver acceleration distance between intersections. If used in conjunction with marked crosswalks, short blocks also create engagement. Accentuate the presence of the short blocks to reinforce low-speed and pedestrian-supportive contexts. Creation and enforcement of short blocks can take many forms, from the control of intersections on physically short blocks to the simulation of short blocks achieved by introducing midblock crossings on longer block segments. On reconstruction projects, preserve existing short block networks wherever possible, particularly in established town centers with an existing street grid.

Where physical short blocks already exist, such as most C6 and C5 contexts and many C4 and C2T contexts, consider marking crosswalks at unsignalized intersections to reinforce the presence of the short blocks; see *FDM 222.2.3.1* and *Traffic Engineering Manual (TEM) 5.2* for criteria on marking unsignalized crosswalks. This concept is illustrated in Figure 202.3.2.

Where physical short blocks do not exist, installation of mid-block crossings can be used to simulate the short-block effect, as illustrated in Figure 202.3.3.
Figure 202.3.2 Concept Sketch – Mark Crossings to Emphasize Short Blocks
202.3.8 Vertical Deflection

Like horizontal deflection, vertical deflection is a proven technique for speed management. Speed tables and raised intersections may be considered only for Target Speeds of 25 mph or less. Raised crosswalks may be considered for Target Speeds of 30 mph or less. High levels of engagement with local public works and emergency services are required when vertical deflection is proposed.

202.3.9 Speed Feedback Signs

Speed feedback signs are a traffic operations strategy that is effective in helping to enforce school zone speed limits. However, this strategy may also require active participation by law enforcement.

The signs provide immediate feedback to drivers when the speed limit is exceeded, which may help to reduce unintentional speeding. They are most effective at managing operating speeds for short distances (about 1,000 feet) following the sign and when combined with other measures such as high emphasis crosswalk markings and islands. Coordinate with the District Traffic Operations Engineer on the use of this device.
202.3.10 Speed Limit Pavement Marking

Speed limit markings placed directly on the pavement adjacent to speed limit signs, reinforce a change in speed limit (e.g., at transition areas, on approach to a pedestrian crossing). This strategy should be considered when a speed limit reduction may be unexpected; e.g., transition from a C1 or C2 context to a C2T context, an approach to a pedestrian crossing in a rural area, or a transition from a low-speed to a very low-speed condition. Coordinate with the District Traffic Operations Engineer on the use of speed limit pavement marking.

202.3.11 Islands

Islands at crossings can provide deflection as well as engagement to help manage operating speeds. Unlike continuous raised medians, islands are short sections used in specific locations. When combined with a crosswalk, the island may provide refuge for pedestrians as well as speed management. See FDM 210 for island criteria.

Islands on curved roadway sections can prevent lane departures by forcing drivers to stay within the travel lane. These are especially effective in locations where drivers increase speed by overrunning the centerline striping on a shorter-radius curve.

202.3.12 Curb Extensions (Bulb-Outs)

Curb extensions are portions of the curb line extended out into the roadway to provide engagement and deflection. Curb extensions are commonly used at either end of a parking lane. They also shorten crossing distance for pedestrians and may provide space for landscaping or community aesthetic features.

Curb extensions create engagement by extending the curb line to be adjacent to the travel lane. When used at the beginning of a parking lane or as part of a chicane, the curb extension also provides deflection. In some instances, longitudinally extended bulb-outs inside the existing curb lines may be used to narrow the entire length of a roadway segment. In this case, the existing drainage system is preserved, and drainage provided through the new curb extensions to existing inlets. Curb extensions at intersections should be designed using a CADD-based vehicle turning path (e.g., AutoTurn) to verify the appropriate design and control vehicles are accommodated.

See FDM 222.2.6 for curb extension criteria.
202.3.13 Rectangular Rapid Flashing Beacons and Pedestrian Hybrid Beacons

The Rectangular Rapid Flashing Beacon (RRFB) and Pedestrian Hybrid Beacon (PHB) traffic control devices are “beacons” rather than signals and consequently have a less restrictive warranting processes. When combined with marked crosswalks, they can be used to establish shorter block lengths. They may also create engagement and thereby help manage operating speeds. See TEM 5.2 and coordinate with the District Traffic Operations Engineer on the application of these devices.

202.3.14 Terminated Vista

The terminated vista creates enclosure by providing an enclosed (terminated) view ahead (vista), indicating a street segment does not extend indefinitely. The terminated vista places a building, tree, artwork, or natural view in the driver's central vision to indicate that a stop or change of direction is imminent. This is illustrated in Figure 202.3.4 by an oak tree terminating the vista where the roadway bears to the left.

The terminated vista is a valued and well-understood town planning tool to create a sense of place and enclosure for pedestrians. The effect on drivers is similar. Roundabouts are a common type of terminated vista, especially where a tall vertical element is included in the center island of the roundabout. Other terminated vistas can be created at T-intersections, median splitter islands, and off-set block configurations.
Figure 202.3.4 Concept Sketch – Terminated Vista Example
Table 202.3.1 Strategies to Achieve Desired Operating Speed

<table>
<thead>
<tr>
<th>Context Classification</th>
<th>Target Speed (mph)</th>
<th>Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>55-70</td>
<td>Project-specific; see FDM 202.4.</td>
</tr>
<tr>
<td>C2</td>
<td>55-70</td>
<td>Project-specific; see FDM 202.4.</td>
</tr>
<tr>
<td>C2T</td>
<td>40-45</td>
<td>Roundabout, Lane Narrowing, Horizontal Deflection, Speed Feedback Signs, RRFBs and PHBs</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>Techniques for 40-45 mph, plus On-street Parking, Street Trees, Short Blocks, Islands at Crossings, Road Diet, Bulb-outs, Terminated Vista</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>Techniques for 35-45 mph, plus Chicanes, Islands in curved sections, Textured Surface</td>
</tr>
<tr>
<td></td>
<td>≤ 25</td>
<td>Techniques for 30-45 mph, plus Vertical Deflection</td>
</tr>
<tr>
<td>C3R, C3C</td>
<td>50-55</td>
<td>Project-specific; see FDM 202.4.</td>
</tr>
<tr>
<td></td>
<td>40-45</td>
<td>Roundabout, Lane Narrowing, Horizontal Deflection, Speed Feedback Signs, RRFB and PHB</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>Roundabout, Lane Narrowing, Horizontal Deflection, Speed Feedback Signs, Islands in crossings, Road Diet, RRFB and PHB, Terminated Vista</td>
</tr>
<tr>
<td>C4</td>
<td>40-45</td>
<td>Roundabout, Lane Narrowing, Horizontal Deflection, Speed Feedback Signs, RRFB and PHB</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>Techniques for 40-45 mph plus On-Street Parking, Street Trees, Short Blocks, Islands at Crossings, Bulb-outs, Terminated Vista, Road Diet</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>Techniques for 35-45 mph plus Chicanes, Islands in Curve Sections, Textured Surface</td>
</tr>
<tr>
<td>C5</td>
<td>35</td>
<td>Roundabout, On-street Parking, Street Trees, Short Blocks, Speed Feedback Signs, Islands in Crossings, Road Diet, Bulb-outs, RRFB and HAWK, Terminated Vista</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>Techniques for 35 mph plus Chicanes, Island in Curve Sections, Textured Surface</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>Techniques for 30-35 mph plus Vertical Deflection</td>
</tr>
<tr>
<td>C6</td>
<td>30</td>
<td>Roundabout, On-Street Parking, Horizontal Deflection, Street Trees, Islands in Curve Sections, Road Diet, Bulb-outs, Terminated Vista, Textured Surface</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>Techniques for 30 mph plus vertical deflection</td>
</tr>
</tbody>
</table>
202.4 Transition Zones

Roadways may traverse more than one context classification. As the context changes, the design criteria for the roadway will also change. The transition from C1 (Natural) or C2 (Rural) context classification to a higher classification such as C2T (Rural Town) provides a potentially abrupt change in the recommended design speed and design users.

For example, the land use surrounding SR 26 through Newberry, Florida transitions from C2 (Rural) to C2T (Rural Town) over the course of a few blocks (see Figure 202.4.1). Such conditions require a transition zone to alert drivers to the context change and to notify them to adjust their behavior and expectations accordingly. Changes in speed limit as part of transition zones must comply with the requirement of the Speed Zoning for Highways, Roads, and Streets in Florida.

Figure 202.4.1 Example of Transition Zone (SR 26 through Newberry, FL)
Transition zones have two distinct sections, as illustrated in Figure 202.4.2:

1. Perception-Reaction Area and
2. Deceleration Area

Figure 202.4.2 Transition Zone from C1/C2 to C2T Context Classification

In the perception-reaction area, drivers are made aware of the need to reduce speed. This section will include visual cues to alert the driver of an upcoming deceleration. These cues may include:

- Signage, including warning signs such as “Reduced Speed Limit Ahead” signs, or gateways signs where appropriate.
- Pavement markings: lane narrowing can be highlighted with the use of a wider outside stripe. The speed limit may be placed on the pavement.
- Curb changes: from flush paved shoulders to curbed roadway.
- Architectural elements such as type, location, and spacing of lighting or landscaping.

In the deceleration area, drivers are expected to slow down to an operating speed that matches the context of the community being approached. In the deceleration area, there is a noticeable change in roadway characteristics. The length of the deceleration area is a function of design speed, sight distance, and design criteria of the new context classification. Transition from a high-speed to low-speed cross section can be accomplished through a variety of features, including but not limited to:
- Horizontal deflection (e.g., splitter islands, chicanes, roundabouts)
- Lane narrowing
- Lane elimination
- Introduction of curb and gutter
- Street enclosure through vertical landscaping
- Signage or gateway treatments, including speed feedback signs
- Speed limit pavement markings

A combination of strategies is more effective for reducing speed. *Figures 202.4.3 and 202.4.4* provide an example of horizontal deflection and lane narrowing at the entrance of a rural town.

**Figure 202.4.3 Example of a Transition Zone from 60 to 30 mph
(SR 636, entrance to town of Wauchula, Florida)**
Figure 202.4.4 Section Change Near Transition from 40 to 30 mph
(Entrance to Wauchula, FL, showing lane narrowing)

Photo by FDOT District 1
210 Arterials and Collectors

210.1 General

Design criteria presented in this chapter apply to new construction and reconstruction projects on arterials and collectors on the State Highway System. Roadways not on the State Highway System which are impacted by these new construction and reconstruction projects should also be designed in accordance with this manual; however, districts may allow the use of the Manual of Uniform Minimum Standards for Design, Construction and Maintenance for Streets and Highways (commonly known as the "Florida Greenbook").

This chapter also provides minimum criteria to be used with Resurfacing, Restoration, and Rehabilitation (RRR) projects as described in FDM 210.1.1.

Facilities on the Strategic Intermodal System (SIS) are subject to special standards and criteria for number of lanes, design speed, access, and level of service. Design all SIS and Emerging SIS Highway Intermodal Connectors in accordance with the SIS criteria contained in this manual. With approval by the District Design Engineer, the Florida Greenbook may be used on SIS facilities that are not on the State Highway System.

Many design criteria are related to design speed; e.g., vertical and horizontal geometry, sight distance. The minimum design values are closely related to traffic safety and require an approved Design Exception or Design Variation when they are not met. See FDM 201 for information on Design Speed. See FDM 122 for information on Design Exceptions and Design Variations.

Example roadway typical sections are included in the exhibits in FDM 306. Criteria regarding lanes, medians, and shoulders for bridges are illustrated in FDM 260.1.1. Subsequent sections of this chapter contain specific information and criteria regarding these and other typical section elements, as well as geometric features.

210.1.1 Criteria for RRR Projects

Criteria for RRR projects provided in this chapter are the minimum values allowed for roadway and structure elements to remain on the State Highway System without obtaining a Design Exception or Design Variation (see FDM 122). Existing project features are to meet new construction criteria when RRR criteria are not provided.

Existing project features which were constructed to meet minimum metric design criteria, but are mathematically slightly less than equivalent minimum English design criteria, do not require Design Exceptions or Design Variations to remain.
New features installed on RRR projects are to meet new construction criteria. However, RRR criteria may be used for establishing the minimum requirements for adding auxiliary lanes, keyhole lanes, or other minor intersection improvements with the understanding that when existing R/W is adequate, new construction criteria will be used to the maximum extent feasible.

210.1.2 Railroad-Highway Grade Crossing

If a railroad-highway grade crossing is within or near the limits of the project, and there are Federal Funds associated with the project, see FDM 220.2.4 for requirements.

210.1.3 Aviation and Spaceports

If an airport or spaceport is within 10 nautical miles of the project, refer to FDM 110.5.1 for requirements.

210.2 Lanes

Design criteria for lane widths and pavement slopes are given by lane type, design speed and context classification. Minimum travel, auxiliary, and two-way left-turn lane widths are provided in Table 210.2.1. Refer to FDM 211 for ramp lane widths.

Two-way left turn lane widths (flush median) may be used on 3-lane and 5-lane typical sections with design speeds ≤ 40 mph. On new construction projects, flush medians are to include sections of raised or restrictive median and islands to enhance vehicular, bicycle, and pedestrian safety, improve traffic efficiency, and attain the standards of the Access Management Classification of that highway system. Sections of raised or restrictive median and islands are recommended on RRR projects.
Table 210.2.1 – Minimum Travel and Auxiliary Lane Widths

<table>
<thead>
<tr>
<th>Context Classification</th>
<th>Travel (feet)</th>
<th>Auxiliary (feet)</th>
<th>Two-Way Left Turn (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Design Speed (mph)</td>
<td>Design Speed (mph)</td>
<td>Design Speed (mph)</td>
</tr>
<tr>
<td></td>
<td>25-35</td>
<td>40-45</td>
<td>≥ 50</td>
</tr>
<tr>
<td>C1 Natural</td>
<td>11</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>C2 Rural</td>
<td>11</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>C2T Rural Town</td>
<td>11</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>C3 Suburban</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>C4 Urban General</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>C5 Urban Center</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>C6 Urban Core</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

Notes:

Travel Lanes:

1. Minimum 11-foot travel lanes on designated freight corridors, SIS facilities, or when truck volume exceeds 10% on very low speed roadways (design speed ≤ 35 mph) (regardless of context).
2. Minimum 12-foot travel lanes on all undivided 2-lane, 2-way roadways (for all context classifications and design speeds). However, 11-foot lanes may be used on 2-lane, 2-way curbed roadways that have adjacent buffered bicycle lanes.
3. 10-foot travel lanes are typically provided on very low speed roadways (design speed ≤ 35 mph), but should consider wider lanes when transit is present or truck volume exceeds 10%.
4. Travel lanes should not exceed 14 feet in width.

Auxiliary Lanes:

1. Auxiliary lanes are typically the same width as the adjacent travel lane.
2. Table values for right turn lanes may be reduced by 1 foot when a bicycle keyhole is present.
3. Median turn lanes should not exceed 15 feet in width.
4. For high speed curbed roadways, 11-foot minimum lane widths are allowed for the following:
 - Dual left turn lanes
 - Single left turn lanes at directional median openings.
5. For RRR Projects, 9-foot right turn lanes on very low speed roadways (design speed ≤ 35 mph) are allowed.

Two-way Left Turn Lanes:

1. Two-way left turn lanes are typically one foot wider than the adjacent travel lanes.
2. For RRR Projects, the values in the table may be reduced by 1-foot.

210 – Arterials and Collectors
210.2.1 Bicycle Lanes

FDM 223 contains criteria for the accommodation of bicyclists.

210.2.2 Transit Facilities

Coordinate with the District Modal Development Office and local transit agency for the need for public transit facilities. *FDM 225* contains additional guidelines for street side bus stop facilities, location and design.

210.2.3 On-Street Parking

On-street parking is a key element of urban contexts C6, C5, and C4, but may also be found in C2T. It provides necessary parking supply in these locations, helps manage traffic speeds, and provides separation between the sidewalk and the travel lanes. In these context zones, leave existing on-street parking in place unless local plans call for its removal. Where on-street parking is not present in C6, C5, or C4, determine whether it should be added per local plan, for speed management, or to increase available parking.

On-street parking is allowed on facilities with posted speeds of 35 mph or less. It is typically located at the outside edge of the roadway between the travel lane and the sidewalk. In C6 and C5 contexts it may sometimes be located within the median of a divided low speed urban street. Median parking provides additional parking supply as well as speed management.

On-street parking may be either parallel or angle (traditional or reverse). See *Chapter 316, F.S.* for laws governing parking spaces.

Standard Plans, Index 711-001 provides dimensions and additional requirements for on-street parking.

See *FDM 223* for bicycle accommodations on roadways with on-street parking.

Parking restrictions to assure adequate clear sight triangles are provided in *FDM 212.11.5*.

210.2.3.1 Existing On-Street Parking

For RRR projects with existing on-street parking and a posted speed greater than 35 mph, process a single Design Variation that addresses all of the following design elements:
• Intersection Sight Distance
• Stopping Sight Distance (as applicable)
• On-street parking

The single Design Variation described above should include all affected intersections within a corridor; i.e., it is not necessary to process individual Design Variations for each location. In addition to processing a Design Variation, consider the following mitigation strategies:

• Use speed mitigation strategies described in FDM 202 to achieve a target speed of 35 mph.
• When possible, provide a 2’ buffer between the on-street parking spaces and the travel lane.

210.2.4 Pavement Cross Slopes

For roadways, the maximum number of travel lanes with cross slope in one direction is three lanes except as shown in Figure 210.2.1, which prescribes standard pavement cross slopes. A Design Variation or a Design Exception is required when proposed pavement cross slopes do not meet the requirements shown in Figure 210.2.1.

Outside auxiliary lane cross slopes must match or exceed adjacent travel lane cross slope. The outside auxiliary lane cross slope cannot exceed the values in Figure 210.2.1. In superelevation transitions for separated free flow turning roadways, do not exceed the maximum algebraic differences shown in Table 210.2.2.

The maximum algebraic difference in cross slope between adjacent through lanes is 0.04. The maximum algebraic difference in cross slope between a through lane and an auxiliary lane at a turning roadway terminal is given in Table 210.2.2.

Cross slopes on bridges are to be on a uniform, straight-line rate, typically 0.02 (see FDM 260.4). Use transitions to adjust for differences in cross slope between the approach roadway section and the required straight-line slope for bridge decks. Whenever possible the transition should be accomplished on the roadway section, outside the limits of the bridge and approach slabs. This will require detailing of the transition(s) in the roadway plans. Coordination between the Roadway, Drainage and Structures designers in the development of transitions is required to ensure compatibility and harmonizing at bridge approaches.
(1) These sections show only the standard slopes for adjoining travel lanes; they do not prescribe needed lanes, lane usage or typical section requirements other than lane slope. These slopes are not applicable to parabolic crowns.

(2) Maximum pavement cross slopes for tangent sections are:
(a) 0.04 for design speeds of 45 mph or less
(b) 0.03 for design speeds greater than 45 mph
(c) 0.035 may only be used for 5-lanes sloped in one direction as shown above.

(3) The maximum change in cross slope between adjacent through lanes is 0.04.

(4) Slopes on multi-purpose lanes may be 0.03 to 0.05. Portions of multi-purpose lanes that are reserved for parking and access isles for the physically disabled are to have cross slopes not exceeding 1:50 (0.02) in all directions.

(5) 4 or 5 lanes sloped in one direction (*) may be used with design speed 65 mph or less and longitudinal grades not exceeding 5%.
Table 210.2.2 Maximum Algebraic Difference in Cross Slope at Turning Roadway Terminals

<table>
<thead>
<tr>
<th>Design Speed of Exit or Entrance Curve (mph)</th>
<th>Maximum Algebraic Difference in Cross Slope at Crossover Line (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 35</td>
<td>6.0</td>
</tr>
<tr>
<td>35 and over</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Diagram showing the concept of maximum algebraic difference in cross slope at turning roadway terminals with labels for 'Crossover Line' and 'Algebraic Difference'.
210.2.4.1 RRR Criteria for Cross Slopes

Review the existing pavement and shoulder cross slopes for compliance with criteria. Field verify existing pavement and shoulder cross slopes by one of the following:

(1) Full Digital Terrain Model for the roadway width – evaluate cross slope on tangent sections at 100-foot intervals.

(2) Vehicle Mounted Scanner – prior to design, using the results of the scan, determine roadway limits where cross slope is potentially out of tolerance and request Digital Terrain Model of the roadway width for these limits. Evaluate cross slope on tangent sections at 100-foot intervals.

If cross slopes do not meet the values in Table 210.2.3, additional cross sections may be required to develop cross slope correction details and estimate material quantities. Resurfaced pavement and shoulder cross slopes should meet new construction criteria. When cross slope correction is not practical, documentation in the design file is required. If existing conditions are within the allowable range shown in Table 210.2.3, the term “Match Existing” may be used on the Typical Section(s) to indicate that the existing cross slope is to remain. Superelevation requirements are covered in FDM 210.9.

When cross slope correction is necessary, work closely with the District Pavement Design Engineer and the District Bituminous Engineer to determine the appropriate method of correction. Tabulate existing cross slopes in the plans at 100-foot intervals within the limits of cross slope correction. Include cross slope correction details showing the method of correction in the plans (see examples in FDM 306). Do not show cross slope correction details on the roadway cross sections. Base cross slope correction material quantities on the method of correction shown in cross slope correction details.
Table 210.2.3 RRR Criteria for Existing Roadway Cross Slopes

<table>
<thead>
<tr>
<th>Facility or Feature</th>
<th>Standard (ft/ft)</th>
<th>Allowable Range (ft/ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-Lane Roads</td>
<td>0.02</td>
<td>0.015 - 0.030</td>
</tr>
<tr>
<td></td>
<td>0.02</td>
<td>0.015 - 0.040</td>
</tr>
<tr>
<td>Multilane Roads</td>
<td>0.03</td>
<td>0.025 - 0.040</td>
</tr>
<tr>
<td></td>
<td>0.035</td>
<td>0.030 - 0.040</td>
</tr>
<tr>
<td>Outside Shoulders</td>
<td>0.06</td>
<td>Adjacent Lane Cross Slope - 0.080</td>
</tr>
<tr>
<td>Inside Shoulders</td>
<td>0.05</td>
<td>0.020 - 0.080</td>
</tr>
<tr>
<td>Parking Lanes</td>
<td>0.05</td>
<td>0.015 - 0.050</td>
</tr>
</tbody>
</table>

Notes:

1. Existing multilane curbed roadways may have outside travel or auxiliary lanes with a maximum cross slope of 0.05.
2. Outside auxiliary lanes on flush shoulder roadways must match or exceed adjacent travel lane cross slopes with a maximum cross slope of 0.04.
3. The maximum algebraic difference between adjacent through lanes must not exceed 0.06.
4. When existing shoulders are to remain, the algebraic difference between the shoulder slope and adjoining roadway pavement slope must be ≤ 0.07.
5. Parking spaces and access aisles dedicated to serving persons with disabilities must have cross slopes no steeper than 0.02 (1:50) in any direction.

Existing curbed roadways originally constructed with a parabolic crown section may be resurfaced using a series of tangents with a cross slope range from 0.015 to 0.05.

210.2.4.2 Hydroplaning Risk Analysis

The hydroplaning risk analysis predicts the water film thickness on the pavement being analyzed and the speed at which hydroplaning may occur. This information may support utilizing a non-compliant typical section when weighed against the cost of correcting pavement cross slope. Coordinate with the District Drainage Engineer to determine whether a hydroplaning analysis is needed.

When a hydroplaning risk analysis is performed, use the HP Program and the Design Guidance: Hydroplaning Risk Analysis. The Hydroplaning Tools can be downloaded under Design Aids at:
210.2.5 Roadway Transitions

The minimum merging roadway transition length (L) is calculated as follows:

1. Use $L = \frac{(W^2 S^2)}{60}$ for design speeds ≤ 40 mph
2. Use $L = WS$ for design speeds ≥ 45 mph

Where:
- L = length of taper, feet
- W = width of lateral transition, feet
- S = design speed, mph

Exhibit 210-1 through 210-6 illustrate standard roadway transitions. For conditions not addressed in these figures, use the following minimum taper lengths:

- Merging Taper = L
- Shifting Taper = $L/2$
- Shoulder Taper = $L/3$

Where an abrupt change in roadway typical (e.g., 4-lane section to a 6-lane section) a striped lane transition may be considered when all the following conditions are met:

- New pavement widths are not substantially greater than the joining pavement,
- Grade differentials are slight, and
- Future widening is expected.

210.2.6 Number of Lanes on the State Highway System

See Section 335.02(3) of the Florida Statutes for the number of lanes to be provided on the State Highway System. Nothing in this statute precludes a number of lanes in excess of ten lanes. The Department will determine the appropriate number of lanes based on traffic demand. Consideration will be given to availability of right of way and the capacity to accommodate other modes of transportation within existing rights of way.

Exceptions to Section 335.02(3) of the Florida Statutes will be addressed on a case-by-case basis, with final approval resting with the Secretary of Transportation.
LANE DIVERGENCE AND CONVERGENCE FOR CENTERED ROADWAYS

4-LANE DIVIDED TO 4-LANE UNDIVIDED

4-LANE DIVIDED TO 2-LANE UNDIVIDED

4-LANE UNDIVIDED TO 2-LANE UNDIVIDED

\[L^* = \frac{W^2}{60} \text{ FOR DESIGN SPEEDS } \leq 40 \text{ mph} \]

\[L = W S \text{ FOR DESIGN SPEEDS } \geq 45 \text{ mph} \]

WHERE: \(L = \) LENGTH OF TAPER, FEET
\(W = \) WIDTH OF LATERAL TRANSITION, FEET
\(S = \) DESIGN SPEED, mph

* \(W = \) ONE LANE WIDTH
** \(W = \) 1/2 MEDIAN WIDTH

NOT TO SCALE

EXHIBIT 210-1
01/01/2018
EXISTING ROADWAY WITHOUT PAVED SHOULDERS
CONNECTING FLARE WITH PAVED SHOULDERS TO
EXISTING ROADWAY WITHOUT PAVED SHOULDERS

EXISTING SYMMETRICAL FLARE WITHOUT PAVED SHOULDERS
CONNECTING ROADWAY WITH PAVED SHOULDERS TO
EXISTING SYMMETRICAL FLARE WITHOUT PAVED SHOULDERS

EXISTING ASYMMETRICAL FLARE WITHOUT PAVED SHOULDERS
CONNECTING ROADWAY WITH PAVED SHOULDERS TO
EXISTING ASYMMETRICAL FLARE WITHOUT PAVED SHOULDERS

CONNECTING SIMILAR WIDTH PAVEMENTS

CONNECTING DIFFERENT WIDTH PAVEMENTS

FLARED - PAVED SHOULDERS

NOT TO SCALE
TWO LANE TO FOUR LANE TRANSITION:
LEFT ROADWAY CENTERED ON APPROACH ROADWAY

L = WS² / 60 FOR DESIGN SPEEDS ≤ 40 mph
L = WS FOR DESIGN SPEEDS ≥ 45 mph
WHERE: L = LENGTH OF TAPER, FEET
W = WIDTH OF LATERAL TRANSITION, FEET
S = DESIGN SPEED, mph

NOT TO SCALE
EXHIBIT 210-3
01/01/2018
FOUR LANE TO TWO LANE TRANSITION:
LEFT ROADWAY CENTERED ON THRU ROADWAY

WHERE:
L = LENGTH OF TAPER, FEET
W = WIDTH OF LATERAL TRANSITION, FEET
S = DESIGN SPEED, mph

L = \frac{W^2}{60} \quad FOR \ DESIGN \ SPEEDS \leq 40 \ mph
L = \frac{W}{5} \quad FOR \ DESIGN \ SPEEDS > 45 \ mph

EXHIBIT 210-4
01/01/2018
NOT TO SCALE
TWO LANE TO FOUR LANE TRANSITION:
RIGHT ROADWAY CENTERED ON APPROACH ROADWAY

WHERE:
L = LENGTH OF TAPER, FEET
W = WIDTH OF LATERAL TRANSITION, FEET
S = DESIGN SPEED, mph

L = \frac{WS^2}{60} \text{ FOR DESIGN SPEEDS ≤ 40 mph}
L = WS \text{ FOR DESIGN SPEEDS ≥ 45 mph}

EXHIBIT 210-5
01/01/2018
FOUR LANE TO TWO LANE TRANSITION:
RIGHT ROADWAY CENTERED ON THRU ROADWAY

1:15 Taper
(1:4 Min., But
Not Less Than 50')

L = 200.08'
T = 200.08'

1:15 Taper
(1:4 Min., But
Not Less Than 50')

L = 250.16'
T = 250.16'

WHERE:
L = LENGTH OF TAPER, FEET
W = WIDTH OF LATERAL TRANSITION, FEET
S = DESIGN SPEED, mph

L = \(\frac{W^2}{S^2} \) FOR DESIGN SPEEDS ≤ 40 mph
L = W FOR DESIGN SPEEDS ≥ 45 mph

NOT TO SCALE

EXHIBIT 210-6
01/01/2018
210.3 Medians, Islands, and Hardened Centerlines

210.3.1 Medians

Median width is expressed as the dimension between the inside edges of traveled way. Medians perform the following functions:

- Provide separation of opposing traffic to minimize risk of head on crashes,
- Provide a recovery area for errant vehicles,
- Provide a stopping area in case of emergencies,
- Allow space for speed changes and storage of left-turning and U-turning vehicles,
- Minimize headlight glare,
- Provide width for future lanes,
- Provide pedestrian refuge,
- Control access.

Provide a raised or restrictive median (i.e., not a two-way left turn lane or centerline pavement marking) on divided roadways that have a design speed of 45 mph or greater. Median widths for divided roadways are given in Table 210.3.1.

Median ditches must be designed to meet the following requirements:

- Have sufficient depth to provide positive drainage of the adjacent sub-grades. Typically, this requires a median depth of at least one foot below the sub-grade shoulder point.
- Have recoverable side slopes within the clear zone in order to facilitate the recovery of errant vehicles. See FDM 215 for additional information on roadside safety.
- Have sufficient longitudinal gradient and hydraulic capacity to ensure good drainage.

See FDM 260.5 for information on bridge medians.
Table 210.3.1 Median Widths

<table>
<thead>
<tr>
<th>Context Classification</th>
<th>Curbed Roadways and Flush Shoulder Roadways (feet)</th>
<th>High Speed Curbed Roadways (feet)</th>
<th>Flush Shoulder Roadways (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25-35</td>
<td>40-45</td>
<td>50-55</td>
</tr>
<tr>
<td>C1 Natural</td>
<td>N/A</td>
<td>N/A</td>
<td>30</td>
</tr>
<tr>
<td>C2 Rural</td>
<td>N/A</td>
<td>N/A</td>
<td>30</td>
</tr>
<tr>
<td>C2T Rural Town</td>
<td>15.5</td>
<td>22</td>
<td>N/A</td>
</tr>
<tr>
<td>C3 Suburban</td>
<td>22</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>C4 Urban General</td>
<td>15.5</td>
<td>22</td>
<td>N/A</td>
</tr>
<tr>
<td>C5 Urban Center</td>
<td>15.5</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>C6 Urban Core</td>
<td>15.5</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Notes:

(1) On reconstruction projects where existing curb locations are fixed due to severe right of way constraints, the minimum median width may be reduced to 19.5 feet for design speeds = 45 mph, and to 15.5 feet for design speeds ≤ 40 mph.

(2) A minimum 6-foot median may be used within C5 and C6 context classifications only where left turn lanes are not expected.

210.3.2 Islands

An island is an area between traffic lanes that provide one or more of these primary functions:

(1) **Channelization Islands**: To control and direct traffic movement (usually turning) at intersections or driveways.

(2) **Median Islands and Traffic Separators**: To separate traffic in opposing or same direction (usually through movements), manage access points and turning

210 – Arterials and Collectors
movements, provide for delineation of narrow roadway medians, and provide for drainage. Typically referred to as “divisional islands” when separating traffic in opposing directions.

(3) Refuge Islands: to provide refuge for pedestrians.

Islands are generally elongated or triangular in shape and located in areas where motorized vehicle use is restricted. The placement of mast arms in channelizing islands is discouraged.

Island delineation is divided into three types:

(1) Curbing that raises the island
(2) Pavement markings or reflectorized markers placed on paved areas
(3) Pavement edges, possibly supplemented by delineators or a mounded-earth treatment beyond and adjacent to the pavement edges.

Delineation of small islands is primarily by curbs. Large curbed islands may be sufficiently delineated by color and texture contrast of vegetative cover, mounded earth, shrubs, signs or any combination of these. Use tubular markers at island noses as channelizing devices in addition to delineation. Curbed islands should not be used on high speed flush shoulder roadways. Standard markings for islands are provided in the Standard Plans, Index 711-001.
210.3.2.1 Channelization Islands

Islands must be large enough to command attention. Meet the following requirements when designing channelization islands:

1. Curbed islands should have an area of 100 square feet or more, however, must not be less than:
 a. 50 square feet for intersections within C4, C5, or C6 Context Classification
 b. 75 square feet for intersections within C1, C2, C2T or C3 Context Classification

2. Triangular islands should be at least 15 feet on a side, but not less than 12 feet, after rounding of corners.

3. Side dimensions of curbed islands should not exceed 100 feet on high speed facilities (e.g., high speed curbed roadway).

The approach and departure noses are rounded with radii of at least 3.5 feet. Figure 210.3.1 illustrates a small island with a parallel offset. Figure 210.3.2 illustrates a large island with a taper offset.

Approach ends of the island should be offset from the edges of the traveled way in order to funnel drivers smoothly into the desired path. The amount that a curbed island is offset from the through-traffic lane is influenced by the type of edge treatment and other factors such as island contrast, length of taper or auxiliary pavement preceding the curbed island. If a bike lane is adjacent to an island curb, no offset is needed.
Figure 210.3.1 Typical Small Curbed Island

Figure 210.3.2 Typical Large Curbed Island
Where there are no curbs on the approach traveled way, the minimum offset of the edge of the curbed island to the through lane should be 1.5 to 3.5 feet. Where the approach roadway has a Type E curb, a similar curb on the island may be located at the edge of the through lane if there is sufficient length of curbed island to provide a gradual taper from the nose offset. Type F curbs should be offset from the through traveled way edge, regardless of the size of the curbed island. For intermediate and large-size islands that are uncurbed, offsets are desirable but not required. Fixed objects within the island areas must meet clear zone and lateral offset criteria found in FDM 215.2.3 and 215.2.4.

210.3.2.2 Median Islands and Traffic Separators

Meet the following requirements when designing median islands and traffic separators:

1. A minimum of 4 feet wide and 25 feet long.

2. 100 feet or more in length is allowed on high speed roadways when providing high visibility for the islands.

3. Approach noses should be offset 2 to 6 feet from the through (approach) lanes to minimize impacts. Pavement markings in advance of the nose can be used to transition from the centerline to the edge of island.

4. The shape of the island should be based on design turning paths and the island function. Curvilinear tapers comprised of parabolic or circular curves generally suffice.

5. The length of the island should be related to the approach speed. An estimate is to use the length based on 3-second driving time to the intersection.

6. Median islands should begin on tangent alignments and on upgrades or beyond crest vertical curves. In some cases it is appropriate to extend a median island to avoid its introduction on a horizontal curve or within an area of limited sight distance.

7. Approach noses must extend across the crosswalk at intersections to control left-turn speeds and encourage pedestrian use of the crosswalk. Use tubular markers as shown in the figures as channelizing devices.

 a. For median island widths greater than or equal to 6 feet, use a refuge island. Figure 210.3.3 illustrates the geometrics for curbed roadways (i.e., standard 6-foot nose extension and minimum nose extension for RRR projects).

 b. For median island widths less than 6 feet, use hardened centerlines. See FDM 210.3.3 for hardened centerlines.

Standard Plans, Index 520-020 provides detailed dimensional design for traffic separators.
See *FDM 222.2.3.1* for more information on crosswalks at intersections.

210.3.2.3 Refuge Islands

Refuge islands provide an area for pedestrians and bicyclists to stop before finishing the crossing of a roadway. Complex intersections can be made more navigable and midblock crossing can be facilitated with refuge islands. Refuge islands have specific design criteria to support pedestrian or bicyclist movement.

Refuge islands must be a minimum of 6 feet wide in the dimension between the traveled ways; however, the preferred width is 8 feet or greater. For curbed roadways, this dimension is from face of curb to face of curb. Consider the refuge island’s storage capacity for higher volumes of pedestrian and bicycle traffic, as well as the space needed for pedestrians or bicyclists with items such as strollers, wheelchairs, wagons, cargo bikes, box bikes, and bikes with trailers.

Provide a clear path through the island without obstruction by objects such as poles, sign posts, or utility boxes. The width of the clear path through the island must be at least 5 feet to meet ADA requirements and should be equal to the width of the crosswalk. For additional requirements and information on intersection refuge islands see *Figure 210.3.3*. See *FDM 213.3.5* for additional dimensional requirements for roundabout splitter islands. See *FDM 222.2.3.2* for more information on midblock crossings. For more information on depressed and raised sidewalks, see *Standard Plans, Index 522-002*.

Refuge islands may be enhanced by low-growing landscaping and stormwater management features. See *FDM 308* (Drainage), *Drainage Manual*, and *FDM 228* (Landscape Design).

Examples of refuge islands at midblock crossings are shown in *Figures 210.3.4* and *210.3.5*.

For more information on pavement markings, see *Standard Plans, Index 711-001*.

FDM 212.12 provides information on the design of turning roadways with corner islands.

Roundabout splitter islands provide pedestrian refuge and are discussed in *FDM 213.3.5*.
Figure 210.3.3 Intersection Refuge Island

For New and Reconstruction Projects with Raised Crossings:

Notes:

- The median nose must be a concrete separator as shown in Standard Plan 520-020. Match the curb profile that is used for the adjacent median.
For New and Reconstruction Projects with Depressed Crossings:

Figure 210.3.3 Intersection Refuge Island (Cont.)

- TUBULAR MARKER YELLOW
- YELLOW REFLECTIVE PAINT

For RRR Projects Where Concrete Median Nose is Not Constructible in Constrained Conditions:

- TUBULAR MARKERS YELLOW (TYP.)
- 6" YELLOW
Figure 210.3.4 Midblock Refuge Island Example #1
210.3.2.4 Corner Islands

Where the inside edges of the traveled way for right turns are designed to accommodate semi-trailer combinations or where the design permits passenger vehicles to turn at speeds greater than 10 mph, the pavement area within the intersection may become excessively large and may create longer crossing paths for pedestrians. This may also
occur at intersections with turning angles greater than 90 degrees. To avoid this condition, a corner channelizing island can be provided to form a separate turning roadway.

FDM 212.12 provides information on the design of turning roadways with corner islands.

210.3.3 Hardened Centerlines

Hardened Centerlines are an extension of the traffic separator or centerline past the crosswalk. Hardened Centerlines improve pedestrian safety by reducing the turning speeds of left-turning motorists and by improving their approach angle to the crosswalk to increase pedestrian visibility.

Provide a hardened centerline where it is not possible to provide a pedestrian refuge island.

The nose extension can be no less than 2 feet long and must provide 1-foot of clear distance from the edge of the crossing traffic lane or bicycle lane. A 6-foot nose extension is preferred, but the designer can adjust the length to balance control of the left turning vehicle with the design vehicle turning path.

Where applicable, space multiple tubular markers a minimum of 2 feet and a maximum of 5 feet apart. Provide tubular markers for a minimum of 25 feet along the traffic separator or centerline approaching the crosswalk.

If tubular markers on the nose extension are not practicable to accommodate sight distance or turning radii, use a “channelizing curb” for the nose extension. Use Developmental Specification Dev703 for channelizing curb.

Detail channelizing curb in the plans showing the length of the nose extension as described above. Channelizing curb products are typically prefabricated in 6-foot lengths with additional length for the end-caps.

Hardened centerlines may be used with offset left turn lanes.
Figure 210.3.6 Hardened Centerline with Traffic Separator

NTS

TUBULAR MARKERS YELLOW (TYP.)

NTS

TUBULAR MARKERS YELLOW (TYP.)

NTS

CHANNELIZING CURB
Figure 210.3.7 Hardened Centerline without Traffic Separator
210.4 Shoulders

Roadway shoulder width is measured from the edge of the traveled way to the shoulder break. A portion of the shoulder is required to be paved on all roadways on the State Highway System. A paved shoulder is the portion of the roadway contiguous with the traveled way for accommodation of errant vehicles, stopped vehicles, bicycle traffic, and emergency use. Shoulder widths for roadways are given in Table 210.4.1. See Figure 210.4.1 for an illustration of roadway shoulders. Refer to FDM 211 for ramp shoulder widths. Refer to FDM 260.3 for bridge shoulder widths.

Use shoulder gutter for the following conditions:

- On embankments higher than 20 feet
- On embankments higher than 10 feet where the longitudinal slope is greater than 2 percent
- On embankments, with slopes steeper than 1:6 for more than five feet vertically, to minimize erosion
- At bridge ends where concentrated flow from the bridge deck would run down the slope
- In areas of guardrail where embankment slopes are steeper than 1:4 and any pavement is sloped toward the embankment.

Construct roadway paved shoulders up to the railroad crossing shoulder pavement as shown in Standard Plans, Index 830-T01. For additional information see FDM 220 and Standard Plans, Index 509-070.
Figure 210.4.1 Shoulder Width Identification
Table 210.4.1 Standard Shoulder Widths

<table>
<thead>
<tr>
<th>Lane Type</th>
<th># Lanes (One Direction)</th>
<th>Without Shoulder Gutter</th>
<th>With Shoulder Gutter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Outside</td>
<td>Median Or Left</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Full Width (feet)</td>
<td>Paved Width (feet)</td>
</tr>
<tr>
<td>Travel Lanes</td>
<td>4-Lanes or more</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3-Lanes</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1-Lane & 2-Lanes</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Aux. Lanes</td>
<td>ALL</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

Notes:

Without shoulder gutter:

1. Consider 12-foot outside full width shoulder adjacent to travel lanes with high AADT or greater than 10% trucks.
2. Consider providing a minimum 10-foot median shoulder where continuous barrier or guardrail is present.
3. Provide a 7-foot outside paved shoulder when it is determined that the Helmeted Bicyclist Symbol and Bicycle Lane Arrow pavement markings will be placed on the shoulder. See FDM 223.2.2.
4. Shoulder widths for auxiliary lanes typically match those of the adjacent roadway; however, width may be reduced to 6-foot shoulder with 2-foot paved for right turn lanes when a bicycle keyhole is present.
5. For 1-lane, 2-lane, and 3-lane median or left shoulders:
 - Pave 2-feet wide where turf is difficult to establish.
 - Pave 4-feet wide: (1) in sag vertical curves, 100 feet minimum either side of the low point, and (2) on the low side of superelevated traffic lanes extending through the curves and approximately 300 feet beyond the PC and PT.
6. Pave the entire width of shoulders adjacent to concrete barriers. See FDM 215.4.6.1.
7. For RRR Projects:
 - an existing full width shoulder of 6-foot or greater may be retained, and
 - the following minimum existing paved shoulder widths may also be retained:
 - 4-foot paved outside shoulder adjacent to travel lane
 - 2-foot paved outside shoulder adjacent to auxiliary lane

With shoulder gutter:

1. Paved shoulders less than 6 feet in width with adjoining shoulder gutter must be the same type, depth and cross slope as the roadway pavement.
2. Shoulders must extend 4 feet beyond the back of shoulder gutter and have a 0.06 cross slope back toward the gutter.
3. Required shoulder widths for auxiliary lanes typically match those of the adjacent roadway.
210.4.1 Shoulder Cross Slopes

The standard cross slope is 0.06 on the outside shoulder and 0.05 on the median (or left) side. Figure 210.4.2 illustrates shoulder cross slopes in relationship to roadway cross slopes for normal and superelevated sections. For 5-foot (or less) paved shoulders, see Figure 210.4.3. If the inside travel lane is sloping toward the median, then the inside shoulder cross slope may be increased to 0.06.

For projects constructed with concrete pavement, the first one foot of the outside shoulder is cast with the outside travel lane and will have the same cross slope (and superelevation) as the outside lane. Superelevation of the shoulder pavement is to be rotated about the outside edge of the outside slab.

For shoulder cross slope criteria on bridges see FDM 260.4.
Figure 210.4.2 Shoulder Superelevation

DIVIDED ROADWAYS

UNDIVIDED ROADWAYS
Figure 210.4.3 Special Shoulder Superelevation

a) 12' AND 10' FULL WIDTH SHOULDERS WITH 5' OR LESS PAVED WIDTHS.

b) 8' FULL WIDTH SHOULDERS WITH 4' OR LESS PAVED WIDTHS.

8' FULL WIDTH SHOULDER WITH 5' PAVED WIDTH

6' FULL WIDTH SHOULDER WITH 5' OR LESS PAVED WIDTH
210.4.2 Typical Paving under Bridge

See *FDM 260.7* for requirements for paving under bridges.

210.4.3 Limits of Friction Course on Paved Shoulders

Extend friction course (closed and open graded) over the full width of the median and outside paved shoulders.

210.4.4 RRR Shoulder Treatment

Identify the shoulder treatment option in the plans when using *Standard Plans, Index 570-010*. Use Treatment I only if the shoulder is established with good soil and turf, and there is no significant shoulder erosion. Use Treatment II when an existing shoulder meets the overlay thickness requirements for Treatment I, but there is significant shoulder erosion.

210.4.5 Narrow Bridge Shoulder Warning Devices

The *Standard Plans, Index 700-106*, provides details for the shoulder treatment to be used on flush shoulder roadway approaches to a narrow bridge. This index provides standards for the placement of signing, striping, object markers and raised pavement marking (RPMs) for use at structures where the bridge shoulder width is less than the width of the useable shoulder on the approach roadway.

210.4.6 Audible and Vibratory Treatment

Provide audible and vibratory treatment (AVT) on flush-shoulder roadways with a posted speed of 50 mph or greater. Do not exclude sections of the project where advisory speeds are used due to restricted horizontal or vertical geometry. Do not place AVTs within the limits of crosswalks.

Figure 210.4.4 provides guidance for placement of AVTs. See *FDM 325* for information regarding plan requirements.
AVTs on arterials and collectors are any of the following:

- Cylindrical Ground-In Rumble Strips,
- Sinusoidal Ground-In Rumble Strips, or
- Profiled Thermoplastic.

Consider potential noise impacts to residents and business adjacent to the roadway when selecting an appropriate AVT. A higher probability of strikes should be expected on the inside radius of horizontal curves. The expected increase in noise levels over typical road noise is as follows:

- Approximately 6 decibels for cylindrical ground-in rumble strips.
- Approximately 4 decibels for sinusoidal ground-in rumble strips.
- Approximately 2 decibels for profiled thermoplastic.

AVT type selected for each edge line or centerline should be consistent throughout the project length; however, there may be clear change in condition for which a change in the AVT type is appropriate. Use the same type of treatment for centerlines as is used for edge lines on undivided roadways.

Determine the appropriate AVT in accordance with FDM 210.4.6.1 and FDM 210.4.6.2.

210.4.6.1 Ground-in Rumble Strips

Standard Plans, Index 546-010 provides three configurations (Types A, B, and C) for ground-in rumble strips along edge lines. The selection of Type A, B, or C is as follows:

- Use Type A on outside paved shoulder when width is between 1 and 5 feet. Do not use this type for sinusoidal ground-in rumble strips, or when there are residences within a minimum of 650 feet of the proposed edge line.
- Use Type B on outside paved shoulder when width is ≥ 5 feet, and on inside paved shoulder when width is ≥ 1 foot.
- Use Type C on flush shoulder roadways with buffered striping.

Sinusoidal ground-in rumble strips produce less noise, and are an alternative to the cylindrical ground-in rumble strips. They may be used for Types B and C in noise-sensitive locations.

Use Type D on centerlines on undivided roadways.
Ground-in rumble strips are to be detailed (i.e., limits, Type A, B, or C) and quantified in the Signing and Marking Plans component set. Include “1” for cylindrical ground-in rumble strips or “2” for sinusoidal ground-in rumble strips: e.g., A1, B1, B2, C1, C2.

See Exhibit 210-7 for common placement of AVTs.

210.4.6.2 Profiled Thermoplastic

Used profiled thermoplastic when any of the following conditions exist:

- Rigid pavement
- The requirements for installing ground-in rumble strips cannot be met
- Paved shoulder width prevents the construction phasing required for installation of ground-in rumble strips
- Restriping projects where District Maintenance Engineer has determined ground-in rumble strips are not cost effective based on the remaining service life of the pavement.
- Edge lines for bridges with narrow shoulders as a countermeasure for barrier impacts.
Figure 210.4.4 Audible and Vibratory Treatment Placement

* Since the drawing applies both Profiled Thermoplastic and Ground-in Rumble Strips, a visible line style for the Continuous Array Ground-in Rumble Strips cannot be shown here.
Figure 210.4.4 Audible and Vibratory Treatment Placement (Cont.)
Figure 210.4.4 Audible and Vibratory Treatment Placement (Cont.)
Figure 210.4.4 Audible and Vibratory Treatment Placement (Cont.)
COMMON PLACEMENT OF AUDIBLE AND VIBRATORY TREATMENTS

MULTILANE DIVIDED WITHOUT PAVED INSIDE SHOULDERS

MULTILANE DIVIDED WITH PAVED INSIDE SHOULDERS

UNDIVIDED WITHOUT PAVED SHOULDERS

UNDIVIDED WITH PAVED SHOULDERS

NOT TO SCALE
210.5 Curbed Roadways

The term “curbed” includes all types of curb, and curb and gutter that are used on the state highway system and detailed in Standard Plans, Index 520-001.

The method of collecting and conveying drainage runoff and the availability of R/W determines the cross section; i.e. flush shoulder or curbed. When it is determined that a closed drainage system will be used, the selection of curb type will be based on the design speed.

Curbed roadways with design speeds of 45 mph or less, typically use Type F curb on the outside and Type E curb on the median (or left) side.

See FDM 215.2.7.2, for additional information regarding curbs and their placement.

210.5.1 High-Speed Curbed Roadways

Curbs may be used on roadways where the anticipated operating speeds require a design speed of 50-55 mph and:

(1) Curbs are necessary to control drainage, or
(2) R/W is constrained

High speed curbed sections are typically used within C3 context classification and transitional areas.

High speed curbed roadways are to use Type E curb on both the median and outside. Provide an offset from the edge of the traveled way to the lip of gutter as follows:

(1) 4-foot to median curb for 4-lane roadway sections.
(2) 6.5-foot to median curb for 6-lane roadway sections.
(3) 6.5-foot to outside curb for all roadway sections.

The above median offsets are not required for left turn lanes adjacent to traffic separators or Type E curb.

210.6 Roadside Slopes

Criteria and details for roadside slopes are included in FDM 215.
The following guidance is being provided to designers for consideration during project design. Additional sod requirements are provided in the FDOT Drainage Design Manual and in the Standard Plans, Indexes 570-001 and 571-010.

- Sod should be considered for slopes 1:4 or steeper. For all other areas, refer to FDOT Drainage Design Manual, Chapter 2, Table 2.5, for additional guidance on maximum velocity for each lining type.
- Sod should be used for projects with less than 10,000 square feet of disturbed area.
- Sod should be considered for narrow areas less than six feet.
- A minimum 48” of sod should be considered for back of sidewalk areas as applicable.
- Sod should be considered in areas of concentrated runoff, i.e. bottom of vertical curves, inside areas of superelevated curves, tangent sections, and outside of curves. Refer to Standard Plans, Index 570-001 for sodding requirements.
- Refer to Standard Plans, Index 570-010 for milling and resurfacing projects or major projects with portions of milling and resurfacing.

210.7 Border Width

Border width provides space for:

1. Roadside design components such as signing, signals, lighting, drainage features, guardrail, fencing and clear zone, sidewalks with ADA provisions, traffic control devices, fire hydrants, storm drainage features, bus and transit features, permitted public utilities and space for aesthetic features such as sod and other landscape items.

2. A buffer between vehicles and pedestrians,

3. Construction and maintenance of the facility, and

4. Permitted public utilities.

Required border width is provided in Table 210.7.1. Border width is measured to the R/W line as follows:

- **Flush shoulder roadways**: from the shoulder break.
- **Curbed roadways**: from the outside edge of the pavement (lip of gutter).
- **High-speed curbed roadways**: from the outside edge of the traveled way.

210 – Arterials and Collectors
Table 210.7.1 Minimum Border Width

<table>
<thead>
<tr>
<th>Context Classification</th>
<th>Minimum Border Width (Feet)</th>
<th>Curbed and High-Speed Curbed Design Speed (mph)</th>
<th>Flush Shoulder Design Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>25-40</td>
<td>45</td>
</tr>
<tr>
<td>C1 Natural</td>
<td>N/A</td>
<td>N/A</td>
<td>29</td>
</tr>
<tr>
<td>C2 Rural</td>
<td>N/A</td>
<td>N/A</td>
<td>29</td>
</tr>
<tr>
<td>C2T Rural Town</td>
<td>12</td>
<td>14</td>
<td>N/A</td>
</tr>
<tr>
<td>C3 Suburban</td>
<td>12</td>
<td>14</td>
<td>29</td>
</tr>
<tr>
<td>C4 Urban General</td>
<td>12</td>
<td>14</td>
<td>N/A</td>
</tr>
<tr>
<td>C5 Urban Center</td>
<td>12</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>C6 Urban Core</td>
<td>14</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Notes:

(1) On low speed curbed roadways that have an adjacent bike lane, the required border width shown in the table may be reduced by 2 feet.

(2) On existing roadways where R/W cannot be acquired or where the decision has been made to simply maintain and preserve the facility, the absolute minimum border under these conditions is 8 feet. No Design Variation is required for this condition.

(3) On existing roadways where R/W is being acquired for other reasons, the minimum border width should be that used for new construction projects; however, the minimum length of wider border width must be a segment of sufficient length to provide reasonable continuity.
210.8 **Horizontal Alignment**

The centerline (CL) or baseline (BL) of construction defines the horizontal alignment for roadway and bridge construction. The CL or BL of construction is a series of tangents connected by horizontal curves established by the Engineer of Record (EOR). CL or BL of construction may be the same alignment as the BL of survey.

Horizontal alignment should be consistent with the anticipated operating speed and with environmental, physical, and economic constraints. Design speed is the principal factor controlling horizontal alignment.

Avoid placing horizontal curves, point of intersection (PI), and superelevation transitions within the limits of a structure or approach slabs. Placement of stationing equations within the limits of a structure should be avoided on contract plans. Such equations unnecessarily increase the probability of error in both the design and construction phase.

210.8.1 **Deflections in Alignment**

The point where tangents intersect is known as the PI. Avoid the use of a PI with no horizontal curve; however, there may be conditions where it is necessary (e.g., closely-spaced intersections in areas with limited R/W). The maximum deflection without a horizontal curve are as follows:

- Flush shoulder and curbed roadways with design speed 40 mph and less is 2°00’00”.
- Flush shoulder roadways with design speed 45 mph and greater is 0°45’00”.
- Curbed roadways with design speed of 45 mph is 1°00’00”.
- High speed curbed roadways with design speed 50 mph and greater is 0°45’00”.

210.8.1.1 **Intersections**

Refer to *FDM 212* for information regarding deflections through intersections.

210.8.2 **Horizontal Curves**

A horizontal curve should not be introduced near the crest of a vertical curve. The combination of horizontal and vertical curves can negatively impact sight distance, and can also greatly reduce the approaching driver’s ability to perceive a horizontal curve ahead. The condition can be avoided by having the horizontal curvature lead the vertical curvature; i.e., the horizontal curve is made longer than the vertical curve.
Flatter curvature with shorter tangents is preferable to sharp curves connected by long tangents; i.e., avoid using minimum horizontal curve lengths.

Table 210.8.1 provides the horizontal curve lengths to be used in establishing the horizontal alignment. Refer to *Table 210.8.3* for compound curves.

Table 210.8.1 Length of Horizontal Curve

<table>
<thead>
<tr>
<th>mph</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>feet</td>
<td>400</td>
<td>450</td>
<td>525</td>
<td>600</td>
<td>675</td>
<td>750</td>
<td>825</td>
<td>900</td>
<td>975</td>
<td>1050</td>
</tr>
</tbody>
</table>

Notes:

1. The desired horizontal curve length shall be the greater of the lengths based on design speed and length based on deflection angle.

2. When desirable horizontal curve length cannot be attained, provide the greatest attainable length possible, but not less than 400 feet.

210.8.2.1 Existing Horizontal Curves

Evaluate existing curves against the values shown in *Table 210.8.2*. The review should include crash history and an on-site review for evidence of roadway departure or operational problems in the area of concern.
Table 210.8.2 Minimum Radius for Evaluation of Existing Horizontal Curves

<table>
<thead>
<tr>
<th>Maximum Superelevation (e_{max})</th>
<th>Minimum Radius (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Design Speed (mph)</td>
</tr>
<tr>
<td></td>
<td>25</td>
</tr>
<tr>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>SHS</td>
<td>160</td>
</tr>
<tr>
<td>RRR</td>
<td>120</td>
</tr>
<tr>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>SHS</td>
<td>194</td>
</tr>
<tr>
<td>RRR</td>
<td>140</td>
</tr>
</tbody>
</table>

Condition #1 – A horizontal curve that meets or exceeds the SHS minimum radius shown in **Table 210.8.2** is satisfactory unless there is a significant crash history (3 or more crashes within the most recent available 5-year location verified data) or other evidence of safety or operational problems. If problems are identified, include corrective measures in the project.

Condition #2 – A horizontal curve that is below the SHS minimum radius shown in **Table 210.8.2**, but meets or exceeds the RRR minimum radius shown in **Table 210.8.2** must be reviewed for specific safety problems at the curve. If the review indicated significant operational or safety problems exist, the curve should be reconstructed. If problems are identified but reconstruction is not warranted, include corrective measures in the project.

Condition #3 – A horizontal curve that does not meet the RRR minimum radius shown in **Table 210.8.2** must be reconstructed or a Design Exception or Design Variation obtained. A reconstructed curve must meet the new construction values shown in **Tables 210.8.1, 210.9.1, 210.9.2, and 210.9.3**.

210.8.2.2 Compound Curves

Although the use of compound curves is discouraged, there may be conditions where it is necessary. Avoid sudden changes from flat to sharp curves. For compound curves on open highways, the ratio of the flatter radius to the sharper radius is not to exceed 1.5:1. For compound curves on turning roadways and at intersections, a ratio of 2:1 may be used where the flatter radius precedes the sharper radius in the direction of travel.
The length of compound curves (arc length) for turning lanes are provided in Table 210.8.3.

Table 210.8.3 Minimum Compound Curves Arc Lengths on Turning Roadways

<table>
<thead>
<tr>
<th>Minimum Arc Length (feet)</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>400</th>
<th>≥ 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desirable</td>
<td>65</td>
<td>70</td>
<td>100</td>
<td>120</td>
<td>150</td>
<td>180</td>
<td>200</td>
</tr>
<tr>
<td>Minimum</td>
<td>40</td>
<td>50</td>
<td>65</td>
<td>85</td>
<td>100</td>
<td>120</td>
<td>150</td>
</tr>
</tbody>
</table>

Notes:
(1) Provide the desirable arc length. When the desirable length cannot be attained, provide the greatest attainable length possible, but not less than the minimum values.

210.8.2.3 Reverse Curves

Reverse curves are curves in opposite directions on a common tangent that are located in close proximity to each other. Avoid using reverse curves unless a sufficient length (see FDM 210.9.1) of tangent is included between the curves to provide for superelevation transition.

210.9 Superelevation

Use a maximum superelevation rate of 0.10 on high speed roadways. Tabulated superelevation rates for high speed roadways are provided in Table 210.9.1.

Use a maximum superelevation rate of 0.05 on low speed roadways. Tabulated superelevation rates for low speed roadways are provided in Table 210.9.2.

Design non-limited access ramps using the arterial roadway criteria. Additional data is contained in the Standard Plans, Index 000-510 and 000-511.

Provide the following minimum lengths of full superelevation within horizontal curves:
(1) 100 feet for design speed ≤ 45 mph.
(2) 200 feet for design speeds ≥ 50 mph.
210.9.1 Superelevation Transitions

The standard superelevation transition places 80% of the transition on the tangent and 20% on the curve. Superelevation transition slope rates are provided in Table 210.9.3.

In transition sections where the travel lane(s) cross slope is less than 1.5%, provide one of the following grade criteria:

1. Maintain a minimum profile grade of 0.5%
2. Maintain a minimum edge of pavement grade of 0.2% (0.5% for curbed roadway).

When superelevation is required for reverse curves, a suitable tangent length between the curves is determined as follows:

1. 80% of the transition for each curve should be located on the tangent.
2. Tangent length is equal to or greater than the sum of the two 80% distances.
3. Where alignment constraints require an adjustment to the superelevation transition, not more than 50% of the transition may be placed on the curve.

210.9.2 RRR Criteria for Superelevation

Superelevation and transition requirements are provided in FDM 210.9.

For all curves:

1. If there are any crashes within the last 5 years that are attributed to superelevation, correct the superelevation rates to the new construction values provided in Tables 210.9.1 and 210.9.2.

For Low speed curves:

1. If the existing superelevation rates are within 1% (+/-) of the new construction values in Table 210.9.2, superelevation rate correction is not required.
2. If the existing superelevation rates are not within 1% (+/-) of the new construction values in Table 210.9.2, correct the superelevation rates. A Design Variation is required to leave the deficient curve in place.

For High Speed Curves and all ramps (regardless of speed):

1. If the existing superelevation rates are within the range of derived values from the $e_{\text{max}} = 6\%$ and $e_{\text{max}} = 12\%$ tables in AASHTO A Policy on Geometric Design of...
Highways and Streets (AASHTO Green Book), superelevation rate correction is not required.

- If the existing superelevation rates are outside of the range of derived values from the AASHTO Green Book $e_{\text{max}} = 6\%$ and $e_{\text{max}} = 12\%$ tables, correct the superelevation rates. A Design Exception is required to leave the deficient curve in place.

210.9.2.1 Superelevation Correction

This type of work may involve variable depth milling and asphalt layers. Provide the following information in the plans:

(1) Details showing how the transition from normal cross slope to superelevation is to be achieved.

(2) A table that summarizes the estimated quantities for milling, overbuild, and structural courses will be necessary.

(3) Cross sections depicting superelevation correction for the following locations:
 a. At the PC and at the PT.
 b. Fifty feet before and after the PC and PT.
 c. At 300 ft. intervals within the curve.

For curved roadways, superelevation correction should be provided by reconstructing or adjusting the curve to accommodate overbuild. When a correction is not possible, provide other measures appropriate to improve identified safety or operational problems.
<table>
<thead>
<tr>
<th>Degree of Curve (D)</th>
<th>Radius R (ft.)</th>
<th>Design Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>0° 15'</td>
<td>22,918</td>
<td>NC</td>
</tr>
<tr>
<td>0° 30'</td>
<td>11,459</td>
<td>NC</td>
</tr>
<tr>
<td>0° 45'</td>
<td>7,639</td>
<td>NC</td>
</tr>
<tr>
<td>1° 00'</td>
<td>5,730</td>
<td>NC</td>
</tr>
<tr>
<td>1° 15'</td>
<td>4,584</td>
<td>NC</td>
</tr>
<tr>
<td></td>
<td>3,820</td>
<td>NC</td>
</tr>
<tr>
<td>2° 00'</td>
<td>2,865</td>
<td>RC</td>
</tr>
<tr>
<td>2° 30'</td>
<td>2,292</td>
<td>0.021</td>
</tr>
<tr>
<td>3° 00'</td>
<td>1,910</td>
<td>0.025</td>
</tr>
<tr>
<td>3° 30'</td>
<td>1,637</td>
<td>0.029</td>
</tr>
<tr>
<td>4° 00'</td>
<td>1,432</td>
<td>0.033</td>
</tr>
<tr>
<td>5° 00'</td>
<td>1,146</td>
<td>0.040</td>
</tr>
<tr>
<td>6° 00'</td>
<td>955</td>
<td>0.046</td>
</tr>
<tr>
<td>7° 00'</td>
<td>819</td>
<td>0.053</td>
</tr>
<tr>
<td>8° 00'</td>
<td>716</td>
<td>0.058</td>
</tr>
<tr>
<td>9° 00'</td>
<td>637</td>
<td>0.063</td>
</tr>
<tr>
<td>10° 00'</td>
<td>573</td>
<td>0.068</td>
</tr>
<tr>
<td>11° 00'</td>
<td>521</td>
<td>0.072</td>
</tr>
<tr>
<td>12° 00'</td>
<td>477</td>
<td>0.076</td>
</tr>
<tr>
<td>13° 00'</td>
<td>441</td>
<td>0.080</td>
</tr>
<tr>
<td>14° 00'</td>
<td>409</td>
<td>0.083</td>
</tr>
<tr>
<td>15° 00'</td>
<td>382</td>
<td>0.086</td>
</tr>
<tr>
<td>16° 00'</td>
<td>358</td>
<td>0.089</td>
</tr>
<tr>
<td>18° 00'</td>
<td>318</td>
<td>0.093</td>
</tr>
<tr>
<td>20° 00'</td>
<td>286</td>
<td>0.097</td>
</tr>
<tr>
<td>22° 00'</td>
<td>260</td>
<td>0.099</td>
</tr>
<tr>
<td>24° 00'</td>
<td>239</td>
<td>0.100</td>
</tr>
</tbody>
</table>

Notes:
- NC = Normal Crown (-0.02)
- RC = Reverse Crown (+0.02)
- RNC = Minimum Radius for NC
- RRC = Minimum Radius for RC
- (1) Rates for intermediate D's and R's are to be interpolated.
- (2) Degree of Curvature (D) on high speed curved roadways must not exceed: 2° 30' for 50 mph and 2° 00' for 55 mph.
- (3) Degree of Curvature (D) on interstate must not exceed 3° 00' for 70 mph.

NC/RC (- -) and RC/e (—) Break Points (Radius in feet)

<table>
<thead>
<tr>
<th>Break Points</th>
<th>Design Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
</tr>
<tr>
<td>RNC</td>
<td>3349</td>
</tr>
<tr>
<td>RRC</td>
<td>2471</td>
</tr>
</tbody>
</table>
Table 210.9.2 Superelevation Rates for $e_{\text{max}} = 0.05$

<table>
<thead>
<tr>
<th>Degree of Curve (D)</th>
<th>Radius (R) (feet)</th>
<th>Design Speed (mph)</th>
<th>25-30</th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>2° 00'</td>
<td>2,865</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>2° 15'</td>
<td>2,546</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>2° 45'</td>
<td>2,083</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>3° 00'</td>
<td>1,910</td>
<td>RC</td>
<td>RC</td>
<td>NC</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>3° 45'</td>
<td>1,528</td>
<td>RC</td>
<td>RC</td>
<td>NC</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>4° 00'</td>
<td>1,432</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>4° 45'</td>
<td>1,206</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>5° 00'</td>
<td>1,146</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>5° 15'</td>
<td>1,091</td>
<td>RC</td>
<td>RC</td>
<td>NC</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>5° 30'</td>
<td>1,042</td>
<td>RC</td>
<td>RC</td>
<td>NC</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>5° 45'</td>
<td>996</td>
<td>RC</td>
<td>RC</td>
<td>NC</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>6° 00'</td>
<td>955</td>
<td>RC</td>
<td>RC</td>
<td>NC</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>6° 15'</td>
<td>917</td>
<td>0.022</td>
<td>0.022</td>
<td>0.024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6° 30'</td>
<td>881</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6° 45'</td>
<td>849</td>
<td>0.030</td>
<td>0.030</td>
<td>0.030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7° 00'</td>
<td>819</td>
<td>0.033</td>
<td>0.033</td>
<td>0.033</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7° 15'</td>
<td>790</td>
<td>0.037</td>
<td>0.037</td>
<td>0.037</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7° 30'</td>
<td>764</td>
<td>0.041</td>
<td>0.041</td>
<td>0.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7° 45'</td>
<td>739</td>
<td>0.045</td>
<td>0.045</td>
<td>0.045</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8° 00'</td>
<td>716</td>
<td>0.050</td>
<td>0.050</td>
<td>0.050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8° 15'</td>
<td>694</td>
<td>0.022</td>
<td>0.022</td>
<td>0.022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8° 30'</td>
<td>674</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8° 45'</td>
<td>655</td>
<td>0.030</td>
<td>0.030</td>
<td>0.030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9° 00'</td>
<td>637</td>
<td>0.034</td>
<td>0.034</td>
<td>0.034</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9° 30'</td>
<td>603</td>
<td>0.040</td>
<td>0.040</td>
<td>0.040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10° 00'</td>
<td>573</td>
<td>0.047</td>
<td>0.047</td>
<td>0.047</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10° 30'</td>
<td>546</td>
<td>0.050</td>
<td>0.050</td>
<td>0.050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11° 00'</td>
<td>521</td>
<td>0.023</td>
<td>0.023</td>
<td>0.023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11° 30'</td>
<td>498</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12° 00'</td>
<td>477</td>
<td>0.038</td>
<td>0.038</td>
<td>0.038</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13° 00'</td>
<td>441</td>
<td>0.043</td>
<td>0.043</td>
<td>0.043</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14° 00'</td>
<td>409</td>
<td>0.045</td>
<td>0.045</td>
<td>0.045</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15° 00'</td>
<td>382</td>
<td>0.023</td>
<td>0.023</td>
<td>0.023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16° 00'</td>
<td>358</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17° 00'</td>
<td>337</td>
<td>0.032</td>
<td>0.032</td>
<td>0.032</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18° 00'</td>
<td>318</td>
<td>0.038</td>
<td>0.038</td>
<td>0.038</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19° 00'</td>
<td>302</td>
<td>0.043</td>
<td>0.043</td>
<td>0.043</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20° 00'</td>
<td>286</td>
<td>0.050</td>
<td>0.050</td>
<td>0.050</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. NC = Normal Crown (-0.02), RC = Reverse Crown (+0.02)
2. Rates for intermediate D’s and R’s are to be interpolated.
3. Design speeds of 25 mph are to be designed as 30 mph.
Table 210.9.3 Superelevation Transition Slope Rates

<table>
<thead>
<tr>
<th># Lanes One Direction</th>
<th>Superelevation Transition Slope Rates</th>
<th>emax = 0.10</th>
<th>emax = 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Design Speed (mph)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Lane & 2-Lane</td>
<td>25-40</td>
<td>1:175</td>
<td>1:200</td>
</tr>
<tr>
<td></td>
<td>45-50</td>
<td>1:225</td>
<td>1:250</td>
</tr>
<tr>
<td>3-Lane</td>
<td>55-60</td>
<td>1:160</td>
<td>1:180</td>
</tr>
<tr>
<td></td>
<td>65-70</td>
<td>1:200</td>
<td>1:100</td>
</tr>
<tr>
<td>4-Lane or more</td>
<td>65-70</td>
<td>1:150</td>
<td>1:170</td>
</tr>
<tr>
<td></td>
<td>1:150</td>
<td>1:190</td>
<td>1:125</td>
</tr>
<tr>
<td></td>
<td>1:100</td>
<td>1:125</td>
<td>1:150</td>
</tr>
</tbody>
</table>

Notes:
- emax = 0.10:
 1. The length of superelevation transition is to be determined by the relative slope rate between the travel way edge of pavement and the profile grade, except that the minimum length of transition is 100 feet.
 2. For additional information on transitions, see the Standard Plans, Index 000-510.
- emax = 0.05:
 1. The length of superelevation transition is to be determined by the relative slope rate between the travel way edge of pavement and the profile grade, except that the minimum length of transition is 50 feet for design speeds 25-35 mph and 75 feet for design speeds 40-45 mph.
 2. A slope rate of 1:125 may be used for 45 mph under restricted conditions.
 3. For additional information on transitions, see the Standard Plans, Index 000-511.

210.10 Vertical Alignment

The profile grade line defines the vertical alignment for roadway and bridge construction. The profile grade line is a series of tangents connected by vertical curves. For undivided highways the profile grade line is typically located at the horizontal centerline of the roadway. For divided highways a profile grade line should be established for each direction of travel.

210 – Arterials and Collectors
Vertical alignments must meet criteria in the **FDM** to assure proper transitions, sight distances, and clearances.

210.10.1 Grades

The slope or grade of each tangent is expressed in percent rise (+) or fall (-); e.g., +2.000% or -2.000%. The maximum grades that may be used in establishing the vertical alignment is given in Table 210.10.1.

<table>
<thead>
<tr>
<th>Context Classification</th>
<th>Maximum Grades (percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Design Speed (mph)</td>
</tr>
<tr>
<td></td>
<td>25-30</td>
</tr>
<tr>
<td>C1 Natural</td>
<td>N/A</td>
</tr>
<tr>
<td>C2 Rural</td>
<td>N/A</td>
</tr>
<tr>
<td>C2T Rural Town</td>
<td>8</td>
</tr>
<tr>
<td>C3 Suburban</td>
<td>8</td>
</tr>
<tr>
<td>C4 Urban General</td>
<td>8</td>
</tr>
<tr>
<td>C5 Urban Center</td>
<td>8</td>
</tr>
<tr>
<td>C6 Urban Core</td>
<td>8</td>
</tr>
</tbody>
</table>

Notes:

1. Maximum grade used should not exceed 4% when truck volume ≥ 10% for all context classifications.
2. For RRR projects, when existing grades do not meet the above requirements but meet the standards in effect at the time of construction, the existing grade may remain.

The point where tangents intersect is known as the vertical point of intersection (VPI). When two tangent grades intersect and no vertical curve is provided, the “kink” is known as the point of intersect (PI). The maximum change in grade (i.e., algebraic change) without a vertical curve is provided in Table 210.10.2.
Table 210.10.2 Maximum Change in Grade without Vertical Curve

<table>
<thead>
<tr>
<th>Design Speed (mph)</th>
<th>25-30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Change In Grade Without Vertical Curve (percent)</td>
<td>1.00</td>
<td>0.90</td>
<td>0.80</td>
<td>0.70</td>
<td>0.60</td>
<td>0.50</td>
<td>0.40</td>
<td>0.30</td>
<td>0.20</td>
</tr>
</tbody>
</table>

210.10.1.1 Curbed Roadway

The minimum distance between VPIs on curbed roadways is 250 feet. The minimum grade on curbed roadways is 0.30%.

210.10.2 Vertical Curves

A vertical curve must be provided when the change in grade of two intersecting tangent grades exceed the values shown in Table 210.10.2. A vertical curve is identified by a curve length (L) which is equal to the product of the K value (K) and the algebraic difference in grades (A).

Table 210.10.3 provides minimum K-Values, and *Table 210.10.4* provides minimum vertical curve lengths.
Table 210.10.3 K Values for Vertical Curves

<table>
<thead>
<tr>
<th></th>
<th>Minimum K Values For Curves</th>
<th>Design Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Sag</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>Crest (new const.)</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Crest (RRR Criteria)</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Notes:

Length, L = KA

Where:
K = Rate of vertical curvature
L = Length of vertical curve, (feet)
A = Algebraic difference in grades, (percent)

1. New Construction K values are based on an eye height of 3.5 feet and an object height of 6 inches. RRR Criteria K values are based on an eye height of 3.5 feet and an object height of 2 feet.

2. The minimum curve length must not be less than values shown in Table 210.10.4.

Table 210.10.4 Minimum Vertical Curve Lengths

<table>
<thead>
<tr>
<th></th>
<th>Minimum Curve Length (feet)</th>
<th>Design Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Sag</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Crest</td>
<td></td>
<td>300</td>
</tr>
</tbody>
</table>
210.10.2.1 RRR Criteria for Vertical Curves

Table 210.10.3 provides RRR Criteria K values to be used to check the sufficiency of existing crest vertical curves. 2011 AASHTO Green Book revised its K values to reflect a 2-foot object height; FDOT has not adopted this change for new construction but these K values can be used to check existing curves. An existing crest vertical curve that does not meet the minimum RRR Criteria K value requires a Design Exception or Design Variation to remain.

When crash data indicates that an evaluation is required, consider the following:

(1) The nature of potential hazards hidden by a hill crest.
(2) The location of the hazard in relation to the portion of the highway where sight distance falls below new construction criteria.
(3) Effectiveness of other options such as relocating or correcting the hazard.
(4) Providing warning signs.

Sag vertical curves do not typically pose stopping sight distance problems. A sag vertical curve that does not meet the minimum K value in Table 210.10.3 and does not have a crash history, does not require a Design Exception or Design Variation to remain.

210.10.3 Vertical Clearances

Consider the following vertical clearance requirements when developing the vertical alignment:

(1) Minimum clearances for bridge structures is given in FDM 260.6.
(2) Minimum clearance from the bottom of the roadway base course to the Base Clearance Water Elevation is 3 feet, except as noted below. These exceptions will require a reduction in the design resilient modulus in accordance with the Flexible Pavement Design Manual. Coordinate with the Pavement Design Engineer for the following facilities:
 (a) 2-lane roadways in context classification C1, C2, C2T and C3, and all ramps may be reduced to a 2-foot clearance.
 (b) Low point on ramps at cross roads may be reduced to a 1-foot clearance.
 (c) All other facilities in context classifications C4 through C6 may be reduced to a 1-foot clearance.
(3) The relationship between the pavement elevation and the Design Flood Elevation is discussed in Section 4.4 (3) of the FDOT Drainage Manual (Topic No. 625-040-002).

(4) The Drainage Manual, Appendix C lists minimum covers and maximum fill heights for all types of culverts.

(5) For utility clearances, refer to the Utility Accommodation Manual.

(6) The required clearance for new overhead sign structures is 17.5 feet. This clearance is the least distance measured between the lowest point on the sign structure and the traffic lane or shoulder directly below the sign structure. For construction affecting existing overhead sign clearances, the minimum vertical clearance is 17 feet.

(7) The required clearance for new walk-in Dynamic Message Sign (DMS) structures is 19.5 feet. This clearance is the least distance measured between the lowest point on the DMS structure and the traffic lane or shoulder directly below the DMS structure. For any construction affecting existing DMS, the minimum vertical clearance is 19 feet.

(8) The required clearance for new signals on span wires, mast arms, or other structures is 17.5 feet. This clearance is the least distance measured between the lowest point on the signal structure and the traffic lane or shoulder directly below the signal structure. For any construction affecting existing signal clearances, FDOT minimum vertical clearance is 17 feet. Vertical clearances between 15 feet and 17 feet require a Design Variation. Signal clearances less than 15 feet are not allowed.

210.10.4 RRR Criteria for Vertical Alignment

Vertical alignment must be reviewed together with the horizontal alignment to assure that the necessary balance of standards is realized and that the combination is both safe and pleasing.

The alignment should be reviewed to see if the following principles are satisfied by the existing vertical alignment:

(1) The stopping sight distance provided meets or exceeds the values in Table 210.11.1.

(2) Grades do not significantly affect truck operations.

(3) There are no hidden dips which could obscure traffic or hazards.

(4) Steep grades and sharp vertical curves do not exist at or near an intersection.
(5) Sufficient grades and, when necessary, special gutter grades exist to adequately drain urban projects.

(6) Adequate sight distance exists for traffic signals (e.g., beyond overpasses, etc.).

When any of the above conditions do not exist, evaluate for hazardous conditions and determine if corrective measures are warranted.

210.11 Sight Distance

The AASHTO Green Book has a thorough discussion on sight distance. Consider the following aspects of sight distances:

(1) Stopping Sight Distance: Sight distances needed for stopping, which are applicable on all highways

(2) Intersection Sight Distance: Sight distances needed by a motorist to see approaching vehicles before their line of sight is blocked by an obstruction near the intersection.

(3) Passing Sight Distance: Sight distances needed for the passing of overtaken vehicles, applicable only on two-lane highways

(4) Decision Sight Distance: Sight distances needed for decisions at complex locations (e.g., merging tapers, ramps, weaving sections)

210.11.1 Stopping Sight Distance

Stopping sight distance is defined as the distance needed for drivers to see an object on the roadway ahead and bring their vehicles to safe stop before colliding with the object. The distances are derived for various design speeds based on assumptions for driver reaction time, the braking ability of most vehicles under wet pavement conditions, and the friction provided by most pavement surfaces.

Stopping sight distance is influenced by both vertical and horizontal alignment. A roadway designed to criteria employs a horizontal, vertical alignment, and a cross section that provides at least the minimum stopping sight distance through the entire facility.

Minimum stopping sight distances are provided in Table 210.11.1. Values shown in this table are based on eye height of 3.5 feet and an object height of 6 inches.

Minimum stopping sight distances greater than shown in Table 210.11.1 should be considered when drivers require additional time to make decisions.
Table 210.11.1 Minimum Stopping Sight Distance

<table>
<thead>
<tr>
<th>Grade (percent)</th>
<th>Minimum Stopping Sight Distance (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Design Speed (mph)</td>
</tr>
<tr>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Downgrade</td>
<td></td>
</tr>
<tr>
<td>≤ 2</td>
<td>155</td>
</tr>
<tr>
<td>3</td>
<td>158</td>
</tr>
<tr>
<td>4</td>
<td>160</td>
</tr>
<tr>
<td>5</td>
<td>162</td>
</tr>
<tr>
<td>6</td>
<td>165</td>
</tr>
<tr>
<td>7</td>
<td>167</td>
</tr>
<tr>
<td>8</td>
<td>170</td>
</tr>
<tr>
<td>9</td>
<td>173</td>
</tr>
<tr>
<td>Upgrade</td>
<td></td>
</tr>
<tr>
<td>≤ 2</td>
<td>155</td>
</tr>
<tr>
<td>3</td>
<td>147</td>
</tr>
<tr>
<td>4</td>
<td>146</td>
</tr>
<tr>
<td>5</td>
<td>144</td>
</tr>
<tr>
<td>6</td>
<td>143</td>
</tr>
<tr>
<td>7</td>
<td>142</td>
</tr>
<tr>
<td>8</td>
<td>141</td>
</tr>
<tr>
<td>9</td>
<td>139</td>
</tr>
</tbody>
</table>

210.11.2 Intersections

Information and requirements on sight distance at intersections is contained in **FDM 212**.
210.11.3 Passing Sight Distance

Passing sight distance is the minimum distance that would enable a vehicle to pass another vehicle without interfering with oncoming vehicles traveling at the design speed. The minimum passing sight distance is sufficient only for the passing of a single or isolated vehicle.

Minimum passing sight distances for 2-lane, 2-way roadways are provided in Table 210.11.2. Values shown in this table are based on eye height of 3.5 feet and an object height of 3.5 feet.

Table 210.11.2 Minimum Passing Sight Distance

<table>
<thead>
<tr>
<th>Design Speed (mph)</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Const.</td>
<td>900</td>
<td>1090</td>
<td>1280</td>
<td>1470</td>
<td>1625</td>
<td>1835</td>
<td>1985</td>
<td>2135</td>
</tr>
<tr>
<td>RRR</td>
<td>450</td>
<td>500</td>
<td>550</td>
<td>600</td>
<td>700</td>
<td>800</td>
<td>900</td>
<td>1000</td>
</tr>
</tbody>
</table>

The 2011 AASHTO Green Book revised its passing sight distance values, and FDOT has not adopted this change for new construction. The new construction passing sight distance values in Table 210.11.2 should be used to check the vertical and horizontal geometry on new alignments to provide as many passing zones as possible.

The values shown in the Manual on Uniform Traffic Studies (MUTS) are used as the warrants for placing no-passing zone pavement markings for all projects. The RRR values in Table 210.11.2 should be used to verify existing pavement markings, in accordance with the No Passing Zone Study procedure included in the MUTS.

210.11.4 Decision Sight Distance

The AASHTO Green Book, Chapter 3 provides a detailed discussion on decision sight distance.
211 Limited Access Facilities

211.1 General

This chapter includes criteria for Limited Access (LA) Facilities (toll and non-toll), including:

(1) Interstates
(2) Freeways
(3) Expressways
(4) Interchange ramps servicing high speed LA Facilities
(5) Collector-distributor roads (C-D) servicing high speed LA Facilities

Managed lanes design is an iterative process best performed in a collaborative environment involving various disciplines e.g. managed lanes planning, PD&E, construction, maintenance, traffic operations, transportation systems management and operations (TSM&O). Coordinate with the Turnpike Toll Systems and Tolls Design Offices in Phase I of the design process. Many design criteria are related to design speed; e.g., vertical and horizontal geometry, sight distance. When the minimum design values are not met, an approved Design Exception or Design Variation is required. See FDM 201.5 for information on Design Speed. See FDM 122 for information on Design Exceptions and Design Variations.

The following manuals and documents provide additional information for the design of LA Facilities:

- **General Tolling Requirements (GTR)** - Use this document for design criteria and requirements for tolling on Turnpike and Non-Turnpike projects.
- **AASHTO’s A Policy on Geometric Design of Highways and Streets (AASHTO Green Book)**
- **Turnpike Design Handbook (TDH)**
- **Traffic Engineering Manual (TEM)** - This manual is used to supplement the Manual on Uniform Traffic Control Devices (MUTCD)’s standards and guidelines with Florida specific signs and pavement markings used on the State Highway System by the Department’s Traffic Operations Offices.

211- Limited Access Facilities
Example roadway typical sections are included in the exhibits in *FDM 306*. Criteria regarding lanes, medians, and shoulders for bridges are illustrated in *FDM 260.1.1*. Subsequent sections of this chapter contain specific information and criteria regarding these and other typical section elements, as well as geometric features.

Specific requirements for toll site design (e.g., toll siting, toll facility demolition/renovation, toll facility site, toll facility building, and, toll facility gantry) are given in the General Tolling Requirements (GTR).

211.1.1 Interstate Resurfacing Projects

Interstate resurfacing projects that do not meet the criteria in this chapter may use the AASHTO interstate standards that were in effect at the time of original construction or inclusion into the interstate system for the following elements:

- Horizontal alignment
- Vertical alignment
- Median width
- Traveled way width
- Shoulder width

211.2 Travel Lanes and Auxiliary Lanes

Provide 12-foot travel lanes and auxiliary lanes on LA Facilities.

211.2.1 Ramps

On tangent sections, provide a 15-foot traveled way for one-lane ramps and 24-foot traveled way for two-lane ramps

Consider providing a greater lane width for one-lane ramps where accommodation of future resurfacing is a factor.

Ramp widths in other areas such as terminals are controlled by the curvature and the vehicle type selected as the design control. Minimum ramp widths for turning roadways are given in *Table 211.2.1*. Typical details for ramp terminals are provided in the *Standard Plans*, *Index 000-525*.
<table>
<thead>
<tr>
<th>Radius To Inside of Curve (ft.)</th>
<th>Minimum Ramp Width (ft.)</th>
<th>1-Lane</th>
<th>2-Lane</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Case I-C Traveled Way Width</td>
<td>Case II-B Traveled Way Width + Outside Paved Shoulder Width</td>
</tr>
<tr>
<td></td>
<td></td>
<td>One-lane, one-way operation – no provision for passing a stalled vehicle</td>
<td>One-lane, one-way operation – with provision for passing a stalled vehicle</td>
</tr>
<tr>
<td>50</td>
<td>23</td>
<td>26</td>
<td>29</td>
</tr>
<tr>
<td>75</td>
<td>20</td>
<td>23</td>
<td>27</td>
</tr>
<tr>
<td>100</td>
<td>18</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>150</td>
<td>17</td>
<td>21</td>
<td>24</td>
</tr>
<tr>
<td>200</td>
<td>16</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>300</td>
<td>15</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>400</td>
<td>15</td>
<td>19</td>
<td>24</td>
</tr>
<tr>
<td>≥ 500</td>
<td>15</td>
<td>19</td>
<td>24</td>
</tr>
</tbody>
</table>

Notes:

1. For case application, see *AASHTO Green Book*.
 a. Case I - Bus and combination trucks govern design.
 b. Case II - SU vehicles govern design, some consideration for semitrailer combination trucks.
 c. Case III – P vehicles govern design, some consideration for SU trucks.

2. *AASHTO* adjustments do not apply.
211.2.2 Pavement Cross Slopes

For roadways, the maximum number of travel lanes with cross slope in one direction is three lanes except as shown in Figure 211.2.1, which prescribes standard pavement cross slopes. A Design Variation or a Design Exception is required when proposed pavement cross slopes do not meet the requirements shown in Figure 211.2.1.

Outside auxiliary lane cross slopes must match or exceed adjacent travel lane cross slope. The auxiliary lane cross slope cannot exceed the values in Figure 211.2.1. In superelevation transitions, do not exceed the maximum algebraic differences shown in Table 211.2.2.

The maximum algebraic difference in cross slope between adjacent through lanes is 0.04. The maximum algebraic difference in cross slope between a through lane and an auxiliary lane at a turning roadway terminal is given in Table 211.2.2.

Cross slopes on bridges are to be on a uniform, straight-line rate, typically 0.02 (See FDM 260.4). Use transitions to adjust for differences in cross slope between the approach roadway section and the required straight-line slope for bridge decks. Whenever possible the transition should be accomplished on the roadway section, outside the limits of the bridge and approach slabs. This will require detailing of the transition(s) in the roadway plans. Coordination between the Roadway, Drainage and Structures designers in the development of transitions is required to ensure compatibility and harmonizing at bridge approaches.
Figure 211.2.1 Standard Pavement Cross Slopes

(1) These sections show only the standard slopes for adjoining travel lanes; they do not prescribe needed lanes, lane usage or typical section requirements other than lane slope.

(2) Maximum pavement cross slopes for tangent sections are:
 (a) 0.03 for design speeds greater than 45 mph
 (b) 0.035 may only be used for 5-lanes sloped in one direction as shown above.

(3) The maximum change in cross slope between adjacent through lanes is 0.04.

(4) 4 or 5 lanes sloped in one direction (*) may be used with design speed 65 mph or less and longitudinal grades not exceeding 5%.
Table 211.2.2 Maximum Algebraic Difference in Cross Slope at Turning Roadway Terminals

<table>
<thead>
<tr>
<th>Design Speed of Exit or Entrance Curve (mph)</th>
<th>Maximum Algebraic Difference in Cross Slope at Crossover Line (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 35</td>
<td>6.0</td>
</tr>
<tr>
<td>35 and over</td>
<td>5.0</td>
</tr>
</tbody>
</table>

![Diagram of Crossover Line and Algebraic Difference](image-url)
211.2.2.1 Existing Pavement Cross Slopes

Review the existing pavement and shoulder cross slopes for compliance with criteria. Field verify existing pavement and shoulder cross slopes by one of the following:

1. Full Digital Terrain Model for the roadway width – evaluate cross slope on tangent sections at 100-foot intervals.

2. Vehicle Mounted Scanner – prior to design, using the results of the scan, determine roadway limits where cross slope is potentially out of tolerance and request Digital Terrain Model of the roadway width for these limits. Evaluate cross slope on tangent sections at 100-foot intervals.

If cross slopes do not meet the values in Table 211.2.3, additional cross sections may be required by the designer to develop cross slope correction details and estimate material quantities. Resurfaced pavement and shoulder cross slopes should meet new construction criteria. When cross slope correction is not practical, documentation in the design file is required. If existing conditions are within the allowable range shown in Table 211.2.3, the term “Match Existing” may be used on the Typical Section(s) to indicate that the existing cross slope is to remain. Superelevation requirements are covered in FDM 211.8.

When cross slope correction is necessary, work closely with the District Pavement Design Engineer and the District Bituminous Engineer to determine the appropriate method of correction. Tabulate existing cross slopes in the plans at 100-foot intervals within the limits of cross slope correction. Include cross slope correction details showing the method of correction in the plans (see examples in FDM 306). Do not show cross slope correction details on the roadway cross sections. Base cross slope correction material quantities on the method of correction shown in cross slope correction details.
Table 211.2.3 Allowable Range for Existing Pavement Cross Slopes

<table>
<thead>
<tr>
<th>Facility or Feature</th>
<th>Standard (ft./ft.)</th>
<th>Allowable Range (ft./ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel Lanes</td>
<td>0.02</td>
<td>0.015 - 0.025</td>
</tr>
<tr>
<td>Travel Lanes</td>
<td>0.03</td>
<td>0.025 - 0.035</td>
</tr>
<tr>
<td>Outside Shoulder</td>
<td>0.06</td>
<td>Adjacent Lane Cross Slope - 0.080</td>
</tr>
<tr>
<td>Median (left) Shoulder</td>
<td>0.05</td>
<td>0.020 - 0.080</td>
</tr>
</tbody>
</table>

Notes:

1. Standard cross slope (0.02 or 0.03) as designated in *Figure 211.2.1*.
2. The algebraic difference in cross slope between adjacent travel lanes must not exceed 0.04. The maximum algebraic difference in cross slope between a through lane and an auxiliary lane at a turning roadway terminal must meet *Table 211.2.2*.
3. When existing shoulders are to remain, the algebraic difference between the shoulder slope and adjoining roadway pavement slope must be ≤ 0.07.
4. Outside auxiliary lanes must match or exceed adjacent travel lane cross slopes with a maximum cross slope of 0.035.

211.2.3 Hydroplaning Risk Analysis

The hydroplaning risk analysis predicts the water film thickness on the pavement being analyzed and the speed at which hydroplaning may occur. This information may support utilizing a non-compliant typical section when weighed against the cost of correcting pavement cross slope. Coordinate with the District Drainage Engineer to determine whether a hydroplaning analysis is needed.

When a hydroplaning risk analysis is performed, use the HP Program and the Design Guidance: Hydroplaning Risk Analysis. The Hydroplaning Tools can be downloaded under Design Aids at:

211.2.4 Roadway Transitions

The minimum merging roadway transition length (L) is calculated as follows:

1. Use \(L = WS \) for design speeds \(\geq 45 \text{ mph} \)
2. Use \(L = WS^2/60 \) for design speeds \(\leq 40 \text{ mph} \)

Where:
- \(L \) = length of taper, feet
- \(W \) = width of lateral transition, feet
- \(S \) = design speed, mph

Exhibits 210-1 through 210-6 illustrate standard roadway transitions. For conditions not addressed in these figures, use the following:

- Merging Taper = \(L \)
- Shifting Taper = \(L/2 \)
- Shoulder Taper = \(L/3 \)

Where an abrupt change in roadway typical (e.g., 4-lane section to a 6-lane section) a striped lane transition may be considered when all the following conditions are met:

- New pavement widths are not substantially greater than the joining pavement,
- Grade differentials are slight, and
- Future widening is expected.

211.2.5 Number of Lanes on the State Highway System

See Section 335.02(3) of the Florida Statutes for the number of lanes to be provided on the State Highway System. Nothing in this statute precludes a number of lanes in excess of ten lanes. The Department will determine the appropriate number of lanes based on traffic demand. Consideration will be given to availability of right of way and the capacity to accommodate other modes of transportation within existing rights of way.

Topic No.: 525-030-020a Capacity Improvement Alternatives is the Department policy to assist in the identification of the most appropriate option for widening projects on all LA Facilities on the State Highway System (SHS). This policy applies to the Interstate System and to Florida’s Turnpike Enterprise facilities.
211.3 Medians

Median width is the distance between the inside (median) edge of the travel lane of each roadway. Required median widths are given in Table 211.3.1.

Median ditches must be designed to meet the following requirements:

- Have sufficient depth to provide positive drainage of the adjacent sub-grades. Typically this requires a median depth of at least one foot below the sub-grade shoulder point.
- Have recoverable side slopes within the clear zone in order to facilitate the recovery of errant vehicles. See FDM 215 for additional information on roadside safety.
- Have sufficient longitudinal gradient and hydraulic capacity to ensure good drainage.

<table>
<thead>
<tr>
<th>Facility Type</th>
<th>Minimum Median Width (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interstate, Without Barrier</td>
<td>64</td>
</tr>
<tr>
<td>Freeway and Expressway, Without Barrier</td>
<td>60</td>
</tr>
<tr>
<td>Design Speed ≥ 60 mph</td>
<td>60</td>
</tr>
<tr>
<td>Design Speed < 60 mph</td>
<td>40</td>
</tr>
<tr>
<td>All, With Barrier</td>
<td>26</td>
</tr>
</tbody>
</table>

Notes:

1. For Interstate (without barrier), provide an 88-foot median width when future lanes are planned.

Facilities that have the ability to be expanded for additional capacity in the future will be designed to accommodate that future expansion. For example, a 4-lane high-speed facility that has the potential to expand to a 6-lane facility (without managed lanes) may be designed with a 50-foot median with barrier (e.g. guardrail, high tension cable barrier) instead of the required 60-foot median. A 50-foot median will accommodate a future 2-foot concrete median barrier, two 12-foot travel lanes and two 12-foot shoulders.

211.3.1 Bridge Median

See FDM 260.5 for information on bridge medians.
211.3.2 Median Crossovers

This section addresses permanent median crossovers (i.e., median openings). The criteria in this section does not apply to contra-flow crossovers placed for facilitating hurricane evacuation, nor does it apply to temporary construction crossovers. For temporary construction crossovers, refer to Standard Plans, Indexes 102-630 and 102-631.

Permanent crossovers are necessary to avoid excessive travel distances for emergency vehicles, law enforcement vehicles, and maintenance vehicles. Provide median crossovers only when there is a documented request and need for such a feature; however they are to be limited in number and strategically located. The District Design Engineer (DDE) and the District Traffic Operations Engineer (DTOE) jointly approve the location of median openings.

The following AASHTO Green Book crossover recommendations have been adopted by the Department as requirements for permanent crossovers:

1. Not spaced closer than 3 miles apart.
2. Located only in areas with above-minimum stopping sight distance and without superelevated curves.
3. Not located within 1,500 feet of the end of a speed-change taper (of a ramp or facility widening/narrowing) or any structure (bridge, overpassing facility or overhead sign).
4. Not located where the median width is less than 25 feet.

Crossover locations that do not meet the above criteria require approval by the State Roadway Design Engineer. Non-conforming crossovers on Interstate facilities require approval by the State Roadway Design Engineer and Federal Highway Administration (FHWA).

The following additional FDOT criteria are also requirements for permanent crossovers:

1. Not located within 1.5 miles of any interchange.
2. Not located where the median width is less than 40 feet.
3. Not located in urban areas
4. Where continuous median barrier is present, openings for crossovers should not be greater than 5 miles apart between Interchanges.
Typical layouts for the design of median crossovers are provided in **Exhibits 211-1** and **211-2**. These typical layouts may not cover all situations, but are provided as a guide for developing site-specific designs. Designs should accommodate the types of emergency vehicles expected to use the crossover. Law enforcement vehicles and typical ambulance sized vehicles can usually be easily accommodated. The typical layouts illustrated in the exhibits accommodate a SU design vehicle. To the extent practical, designs should accommodate larger emergency response vehicles such as fire trucks. This may require obtaining information from local emergency responders on the size and configuration of vehicles used. Except where median widths are wider than normal, fire trucks and other larger vehicles will likely not be able to make U-turns without encroaching or crossing travel lanes. As a minimum, designs should provide for the necessary minimum radii and width to allow the largest design vehicle to enter the crossover and stop as close to perpendicular to traffic as practical. All designs should be tested by superimposing the turning path of the design vehicle to insure the crossover will operate as expected.

On Interstate facilities, the FHWA directs that median shoulders approaching the crossover utilize the standard shoulder width, or existing shoulder width. FHWA advocates that the safety benefits derived by making the crossovers appear less conspicuous outweigh the benefits obtained by providing paved shoulders to accommodate acceleration and deceleration lanes for emergency vehicles, law enforcement, or other authorized vehicles.

The profile of the crossover is to conform as close as practical with travel way shoulder slopes and median side slopes so that the crossover is inconspicuous as possible to traffic. The paved width of the crossover should not be any wider than that necessary to provide for the largest design vehicle. Shoulder width for the crossover should be 8 feet minimum. Side slopes of the crossover (parallel with the mainline travel way) are to be 1:10 or flatter. However, side slopes may be transitioned to match the slope of a pipe culvert safety end treatment where a culvert crossing underneath the crossover is necessary to provide for proper median drainage.

For each proposed location, determine drainage requirements and make appropriate provisions. The drainage culvert shown in the exhibits are for example only. Either a mitered end section (1:4) or preferably a u-endwall with grate (1:6) should be used for culverts parallel with the mainline. In some cases existing median ditches are shallow and there will be minimal clearances available for even small size culverts.

Provide a pavement design equivalent to a Limited Access shoulder pavement; i.e., 12 inch Stabilized Subgrade, Base Group 1, and 1.5 inch Structural Course.

A "No U-turn" sign (R3-4) with an "Official Use Only" plaque (FTP-65-06) is required for permanent crossovers. To improve nighttime visibility for approaching emergency
responders, yellow RPMs are installed on the outside yellow edge line in advance of the crossover. See *Standard Plans, Index 706-001* for RPM placement.

Florida Administrative Code, Rule 14-97, Section 14-97.003(3) (Access Control Classification System and Access Management Standards) regulates the location of driveway connections and median openings in interchange areas on arterial roads. This standard should be applied in accordance with the District procedures for implementing the Rule, and should not be confused with minimum requirements for LA R/W.

211.3.2.1 Existing Crossovers

On reconstruction and resurfacing projects, evaluate the location of existing crossovers for conformance to the above criteria. For those locations that do not meet the criterion in *FDM 211.3*, do one of the following:

1. Remove or relocate crossover as a part of the project
2. Crossover locations that do not meet the *AASHTO Green Book* criteria require approval by the State Roadway Design Engineer to remain. Non-conforming crossovers on Interstate facilities require approval by the State Roadway Design Engineer and Federal Highway Administration (FHWA) to remain.
3. Crossover locations that meet the *AASHTO Green Book* criteria, but do not meet additional FDOT criteria require approval by the District Design Engineer to remain.

211.3.3 Managed Lanes Separation

Managed lanes are always separated from the general use lanes or general toll lanes. Median openings and crossovers are prohibited within managed lanes.

There are four types of managed lanes separation treatments:

1. Barrier separation; see *Figure 211.3.1*
2. Buffer separation with tubular markers; see *Figure 211.3.2*
3. Wide buffer separation; see *Figure 211.3.3*
4. Grade separation; see *Figure 211.3.4*

The minimum standard buffer width for the buffer separation is 4 feet. Any variation from a 4-foot-buffer width must be approved by the District Design Engineer. Install tubular
markers per the *TEM*, Chapter 4. Use barrier separation or grade separation when implementing a reversible managed lane system.

The maximum spacing and placement of tubular markers is provided in the *TEM*. If, based on operational and safety analysis, the EOR or the district wishes to increase the maximum allowable spacing, a Design Variation must be approved by the Chief Engineer.

When a wide buffer separation is selected, the buffer may include a grassed median or pavement. Paved wide buffers should be no more than 12 feet wide.
Figure 211.3.1 Managed Lanes Barrier Separation Typical Section

Figure 211.3.2 Managed Lanes Buffer Separation with Tubular Marker Typical Section

Figure 211.3.3 Managed Lanes Wide Buffer Separation Typical Section
Figure 211.3.4 Managed Lanes Grade Separation Typical Section
MEDIAN Crossovers
Typical Layouts and Sections

LEGEND:

Sign

OFFICIAL USE ONLY

FTP-65-06
(36'x18')

R3-4
(36'x36')

PLAN VIEW - 4 LANES

PLAN VIEW - 6 LANES (OR MORE)

SECTION A-A

SECTION B-B

EXHIBIT 211-1
01/01/2018

* For freeway grades 2% or greater, match freeway grade.

NOT TO SCALE
MEDIAN BARRIER OPENING FOR MEDIAN

CROSSOVERS TYPICAL LAYOUT

NOTES:

1. Provide Yellow RPMs placed outside yellow edge line in advance of crossover as shown in Standard Plans, Index 706-001.
2. Minimum turning radius for SU vehicle shown, and were generated by AutoTURN.
3. For lane and median configurations other than the 6-lane, 40-foot median shown here, adjustments in turn radii or additional pavement may be required.
211.4 Shoulders

Roadway shoulder width is measured from the edge of the traveled way to the shoulder break. A portion of the shoulder is required to be paved. Required shoulder widths and paved widths are given in Table 211.4.1.

Use shoulder gutter for the following conditions:

- On embankments higher than 20 feet
- On embankments higher than 10 feet where the longitudinal slope is greater than 2 percent
- On embankments, with slopes steeper than 1:6 for more than five feet vertically, to minimize erosion
- At bridge ends where concentrated flow from the bridge deck would run down the slope
- In areas of guardrail where embankment slopes are steeper than 1:4 and any pavement is sloped toward the embankment.

Refer to FDM 260.3 for bridge shoulder widths.

See General Tolling Requirements (GTR) for paved shoulder requirements at tolling locations.

211.4.1 Managed Lanes Shoulders

The required width for managed lanes shoulders depends on the type of separation between the managed lanes and the general use lanes or general toll lanes. When retrofitting managed lanes in constrained conditions, shoulder widths in Table 211.4.1 may not be achievable without a Design Variation or Design Exception. Consult the Highway Safety Manual on safety tradeoffs when narrowing shoulder widths.
Table 211.4.1 Minimum Shoulder Widths

<table>
<thead>
<tr>
<th>Lane Type</th>
<th># Lanes (One Direction)</th>
<th>Without Shoulder Gutter</th>
<th>With Shoulder Gutter</th>
<th>Without Shoulder Gutter</th>
<th>With Shoulder Gutter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Outside or Right</td>
<td>Median Or Left On Divided Roadways</td>
<td>Outside or Right</td>
<td>Median Or Left On Divided Roadways</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Full Width</td>
<td>Paved Width</td>
<td>Full Width</td>
<td>Paved Width</td>
</tr>
<tr>
<td>Travel Lanes</td>
<td>2-Lane</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3-Lane or more</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Managed Lanes</td>
<td>1-Lane</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2-Lane</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Ramps</td>
<td>1-Lane Ramp</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2-Lane Ramp Non-Interstate</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2-Lane Ramp Interstate</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>C-D Roads</td>
<td>1-Lane</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2-Lane</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3-Lane or more</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Aux. Lanes</td>
<td>ALL</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

Notes:

Without shoulder gutter:

(1) Consider 12-foot outside paved width shoulders adjacent to travel lanes with high AADT or greater than 10% trucks.

(2) Pave the entire width of shoulders adjacent to concrete barriers. See *FDM 215.4.6.1*

With shoulder gutter:

(1) Ramp shoulder pavement less than 6 feet in width that adjoins shoulder gutter must match the type, depth, and cross slope of the ramp travel lane.
211.4.2 Shoulder Cross Slopes

The standard cross slope is 0.06 on the outside shoulder and 0.05 on the median (or left) side for all roadway and ramp sections. Figure 211.4.1 illustrates shoulder cross slopes in relationship to roadway cross slopes for normal and superelevated sections. For 5-foot (or less) paved shoulders, see Figure 211.4.2. When the inside travel lane is sloping toward the median, the inside shoulder cross slope may be increased to 0.06.

For projects constructed with concrete pavement, the first one foot of the outside shoulder is cast with the outside travel lane and will have the same cross slope (and superelevation) as the outside lane. Superelevation of the shoulder pavement is to be rotated about the outside edge of the outside slab.
Figure 211.4.1 Shoulder Superelevation

![Shoulder Superelevation Diagram](image-url)
211.4.3 Limits of Friction Course on Paved Shoulders

Extend the friction course 8 inches onto both the median and outside paved shoulders of roadways.

For locations where median barrier wall is continuous and shoulder slopes toward the travel lane, consider constructing the inside shoulder pavement flush with the friction course placed on the adjacent travel lane. This will address any concerns for trapping water on the shoulder as demonstrated in Figure 211.4.3.
211.4.4 Audible and Vibratory Treatment

Audible and vibratory treatments provide a lane departure warning. Include either ground-in rumble strips or profiled thermoplastic audible and vibratory treatment on LA Facilities.

211.4.4.1 Ground-in Rumble Strips

Use ground-in rumble strips on mainline flexible pavement shoulders in accordance with Standard Plans, Index 546-010. Use the skip array on both inside and outside shoulders. Use the continuous array in advance of bridge ends for a distance of 1,000 feet or back to the gore recovery area for mainline interchange bridges. Figure 211.4.4 provides guidance for placement of ground-in rumble strips.
Exclude ground-in rumble strips at the following locations:

1. On bridges, terminate at the approach slab joint.
2. On approach to mainline toll plazas, terminate at the end of the mainline normal section.
3. On All Electronic Tolling (AET) facilities within the tolling area as defined in the General Tolling Requirements (GTR).
4. On outside shoulders of entrance ramp terminals, terminate at the point of the physical gore and resume at the end of the acceleration lane taper.
5. On outside shoulders of exit ramp terminals, terminate at the start of the deceleration lane taper, and resume at the point of the physical gore.
6. On either side of median crossover openings, terminate within 400 feet.

211.4.4.2 Profiled Thermoplastic

Use profiled thermoplastic for inside and outside edge line pavement markings on roadways with rigid pavement shoulders.
Figure 211.4.4 Placement of Ground-in Rumble Strips
211.4.5 Emergency Refuge Areas

Consider including Emergency Refuge Areas (ERAs) in areas where additional shoulder widths are deemed necessary (e.g., law enforcement, vehicle refuge). Coordinate with Traffic Operations, Maintenance, and Law Enforcement to determine if ERAs would be appropriate for the roadway facility.

For managed lanes projects, consider ERAs where deemed necessary in coordination with Traffic Engineering and Operations, Maintenance, and Law Enforcement. Coordinate with the Turnpike Toll Systems and Tolls Design Offices during Phase I of the design process. For managed lanes in constrained conditions, a staggered shoulder may be designed to allow storage of disabled or damaged vehicles.

211.4.6 Emergency Shoulder Use (ESU)

Emergency Shoulder Use (ESU) increases traffic capacity for hurricane evacuations by using existing paved shoulders as temporary travel lanes. ESU is typically implemented on evacuation routes as follows:

- On median shoulder when median paved shoulder width is at least 10 feet, or
- On outside shoulder when median paved shoulder width is less than 10 feet.

ESU evacuation routes are listed at: https://www.fdot.gov/emergencymanagement/esi/

Provide a minimum of 10-foot paved shoulder that is useable for travel on ESU routes identified on the Department’s Emergency Management website. A portion of the shoulder gutter (when present) may be included in the useable 10-foot width; see Figure 211.4.5.
On resurfacing projects where paved or usable shoulder widths are less than 10 feet, do one of the following:

- Provide shoulder modifications to allow for acceptable ESU usage, or
- Identify a future project that will provide the required shoulder modifications.

Locate median barrier in accordance with FDM 215. When possible, do not locate median barrier adjacent to the shoulder identified for ESU evacuation.

See FDM 240.2.1.1 for ESU requirements during construction.

211.4.7 Use of Curb

Type F Curb may be used in areas with design speeds 45 mph or less. Type E Curb may be used in areas with design speeds 55 mph or less. This applies to both median and outside shoulder locations. All curb is prohibited in areas with design speeds greater than 55 mph.

211.4.7.1 Existing Curb

There are infrequent sections of curbed roadways in combination with guardrail on LA Facilities. When there is no crash history associated with these applications, the curb may remain when approved by the District Design Engineer (DDE). Approval by DDE is documented through the development of the Typical Section Package.
211.5 Roadside Slopes

Side slopes within the clear zone are typically 1:6 or flatter. When site conditions require the use of steeper slopes, refer to new construction criteria included in FDM 215.

The following guidance is being provided to designers for consideration during project design. Additional sod requirements are provided in the FDOT Drainage Design Manual and in the Standard Plans, Indexes 570-001 and 571-010.

- Sod should be considered for slopes 1:4 or steeper. For all other areas, refer to FDOT Drainage Design Manual, Chapter 2, Table 2.5, for additional guidance on maximum velocity for each lining type.
- Sod should be used for projects with less than 10,000 square feet of disturbed area.
- Sod should be considered for narrow areas less than six feet.
- A minimum 48” of sod should be considered for back of sidewalk areas as applicable.
- Sod should be considered in areas of concentrated runoff, i.e. bottom of vertical curves, inside areas of superelevated curves, tangent sections, and outside of curves. Refer to Standard Plans, Index 570-001 for sodding requirements.
- Refer to Standard Plans, Index 570-010 for milling and resurfacing projects or major projects with portions of milling and resurfacing.

211.6 Border Width

For new construction the required border width is 94-feet, which is measured from the outside edge of traveled way to the R/W line. This width may be reduced in the area of a crossroad terminal, as long as the design meets the requirements for clear zone, lateral offsets, drainage, and maintenance access.

Fencing, or in special cases, walls or barriers are to contain LA Facilities. These treatments are to be continuous and appropriate for each location. Treatment height and type may vary under special conditions. The treatment is typically placed at or near the LA R/W line, but location may be adjusted based on site-specific conditions (e.g., ponds, trees, bridges). Placement information and additional data is provided in Standard Plans, Indexes 550-001, 550-002, and 550-004.
211.6.1 Border Width on Reconstruction & Resurfacing Projects

For reconstruction and resurfacing projects where additional R/W will not be acquired, a Design Variation is not required when the following minimum border width is met:

(1) The border width accommodates:
 (a) Roadside design components such as signing, drainage features, guardrail, fencing and clear zone
 (b) The construction and maintenance of the facility
 (c) Permitted public utilities

(2) Along ramps and mainline lanes where roadside barriers are used and thus clear zone is not applicable, the minimum border width from the back of a barrier or retaining wall must be 10 feet if maintenance vehicles have sufficient access from public R/W that is contiguous and unimpeded to the facility.

(3) If the maintenance access is not continuous along a barrier or wall, and thus maintenance vehicles and equipment would need to turn around, then a sufficient turnaround area must be provided that is acceptable and approved by Maintenance.

(4) Maintenance accessibility includes the ability for equipment and vehicles to maneuver around obstacles including fences, lights, signs, side slopes and ponds.

211.7 Horizontal Alignment

The centerline (CL) or baseline (BL) of construction defines the horizontal alignment for roadway and bridge construction. The CL or BL construction is a series of tangents connected by horizontal curves established by the Engineer of Record (EOR). CL or BL construction is often the same alignment as the BL of survey.

Horizontal alignment should be consistent with the anticipated operating speed and with environmental, physical, and economic constraints. Design speed is the principal factor controlling horizontal alignment.

Avoid placing horizontal curves, points of intersection (PI) and superelevation transitions within the limits of a structure or approach slabs. Placement of stationing equations within the limits of a structure should be avoided on contract plans. Such equations unnecessarily increase the probability of error in both the design and construction phase.
211.7.1 Deflections in Alignment

The point where tangents intersect is known as the point of intersection (PI). Avoid the use of a PI with no horizontal curve; however, there may be conditions where it is necessary. The maximum deflection along the mainline and ramps without a horizontal curve are as follows:

- Design speed ≤ 40 mph is 2°00'00".
- Design speed ≥ 45 mph is 0°45'00".

211.7.2 Horizontal Curves

A horizontal curve should not be introduced near the crest of a vertical curve. The combination of horizontal and vertical curves can greatly reduce sight distance; i.e., hide the horizontal curve from the approaching driver. The condition can be avoided by having the horizontal curvature lead the vertical curvature; i.e., the horizontal curve is made longer than the vertical curve.

Flatter curvature with shorter tangents is preferable to sharp curves connected by long tangents; i.e., avoid using minimum horizontal curve lengths. Avoid long tangents followed by sharp curves.

Table 211.7.1 provides the desirable horizontal curve lengths to be used in establishing the horizontal alignment. Desirable curve lengths for interstate, freeways and expressways are based on 30-times the design speed (30V), where V = design speed in mph. Desired curve lengths for low-speed ramps are based on 15-times the design speed (15V), and high-speed ramps are based on 30V.
Table 211.7.1 Length of Horizontal Curve

<table>
<thead>
<tr>
<th>Length Of Horizontal Curve (ft.)</th>
<th>Interstate, Freeway and Expressways based on Design Speed (mph)</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desirable</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>1500</td>
<td>1650</td>
<td>1800</td>
<td>1950</td>
<td>2100</td>
</tr>
<tr>
<td>Minimum</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>750</td>
<td>825</td>
<td>900</td>
<td>975</td>
<td>1050</td>
</tr>
<tr>
<td>Ramps based on Design Speed (mph)</td>
<td></td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td>65</td>
<td>70</td>
</tr>
<tr>
<td>Desirable</td>
<td></td>
<td>400</td>
<td>450</td>
<td>525</td>
<td>600</td>
<td>675</td>
<td>1500</td>
<td>1650</td>
<td>1800</td>
<td>1950</td>
<td>2100</td>
</tr>
<tr>
<td>Minimum</td>
<td></td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>750</td>
<td>825</td>
<td>900</td>
<td>975</td>
<td>1050</td>
</tr>
</tbody>
</table>

Notes:
1. Provide the desirable length; however, when desired length cannot be attained, provide the greatest length possible, but not less than the minimum.

211.8 Superelevation

The criteria contained in *FDM 210.9* is applicable for Interstates, Freeways, and Expressways. The RRR criteria contained in *FDM 210.9.2* applies to Limited Access resurfacing projects.

Superelevation rates of 0.10 maximum are required on high speed LA Facilities, except for the portion of a ramp that adjoins an arterial. For the portion of a ramp that adjoins to an arterial, match the superelevation rate of the arterial. The terminal and the area abutting the LA Facility is controlled by Limited Access criteria and must be designed for 0.10 maximum superelevation rate.
211.9 Vertical Alignment

The profile grade line defines the vertical alignment for roadway and bridge construction. The profile grade line is a series of tangents connected by vertical curves. For undivided highways the profile grade line is typically located at the horizontal centerline of the roadway. For divided highways a profile grade line should be established for each direction of travel.

Meeting vertical alignment criteria assures proper transitions, sight distances, and clearances.

LA facilities play a critical role during hurricane evacuation and re-entry in the aftermath. Designing the mainline travel lanes to be above the 100-year flood plain elevation (established by FEMA or other pertinent studies) is a requirement on Florida’s Turnpike Facilities and should be considered for all LA facilities. See FDM 210.10.3 for all other vertical clearance requirements.

Minimum vertical clearances for bridges structures is given in FDM 260.6.

211.9.1 Grades

The slope or grade of each tangent is expressed in percent rise (+) or fall (-); e.g., +2.000% or -2.000%. The maximum grades that may be used in establishing the vertical alignment in given in Table 211.9.1.
<table>
<thead>
<tr>
<th>Facility Type</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA Facilities</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Ramps</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Notes:
(1) For roadways with significant (10% or more) heavy truck traffic the maximum grade used should not exceed 4%.
(2) For resurfacing projects, when existing grades do not meet the above requirements but meet the standards in effect at the time of construction, the existing grade may remain.

The point where tangents intersect is known as the vertical point of intersection (VPI). When two tangent grades intersect and no vertical curve is provided, the “kink” is known as the point of intersect (PI). The maximum change in grade (i.e., algebraic change) without a vertical curve is provided in Table 210.10.2.

211.9.2 Vertical Curves

A vertical curve must be provided when the change in grade of two intersecting tangent grades exceed the values shown in Table 210.10.2. A vertical curve is identified by a curve length (L) which is equal to the product of the K value (K) and the algebraic difference in grades (A).

Tables 211.9.2 and 211.9.3 contain vertical alignment criteria for Interstates, Freeways, Expressways, and ramps.
<table>
<thead>
<tr>
<th>Type of Curve</th>
<th>Minimum K Values for Vertical Curves</th>
<th>Design Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interstate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sag</td>
<td>N/A</td>
<td>115</td>
</tr>
<tr>
<td>Crest (New Construction)</td>
<td>N/A</td>
<td>185</td>
</tr>
<tr>
<td>Crest (Resurfacing)</td>
<td>N/A</td>
<td>114</td>
</tr>
<tr>
<td>Freeway and Expressways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sag</td>
<td>N/A</td>
<td>96</td>
</tr>
<tr>
<td>Crest (New Construction)</td>
<td>N/A</td>
<td>136</td>
</tr>
<tr>
<td>Crest (Resurfacing)</td>
<td>N/A</td>
<td>84</td>
</tr>
<tr>
<td>Ramps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sag</td>
<td>26</td>
<td>37</td>
</tr>
<tr>
<td>Crest (New Construction)</td>
<td>19</td>
<td>31</td>
</tr>
<tr>
<td>Crest (Resurfacing)</td>
<td>12</td>
<td>19</td>
</tr>
</tbody>
</table>

Notes:
Length, \(L = KA \)
Where: \(K \) = Rate of vertical curvature (a.k.a., K value)
\(L \) = Length of vertical curve, (feet)
\(A \) = Algebraic difference in grades, (percent)

1. New construction K values are based on an eye height of 3.5 feet and an object height of 6 inches. Resurfacing K values are based on an eye height of 3.5 feet and an object height of 2 feet.
2. The minimum curve length must not be less than values shown in Table 211.9.3.
3. Vertical curves within a system interchange are to use K values based on the higher system.
4. Use interstate, freeway, or expressway K values on vertical curves located within the ramp terminal area. Ramp vertical curve K values are used for ramps outside of the ramp terminal area.
Table 211.9.3 Minimum Vertical Curve Length

<table>
<thead>
<tr>
<th>Type of Curve</th>
<th>Curve Length (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Design Speed (mph)</td>
</tr>
<tr>
<td></td>
<td>25</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Interstate, Freeway and Expressways</td>
<td></td>
</tr>
<tr>
<td>Sag</td>
<td>N/A</td>
</tr>
<tr>
<td>Crest (Open Highway)</td>
<td>N/A</td>
</tr>
<tr>
<td>Crest (Within Interchanges)</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramps</td>
<td></td>
</tr>
<tr>
<td>Sag</td>
<td>75</td>
</tr>
<tr>
<td>Crest</td>
<td>300</td>
</tr>
</tbody>
</table>

211.10 Sight Distance

The AASHTO Greenbook has a thorough discussion on sight distance. Consider the following aspects of sight distances:

1. Stopping Sight Distance: Sight distances needed for stopping, which are applicable on all highways
2. Decision Sight Distance: Sight distances needed for decisions at complex locations (e.g., merging tapers, ramps, weaving sections)
211.10.1 Stopping Sight Distance

Stopping sight distance criteria is provided in Tables 211.10.1 and 211.10.2.

Table 211.10.1 Minimum Stopping Sight Distance for Interstate

<table>
<thead>
<tr>
<th>Grade (percent)</th>
<th>Design Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Downgrade</td>
<td></td>
</tr>
<tr>
<td>≤ 2</td>
<td>495</td>
</tr>
<tr>
<td>3</td>
<td>516</td>
</tr>
<tr>
<td>4</td>
<td>524</td>
</tr>
<tr>
<td>5</td>
<td>534</td>
</tr>
<tr>
<td>6</td>
<td>544</td>
</tr>
<tr>
<td>7</td>
<td>554</td>
</tr>
<tr>
<td>8</td>
<td>565</td>
</tr>
<tr>
<td>9</td>
<td>577</td>
</tr>
<tr>
<td>Upgrade</td>
<td></td>
</tr>
<tr>
<td>≤ 2</td>
<td>495</td>
</tr>
<tr>
<td>3</td>
<td>475</td>
</tr>
<tr>
<td>4</td>
<td>469</td>
</tr>
<tr>
<td>5</td>
<td>463</td>
</tr>
<tr>
<td>6</td>
<td>458</td>
</tr>
<tr>
<td>7</td>
<td>453</td>
</tr>
<tr>
<td>8</td>
<td>449</td>
</tr>
<tr>
<td>9</td>
<td>445</td>
</tr>
</tbody>
</table>
211.10.2 Decision Sight Distance

The *AASHTO Green Book, Chapter 3* provides a detailed discussion on decision sight distance.

Table 211.10.2 Minimum Stopping Sight Distance for Freeways, Expressways, and Ramps

<table>
<thead>
<tr>
<th>Grade (percent)</th>
<th>Minimum Stopping Sight Distance (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade (percent)</td>
<td>Design Speed (mph)</td>
</tr>
<tr>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Downgrade</td>
<td></td>
</tr>
<tr>
<td>≤ 2</td>
<td>155</td>
</tr>
<tr>
<td>3</td>
<td>158</td>
</tr>
<tr>
<td>4</td>
<td>160</td>
</tr>
<tr>
<td>5</td>
<td>162</td>
</tr>
<tr>
<td>6</td>
<td>165</td>
</tr>
<tr>
<td>7</td>
<td>167</td>
</tr>
<tr>
<td>8</td>
<td>170</td>
</tr>
<tr>
<td>9</td>
<td>173</td>
</tr>
<tr>
<td>Upgrade</td>
<td></td>
</tr>
<tr>
<td>≤ 2</td>
<td>155</td>
</tr>
<tr>
<td>3</td>
<td>147</td>
</tr>
<tr>
<td>4</td>
<td>146</td>
</tr>
<tr>
<td>5</td>
<td>144</td>
</tr>
<tr>
<td>6</td>
<td>143</td>
</tr>
<tr>
<td>7</td>
<td>142</td>
</tr>
<tr>
<td>8</td>
<td>141</td>
</tr>
<tr>
<td>9</td>
<td>139</td>
</tr>
</tbody>
</table>
The geometric design developed for LA Facilities considers locations where decision sight distance is critical such as interchanges, toll facilities, lane drops, and managed lanes ingress/egress locations. Decision sight distance requirements are in *AASHTO Green Book, Section 3.2.3*. If it is not practical to provide decision sight distance at these locations, or if relocation of the critical decision points is not feasible, special attention will be given to the use of suitable traffic control devices for providing advance warning of the sub-standard condition.

Do not place managed lane ingress or egress within the limits of a Design Variation or Design Exception processed for sight distance.

211.11 Structures

Refer to *FDM 260* for information on bridge structures.

211.12 Interchange and Ramp Spacing

Interchange spacing is measured along the freeway or interstate centerline between the centerlines of the crossroads. Refer to *FDM 201.4* for the minimum spacing between adjacent interchanges.

In urban areas, spacing less than one mile may be used with C-D roads or grade-separated (braided) ramps.

The spacing between interchanges may also be dependent on the ramp connection spacing. The minimum connection spacing between the painted noses of adjacent ramps is provided in *Figure 211.12.1*. Additional information on interchanges is in *AASHTO Green Book, Chapter 10*.
211.12.1 Weaving Sections

Weaving sections are defined in 2011 AASHTO Green Book, Section 2.4.6.

When an entrance is followed by an exit, the minimum distance between gore noses is governed by weaving considerations per the procedure outlined in the Highway Capacity Manual (HCM). On-off Weaving is illustrated in Figure 211.12.1. If the minimum weaving distance cannot be provided, replace the weaving maneuver with physical separation; e.g., grade separation or barrier. For more information regarding barriers, refer to FDM 215.

Ref: Figure 10-68, 2011 AASHTO Green Book
211.12.1.1 Braided Ramps

Ramps that are grade-separated and cross over one another are known as braided ramps. They are typically used to achieve the required ramp spacing by converting the on-off connection into an off-on connection. An example of braided ramps is shown in Figure 211.12.2. These configurations are used on a limited basis because of the large cost typically associated with them.

Figure 211.12.2 Braided Ramp Configuration

When combining general use lane or general toll lane exits and managed lane exits in a braided ramp configuration, the managed lane exit merges on the right side of the general use lanes or general toll lanes as illustrated in Figure 211.12.3. Operational analysis determines the actual lane configuration. Refer to Traffic Analysis Handbook and Interchange Access Request User’s Guide for guidance on analysis requirements.
211.12.2 Interchange Connections

When a series of interchanges are closely spaced, attention must be given to the uniformity of interchange patterns and to lane balance. Refer to the concepts discussed in the 2011 AASHTO Green Book, Section 10.9.5. Auxiliary lanes may be required to conform to lane balance requirements.

Successive auxiliary lanes less than 1,500 feet apart are prohibited. Auxiliary lanes may continue through an interchange to avoid this condition.
211.13 **Ramp Terminals**

Taper type and parallel type ramp terminals can be used to enter and exit a LA Facility. Geometric configuration for the taper and parallel types are depicted in *Standard Plans Index 000-525*.

The taper type ramp terminal is not to be used where a minimum of 50 mph design speed cannot be maintained.

The parallel type entrance terminal should be used when a bridge is located within the merging lane and when turning roadway speed is less than 60% of through roadway speed. The length of the acceleration lane is determined by *2011 AASHTO Green Book, Table 10-3*.

The parallel type exit terminal should be used when the exit is partially hidden over the crest of vertical curve and when turning roadway speed is less than 60% of the through roadway speed. The length of the deceleration lane is determined by *2011 AASHTO Green Book, Table 10-5*.

The selection of either a parallel or taper type depends on the geometrics and anticipated traffic conditions of the highway as well as the roadway that the ramp is connecting to. In cases that have limited sight distance and close connections to a signal controlled arterial, parallel type terminals should be used to allow for sufficient deceleration. For additional information, see the *2011 AASHTO Green Book, Section 10.9.6*.

At entrance ramps on an ascending grade, the portion of the ramp intended for acceleration and the ramp terminal should closely parallel the through roadway profile to permit entering drivers to have a clear view of the through road ahead.

Design speed of entrance and exit ramps for LA Facilities should be gradually decreased from the mainline Limited Access design speed to the design speed of the ramp. The minimum speed used to design the first curve adjacent to the Limited Access highway is 20 mph below the design speed of the highway.

Figure 211.13.1 illustrates a basic configuration and terminology used when designing ramp terminals.
211.14 Managed Lanes Access Points and Access Types

The design of managed lanes access points is based on major origin and destination patterns, the location of toll facilities, and the location of existing interchanges with the general use or general toll lanes. The operational analysis associated with managed lanes access points is performed using the methodology in the Highway Capacity Manual and/or microsimulation. Refer to Traffic Analysis Handbook and Interchange Access Request User’s Guide for guidance on analysis requirements.

Perform an operational analysis to determine the required length of the weave segment that will accommodate the weave demand. Base the analysis on 1000 feet per lane change weaving length (See Exhibits 211-3 to 211-6). Adjust the weave segment length as needed based on the analysis. Perform a safety analysis as required in the Interchange Access Request User's Guide.

An access point serves one of three uses:

- (1) Point of entry to the managed lanes
- (2) Intermediate point of entry/ingress or exit/egress
- (3) Termination of managed lanes
When determining the point of entry and the termination of managed lanes, consideration is given to future phased implementation plans for the corridor depicted in the ultimate managed lanes diagram. Avoid temporary access points.

Avoid locating an managed lanes access point in the same weaving area as other highway weaving movements; interchange on-ramps, interchange off-ramps, or auxiliary lanes. Access points are located to provide the required weave length between the managed lanes and general use lanes or general toll lanes. If placed closer than the required minimum weave length, additional traffic control devices are added to prohibit vehicles from cutting across traffic to get into the managed lane or get out to the interchange exit.

Traffic operational analyses must demonstrate that queuing from vehicles exiting the managed lanes to the general use lanes or general toll lanes will not encroach on the managed lanes.

Refer to Section 2.42 of the TEM for guidelines on managed lanes entrance/ingress and exit/egress signs and signing sequence.

211.14.1 Managed Lanes Access Types

On Florida’s managed lanes, the following types of access are used:

- Slip Ramps
- Weave Lanes
- Weave Zones
- Direct Connect

Slip ramps, weave lanes, and weave zones on the Interstate do not require an interchange access request. A weave lane or weave zone is used in constrained conditions for intermediate ingress and egress points and requires approval of the District Design Engineer.

Direct connect ramps are used for system-to-system connection between managed lanes facilities, toll facilities, major arterials, park-and-ride facilities, and transit facilities. Direct connect ramps on the Interstate require an interchange access request (Refer to the Interchange Access Request User’s Guide.)

Standard geometric details are shown in Exhibits 211-3 through 211-8. The associated signing and pavement marking requirements at ingress and egress locations are shown in Exhibits 211-9 through 211-12.
BEGIN MANAGED LANES TYPICAL INGRESS FOR MANAGED LANES WITH BUFFER SEPARATION

Managed Lane Begins (General Purpose Becomes Express Lane)

For Transition Distance See Standard Plans, Index 711-001

Notes:
1. Begin weave distance
2. End weave distance
3. Per FDM 210.8.1 maximum deflections without horizontal curves, 0° 45' or 76.39:1 (use 80:1)
4. This weave zone to allow traffic in outside general use lane to get into outside managed lane.
5. The 1000' dimension is the starting weave length and may need to be increased based upon site-specific operational analysis.

Note:
The dimensions shown in this Exhibit are typical values and may need to be increased based upon site-specific operational analysis.

NOT TO SCALE

EXHIBIT 211-3
01/01/2021
NOTES:

1. Begin weave distance
2. End weave distance
3. Per FDM 210.8.3 maximum deflections without horizontal curves, 0° 45' or 76.39:1 (use 80:1)
4. This weave zone to allow traffic in outside managed lane to get into outside general use lane.
5. The 1000' dimension is the starting weave length and may need to be increased based upon site-specific operational analysis.

NOTE:
The dimensions shown in this Exhibit are typical values, and may need to be increased based upon site-specific operational analysis.
SLIP RAMP TYPICAL INGRESS & EGRESS FOR MANAGED LANES WITH BUFFER SEPARATION

1. Begin weave distance.
2. End weave distance.
3. Per FDM 210.8.1. Maximum Deflections Without Horizontal Curves, 0' 45' or 78.391 (Use 80%).
4. Taper length based on L=WS. 70:1 taper as shown assumes 70 MPH design speed.
5. Where:
 \[W = \text{Width Of Lateral Transition} \]
 \[S = \text{Design Speed} \]
6. The 1000' dimension is the starting weave length and may need to be increased based upon site-specific operational analysis.

NOTE:

The dimensions shown in this Exhibit are typical values, and may need to be increased based upon site-specific operational analysis.
NOT TO SCALE

WEAVE SECTIONS TYPICAL INGRESS & EGRESS FOR MANAGED LANES WITH BUFFER SEPARATION

Notes:

1. Begin weave distance.
2. End weave distance.
3. Per FDOT PPM, Table 2.8.1a, Maximum Deflections Without Horizontal Curves, 0° 45' or 76.393 (Use 601).
4. Taper length based on LwWS, 70:1 taper as shown assumes 70 MPH design speed. Where:
 \[W = \text{Width Of Lateral Transition in Feet} \]
 \[S = \text{Design Speed in MPH} \]
5. The 1000' dimension is the starting weave length and may need to be increased based upon site-specific operational analysis.

NOTE:

The dimensions shown in this Exhibit are typical values, and may need to be increased based upon site-specific operational analysis.

(See Exhibit 211-7)

(See Exhibit 211-8)
NOT TO SCALE

MANAGED LANES

ENTRANCE TERMINAL CONFIGURATIONS

Single-Lane Taper Ramp Configuration
(Single-Lane Taper Ramp Configuration)

Single-Lane Parallel Ramp Configuration
(Single-Lane Parallel Ramp Configuration)

Single-Lane Ramp with Auxiliary Lane Configuration

Two-Lane Ramp Configuration

Two-Lane Ramp with Auxiliary Lane Configuration

Notes:

1. Begin weave distance.
2. 1,500' intended to allow ramp traffic to merge into the outside general use lane.

EXHIBIT 211-7

01/01/2021

NOTE:

The dimensions shown in this Exhibit are typical values, and may need to be increased based upon site-specific operational analysis.
MANAGED LANES
EXIT TERMINAL CONFIGURATIONS

Notes:

1. End weave distance.
2. 1,500' intended to allow traffic in the outside general use lane to access the exit ramp.

NOTE:
The dimensions shown in this Exhibit are typical values, and may need to be increased based upon site-specific operational analysis.
MANAGED LANES TYPICAL PAVEMENT MARKINGS
FOR SLIP RAMP INGRESS & EGRESS

See Exhibit 211-5 For Slip Ramp Ingress Dimensions

See Exhibit 211-5 For Slip Ramp Egress Dimensions

NOT TO SCALE

EXHIBIT 211-9
01/01/2021
See Exhibit 211-6 For Weave Lane Dimensions

See Exhibit 211-6 For Weave Zone Dimensions

RPMs- Raised Pavement Markers
O.C.- On Center
MANAGED LANES TYPICAL PAVEMENT MARKINGS
FOR BEGIN MANAGED LANES

Managed Lane Begins
(General Purpose Becomes Managed Lane)

NOT TO SCALE
MANAGED LANES TYPICAL PAVEMENT MARKINGS
FOR END MANAGED LANES

Managed Lanes Become General Purpose Lanes

Buffer Separation With Express Lane Markers

8’ Solid White Line

6’ Solid Yellow Line

6’ White 10-30 Skip Line w/ White-Red RPMs 40’ O.C.

 Managed Lane Ends

Buffer Separation With Express Lane Markers

8’ Solid White Line

6’ Solid Yellow Line

6’ White 3’-9’ Skip Line w/ White-Red RPMs 45’ O.C.

RPMs- Raised Pavement Markers
O.C.- On Center

EXHIBIT 211-12
01/01/2021

NOT TO SCALE
211.15 Limited Access Right of Way

The following criteria will be used in establishing Limited Access limits along crossroads at interchanges:

1. For rural interchanges, LA R/W will extend along the crossroad a minimum distance of 300 feet beyond the end of the acceleration or deceleration taper. Where no taper is used, the LA R/W will extend a minimum distance of 300 feet beyond the radius point of the return. LA R/W will end at that the same station for both sides of the crossroad based on the greatest distance from the LA facility.

2. For interchanges in urban areas, the criteria given above will apply except that the LA R/W will end a minimum of 100 feet beyond the end of taper or the radius point of the return.

3. Extend LA R/W for queue spillback on the arterial within interchanges of arterials and LA facilities.

4. For unsymmetrical interchanges such as half-diamonds and partial clover leafs, the LA R/W along the crossroad on that side having no ramp will extend to a point opposite that point controlled by the ramp.

5. Extend LA R/W along crossroads overpassing LA facilities (no interchange) approximately 200 feet from the LA facility R/W line. This distance may be reduced or omitted if the crossroad profile provides adequate sight distance for existing or proposed driveways. The fence is generally tied into the crossroad structure end bent unless required along the crossroad.

Any reduction in the values shown above for LA R/W limits must be approved by FHWA for interstate projects and by the District Design Engineer for non-interstate facilities.

211.16 Maintenance Access

Accommodation of access for maintenance is integral to the roadway typical section on LA facilities. Specific requirements for the area immediately adjacent to toll sites is contained within the General Tolling Requirements (GTR). Requirements for access through various roadside safety devices is contained within FDM 215.

Along ramps and mainline lanes where roadside barriers are used, the minimum border width from the back of a barrier or retaining wall is 10 feet. Provide sufficient access from public R/W that is contiguous and unimpeded to the LA facility for maintenance vehicles.
If the maintenance access is not continuous along a barrier or wall, and thus maintenance vehicles and equipment would need to turn around, then a sufficient turnaround area must be provided that is acceptable and approved by the District Maintenance Engineer.

Maintenance accessibility includes the ability for equipment and vehicles to maneuver around obstacles including fences, lights, signs, side slopes, and ponds.
212 Intersections

212.1 General

This chapter provides design criteria and guidance for the geometric layout of at-grade conventional intersections. Conventional intersections include 3-leg (T), 4-leg, and Multi-leg (5 or more legs).

Multi-leg conventional intersections should be avoided. Alternatives to existing multi-leg intersections include:

(1) Converting to a roundabout.
(2) Converting one or more legs to a one-way operation
(3) Reconfiguring or realigning the intersection to create separate intersections, each with no more than four legs.

See FDM 201 for design vehicle selection and design speed requirements.

See FDM 210 for lane width, median width, island dimensions, and deflection angle requirements.

See FDM 222 for requirements concerning pedestrian facilities and FDM 223 for bicycle facilities.

212.1.1 Alternative Intersections

Alternative intersection design is a key component of upgrading our transportation facilities and improving the mobility and safety of all road users. These innovative designs are becoming more common as increasing traffic demand exceed the limitations of traditional intersection solutions.

Alternative intersections offer the potential to improve safety and reduce delay at lower cost and with fewer impacts than traditional solutions such as adding lanes or grade separation. Three of the more common alternative intersection types are:

- Displaced Left Turn (a.k.a. Continuous Flow Intersection)
- Restricted Crossing U-Turn (RCUT)
- Median U-Turn (MUT)
The FHWA has published comprehensive informational guides for alternative intersections which include guidance on how to plan, design, construct, and operate them. The following links provide access to these guides: **FHWA Alternative Designs** and **Alternative Intersections/Interchanges: Informational Report (AIIR)**.

These types of alternate intersection designs should be coordinated with the Central Office Roadway Design.

212.1.2 Intersection Control Evaluation

Intersection Control Evaluation (ICE) is a process to determine the most effective intersection configuration for a specified project. Through ICE, multiple alternative and conventional intersection configurations are compared to one another based on safety, operations, cost, and environmental impacts. The ICE procedure provides a transparent and consistent approach to intersection alternatives selection and provides documentation to support decisions made.

ICE policy and procedure is published on the FDOT Traffic Engineering and Operations Office website at the following Link: **Manual on Intersection Control Evaluation**.

212.2 Intersection Control

Conventional intersections utilize one of four control types; yield, stop, all-way stop and signal.

212.2.1 Yield Control

Certain channelized movements at intersections and interchanges, and all approaches to roundabouts are often yield controlled. Refer to the **Manual on Uniform Traffic Control Devices (MUTCD)** for information on the locations where yield control traffic control devices may be appropriate.

212.2.2 Stop Control

Stop-controlled intersections have one or more legs of the intersection controlled by a "STOP" sign (R1-1).

Intersections with stop control are a common, low-cost control, which require the traffic on the minor roadway to stop before entering the major roadway. It is used where...
application of the normal R/W rule is not appropriate for certain approaches at the intersection.

To meet the requirements for the assigned access classification, or where U-turn opportunities exist within a corridor, consider limiting stop controlled minor roads or driveways to “right-in, right-out” only.

212.2.3 All-Way Stop Control

For an all-way stop intersection, traffic approaching it from all directions is required to stop before proceeding through the intersection. An all-way stop may have multiple approaches and typically marked with a supplemental signing stating the number of approaches.

All-way stop control is most effective at the intersection of low-speed, 2-lane roadways not exceeding 1,400 vehicles during the peak hour. All-way stop control should not be used on multilane highways. Guidance for consideration of the application of all-way stop control is provided in the MUTCD.

All-way stop control may be used as an interim measure when a traffic signal or roundabout is warranted, but the installation is delayed.

212.2.4 Signal Control

Signalization provides an orderly and predictable movement of motorized and non-motorized traffic throughout the highway transportation system. It also provides guidance and warnings to ensure the safe and informed operation of the traffic stream.

Refer to FDM 232 for design criteria for signalization.

212.3 Intersection Types

Conventional intersection configurations include flared and channelized intersections (divided and undivided). Flared intersections are illustrated in Figure 212.3.1 and channelized intersections in Figure 212.3.2. See FDM 210.3 for median and island requirements.
Figure 212.3.1 Flared Intersections

Figure 212.3.2 Channelized Intersections

Ref: Figure 9-5, 2011 AASHTO Green Book

Ref: Figure 9-6, 2011 AASHTO Green Book
212.4 Intersection Functional Area

The functional area of an intersection extends in both directions including auxiliary lanes and their associated channelization. This is illustrated in Figures 212.4.1 and 212.4.2.

The functional area on the approach to an intersection or driveway consists of three basic elements:

1. Perception-reaction-decision distance
2. Maneuver distance
3. Queue-storage distance (see FDM 212.14.2)

These elements are shown in Figure 212.4.3. The maneuver distance includes the length needed for both braking and lane changing when there is a left or right turning lane. In the absence of turn lanes, the maneuver distance is the distance to brake to a comfortable stop. The storage length includes the most distant extent of any intersection-related queue expected to occur during the design period.

Figure 212.4.1 Physical Definition

![Physical Definition](image1)

Ref: Figure 9-1, 2011 AASHTO Green Book

Figure 212.4.2 Functional Definition

![Functional Definition](image2)

Ref: Figure 9-1, 2011 AASHTO Green Book
212.5 Intersection Angle

The intersection angle between two roadways has a significant influence on the safety and operation of an intersection. Intersection angles are to be as close to 90 degrees as practical. Intersection angles less than 75 degrees should be avoided for the following reasons:

1. Heavy skew angles increase the intersection crossing length, exposing vehicles, pedestrians, and cyclists to conflicting traffic streams for longer periods of time. This is of particular concern at stop-controlled approaches on high speed facilities.

2. The road user’s sight angle to the crossing leg becomes restricted due to the skew, making it difficult to see conflicting vehicles and to perceive safe crossing gaps.

3. Turning movements are difficult because of the skew. Additional pavement may be necessary to accommodate the turning of large trucks.

4. Turning movements or positioning may be confusing and require additional channelization.

5. Increased open pavement areas of highly skewed intersections increase construction and maintenance costs.

Evaluate intersections with severe skew angles and crash histories for geometric improvements as shown in Figure 212.5.1. A high incidence of right-angle crashes is an indicator that improvements may be justified.
212.6 Lane Tapers

Standard taper lengths for auxiliary lanes are given in FDM 212.14. Taper length is based on the following equations:

1. Merging Taper (L):
 a. For design speeds ≤ 40 mph: \(L = \frac{W \times S^2}{60} \)
 b. For design speeds ≥ 45 mph: \(L = W \times S \)

 Where:
 - \(L \) = Taper length (feet)
 - \(W \) = Width of offset (feet)
 - \(S \) = Design speed (mph)

2. Shifting Taper is equal to Merging Taper (L) / 2.

Minimum deceleration lengths are illustrated in Exhibit 212-1. Additional information on lane transitions (add or drop) are provided in Exhibits 212-2 and 212-3.
MEDIAN TURN LANES
MINIMUM DECELERATION LENGTHS

DOUBLE LEFT TURN

SINGLE LEFT TURN

<table>
<thead>
<tr>
<th>MEDIAN TURN LANES</th>
<th>URBAN CONDITIONS</th>
<th>MURRIL CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Speed (mph)</td>
<td>Entry Speed (mph)</td>
<td>Clearance Distance L_1 (ft.)</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>35</td>
<td>25</td>
<td>70</td>
</tr>
<tr>
<td>40</td>
<td>30</td>
<td>80</td>
</tr>
<tr>
<td>45</td>
<td>35</td>
<td>85</td>
</tr>
<tr>
<td>50</td>
<td>40/45</td>
<td>100</td>
</tr>
<tr>
<td>55</td>
<td>45</td>
<td>115</td>
</tr>
<tr>
<td>60</td>
<td>50</td>
<td>120</td>
</tr>
<tr>
<td>65</td>
<td>55</td>
<td>130</td>
</tr>
</tbody>
</table>

NOT TO SCALE

EXHIBIT 212-1
01/01/2018
LANE TRANSITIONS: 4-LANE ROADWAYS

TWO-WAY LEFT-TURN LANES

UNDIVIDED FLARED - SYMMETRICAL

DESIGN SPEED (mph) | Tg (ft) | Tg
---|---|---
<30 | 1-4, 50 ft min | 1.25
30-45 | 1-60 | 1.30
>45 | 1-60 | 1-80

Note: For locations with unreluctable control points, minimum taper rates for lane drop (Tg) will be 1:20.

NOT TO SCALE

EXHIBIT 212-2
01/01/2018
LANE TRANSITIONS: 2-LANE ROADWAYS

LEFT SIDE WIDENING

CENTERED WIDENING

RIGHT SIDE WIDENING

FLARED & PAINTED LEFT TURNS FOR 2-LANE ROADWAYS

<table>
<thead>
<tr>
<th>Design Speed (mph)</th>
<th>Lg (ft.) Standard</th>
<th>Lg (ft.) Minimum Under Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>180</td>
<td>120</td>
</tr>
<tr>
<td>40</td>
<td>200</td>
<td>140</td>
</tr>
<tr>
<td>50</td>
<td>240</td>
<td>180</td>
</tr>
<tr>
<td>60</td>
<td>270</td>
<td>220</td>
</tr>
</tbody>
</table>

NOT TO SCALE
212.7 Lane Shifts

Lane shifts through intersections should meet the requirements for non-merging conditions. Pavement markings should be used through the intersection to provide positive guidance to the motorist. The shifting taper length is controlled by the size of the intersection and the deflection angle. Although deflections through intersections are discouraged, there may be conditions where they are necessary.

The maximum deflection angles at intersections to be used in establishing the horizontal alignment are given in Table 212.7.1.

Table 212.7.1 Maximum Deflection Angle Through Intersection

<table>
<thead>
<tr>
<th>Maximum Deflection Angle Through Intersection (DM)</th>
<th>Design Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td>≤ 20</td>
<td>16° 00'</td>
</tr>
</tbody>
</table>

Notes:
(1) Deflection angle used is not to cause a lane shift (W) of more than 6 feet from stop bar to stop bar.
212.8 Profile Grades

The profile grade line defines the vertical alignment for construction. The grade line of the mainline road is typically carried through the intersection and the minor cross road (or cross street) is adjusted to it. This design involves a transition in the crown of the cross road to an inclined cross section at its junction with the mainline road, as illustrated in Figure 212.8.1.

The break in the cross road profile at the center of the intersection should be accomplished with a vertical curve.

Vertical alignments at or near intersections should provide traffic lanes that are:

1. Clearly visible and understandable to drivers for any desired direction of travel,
2. Free from sudden appearance of potential conflicts, and
3. Consistent in design with the portions of the highway just traveled.

Steep grades at intersections may increase or decrease stopping or acceleration distance. Avoid grades in excess of 3% on intersecting roads in the vicinity of the intersection. Where conditions make such designs impractical, grades should not exceed 6%.

Provide adequate sight distance along both intersecting roads and across their included corners, even where one or both intersecting roads are on vertical curves. The gradients of intersecting roads should be as flat as practical on those sections that are to be used for storage of stopped vehicles.
Figure 212.8.1 Cross Street Intersection Transition
212.8.1 Special Profiles

Special profiles for certain roadway elements may be necessary to ensure a safe, efficient, well-drained and smooth roadway system. Elements that may require special profiles include pavement edges or gutter flow lines at street intersections, profile grade lines, intersection plateaus, curb returns, and special superelevation details. Special profiles are developed at close intervals and large scale to clearly identify all construction details of these elements.

212.8.2 Plateauing

In some instances, it is desirable for the cross road to receive the same profile considerations as the mainline road. To provide this "equal treatment", with respect to profile, a technique commonly known as intersection plateauing is applied. Plateauing refers to flattening of the intersection and the transition of both roadway profiles and cross slopes on the intersection approaches.

Provide a profile combination that provides a smooth transition and adequate drainage when applying intersection plateauing. Transition slope rates are to meet the values provided in Table 212.8.1; however, the minimum length of cross slope transition is 50 feet for design speeds less than or equal to 35 mph and 75 feet for design speeds of 40 mph or greater.

An example of a plateaued intersection is illustrated in Figure 212.8.2.

Table 212.8.1 Slope Rates for Intersection Approaches

<table>
<thead>
<tr>
<th>Design Speed (mph)</th>
<th>Slope Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-35</td>
<td>1:100</td>
</tr>
<tr>
<td>40</td>
<td>1:125</td>
</tr>
<tr>
<td>45-50</td>
<td>1:150</td>
</tr>
<tr>
<td>55-60</td>
<td>1:170</td>
</tr>
<tr>
<td>65-70</td>
<td>1:190</td>
</tr>
</tbody>
</table>
Figure 212.8.2 Example of Plateaued Intersection
212.9 Median Openings

Locate and design median openings to meet traffic requirements in accordance with the access management plan for the facility. See FDM 201.4 for more information on access management plans and decision making.

See FDM 210.3 for additional requirements for medians at intersections.

The following conditions may require additional median width:

- accommodation for trees (provide space above and below ground for growth)
- offset turn lanes
- directional median openings
- dual and triple left turn lanes

The overall length of a full median opening is typically the same width as the intersecting road (including shoulders) which is sufficient to accommodate the swept path of left turning vehicles. Median functions and minimum widths are provided in Table 212.9.1.

For un-signalized intersections, median openings should not be longer than the required length to avoid multiple vehicles attempting to stop within the opening.

<table>
<thead>
<tr>
<th>Median Function</th>
<th>Minimum Width (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separation of opposing traffic</td>
<td>4</td>
</tr>
<tr>
<td>Provision for pedestrian refuge</td>
<td>6</td>
</tr>
<tr>
<td>Provision for storage of left-turning vehicles</td>
<td>See Table 210.3.1</td>
</tr>
<tr>
<td>Provision for protection of vehicles crossing through lanes</td>
<td>22</td>
</tr>
<tr>
<td>Provision for U-turns, left turn lane to outside lanes</td>
<td>30</td>
</tr>
<tr>
<td>Provision for Dual Left Turn Lanes and U turns</td>
<td>42</td>
</tr>
</tbody>
</table>

The control radius refers to a radius that must be considered in establishing the location of median or traffic separator ends on divided highways and the stop bar on undivided highways. Provide this radius for left-turn movements when appropriate.

Design guidance on minimum edge-of-traveled-way design for various design vehicles is provided in FDM 212.12.1.
For the central part of the turn the use of compound curves is not necessary and the use of simple curves is satisfactory. *Table 212.9.2* provides control radii for minimum-speed turns (10 to 15 mph) that can be used for establishing the location of the median ends.

<table>
<thead>
<tr>
<th>Design Vehicles Accommodated</th>
<th>Control Radius (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50 (40 min)</td>
</tr>
<tr>
<td>Predominant</td>
<td>P</td>
</tr>
</tbody>
</table>

212.9.1 U-Turns

Median width should accommodate passenger vehicle (P) left-turn and U-turn maneuvers. If adequate median width does not exist for accommodating U-turns, then consider adding extra pavement width such as a taper or additional shoulder width. See *FDM 210.3* for information on median width criteria.

In cases where U-turn traffic volumes are high, consider the use of jug handles, loop designs, or indirect left turn designs.

212.10 Stopping Sight Distance

See *FDM 210.11.1* for stopping sight distance requirements.

212.11 Clear Sight Triangles

Establish clear sight triangles to assure that drivers are provided a sufficient view of the intersecting highway to identify gaps in traffic and decide when it is safe to proceed. Document the analysis of sight distance for all intersections.

Clear sight triangles are the areas along intersection approach legs and across their common corners that should be clear of visual hindrances. Dimensions of clear sight triangles are based on design speed, design vehicle, and the type of traffic control used at the intersection.
212.11.1 Stop Control (AASHTO Case B)

Figure 212.11.1 illustrates clear sight triangles for intersections and driveways.

The minimum driver-eye setback of 14.5 feet from the edge of the traveled way may be adjusted on any intersection leg only when justified by a documented, site-specific field study of vehicle stopping position and driver-eye position.

Exhibits 212-4 through 212-7 provide intersection sight distances for stop controlled intersections. The tables in the exhibits provide sight distance values for Passenger vehicles, Single Unit (SU) Trucks, and Combination vehicles for design speeds ranging from 30 mph to 65 mph. Intersection sight distance based on Passenger vehicles is suitable for most intersections; however, consider the values for SU Vehicles or Combination vehicles for intersections with high truck volumes.

The following guidance applies to Exhibits 212-4 through 212-7:

(1) Limitations
 (a) The exhibits apply to intersections in all context classifications with stop control or flashing beacon control.
 (b) The exhibits apply only to intersections with intersecting angles between 60° and 120°, and where vertical and horizontal curves are not present.
(2) Dimensions

(a) Sight distance (d) is measured from the center of the entrance lane of the crossroad to the center of the near approach lane (right or left) of the highway.

(b) Distances ‘dL’ and ‘dr’ are measured from the centerline of the entrance lane of the crossroad to a point on the edge of the near side outer traffic lane on the highway.

(c) Distance ‘dm’ is measured from the centerline of the entrance lane of the crossroad to a point on the median clear zone limit or horizontal clearance limit for the far side road of the highway.

(3) Vertical limits

(a) Provide a clear sight window throughout the limits of all intersection sight triangles.

(b) Provide a clear line of sight between vehicles at intersection stop locations and vehicles on the highway throughout the limits of all intersection sight triangles.

(c) The reference datum between roadways is 3’-6” above respective pavements since observations are made in both directions along the line of sight.
INTERSECTION SIGHT DISTANCE: 2-LANE UNDIVIDED

SIGHT DISTANCE (d) AND RELATED DISTANCES (d_L, d_F) (FEET)

2-LANE UNDIVIDED

<table>
<thead>
<tr>
<th>Design Speed (mph)</th>
<th>d (ft)</th>
<th>d_L (ft)</th>
<th>d_F (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>305</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>25</td>
<td>350</td>
<td>250</td>
<td>125</td>
</tr>
<tr>
<td>30</td>
<td>400</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>35</td>
<td>450</td>
<td>350</td>
<td>175</td>
</tr>
<tr>
<td>40</td>
<td>500</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>45</td>
<td>550</td>
<td>450</td>
<td>225</td>
</tr>
<tr>
<td>50</td>
<td>600</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td>55</td>
<td>650</td>
<td>550</td>
<td>275</td>
</tr>
<tr>
<td>60</td>
<td>700</td>
<td>600</td>
<td>300</td>
</tr>
<tr>
<td>65</td>
<td>750</td>
<td>650</td>
<td>325</td>
</tr>
</tbody>
</table>

2-LANE WITH LEFT TURN LANE

<table>
<thead>
<tr>
<th>Design Speed (mph)</th>
<th>d (ft)</th>
<th>d_L (ft)</th>
<th>d_F (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>305</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>25</td>
<td>350</td>
<td>250</td>
<td>125</td>
</tr>
<tr>
<td>30</td>
<td>400</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>35</td>
<td>450</td>
<td>350</td>
<td>175</td>
</tr>
<tr>
<td>40</td>
<td>500</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>45</td>
<td>550</td>
<td>450</td>
<td>225</td>
</tr>
<tr>
<td>50</td>
<td>600</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td>55</td>
<td>650</td>
<td>550</td>
<td>275</td>
</tr>
<tr>
<td>60</td>
<td>700</td>
<td>600</td>
<td>300</td>
</tr>
<tr>
<td>65</td>
<td>750</td>
<td>650</td>
<td>325</td>
</tr>
</tbody>
</table>

LEGEND

- **1**. See Figure 212.11.3 for origin of clear sight line on the minor road.

NOT TO SCALE

EXHIBIT 212-4

01/01/2018
INTERSECTION SIGHT DISTANCE: 4-LANE UNDIVIDED

SIGHT DISTANCE (d) AND RELATED DISTANCES (d_L, d_L') (FEET)
4 LANE UNDIVIDED

SIGHT DISTANCE (d) AND RELATED DISTANCES (d_L, d_L') (FEET)
4-LANE UNDIVIDED WITH LEFT TURN LANE

SIGHT DISTANCE (d) AND RELATED DISTANCES (d_L, d_L') (FEET)
4-LANE UNDIVIDED WITH LEFT TURN LANE AND OPTIONAL LANE

LEGEND

Areas Free of Sight Obstructions

NOTE:
1. See Figure 212.11.1 for origin of clear sight line on the minor road.

EXHIBIT 212-5
01/01/2018
INTERSECTION SIGHT DISTANCE: 4-LANE DIVIDED

Passenger Vehicle

<table>
<thead>
<tr>
<th>Design Speed (mph)</th>
<th>d (ft)</th>
<th>d₁ (ft)</th>
<th>d₂ (ft)</th>
<th>d₃ (ft)</th>
<th>d₄ (ft)</th>
<th>d₅ (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>395</td>
<td>280</td>
<td>90</td>
<td>325</td>
<td>395</td>
<td>280</td>
</tr>
<tr>
<td>45</td>
<td>400</td>
<td>225</td>
<td>140</td>
<td>369</td>
<td>400</td>
<td>225</td>
</tr>
<tr>
<td>50</td>
<td>525</td>
<td>225</td>
<td>140</td>
<td>439</td>
<td>525</td>
<td>225</td>
</tr>
<tr>
<td>55</td>
<td>590</td>
<td>225</td>
<td>140</td>
<td>509</td>
<td>590</td>
<td>225</td>
</tr>
<tr>
<td>60</td>
<td>785</td>
<td>225</td>
<td>140</td>
<td>645</td>
<td>785</td>
<td>225</td>
</tr>
</tbody>
</table>

SU Vehicle

<table>
<thead>
<tr>
<th>Design Speed (mph)</th>
<th>d (ft)</th>
<th>d₁ (ft)</th>
<th>d₂ (ft)</th>
<th>d₃ (ft)</th>
<th>d₄ (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>340</td>
<td>385</td>
<td>110</td>
<td>346</td>
<td>340</td>
</tr>
<tr>
<td>35</td>
<td>350</td>
<td>385</td>
<td>110</td>
<td>346</td>
<td>350</td>
</tr>
<tr>
<td>40</td>
<td>400</td>
<td>385</td>
<td>110</td>
<td>346</td>
<td>400</td>
</tr>
<tr>
<td>45</td>
<td>450</td>
<td>385</td>
<td>110</td>
<td>346</td>
<td>450</td>
</tr>
<tr>
<td>50</td>
<td>500</td>
<td>385</td>
<td>110</td>
<td>346</td>
<td>500</td>
</tr>
<tr>
<td>60</td>
<td>600</td>
<td>385</td>
<td>110</td>
<td>346</td>
<td>600</td>
</tr>
</tbody>
</table>

6-lane Median

<table>
<thead>
<tr>
<th>Design Speed (mph)</th>
<th>d (ft)</th>
<th>d₁ (ft)</th>
<th>d₂ (ft)</th>
<th>d₃ (ft)</th>
<th>d₄ (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>350</td>
<td>385</td>
<td>110</td>
<td>346</td>
<td>350</td>
</tr>
<tr>
<td>40</td>
<td>400</td>
<td>385</td>
<td>110</td>
<td>346</td>
<td>400</td>
</tr>
<tr>
<td>50</td>
<td>500</td>
<td>385</td>
<td>110</td>
<td>346</td>
<td>500</td>
</tr>
<tr>
<td>60</td>
<td>600</td>
<td>385</td>
<td>110</td>
<td>346</td>
<td>600</td>
</tr>
</tbody>
</table>

Combined Vehicles

<table>
<thead>
<tr>
<th>Design Speed (mph)</th>
<th>d (ft)</th>
<th>d₁ (ft)</th>
<th>d₂ (ft)</th>
<th>d₃ (ft)</th>
<th>d₄ (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>350</td>
<td>385</td>
<td>110</td>
<td>346</td>
<td>350</td>
</tr>
<tr>
<td>40</td>
<td>400</td>
<td>385</td>
<td>110</td>
<td>346</td>
<td>400</td>
</tr>
<tr>
<td>50</td>
<td>500</td>
<td>385</td>
<td>110</td>
<td>346</td>
<td>500</td>
</tr>
<tr>
<td>60</td>
<td>600</td>
<td>385</td>
<td>110</td>
<td>346</td>
<td>600</td>
</tr>
</tbody>
</table>

SIGHT DISTANCES (d) & (d₁) AND RELATED DISTANCES (d₂, d₃, d₄, & d₅) (FEET)

NOTES FOR 4-LANE DIVIDED ROADWAY

1. See Figure 212.11.1 for origin of clear sight line on the minor road.

2. Values shown in the tables are the governing (controlling) sight distances calculated based on an AASHTO Case B - Intersection with Stop Control on the Minor Road.

LEGEND

- Areas Free of Sight Obstructions

EXHIBIT 212-6

01/01/2018
INTERSECTION SIGHT DISTANCE: 6-LANE DIVIDED

25-64 MEDIAN

<table>
<thead>
<tr>
<th>Design Speed (mph)</th>
<th>d₁ (ft)</th>
<th>d₂ (ft)</th>
<th>d₃ (ft)</th>
<th>d₄ (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>307</td>
<td>265</td>
<td>230</td>
<td>240</td>
</tr>
<tr>
<td>35</td>
<td>360</td>
<td>315</td>
<td>285</td>
<td>300</td>
</tr>
<tr>
<td>40</td>
<td>410</td>
<td>360</td>
<td>330</td>
<td>340</td>
</tr>
<tr>
<td>45</td>
<td>460</td>
<td>410</td>
<td>380</td>
<td>390</td>
</tr>
<tr>
<td>50</td>
<td>510</td>
<td>460</td>
<td>430</td>
<td>440</td>
</tr>
<tr>
<td>55</td>
<td>560</td>
<td>510</td>
<td>480</td>
<td>490</td>
</tr>
<tr>
<td>60</td>
<td>610</td>
<td>560</td>
<td>530</td>
<td>540</td>
</tr>
<tr>
<td>65</td>
<td>660</td>
<td>610</td>
<td>580</td>
<td>590</td>
</tr>
</tbody>
</table>

25-64 MEDIAN

<table>
<thead>
<tr>
<th>Design Speed (mph)</th>
<th>d₁ (ft)</th>
<th>d₂ (ft)</th>
<th>d₃ (ft)</th>
<th>d₄ (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>307</td>
<td>265</td>
<td>230</td>
<td>240</td>
</tr>
<tr>
<td>35</td>
<td>360</td>
<td>315</td>
<td>285</td>
<td>300</td>
</tr>
<tr>
<td>40</td>
<td>410</td>
<td>360</td>
<td>330</td>
<td>340</td>
</tr>
<tr>
<td>45</td>
<td>460</td>
<td>410</td>
<td>380</td>
<td>390</td>
</tr>
<tr>
<td>50</td>
<td>510</td>
<td>460</td>
<td>430</td>
<td>440</td>
</tr>
<tr>
<td>55</td>
<td>560</td>
<td>510</td>
<td>480</td>
<td>490</td>
</tr>
<tr>
<td>60</td>
<td>610</td>
<td>560</td>
<td>530</td>
<td>540</td>
</tr>
<tr>
<td>65</td>
<td>660</td>
<td>610</td>
<td>580</td>
<td>590</td>
</tr>
</tbody>
</table>

Passenger Vehicles

40-64 Median

<table>
<thead>
<tr>
<th>Design Speed (mph)</th>
<th>d₁ (ft)</th>
<th>d₂ (ft)</th>
<th>d₃ (ft)</th>
<th>d₄ (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>307</td>
<td>265</td>
<td>230</td>
<td>240</td>
</tr>
<tr>
<td>35</td>
<td>360</td>
<td>315</td>
<td>285</td>
<td>300</td>
</tr>
<tr>
<td>40</td>
<td>410</td>
<td>360</td>
<td>330</td>
<td>340</td>
</tr>
<tr>
<td>45</td>
<td>460</td>
<td>410</td>
<td>380</td>
<td>390</td>
</tr>
<tr>
<td>50</td>
<td>510</td>
<td>460</td>
<td>430</td>
<td>440</td>
</tr>
<tr>
<td>55</td>
<td>560</td>
<td>510</td>
<td>480</td>
<td>490</td>
</tr>
<tr>
<td>60</td>
<td>610</td>
<td>560</td>
<td>530</td>
<td>540</td>
</tr>
<tr>
<td>65</td>
<td>660</td>
<td>610</td>
<td>580</td>
<td>590</td>
</tr>
</tbody>
</table>

SU Vehicles

35-59 Median

<table>
<thead>
<tr>
<th>Design Speed (mph)</th>
<th>d₁ (ft)</th>
<th>d₂ (ft)</th>
<th>d₃ (ft)</th>
<th>d₄ (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>307</td>
<td>265</td>
<td>230</td>
<td>240</td>
</tr>
<tr>
<td>35</td>
<td>360</td>
<td>315</td>
<td>285</td>
<td>300</td>
</tr>
<tr>
<td>40</td>
<td>410</td>
<td>360</td>
<td>330</td>
<td>340</td>
</tr>
<tr>
<td>45</td>
<td>460</td>
<td>410</td>
<td>380</td>
<td>390</td>
</tr>
<tr>
<td>50</td>
<td>510</td>
<td>460</td>
<td>430</td>
<td>440</td>
</tr>
<tr>
<td>55</td>
<td>560</td>
<td>510</td>
<td>480</td>
<td>490</td>
</tr>
<tr>
<td>60</td>
<td>610</td>
<td>560</td>
<td>530</td>
<td>540</td>
</tr>
<tr>
<td>65</td>
<td>660</td>
<td>610</td>
<td>580</td>
<td>590</td>
</tr>
</tbody>
</table>

Combined Vehicles

40-64 Median

<table>
<thead>
<tr>
<th>Design Speed (mph)</th>
<th>d₁ (ft)</th>
<th>d₂ (ft)</th>
<th>d₃ (ft)</th>
<th>d₄ (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>307</td>
<td>265</td>
<td>230</td>
<td>240</td>
</tr>
<tr>
<td>35</td>
<td>360</td>
<td>315</td>
<td>285</td>
<td>300</td>
</tr>
<tr>
<td>40</td>
<td>410</td>
<td>360</td>
<td>330</td>
<td>340</td>
</tr>
<tr>
<td>45</td>
<td>460</td>
<td>410</td>
<td>380</td>
<td>390</td>
</tr>
<tr>
<td>50</td>
<td>510</td>
<td>460</td>
<td>430</td>
<td>440</td>
</tr>
<tr>
<td>55</td>
<td>560</td>
<td>510</td>
<td>480</td>
<td>490</td>
</tr>
<tr>
<td>60</td>
<td>610</td>
<td>560</td>
<td>530</td>
<td>540</td>
</tr>
<tr>
<td>65</td>
<td>660</td>
<td>610</td>
<td>580</td>
<td>590</td>
</tr>
</tbody>
</table>

NOTES FOR 6-LANE DIVIDED ROADWAY

1. See Figure 212.11.1 for origin of clear sight line on the minor road.
2. Values shown in the tables are the governing controlling sight distances calculated based on ARS 225-12. 1. Interaction with oncoming traffic on the minor road.

SIGHT DISTANCES (d₁, d₂, & d₃) AND RELATED DISTANCES (d₄, d₅, d₆, & d₇) (FEET)

INSET A

INSET B

* General Offset for Restricted Conditions
Clear Zone for Nonrestricted Conditions

LEGEND

- Areas Free of Sight Obstructions

EXHIBIT 212-7

01/01/2018
212.11.2 All-Way Stop Control (AASHTO Case E)

Provide clear sight lines on each of the approach legs for all-way stop controlled intersections.

212.11.3 Signal Control (AASHTO Case D)

For signalized intersections incorporate the following:

1. Develop sight distances based on AASHTO ‘Case D-Intersections with Signal Control’.
2. The first vehicle stopped on any approach leg is visible to the driver of the first vehicle stopped on each of the other approach legs.
3. For permissive left turns provide sufficient sight distance for left turning vehicles to select gaps in oncoming traffic and complete left turns.
4. If a traffic signal is to be placed on two-way flashing operation (i.e. flashing yellow on the major road approaches and flashing red on the minor road approaches) under off peak or nighttime conditions, then provide the appropriate departure sight triangles for AASHTO Case B (Stop Control on the Minor Road).
5. If right turns on red are permitted from any approach leg then provide the appropriate departure sight triangle to the left for AASHTO Case B above.

212.11.4 Left Turn from Highway (AASHTO Case F)

Provide sufficient sight distance to accommodate a left turn maneuver for locations where left turns across opposing traffic are permitted. Table 212.11.1 provides clear sight distance values for left turn from highway.

For additional information on determining the sight distance refer to Chapter 9 of AASHTO’s A Policy on Geometric Design of Highways and Streets.
Table 212.11.1 Sight Distance for Left Turn from Highway

<table>
<thead>
<tr>
<th>Design Speed (mph)</th>
<th>1 Lane Crossed</th>
<th>2 Lane Crossed</th>
<th>3 Lane Crossed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>SU</td>
<td>Comb.</td>
</tr>
<tr>
<td>25-30</td>
<td>245</td>
<td>290</td>
<td>330</td>
</tr>
<tr>
<td>35</td>
<td>285</td>
<td>335</td>
<td>385</td>
</tr>
<tr>
<td>40</td>
<td>325</td>
<td>385</td>
<td>440</td>
</tr>
<tr>
<td>45</td>
<td>365</td>
<td>430</td>
<td>495</td>
</tr>
</tbody>
</table>

Notes:

1. Provide a lateral offset (LO) of 6' as shown in the diagram above. \(d_b \) may be determined by the equation \(d_b = \frac{d_a}{w/(w+12)} \). For roadways with non-restricted conditions, \(d_a \) and \(d_b \) should be based on the geometry for the left turn storage and on clear zone widths.

2. For wide medians where the turning vehicle can approach the through lane at or near 90°, use \(d \) values from tables in Exhibits 212-6 and 212-7. (The clear sight line origin is assumed to be 14.5 feet from the edge of the near travel lane.)

212.11.5 On-Street Parking

Table 212.11.2 provides parking restrictions for intersections; including mid-block crossings and roundabout approaches. For additional information, see the following:

- **FDM 210.2.3** for additional information concerning on-street parking.
- **FDM 222.2.6** for information concerning curb extensions (bulb-outs).
- **Chapter 316, Florida Statutes (F.S.),** for laws governing parking spaces.
Table 212.11.2 Parking Restrictions for Driveways and Intersections

<table>
<thead>
<tr>
<th>Control Type</th>
<th>Posted Speed (mph)</th>
<th>A - Up Stream (ft)</th>
<th>B – Down Stream (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2-Lane</td>
<td>4-Lane or more</td>
</tr>
<tr>
<td>Unsignalized</td>
<td>< 35</td>
<td>90</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>105</td>
<td>70</td>
</tr>
<tr>
<td>Signalized</td>
<td>< 35</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Notes:

1. For entrances to one-way streets, the downstream restriction (B) may be reduced to 20 feet.
2. Do not place parking within 20 feet of a marked crosswalk.
212.11.6 Trees and Vegetation

Intersections should be designed to accommodate the placement of trees and other desired vegetation (e.g., ground cover plants, trunked plants) in urbanized context classifications while still maintaining clear sight triangles. Ground cover plants are naturally low-growing plants with a maximum mature height of \(\leq 18 \) inches. Trunked plants are those with a mature trunk diameter of 4 inches or less (measured 6 inches above the ground).

Maintain clear sight triangles for all approaches. Do not place trees within the hatched-out areas as shown in Figure 212.11.2. The hatched-out areas are for ground cover plants only. Coordinate with the Project Landscape Architect for the placement of vegetation and the necessary space above and below ground for tree growth that will maintain clear sight triangles.

Where left turns from the major road are permitted, do not locate trees within the distance \(d_p \) shown in Table 212.11.1 (see FDM 212.11.4) and not less than the distances shown in Figure 212.11.2 and the spacings in Table 212.11.3 as applicable.

212.11.6.1 Clear Sight Window Concept

The clear sight window concept may provide opportunities for vegetation within the limits of intersection sight triangles. This concept is illustrated in Figure 212.11.3. This detail provides the required vertical clear sight limits with respect to the sight line datum. Do not place trees within the hatched-out areas as shown in Figure 212.11.2 (even if using the clear sight window concept). The hatched-out areas are for ground cover plants only.
Since observations are made in both directions, the line of sight datum between roadways is 3.5 feet above both pavements.

The horizontal limits of the window are defined by clear sight triangles. Within the limits of clear sight triangles, the following restrictions apply:

- Canopy of trees and trunked plants must be at least 5 feet above the sight line datum.
- The top of the ground cover plants must be at least 1.5 feet below the sight line datum.

See FDM 228.2(2)(a) for additional information about plant selection and placement. Enforcing these limits provides a clear line of sight for approaches to an intersection.

When trees are located in the median of a divided roadway and fall within the limits of a clear sight triangle, conform to Table 212.11.3 for tree size and spacing. Spacing values for trees with diameter of 11 inches or less were derived assuming a maximum 6-foot wide shadow band on a vehicle at the stop bar location when viewed by a mainline driver beginning at sight distance ‘d’. This is illustrated in Figure 212.11.4.
Trees with diameter greater than 11 inches and less than or equal to 18 inches were derived assuming a 2 second full view of the vehicle at the stop bar when viewed by the mainline driver beginning at sight distance ‘d’. (See Figure 212.11.5).

Table 212.11.3 Minimum Tree Spacing

<table>
<thead>
<tr>
<th>Design Speed (mph)</th>
<th>Minimum Tree Spacing (Center-to-Center of Trunk) (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4” < Tree Diameter ≤ 11”</td>
</tr>
<tr>
<td>25-30</td>
<td>25</td>
</tr>
<tr>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>40</td>
<td>35</td>
</tr>
<tr>
<td>45</td>
<td>40</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

Notes:

1. Size and spacing are based on the following conditions:
 a. A single line of trees in the median parallel to but not necessarily collinear with the centerline.
 b. A straight approaching mainline and intersection angle between 60° and 120°.
 c. Space trees with 4” < Dia. ≤ 11” intermixed with trees with 11” < Dia. ≤ 18” based on trees with 11” < Dia. ≤ 18”.
2. Detail tree size, spacing, and location in the plans for any other conditions.
3. Trunked Plants may be placed on 20 foot centers.
Figure 212.11.4 Shadow Diagram

SHADOW DIAGRAM
TREE SPACING (DIA. 11" OR LESS)

Figure 212.11.5 Perception Diagram

PERCEPTION DIAGRAM
TREE SPACING (DIA. BETWEEN 11" AND 18")
212.12 Turning Roadways

Turning roadways are typically designed for use by right-turning traffic at intersections. There are three types of right-turning roadways:

- edge-of-traveled-way design
- design with a corner triangular island
- free-flow design using a simple radius or compound radii

The turning radii and the pavement cross slopes for free-flow right turns are functions of design speed and design vehicle.

212.12.1 Edge-of-Traveled-Way Design

When selected design vehicle is to be accommodated within minimum space, corner radii should be based on the required turning path.

Table 212.12.1 provides simple curve radii with and without tapers. *Table 212.12.2* provides symmetric and asymmetric three centered compound curve radii for a range of design vehicles. These values provide the minimum turning paths attainable at design speeds of 10 mph and less.

Figure 212.12.1 demonstrates the angle of turn for use in these tables.

The minimum edge-of-traveled-way values provided in these tables are based on the assumption that the vehicle is properly positioned within the traffic lane at the beginning and end of the turn (2 feet from the edge-of-traveled-way on the tangents approaching and leaving the intersection curve). Such designs follow closely the inner wheel path of the selected design vehicle, with a clearance of 2 feet or more throughout most of the turn, and with a clearance at no point less than 9 inches. Differences in the inner paths of vehicles turning left and right are not sufficient to be significant in design. For this reason, these edge designs also apply to left-turn maneuvers, such as a left turn by a vehicle leaving a divided highway at a very low speed.
Figure 212.12.1 Turn Angle for Turning Roadway Designs
<table>
<thead>
<tr>
<th>Angle of Turn (degrees)</th>
<th>Design Vehicle</th>
<th>Simple Curve Radius (feet)</th>
<th>Simple Curve Radius with Taper</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Simple Curve Radius</td>
<td>Radius (feet)</td>
<td>Offset (feet)</td>
</tr>
<tr>
<td>30</td>
<td>P</td>
<td>60</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>SU-30</td>
<td>100</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>SU-40</td>
<td>140</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>WB-40</td>
<td>150</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>WB-62</td>
<td>360</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>WB-62FL</td>
<td>380</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>WB-67</td>
<td>380</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>WB-92D</td>
<td>365</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>WB-100T</td>
<td>260</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>WB-109D</td>
<td>475</td>
<td>260</td>
</tr>
<tr>
<td>45</td>
<td>P</td>
<td>50</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>SU-30</td>
<td>75</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>SU-40</td>
<td>115</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>WB-40</td>
<td>120</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>WB-62</td>
<td>230</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>WB-62FL</td>
<td>250</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>WB-67</td>
<td>250</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>WB-92D</td>
<td>270</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>WB-100T</td>
<td>200</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>WB-109D</td>
<td>----</td>
<td>200</td>
</tr>
<tr>
<td>60</td>
<td>P</td>
<td>40</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>SU-30</td>
<td>60</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>SU-40</td>
<td>100</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>WB-40</td>
<td>90</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>WB-62</td>
<td>170</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>WB-62FL</td>
<td>200</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>WB-67</td>
<td>200</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>WB-92B</td>
<td>230</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>WB-100T</td>
<td>150</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>WB-109D</td>
<td>----</td>
<td>180</td>
</tr>
<tr>
<td>Angle of Turn (degrees)</td>
<td>Design Vehicle</td>
<td>Simple Curve Radius (feet)</td>
<td>Simple Curve Radius with Taper</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------</td>
<td>---------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Radius (feet)</td>
</tr>
<tr>
<td>75</td>
<td>P</td>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>SU-30</td>
<td>55</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>SU-40</td>
<td>90</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>WB-40</td>
<td>----</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>WB-62</td>
<td>----</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>WB-62FL</td>
<td>----</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>WB-67</td>
<td>----</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>WB-92D</td>
<td>----</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>WB-100T</td>
<td>----</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>WB-109D</td>
<td>----</td>
<td>140</td>
</tr>
<tr>
<td>90</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SU-30</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>SU-40</td>
<td>80</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>WB-40</td>
<td>----</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>WB-62</td>
<td>----</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>WB-62FL</td>
<td>----</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>WB-67</td>
<td>----</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>WB-92D</td>
<td>----</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>WB-100T</td>
<td>----</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>WB-109D</td>
<td>----</td>
<td>115</td>
</tr>
<tr>
<td>105</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SU-30</td>
<td>----</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>SU-40</td>
<td>----</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>WB-40</td>
<td>----</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>WB-62</td>
<td>----</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>WB-62FL</td>
<td>----</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>WB-67</td>
<td>----</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>WB-92B</td>
<td>----</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>WB-100T</td>
<td>----</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>WB-109D</td>
<td>----</td>
<td>90</td>
</tr>
</tbody>
</table>
Table 212.12.1 Edge-of-Traveled-Way, Simple Curve Radii, cont.

<table>
<thead>
<tr>
<th>Angle of Turn (degrees)</th>
<th>Design Vehicle</th>
<th>Simple Curve Radius (feet)</th>
<th>Simple Curve Radius with Taper</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Radius (feet)</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>----</td>
<td>20</td>
<td>2.0</td>
</tr>
<tr>
<td>SU-30</td>
<td>----</td>
<td>30</td>
<td>3.0</td>
</tr>
<tr>
<td>SU-40</td>
<td>----</td>
<td>35</td>
<td>6.0</td>
</tr>
<tr>
<td>WB-40</td>
<td>----</td>
<td>35</td>
<td>5.0</td>
</tr>
<tr>
<td>WB-62</td>
<td>----</td>
<td>100</td>
<td>5.0</td>
</tr>
<tr>
<td>WB-62FL</td>
<td></td>
<td>105</td>
<td>5.2</td>
</tr>
<tr>
<td>WB-67</td>
<td></td>
<td>105</td>
<td>5.2</td>
</tr>
<tr>
<td>WB-92D</td>
<td></td>
<td>80</td>
<td>7.0</td>
</tr>
<tr>
<td>WB-100T</td>
<td></td>
<td>65</td>
<td>3.5</td>
</tr>
<tr>
<td>WB-109D</td>
<td></td>
<td>85</td>
<td>9.2</td>
</tr>
<tr>
<td>135</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>----</td>
<td>20</td>
<td>1.5</td>
</tr>
<tr>
<td>SU-30</td>
<td>----</td>
<td>30</td>
<td>4.0</td>
</tr>
<tr>
<td>SU-40</td>
<td>----</td>
<td>40</td>
<td>4.0</td>
</tr>
<tr>
<td>WB-40</td>
<td>----</td>
<td>30</td>
<td>8.0</td>
</tr>
<tr>
<td>WB-62</td>
<td></td>
<td>80</td>
<td>5.0</td>
</tr>
<tr>
<td>WB-62FL</td>
<td></td>
<td>85</td>
<td>5.2</td>
</tr>
<tr>
<td>WB-67</td>
<td></td>
<td>85</td>
<td>5.2</td>
</tr>
<tr>
<td>WB-92D</td>
<td></td>
<td>75</td>
<td>7.3</td>
</tr>
<tr>
<td>WB-100T</td>
<td></td>
<td>65</td>
<td>5.5</td>
</tr>
<tr>
<td>WB-109D</td>
<td></td>
<td>85</td>
<td>8.5</td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>----</td>
<td>18</td>
<td>2.0</td>
</tr>
<tr>
<td>SU-30</td>
<td>----</td>
<td>30</td>
<td>4.0</td>
</tr>
<tr>
<td>SU-40</td>
<td>----</td>
<td>35</td>
<td>7.0</td>
</tr>
<tr>
<td>WB-40</td>
<td>----</td>
<td>30</td>
<td>6.0</td>
</tr>
<tr>
<td>WB-62</td>
<td></td>
<td>60</td>
<td>10.0</td>
</tr>
<tr>
<td>WB-62FL</td>
<td></td>
<td>65</td>
<td>10.2</td>
</tr>
<tr>
<td>WB-67</td>
<td></td>
<td>65</td>
<td>10.2</td>
</tr>
<tr>
<td>WB-92B</td>
<td></td>
<td>65</td>
<td>11.0</td>
</tr>
<tr>
<td>WB-100T</td>
<td></td>
<td>65</td>
<td>7.3</td>
</tr>
<tr>
<td>WB-109D</td>
<td></td>
<td>65</td>
<td>15.1</td>
</tr>
</tbody>
</table>
Table 212.12.1 Edge-of-Traveled-Way, Simple Curve Radii, cont.

<table>
<thead>
<tr>
<th>Angle of Turn (degrees)</th>
<th>Design Vehicle</th>
<th>Simple Curve Radius (feet)</th>
<th>Simple Curve Radius with Taper</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Radius (feet)</td>
</tr>
<tr>
<td>180</td>
<td>P</td>
<td>----</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>SU-30</td>
<td>----</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>SU-40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WB-40</td>
<td>----</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>WB-62</td>
<td>----</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>WB-62FL</td>
<td>----</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>WB-67</td>
<td>----</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>WB-92D</td>
<td>----</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>WB-100T</td>
<td>----</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>WB-109D</td>
<td>----</td>
<td>55</td>
</tr>
</tbody>
</table>

Table 212.12.2 Edge-of-Traveled-Way, 3-Centered Compound Curves

<table>
<thead>
<tr>
<th>Angle of Turn (degrees)</th>
<th>Design Vehicle</th>
<th>3-Centered Compound Curve</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Curve Radii (ft)</td>
</tr>
<tr>
<td>30</td>
<td>P</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>SU-30</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>SU-40</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>WB-40</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>WB-62</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>WB-62FL</td>
<td>460-175-460</td>
</tr>
<tr>
<td></td>
<td>WB-67</td>
<td>460-175-460</td>
</tr>
<tr>
<td></td>
<td>WB-92D</td>
<td>550-155-550</td>
</tr>
<tr>
<td></td>
<td>WB-100T</td>
<td>220-80-220</td>
</tr>
<tr>
<td></td>
<td>WB-109D</td>
<td>550-250-550</td>
</tr>
<tr>
<td>Angle of Turn (degrees)</td>
<td>Design Vehicle</td>
<td>3-Centered Compound Curve</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Curve Radii (ft)</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>SU-30</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>SU-40</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>WB-40</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>WB-62</td>
<td>460-240-460</td>
</tr>
<tr>
<td></td>
<td>WB-62FL</td>
<td>460-175-460</td>
</tr>
<tr>
<td></td>
<td>WB-67</td>
<td>460-175-460</td>
</tr>
<tr>
<td></td>
<td>WB-92D</td>
<td>525-155-525</td>
</tr>
<tr>
<td></td>
<td>WB-100T</td>
<td>250-80-250</td>
</tr>
<tr>
<td></td>
<td>WB-109D</td>
<td>550-200-550</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>SU-30</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>SU-40</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>WB-40</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>WB-62</td>
<td>400-100-400</td>
</tr>
<tr>
<td></td>
<td>WB-62FL</td>
<td>400-100-400</td>
</tr>
<tr>
<td></td>
<td>WB-67</td>
<td>400-100-400</td>
</tr>
<tr>
<td></td>
<td>WB-92D</td>
<td>480-110-480</td>
</tr>
<tr>
<td></td>
<td>WB-100T</td>
<td>250-80-250</td>
</tr>
<tr>
<td></td>
<td>WB-109D</td>
<td>650-150-650</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>100-25-100</td>
</tr>
<tr>
<td></td>
<td>SU-30</td>
<td>120-45-120</td>
</tr>
<tr>
<td></td>
<td>SU-40</td>
<td>200-35-200</td>
</tr>
<tr>
<td></td>
<td>WB-40</td>
<td>120-45-120</td>
</tr>
<tr>
<td></td>
<td>WB-62</td>
<td>440-75-440</td>
</tr>
<tr>
<td></td>
<td>WB-62FL</td>
<td>420-75-420</td>
</tr>
<tr>
<td></td>
<td>WB-67</td>
<td>420-75-420</td>
</tr>
<tr>
<td></td>
<td>WB-92B</td>
<td>500-95-500</td>
</tr>
<tr>
<td></td>
<td>WB-100T</td>
<td>250-80-250</td>
</tr>
<tr>
<td></td>
<td>WB-109D</td>
<td>700-125-700</td>
</tr>
<tr>
<td>Angle of Turn (degrees)</td>
<td>Design Vehicle</td>
<td>3-Centered Compound Curve</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Curve Radii (ft)</td>
</tr>
<tr>
<td>90</td>
<td>P</td>
<td>100-20-100</td>
</tr>
<tr>
<td></td>
<td>SU-30</td>
<td>120-40-120</td>
</tr>
<tr>
<td></td>
<td>SU-40</td>
<td>200-30-200</td>
</tr>
<tr>
<td></td>
<td>WB-40</td>
<td>120-40-120</td>
</tr>
<tr>
<td></td>
<td>WB-62</td>
<td>400-70-400</td>
</tr>
<tr>
<td></td>
<td>WB-62FL</td>
<td>440-65-440</td>
</tr>
<tr>
<td></td>
<td>WB-67</td>
<td>440-65-440</td>
</tr>
<tr>
<td></td>
<td>WB-92D</td>
<td>470-75-470</td>
</tr>
<tr>
<td></td>
<td>WB-100T</td>
<td>250-70-250</td>
</tr>
<tr>
<td></td>
<td>WB-109D</td>
<td>700-110-700</td>
</tr>
<tr>
<td>105</td>
<td>P</td>
<td>100-20-100</td>
</tr>
<tr>
<td></td>
<td>SU-30</td>
<td>100-35-100</td>
</tr>
<tr>
<td></td>
<td>SU-40</td>
<td>200-35-200</td>
</tr>
<tr>
<td></td>
<td>WB-40</td>
<td>100-35-100</td>
</tr>
<tr>
<td></td>
<td>WB-62</td>
<td>520-50-520</td>
</tr>
<tr>
<td></td>
<td>WB-62FL</td>
<td>500-50-500</td>
</tr>
<tr>
<td></td>
<td>WB-67</td>
<td>500-50-500</td>
</tr>
<tr>
<td></td>
<td>WB-92D</td>
<td>500-80-500</td>
</tr>
<tr>
<td></td>
<td>WB-100T</td>
<td>250-60-250</td>
</tr>
<tr>
<td></td>
<td>WB-109D</td>
<td>700-95-700</td>
</tr>
<tr>
<td>120</td>
<td>P</td>
<td>100-20-100</td>
</tr>
<tr>
<td></td>
<td>SU-30</td>
<td>100-30-100</td>
</tr>
<tr>
<td></td>
<td>SU-40</td>
<td>200-35-200</td>
</tr>
<tr>
<td></td>
<td>WB-40</td>
<td>120-30-120</td>
</tr>
<tr>
<td></td>
<td>WB-62</td>
<td>520-70-520</td>
</tr>
<tr>
<td></td>
<td>WB-62FL</td>
<td>550-45-550</td>
</tr>
<tr>
<td></td>
<td>WB-67</td>
<td>550-45-550</td>
</tr>
<tr>
<td></td>
<td>WB-92D</td>
<td>500-70-500</td>
</tr>
<tr>
<td></td>
<td>WB-100T</td>
<td>250-60-250</td>
</tr>
<tr>
<td></td>
<td>WB-109D</td>
<td>700-85-700</td>
</tr>
<tr>
<td>Angle of Turn (degrees)</td>
<td>Design Vehicle</td>
<td>Curve Radii (ft)</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>135</td>
<td>P</td>
<td>100-20-100</td>
</tr>
<tr>
<td></td>
<td>SU-30</td>
<td>100-30-100</td>
</tr>
<tr>
<td></td>
<td>SU-40</td>
<td>200-40-200</td>
</tr>
<tr>
<td></td>
<td>WB-40</td>
<td>120-30-120</td>
</tr>
<tr>
<td></td>
<td>WB-62</td>
<td>600-60-600</td>
</tr>
<tr>
<td></td>
<td>WB-62FL</td>
<td>550-45-550</td>
</tr>
<tr>
<td></td>
<td>WB-67</td>
<td>550-45-550</td>
</tr>
<tr>
<td></td>
<td>WB-100T</td>
<td>250-60-250</td>
</tr>
<tr>
<td></td>
<td>WB-109D</td>
<td>700-70-700</td>
</tr>
<tr>
<td>150</td>
<td>P</td>
<td>75-20-75</td>
</tr>
<tr>
<td></td>
<td>SU-30</td>
<td>100-30-100</td>
</tr>
<tr>
<td></td>
<td>SU-40</td>
<td>200-35-200</td>
</tr>
<tr>
<td></td>
<td>WB-40</td>
<td>100-30-100</td>
</tr>
<tr>
<td></td>
<td>WB-62</td>
<td>480-55-480</td>
</tr>
<tr>
<td></td>
<td>WB-62FL</td>
<td>550-45-550</td>
</tr>
<tr>
<td></td>
<td>WB-67</td>
<td>550-45-550</td>
</tr>
<tr>
<td></td>
<td>WB-92D</td>
<td>350-60-350</td>
</tr>
<tr>
<td></td>
<td>WB-100T</td>
<td>250-60-250</td>
</tr>
<tr>
<td></td>
<td>WB-109D</td>
<td>700-65-700</td>
</tr>
<tr>
<td>180</td>
<td>P</td>
<td>50-15-50</td>
</tr>
<tr>
<td></td>
<td>SU-30</td>
<td>100-30-100</td>
</tr>
<tr>
<td></td>
<td>SU-40</td>
<td>150-35-150</td>
</tr>
<tr>
<td></td>
<td>WB-40</td>
<td>100-20-100</td>
</tr>
<tr>
<td></td>
<td>WB-62</td>
<td>800-45-800</td>
</tr>
<tr>
<td></td>
<td>WB-62FL</td>
<td>600-45-600</td>
</tr>
<tr>
<td></td>
<td>WB-67</td>
<td>600-45-600</td>
</tr>
<tr>
<td></td>
<td>WB-92B</td>
<td>400-55-400</td>
</tr>
<tr>
<td></td>
<td>WB-100T</td>
<td>250-55-250</td>
</tr>
<tr>
<td></td>
<td>WB-109D</td>
<td>700-55-700</td>
</tr>
</tbody>
</table>
For curbed intersections, corner radii should follow the guidance in Table 212.12.3, and accommodate the following:

- The design vehicle and design speed for each street
- Available R/W
- Angle of turn between intersection legs
- The number of pedestrians using the crosswalk
- The width and number of lanes on the intersecting street

Table 212.12.3 Recommended Corner Radii

<table>
<thead>
<tr>
<th>Corner Radius (ft)</th>
<th>Operational Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 - 30</td>
<td>P vehicles and SU vehicles with minor lane encroachment</td>
</tr>
<tr>
<td>40</td>
<td>P vehicles, SU vehicles, and WB-40 vehicles with minor encroachment</td>
</tr>
<tr>
<td>50</td>
<td>All vehicles up to WB-40</td>
</tr>
</tbody>
</table>

Often it is not practical to provide designs that do not require larger design vehicles to encroach on adjacent or opposing lanes. Guidelines for corner radii in urbanized context classifications are as follows:

1. Radii of 15 to 25 feet are adequate for passenger vehicles. These radii are suitable for minor cross streets where there is little occasion for trucks to turn and at major intersections where there are parking lanes;
2. Radii of 25 feet or more should be provided at minor cross streets on new construction or reconstruction projects;
3. Radii of 30 feet or more should be provided at minor cross streets where practical so that an occasional truck can turn without too much encroachment;
4. Radii of 40 feet or more or preferably three-centered curves or simple curves with tapers to fit the paths of large truck combinations, should be provided where such combinations or buses turn frequently. Where speed reductions would cause problems, larger radii should be considered; and,
5. Curb radii should be coordinated with crosswalk distances or special designs should be used to make crosswalks efficient for all pedestrians. Where larger radii are used, an intermediate refuge or median island is desirable or crosswalks may
need to be offset so that crosswalk distances are not excessive. See *FDM 210.3* for additional information on islands.

212.12.2 Turning Roadways with Corner Islands

Consider providing a corner island at an intersection where paved areas are excessively large or do not establish proper channelization of traffic. Corner islands can provide delineation for through and turning traffic. In addition, corner islands shorten crosswalks and give pedestrians and bicyclists a refuge area. See *FDM 210.3.2* for island requirements.

Channelized right turn lanes can be designed with a flat or near perpendicular angle of entry to the cross street (see *Figure 212.12.2*). The flat angle of entry is most appropriate for higher speed turning movements with no pedestrian accommodations. Large turning radii and angles of entry into the cross street allow higher turning speeds, reduced traffic delays, and the turning movement of large trucks. The higher speeds, angle of entry and large radii adversely impacts pedestrian safety at the crosswalk.

The near perpendicular angle of entry is preferred where pedestrian facilities are provided. Tight turning radii and angles of entry into the cross street accommodate the following:

- Slower turning speeds,
- Reduced cross walk length,
- Improved pedestrian visibility,
- Improved sight distance
- Decreased angle of driver head turning
- Reduced right-of-way impacts.
Figure 212.12.2 Channelized Right Turn Lanes

Consider the near perpendicular right turn lane design in Figure 212.12.3 when the following conditions are met:

- Context Classification C2T, C3, C4, C5 and C6
- Low speed roadway (design speeds 45 mph and less)
- Pedestrian traffic is expected
- No acceleration lane is provided

This design includes the previously mentioned benefits to passenger cars and pedestrians with stripping and a scalene triangle shaped corner island. An approaching deceleration lane is preferred to provide vehicles additional time to stop for crossing pedestrians. The crosswalk is set back 20 feet minimum from the end of the island to allow room for a passenger car to wait for a gap in traffic without blocking the crosswalk. As shown in Figure 212.12.3, the outside curb radii can be designed to accommodate over-tracking of large vehicles such as single-unit trucks, transit, or Florida Interstate Semi-trailers (WB-62FL).
212.12.3 Free-Flow Design

Provide superelevation on free-flow turning roadways. An important part of the design on some intersections is the design of a free-flow alignment for turns. Ease and smoothness of operation can result when the free-flow turning roadway is designed with compound curves preceded by a deceleration lane. Turning radii and pavement cross slope for free-flow right turns at speeds greater than 10 mph are a function of the design speed and design vehicle. In general, the design speed of the turning roadway should be equal to, or within 10 to 20 mph less than the through roadway design speed.

It is desirable to provide as much superelevation as practical on intersection curves, particularly where the intersection curve is sharp and on a downgrade. However, the short curvature and short lengths of turning roadways often prevents the development of a desirable rate of superelevation. Table 212.12.4 provides the minimum superelevation rates in relation to design speed. The wide variation in likely speeds on intersection curves precludes the need for precision, so only the minimum superelevation rate is given for each design speed and intersection curve radius.
Table 212.12.4 Superelevation Rates for Turning Roadways

<table>
<thead>
<tr>
<th>Minimum Superelevation Rate</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Radius (feet)</td>
<td>25</td>
<td>50</td>
<td>90</td>
<td>150</td>
<td>230</td>
<td>310</td>
<td>430</td>
<td>540</td>
</tr>
</tbody>
</table>

See *FDM 210.9* for additional superelevation criteria.

212.12.4 Dual and Triple Left Turns

Double and triple turn lanes require turning radii that will accommodate the selected design vehicles turning simultaneously. The radius of curvature in combination with the track width of the design vehicles will establish the required width within the turn. Lane lines (i.e., guide lines) and width requirements should be determined by plotting the swept paths of the selected design vehicles. For preliminary layout of intersection geometry, use the swept path of the design vehicle on the inside turning lane to locate the median nose and crosswalk on the crossing street (at the receiving point of the left turn).

Design of dual turns should accommodate a SU-40 vehicle and a P vehicle turning simultaneously, as illustrated in *Figure 212.12.4*.
Design of triple left turns should accommodate a WB-62FL (outside lane), a SU-40 (center or inside lane), and a P vehicle (center or inside lane) turning simultaneously.

Establish control radius for the inside turning lane based on the guidance in FDM 212.14.5 and Table 212.9.2. Establish the inside edge of the outer lane by providing a minimum 4-foot separation between swept paths of the selected design vehicles traveling in the same direction. Except for turns with large radii, the inside edge of the outer lane will not be concentric with the selected control radius. Radius for the inside edge of the outer turn lane should be determined by analysis of the plotted swept path of the design vehicles.
Provide minimum 8-foot separation between vehicles traveling in opposing direction. Separation may be less than 8 feet when:

1. Turning paths are highly visible and speeds are low, or
2. Signal left turn phases are not concurrent for the opposing directions.

212.13 Islands

See FDM 210.3 for island criteria.

212.14 Auxiliary Lanes

The primary function of auxiliary lanes at intersections is to accommodate speed changes, storage and maneuvering of turning traffic. The length of the auxiliary lanes is the sum of the deceleration length, queue length and approach end taper. Pavement marking requirements for auxiliary lanes are included in Standard Plans, Index 711-001.

212.14.1 Deceleration Length

The required total deceleration length is that needed for a safe and comfortable stop from the design speed of the highway. See Exhibit 212-1 for minimum deceleration lengths (including taper) for left turn lanes.

Right turn lane tapers and lengths are identical to left turn lanes under stop control conditions. Right turn lane tapers and lengths are site-specific for free-flow or yield conditions.

212.14.2 Queue Length

The queue length provided should be based on a traffic study.

For low volume intersections where a traffic study is not justified, a minimum 50-foot queue length (2 vehicles) should be provided for rural context classifications. A minimum 100-foot queue length (4 vehicles) should be provided in urbanized context classifications. Locations with over 10% truck traffic should accommodate at least one car and one truck.

For queue lengths at signalized intersections, refer to FDM 232.2.
212.14.3 Approach End Taper

The length of approach end tapers is 50 feet for a single turn lane and 100 feet for two or more turn lanes, as shown Exhibit 212-1. These taper lengths apply to all design speeds.

212.14.4 Offset Left Turn Lanes

The alignment of opposing left-turn lanes and the horizontal and vertical curvature on the approaches are the principal geometric design elements that determine how much sight distance is available to a left-turning driver. Vehicles queuing in opposing left-turn lanes restrict each other’s view of oncoming traffic in the through lanes. The level of restricted view depends on the alignment of opposing left-turn lanes with respect to each other and the type of vehicles in the opposing queue.

The offset distance is defined as the distance between the left edge of the turn lane and the right edge of the opposing turn lane. If the offset distance is to the left of the turn lane it is considered a negative offset, and if it is to the right of turn lane it is considered a positive offset, as illustrated in Figure 212.14.1.

Figure 212.14.1 Negative and Positive Offset Left Turns

The conventional method of designing left turn lanes is to place the left turn lanes adjacent to the through lanes. This design creates a negative offset which restricts the sight distance of the left-turning driver’s view of oncoming traffic when another vehicle is in the opposing turn lane. Figure 212.14.2 indicates the negative offset when the conventional design is used.
On curbed roadway designs, offset left-turn lanes should be used with median widths greater than 18 feet. A 4-foot traffic separator should be used when possible to channelize the left turn and provide separation from opposing traffic.

Consider offset left-turn lanes at rural intersections with high turning movements. For median widths 30 feet or less, use a parallel offset left-turn lane. Stripe the area between the offset left-turn lane and the traffic lane where vehicles are moving in the same direction. For medians wider than 30 feet, consider a tapered offset left-turn lane. An offset left is illustrated in Figure 212.14.3.

2011 AASHTO Green Book Figure 9-52 illustrates the design of parallel and tapered left turn lanes.

At locations where the full offset distances cannot be obtained, it is recommended that the minimum offset distances shown in Table 212.14.1 be provided to achieve minimum required sight distances according to design speed. It is recommended that the "Opposing Truck" values be used where the opposing left-turn traffic includes a moderate to heavy volume of large trucks.
Table 212.14.1 Minimum Offset Distances for Left-Turn Lanes

<table>
<thead>
<tr>
<th>Design Speed (mph)</th>
<th>Minimum Offset (feet)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Opposing Car</td>
<td>Opposing Truck</td>
</tr>
<tr>
<td>≤ 30</td>
<td>1.0</td>
<td>3.0</td>
</tr>
<tr>
<td>35</td>
<td>1.5</td>
<td>3.5</td>
</tr>
<tr>
<td>40 - 45</td>
<td>2.0</td>
<td>4.0</td>
</tr>
<tr>
<td>50 - 55</td>
<td>2.5</td>
<td>4.5</td>
</tr>
<tr>
<td>60 - 65</td>
<td>3.0</td>
<td>4.5</td>
</tr>
<tr>
<td>70</td>
<td>3.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

212.14.5 Directional Median Openings

Directional (channelized) median openings are designed to accommodate left-turn movements from the through roadway and prevent or discourage left-turn and crossing movements by traffic from a side road or driveway. Directional median openings are to be provided in accordance with the access management plan for the roadway.

The design of a directional median opening must accommodate the swept path of the predominant design vehicle. Channelization may be achieved using a combination of traffic separators, islands, and tubular markers. See FDM 210 for additional information on islands. See Standard Plans, Index 520-020 for standard details for 4 feet, 6 feet and 8.5 feet wide traffic separators. See FDM 230.2.7 for additional information on tubular markers.

Typical layouts for directional median openings for high speed roadways with 40-feet-wide medians are provided in Exhibits 212-8, 212-9 and 212-10. Type E curb and raised islands in conjunction with the minimum offsets shown in these figures may be used on high speed roadways for directional median openings.
DIRECTIONAL MEDIAN OPENING: SU & WB-40
PARALLEL TURN BAY

NOTE: Return configurations for each quadrant must be analyzed independently to assure adequate return pavement for semi-trailer inside tracking and for a minimum clearance between trucks making opposing movement. The depicted design only applies where roads and streets intersect at 90° to the mainline and have centerlines common with the opposing road or street. Swept paths are by AutoTURN 4.0 for the AASHO 2001 SU and WB-40 tractor-semitrailer.

RETURNS:

Three Centered Compound Curves For All Returns Depicted.
300-400-200 Ratio; E and B Offsets.
Simple Curve With Taper's Not Shown:
40 Radius; 1:15 and 1:8 Tapers With
2 and 8 Offsets Tested (Practical Fit)

SWEEP PATH LEGEND:

WB 40
SU

NOTE: Return configurations for each quadrant must be analyzed independently to assure adequate return pavement for semi-trailer inside tracking. The depicted design only applies where roads and streets intersect at 90° to the mainline. Swept paths are by AutoTURN 4.0 for the AASHO 2001 SU and WB-40 tractor-semitrailer.

EXHIBIT 212-8
01/01/2018

NOT TO SCALE
DIRECTIONAL MEDIAN OPENING: WB-50
PARALLEL TURN BAY

NOTE: Return configurations for each quadrant must be analyzed independently to assure adequate return pavement for semi-trailer inside tracking and for a minimum clearance between trucks making opposing movement. The depicted design only applies where roads and streets intersect at 90° to the mainline and have centerlines common with the opposing road or street. Sweep paths are by AutoTURN 4.0 for the AASHTO 2001 WB-50 tractor-semi trailer.

RETURNS:
Returns Depicted:
Simple Curve With Tapers For Returns Nos. 1, 2 & 4 (Best Configuration)

Quadrant Nos. 1 & 2 Vacant
Quadrant Nos. 3 & 4

RETURN NO. 3

RETURN NO. 4

NOTE: Return configurations for each quadrant must be analyzed independently to assure adequate return pavement for semi-trailer inside tracking. The depicted design only applies where roads and streets intersect at 90° to the mainline. Sweep paths are by AutoTURN 4.0 for the AASHTO 2001 WB-50 tractor-semi trailer.
DIRECTIONAL MEDIAN OPENING: SU & WB-40
TAPERED TURN BAY

NOTE: Return configurations for each quadrant must be analyzed independently to assure adequate
return pavement for semi-trailer inside tracking. The depicted design only applies where roads and streets
intersect at 90° to the mainline and have centerlines common with the opposing road or street. Swept paths are by AutoTURN 4.0 for the AASHTO 2001 SU
and WB-40 tractor-semi-trailer.

SWEPT PATH LEGEND:

Three Centered Compound Curves For All Returns Depicted:

120-40-200' Radii; Z And B Offsets

Simple Curve With Tapers Not Shown:

40' Radius; 1:15 And 1:8 Tapers With

Z And B Offsets Tested (Practical Fit)

NOT TO SCALE

EXHIBIT 212-10
01/01/2018
213 Modern Roundabouts

213.1 General

This chapter provides design criteria for the geometric layout of modern roundabouts. The criteria contained in the FDM are supplemented by guidance provided in the National Cooperative Highway Research Program (NCHRP) Report 672, Roundabouts: An Informational Guide.

Only single-lane and two-lane modern roundabouts are to be constructed on the SHS. Partial three-lane roundabouts may be acceptable under certain conditions.

Exhibit 213-1 illustrates the elements of a modern roundabout that are discussed in this chapter.

213.1.1 Roundabout Evaluation

Roundabout evaluation is governed by the Intersection Control Evaluation process. See the Intersection Control Evaluation (ICE) Manual for requirements at the following web address:

https://www.fdot.gov/traffic/TrafficServices/Intersection_Operations.shtm
MODERN ROUNDBABOUT DETAILS

MODERN ROUNDABOUT DETAILS

SPLITTER ISLAND DETAIL

BICYCLE AND PEDESTRIAN DETAIL

EXHIBIT 213-1
01/01/2019

NOT TO SCALE
213.2 Operational Analysis

Use the methodology in the current edition of the *Highway Capacity Manual (HCM)* when conducting a roundabout operational analysis. Two commonly used software packages consistent with the *HCM* are HCS 7 and SIDRA. Note that SIDRA can be run in two distinct modes: SIDRA Standard Mode, or HCM Mode. Use HCM mode to be consistent with *HCM* methodology.

To optimize safety and operation performance, provide only the lanes that are warranted through the traffic operational analysis. Inclusion of unwarranted approach, circulatory or by-pass lanes increases complexity and conflict points. Provide roundabout designs that are simplistic and have pavement widths based on necessity.

Use 20-year design traffic volumes for roundabout design.

213.2.1 Stage Construction

Consider stage construction when traffic operational analysis indicates that a multi-lane roundabout will be required in the design year (20-year design life), but a single-lane roundabout would provide acceptable service for 10 to 15 years (1st resurfacing cycle). Having more lanes than what is warranted in the early years will have a negative effect on safety and operational performance.

When it is determined that staged construction will be utilized, develop the ultimate design first to assure all right-of-way needs for the ultimate project are identified. Then develop the initial design that allows for expansion in the future with minimal “throw-away” work.

213.3 Geometric Design

It is important to develop roadway geometry that encourages drivers to gradually slow down as they approach the roundabout. Roundabout design features that influence vehicular approach speeds include:

1. Prominent landscaping in the central island serves to increase visibility of the central island and provides a visual queue to approaching drivers that they are entering a low-speed environment. Roadway approach geometry should work with the landscaping to limit line of sight beyond what is necessary to meet intersection sight distance requirements. See *NCHRP Report 672, 6.7.3* for additional information.
(2) Raised splitter islands and roadside curb provide visual cues to establish a speed transition zone. Lengthening this transition zone on high-speed facilities can be an effective strategy for slowing down traffic prior to entering a roundabout.

(3) Geometric features (e.g., inscribed circle diameter (ICD), lane width, entry width, curb locations) introduce deflection and curvature into the driver’s path and is the most effective way to slow vehicles down to a safe entry speed. Typical ranges are as follows:

- Single-lane Roundabout ICD: 120’ to 160’ with 140’ as a good starting point
- Two-lane Roundabout ICD: 160’ to 200’ with 180’ as a good starting point

A chicane is a series of curves that requires the driver to turn slightly right and then slightly left while approaching the roundabout entry. Chicaning should not be excessive but used only to the extent necessary to establish the splitter island and create an offset left alignment.

Tangent segments between reverse curves:

- Provides a smooth natural path for drivers
- Improves the alignment of the approach with the receiving circulatory roadway
- Aids and assists truck drivers in navigating the roundabout

Tangent segments between reverse curves are required for high-speed approaches as discussed in the FDM 213.3.1. A minimum 25-foot tangent segment between reverse curves on low speed approaches should be provided; i.e., avoid back to back reverse curves.

213.3.1 High-Speed Approach Geometry

Exhibit 213-2 illustrates the Department’s desired geometry for a high-speed two-lane undivided highway approaching a single-lane roundabout. High-speed approach geometry uses a series of three curves upstream of the roundabout with successively smaller radii separated by tangent segments. The general approach demonstrated can be applied to high-speed two-lane roundabouts as well.

The approach roadway alignment contains three curves labeled AR1, AR2, and AR3. The Department criteria for minimum curve length on open roadway (400 feet) does not apply within the functional area of the intersection. See FDM 212.4 for more information on intersection functional area.
AR1

The first curve encountered by the driver as they approach the roundabout is AR1. This curve to the right has the largest radius of the three and is intended to alert the driver that they are approaching a roundabout and need to slow down. This curve also initiates separation between the opposing traffic lanes allowing for the development of the splitter island. The PC of AR1 demarks the area of influence of the intersection. The radius of AR1 is based on the design speed of the approach leg and is determined by using AASHTO Greenbook 2011 Equation 3-8. Assuming normal crown, the superelevation rate (e_{max}) is 2%. Side friction factors are dependent on speed and are determined using AASHTO Greenbook 2011 Figure 3-6.

AR1 is typically not necessary for divided highway approaches because separation between opposing traffic lanes is already established.

AR2

The second curve approaching the roundabout is AR2. This curve to the left aligns the approach roadway centerline to the left of the roundabout center (offset left). An offset left design allows for proper deflection and speed control. When entering AR2, it is assumed that the driver has decelerated 15-20 mph from the vehicle’s approach speed.

Since the curve is to the left and the roadway cross slope is normal crown, the superelevation rate used to calculate AR2 is -2%.

AR3

The final curve entering the roundabout is AR3. This curve to the right guides the driver into the circulatory roadway. AR3 radius is typically between 75 and 100 feet and is determined through the fastest path analysis. At this point it is assumed that the driver has decelerated to an operating speed between 20 and 25 mph.

Tangent Segments

Provide a tangent segment between AR1 and AR2 not less than 100 feet. Provide a tangent segment between AR2 and AR3 not less than 50 feet.
ROUNDABOUT HIGH SPEED APPROACH DETAILS

APPRAOCH ROADWAY DESIGN SPEED

<table>
<thead>
<tr>
<th>Speed (MPH)</th>
<th>RADIUS (TYP.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>AR1 1100'</td>
</tr>
<tr>
<td></td>
<td>AR2 600'</td>
</tr>
<tr>
<td>55</td>
<td>1400'</td>
</tr>
<tr>
<td></td>
<td>800'</td>
</tr>
<tr>
<td>60</td>
<td>1800'</td>
</tr>
<tr>
<td></td>
<td>950'</td>
</tr>
<tr>
<td>≥ 65</td>
<td>2200'</td>
</tr>
<tr>
<td></td>
<td>1100'</td>
</tr>
</tbody>
</table>

DETAIL A

- EDGE OF TRAVEL LANE
- TYPE E CURB
- R 200'
- R 3' MIN.

DETAIL B

- TYPE E CURB
- EXTEND NOSE BEYOND EXIT CURVE
- TYPE RA CURB
- TYPE F CURB
- TYPE D CURB
- TYPE F CURB
- TYPE E CURB
- 15' MIN.*
- 8' MIN.
- 7:1 TAPER
- 15' MIN.*
- R 65' MIN.

NOT TO SCALE

EXHIBIT 213-2
01/01/2021
213.3.2 Alignment of Approach Lane

The alignment of the approach affects the amount of deflection (speed control) that is achieved, the ability to accommodate the design vehicle, and the visibility angles to adjacent legs. The optimal alignment is generally governed by the size and position of the roundabout relative to its approaches.

An offset left alignment is typically preferred as it increases the deflection achieved at the entry to improve speed control and is easier to remove path overlap for multilane entries.

213.3.3 Angle Between Approach Legs

The intersection angle between two roadways has a significant influence on the geometrics and operation of a roundabout. Intersection angles are to be as close to 90 degrees as practical. Consider realigning the approach legs of minor roads when the intersection angle is less than 75 degrees; Figure 213.3.1 illustrates realignment configurations.

Figure 213.3.1 Realignment Configurations
213.3.4 Roadway Profiles

The profile grade of the roadways carried through the influence area of the intersection should be as flat as practical to allow the circulatory roadway pavement to slope to the outside. See FDM 213.3.7 for cross slope requirements.

213.3.5 Splitter Islands

Splitter islands generally extend upstream of the yield line to the point at which entering drivers are expected to begin decelerating comfortably. Exhibit 213-1 provides details for splitter islands. Splitter islands are to use Type E curb or Type I traffic separator.

Locate the crosswalk approximately 20-feet upstream from the yield line. Minimum width for the raised splitter island at crosswalks is 6-foot (between curb faces). The minimum crosswalk width in the splitter island is 10-feet. These dimensions ensure the provision of a pedestrian refuge area within the splitter island.

Minimum length of the splitter island is based on the design speed of the approach leg, as follows:

- 50-foot for design speed 35 mph or less; 100-foot desirable
- 100-foot for design speed 45 mph or less
- 200-foot for design speed 50 mph or greater

Extend the splitter island beyond the PT of the exit curve to discourage exiting traffic from crossing into the path of approaching traffic.

213.3.6 Roadway Width

The width of the roadway at locations with curb on both sides needs to accommodate the design vehicle and be a minimum 15-feet face to face.

213.3.7 Circulatory Roadway

The width of the circulatory roadway is determined from the number of entry lanes and the turning requirements of the design vehicle. Provide only the minimum width necessary to serve the required lane configuration. Typically accommodate a bus without use of the truck apron.
Circulatory roadway lane widths of multilane roundabouts do not need to be consistent and typically range from 12-feet to 18-feet. The outside lane is typically larger to provide additional space for the design vehicle and reduce entry and exit path overlap.

Slope the circulatory roadway away from the central island at 2%, 1% minimum.

213.3.8 Truck Apron

Use the standard truck apron design illustrated in Figure 213.3.2. Indicate in the plans that the roundabout truck apron is to be red in color that closely matches AMS-STD-595-21105 red.

![Figure 213.3.2 Standard Truck Apron Design](image)

213.4 Path Overlap

The natural path of a vehicle is the path it will take based on the speed and orientation imposed by the roundabout geometry. Path overlap occurs when the natural paths of vehicles in adjacent lanes overlap or cross one another; i.e., geometry leads vehicles into the wrong lane. It occurs at entries where the geometry of the right-hand lane tends to lead vehicles into the left-hand circulatory lane. Aligning the approach lanes with the receiving lanes in the circulatory roadway helps drivers maintain their natural trajectory upon entry and significantly reduces potential for path overlap.

Path overlap can also occur at exits where the geometry or pavement marking tends to lead vehicles from the left-hand circulatory lane into the right-hand exit lane. Flattening the exit radius helps drivers maintain their natural trajectory upon existing and significantly reduces potential for path overlap. The potential for increased speeds associated with a flatter exit radius should be taken into consideration.
213.5 Spiral Transitions

A spiral transition is used to guide drivers into the appropriate lane for their desired exit. Drivers that enter the roundabout on the inside lane are pushed to the outside lane within the circulatory roadway to exit; avoiding potential lane changing within the circulatory roadway. Inclusion of left turn only lanes and transition spirals complicate the design and should only be provided if warranted through traffic operational analysis.

Figure 213.5.1 illustrates the inclusion of a spiral transition with a lane configuration that includes two circulatory lanes and a single exit lane. The spiral geometry is developed by connecting two semi-circles with different diameters as indicated by the green and red arcs. The smaller diameter (green) represents the inside edge of travel lane adjacent to the truck apron and the larger diameter (red) is equal to smaller diameter plus the width of the inside travel lane. The spiral transition allows for the left turning movement as indicated by the red arrows. Also shown in the figure is the required spiral transition pavement marking.

The central island should be developed (shaped) using curb to enforce the spiral geometry. Use of striping to create the spiral geometry should be avoided.

Figure 213.5.1 Spiral Transition
213.6 Fastest Path

Controlling speeds for vehicles entering and traveling through roundabouts is a critical design objective that significantly impacts the safety and comfort of all users. A well-designed roundabout reduces vehicle speeds upon entry and encourages consistency in the relative speeds between conflicting traffic streams. The effectiveness of speed control within a roundabout can be determined by conducting a fastest path performance check.

The fastest path is defined as the radius (R1, R2, R3, R4 and R5) that provides the smoothest and flattest path possible for a single vehicle (assumed 6 feet wide) traversing the roundabout. The fastest path does not consider lane markings when determining the vehicles path; i.e., drivers will run over striping and use all available pavement. Fastest path movements are as follows:

- R1 – Entry Radius
- R2 – Circulating Radius
- R3 – Exit Radius
- R4 – Left Turn Radius
- R5 – Right Turn Radius

Fastest path speeds must adhere to the following:

- R1 and R5 entry speeds are not to exceed 25 mph for single-lane entries and 30 mph for multi-lane entries.
- R2 and R4 circulating speeds should be no more than 15 mph less than the entry speed.
- R3 exit speeds requires engineering judgement to balance the competing objectives of accommodating the design vehicle and providing a safe environment for pedestrians using the crosswalk.

The fastest path for the through movement (R1, R2, and R3) is illustrated in Figure 213.6.1. The fastest path for the right turn movement (R5) is illustrated in Figure 213.6.2. Centerline of vehicle path is drawn with a 5-foot offset from face of curb, or a 3-foot offset from the painted edge line.
Figure 213.6.1 Fastest Path for Through Movement

Figure 213.6.2 Fastest Path for Right Turn Movement

Note:
Offset is 3’ from painted edge, and 5’ from face of curb.
213.6.1 Fastest Path Methodology

A CADD-based procedure for conducting fastest path analysis has been adopted by the Department and can be downloaded from the FDM web page. For consistency, this step-by-step procedure should be followed when determining R1, R2, R3, R4, and R5.

Calculated speeds for R1, R3 and R5 are based on NCHRP 672 equation 6-1 with a pavement slope of +2%.

Calculated speeds for R2 and R4 are based on NCHRP 672 equation 6-2 with a pavement slope of -2%.

A spreadsheet has been developed to assist with these calculations and can be downloaded from the FDM web page.

213.7 Design Vehicle Accommodation (Swept Path)

Roundabouts typically accommodate a WB-62FL design vehicle for the through movements on the SHS. A smaller design vehicle may be appropriate for turning movements connecting off-system roads. See FDM 201.6 for additional information on design vehicle.

Swept path diagrams assure that there is adequate pavement to accommodate the maneuvers of the design vehicle through the roundabout without over-tracking the curb. AUTOTURN is a CADD-based vehicle turning path program that is often used to determine the swept path of the design vehicle.

Provide swept path diagrams for the design vehicle for all turning movements. Develop travel paths using continuous smooth spline curve alignments representative of travel paths experienced in the field.

Provide a minimum 1.5-foot offset from the face of curb to the design vehicle’s tire track.

213.7.1 Single-Lane Roundabout

The swept path design vehicle is required to stay within the travel lane and is prohibited from encroaching onto the splitter island, central island, or outside gutter pans. The truck trailer is permitted to mount the RA curb and use the truck apron. Figure 213.7.1 illustrates a WB-62FL design vehicle swept paths for a single-lane roundabout.
Figure 213.7.1 WB-62FL Swept Paths: Single Lane Roundabout
213.7.2 Two-Lane Roundabout

Provide adequate pavement area for the simultaneous passage of the design vehicle and a passenger vehicle through the roundabout and for turning movements. The design vehicle must stay within the travel lanes without encroaching onto the inside or outside gutters. The truck trailer is permitted to mount the RA curb and use the truck apron. Develop swept path diagrams for all turning movements in the following combinations:

- Design vehicle in the outside lane and passenger vehicle in the inside lane
- Design vehicle in the inside lane and passenger vehicle in the outside lane

It is acceptable for the design vehicle path to encroach into the adjacent travel lane within the circulatory roadway when there is sufficient space for the passenger vehicle plus two feet of clearance between the two vehicles.

Use a painted gore when providing in lane truck accommodates on multilane entries. Typical lane widths range from 11 to 12-feet with a 4 to 6-foot painted gore.

When truck volume is very low, consider allowing the truck-trailer to command both lanes to complete the maneuver.

213.7.3 Exit Radius

An exit radius of 300 to 400 feet should be provided to create a smoother vehicular path and better truck accommodation. Use engineering judgement to balance the competing objectives of accommodating the design vehicle and providing a safe environment for pedestrians. Provide flat exit geometry when no pedestrian facilities are present.

213.8 Bicycle and Pedestrian Accommodation

Exhibit 213-1 provides standard details for pedestrian and bicycle facilities.

213.8.1 Pedestrian Facilities

When there are existing or planned pedestrian facilities on the approach roadways, the following requirements apply:

1. Provide sidewalk widths in accordance with FDM 222, or consistent with approach sidewalk widths. When bicycle ramps are provided, the desired sidewalk width is 10 feet, but not be less than 8 feet.
(2) A 5-foot set-back from back of curb to sidewalk is desired; typically not less than 2 feet.

(3) Provide crosswalks at every approach leg.

(a) Provide curb ramps and detectable warning surfaces consistent with *FDM 222* and *Standard Plans, Index 522-002*.

(b) Orient crosswalks perpendicular to the roadway to minimize pedestrian crossing distance.

(c) Provide a pedestrian refuge area within the splitter island meeting the requirements of *FDM 213.3.5*.

(d) Provide pedestrian crosswalk lighting in accordance with *FDM 231*.

213.8.2 Bicycle Facilities

Do not carry bicycle lanes through the roundabout.

Inclusion of bicycle ramps is required for multi-lane roundabouts and is optional for single-lane roundabouts. Terminate bicycle lanes or shoulders as illustrated in *Exhibit 213-1*.

Figure 213.8.1 illustrates the geometrics for a bicycle ramp when a utility strip of at least 5-feet is present. The desired angle between the ramp and the roadway ranges from 20 to 25 degrees; however, angle is not to exceed 35 degrees.

Figure 213.8.2 illustrates the geometrics for a bicycle ramp when sidewalk on the approach leg is adjacent to, or near the back of curb.

Place Directional Tactile Walking Surface Indicator (a.k.a., Directional Indicator) at the top of the bicycle ramp to provide a tactile cue for visually impaired pedestrians to continue down the sidewalk. Do not place detectable warning surfaces on the bicycle ramp. See *Developmental Specification Dev528* and *Developmental Standard Plans (DSP) Index D528-001* for additional requirements.
Figure 213.8.1 Angled Bicycle Ramp

Figure 213.8.2 Straight Bicycle Ramp
213.9 Landscaping

Create a mounded central island that slopes upward from the truck apron using a slope no flatter than 1:10 and no steeper than 1:6. Provide varying height trees and plants in the central island to enhance driver recognition of the roundabout upon approach. On large roundabout center islands, varying heights, and uneven slopes can increase visual awareness of the roundabout and enhance aesthetics.

Provide quality space above and below ground for trees and other desirable vegetation to grow. Do not construct roundabout center islands on existing road pavement and base. Assure that the soil conditions will support the health and growth of selected trees and plants. Place trees and palms near the center of the central island, and not less than 6 feet from the face of Type D curb. Place shrubs in a simple arrangement to help increase visual awareness of the roundabout.

Coordinate the landscape design in the early stages of plans development to assure that landscaping will be fully integrated into the roundabout design.

Additional information regarding roundabout landscaping is in Chapter 9 of NCHRP 672.

213.9.1 Plant Selection

Select a diverse, low maintenance mix of Florida Friendly plant species. Select trees 6-foot in height or taller when installed; palm trees 12-foot or taller. The use of native tree species is encouraged. Select shrubs that will recover or regenerate naturally after mechanical damage. Select trees and plants with a variety of height, color, form, and texture. Select trees that will continue to grow in value, after establishment, without routine irrigation.

Plants placed in splitter islands must not exceed 18-inches in height, at full maturity; i.e., do not encroach on sight distance requirements.

If more decorative plantings are requested by local agency or groups, a maintenance agreement should be obtained.

213.10 Signing and Pavement Markings

Well-designed signing and pavement markings will enhance safety and traffic operations by clarifying the rules of the road and proper lane assignments to drivers as they navigate through the roundabout.
Follow the details presented in Exhibits 213-3, 213-4, and 213-5 when developing roundabout signing and pavement marking plans to promote consistency throughout the state.

Use the standard left-turn arrow with a circular dot on the left-most lane of the approach to multi-lane roundabouts as shown in Standard Plans, Index 711-001. Use standard arrows within the circulatory roadway.
1x2 ROUNDBOUGHT
SIGNING AND PAVEMENT MARKINGS

NOT TO SCALE

EXHIBIT 213-3
01/01/2020

Notes:
1. Review each roundabout location independently to determine if sign assemblies C, D, or E are warranted.
2. Provide pavement markings for gore when entry width is provided for design vehicle accommodations.
3. For spiral geometry, include all signing and pavement markings shown in the 1x2 roundabout in addition to the spiral markings shown in the detail.

Typical Sign Location

<table>
<thead>
<tr>
<th>Posted Speed (MPH)</th>
<th>Distance Between Signs (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (min)</td>
<td>B</td>
</tr>
<tr>
<td>55</td>
<td>800</td>
</tr>
<tr>
<td>50</td>
<td>700.00</td>
</tr>
<tr>
<td>45</td>
<td>600.00</td>
</tr>
<tr>
<td>40</td>
<td>500.00</td>
</tr>
<tr>
<td>35</td>
<td>400.00</td>
</tr>
<tr>
<td>30</td>
<td>300.00</td>
</tr>
<tr>
<td>25</td>
<td>150.00</td>
</tr>
</tbody>
</table>

01/01/2020
Notes
1. Review each roundabout location independently to determine if sign assemblies C, H, or J are warranted.
2. For typical sign location dimensions A and B, see Exhibit 213-2

1X1 ROUNDABOUT WITH BYPASS LANE
TYPICAL SIGNING AND PAVEMENT MARKINGS

NOT TO SCALE
SIGNING AND PAVEMENT MARKINGS

2X2 ROUNDABOUT

NOT TO SCALE

Notes

1. Review each roundabout location independently to determine if sign assemblies C, H, or J are warranted.

2. Provide pavement markings for gore channelization when the entry width is equal to or greater than 30 feet.

3. For typical sign location dimensions A and B see Exhibit 213-2.
213.11 Lighting

Nighttime illumination of roundabouts is required. Provide a minimum 1.5 foot-candles on the roadway surface within the circulatory roadway and at least 200 feet in advance of the splitter islands.

See FDM 231.3.3 for additional lighting requirements when pedestrian facilities are provided.

213.12 Community Aesthetic Features

Communities commonly desire to place public art or other large aesthetic objects within the central island. These types of features are acceptable provided that:

- Objects are located outside the required sight triangles,
- Not less than 6 feet from the inside edge of the truck apron, and
- Approval is granted through the process outlined in FDM 127.

Fountains, or other water spraying features are not permitted.
214 Driveways

214.1 General

This chapter provides driveway design criteria and requirements for connections to the State Highway System. The *FDOT Access Management Guidebook* provides further guidance and information on driveways and medians. For additional information and definitions, including Connection Categories, and requirements for obtaining access to the State Highway System, refer to:

- *Florida Administrative Code (F.A.C.), Rule 14-96 (State Highway Connection Permits)* and

This criteria applies to new construction, reconstruction, and Resurfacing and Rehabilitation (RRR) projects. New Construction criteria must be met for new and reconstruction projects, and for proposed improvements included within RRR projects. For RRR Projects, unaltered driveways that are not in compliance with the new construction criteria in this chapter, *Standard Plans*, or ADA requirements are not required to be reconstructed.

The terms “driveway”, “connection”, and “turnout” are used in various FDOT manuals, handbooks, and guides. A driveway is an access constructed within a public R/W connecting a public road with adjacent property. The intent is to provide vehicular access in a manner that will not cause the blocking of any sidewalk, border area, or roadway. The term “connection” encompasses a driveway or side road and its appurtenances:

- islands,
- separators,
- transition tapers,
- auxiliary lanes,
- travel way flares,
- drainage pipes and structures,
- crossovers,
- sidewalks,
- curb cut ramps,
- signing,
- pavement marking,
- required signalization,
- maintenance of traffic or
- other means of access to or from controlled access facilities.
The term “turnout” is typically used to describe the portion of the driveway or side road adjoining the outer roadway (maintained or constructed by the Department). The terms “driveway” and “connection” are used in this chapter.

Driveways should be located and designed to improve the mobility and safety of all road users. The location and design of the connection must consider potential users, context classification, and site conditions.

This Chapter includes considerations and requirements for the design of driveways defined as Connection Categories A, B, C, or D (see FDM 214.1.1). Connection Categories E, F and G (i.e., traffic volume >4,000 trips/day) are designed as Intersections in accordance with FDM 212. Side road intersection design, with possible auxiliary lanes and channelization, may be necessary for Connection Category C and D.

214.1.1 Driveway Terminology

Figure 214.1.1 provides a schematic of typical driveway types and the associated terminology. The terms shown in this section are standard terms or variables used within this chapter.
Radius (R) – The radial dimension of curved driveway entry or exit

Flare (F) – The total length of angled approach/exit at the edge of roadway for a flared driveway

Driveway Connection Width (W) – Effective width of the driveway, measured between the left edge and the right edge of driveway

Driveway Connection Spacing (D) – Spacing between driveways from the projected edge line of each driveway (see connection spacing in Tables 201.4.2 and 201.4.3)

Corner Clearance (C) – Distance from an intersection, measured from the projected closest edge line of the intersecting roadway to a driveway projected edge line (see connection spacing in Tables 201.4.2 and 201.4.3)

Angle (Y) – Angle of the driveway between the driveway centerline and the roadway edge of traveled way.

Setback (G) – Distance from the R/W line to the closest permanent structure

Driveway Location – Position of driveway in relation to other traffic features such as intersections, neighboring driveways, median openings, and interchanges

Driveway Length – Distance needed into the site to transition vehicles to the internal circulation system of the site.

Driveway Traffic Separator (S) – Linear islands or raised medians used to separate traffic movements on the driveway.

Channelization Island (I) – Used to facilitate right turns and discourage left turn movements on the driveway.

Connection (Driveway) Category (A through D) are defined as follows:

- A – 1-20 trips/day or 1-5 trips/hour.
- B – 21-600 trips/day or 6-60 trips/hour.
- C – 601-1,200 trips/day or 61-120 trips/hour.
- D – 1,201-4,000 trips/day or 121-400 trips/hour.

Design driveways based on the expected volume and type of traffic. See the FDOT Access Management Guidebook for descriptions of these categories.
214.1.2 Evaluation of Existing Driveways

Evaluate existing driveways to ensure the design properly balances safety, accessibility, and mobility. The following existing roadway elements play a role in locating driveways on roadway improvement projects:

- Medians
- Median openings
- Adjacent driveways
- Traffic signals
- Adjacent highway features
- Adjacent intersection

Perform a corridor analysis to determine if existing connections, median openings and signal spacing are in conformance or can be brought into conformance with Department standards. See *FDM 201.4* for Access Management requirements.

Each district has an Access Management Review Committee (AMRC), to review deviations from spacing standards of more than 10% for full median openings. The AMRC members are appointed by the District Secretary and consists of head level positions within the District. AMRCs in the districts provide guidance on access management and median decisions. Interested persons may also appear before the AMRC during the project development stage. (See *Section 335.181(2), Florida Statutes* and *Rule 14-96.002(25), F.A.C.*).

When a connection is proposed to be modified as part of a Department project, notice of the Department's intended action will be provided to the property owner pursuant to *Rule 14-96.011(2), Florida Administrative Code*. Property owners have the right to request an administrative hearing. If a hearing is requested, the Department will offer to schedule a meeting on site to consider documents, reports, or studies obtained by the property owner with regards to safety and operational concerns.
214.2 Flared and Radial Return Designs

Driveway connections on the State Highway System use either a flared or a radial return design. Examples of each type are shown in Figure 214.2.1.

Figure 214.2.1 Flared and Radial Return Driveway Examples
Determine the type of driveway needed based on roadway type (curbed or flush shoulder) and driveway traffic volumes. Flared driveways are used on curbed roadways where driveway traffic does not exceed 600 trips per day or 60 trips per hour (i.e., Connection Categories A and B) as shown in Table 214.2.2. Radial return designs are used on all flush shoulder roadways and on curbed roadways with driveway traffic greater than 600 trips per day (i.e., Connection Category C and D).

Provide radial returns for driveways requiring or having a specified median opening with left turn storage and served directly by that opening.

Table 214.2.2 Flared or Radial Driveway

<table>
<thead>
<tr>
<th>Element Description</th>
<th>A</th>
<th>B</th>
<th>C and D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curbed Roadways</td>
<td>Flared</td>
<td>Flared</td>
<td>Radius</td>
</tr>
<tr>
<td>Flush Shoulder Roadways</td>
<td>Radius</td>
<td>Radius</td>
<td>Radius</td>
</tr>
</tbody>
</table>

Notes:
1. Connection Categories A, B, C, and D are defined in FDM 214.1.1.
2. Small radii may be used in lieu of flares for curbed roadways with Category B Connections when approved by the Department.

Modification for Non-Conventional Projects:

Delete note 2 from *Table 214.2.2* and see RFP for requirements.

Flared or radial return design determines driveway entry and exit speeds and turning movements. Larger radius or flare allows for quicker and more efficient vehicle access. This reduces interference with traffic on the major roadway. Pedestrians may be impacted due to larger driveway openings (e.g., higher vehicle entry speeds, increased crossing time).
Consider the following to determine which type of driveway is needed:

- Design speed of roadway
- Driveway traffic volume
- Entry and exit movements (e.g., one-way, two-way, right-in/right-out)
- Available R/W
- Design Vehicle

R/W may be limited in C2T – C6 Context Classifications.

A CADD-based vehicle turning path program (e.g., AUTOTURN) is often used to determine the driveway type and dimensions for the appropriate design vehicle.

Requirements for driveway profiles connected to curbed or flush shoulder roadways are provided in FDM 214.4.

For additional information and details on flared driveways see Standard Plans, Index 522-003 and for paved radial driveways see Standard Plans, Index 330-001.

214.3 Driveway Horizontal Geometry

Driveway horizontal geometry should be consistent with the context classification, roadway type (curbed or flush shoulder), driveway traffic volumes, driveway design vehicle, and access classification. This section contains the following design elements for driveway horizontal geometry:

- Radius
- Driveway Width
- Angle of Driveway
- Driveway Traffic Separator and Channelization Island
- Driveway Length
- Driveway Location

Each driveway element listed above is further discussed in the subsequent sections. Table 214.3.1 contains driveway dimensions for the horizontal geometry elements. This table also provides the requirements for the elements in Figure 214.1.1.
Table 214.3.1 Driveway Dimensions

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
<th>Connection Category</th>
<th>A</th>
<th>B</th>
<th>C and D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-Way</td>
<td>2-Way</td>
<td></td>
</tr>
<tr>
<td>Curbed Roadways</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Connection Width</td>
<td></td>
<td>12’ Min</td>
<td>24’ Min</td>
<td>24’ Min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24’ Max</td>
<td>36’ Max</td>
<td>36’ Max</td>
</tr>
<tr>
<td>F</td>
<td>Flare (Drop Curb)</td>
<td></td>
<td>10’ Min</td>
<td>10’ Min</td>
<td>N/A</td>
</tr>
<tr>
<td>R</td>
<td>Radial Returns (Radius)</td>
<td></td>
<td>N/A</td>
<td>See Note 3</td>
<td>25’ Min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50’ Std</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75’ Max</td>
</tr>
<tr>
<td>Y</td>
<td>Angle of Driveway</td>
<td></td>
<td>60°- 90°</td>
<td>60°- 90°</td>
<td>60°- 90°</td>
</tr>
<tr>
<td>S</td>
<td>Driveway Traffic Separator or Median</td>
<td></td>
<td>N/A</td>
<td>4’-22’ Wide</td>
<td>4’-22’ Wide</td>
</tr>
<tr>
<td>G</td>
<td>Setback</td>
<td></td>
<td>12’ Min, All categories.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C & D</td>
<td>Corner Clearance and Driveway Connection Spacing</td>
<td>See connection spacing in Tables 201.4.2 and 201.4.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flush Shoulder Roadways</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Connection Width</td>
<td></td>
<td>12’ Min</td>
<td>24’ Min</td>
<td>24’ Min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24’ Max</td>
<td>36’ Max</td>
<td>36’ Max</td>
</tr>
<tr>
<td>F</td>
<td>Flare (Drop Curb)</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>R</td>
<td>Radial Returns (Radius)</td>
<td></td>
<td>15’ Min</td>
<td>25’ Min</td>
<td>25’ Min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25’ Std</td>
<td>50’ Std</td>
<td>50’ Std</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50’ Max</td>
<td>75’ Max</td>
<td>75’ Max</td>
</tr>
<tr>
<td>Y</td>
<td>Angle of Driveway</td>
<td></td>
<td>60°- 90°</td>
<td>60°- 90°</td>
<td>60°- 90°</td>
</tr>
<tr>
<td>S</td>
<td>Driveway Traffic Separator or Median</td>
<td></td>
<td>N/A</td>
<td>4’-22’ Wide</td>
<td>4’-22’ Wide</td>
</tr>
<tr>
<td>G</td>
<td>Setback</td>
<td></td>
<td>12’ Min, All categories.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C & D</td>
<td>Corner Clearance and Driveway Connection Spacing</td>
<td>See connection spacing in Tables 201.4.2 and 201.4.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Connection Categories A, B, C, and D are defined in FDM 214.1.1.
2. 2-Way refers to one entry movement and one exit movement; i.e., not exclusive left or right turn lanes on the connection.
3. Small radii may be used in lieu of flares for curbed roadways in Connection Category B when approved by the Department.
4. The Angle of Driveway for Connection Category A may be reduced with approval by the local Operations/Maintenance Engineer.
5. Design criteria for channelization islands (I) is found in FDM 210.3.

Radial Returns (Radius):

6. Provide the minimum radius for low-speed roadways with driveway design vehicle of a passenger car.
7. Provide the standard radius for high-speed roadways or driveway with large design vehicles (e.g., SU-30).
8. Consider providing the maximum radius or compound curve for high-speed roadways or driveway with large design vehicle (e.g., WB-62).
Modification for Non-Conventional Projects:

Delete notes 3 and 4 from Table 214.3.1 and see RFP for requirements.

214.3.1 Radius

Design criteria for radial return driveways are given by road type (curbed or flush shoulder roadways) and connection category. A range of return radii (minimum, standard, and maximum) is provided in Table 214.3.1.

The minimum radii will reduce the distance for pedestrians to cross the driveway. See FDM 214.7 for additional pedestrian requirements.

Use 50-foot radii for driveways intended for daily accommodation of vehicles exceeding 30 feet in length. Provide the following as necessary for safe turning movements where large numbers of multi-unit vehicles will use the connection:

- Increased connection width
- Increased radii
- Auxiliary lanes
- Tapers
- Lane flares
- Separators
- Islands

214.3.1.1 Effective Turning Radius for Right Turns

The effective turning radius is the minimum radius needed to enter or exit a driveway, as illustrated in Figure 214.3.1. Additional pavement adjacent to the travel lane (e.g., on-street parking, bike lane, bus bay) will result in the following:

- Increase the effective turning radius for the design vehicle
- The radial return radius (curb radius) may be reduced
- The ability to use a larger design vehicle
214.3.1.2 Designing for Trucks and Other Large Vehicles

Determine the appropriate design vehicle for each driveway. Driveways designed for large vehicle (i.e. truck and bus) movements may impact other users. The following may result when using larger driveway dimensions for truck movements:

- Some confusion for passenger car drivers
- Increased pedestrian and bicyclist exposure to vehicles
Chapter 4 in the FDOT Access Management Guidebook provides additional guidance for designing for large vehicles.

The Department will determine if an auxiliary lane is needed for safe turning movements when large numbers of multi-unit vehicles will use the connection. See FDM 214.5 for more information on exclusive right turn lanes.

214.3.2 Driveway Width

Design criteria for driveway widths are given by Connection Category (A – D) and type of roadway (curbed or flush shoulder). Minimum and maximum driveway widths are provided in Table 214.3.1. Design driveway widths based on the design vehicle and number of lanes. Consider increasing driveway width above maximum values when large numbers of multi-unit vehicles will use the connection. The Department will determine if the maximum driveway width is insufficient for safe turning movements.

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete last sentence in above paragraph and see RFP for requirements.</td>
</tr>
</tbody>
</table>

Design one-way connections to eliminate unpermitted movements.

When more than two lanes in the driveway connection are required, the 36-foot maximum width may be increased to relieve interference between entering and exiting traffic which adversely affects traffic flow. These cases require documented site-specific study and design.

Consider providing pavement markings to guide drivers exiting or entering a driveway.

214.3.3 Angle of Driveway

The angle of driveway (Y) influences safety and operation of the driveway. It is to be as close to 90 degrees as practical. Design values for angle of driveway are in Table 214.3.1. Angles of driveways at the lower end of the allowable range should be avoided for the following reasons:

1. Heavy skew angles increase the driveway crossing length, exposing vehicles, pedestrians, and cyclists to conflicting traffic streams for longer periods of time.
2. The road user’s sight angle to the crossing leg becomes restricted due to the skew, making it difficult to see conflicting vehicles and to perceive safe crossing gaps.
(3) Turning movements are difficult because of the skew. Additional pavement may be necessary to accommodate the turning of large trucks.

(4) Turning movements or positioning may be confusing and require additional channelization.

(5) Increased open pavement areas of highly skewed driveways increase construction and maintenance costs.

214.3.4 Driveway Traffic Separator and Channelization Island

Width requirements for driveway traffic separators are provided in Table 214.3.1. For triangular channelization islands, see FDM 210.3 for criteria and information.

214.3.5 Driveway Length

Driveway length is measured from the edge of roadway traffic lane or bicycle lane to the first conflict point; including the distance to the R/W and the setback (G) to a structure. The setback to a structure is measured from the R/W line to the structure as shown in Figure 214.1.1 (see Table 214.3.1 for minimum requirements).

Driveway length and size must accommodate all vehicular queuing, maneuvering, and parking beyond the R/W line. Except for vehicles stopping to enter the highway, the portion of the driveway within the Department R/W must be used only for moving vehicles entering or leaving the highway.

The term driveway length as used in this manual may also be referred to as throat length in other manuals.

214.3.6 Driveway Location

Driveway locations impact the safety and operation of the roadway. Closely-spaced driveways increase conflict points and may impede the movement of traffic. Refer to the 2011 AASHTO Green Book, Section 9.11.6 for additional information. Consider the location of driveways in relation to the following:

- Signalized intersections
- Un-signalized connections
- Limited Access interchange ramps
- Roundabouts
Requirements for driveway spacing and corner clearance are provided in FDM 201.4 (connection spacing in Tables 201.4.2 and 201.4.3) and shown in Figure 214.1.1. In addition to corner clearance requirements, driveways should be located outside of the functional areas of adjacent intersections, where practical. The functional area of an intersection is defined in FDM 212.4.

Align corresponding connection through lanes where a driveway is intended to align with a connection across the highway as shown in Figure 214.3.2.
214.3.6.1 Interchange Areas

Access Management on a crossroad at an interchange is critical for the efficient operation of an interchange. Provide adequate connection spacing along the crossroad at an interchange for the following:

- To minimize spillback on the ramp and crossroad approaches to the ramp terminal
- Provide adequate distance for crossroad weaving
- Provide space for merging maneuvers
- Provide space for storage of turning vehicles at access connections on the crossroad

Arterial or collector roadways within 1,320 feet of interchange ramps are areas of special concern (see Figure 214.3.3). Florida Administrative Code, Rule 14-97 requires the following minimum driveway spacing from the ramp taper furthest from the interchange:

- 440 feet on roadways with posted speeds ≤ 45 mph
- 660 feet on roadways with posted speeds > 50 mph
- 1,320 feet on Access Class 2 Facilities with posted speeds > 50 mph

These requirements should be applied in accordance with District procedures for implementing the Rule, and should not be confused with the minimum requirements for limited access R/W.
Figure 214.3.3 Driveway Locations in Interchange Area

214.3.6.2 Roundabouts

Providing driveway access to a roundabout may be considered only when there are no other reasonable alternatives. Driveways introduce conflict to roundabout operations and increase the likelihood of wrong-way movements. Direct driveway connections must meet the following:

- Design Connection Category B, C, and D driveways as a roadway approach leg, including a splitter island.
- Connection Category A driveways are only allowed on single-lane, low-volume roundabouts. Design Connection Category A driveways as flared connections to provide a visual indication that they are not roadways.
- Provide a means for vehicles to enter the roundabout moving forward; i.e., not backing out of the driveway. This is more critical for Connection Category A driveways where unfamiliar drivers may need to turn around in the driveway.
- Meet the required intersection sight distance (see FDM 212).

See FDM 213 for roundabout criteria and information.
214.4 Driveway Vertical Geometry

The driveway profile defines the vertical geometry for constructing a driveway. The following will impact the design of driveway profiles:

- Roadway type (curbed or flush shoulder)
- Context classification
- Commercial or residential use
- Drainage accommodation
- Utility considerations
- Design speed of roadway (affects steepness of driveway)
- Design vehicle
- Available R/W

Design driveway grades with the following maximum values:

- 10% for commercial
- 28% for residential

Design driveways to avoid ponding and erosion. Drainage requirements are in Chapters 2 and 3 of the *FDOT Drainage Manual*.

214.4.1 Driveway Profile on Curbed Roadways

Requirements for driveway profiles connected to curbed roadways are provided in *Figure 214.4.2, Table 214.4.1*, and *FDM 113.2.2*.

Slopes and lengths of flared driveways depend on roadway geometry, design vehicles, and available R/W. Flared driveways are classified as General, Marginal, or Adverse and are described as follows:

General Applications

These can accommodate representative standard passenger vehicles, and general applications can also accommodate representative standard trucks, vans, buses, and recreational vehicles operating under normal crown and superelevation conditions. Standard pavement cross slopes and superelevation tables are provided in *FDM 210*.

Marginal Applications

These can cause overhang drag for a fully-loaded representative standard passenger vehicle when the driveway is located on the low side of a fully-superelevated roadway.
Adverse Applications

These can cause vehicles to drag or slow down, and are typically used on very low speed (design speed ≤ 35 mph) roadways. This application’s slopes can cause overhang drag for representative standard passenger vehicles under fully-loaded conditions. The steeper slopes can impede traffic flow by causing drivers leaving the roadway to excessively slow or pause.

Figure 214.4.1 illustrates a comparison between each application. Details for these applications are provided in *Standard Plans, Index 522-003*.

Flared driveways may not accommodate vehicles with low beds, undercarriage, or appendage features. Use site-specific flare designs or Connection Category C and D designs for these vehicles.

Projects that require the reconstruction of an existing commercial driveway may exceed 10% grade when both of the following conditions are met:

- Documentation that an adverse roadway operational or safety impact would not result from the proposed grade is provided; and,
- Approval by District Design Engineer is obtained.

Modification for Non-Conventional Projects:

Delete the above paragraph and see RFP for requirements.

NCHRP Report 659, Guide for the Geometric Design of Driveways contains additional driveway profile information and guidance.
Figure 214.4.1 Comparison of Applications for Flared Driveway Connection

General Application

Marginal Application

Adverse Application

NOT TO SCALE
Requirements for driveway profiles connected to flush shoulder roadways are provided in Figure 214.4.3 and Table 214.4.1. Two profile options are included in Figure 214.4.3. Option 1 is intended for locations where roadway, driveway taper, and auxiliary lane stormwater runoff volumes are relatively large. Option 2 is intended for locations where the runoff volumes are relatively small or there is no roadside ditch.

Slope or crown the transition (L) nearest the roadway to direct stormwater runoff to the roadside ditch.

Provide driveway profile grades adjacent to superelevated roadways (see G2 in Figure 214.4.3) with the slopes and break-overs shown in Figure 214.4.4.
Figure 214.4.3 Flush Shoulder Roadway Driveway Profiles

Definitions:
- **G** - Grade (%)
- **A** - Algebraic Difference In Grades (%)
- **L** - Transition (See Table 214.4.1 for Lengths):
 - A ≤ 14% - Transition Not Required
 - A > 14% - Straight Or Rounded Transition Required

Maximum Grades:
- Commercial = 10%
- Residential = 28%
Figure 214.4.4 Driveway Slope for Flush Shoulder Roadway in Superelevation

SEE FIGURE 214.4.3 FOR G2 SLOPES ON FLUSH SHOULDER ROADWAY DRIVEWAY PROFILES
<table>
<thead>
<tr>
<th>A</th>
<th>Crests (Desirable)</th>
<th>Sags (Desirable)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Straight</td>
<td>Rounded</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>Minimum</td>
</tr>
<tr>
<td>6-13%</td>
<td>3 0</td>
<td>5 0</td>
</tr>
<tr>
<td>14%</td>
<td>3 0</td>
<td>10 0</td>
</tr>
<tr>
<td>15%</td>
<td>3 2.5</td>
<td>10 3</td>
</tr>
<tr>
<td>16%</td>
<td>5 3</td>
<td>10 4</td>
</tr>
<tr>
<td>17%</td>
<td>6 3.5</td>
<td>10 5</td>
</tr>
<tr>
<td>18%</td>
<td>6 4</td>
<td>10 6</td>
</tr>
<tr>
<td>19%</td>
<td>7 4.5</td>
<td>10 7</td>
</tr>
<tr>
<td>20%</td>
<td>8 5</td>
<td>11 8</td>
</tr>
<tr>
<td>21%</td>
<td>9 5.5</td>
<td>12 9</td>
</tr>
<tr>
<td>22%</td>
<td>10 6</td>
<td>13 10</td>
</tr>
<tr>
<td>23%</td>
<td>10 6.5</td>
<td>14 10.5</td>
</tr>
<tr>
<td>24%</td>
<td>11 7</td>
<td>15 11</td>
</tr>
<tr>
<td>25%</td>
<td>12 7.5</td>
<td>15 11.5</td>
</tr>
<tr>
<td>26%</td>
<td>12 8</td>
<td>16 12</td>
</tr>
<tr>
<td>27%</td>
<td>13 8.5</td>
<td>17 12.5</td>
</tr>
<tr>
<td>28%</td>
<td>14 9</td>
<td>17 13</td>
</tr>
<tr>
<td>29%</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>30-31%</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>32-33%</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>34-36%</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>37-38%</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>39-41%</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>42-43%</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>44-46%</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>47-48%</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>49-51%</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>52-54%</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>55-56%</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Notes:
1. Rounded: The following types of curvature may be selected: circular, parabolic, or spline.
2. Provide the desirable length. When the desirable length cannot be attained, provide the greatest attainable length possible, but not less than the minimum values.
214.5 Right-Turn Lanes

Exclusive right-turn lanes at unsignalized driveways can be used to reduce rear-end collisions, increase capacity, and reduce differentials in speed. Vehicles can wait in a right-turn lane for pedestrians to cross the driveway without impeding the flow of through traffic. Consider right-turn lanes into driveways with high peak hour right-turn volumes on high speed roadways.

Design right-turn lanes according to FDM 212.14.

214.6 Sight Distance at Driveways

Provide intersection sight distance (per FDM 212.11) on roadways with design speeds of 40 mph and higher. When intersection sight distance cannot be met on very low speed (design speed ≤ 35 mph) roadways, provide the greatest sight distance possible, but not less than minimum stopping sight distance values in FDM 210.11.1.

214.7 Pedestrian Accommodations for Driveways

Provide a minimum 4-foot-wide crossing with a maximum cross slope of 2% for unsignalized radial return driveways where sidewalk is required or provided. Additional requirements for crosswalks is in FDM 222.2.3. Additional requirements for pedestrian facilities are in FDM 222 and the Standard Plans, Indexes 522-001 and 522-002.

214.8 Permitting

New or modified driveways associated with new or expanded developments must be permitted in accordance with the Rule 14-96, F.A.C. Permitted or grandfathered connections modified as part of a Department construction project, and not due to a significant change (as defined in Rule 14-96, F.A.C.), do not require a permit.

The FDOT Drainage Manual and FDOT Drainage Connection Permit Handbook provides information on National Pollutant Discharge Elimination System (NPDES) requirements.

The FDOT One Stop Permitting website has additional information and online permit application.
215 Roadside Safety

215.1 General

This Chapter contains roadside safety design criteria for new construction, reconstruction, and Resurfacing, Restoration and Rehabilitation (RRR) projects. New Construction criteria must be met for new and reconstruction projects, and for improvements included with RRR projects.

The design criteria contained in FDM 210 and FDM 211 has been developed to minimize the probability that a vehicle will depart the roadway. Design elements that affect roadside safety include: horizontal alignment, superelevation, vertical alignment, drainage design, sight distance, lane widths, pavement, pavement markings, cross slopes, median widths, shoulders, and lighting.

The evaluation of Roadside Safety design elements is necessary to address the occasional errant vehicle that does depart the roadway. These design elements include roadside geometries, lateral offsets to potential hazards, and the use of shielding.

The AASHTO Roadside Design Guide (AASHTO RDG) provides the foundation for the development of specific criteria contained in this Chapter and the Standard Plans.

215.1.1 RRR Criteria

Criteria for RRR projects provided in this chapter are the minimum values allowed for roadside elements to remain on arterials and collectors without obtaining a Design Exception or Design Variation (see FDM 122).

Criteria for RRR projects provided in this chapter may be used for establishing the minimum requirements for adding auxiliary lanes, keyhole lanes, or providing minor intersection improvements with the understanding that when existing right of way (R/W) is adequate, new construction criteria will be used.

Do not apply RRR criteria in this chapter to resurfacing projects on Limited Access (LA) Facilities.
215.2 Roadside Features

215.2.1 Roadside Geometry

Roadside geometry refers to the terrain features (slopes) that a vehicle will encounter when departing a roadway. The components of roadside geometry include front slopes, back slopes, and transverse slopes.

215.2.2 Roadside Slope Classification

Roadside Slopes include areas located beyond the edge of the traffic lane as shown in Figures 215.2.2 and 215.2.3. These areas are divided into the following classifications:

(1) Traversable Slope – Smooth terrain, unobstructed by fixed objects:
 (a) Recoverable Traversable Slope, 1:4 or flatter
 (b) Non-Recoverable Traversable Slope, 1:3 or flatter and steeper than 1:4

(2) Non-Traversable Slope – Rough terrain, obstructed, or slopes steeper than 1:3

215.2.3 Clear Zone Concept

The following provides the definition of the Clear Zone Concept using the slope classifications above. These slope classifications are considered the standard for effective roadside safety design in the AASHTO RDG. However, in some cases the Department’s roadside slope requirements supersede these values. For Roadside Slope Criteria, see FDM 215.2.6.

Providing a sufficient amount of Recoverable Slope adjacent to the roadway provides an opportunity for an errant vehicle to safely recover. The amount of recoverable area provided beyond the traveled way is defined as the clear zone, and includes shoulders and bike lanes. The clear zone must be free of roadside hazards, as defined in FDM 215.3.

Traversable Back Slopes 1:3 or flatter may be located within the clear zone.

A clear zone width must be provided so that the sum of all Recoverable Slopes is equal to or greater than the required clear zone width obtained from Table 215.2.1. Clear zone widths may be widened based on crash history and horizontal curvature; see AASHTO RDG, Section 3.1. Clear zone concepts are illustrated in Figure 215.2.1 and Figure 215.2.2.
When a Traversable Non-Recoverable Slope is present within the clear zone, extend the clear zone width until the amount of Recoverable Slope equals the required clear zone width obtained from Table 215.2.1. The additional width provided beyond the Traversable Non-Recoverable Slope is known as the Clear Run-out Area and is illustrated in Figure 215.2.3. Provide a 10-foot minimum width for the Clear Run-out Area where R/W allows.
Figure 215.2.3 Adjusted Clear Zone Concept

Table 215.2.1 Clear Zone Width Requirements

<table>
<thead>
<tr>
<th>Design Speed (mph)</th>
<th>Clear Zone Width for New Construction</th>
<th>Clear Zone Width for RRR Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Travel Lanes & Multilane Ramps</td>
<td>Travel Lanes & Multilane Ramps</td>
</tr>
<tr>
<td></td>
<td>Auxiliary Lanes & Single Lane Ramps</td>
<td>Auxiliary Lanes & Single Lane Ramps</td>
</tr>
<tr>
<td>≤ 30</td>
<td>12 feet</td>
<td>6 feet</td>
</tr>
<tr>
<td></td>
<td>14 feet</td>
<td>6 feet</td>
</tr>
<tr>
<td>35</td>
<td>18 feet</td>
<td>6 feet</td>
</tr>
<tr>
<td>40</td>
<td>24 feet</td>
<td>14 feet</td>
</tr>
<tr>
<td>45</td>
<td>24 feet</td>
<td>18 feet</td>
</tr>
<tr>
<td>50</td>
<td>30 feet</td>
<td>18 feet</td>
</tr>
<tr>
<td>55</td>
<td>36 feet</td>
<td>18 feet</td>
</tr>
<tr>
<td>≥ 60</td>
<td>18 feet</td>
<td>18 feet</td>
</tr>
</tbody>
</table>

Clear zone widths for work zones are provided in *Standard Plans, Index 102-600.*
215.2.4 Lateral Offset

Lateral offset is the distance from a specified point on the roadway to a roadside hazard. Lateral offset to the roadside hazard is measured as follows:

- **Curbed roadways**: from face of curb.
- **Flush shoulder and high-speed curbed roadways**: from outside edge of traveled way.

Lateral offsets apply to all roadways and are determined based on the following:

- Type of facility; i.e., flush shoulder or curbed roadway,
- Design speed
- Design Element
- Project Type; i.e. New Construction, RRR

Flush shoulder roadways typically have sufficient R/W, to provide the required clear zone widths. Therefore, minimum lateral offset for these roadways is based on maintaining a clear roadside for errant vehicles to recover (i.e., maintaining clear zone width provided in Table 215.2.1).

Lateral offsets for curbed roadways should be based on clear zone criteria; however, curbed roadways typically do not have sufficient R/W to provide the required clear zone widths. Therefore, minimum lateral offset on these roadways is based on offset needed for normal operation of the roadway.

At times, it may be necessary to place poles (e.g., signal, light, sign) within the sidewalk. Refer to FDM 222.2 for minimum unobstructed sidewalk width requirements.

Table 215.2.2 provides minimum lateral offset criteria for roadside features and roadside hazards typically encountered and considered functionally necessary for normal operation of the roadway; e.g., signing, lighting, utilities. For crashworthy objects, meet or exceed the minimum lateral offset criteria provided in Table 215.2.2. Locate objects that are not crashworthy as close to the R/W line as practical and no closer than the minimum lateral offset criteria provided.

When a roadside hazard is placed behind a barrier that is justified for other reasons, the minimum lateral offset to the object equals the setback requirements (deflection distance) of the barrier, see FDM 215.4.6. Refer to FDM 215.5 for permissible attachments to barriers.

When determining minimum lateral offset for bridge piers and abutments, coordinate with vertical clearance requirements found in FDM 210.10.3. When shielding is used, refer to setbacks to barriers in FDM 215.4.6 and FDM 210.10.3.
Table 215.2.2 Minimum Lateral Offset Criteria

<table>
<thead>
<tr>
<th>Design Element</th>
<th>Curbed Roadways</th>
<th>High Speed Curbed and Flush Shoulder Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>New Construction</td>
<td>RRR</td>
</tr>
<tr>
<td></td>
<td>Design Speed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25-35 mph</td>
<td>40-45 mph</td>
</tr>
<tr>
<td></td>
<td>40-45 mph</td>
<td></td>
</tr>
</tbody>
</table>

Light Poles
- Conventional: Do not locate in Medians, except in conjunction with barriers that are justified for other reasons. See *FDM 215.2.9*.
 - 1.5 feet
 - 4.0 feet
 - 1.5 feet
 - 1.5 feet
- High Mast: Outside Clear Zone

Signal Poles and Controller Cabinets
- Do not locate in Medians, except for PHB in accordance with *FDM 215.2.9*.
 - 1.5 feet
 - 4.0 feet
 - 1.5 feet
 - 1.5 feet
 - Outside Clear Zone

Traffic Infraction Detectors
- For placement and installation specifications, refer to the State Traffic Engineering and Operations Office web page: http://www.fdot.gov/traffic/

ITS Poles and Related Items
- Pole & Other Aboveground Fixed Objects: Do not locate in Medians, except in conjunction with barriers that are justified for other reasons. See *FDM 215.2.9*.
 - 1.5 feet
 - 4.0 feet
 - 1.5 feet
 - 4.0 feet
 - Outside Clear Zone
- Equipment Shelters and Towers: Do not locate within the limited-access right of way,
- Breakaway Objects: 1.5 feet
 - 4.0 feet
 - 1.5 feet
 - 4.0 feet
 - As Close to R/W As Possible

Traffic Control Signs
- Single and Multi-Column: Locate in accordance with *Standard Plans*.
- Overhead Sign Structures (Includes DMS): Outside Clear Zone

Trees
- Where the diameter is or is expected to be > 4 inches measured 6 inches above the ground:
 - 1.5 feet
 - 4.0 feet
 - 1.5 feet
 - 1.5 feet
 - Outside Clear Zone

RRR Projects:
1. Meet New Construction criteria for new plantings.
Table 215.2.2 Minimum Lateral Offset Criteria (cont.)

<table>
<thead>
<tr>
<th>Design Element</th>
<th>Curbed Roadways</th>
<th>High Speed Curbed and Flush Shoulder Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>New Construction</td>
<td>RRR</td>
</tr>
<tr>
<td>Aboveground Utilities (See FDM 215.2.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing Utilities</td>
<td>1.5 feet</td>
<td>1.5 feet</td>
</tr>
<tr>
<td></td>
<td>4.0 feet</td>
<td>4.0 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New or Relocated Utilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.0 feet</td>
<td></td>
</tr>
<tr>
<td>RRR Projects:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing aboveground utilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>are not required to be relocated unless one of the following applies:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The edge of traveled way is being moved closer to the aboveground utility; e.g., addition of an auxiliary lane, or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>They have been hit 3 times in 5 years.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Railroad Grade Crossing</td>
<td></td>
<td>Locate in accordance with Standard Plans, Index 509-100 and Index 509-070</td>
</tr>
<tr>
<td>Traffic Control Device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roadways Overpassing</td>
<td></td>
<td>For Horizontal Clearances where roadways overpass railroads refer to FDM 220.</td>
</tr>
<tr>
<td>Railroads</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canal and Drop-off Hazards</td>
<td></td>
<td>See FDM 215.3</td>
</tr>
<tr>
<td>Bridge Piers and Abutments</td>
<td></td>
<td>The greater of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Inside or Outside Travel Lane:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 feet from Edge of Travel Lane</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Outside Auxiliary Lane:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 feet from Face of Curb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Inside Auxiliary Lane (Median):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 feet from Edge of Auxiliary Lane</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(See FDM 215.4.5.4 for Pier Protection criteria and Figures 260.6.3 & 260.6.4)</td>
</tr>
<tr>
<td>Drainage Structures</td>
<td></td>
<td>Refer to the FDOT Drainage Manual</td>
</tr>
<tr>
<td>(e.g., wingwalls, endwalls,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>flared end sections)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mailboxes</td>
<td></td>
<td>Locate in accordance with Standard Plans, Index 110-200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bus Benches and Transit</td>
<td></td>
<td>Locate in accordance with Rule Chapter 14-20.003, Florida Administrative Code (F.A.C.).</td>
</tr>
<tr>
<td>Shelters</td>
<td></td>
<td>Transit bus benches must be located in accordance with Rule Chapter 14-20.0032, F.A.C.</td>
</tr>
<tr>
<td>Pedestrian Railing</td>
<td></td>
<td>4.0 feet</td>
</tr>
</tbody>
</table>

215-Roadside Safety
215.2.5 Control Zones for RRR Projects

Control Zones apply only to RRR projects and do not include aboveground utilities.

Control Zones are high-risk areas where roadway departures occur with greater frequency resulting in increased risk of impact with roadside hazards. To address this condition, lateral offset and clear zone width requirements in Control Zones are to be based on New Construction criteria. A Control Zone violation is when RRR lateral offset requirements are met, but New Construction criteria is not. Process a Design Variation for Control Zone violations.

Control Zones include the following locations:

1. A location where an aboveground object has been hit 3 times or more in the last 5 years.

2. Intersection Radii – Within the New Construction lateral offset of the return radii of an intersecting street from begin point of tangent (PT) to end point of tangent (PT), see Figure 215.2.4.

Figure 215.2.4 Intersection Radii
(3) ‘T’ Intersection – On the non-intersection side of ‘T’ intersections within the area directly across and between each radii return point of tangent (PT) extended to the New Construction lateral offset, see Figure 215.2.5.

![Figure 215.2.5 ‘T’ Intersection](image)

(4) Right Turn Deceleration – Within the New Construction lateral offset for a length of 100 feet measured downstream from the beginning of the full width lane, see Figure 215.2.6 for right turn deceleration lane on a tangent. For right turn deceleration lane constructed with a reverse curve the beginning of the Control Zone starts at the point of intersection (PI), see Figure 215.2.7.

(5) Merge Section – Within the New Construction lateral offset for a length of 100 feet measured downstream from the beginning of the taper of a skewed merge section. See Figure 215.2.8 for merge section constructed on a tangent. For merge section constructed with a reverse curve the beginning of the Control Zone starts at the point of intersection (PI), see Figure 215.2.9.

(6) Service Facility (i.e. alley way or easement) Driveway – For a distance of 3 feet from a driveway flare within the new construction lateral offset distance at the intersection of a dedicated intersecting service facility, see Figure 215.2.10.
Figure 215.2.6 Right Turn Deceleration with Tangent

Figure 215.2.7 Right Turn Deceleration with Reverse Curve
Figure 215.2.8 Merge Section with Tangent

Figure 215.2.9 Merge Section with Reverse Curve
(7) Business (i.e. non-residential) Driveway – For a distance of 3 feet from a driveway flare within the new construction lateral offset distance at the entrance turnout for use other than a private residence, see Figure 215.2.11.
(8) Horizontal Curves – Within the New Construction lateral offset in the outside area of a curve when the posted speed is greater than 35 mph and the curve radius is 3000 feet or less, see Figure 215.2.12.

Figure 215.2.12 Horizontal Curve

(9) Roadway Deflection without Curves – Within the New Construction lateral offset of roadway alignments with a deflection (kink) of more than 5 degrees for a distance of 100 feet from the point of intersection of the deflection, see Figure 215.2.13.
215.2.6 Roadside Slope Criteria

Roadside slopes consist of front slopes, back slopes, and transverse slopes. Roadside slope criteria is provided in Table 215.2.3.

Coordinate with the District Geotechnical Office for slopes steeper than 1:2.

For retaining walls greater than 5 feet in height, provide a 10-foot maintenance area (1:10 or flatter) in front of the wall face with suitable access for maintenance vehicles. See Structures Design Guidelines (SDG), Section 3.12 for information regarding partial height walls.
Table 215.2.3 Roadside Slope Criteria

<table>
<thead>
<tr>
<th>Type of Slope</th>
<th>Flush Shoulder and High Speed Curbed</th>
<th>Curbed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Height of Fill (feet)</td>
<td>Rate</td>
</tr>
<tr>
<td>Front Slope</td>
<td>0 – 5</td>
<td>1:6</td>
</tr>
<tr>
<td></td>
<td>5 – 10</td>
<td>1:6 to edge of Clear Zone, then 1:4</td>
</tr>
<tr>
<td></td>
<td>10 – 20</td>
<td>1:6 to edge of Clear Zone, then 1:3</td>
</tr>
<tr>
<td>Back Slope</td>
<td>All</td>
<td>1:4 or 1:3 with a standard width trapezoidal ditch and 1:6 front slope</td>
</tr>
<tr>
<td>Transverse Slope</td>
<td>All</td>
<td>1:10 or flatter (freeway & Interstate) 1:4 (others)</td>
</tr>
</tbody>
</table>

Notes:
(1) Height of fill is the vertical distance from the edge of the outside travel lane to the toe of front slope.

215.2.6.1 RRR Evaluation of Existing Roadside Slope

Existing roadside slope, and new slopes included with a RRR project, must meet the criteria provided in Table 215.2.3, except for the following:

(1) Front Slopes:
 (a) For constrained conditions, new slopes at 1:4 may be constructed within the clear zone. New slopes steeper than 1:4 require a Design Variation.
 (b) Existing 1:3 or flatter slopes within the clear zone may remain.
 (c) Flattening slopes of 1:3 or steeper at locations where run-off-the-road type crashes are likely to occur (e.g., on the outsides of horizontal curves) should be evaluated.
 (d) Existing front slopes steeper than 1:3 within the clear zone should be evaluated for shielding.
(2) Back Slopes:

 (a) For constrained conditions, new slopes at 1:3 may be constructed within the clear zone. New slopes steeper than 1:3 require a Design Variation.

 (b) Existing 1:2 or flatter slopes may remain.

 (c) Existing back slopes steeper than 1:3 within the clear zone should be evaluated for shielding.

RRR lateral offset and clear zone requirements must be met when the above criteria are applied.

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete \textit{FDM 215.2.6.1} and see RFP for requirements.</td>
</tr>
</tbody>
</table>

215.2.7 Drainage Features

Drainage features in close proximity to travel lanes are often necessary. These features include ditches, curbs, and drainage structures; e.g., transverse/parallel pipes, culverts, endwalls, wingwalls, and inlets. Evaluate the placement of these features as part of roadside safety design. Refer to the \textit{Drainage Manual} for information regarding hydraulic design.

Consider the future maintenance of the facility when evaluating the design of roadside topography and drainage features. Routine maintenance or repairs necessary for the continued function of the drainage feature may lead to long-term expenses and disruption to traffic flow.

215.2.7.1 Roadside Ditches

Acceptable cross section slope criteria for roadside ditches within the clear zone is provided in \textit{Figures 215.2.14} and \textit{215.2.15}. These roadside ditch configurations are considered traversable, as described in the \textit{AASHTO RDG}. Adjusted clear zone widths may be required for Non-Recoverable Slopes located within the clear zone (i.e. slopes steeper than 1:4 but flatter than 1:3, see \textit{FDM 215.2.3}). The application of the ditch cross section slopes must be coordinated with Roadside Slope Criteria included in \textit{FDM 215.2.6}.

The \textit{Drainage Manual, Chapter 2} requires a minimum ditch bottom width of 5 feet to accommodate mitered end sections and maintenance mowers. Refer to the \textit{Drainage Manual, Chapter 2}.

215-Roadside Safety
Manual for V-bottom ditch limitations. When a ditch bottom width of less than 5 feet is approved by the District Drainage Engineer the slope criteria provided in Figures 215.2.14 and 215.2.15 may be used.
Figure 215.2.14 Roadside Ditches – Bottom Width 0 to < 4 feet

Ref: Figure 3-6, 2011 AASHTO Roadside Design Guide, 4th Edition
Figure 215.2.15 Roadside Ditches – Bottom Width ≥ 4 feet

Ref: Figure 3-6, 2011 AASHTO Roadside Design Guide, 4th Edition
215.2.7.2 Curbs, Medians, and Islands

See FDM 210.5 for information concerning curbed roadways.

Curb has no redirection capability; therefore, do not use curb to mitigate clear zone
violations. The addition of curb for the sole purpose of achieving Lateral Offset Criteria
is prohibited.

Refer to the FDM 210.3 and Standard Plans, Index 520-020 (Traffic Separators) for
additional information concerning medians and islands.

A bridge mounted traffic separator is to match geometrically with adjacent roadway traffic
separator or the face of curb. Design separators in accordance with the Structures

Shoulder Gutter is frequently used along roadway fill sections and bridge approaches to
prevent excessive runoff down embankment slopes. Refer to the FDM 210.4 and 211.4
for Shoulder Gutter requirements.

215.2.7.3 Drainage Structures

Drainage structures located along the roadside must provide a traversable design or be
located outside the required clear zone. Drainage designs typically contain curb inlets,
ditch bottom inlets, endwalls, wingwalls, headwalls, flared end sections or mitered end
sections. If not adequately designed or properly located, these features may create
hazardous conditions for vehicles. For detailed background information concerning
traversable designs, refer to the AASHTO RDG.

Details for drainage structures and end treatments are provided in Standard Plans Index
425 and 430 Series. These drainage features have the potential for conflict with a vehicle
either departing the roadway or within a commonly traversed section of a roadway. Refer
to the Drainage Manual for standard drainage structures which are permitted within the
clear zone.

215.2.7.4 RRR Evaluation of Existing Drainage Features

Evaluate existing drainage structures and end treatments located within the clear zone to
determine if they present a hazardous condition and if modification or relocation is
necessary. Based on a review of the crash history, modify or relocate any drainage
structures impacted three times in five years.
New drainage features included with a RRR projects must provide a traversable design or be located outside the required clear zone.

215.2.8 Aboveground Utilities

Utility Agency/Owners (UAOs) are cities, counties, utility companies, homeowner associations, private citizens, or businesses organized under the laws of Florida with permission and/or rights to have their aboveground utilities within the Department’s R/W. Where aboveground utilities are more than 4 inches above the grade and are not accepted by FDOT as crashworthy they are considered roadside hazards. The below criteria are designed to minimize conflicts between roadside safety requirements and the privilege and rights the UAOs may have. Consult with the District Utilities Office to determine any limitations to the Department’s authority to effect the below requirements.

New and existing aboveground utilities are to meet the following requirements:

1. Not within the median,
2. Outside the new construction lateral offsets in Table 215.2.2, and
3. As close to the R/W as practical. Aboveground utilities are considered to be as close to the right of way as practical when the location does not cause the utility to do any of the following:
 - encroach onto private property
 - violate National Electrical Safety Codes
 - violate State or Federal codes/regulations
 - conflict with other existing overhead or underground facilities
 - require encroachments onto private property to trim trees
 - requires the utility to remove trees
 - takes individual poles out of alignment with existing pole lines

When the requirements above cannot be met, aboveground utilities may be placed behind Department-approved barriers, allowing for barrier deflection.

215.2.9 Signing, Lighting, Traffic Signals, Intelligent Transportation Systems (ITS), and Other Similar Roadside Features

Locate devices in accordance with the minimum lateral offset criteria provided in Table 215.2.2 and the following:

215-Roadside Safety
• Signing – *FDM 230*
• Lighting – *FDM 231*
• Traffic Signals – *FDM 232*
• ITS – *FDM 233*

These features are not required to meet minimum lateral offset criteria when installed behind a traffic barrier, provided:

1. The barrier was justified for other reasons, and
2. The device is located within the barrier’s Length of Need (See *FDM 215.4.6*).

Post-mounted sign supports and conventional light poles must be breakaway as defined in the *AASHTO LRFD Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals* and the *AASHTO RDG*. Post-mounted supports must be of an acceptable and crashworthy design as detailed in the *Standard Plans*.

Light poles or traffic signals in the median may become hazardous flying objects to vehicles in an opposing lane when struck. Do not place overhead sign structure (cantilever or truss) supports, conventional light poles, or traffic signal mast arm supports in the median, except in conjunction with barriers that are justified for other reasons. See *FDM 231.1* for additional limitations on placing lighting in the median.

Overhead structural supports for a Pedestrian Hybrid Beacon (PHB) may be placed in the median at midblock crossings if it is not possible to place elsewhere. Place the supports near the center of the median to the greatest extent practicable, while meeting the minimum lateral offsets in *Table 215.2.2*. See *FDM 231.1* for additional limitations on placing lighting in the median.

Do not locate high mast lighting poles in gore areas within the runout length as defined in the *AASHTO RDG, Section 5.6.4*.

215.2.10 Enhanced Highway Signing Assemblies

Enhanced highway signing assemblies installed in accordance with *Standard Plans, Index 700-120* are considered crashworthy and are permitted within the clear zone. Locate in accordance with the lateral offset criteria provided in *Index 700-101*. Other ground mounted flashing beacon assemblies located within clear zone must be either crash tested or located behind a barrier that has been justified for other reasons. Flashing beacon assemblies that are mounted on mast arms are exempt from this requirement.
215.2.11 Breakaway Devices

The criteria for breakaway supports is covered in the *AASHTO RDG, Chapter 4*. Breakaway devices are designed to be impacted at normal bumper heights with vehicles traveling along relatively flat level ground. If impacted at a significantly higher point the breakaway mechanism may not function as designed resulting in non-activation or improper fracturing of the device. For this reason, do not locate breakaway supports in ditches or along slopes steeper than 1:6.

215.3 Roadside Hazards

215.3.1 Aboveground Hazards

An aboveground hazard is anything within the clear zone that is greater than 4 inches in height and is firm and unyielding or doesn't meet breakaway criteria. Evaluate the location of temporary and permanent aboveground hazards and ensure that their placement is in accordance with the lateral offset and clear zone requirements of *FDM 215.2*.

Curbs are not an aboveground hazard when utilized in accordance with *FDM 210.5*.

215.3.1.1 Work Zone Aboveground Hazards

Aboveground hazards in work zones are considered part of the “work area” and treated with appropriate work zone traffic procedures included in the *Standard Plans, Index 102 Series*. During non-working hours, place aboveground hazards (e.g., objects, materials, equipment) outside clear zone widths for work zones, or behind a barrier.

215.3.2 Canal Hazards

A canal hazard is defined as an open ditch parallel to the roadway for a minimum distance of 1000 feet and with a seasonal water depth in excess of 3 feet for extended periods of time (i.e., 24 hours or more).

Minimal lateral offsets for canal hazards exceed standard clear zone width criteria. Canal hazard lateral offsets are measured from the edge of travel lane, auxiliary lane or ramp to the top of the canal side slope nearest the road. Minimum required distances are illustrated in *Figures 215.3.1* and *215.3.2* and summarized as follows:
• Not less than 60 feet for flush shoulder and curbed roadways with design speeds of 50 mph or greater.

• Not less than 50 feet for flush shoulder roadways with design speeds of 45 mph or less.

• Not less than 40 feet for curbed roadways with design speeds of 45 mph or less.

When new canal or roadway alignment is required, provide distances greater than those above to accommodate future widening of the roadway.

On fill sections, provide a flat berm (1:10 or flatter slope) no less than 20 feet in width between the toe of the roadway front slope and the top of the canal side slope nearest the roadway.

When the slope between the roadway and the "extended period of time" water surface is 1:6 or flatter, the minimum distance can be measured from the edge of the travel lane, auxiliary lane, or ramp to the "extended period of time" water surface and a berm is not required.

In sections with ditch cuts, provide a minimum of 20 feet between the toe of the front slope and the top of the canal side slope nearest the roadway.

Shield the canal hazard with an approved roadside barrier when the required minimum lateral offset cannot be met using the following criteria:

• Locate the barrier as far from the traveled way as practical and outside of the clear zone where possible.

• Locate guardrail no closer than 6 feet from the canal front slope.

• Locate High Tension Cable Barrier no closer than 15 feet from the canal front slope.
Figure 215.3.1 Lateral Offset Criteria for Canal Hazards on Flush Shoulder and High-Speed Curbed Roadways

50 mph or Greater
60 ft. min.

45 mph or Less
50 ft. min.

Shoulder

Berm
20 ft.

1:10 or flatter

"Extended Period of Time" Water Surface

50 mph or Greater
60 ft. min.

45 mph or Less
50 ft. min.

Shoulder

1:6 or flatter

"Extended Period of Time" Water Surface
215.3.3 Drop-off Hazard

Drop-off hazards are defined as steep or abrupt downward slopes that can be perilous to vehicle occupants, pedestrians, and cyclists. Shield any drop-off determined to be a hazard using the following guidelines:

(1) Any vertical faced structure (e.g., retaining wall, wing-wall) located within the clear zone

(2) A drop-off of 6 feet or more with a slope steeper than 1:3 located within the clear zone

(3) For low-speed curbed roadways, a drop-off of 6 feet or greater with a slope steeper than 1:3 located within 22 feet of the traveled way (See Figure 215.3.3).

(4) A drop-off that has had 3 crashes within a 5-year period. Five years of crash data for a particular site can be obtained from the Safety Office.

For drop-off hazards for pedestrians, see FDM 222.4.
215.3.3.1 Work Zone Drop-offs

For drop-off criteria in work zones see *Standard Plans, Index 102-600*. Anticipate drop-offs that are likely to occur during construction and provide the appropriate shielding. In locations where shielding is not practical, such as areas with numerous driveways, add a plan note requiring a return to acceptable conditions by the end of each day’s construction period.

215.3.4 Additional Hazard Considerations

Engineering judgment should be used when evaluating hazardous conditions, and should consider; roadway geometry, proximity to facility or building, level of activity, and traffic conditions and operations. These conditions may include:

1. Bridge piers that are not designed for vehicle impact loads,
2. Bicycle and pedestrian facilities,
3. Residential buildings, schools, businesses, and
4. The presence of personnel in work zones.

Requirements for Bridge Pier Protection are provided in *FDM 215.4.5.4*.

Considerations regarding Positive Protection in Work Zones are provided in *FDM 215.4.9*.
215.4 Longitudinal Barriers, Barrier Transitions, End Treatments & Crash Cushions

Roadside barriers, transitions, end treatments (trailing anchorages and approach terminals), and crash cushions must be full-scale crash tested in accordance with either:

1. NCHRP Report 350: Recommended Procedures for the Safety Performance Evaluation of Highway Features (NCHRP 350), or
2. AASHTO Manual for Assessing Safety Hardware, 2016 (MASH).

Bridge Traffic Railings must be evaluated and designed in accordance with the Structures Design Guidelines (SDG).

The criteria for crash testing specified in NCHRP 350 and MASH provides six Test Levels (TL-1 thru TL-6) for the evaluation of roadside hardware suitability with consideration for vehicle type, mass, speed and impact angle. Each Test Level provides an increasing level of service in ascending numerical order. For additional information regarding appropriate application of Test Levels for Barrier Type Selection refer to FDM 215.4.5 and the AASHTO RDG.

Barriers, transitions, and end treatments consist of both proprietary and non-proprietary devices. Non-proprietary/Standardized devices are detailed in the Standard Plans. Proprietary products are included on the APL. These devices address the majority of roadside needs on the State Highway System.

Non-standard roadside hardware (i.e. devices not included in either the Standard Plans or the APL) may sometimes be needed to address unique situations, but are not permitted without prior approval by the Structures Design Office (SDO) for traffic railings (e.g., bridges, noise walls, wall copings), or the Roadway Design Office (RDO) for other roadside hardware. For additional information on the use of Non-Standard Roadside Safety Hardware refer to FDM 215.8.

215.4.1 Longitudinal Barriers

215.4.1.1 Flexible Barrier

Flexible Barrier systems provide the least severe impact conditions with the greatest deflections. The only Department-approved flexible barrier system is High Tension Cable Barrier (HTCB) and is currently available for implementation through the Departments Developmental Standard Plans process. Detailed information on the usage

215-Roadside Safety
requirements and design criteria of HTCB can be found on the Department’s Website (https://www.fdot.gov/design/standardplans/), which includes the following:

- Developmental Standard Plans Instructions, D540-001
- Developmental Standard Plans, Index D540-001
- Developmental Specification, Dev540

When considering the use of a Developmental Standard Plans Index, review the Developmental Standard Plans Usage Process included in FDM 115.

215.4.1.2 Semi-Rigid Barrier

The Department’s Semi-Rigid Barrier is W-Beam Guardrail per Standard Plans, Index 536-001 and 536-002. The available options for W-Beam Guardrail are:

- General, TL-3 Guardrail – Post spacing at 6'-3” (TL-3, MASH)
- Low-Speed, TL-2 Guardrail – Post spacing at 12’-6” (TL-2, MASH)

W-Beam Guardrail, with a rail height of 2’-1” to center of panel and midspan splices, was developed based on the 31” Midwest Guardrail System (MGS). Compatible proprietary components may be referred by the 31” height.

General, TL-3 Guardrail may be used for all design speeds; however, installations on roadways with Design Speeds > 45 mph must have a minimum length of 75 feet, unless attached to a permanent rigid barrier.

Low-Speed, TL-2 Guardrail is limited to use on flush shoulder roadways with Design Speeds ≤ 45 mph.

Installations of W-Beam Guardrail with 8-in offset blocks on wood or steel posts are detailed in Standard Plans, Index 536-001. W-Beam guardrail may also be installed at a reduced post spacing (i.e. less than 6'-3") to reduce deflection of the system. Reduced post spacing may be used for all design speeds in accordance with spacing and setback requirements provided in Table 215.4.2.

The use of Thrie-Beam Guardrail panels is restricted to Thrie-Beam Retrofits (e.g., Metal Traffic Railings) and Barrier Transitions only.
215.4.1.3 Rigid Barrier

Rigid Barriers are assumed to exhibit no deflection under impact conditions; however, crash severity will likely be the highest of all barrier options. Rigid barrier includes Concrete Barriers and Traffic Railings. Concrete barriers are included for roadway applications and Traffic Railings are designed for structural applications (e.g., bridges, noise walls, wall copings).

Align Rigid Barrier parallel to adjacent traffic lanes; this orientation may vary by the maximum taper rates given in the Standard Plans Instructions for Index 521-001.

Modifications to Rigid Barriers require approval from Office of Design (SDO or RDO). Modifications may include the following:

- Reinforcement details
- Surface treatments
- Material substitutions
- Geometric discontinuities along the length of the barrier
- Non-standardized attachments that do not meet the requirements of either this manual or SDG
- Non-standardized and unfilled pockets or blockouts
- End transition details
- Traffic face geometry

Rigid Barriers include the following:

1. Single-Slope Concrete Barriers (roadside applications):
 b. Shoulder – Standard Plans, Index 521-001 (TL-4, MASH)
 c. Curb & Gutter - Standard Plans, Index 521-001 (TL-2, MASH)
 d. Retaining Wall Shielding – Standard Plans, Index 521-001 (TL-4, MASH)
 e. Pier Protection – Standard Plans, Index 521-002 (TL-5, MASH)
(2) Traffic Railings (bridges, noise walls, and wall copings):

(a) Bridges – **Standard Plans, Index 521-422 thru 521-427** (TL-4, MASH) and **Index 428** (TL-5, MASH)

(b) Thrie-Beam Retrofits – **Standard Plans, Index 460-470 thru 460-476** (TL-3, MASH) and **Index 460-477** (TL-2, MASH)

(c) Vertical Face Retrofits – **Standard Plans, Index 521-480 thru 521-484** (TL-3, MASH)

Note: Use Tapered End Transition, **Standard Plans, Index 521-484**, for Design Speed ≤ 40 mph only. Not permitted within the clear zone of approaching traffic unless site-specific justification is provided and approved by the District Design Engineer.

(d) Noise Wall – **Standard Plans, Index 521-509 thru 521-515** (TL-4, MASH) (TL-5 option available from Structures Design Office)

Design bridge railings in accordance with the **SDG**. Superseded FDOT Standard New Jersey Shape and F-Shape Traffic Railings conforming to the designs shown in **Standard Plans Instructions** for **Index 536-002**, “A Historical Compilation of Superseded Florida Department of Transportation ‘Structures Standard Drawings’ for ‘F’ and ‘New Jersey’ Shape Structure Mounted Traffic Railings”, are both structurally and functionally adequate for TL-3 MASH.

For information regarding existing traffic railings, see **FDM 215.7.4**.

Details and typical applications of standard bridge railings are provided in **Figures 215.4.1 – 215.4.10**. Refer to **FDM 222.4** for details of pedestrian/bicycle railings and fencing.
Figure 215.4.1 Bridge Traffic Railings – Single Slope Railings

- Typical application is a Traffic Railing on a bridge deck edge or between a shoulder and a sidewalk.
- Not suitable as a pedestrian or bicycle railing at bridge deck edge unless used with Bullet Railing shown in, Indexes 515-021 & 515-022.
- Section thru Railing on Bridge Deck Shown, Section thru Railing on Approach Slab and Permanent Retaining Wall Similar.

SECTIONAL VIEW NO. 1 – 36" SINGLE-SLOPE TRAFFIC RAILING
STANDARD PLANS, INDEX 521-427
W/INDEXES 515-021 & 515-022 (OPTIONAL)

- Typical application is a Traffic Railing on a bridge deck edge or between a shoulder and a sidewalk.
- No additional pedestrian rails permitted.
- Section thru Railing on Bridge Deck Shown, Section thru Railing on Approach Slab and Permanent Retaining Wall Similar.

SECTIONAL VIEW NO. 2 – 42" SINGLE-SLOPE TRAFFIC RAILING
STANDARD PLANS, INDEX 521-428
Figure 215.4.2 Bridge Traffic Railings – Vertical Shapes

- Typical application is a bridge deck edge Traffic Railing at the back of a raised sidewalk, design speed ≤ 45 mph or as a pedestrian railing behind a Traffic Railing (without a raised sidewalk).
- No additional pedestrian rails permitted.
- Section thru Railing on Bridge Deck Shown, Section thru Railing on Approach Slab and Permanent Retaining Wall Similar.

SECTIONAL VIEW NO. 3 – 32" VERTICAL-SHAPE TRAFFIC RAILING
STANDARD PLANS, INDEX 521-423
W/INDEXES 515-021 & 515-022 (OPTIONAL)

SECTIONAL VIEW NO. 4 – 42" VERTICAL SHAPE TRAFFIC RAILING
STANDARD PLANS, INDEX 521-422
Figure 215.4.3 Bridge Traffic Railings – Other Shapes

SECTIONAL VIEW NO. 5 - FLORIDA CORRAL SHAPE TRAFFIC RAILING

- Typical application is a Traffic Railing on a bridge deck edge or between a shoulder and a sidewalk.
- No pedestrian rails permitted.
- Section thru Railing on Bridge Deck Shown, Section thru Railing on Approach Slab and Permanent Retaining Wall Similar.

SECTIONAL VIEW NO. 6 - THREE-BEAM RETROFIT TRAFFIC RAILING

- Typical application is a retrofit in front of or in place of an existing non-crashworthy traffic railing.
- No additional pedestrian rails permitted.
- Section thru Railing on Bridge Deck Shown, Section thru Railing on Approach Slab and Permanent Retaining Wall Similar.

SECTIONAL VIEW NO. 7 - VERTICAL-FACE RETROFIT TRAFFIC RAILING

- Typical application is a retrofit in front of or in place of an existing non-crashworthy traffic railing.
- No additional pedestrian rails permitted.
- Section thru Railing on Bridge Deck Shown, Section thru Railing on Approach Slab and Permanent Retaining Wall Similar.
Figure 215.4.4 Bridge Traffic Railings – Median Traffic Railing and Traffic Railing/Noise Wall Combination

- Typical application is a Traffic Railing to separate two-way traffic.
- Section thru Railing on Bridge Deck Shown, Section thru Railing on Approach Slab Similar.

SECTIONAL VIEW NO. 8 - 36" SINGLE-SLOPE MEDIAN TRAFFIC RAILING
STANDARD PLANS, INDEX 521-426

- Typical application is Traffic Railing / Noise Wall on a bridge deck edge.
- Noise Wall typically continues beyond bridge ends onto approach roadways.
- Section thru Railing on Bridge Deck shown, Section thru Railing on Approach Slab, Permanent Retaining Wall and Ground Mounted similar.

SECTIONAL VIEW NO. 9 - 8' & 14' TRAFFIC RAILING / NOISE WALL
STANDARD PLANS, INDEXES 521-509 THRU 521-515
215.4.1.4 Temporary Barriers

Temporary Barriers are used in work zones to protect motorists and as Positive Protection to safeguard construction workers while construction activities are taking place. General information about the application of Temporary Barriers can be found in Standard Plans, *Index 102-100*. For information about the use of Temporary Barriers with bicycle or pedestrian temporary traffic control, see FDM 240.

Temporary Barriers are installed in either ‘Anchored’ or ‘Free-standing’ conditions based on the barrier type and needed setback distance. See the Installation Data table provided in Standard Plans, *Index 102-100* for the lateral offset and setback distance requirements.

Temporary Barriers include the following:

3. Proprietary Temporary Barrier – See APL (TL-3, NCHRP 350 and MASH)

Low Profile Barriers are required for Work Zone Speeds of ≤ 45 mph where temporary barrier is needed within 100 feet of an intersection, residential driveway or business entrance. Use of other barriers is not permitted at these locations due to sight distance limitations. Low Profile Barrier can be used on bridges where no drop-off is present. Transitions from Low Profile Barrier to other temporary barriers within a run of barrier (i.e. from begin length of need to end length of need) is not permitted.

Type K Barrier is a portable concrete barrier which has the capability of being anchored (i.e. staked or bolted) to limit deflections or installed in a free-standing configuration. See Standard Plans, *Index 102-110* for specific requirements for the use of Type K Temporary Concrete Barrier Refer to Standard Plans, *Index 102-110* for details on transitioning between the Type K Temporary Concrete Barrier on bridges and other concrete barrier systems on the adjoining roadway.

Proprietary Steel Barriers (anchored only), Water Filled Barriers (free-standing only) and portable concrete barriers (free-standing or anchored) must be used in accordance with the Vendor drawings on the APL. To allow for the use of APL devices refer to temporary barrier the Plans as either ‘Anchored’ or ‘Free-standing’, unless specific limitations are required. Proprietary steel barriers listed on the APL are anchored to limit deflections; however, barrier heights and drainage performance may limit some systems.

Anchored (bolted) temporary barriers are not permitted on bridge superstructures that contain post-tensioned tendons within the concrete deck (top flange of concrete box
girders) or on bridge superstructures consisting of longitudinally prestressed, transversely post-tensioned, solid, or voided concrete slab units.

If Flexible (HTCB, Index D540-001) or Semi-Rigid (Guardrail, Index 536-001) barrier is used in a temporary configuration, or allowed to remain during a portion of the Temporary Traffic Control (TTC) Plan, requirements for the permanent application of barrier must be met; e.g., grading, deflection space, offset from Edge of Traveled Ways.

215.4.2 End Treatments

Non-crashworthy longitudinal barrier ends are hazards for approach direction when terminated within the clear zone. Crashworthy end treatments for each barrier type (flexible, semi-rigid, and rigid) are provided in the Standard Plans.

Flexible barrier end treatments are vendor-specific. For additional information regarding the end treatment of HTCB, refer to Developmental Standard Plans, Index D540-001, as referenced above.

215.4.2.1 Guardrail End Treatments

Guardrail end treatments are necessary to provide crashworthy ends for approaches and anchorage of the guardrail system. For the guardrail to provide adequate redirective capabilities during a vehicle impact, anchorage of the system is needed for tensile (ribbon) strength to develop in the guardrail panels. Approach terminals provide both anchorage of the guardrail system and a crashworthy approach. End treatments for guardrail are categorized as follows:

1. Approach Terminals – required for guardrail ends within the clear zone of approaching traffic. Guardrail approach terminals must be a proprietary device listed on the APL. MASH compliant approach terminals are required for new installations. For additional information, see Standard Plans, Index 536-001. Approach terminals are classified by the following:
 - Test Level:
 - TL-2 (Design Speeds ≤ 45 mph)
 - TL-3 (All Design Speeds)
 - Connection Type:
 - Single-Faced (crashworthy on one side)
 - Double-Faced (crashworthy on both sides)
(2) Crash Cushions – See FDM 215.4.3 and Standard Plans, Index 544-001.

(3) Trailing Anchorages – required for anchoring of the trailing ends of guardrail. Trailing anchorages are non-crashworthy as an approach end treatment, and are not permitted as a guardrail end treatment on the approach end within the clear zone, unless shielded by another run of barrier. The trailing anchorage is detailed in the Standard Plans, Index 536-001.

215.4.2.2 Rigid Barrier End Treatments

Terminate rigid barrier by either transitioning into another barrier system (e.g., guardrail), or by shielding with a crash cushion. Details and requirements are provided in the Standard Plans.

Sloped concrete end treatment using a vertical height transition, detailed in Standard Plans, Index 521-001, are not permitted within the clear zone of approaching traffic lanes. With sufficient justification the District Design Engineer may grant approval for use of this end treatment within clear zone for very low design speeds (35 mph and less), and only when no other more crashworthy solution is available.

Treatment of the trailing end of rigid barriers is not required unless additional hazards exist beyond the rigid barrier or the barrier is within the clear zone of opposing traffic.

215.4.2.3 Temporary Barrier End Treatments

The required treatments for exposed ends of temporary barriers are:

(1) Connecting to an existing barrier (smooth, structural connections are required - Refer to Standard Plans, Indexes 102-100 and 102-110, or the APL);

(2) Shield end with a crash cushion as detailed in the Standard Plans or APL for the specific type of temporary barrier (i.e. Temporary Concrete, Steel, or Water Filled);

or,

(3) Flaring outside of the Work Zone clear zone (See Standard Plans, Index 102-600)

No modifications to the end treatments included in the Standard Plans or APL are permitted. Special conditions may require end treatments other than those included above. If this occurs, consult the State Roadway Design Office (RDO) and provide special details in the Plans.
215.4.3 Crash Cushions

Crash cushions (impact attenuators) are used to protect motorists from the exposed ends of barriers, fixed objects and other hazards within the clear zone. They are energy absorbing devices that may be redirective non-gating, or non-redirective gating. Crash cushions are classified based on Test Level and design speed, as shown for each system on their respective APL drawings.

The design of a crash cushion system must not create a hazard to opposing traffic. APL drawings provide details for transitions for optional barrier types with and without bi-directional traffic.

An impacting vehicle should strike the systems at normal height, with the vehicle's suspension system neither collapsed nor extended. Therefore, the terrain surrounding crash cushions must be flat (1:10 or flatter) in advance of and along the entire design length of the system. Curb placement in the approach area of crash cushions is only permitted where project constraints prevent usage of flush shoulders or alternative barrier configurations.

215.4.3.1 Permanent Crash Cushions

Permanent crash cushions must be redirective non-gating. Standard details of systems for typical installations shielding concrete barrier wall ends and guardrail ends can be found on the APL under Section 544. In addition, some of these systems have standard details for shielding wide hazards. For applications not covered in the APL drawings, crash cushion vendors normally provide design assistance for their systems. Special designs must be detailed in the Plans and based on meeting the performance criteria for the established design speed of the facility (i.e. barrier system Test Level). For additional information, see Standard Plans, Index 544-001.

215.4.3.2 Temporary Crash Cushions

Two types of temporary crash cushions are permitted;

- Redirective non-gating crash cushions
- Non-redirective gating crash cushions

Redirective crash cushions will shield hazards by redirecting errant vehicles impacting the side of the crash cushion and decelerate errant vehicles from a direct, in-line impact at the terminus of the crash cushion by absorbing the energy.
Gating crash cushions are designed to decelerate errant vehicles from a direct, in-line impact at the terminus of the crash cushion by absorbing the energy, but provide no redirective capabilities for side impacts. Use of gating crash cushions requires approval from the State Roadway Design Office (RDO). Gating cushions may be appropriate on low speed facilities and in work zones with higher speeds where only low impact angle hits are expected. An adequate clear runout area must be provided beyond a gating crash cushion (between the departure line and the clear zone). Plan details for site specific design are required.

Approved temporary crash cushions for use on Department contracts are listed on the APL under Section 102. Sand barrel gating systems are not permitted.

Anchored (bolted) temporary crash cushions are not permitted on bridge superstructures that contain post-tensioned tendons within the concrete deck (top flange of concrete box girders) or on bridge superstructures consisting of longitudinally prestressed, transversely post-tensioned, solid, or voided concrete slab units.

215.4.4 Barrier Transitions

Guardrail transitions are necessary, whenever standard W-Beam guardrail converges with rigid barriers. Guardrail transitions must include sound structural connections, nested panels and additional posts for increased stiffness. Use the guardrail transitions included in the Standard Plans as follows:

(1) General, Guardrail Approach Transition Connection to Rigid Barrier – Index 536-001 (Single or Double Faced Guardrail, TL-3, MASH), Approved for all Design Speeds

(2) Low Speed, Guardrail Approach Transition Connection to Rigid Barrier – Index 536-001 (Single Faced Guardrail only, TL-2, MASH), Only approved for Design Speeds ≤ 45 mph

(3) Trailing End Transition Connection to Rigid Barrier – Index 536-001 (Test Level N/A), Approved for all Design Speeds.

Various other barrier transitions are detailed throughout the Standard Plans and APL drawings for transitions from temporary barriers to permanent rigid barriers and transitions from variable height/shape rigid barriers.
215.4.5 Barrier Type Selection

Consider the following factors when determining the appropriate barrier type:

1. Barrier Placement requirements (see FDM 215.4.6)
2. Traffic characteristics (e.g., volume, percent trucks)
3. Site characteristics (e.g., terrain, alignment, geometry, access facility type, access locations, design speed)
4. Expected frequency of impacts
5. Initial and replacement/repair costs
6. Ease of maintenance
7. Exposure of workers when conducting repairs/maintenance
8. Aesthetics

For additional information about considerations for barrier selections refer to the AASHTO RDG. Document barrier type selection decisions and warrants.

215.4.5.1 Longitudinal Barrier Selection

There are three options for longitudinal barrier; HTCB, W-Beam Guardrail, and Rigid Barrier. Table 215.4.1 provides guidance regarding roadway barrier type selection.

Specific requirements for the selection of HTCB are provided in the Standard Plans Instructions for Index D540-001.

Refer to the SDG for barrier type and test level selection of Traffic Railings.
Table 215.4.1 Roadway Barrier Type Selection

<table>
<thead>
<tr>
<th>Barrier Type</th>
<th>Deflection Space Requirement (feet)</th>
<th>Order of Bias</th>
<th>Test Level</th>
<th>Design Vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTCB</td>
<td>12</td>
<td>LOW</td>
<td>HIGH</td>
<td>TL-4 (NCHRP 350)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOW</td>
<td></td>
<td>Passenger Car, Pickup Truck, & Single-Unit Truck</td>
</tr>
<tr>
<td>W-Beam Guardrail</td>
<td>5</td>
<td>LOW</td>
<td>HIGH</td>
<td>TL-2 & TL-3 (MASH)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Passenger Car & Pickup Truck</td>
</tr>
<tr>
<td>Rigid Barrier</td>
<td>0</td>
<td>HIGH</td>
<td>LOW</td>
<td>TL-3, TL-4 & TL-5 (MASH)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Passenger Car, Pickup Truck, Single-Unit Truck & Tractor-Van Trailer</td>
</tr>
</tbody>
</table>

215.4.5.2 End Treatment Selection

Select end treatments in accordance with FDM 215.4.2, the Standard Plans and the Standard Plans Instructions for each applicable barrier type.

215.4.5.3 Crash Cushion Selection

Various types of energy absorbing devices eligible for use on Department projects as crash cushions can be found on the APL. Detailed information about these systems is provided in the Standard Plans, APL, and in each manufacturer’s publications. Each system has unique physical and functional characteristics.
For permanent crash cushion applications, indicate in the Plans the requirements for each given location in accordance with Standard Plans, Index 544-001, and FDM 307, including the:

1. Location (station and side),
2. Barrier system (concrete barrier wall or guardrail),
3. Design length,
4. Design speed,
5. Crash test level, and
6. Hazard width and length restriction.

Site characteristics and economics dominate crash cushion selection considerations. Some crash cushion systems are relatively low in initial cost, but usually must be completely replaced when struck, so are more appropriate in locations with a low likelihood of collision. There are a number of other systems that have higher initial costs but can be repaired after collisions relatively quickly and inexpensively, so are more appropriate where frequent collisions are anticipated. The ability of maintenance forces to perform routine maintenance and to place a crashed system back into service quickly should be a major consideration. Do not use crash cushions that require stocking unusual and expensive parts or those that are complex to replace.

215.4.5.4 Pier Protection

In addition to shielding bridge piers to protect motorists from a hazard within the clear zone, bridge piers may need shielding for protection from damage due to design limitations (i.e. piers not designed for vehicular collision forces). Coordination with the Structural Engineer of Record is required to determine if pier protection is warranted.

The requirements for Pier Protection are outlined in the SDG, Section 2.6. The process for determining the appropriate level of Pier Protection for New Construction projects is presented in Figure 215.4.5 (Pier Protection Selection Flowchart). For RRR and railroad requirements, refer to the SDG. Detail Pier Protection barrier in accordance with Standard Plans, Index 521-002.
Figure 215.4.5 Pier Protection Selection Flowchart (New Construction)

Start

Is offset from column to edge of traveled way < 30'? (1)

No

Is column within clear zone or lateral offset? (3)

Yes

Design for 600 kip load? (1)

No

Is AF_{ere}: < 0.0001 Critical Bridge? < 0.001 Typical Bridge? (1), (2)

Yes

Is offset from barrier to column < 10'-9"? (5)

Yes

Provide barrier per (4)

No

No barrier or guardrail required

LEGEND

(1) – LRFD 3.6.5.1
(2) – SDG 2.6.1.A
(3) – FDM 215.2
(4) – Index 536-001 or 521-001, and FDM Table 215.4.2
(5) – Index 521-002

Use 56" barrier per (5)

Use 44" barrier per (5)
215.4.6 Barrier Placement

The primary design factors associated with barrier placement are:

1. Lateral Offset from the Edge of Traveled Way,
2. Deflection Space Tolerance,
3. Terrain Effects,
4. Length of Need,
5. Space for End Treatments, and
6. Outside Shoulder or Median Application

215.4.6.1 Barrier Offset

Place W-Beam Guardrail and Rigid Barriers at the offsets described below. See Developmental Standard Plans Instructions for Index D540-001 for the barrier placement requirements for HTCB.

Requirements for guardrail offsets are illustrated in Figure 215.4.6.

For flush shoulder roadways, the standard offset for W-Beam Guardrail, measured from the Edge of Traveled Way to the face of guardrail, is the full shoulder width plus 2 feet, not to exceed 12 feet. The 12-foot offset limit for guardrail is established to reduce the potential for impacts where the vehicle is behaving significantly different than the crash tested conditions (i.e. non-tracking, fish-tailing, excessive approach angle, etc.). Guardrail offsets greater than 12 feet require site-specific justification in accordance with FDM 215.4.7, unless the condition is based on requirements of the Standard Plans, FDM 215.4.6.4 for Median Barrier, FDM 215.3.2 for Canal Hazards, or shoulder gutter segments. For shoulder gutter segments only, guardrail may be placed with a 14-foot offset to accommodate a 12-foot useable shoulder width.

Note: Consider exceeding the 12-foot offset limit where required to avoid guardrail post conflicts with structures or utilities. This is preferred over the use of encased or special guardrail posts. If the 12-foot offset limit is exceeded, provide site-specific justification per above and extend the shoulder grading to maintain the requirements of FDM 215.4.6.2. When curb is present, the preferred configuration is to place the face of guardrail at 5 inches behind the face of curb. For design speeds ≤ 45 mph, the face of guardrail may also be placed between 4 feet and 12 feet behind the face of curb.

Rigid Barrier is typically used when there are barrier deflection or right-of-way limitations. For flush shoulder roadways, the general offset for Rigid Barrier, measured from the Edge
of Traveled way to the barrier gutter line, is the full shoulder width. This offset may vary where differing barrier placement is justified for site-specific conditions (e.g., barrier taper across median, alignment for shielding bridge piers or sign supports, or coordination with drainage structures). Extend adjacent shoulder pavement to close gaps between the nearest paved shoulder and the rigid barrier. Follow additional offset requirements for specific conditions shown in the Standard Plans. Rigid Barrier, with the exception of F-Shape or Single-Slope barriers with a height less than 42”, may be used in combination with curbs, and provide an acceptable alternative to the areas excluded for guardrail use in Figure 215.4.6.
Figure 215.4.6 Lateral Offset to Guardrail

LATERAL OFFSET

* LATERAL OFFSET:
1. FULL SHOULDER WIDTH PLUS Z
2. 12" MAX. FOR SHOULDERS ≥ 10'
3. 8" MIN. FOR MEDIAN SHOULDERS ≤ 6'

WITHOUT SHOULDER GUTTER

WITH SHOULDER GUTTER

FLUSH SHOULDERS

Y = 0 or 5 inches

ALL DESIGN SPEEDS

X = 4 to 12 feet

≤ 45 MPH DESIGN SPEED

CURB AND GUTTER

215-Roadside Safety
In addition to travel lane lateral offset considerations, an adequate setback must be provided behind the barrier to ensure proper function. Setback is the distance between the face of the barrier and the aboveground hazard behind the barrier. For flexible and semi-rigid barriers, the setback is based on deflection tolerances and is required to prevent the barrier from contacting aboveground hazards or breakaway devices.

For rigid barriers, the setback is required to keep the area above and behind the barrier face free of obstructions that could penetrate or damage the vehicle compartment. This requirement is based on the “Zone of Intrusion” concept as described in the AASHTO RDG. Table 215.4.2 provides the Setback requirements for FDOT standard barriers. Additionally, Figure 215.4.7 includes setback distances to rigid barriers for discontinuous elements. These requirements do not apply to devices detailed in the Standard Plans as attachments to rigid barriers (e.g., pedestrian/bicycle bullet railing, bridge fencing, traffic railing/noise wall combinations).
<table>
<thead>
<tr>
<th>Barrier Type</th>
<th>Setback Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexible Barrier</td>
<td></td>
</tr>
<tr>
<td>High Tension Cable Barrier (HTCB)</td>
<td>12 feet, 0 inches</td>
</tr>
<tr>
<td>Semi-Rigid Barrier</td>
<td></td>
</tr>
<tr>
<td>W-Beam with Post Spacing @ 6 feet, 3 inches (TL-3)</td>
<td>5 feet, 0 inches</td>
</tr>
<tr>
<td>W-Beam with Post Spacing @ 12 feet, 6 inches (TL-2)</td>
<td>5 feet, 0 inches</td>
</tr>
<tr>
<td>W-Beam with Post Spacing @ 3 feet, 1.5 inches (¼ Spacing)</td>
<td>3 feet, 10 inches</td>
</tr>
<tr>
<td>W-Beam with Post Spacing @ 1 foot, 6.75 inches (¼ Spacing)</td>
<td>3 feet, 2 inches</td>
</tr>
<tr>
<td>Nested W-Beams with Post Spacing @ 3 feet, 1.5 inches (¼ Spacing)</td>
<td>3 feet, 0 inches</td>
</tr>
<tr>
<td>Nested W-Beams with Post Spacing @ 1 foot, 6.75 inches (¼ Spacing)</td>
<td>2 feet, 8 inches</td>
</tr>
<tr>
<td>Deep Post W-Beam installed on 1:2 Slope Break with Post Spacing @ 6 feet, 3 inches (TL-3)</td>
<td>5 feet, 6 inches</td>
</tr>
<tr>
<td>Rigid-Barrier</td>
<td></td>
</tr>
<tr>
<td>Concrete Barrier < 40” Height</td>
<td>0 feet, 0 inches</td>
</tr>
<tr>
<td>Concrete Barrier < 40” Height</td>
<td>1 foot, 6 inches</td>
</tr>
<tr>
<td>Non-crash Tested Continuous or Discontinuous Items</td>
<td></td>
</tr>
<tr>
<td>Concrete Barrier ≥ 40” Height</td>
<td>0 feet, 0 inches</td>
</tr>
<tr>
<td>Bridge Traffic Railing</td>
<td></td>
</tr>
<tr>
<td>Non-crash Tested Continuous Items</td>
<td>5 feet, 0 inches</td>
</tr>
<tr>
<td>Non-crash Tested Discontinuous Items</td>
<td>See Figure 215.4.7</td>
</tr>
<tr>
<td>Temporary Barriers</td>
<td></td>
</tr>
<tr>
<td>See “Setback Distance” of applicable Standard Plans, Index or APL drawing.</td>
<td></td>
</tr>
</tbody>
</table>
Noise Wall/Traffic Railing combinations located within the setback distance must be crash tested to or accepted as TL-4 under MASH. Other continuous items (e.g., glare screens and fences) located within this setback distance must be crash tested to or accepted as TL-3 under NCHRP 350 or MASH.

See FDM 215.5 for additional information regarding discontinuous attachments to rigid barriers.

215.4.6.2 Grading Requirement

The terrain effects between the traveled way and a barrier can have a significant impact on whether or not a barrier will perform as intended. Proper grading around a barrier will ensure that as a vehicle approaches a barrier its suspension is not dramatically affected, causing the vehicle to underride or override a barrier.
Install barriers on slopes 1:10 or flatter. Continue the 1:10 slope a minimum 2 feet beyond the barrier (i.e. from either the guardrail post or rigid barrier) before providing a slope break.

With approval of the District Design Engineer and where conditions are constrained, the Deep Post guardrail option may be used in lieu of providing a 2-feet setback to the slope break point. Coordinate the use of the Deep Post guardrail option with the District Drainage Engineer and District Maintenance Engineer. See Deep Post details in **Standard Plans, Index 536-001** “Slope Break Condition”.

Proper grading around crashworthy end treatments is essential to assure the device performs as intended. Grading requirements are shown in the **Standard Plans**.

For superelevated roadway sections, a maximum 7% algebraic difference is permitted between the travel lanes and shoulder in advance of barriers. See **FDM 215.4.6.5** for temporary barrier requirements in superelevated roadway sections.

215.4.6.3 Length of Need

Length of need is used to determine the required placement of barrier, relative to hazards. Use the requirements provided in the **Standard Plans Instructions** or the **Standard Plans** to establish length of need for each barrier type.

Length of need is dependent on:

1. Barrier type
2. Design speed
3. Offset distance to the face of the barrier
4. The lesser distance to either the back of the hazard or the clear zone limit

On new construction and reconstruction projects, use clear zone width requirements for new construction in the length of need calculations. For existing hazards on RRR projects, new barrier installations may be designed using RRR clear zone width requirements for length of need calculations. See **Table 215.2.1**.

When existing project constraints prevent placement of barrier for the full length of need required, place the barrier to the greatest extent possible within the available space. Examples of existing project constraints include canals, side streets, driveways, and railroad crossings. Provide site-specific justification for not meeting the required length of need.

215-Roadside Safety
Extend the trailing end of barriers downstream, relative to hazards, in accordance with the Standard Plans Instructions. For Concrete Barrier and Bridge Traffic Railing, see the Standard Plans Instructions for Index 521-001.

215.4.6.4 Continuous Median Barriers

Continuous median barriers are used to mitigate median crossover crashes (i.e., reduce the number of vehicles that might enter opposing lanes of traffic after traversing a median).

Locate continuous median barrier in accordance with guidelines included in the AASHTO RDG, Section 6.6 and in accordance the Standard Plans.

In locations where a continuous median barrier is present, the length of a barrier opening should be minimized. As shown in FDM Exhibit 211-3, the barrier ends on each side of the opening should be offset. Provide crashworthy end treatments or crash cushions to shield the barrier ends when the ends are within the clear zone and fall within the departure angle used to set length of need. Provide crashworthy end treatments or crash cushions when the angle between barrier ends is less than 30 degrees, measured from the direction of mainline travel.

The preferred barrier option for continuous median barrier is High Tension Cable Barrier (HTCB), provided the requirements of the Developmental Standard Plans Instructions for Index D540-001 can be met. Evaluate other barrier options when the deflection and placement requirements for HTCB cannot be met.

Include Rub Rail on double faced w-beam guardrail installations as shown in Standard Plans, Index 536-001. Based on the full shoulder width as shown in Figure 215.4.6, locate double faced w-beam guardrail at a lateral offset of between 8 feet and 12 feet from the edge of traveled way. For medians with cross slopes of 1:6 of flatter, locate the barrier closest to the traveled way with the most likelihood or history of lane departure (e.g., outside of horizontal curves and sections with outside merge lanes). If median cross slopes greater than 1:6 exist, and HTCB is not feasible, install w-beam guardrail along both sides of the median or consider a grade separated (bifurcated) median with a concrete barrier.

Use concrete median barrier when the barrier offset requirements for flexible or semi-rigid barrier cannot be met or a higher test level barrier is justified. Implement concrete median barrier in accordance with Standard Plans, Index 521-001.
215.4.6.5 Requirements for Culverts

Roadside barriers placed at a culvert (i.e., box culvert, bridge culvert, or three-sided culvert) should be either W-Beam Guardrail or Bridge Traffic Railing. See Chapter 6 of the Structures Design Guidelines for more information regarding bridge traffic railings.

W-Beam Guardrail is the preferred barrier option, provided the grading, post embedment and length of need requirements can be met. A minimum of 4 feet of fill must be provided over the culvert for adequate post embedment and performance. If there is less than 4 feet of fill over the culvert, utilize one of the following options:

1. Culverts with total overall widths ≤ 5 feet: use W-Beam Guardrail with a post layout that straddles the outside of the culvert using standard post spacing of 6’-3”.

2. Culverts with total overall width between 5 feet and 20 feet: use shortened W-Beam guardrail posts (e.g., Encased Post for Shallow Mount). See Standard Plans, Index 536-001.

3. Culverts with total overall width > 20 feet: use a project specific designed metal traffic railing similar to the Thrie-Beam Retrofit barriers (i.e. thrie-beam railing attached directly to the culvert headwall), see the Standard Plans, Index 460 Series. Designers should note that the locations of the first and last posts are critical. Headwalls must be a minimum of 18 inches wide and the base plate must be located so that it is located at least 12 inches away from any construction joint or free end of the concrete headwall.

Placement of base plates and bolts in the top slab of the culvert barrel should be avoided because they are difficult to repair and maintain, the necessary anchor embedment lengths are problematic to obtain, and they are potentially damaging to the top of the culvert barrel.

Concrete rigid barrier or bridge traffic railing is typically not used due to the short length of culverts, unless continued along the roadway for other reasons.

215.4.6.6 Temporary Barriers

Installation instructions and flare rates are given in Standard Plans, Indexes 102-100, 102-110, 102-120 and 102-600.

A temporary or permanent pavement surface with a maximum cross slope of 1:10 is required when a temporary barrier is used. Refer to Standard Plans, Index 102-100 for setback distance and asphalt pad requirements.
Show or note the location of temporary barriers in the Temporary Traffic Control (TTC) Plans. Also provide a Work Area Access Plan for projects with work zones shielded with a barrier. For additional information regarding TTC Plans, refer to FDM 240.

The presence of barriers on both shoulders may eliminate any effective shoulder width or refuge area. The effective shoulder width is required to ensure an area is available for both disabled vehicles during normal traffic conditions and access for emergency responders during stopped conditions. Therefore, on interstate, freeway, and expressway projects requiring barriers on both sides of the work zone traveled way, provide a minimum 10-foot lateral offset from the edge of the traveled way to the barrier on at least one side of the roadway. Providing refuge to the outside is preferred. For conditions with more than three lanes in one direction, consider a 10-foot lateral offset on both sides of the roadway. See also, FDM 211.4.6 for Emergency Shoulder Use (ESU) requirements. Existing bridges and grade-separated approaches that are not along an ESU evacuation route need not be widened to meet this requirement. Consider providing this 10-foot lateral offset on arterials and collectors. For all other applications, provide the minimum lateral offset required per Standard Plans, Index 102-100.

When using existing barrier during a temporary traffic control operation or when 2-way traffic is placed on a facility that is normally one-way, the existing permanent or temporary barriers must be modified as necessary to ensure their proper crashworthiness during the temporary situation. This will include eliminating non-crashworthy end treatments, snag points or other protrusions normally angled away or hidden from approaching vehicles.

Existing permanent barriers used during temporary traffic control operations must meet grading, offset, and setback (i.e. deflection space) requirements for the permanent installation.

Temporary barriers, as defined in FDM 215.4.1.4, located in superelevated roadway sections must be installed on the same roadway cross slope as the travel lanes (i.e. no slope break in advance of the barrier).

215.4.7 Warrants for Roadside Barriers

The installation of roadside barriers presents a hazard in and of itself, and as such, requires an analysis for whether or not the installation of a barrier presents a greater risk than the feature it is intended to shield. The analysis should be completed using the Roadside Safety Analysis Program (RSAP) or in accordance with the AASHTO Highway Safety Manual (HSM). Refer to FDM 122.6 for guidance on evaluating the benefits of shielding using RSAP or the HSM.
Roadside barriers are recommended when hazards exist within the clear zone and do not meet minimum Lateral Offset, hazards cannot be cost effectively eliminated or corrected, and collisions with the hazards are more serious than collisions with the barriers.

The following conditions within the clear zone are considered more hazardous than a roadside barrier and preclude the requirement for RSAP or HSM analysis:

1. Drop-off Hazards, as defined in FDM 215.3.3.
2. Bridge piers, abutments and railing ends.
3. Non-traversable culverts, pipes and headwalls.
4. Non-traversable parallel or perpendicular ditches and canals.
5. Canals, ponds and other bodies of water.
6. Parallel retaining walls with protrusions or other potential snagging features.
7. Retaining walls at an approach angle with the edge of pavement larger than 7 degrees (1:8).
8. Non-breakaway sign or luminaire supports.
9. Trees greater than 4 inches in diameter measured 6 inches above the ground.
10. Utility poles.
11. Weaving Sections, as defined in FDM 211.12.1.

215.4.7.1 Treatment of Roadside Hazards

If a hazard, including slopes steeper than 1:3, is present within the clear zone, eliminate or shield the hazard, except when any of the following apply:

- Longitudinal barrier or crash cushion would be a greater hazard than the hazard to be shielded
- The likelihood of striking the hazard is negligible
- The expense of shielding the hazard outweighs the benefits in terms of crash reduction as determined through the use of RSAP or HSM analyses.

If crash data or safety reports indicate that treatment of the hazard will result in fewer or less severe crashes, implement one of the following treatments, in order of priority:

1. Eliminate the hazard.
 a. Remove the hazard.
(b) Relocate the hazard outside the clear zone.
(c) Make the hazard traversable or crashworthy.

(2) Shield the hazard with a longitudinal barrier or crash cushion.

215.4.8 Warrants for Median Barrier

Provide a median barrier on LA Facilities when:

(1) Reconstruction reduces the median width to less than what is required for the facility. Deviation from this criteria is not permitted. An RSAP or HSM analysis may be used to evaluate barrier alternatives and supplement the following requirements.

(2) One or more crossover crashes have occurred in the most recent 5-year period within the limits of 1 mile in advance of the exit ramp gore to 1 mile beyond the entrance ramp gore. The District may require shielding outside these areas after reviewing the most recent 5-year crash history.

On divided arterial and collector projects with design speed greater than 45 mph, review the most recent 5-year crash history for crossover crashes to determine if shielding with a median barrier is warranted. Consider alignment, sight distance, median width and frequency of median openings when evaluating the facility.

215.4.9 Positive Protection in Work Zones

For locations where work zone traffic barriers (i.e., Temporary Barriers) are required, refer to Standard Plans, Index 102-600. Work zone traffic barriers have four specific functions:

(1) Protect traffic from entering work areas (e.g., excavations or material storage sites).
(2) Provide positive protection for workers.
(3) Separate two-way traffic.
(4) Protect construction such as false work for bridges and other exposed objects.

Anticipate when and where barriers will be needed and include this information and the quantities on the Plans. Consider positive protection devices in work zone situations that place workers at increased risk from vehicular traffic, and where positive protection devices offer the highest potential for increased safety for workers and road users, such as:
(1) Work zones that provide workers no means of escape from vehicular traffic (e.g., tunnels, bridges).

(2) Long duration work zones (two weeks or more at the same location) resulting in substantial worker exposure to vehicular traffic.

(3) Projects with anticipated Work Zone speeds greater than 45 mph, especially when combined with high traffic volumes.

(4) Work operations that place workers close to travel lanes open to traffic.

(5) Roadside hazards (e.g., drop-offs, unfinished bridge decks) that will remain in place overnight or longer.

Modification for Non-Conventional Projects:
Delete the first sentence of the above paragraph and see RFP for requirements.

215.5 Attachments to Barriers

Allowable attachments to flexible or semi-rigid barriers (discontinuous or continuous) are detailed in the Standard Plans.

Use Standard Plans, Index 700-012 for signs attached to rigid barrier. Standard Plans, Index 700-013 can only be used to mount permanent signs to non-median rigid barriers when there is insufficient space for Standard Plans, Index 700-012 and the sign is critical to safety.

Design and detail attachments to rigid barriers in accordance with SDG 1.9. Provide setback distances as shown in Table 215.4.2 and Figure 215.4.7 to non-crash tested discontinuous items (e.g., light poles, sign supports, traffic signal controller boxes, flood gauges) that are attached to or behind rigid barriers located along the outside shoulder. Discontinuous items located within these setback distances must be crash tested to or accepted as TL-3, at a minimum, under NCHRP 350 or MASH as attachments to traffic railings.

For continuous items attached to rigid barriers, refer to the requirements of FDM 215.4.6.1.

Fender access ladders are exempt from these requirements. Sign panels may be placed within the given setback distances, however the setback to the sign support must be increased to assure sign panels do not extend past the top inside face of the traffic railing.
215.5.1 Median Barrier Attachments

215.5.1.1 Light Poles and Sign Supports

Use Standard Plans, Index 715-002 for light poles installed in conjunction with concrete median barriers or traffic railings. Overhead sign supports may be located on rigid barriers within the median to reduce span or cantilever lengths and provide more cost effective designs. When placing overhead sign supports on rigid barriers within the median, project specific details that supplement Standard Plans, Index 521-001 (e.g., foundation and reinforcement details) are required to be shown in the Plans.

Single column sign supports mounted on rigid barriers within the median are permitted only when requirements for sign visibility cannot be met by placing the sign supports on the outside of the shoulder barrier or beyond the shoulder. If single column sign supports must be mounted on a median traffic railing, utilize Standard Plans, Index 700-013. The signs listed in FDM 230.2.5 are the only permanent signs that may be used with Standard Plans, Index 700-013.

These requirements also apply to attachments made to back-to-back outside shoulder rigid barriers that are located so close together that the required setback distances cannot be provided for both barriers. The bridge traffic railings and supporting decks shown in Figure 215.4.7 that are located back-to-back are exempt from these requirements.

215.5.1.2 Opaque Visual Barrier

Opaque Visual Barrier is used on top of median concrete barrier and traffic railing to reduce headlight glare from opposing traffic lanes. Opaque Visual Barrier may be considered on LA Facilities that have glare issues when the facility has high-traffic volumes and a separation between opposing traffic lanes of 26 feet or less.

When Opaque Visual Barrier is used, a minimum shoulder width of 4 feet is required on both sides of the median concrete barrier or traffic railing.

Standard Plans, Index 521-010 and the associated Standard Plans Instructions provide additional information.
215.5.2 Existing Attachments to Barriers and Traffic Railings

Evaluate existing rigid barrier attachments on a case-by-case basis to ensure they are installed in accordance with the FDM and Standard Plans, Indexes 700-012, 700-013, or 715-002. Remove existing attachments not meeting these requirements.

215.5.3 Temporary Attachments to Barriers

Standard Plans, Index 700-012 or Index 700-013 may be used for temporary work zone signs when the application of Standard Plans, Index 102-600 cannot be achieved. Use Standard Plans, Index 700-012 only when mounting to the top of the barrier/railing places the sign panel closer than 2 feet from the traveled way.

For additional information on the design of temporary lighting in combination with temporary barrier, refer to FDM 240.4.2.13.

215.6 Surface Finishes

Class 5 coatings, tints or stains may be applied to roadway concrete barrier walls in order to be compatible with the treatment of bridge or retaining wall mounted traffic railings or for corridor uniformity. Approval by the District Design Engineer is required for the use of Class 5 coatings, tints or stains. Abrupt changes of aesthetic treatment of barriers, railings or parapets from a bridge to a roadway should be avoided. See SDG, Section 1.4.5 for the policy on bridge, noise wall and retaining wall surface finishes.

The Department will cover the cost for coating, tints or stains on roadway concrete barriers only as described above. If a Local Maintaining Agency desires a roadway concrete barrier with coatings, tints or stains and the concrete barrier does not qualify for such treatment as determined by the Department, the barrier may be treated with approval by the District Secretary. The Local Maintaining Agency must provide the additional construction funding for the coatings, tints, or stains and must commit to cover the associated maintenance costs for the service life of the barrier.

215.7 Existing Barrier Systems

When barrier systems are present on a project for which reconstruction of the roadside is not required, the existing barrier should be evaluated to determine if the barrier meets current structural, functional and crashworthy requirements. Remove or replace any
barrier installation which is found to be non-crashworthy or crash tested prior to NCHRP 350 test criteria. The evaluation should consider the following:

1. Warrants for the barrier. See FDM 215.4.4.
2. Length of need.
3. Guardrail panel height.
4. Offset at terminal end.
5. Clear deflection distance between the barrier and the shielded object.
6. Placement with respect to the traveled way, or face of curb.
7. Placement on the proper slope.
8. Clear recovery area behind gating end terminals.
9. Overall condition of the barrier system.
10. Post type and spacing.

In addition to the above evaluation requirements, existing roadside safety hardware must comply with the requirements of the following Sections.

215.7.1 Resetting Guardrail

For installations of guardrail where the barrier is determined to be deficient or requires relocating due to other work, but otherwise determined to consist of panels in good condition, the guardrail may be reset. If the guardrail system is determined to be non-reusable, remove and replace with new guardrail. Refer to Standard Specification 538 for additional information on reusable and non-reusable guardrail components.

When resetting existing guardrail, the guardrail will be reinstalled as 31” Guardrail reusing existing guardrail panels and posts (steel only) as shown in the current Standard Plans, Index 536-001. This resetting requires panels be reinstalled with the panel splices located at the midspan; therefore, consideration must be given to the effect this will have on the overall system length and if adjustments to the Begin/End Guardrail Station are needed.

Guardrail approach transition connections to rigid barrier, approach terminals, and trailing anchorages must be replaced with new hardware, panels, and posts when resetting guardrail.
215.7.2 Existing Longitudinal Roadway Barriers

Existing longitudinal guardrail sections that do not conform to 31” Guardrail must be upgraded or replaced, with the following exceptions:

1. **27” Guardrail** – Existing W-Beam guardrail installations installed to a 1’-9” mounting height (27” top height), meeting the requirements of the 2013 Design Standards with regards to delineation, height, deflection distance, grading, mounting hardware, length of need, and consisting of crashworthy end treatments tested to at least NCHRP 350, is acceptable and allowed to remain in place.

2. **Thrie-Beam Guardrail** – Existing Thrie-Beam guardrail meeting the installation requirements of 2013 Design Standards, and consisting of crashworthy end treatments tested to at least NCHRP 350, is acceptable and allowed to remain in place.

3. **Steel Blocks** – Existing 27” Guardrail constructed with steel blocks, which is not being evaluated for upgrading according to the criteria above, may remain in place for projects with Design Speeds ≤ 45 mph.

Replacing or resetting existing 27” Guardrail to meet the 31” Guardrail mounting height requirement is at the discretion of the District. Typically, if 50% or more of an existing run of 27” Guardrail is affected or if the existing installation is extended by 50% or more, the entire run should be replaced or reset with 31” Guardrail. The required clear deflection distances for 31” Guardrail are greater than the requirements for 27” Guardrail and should be considered when resetting guardrail to the new height.

Modification for Non-Conventional Projects:

Delete the last paragraph and see RFP for requirements.

Existing concrete barriers conforming to the current Standard Plans, Index 521-001, F-Shape, New Jersey shape barriers, and approved vertical faced concrete barriers may remain in place. Other concrete barrier shapes must be replaced.

Replacements and new installations must conform to the current Standard Plans.

See FDM 215.4.5.4 and SDG, Section 2.6, for barrier requirements for Pier Protection.
215.7.3 Existing End Treatments & Crash Cushions

Evaluate end treatments to ensure adequate length of need is provided and meet crashworthiness requirements. Remove or replace end treatments and crash cushions which are found to be non-crashworthy or crash tested prior to NCHRP 350 test criteria. Existing guardrail end treatments must be upgraded or replaced unless they conform to one of the systems identified on the APL, the current Standard Plans, or the 2013 Design Standards.

Replacements and new installations must conform to the current Standard Plans.

215.7.4 Existing Bridge Traffic Railing

Evaluate bridge traffic and pedestrian railings for conformance to current FDM criteria and Standard Plans whenever improvements are made to a bridge or its approach roadway. For non-compliant bridge railings:

(1) Retrofit bridge railing to bring them up to current standards, or
(2) Replace bridge railing, or
(3) Process a Design Variation, provided that a subsequent project that will remedy this condition is scheduled within a reasonable time.

See SDG 6.7 for traffic railing requirements, and SDG 6.8 and the following for pedestrian railing requirements.

Remove existing fences that are not in compliance with Standard Plans, Indexes 550-010 or 550-011, and existing pedestrian railings that are mounted on existing traffic railings located between the shoulder and the sidewalk (a.k.a. "inboard" traffic railings). Replace or retrofit the existing pedestrian railing or fence rather than completely removing it if there is a documented issue of traffic incidents involving pedestrians (at the site before installation of the existing pedestrian railing or fence on the inboard traffic railing) that would likely recur if the existing installation were to be removed. Use Standard Plans, Indexes 550-010 or 550-011, or another crashworthy pedestrian railing or fence that is compatible with the traffic railing, as appropriate. Retrofit existing bullet-type railings that are to remain on inboard traffic railings and that do not have the bullet railing member(s) oriented towards the traffic side of the railing to match Standard Plans, Index 515-021.

Retrofit existing installations of Standard Plans, Index 515-021, and other similar bullet-type railings, to include rail splice assemblies and tapered end transitions as shown on Standard Plans, Index 515-022 if they are not present. Retrofit the ends of other existing
crashworthy traffic railing mounted pedestrian railings to include a similar tapered end transition, or other appropriate approach end transition, if one is not present.

215.7.5 Existing Guardrail to Bridge Railing Transitions

Existing guardrail to bridge traffic railing approach and trailing end transition connections must be upgraded or replaced unless they conform to one of the following systems:

1. For approach ends of existing standard New Jersey Shape, F-Shape, and Single-Slope bridge traffic railings:
 - The nested Thrie-Beam approach transition shown as in the current Standard Plans or the 2013 Design Standards, Index 400.
 - For retrofitted installations, the appropriate nested Thrie-Beam transition shown in the current Standard Plans or the 2013 Design Standards, Index 402.
 - For a design speed ≤ 45 mph the nested w-beam approach transition shown as Detail J in the 1998 Roadway and Traffic Design Standards, Index 400, Sheet 7 of 21. This detail is also shown in the 2000 Roadway and Traffic Design Standards, Index 401, Sheet 1 of 9.

2. For approach ends of existing bridge traffic railing retrofits constructed in accordance with the 1987 through 2000 Roadway and Traffic Design Standards, Index 401, Schemes 1 and 19, “Concrete Safety Barrier”:
 - The appropriate nested Thrie-Beam transition shown in Standard Plans, Index 536-002.
 - For design speeds ≤ 45 mph the w-beam approach transition shown as Detail J in the 1987 Roadway and Traffic Design Standards, Index 400, Sheet 9 of 13, upgraded as shown in the 2013 Design Standards, Index 403 by the installation of a nested section of W-beam guardrail, additional guardrail posts and offset blocks and a transition block if a curb is not present beyond the bridge end.
 - For design speeds ≤ 45 mph the nested W-beam approach transition shown as Detail J in the 1998 Roadway and Traffic Design Standards Sheet 7 of 21, upgraded as shown in the 2013 Design Standards, Index 403 by the installation of a transition block if a curb is not present beyond the bridge end.

3. For trailing ends of existing bridge traffic railing retrofits constructed in accordance with the 1987 through 2000 Roadway and Traffic Design Standards, Index 401, Schemes 1 and 19, “Concrete Safety Barrier”:
In the absence of additional hazards on the trailing end, no end treatment is required.

When additional hazards are present on the trailing end, a w-beam trailing end treatment as shown in Standard Plans, Index 536-001.

For approach ends of existing structurally continuous Post and Beam bridge traffic railings that are not being retrofitted per FDM 215.7.4:

(a) A custom designed nested Thrie-Beam approach transition based on the current Standard Plans, Index 536-001.

(b) A nested Thrie-Beam approach transition based on the current Standard Plans, Indexes 536-002, 521-404 or 521-405.

(c) A custom designed nested Thrie-Beam approach transition based on the 1987 through 2000 Roadway and Traffic Design Standards, Index 401, Scheme 29.

For trailing ends of existing structurally continuous Post and Beam bridge traffic railings that are not being retrofitted, per FDM 215.7.4:

(a) In the absence of additional hazards on the trailing end, no end treatment is required.

(b) When additional hazards are present on the trailing end, a w-beam trailing end treatment as shown in the current Standard Plans, Index 536-001 or the 1987 through 2000 Roadway and Traffic Design Standards, Index 401.

(c) When additional hazards are present on the trailing end, a custom designed nested Thrie-Beam approach transition based on any design listed in No. 4 above.

For trailing ends of existing standard New Jersey Shape, F-Shape, and Single-Slope traffic railings:

(a) The w-beam to Special End Shoe connection shown in the 1980 through FY2016-17 Design Standards, Index 410.

Guardrail replacements and new installations connecting to standard New Jersey Shape F-Shape, and Single-Slope bridge traffic railings must conform to the current Standard Plans, Index 536-001. For guardrail retrofits connecting to existing bridge traffic railings, see the current Standard Plans, Indexes 536-002 or 460-477 and their associated Standard Plans Instructions.

Guardrail replacements, retrofits and new installations connecting to structurally continuous post and beam bridge traffic railings must conform to Standard Plans.
Indexes 521-404 or 521-405 and their Standard Plans Instructions. See the Standard Plans Instructions for details of structurally continuous post and beam traffic railings.

215.8 Non-Standard Roadside Safety Hardware

The use of Non-Standard Roadside Safety Hardware must be approved by the State Roadway Design Office (RDO). Roadside Safety hardware that is not listed on the APL, not shown in the Standard Plans is considered Non-Standard. The APL includes proprietary devices and products that have been evaluated for compliance with FDOT Standard Specifications and the Standard Plans. The majority of proprietary roadside safety hardware eligible for use on the State Highway System are identified on the APL. However, the devices included on the APL may not cover every roadside safety application. Unique situations will sometimes require unique devices. Examples of available devices that are not covered by the APL include but are not limited to barrier wall gates, aesthetic guardrail, temporary steel barriers, and crashworthy stop gates. When the need arises for a unique crashworthy device not included on the APL, carefully investigate the applicability of the device for the situation, as well as the crash performance characteristics of the device. For some of these devices, the State Roadway Design Office (RDO) may have information and be of assistance in establishing the appropriateness of the device for a given situation.

Provide the following documentation when requesting the approval of a device not included in the Standard Plans or APL:

(1) FHWA, Federal-Aid Reimbursement Eligibility Letter
(2) Crash Test Reports, including review of test results. Performance characteristics must be reviewed, including post impact vehicle behavior and post impact test article deflection, and debris scatter.
(3) Compatibility with adjacent and/or connecting standard roadside safety devices.
(4) Maintenance requirements and characteristics, including coordination with the District Maintenance Office.
(5) For devices such as barrier gates, operational plans and training as appropriate.

Project specific plan details, technical special provisions (TSP), and method of payment will be required and must be coordinated with the appropriate Department Offices.

Other barrier designs may be required by specific site conditions. Site specific conditions are identified and detailed in the plans.

215-Roadside Safety
216 Earthwork

216.1 General

Earthwork is a generic term for all items of work, materials and operations required to construct the excavated areas and the embankments of a project.

FDOT Specifications Sections 110, 120, and 125 define the terms, method of measurement, basis of payment, and pay items associated with earthwork.

In general, earthwork on a highway project consists of:

- **Clearing and Grubbing** – Complete removal of existing flexible pavement (asphalt and base) and rigid pavement. See Standard Specifications Section 110 for additional requirements.

- **Embankment** – Compacted fill material needed to construct the roadway. See Standard Specifications Section 120 for additional requirements.

- **Regular Excavation** – See Standard Specifications Section 120 for additional requirements.

- **Subsoil Excavation** – See Standard Specifications Section 120 for additional requirements.

- **Excavation for Structures and Pipe** – See Standard Specifications Section 125 for additional requirements.

The most important roadway operation involving earthwork is constructing the roadbed. The roadbed is constructed by excavating soil from cut sections and placing soil as embankments in fill sections. In cut sections, the roadbed is built below the original ground line, soil is excavated to the elevation of the proposed roadbed. In fill sections, the roadbed is built above the original ground line, soil is placed as embankment to the elevation of the proposed roadbed. The original ground line is defined as the contour of existing natural topography.
For projects involving construction over existing roadbeds:

- Removal of existing flexible and rigid pavement is included in the Clearing and Grubbing pay item, as defined in Standard Specifications Section 110. The clearing and grubbing depth within the existing pavement structure may vary since the existing shoulder and roadway bases are likely at different elevations (unless the existing shoulder was constructed at full depth).

- Excavation involves removal of material below the finished grading template of the existing pavement. The finished grading template is defined as the contour of the finished side slopes, unpaved shoulders, and the bottom of the shoulder and roadway base (clearing and grubbing limit) for flexible or rigid pavement.

Figure 216.1.1 illustrates cut and fill limits and details. Additional criteria and earthwork details are found in the Standard Plans, Indexes 120-001, 120-002, and 160-001.
Figure 216.1.1 Examples of Cut and Fill Limits

Case I: Natural Topography

- **CUT**: Area below the original ground line and above the finished grading template.
- **FILL**: Area below the finished grading template and above the original ground line.

Case II: Existing Roadbed

- **CUT**: Area between the finished grading templates of the existing and new pavement (excavation).
- **FILL**: Area between the finished grading templates of the existing and new pavement (embankment).

CUT & FILL LIMITS WITHOUT SUBSOIL EXCAVATION

- **CUT**: Area below the original ground line and above the finished grading template.
- **SUBSOIL EXCAVATION**: All material below the finished grading template that must be removed.

CUT & FILL DETAILS WITH SUBSOIL EXCAVATION

- **FILL**: Area below the finished grading template and above the lower limits of removal of organic and/or plastic material.
216.2 Classification of Soils

The Department uses a system of soil classification that places materials into groups and subgroups based on soil fraction, liquid limit and plasticity index. This classification determines if and where the materials may be placed or left in their original position on a project. The soils survey, testing and classification of materials must be performed by a qualified geotechnical laboratory. The plans will include the information about the soil classification on the soil survey sheet and by showing the boring data soil boxes on the cross section sheets. If it is determined that an organic or plastic material must be removed below the finished grading template, the lower limits of removal of organic or plastic material will be shown to determine the area and volume of subsoil excavation.

216.3 Cross Sections

The details of cut and fill of earthwork are shown on the cross sections. The cross sections of the existing surface are usually obtained by location field survey or photogrammetry. The finished profile grades, typical section details, pavement design details, superelevation and horizontal alignments are used in combination to develop the finished template at each location where an existing cross section was obtained or generated. Sometimes it is advisable to develop and plot intermediate cross sections or half-sections to accurately determine quantities.

Cross sections cannot be finalized until late in the design process. However, preliminary cross section templates, developed early in the design process, can assist the designer in establishing many of the other design elements such as guardrail, shoulder gutter, inlets and special ditch grades. Preliminary cross sections are also used in performing the Soils Survey. Cross section templates should be plotted as soon as the alignment, profile grades and typical section details are established.

The interval selected for showing cross sections in the plans will vary according to project specific factors. For guidance see FDM 319.3.

216.4 Earthwork Pay Items

Table 216.4.1 provides guidelines for selecting the appropriate earthwork pay items.
Table 216.4.1 Guidelines for Selecting Earthwork Pay Items

<table>
<thead>
<tr>
<th>Description</th>
<th>Control Lines</th>
<th>Recommended Pay Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case I (Natural Topography): Earthwork operations above the original ground line</td>
<td>Fill</td>
<td>Embankment (CY)</td>
</tr>
<tr>
<td>Case II (Above Existing Pavement): Earthwork operations above the finished grading template of existing roadbed</td>
<td></td>
<td>Borrow Excavation (Truck Measure) (CY)</td>
</tr>
<tr>
<td>Case I (Natural Topography): Earthwork operations below the original ground line</td>
<td>Cut</td>
<td>Regular Excavation (CY)</td>
</tr>
<tr>
<td>Case II (Below Existing Pavement): Earthwork operations below the finished grading template of existing roadbed</td>
<td></td>
<td>Regular Excavation (3-R Projects) (LS)</td>
</tr>
<tr>
<td>Subsoil earthwork operations below the original ground line</td>
<td>Cut</td>
<td>Subsoil Excavation (CY)</td>
</tr>
<tr>
<td></td>
<td>Fill</td>
<td>Subsoil Excavation (CY)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Embankment (CY)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Borrow Excavation (Truck Measure) (CY)</td>
</tr>
<tr>
<td>With significant quantities of lateral ditch or channel excavation the designer may select to pay for separately</td>
<td></td>
<td>Lateral Ditch Exc. Channel Exc. (CY)</td>
</tr>
<tr>
<td>Notes:</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>1. Pay items listed in column (A) cannot be used in conjunction with those listed in column (B).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

216-Earthwork
216.4.1 Regular Excavation

This is the most general classification of earthwork excavation. Roadway excavation consists of the excavation and the utilization or disposal of all materials necessary for the construction of the roadway, ditches, channel changes, etc., except for removal of existing pavement as defined in Standard Specifications Section 110. When Lateral Ditch or Channel excavation pay items are not called for in the plans, the total quantity of all excavation must be paid for as Regular Excavation. Roadway Excavation consists of the net volume of material excavated between the original ground line (natural topography) or finished grading template of an existing roadbed, as applicable, and the finished grading template of new pavement.

216.4.1.1 Stormwater Treatment Ponds

Retention or detention areas that require considerable excavation should be summarized separately and added to the Regular Excavation. This is especially important if there is a large quantity and the area is removed from the project by some distance.

Some environmental permits now require that the plans call for excavating additional depth below the finish elevation of the bottom of a pond or ditch. They also require that the area of extra depth be replaced with “blanket material” that will either allow for percolation or not allow for percolation as required by the permit. The drawing below shows the limits of pay for excavation in this situation. The depth and type of fill material must be identified in the plans.
216.4.1.2 Regular Excavation (RRR Projects Only)

The pay item for Regular Excavation (RRR Projects Only) - Lump Sum is used on resurfacing (RRR) projects that meet the following conditions:

1. There are limited or no cross sections on the project.
2. Existing typical sections are reasonably consistent throughout the project.
3. If utility adjustments are a consideration on the project, the designer will need to be sure that sufficient data is available to allow the utility to be relocated or adjusted.
4. There are no right of way requirements on the project.
5. There is no change in the existing horizontal or vertical alignment.
6. There are no major special ditches on the project.
7. There are no major intersection modifications.
8. Show quantity of Excavation in Summary of Earthwork, but pay for as 1 Lump Sum.

Regular Excavation (RRR Projects Only) - Lump Sum may be used on intersection improvements and minor widening projects if they comply with the same listed above.
Earthwork will be paid for as Borrow Excavation (Truck Measure) and Regular Excavation (RRR Projects Only) – Lump Sum. The designer will calculate these quantities based on information obtained from the field and the proposed typical section. The designer must conduct a thorough field review to ensure existing field conditions are accurately reflected in earthwork estimates.

216.4.2 Subsoil Excavation

Subsoil Excavation consists of the excavation and disposal of any material that in its original position is excavated below the finished grading template or original ground line, whichever is lower.

The soils investigation survey documents the organic or plastic material found on the project. Likewise, the cross sections and the earthwork calculations must use the lower limits of removal of organic or plastic material in determining the quantities for Subsoil Excavation.

Where future widening of the roadway is anticipated, specify the limits of removal necessary to accommodate the future widening.

At some locations the complete removal of organic or soft soils may not be practical due to the depth. Review the subsoil excavation with the Geotechnical Engineer of Record and where constructability concerns exist, consult with the District Geotechnical Engineer to review design alternatives. If a geosynthetic reinforced design is selected, refer to FDM 263 for plan content and design requirements. Additional information concerning geotechnical design can be found in the Soils and Foundations Handbook.

Where subsoil excavation is required due to plastic soils, ensure that adequate drainage of the pavement subgrade is provided. Figure 216.4.2 illustrates the required excavation undercut line (i.e., grade and extent of excavation bottom) for flush shoulder roadways. To accommodate normal undercuts, the side ditches should be at least 3.5 feet below the shoulder break.

For curbed roadways, additional subsoil excavation may be needed beyond that shown in Figure 216.4.2 or underdrains must be installed in accordance with Standard Plans, Index 120-002. Coordinate the removal of plastic materials with the Drainage Engineer of Record, as it may affect various drainage design elements including the profile grade of the ditch bottoms.

The embankment quantities (areas and volumes) may be checked by calculating the areas and volumes required to fill the excavated areas created by subsoil removal. See example given in FDM 216.1.
Do not include the payment for subsoil excavation in the pay quantities for other items no matter how small the subsoil quantity.

Figure 216.4.2 Undercut Detail of Plastic Material with Relation to Side Ditches

- At locations where plastic material is being removed, the side ditches must be at least as deep as the undercut line to allow subgrade soils to drain.
- Where paved side ditches are used in areas of removal of plastic material, the top of the ditch pavement must be below the undercut line.

Embankment (fill) or Regular Excavation (cut) should be used in conjunction with the pay item Subsoil Excavation. Both Embankment and Regular Excavation are plan quantity items. The quantities are based on line and grades shown in the plans and would allow construction personnel to field verify the quantities of material used on a project. Subsoil Excavation is a field measure item, and the final pay quantity will be determined by cross section taken when the removal of the material is completed.

216.4.3 Lateral Ditch Excavation

Excavation required to construct inlet and outlet ditches at structures, changes in channels of streams and ditches parallel to the right of way, but separated from the roadway template, may be designated by the designer as Lateral Ditch Excavation.

On projects with very little of this type of excavation, this earthwork is usually included in the Regular or Roadway Excavation. If there is a significant amount of Lateral Ditch Excavation, it should be detailed, calculated and summarized separately in the Summary of Earthwork.

Quantities for *Excavation for Structures and Pipe* must not be included in the quantities for Lateral Ditch or other excavation pay items.
216.4.4 Channel Excavation

The pay item for Channel Excavation consists of the excavation and satisfactory disposal of all material from the limits of the channel as shown in the plans. This work is generally called for by the plans and has lines, grades, typical sections and other details shown for excavating a channel change or a major modification to an existing channel or stream. This work may be significantly different from regular excavation or lateral ditch excavation, requiring draglines, barges or other special equipment. It is typically detailed, calculated and summarized separately.

216.4.5 Borrow Excavation (Truck Measure)

The pay item for Borrow Excavation (Truck Measure) is only used on projects with limited or no cross sections. It is used to indicate that the contractor is to furnish earthwork material from areas provided by him and generally outside the project limits. This could include material with a specific minimum bearing value for building up existing shoulders, when appropriate for the project.

Borrow material may be obtained from within the right of way of the project, if available. The proposed borrow areas must be reviewed and coordinated with the District Environmental Coordinator to minimize environmental disturbance and promote a future original appearance.

When the designer chooses the method of payment as Borrow Excavation (Truck Measure), a fill adjustment must be made to the net total fill material calculated from the plans to allow for handling. An additional adjustment (truck) is added to obtain a representative volume of material required. This is not a plan quantity item, but it is very important that a realistic determination of quantities be calculated by the designer.

216.4.6 Embankment

This item includes placing material above the original ground line (areas of natural topography), finished grading template (areas of existing roadbeds), or above the lower limits of removal of organic or plastic material, as applicable, to the finished grading template of new pavement. Refer to FDM 210.4 and 211.4 for additional requirements for shoulder gutters.
216.5 Earthwork Quantities

Earthwork quantities may be checked by the method of average end areas:

\[
\text{CUBIC YARDS} = \frac{EA1 + EA2 \times \text{LENGTH}}{27}
\]

216.5.1 Variation in Quantities

When detailing and determining earthwork quantities, use the most probable base option within the optional base group. A plan note should also be shown in the plans stating which option was used for plotting the cross sections and calculating the earthwork quantities (see FDM 307.2.1).

216.6 Summary of Earthwork

A subtotal for each group (e.g., mainline, side street, pond) should be shown in the Summary of Earthwork for each earthwork operation (subsoil excavation, regular excavation and embankment). This summary should be shown on the Summary of Earthwork in the Estimated Quantities Report. See FDM 902 for information on Estimated Quantities Report.

See Chapter 8 of the BOE for examples of Summary of Earthwork.
220 Railroads

220.1 General

This chapter provides requirements for highway-railroad crossings on the State Highway System.

220.1.1 Railroad Companies

State-owned rail corridors include the Central Florida Rail Corridor and South Florida Rail Corridor.

Railroad companies currently operating in the state of Florida include:

(1) CSX Transportation, Incorporated
(2) Norfolk Southern Corporation
(3) Florida East Coast Railway Company

Short line railroad companies and terminal switching companies also operate in the state of Florida.

220.1.2 Work Near or Within Railroad R/W

A flagger must be present while any work within railroad R/W is being performed. Railroad companies often impose additional requirements as deemed necessary.

When roadway improvements are adjacent, near, above, or below the railroad R/W, there is potential for impacts to the railroad during construction or for construction materials and equipment to foul the tracks.

220.1.3 Required Coordination

Coordinate projects within or near railroad R/W as follows:

(1) New at-grade railroad crossings must be permitted in accordance with Section 335.141, Florida Statutes (F.S.). Early coordination with the Central Office is required concerning the Rail Crossing Opening/Closure Program.
(2) Coordinate the design of traffic control devices with the District Rail Coordinator who will then coordinate with the railroad company. Warning devices that are on within railroad R/W or interact with trains are installed by the railroad company.

(3) Coordinate with the District Traffic Operations Engineer to determine if a preemptive system is required.

(4) Coordinate with the Department's Central Office Freight and Multimodal Operations Office to determine if a highway-railroad at grade crossing is located within a designated Quiet Zone.

(5) Coordinate with the District Rail Coordinator when a waiver is being considered for standard lateral offset requirements for structures; see FDM 220.3.2.

Some railroads may require an increase in Railroad Protective Liability Insurance greater than what is provided in the Standard Specifications. The District Specifications Engineer and the District Rail Coordinator will develop a Modified Special Provision and submit it through the Central Specifications Office for special processing. For projects involving CSX Railroad use Special Provision SP0071303.

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete FDM 220.1.3 and see RFP for requirements.</td>
</tr>
</tbody>
</table>

220.2 Highway–Railroad At-Grade Crossing

Selection of the warning devices to be used is a function of the geometrics of highway-railroad at-grade crossing (e.g., alignment, profile, sight distance, cross section of both the roadway and the railroad), available R/W, and proximity to signalized intersections. The roadway should cross the railroad at an angle of or near 90 degrees.

The Standard Plans, Index 830-T01 contains details for the construction of crossings.

Design considerations are discussed in the Florida Greenbook and the AASHTO Green Book.

220.2.1 Traffic Control Devices

Traffic control devices (both roadway and pedestrian) for highway-railroad at-grade crossings consist primarily of signs, pavement markings, flashing light signals, and automatic gates. Consider the following when designing these devices:
(1) Roadway type,
(2) Volume of vehicular traffic,
(3) Volume of railroad traffic,
(4) Speed of vehicular traffic,
(5) Volume of pedestrian and bicycle traffic,
(6) Crash data, and
(7) Geometrics of the crossing.

Evaluate highway-railroad at-grade crossings and any of the following as a network to avoid blocking the crossing:

- Stop condition
- Roundabout
- Reduction in the number of lanes

Standards and criteria for design, placement, installment and operation of traffic control devices are located in the Manual on Uniform Traffic Control Devices (MUTCD), the Department’s Standard Plans, and Rule 14-57.013, Florida Administrative Code (F.A.C.).

When warning signs or signals are used in advance of a highway-railroad at grade crossing, they must be placed so as not to obstruct the view of the crossing signals.

220.2.1.1 Signing and Pavement Markings

Include signing and pavement markings in accordance with Standard Plans, Index 509-070.

Include Railroad Dynamic Envelope (RDE) pavement markings at the following at-grade railroad crossings on:

- State Roads,
- State-owned rails, and
- State-owned property.

For side roads with at-grade crossings within 100 feet of the edge of traveled way, include W10-2, W10-3 or W10-4 signs on the mainline state road in accordance with the MUTCD.
For pavement marking material selection, see *FDM 230*.

220.2.1.2 Preemption

Highway-railroad at grade crossings may require preemption of traffic signals where signalized highway intersections are in close proximity to a railroad crossing. Preemption requires the railroad and traffic signal control equipment to be interconnected with the traffic signal preempted to operate in a special control mode when trains are approaching. Preemption is required for any of the following conditions:

1. Traffic Signal is within 200 ft of a highway-railroad at-grade crossing
2. Highway traffic queues have the potential for extending across a nearby railroad crossing, or
3. Highway traffic backed up from a nearby downstream railroad crossing could interfere with signalized highway intersections. A study to determine the need for preemption is required for a traffic signal within 500 ft of a highway-railroad at-grade crossing

220.2.2 Surfaces

The roadway travel lanes at a highway-railroad at-grade crossing should be constructed for a suitable length with all-weather surfacing. A roadway section equal to the current or proposed cross section of the approach roadway, including any existing or proposed pedestrian walkways, should be carried through the railroad crossing. The railroad crossing surface itself should have a riding quality equivalent to that of the approach roadway. When selecting the type of crossing and the material to be used in its construction, consideration should be given to the character and volume of traffic using the roadway.

220.2.3 Quiet Zones

An at-grade railroad crossing within a designated Quiet Zone must comply with the *Code of Federal Regulations (C.F.R.), Part 222* and the *Standard Plans, Index 509-070*. Quiet Zone means a segment of a rail line that includes public highway-railroad crossings at which locomotive horns are not routinely sounded.

A public highway-railroad at-grade crossing within a Quiet Zone should be equipped with a Supplemental Safety Measure identified in *C.F.R., Part 222, Appendix A*. Allowable measures include:
(1) Gates with medians, or channelization using Type IV concrete traffic separators or Type F curb and gutter. Use of temporary channelization devices is not permitted.

(2) Four quadrant gate and three quadrant gates systems

(3) One-way streets with gates

(4) Permanent crossing closures

The railroad crossing should be evaluated to determine if driveways, minor side streets, or turn lanes in close proximity to the crossing require an additional gate.

220.2.4 Railroad Crossing Near or Within Project Limits

Review Federal-aid projects to determine if a railroad-highway at-grade crossing is within the limits of or near the terminus of the project. If such crossing exists, the project must be upgraded to meet the latest MUTCD requirements in accordance Title 23 United States Code (U.S.C.), Chapter 1, Section 109(e) and C.F.R. 646.214(b). These requirements are located in Chapter 8 of the MUTCD. “Near the terminus” is defined as being either of the following:

(1) If the project begins or ends between the crossing and the MUTCD-mandated advanced placement distance for the advanced (railroad) warning sign. See MUTCD, Table 2C-4 (Condition B, column “0” mph) for this distance.

(2) An intersection traffic signal within the project is connected to the crossing’s flashing light signal and gate.

220.2.5 Bicycle and Pedestrian Facilities

Extend proposed or existing sidewalks, bike lanes or shared use paths through the rail crossing. See FDM 222.2.4 for additional information.

When a new bicycle or pedestrian crossing is added to an existing roadway, it is considered a new crossing if it is separated from the roadway. See FDM 220.1.3 for information on coordinating new crossings.

220.3 Grade Separated Highway-Railroad Crossing

For railroad crossing over a roadway, the bridge must be designed to carry railway loadings in conformance with the American Railway Engineering and Maintenance-of-Way Association (AREMA) Manual for Railway Engineering. See FDM 260.6 for required vertical clearances between the facilities.
Coordinate the following with the governing railroad company:

- Clearances, Geometrics and Utilities
- Provisions for future tracks
- Maintenance road requirements for off-track equipment
- Need for, and location of crash walls

The railroad company’s review and approval is based on the completed Bridge Development Report (BDR)/30% Structures Plans.

Prepare the Structures Plans in accordance with the criteria obtained from the railroad company, the Structures Manual, the Standard Plans, and this manual.

Figure 220.3.1 illustrates the dimensions that are to be obtained from or approved by the railroad company before preparing the BDR/30% Structures Plans.

220.3.1 Bridge Width

For railroad over roadway crossing, the railroad bridge typical section is based on project requirements. For roadway over railroad crossings, see *FDM 210* for information on highway typical sections.

220.3.2 Lateral Offset to Face of Structure

For a roadway over a railroad crossing, measure lateral offset in accordance with *Figure 220.3.1* and *Table 220.3.1*. The railroad company may accept a waiver from standard lateral offset requirements for the widening or replacement of existing bridges.

Lateral offset is measured from the centerline of outside track to the face of pier cap, bent cap, or any other adjacent structure. Minimum lateral offsets are shown in *Table 220.3.1*.
Figure 220.3.1 Track Section

Table 220.3.1 Lateral Offsets for Railroads

<table>
<thead>
<tr>
<th>Minimum Clearance Requirements</th>
<th>Normal Section</th>
<th>With 8 ft. Required Clearance for Off-Track Equip.</th>
<th>Temporary Falsework Opening</th>
</tr>
</thead>
<tbody>
<tr>
<td>With Crash Walls*</td>
<td>18 ft.</td>
<td>22 ft.</td>
<td>10 ft.</td>
</tr>
<tr>
<td>Without Crash Walls</td>
<td>25 ft.</td>
<td>25 ft.</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* See the Structures Design Guidelines, Section 2.6.7 for crash wall requirements.

Provide an additional 8-ft. clearance for off-track equipment only when requested by the railroad company.
220.3.2.1 Adjustments for Track Geometry

Increase the minimum lateral offset by a rate of 1.5 inches for each degree of curvature when the track is on a curve.

Increase the minimum lateral offset on the inside of the curve by 3.5 inches horizontally per inch of superelevation when the track is superelevated.

Meet lateral offset requirements found in the AREMA Manual for Railway Engineering for extremely short radius curves.

220.3.2.2 Adjustments for Physical Obstructions

Columns or piles should be kept out of the ditch to prevent obstruction of drainage. Provide adequate lateral offset to avoid the need for crash walls unless extenuating circumstances dictate otherwise.

Figure 220.3.1 shows horizontal dimensions from the centerline of track to the points of intersection of a horizontal plane at the rail elevation with the embankment slope. This criteria may be used to establish the preliminary bridge length which normally is also the length of bridge eligible for FHWA participation; however, surrounding topography, hydraulic conditions, and economic or structural considerations may warrant a decrease or an increase of these dimensions.

220.3.2.3 Required Foundation Clearances

Place edges of footings no closer than 11 feet from centerline of the track to provide adequate room for sheeting.

220.3.3 Crash Walls

See the Structures Design Guidelines for crash wall requirements.

220.3.4 Special Considerations

Projects may include any of the following special considerations:

(1) Shoring and Cribbing requirements during construction should be accounted for in the preparation of the preliminary plans to assure compliance with required
clearances. Anything within the railroad R/W (e.g., cofferdams, footings, excavation) requires coordination with the District Rail Coordinator for approval by the railroad company.

(2) Overpasses for electrified railroads may require protection screens.

(3) Substructure supports may be located between adjacent tracks or an outside track and the off-track equipment road.

(4) Convey drainage from the bridge above the railroad away from the railroad R/W. Open scuppers are to be no closer than 25 feet to the centerline of the nearest track.

(5) The District Rail Coordinator must be contacted to see if there are any other requirements when constructing in or near their R/W.

(6) Additional consideration should be given to any utilities that may be located within the railroad R/W

220.3.5 Widening of Existing Bridge over Railroad

The requirements for widening an existing roadway or pedestrian bridge over railroad are as follows:

(1) If existing horizontal or vertical clearances are less than those required for a new structure, the design of the new portion of the structure is not to encroach into the existing clearances.

(2) Minimum vertical clearance should take into account the track grade and the cross slope of the bridge superstructure. It is desirable to widen on the ascending side of the bridge cross slope.

(3) Minimum lateral offset should take into account future changes to track geometry, physical obstructions or foundation clearances.

(4) Temporary construction vertical clearances less than 22 feet and lateral offsets less than 10 feet must be approved by the railroad company. It may not be possible to reduce already restricted vertical clearances on high volume rail lines.

(5) Meet drainage design requirements for new bridges when widened approach fills are necessary.

(6) Evaluate the need for crash wall protection if new substructures provide less than 25 feet lateral offset from center line of track.

(7) If the existing railroad is in a cut section, special considered should be given to the length, depth, and type material of the existing cut section.

220-Railroads
(8) In cases where demolition of the existing structure is required for attachment of the new structure over the railroad’s tracks, a method of debris collection should be provided so as not to encroach within the railroad R/W.

Provide a cross section at a right angle to the centerline of the track where the centerline of bridge intersects the centerline of track in the BDR/30% Structures Plans. Where the substructure is not parallel to the track, or the track is curved, provide a section perpendicular to the centerline of the track at each substructure end.

Figure 220.3.2 Section Thru Tracks

Note: May be reduced with approval by the Railroad.
221 Utilities

221.1 General

Identify necessary utility work (e.g., installation, removal, relocation, de-energizing, deactivation, or adjustment of utilities) that is required to construct the project. Obtain agreements or orders to schedule the identified work. Assist the Department with Utility Agency/Owner (UAO) coordination throughout the design process.

Utility work is necessary where:

1. Working room is needed for construction
2. Clearances are needed to comply with Department requirements
3. Occupational Safety and Health Administration (OSHA) (29 CFR Part 1926) restricts crane operations
4. National Electric Safety Code (NESC), or other regulations are violated.
5. Construction equipment may damage utilities
6. Utilities are within areas of excavation.

When evaluating the use of design features that reduce or avoid utility conflicts, consider savings in construction time and the total associated savings for the FDOT project and the utilities.

221.2 Utility Work Schedules and Agreements

Certify the project in accordance with the Utility Work Agreements and Certification Letter. With assistance from the District Utilities Office and the Office of General Counsel, obtain the following:

- **Utility Work Schedules** (*Form 710-010-05*)
- Relocation agreements
- Required payments to or by the Department for utility work

When an agreement cannot be obtained, coordinate with the District Utilities Office and the Office of General Counsel to pursue any needed order to relocate.

Modification for Non-Conventional Projects:

Delete **FDM 221.2** above and see RFP for requirements.

221.3 Subsurface Utility Locates

Coordinate with the District Utility Office to determine the locations and quality levels needed. Quality levels are defined in Section 3.6 of the Survey and Mapping Handbook. The UAOs may be requested to provide locate information as required by Section 5.2 of the 2017 Utility Accommodation Manual.

Obtain quality level “QL A” locate information when proposed construction operations are within 3’ of utilities and verified information is needed to make confident design decisions. The decision to proceed to construction without obtaining quality level “QL A” locate information must be further coordinated with district construction personnel and the UAO.
222 Pedestrian Facilities

222.1 General

This chapter provides the minimum criteria to be used for the design of pedestrian facilities on the State Highway System. The term “pedestrian” used in this chapter includes any person traveling on foot or in a wheelchair. Pedestrians should be expected on all of Florida’s state roadways except where restricted on Limited Access (LA) facilities.

Process a Design Variation when the design criteria for pedestrian facilities in this manual are not met. Reference the following conditions that support not providing a pedestrian facility in the Design Variation documentation:

(1) The establishment of pedestrian facilities would be contrary to public safety.
(2) The cost of providing pedestrian facilities would be excessively disproportionate to the need or probable use.
(3) The presence of other available means for pedestrian traffic. Other available means should meet the following requirements:
 (a) Meet the design criteria for pedestrian facilities on state roadways.
 (b) Provide access to the same services, origination and destination sites, and transit connections as the project corridor.
 (c) Not result in a significant increase in travel time or trip length, exposure to motorized traffic, or substantial elevation changes.
 (d) Provide appropriate locations to cross limited access, arterial or collector roadways, or railroad corridors.

222.1.1 Americans With Disabilities Act (ADA)

In addition to the criteria presented in the FDM and Department’s Standard Plans, the following documents provide Americans with Disabilities Act (ADA) guidance in the design of pedestrian facilities in public R/W:

- United States Department of Justice 2010 Americans with Disabilities Act (ADA) Standards for Accessible Design
- United States Department of Transportation 2006 ADA Standards for Transportation Facilities.
• Florida Accessibility Code contains ADA requirements for accessibility to sites, facilities, buildings and elements by individuals with disabilities.

222.2 Pedestrian Facilities

Pedestrian facilities are features or elements used to support pedestrian travel. Pedestrian facilities may include the following:

- Sidewalks
- Curb ramps
- Crosswalks
- At-grade railroad crossings
- Refuge islands
- Curb extensions
- Pedestrian signals
- Public transit loading zones
- Pedestrian bridges
- Shared use paths
- Street furniture

Pedestrian safety can be enhanced through the following measures:

1. Maintaining a smooth, clean walking surface, free of obstructions.
2. Responsive and appropriate traffic control devices, consistent with guidance in the Manual on Uniform Traffic Control Devices (MUTCD), including providing pedestrian-oriented directional signage.
3. Sidewalks and other pedestrian walkways are continuous, and termini connect to existing sidewalk, pedestrian crossing or access point.
4. Providing adequate lighting.

222.2.1 Sidewalk

Sidewalk is a continuous concrete pedestrian walkway as depicted in Standard Plans Index 522-001.

Provide sidewalk on all curbed roadways, except where prohibited by Section 316.130 (18), Florida Statute (F.S). The inclusion of sidewalk on short isolated sections of curbed roadway is not required when:

- Within C1 and C2 context classification, and
- There are no pedestrian facilities leading to, or from the location.
Provide sidewalk on high speed curbed and flush shoulder roadways within C2T, C3R, C4, C5 or C6 context classification; and within C1, C2 or C3C where the demand for use is demonstrated.

Place sidewalk in the following order of desirability:

For high speed curbed and flush shoulder roadways, place sidewalk in the following order of desirability:

1. As near the R/W line as possible.
2. Outside of the clear zone.
3. Five feet beyond the limits of the full width shoulder.
4. At the limits of the full width shoulder.

Sidewalk on flush shoulder roadways is not to be constructed directly adjacent to the roadway or shoulder pavement. Nearing intersections, the sidewalk should be transitioned as necessary to provide a more functional crossing location that also meets driver expectation. Further guidance on the placement of stop or yield lines and crosswalks is provided in the MUTCD, Part 3 and Standard Plans 711-001.

Continue sidewalk across bridge structures when sidewalk is provided on the approach roadway. Also provide sidewalk on new bridges where sidewalk or shared use path is not present along the roadway, but may be included with a future project.

Sidewalk should be constructed on both sides of the roadway; however, if sidewalk is constructed on only one side, provide reasonable pedestrian access to destinations (e.g., transit stops, homes, places of work, stores, schools, post offices, libraries, parks) on the opposite side.

For RRR Projects, other than meeting detectable warning and curb ramp requirements, unaltered sidewalks that are not in compliance with FDM criteria, Standard Plans, or ADA requirements are not required to be reconstructed.

222.2.1.1 Sidewalk Width

The standard sidewalk width varies by context classification as shown in Table 222.2.1.
Table 222.2.1 Standard Sidewalk Widths

<table>
<thead>
<tr>
<th>Context Classification</th>
<th>Sidewalk Width (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 Natural</td>
<td>5</td>
</tr>
<tr>
<td>C2 Rural</td>
<td>5</td>
</tr>
<tr>
<td>C2T Rural Town</td>
<td>6</td>
</tr>
<tr>
<td>C3 Suburban</td>
<td>6</td>
</tr>
<tr>
<td>C4 Urban General</td>
<td>6</td>
</tr>
<tr>
<td>C5 Urban Center</td>
<td>10</td>
</tr>
<tr>
<td>C6 Urban Core</td>
<td>12</td>
</tr>
</tbody>
</table>

Notes:

1. For C2T, C3 and C4, sidewalk width may be increased up to 8 feet when the demand is demonstrated.
2. For C5 and C6, when standard sidewalk width cannot be attained, provide the greatest attainable width possible, but not less than 6 feet.
3. For RRR projects, unaltered sidewalk with width 4 feet or greater may be retained within any context classification.
4. See FDM 260.2.2 for sidewalk width requirements on bridges.

Provide the following minimum unobstructed sidewalk width (excluding the width of the curb) when there is no practical alternative to placing a pole within the sidewalk:

- 36 inches for aboveground utilities. This 36 inch width may be reduced to 32 inches, not exceeding 24 inches in length, when there is no practical alternative available to avoid an obstruction.
- 48 inches for signal, light, sign poles

When used for plantings and street furniture, the area between the back of curb and the sidewalk should be 5 feet or greater in width. Consider providing treewells in areas where on-street parking is provided.
222.2.1.2 Vertical Clearance

Provide a minimum 7-foot vertical clearance over the entire walking surface. See FDM 260.6 for pedestrian bridge vertical clearance requirements.

222.2.1.3 Grades and Cross Slope

When sidewalk is adjacent to the roadway (i.e., located back of curb or consistent separation from curb), sidewalk grades may mirror the roadway profile. When sidewalk is not adjacent to a travel way, sidewalk grades are not to exceed 5%, unless accessible ramps are provided.

There should be enough sidewalk cross slope to allow for adequate drainage; however, to comply with ADA requirements, the maximum cross slope is 2%. A clear 1-foot wide graded area with a maximum 1:6 slope should be provided adjacent to the sidewalk. Edge drop-offs should be avoided. When drop-offs cannot be avoided, they should be shielded as discussed in FDM 222.4.

222.2.2 Curb Ramps and Blended Transitions

Standard Plans, Index 522-002 provides requirements and details for curb ramps and landings that are compliant with Americans with Disabilities Act Standards for Transportation Facilities.

A continuous accessible pedestrian route, including curb ramps and blended transitions (e.g., depressed corners, raised street crossings, flush roadway connections) are required along sidewalks and shared use paths. Additional information, nomenclature, requirements, and details for curb ramps and landings are provided in the *Standard Plans, Index 522-002*.

Alpha-identifications have been provided in Index 522-002 for the various curb ramp options (e.g. CR-A, CR-B, etc.) to facilitate ease of callouts in the Plans. Use the curb ramp options as follows:

- Curb Ramps CR-A, CR-B & CR-C are for use where ramp and landing depths are not restricted.
- Curb Ramps CR-K and CR-L are for use where ramp and landing depths are restricted.
Include sidewalk curb ramps at the following locations:

- All intersections and driveways with curbed returns. Include a landing at the top of each ramp.
- On curbed roadways between intersections where a crosswalk has been established.

Pull boxes, manholes (and other utility covers), and other types of existing surface features in the location of a proposed curb ramp or detectable warning should be relocated. When relocation is not feasible, adjust the feature to meet the ADA requirements for surfaces (including the provision of a nonslip top surface, and adjustment to be flush with and at the same slope as the adjacent surface).

Curb ramps should be in line with the crossing and must provide a maximum slope of 1:12 (8.3 percent). At intersections where more than one road is crossed, provide curb ramps at both ends of each crossing. Crossings are required to meet the same grade and cross slope requirements as sidewalks. Where criteria for maximum cross slope cannot be met, process a Design Variation and provide the minimum attainable cross slope. When following the profile grade of the roadway, curb ramp slopes should not exceed 15 feet in length.

Provide transition slopes (flared sides) where a pedestrian circulation path crosses the curb ramp. The maximum slope of transition slopes is 1:10, measured parallel with and adjacent to the curb line.

When altering an existing pedestrian facility and conditions preclude the construction of a curb ramp slope of 1:12, provide a slope from 1:12 to 1:10 with a maximum rise of 6 inches.

Provide a landing at all pedestrian pushbutton locations. The landing must provide a clear area of 30 inches by 48 inches directly in front of the pedestrian pushbutton to allow persons using a wheeled mobility device to actuate the button while remaining stationary. Horizontally center the 48-inch dimension on the pushbutton.

When compliance with Department curb ramp requirements is determined to be technically infeasible (i.e. no engineering solution is available), a Design Variation is required. This may occur where existing right of way is inadequate and where conflicts may occur with existing features which cannot be feasibly relocated or adjusted (e.g. drainage inlets, signal poles, pull and junction boxes, etc.).
222.2.2.1 Driveways

New and reconstructed driveways are to be in compliance with Standard Plans, Index 330-001 and 522-003.

For RRR Projects, unaltered driveways that are not in compliance with Standard Plans or ADA requirements are not required to be reconstructed.

222.2.3 Crosswalks

Crosswalks are marked paths where pedestrians can safely cross a roadway. Marking of crosswalks helps drivers better identify the intersection and guides pedestrians to the best crossing location. For details on crosswalk pavement markings, see Standard Plans, Index 711-001.

The maximum cross slope for crosswalks is 2%. For crosswalks located at signalized intersections or driveways, cross slope may exceed 2% but not greater than 5%.

School Zone crosswalks have additional criteria for signing and pavement markings. For requirements for school signs and markings, see The Manual on Speed Zoning for Highways, Roads and Streets in Florida, Chapter 15.

222.2.3.1 Intersections

Provide crosswalk markings for all legs of a signalized intersection unless there is a documented, project-specific justification not to do so (e.g., physical constraints, safety concern).

Use Special Emphasis crosswalk markings at signalized intersections and at roundabouts. Use standard crosswalk markings for stop or yield-controlled intersections.

When separated right-turn lanes are used, place crosswalks so that an approaching motorist has a clear view of the pedestrian, and the crossing distance is minimized.

Coordinate with the District Traffic Operations Office for new marked crosswalks at uncontrolled intersection locations (without signals, stop or yield signs). Supplement marked crosswalks on an uncontrolled leg of an intersection with other treatments (e.g., beacons, signals, curb extensions, raised medians, raised traffic islands, enhanced overhead lighting) when any of the following conditions exist:
(1) Where posted speeds are greater than 40 mph,
(2) On a roadway with 4 or more lanes without a raised median or raised traffic island that has an ADT of 12,000 or greater, or
(3) On a roadway with 4 or more lanes with a raised median or raised traffic island that has or is projected to have (within 5 years) an ADT of 15,000 or greater.

As roadway volumes, speeds, and number of travel lanes increase, marked crosswalks are best used in conjunction with other treatments; e.g., signals, signs, beacons, curb extensions, raised medians, refuge islands, enhanced overhead lighting.

For six-lane divided roadways or crossing distances exceeding 80 feet, consider installing a two-stage pedestrian crossing with median refuge island. For more information on marked pedestrian crosswalks see the Traffic Engineering Manual (TEM) Section 5.2.

222.2.3.2 Midblock

Use Special Emphasis crosswalk markings at midblock crossings. For illustrations of midblock crosswalks see FDM 230.6.

Midblock crosswalks are used to supplement pedestrian crossings in areas between intersections. Midblock crosswalks should be illuminated, marked, and signed in accordance with the MUTCD, TEM (Section 5.2), FDM 230.6, and FDM 231.3.4.

Midblock crosswalks should not be located where any of the following exist:

(1) The distance from the crosswalk to the nearest intersection (or crossing location) is less than 300 feet.
(2) The crossing distance exceeds 60 feet (unless a median or a crossing island is provided).
(3) The sight distance for both the pedestrian and motorist is not adequate.
(4) The crosswalk cross slope (roadway profile) exceeds 5%.
(5) The crosswalk grade (roadway cross slope) exceeds normal crown.

An engineering study supporting the need for the installation is required before a midblock crosswalk can be placed on a state roadway. The study must examine such factors as:

- Sight distance for pedestrians and vehicles (stopping sight distance)
- Traffic and turning volumes near proposed crosswalk location
• Pedestrian volume and existing crossing patterns
• Roadway features; e.g., pavement width, presence of a median, lighting, landscaping, drainage
• Traffic speed
• Adjacent land use (pedestrian generators / destinations)

For additional information on the requirements of an engineering study, refer to the Department's TEM (Section 5.2) and Manual on Uniform Traffic Studies (MUTS).

See Figures 210.3.4 and 210.3.5 for examples of midblock crossings with refuge islands.

If site conditions are identified that would obstruct the placement of a midblock crosswalk, include additional features in the design to remedy these conditions. Features like overhead signing can help alert motorists and be used to light the crossing. Curb extensions or bulb-outs can improve sight distance and decrease the crossing distance. Adjustment of the profile on the roadway crossing may be required to improve the cross slope of the crosswalk.

The sidewalk median crossing through a raised median will be either depressed or raised, depending on the median width between the backs of curbs (W), as follows:

1. Depressed Sidewalk when W ≤ 16 feet
2. Raised Sidewalk when W > 16 feet

The width of the sidewalk for the median crossing should match the adjacent sidewalk width. See Exhibit 222-1 for more information.
DEPRESSED SIDEWALK

MEDIAN CROSSINGS

RAISED SIDEWALK

SECTION F-F

SECTION G-G

NOT TO SCALE

January 1, 2021

EXHIBIT 222-1

01/01/2020
222.2.4 At-Grade Railroad Crossings

Provide an ADA accessible route for pedestrians at railroad crossings by extending proposed or existing sidewalks or shared use paths through the rail crossing. The surface of the crossing must be:

- Firm, stable and slip resistant,
- Level and flush with the top of rail at the outer edges of the rails, and
- Area between the rails aligns with the top of rail.

Place detectable warnings on each side of the railroad crossing as illustrated in Figure 222.2.1.

The edge of the detectable warning nearest the rail crossing is to be located between 6 and 15 feet from the centerline of the nearest rail. Where gates are provided, detectable warnings are to be placed a minimum of 4 feet from the side of the gates opposite the rail.

An audible device, such as a bell, is used in conjunction with the traffic control signals, if traffic control signals are in operation at a crossing that is used by pedestrians or bicyclists. Additional information is located in the MUTCD regarding additional signals, signs, or pedestrian gates and designing crossings for shared use paths.

Flangeway gaps are necessary to allow the passage of train wheel flanges; however, they pose a potential hazard to pedestrians who use wheelchairs because the gaps can entrap the wheelchair casters. A maximum flangeway gap is required for all at-grade pedestrian rail crossings of 2½” for all non-freight rail track and 3” for freight rail track.
222.2.5 Refuge Islands

See FDM 210.3 for information on refuge islands.

222.2.6 Curb Extensions (Bulb-Outs)

Curb extensions (a.k.a., bulb-outs) may be used in conjunction with on-street parking at intersections or midblock locations where there is a crosswalk, provided there is adequate width for existing traffic movements. Curb extensions shorten the crossing distance, and provide additional space at intersections, allowing pedestrians to see and be seen before entering a crosswalk.

The design of curb extensions must take into consideration the needs of transit vehicles, drainage, and bicyclists. Consult with District drainage staff on drainage accommodations for the curb extension during Phase I of the design. See the Drainage Design Guide and Figure 222.2.2.
Figure 222.2.2 Curb Extension

BEFORE

AFTER
222.2.7 Pedestrian Signals

See *FDM 232.6* for information on pedestrian signals. Pedestrian detector assemblies and pedestrian control signals are detailed in the *Standard Plans, Indexes 653-001* and 665-001.

222.2.8 Public Transit Loading Zones

See *FDM 225* for information on public transit facilities. Provide a minimum 5-foot-wide sidewalk connecting transit stops to sidewalk or shared use paths.

Coordination with the following may be required to determine the optimum location of boarding and alighting areas, transit shelters and bus bays:

- District Pedestrian and Bicycle Coordinator
- District Modal Development Office Coordinator
- District ADA Coordinator
- District Public Transportation staff
- Local public transit provider

222.2.9 Pedestrian Bridges

See *FDM 266* for information on pedestrian bridges.

222.2.10 Shared Use Paths

See *FDM 224* for information on shared use paths.

222.2.11 Street Furniture

Street furniture may include benches, lighting fixtures, transit shelters, and bicycle parking. These items may be placed within the R/W under certain conditions. Ensure items do not obstruct sight distance or visibility of pedestrians at crosswalks. Do not use street furniture on curb extensions.
Refer to *FDM 223.5* for information on bicycle parking amenities, and *FDM 225* for information on public transit facilities. Appropriate types of street furniture may vary based on frequency and density of pedestrian activity. Street furniture must allow for minimum sidewalk width and meet lateral offset requirements identified in *FDM 222.2.1.1* and 222.2.1.2.

222.3 Detectable Warnings

Detectable warnings are a distinctive surface pattern of domes detectable by cane or underfoot that alert people with vision impairments of their approach to street crossings. Install detectable warnings to cover the full width of the walking surface and 2 feet deep. They are required on sidewalks at the following locations:

- Curb ramps and transition areas at street crossings
- Pedestrian refuge islands where there is one or more of the following:
 - Change in surface texture
 - Change in elevation (e.g., curb ramp)
 - Change in horizontal alignment of the path within the refuge island
 - Two-stage crossings
- Pedestrian at-grade railroad crossings
- Commercial driveways with a stop sign, yield sign, or traffic signal
- Boarding and alighting areas adjacent to the roadway at bus stops where there is an at-grade connection to the roadway
- Edges of railroad boarding platforms not protected by screens or guards

Detectable warnings should not be placed where sidewalk intersects urban flared driveways or on sidewalks that run continuously through residential driveways. Do not place detectable warnings on transition slopes or over grade breaks. Further guidance on detectable warnings is provided in *Standard Plans, Index 522-002*.

The detectable warning systems on the APL are designed to work with concrete surfaces. In areas where the pedestrian facility has an asphalt surface, such as a shared use path, specify an appropriate detectable warning system or consider including a short section of concrete.
222.4 Pedestrian Drop-off Hazards and Railings

A pedestrian drop-off hazard is a steep or abrupt downward slope that can be hazardous to pedestrians.

There are two pedestrian drop-off hazard conditions defined in Figure 222.4.1. Additionally, depending on the height of a slope and the severity of the conditions beyond, cases other than those shown in Figure 222.4.1 may also be considered a pedestrian drop-off hazard.

When the pedestrian drop-off hazard cannot be eliminated, consider the following:

1. Fencing is typically used in C1 and C2 context classifications, and on shared use paths and trails.
2. Railing is typically used in C2T, C3, C4, C5, and C6 context classifications, and at locations attaching to bridge rail or along sidewalks.
 - Pedestrian/Bicycle Railings (Standard Plans, Index 515-021 through 515-062) are adequate for shielding all drop-offs but are generally intended for use on drop-offs greater than 60 inches.
 - Pipe Guiderail (Standard Plans, Indexes 515-070 and 515-080) is adequate for shielding drop-offs which are 60 inches or less.
 - Along continuous sections where the drop-off varies above and below the 60-inch threshold, for uniformity the engineer may consider using only one of the railing types adequate for shielding all drop-offs.
 - Pedestrian/Bicycle Railings and Pipe Guiderail are non-crashworthy and are not to be placed within:
 - Lateral offset requirement for curbed roadways, or
 - Clear zone for high-speed curbed and flush-shoulder roadways.

3. Maintain driver's line of sight at intersections and driveways.

The standard height for Pedestrian/Bicycle Railing is 42 inches. Provide a 48-inch tall Pedestrian/Bicycle Railing when all three of the following conditions exist:

1. Bicyclists are permitted to travel within 3 feet of the railing.
2. The path is on a downward grade steeper than 5%.
(3) There is a horizontal curve having a radius less than that specified for the design speed of the bicycle facility. Taller railing should not extend more than 20 feet beyond the point of tangency of the horizontal curve.

Pedestrian railings are not required where W-beam guardrail is installed at the back of the sidewalk or shared use path.

Where Pedestrian/Bicycle Railing is used, the Department will cover the cost only for standard galvanized steel or standard aluminum railing. If the Local Agency desires a painted railing, they are required to provide the additional funding and commit to cover the maintenance cost.

The Department will cover the cost of the standard Infill Panel Types shown in the Standard Plans. If the Local Agency desires a railing having Custom Infill Panels which increases the cost over standard infill panels, they are required to provide the additional funding to cover this initial premium cost. In addition, a maintenance agreement will be needed to address the responsibilities associated with maintaining Custom Infill Panels.
Figure 222.4.1 Drop-Off Hazards for Pedestrians

CASE 1

= A railing, fence, or other barrier to be placed within these limits in compliance with FDM 222.4.

A drop-off greater than 10 inches (or a slope resulting in a drop-off greater than 10 inches) that is closer than 2 feet from the edge of path or sidewalk should be considered a hazard and shielded.

CASE 2

= A railing, fence, or other barrier to be placed within these limits in compliance with FDM 222.4.

A slope steeper than 1:2 that begins closer than 2 feet from the edge of path or sidewalk should be considered a hazard and shielded when the total drop-off is greater than 60 inches.
222.4.1 Bridge Pedestrian Railings and Fences

Details and typical applications of various crashworthy pedestrian/bicycle bridge railings and fencing, are provided in Figures 222.4.2 – 222.4.8. The installation of fencing on traffic railing between sidewalk or shared use paths and travel lanes on LA facilities must be approved by the State Structures Design Engineer.

Figure 222.4.2 Bridge Railing – Pedestrian/Bicycle Railing

- Typical application is with a sidewalk behind a Traffic Railing.
- Standard Bullet Railing shown, project specific railings permitted.
- Section thru Railing on Bridge Deck Shown, Section thru Railing on Approach Slab and Permanent Retaining Wall Similar.

BRIDGE PEDESTRIAN/BICYCLE RAILING
STANDARD PLANS, INDEXES 521-820 & 515-022
Figure 222.4.3 Bridge Railing – Pedestrian/Bicycle Railing

Traffic Railing required, Type Varies, 36" Slope-Slope shown. Do not use additional Pedestrian Railing on Traffic Railing.

Indexes 515-051 or 515-061 Pedestrian/Bicycle Railing

Traffic Railing required, Type Varies, 36" Slope-Slope shown. Do not use additional Pedestrian Railing on Traffic Railing.

Modified height Index 515-051 or 515-061 Pedestrian/Bicycle Railing

- Typical application is with a sidewalk behind a Traffic Railing.
- Standard railing shown, project specific railings permitted.
- Section thru Railing on Bridge Deck Shown. Section thru Railing on Approach Slab and Permanent Retaining Wall Similar.

BRIDGE PEDESTRIAN/BICYCLE RAILING
STANDARD PLANS, INDEXES 515-051 & 515-061
Figure 222.4.4 Bridge Railing – Pedestrian/Bicycle Railing

Traffic Railing required, Type Varies, 36° Single-Slope shown. Do not use additional Pedestrian Railing on Traffic Railing.

- Typical application is with a sidewalk behind a Traffic Railing.
- Section thru Railing on Bridge Deck Shown, Section thru Railing on Approach Slab and Permanent Retaining Wall Similar.

PEDESTRIAN/BICYCLE RAILING
STANDARD PLANS, INDEX 521-825
Figure 222.4.5 Bridge Railing and Pedestrian/Bicycle Railing Retrofit

TYPICAL SECTION WITH INDEXES 460–470 THRU 460–476 TRAFFIC RAILING RETROFIT

- Typical application is a retrofit in combination with a Traffic Railing retrofit (Indexes 460–470 & 521–480 shown, other Traffic Railing retrofits similar).
- No additional pedestrian rails permitted on Traffic Railing.
- Section thru Railing on Bridge Deck shown. Section thru Railing on Approach Slab and Permanent Retaining Wall similar.

BRIDGE PEDESTRIAN/BICYCLE RETROFIT RAILING
STANDARD PLANS, INDEXES 515-051 & 515-061
Figure 222.4.6 Bridge Railing and Bridge Parapet Fencing

Vertical Bridge Fencing

Traffic Railing required Type varies, 36" Single-Slope shown. Do not use additional Pedestrian Railing on Traffic Railing

Sidewalk

Bridge Deck

8'-3"

9'-2"

Index 521-820
Concrete Parapet

TYPICAL SECTION ON CONCRETE PARAPET WITH INDEX 550-010

- At the direction of the District, use Standard Plans, Index 550-010, where there are reoccurring incidents of debris being thrown or dropped over bridge railings onto traffic or railroad tracks below.
- Section thru Fence and Parapet on Bridge Deck shown. Section thru Fence and Parapet on Approach Slab and Permanent Retaining Wall similar.

Vertical Bridge Fencing

Top of Traffic Railing

Traffic Railing (Type varies, 36" Single-Slope shown)

Bridge Deck

TYPICAL SECTION ON TRAFFIC RAILING BARRIER WITH INDEX 550-010

- At the direction of the District, use Standard Plans, Index 550-010, where there are reoccurring incidents of debris being thrown or dropped over bridge railings onto traffic or railroad tracks below.
- Section thru Fence and Railing on Bridge Deck shown. Section thru Fence and Railing on Approach Slab and Permanent Retaining Wall similar.

VERTICAL BRIDGE FENCING

STANDARD PLANS, INDEX 550-010
Curved Bridge Fencing

TYPICAL SECTION ON CONCRETE PARAPET WITH INDEX 550-011
- At the direction of the District, use Standard Plans, Index 550-011, where there are reoccurring incidents of debris being thrown or dropped over bridge railings onto traffic or railroad tracks below.
- Section thru Fence and Parapet on Bridge Deck shown. Section thru Fence and Parapet on Approach Slab and Permanent Retaining Wall similar.

TYPICAL SECTION ON TRAFFIC RAILING BARRIER WITH INDEX 550-013
- At the direction of the District, use Standard Plans, Index 550-013, where there are reoccurring incidents of debris being thrown or dropped over bridge railings onto traffic or railroad tracks below.
- Section thru Fence and Railing on Bridge Deck shown. Section thru Fence and Railing on Approach Slab and Permanent Retaining Wall similar.
Figure 222.4.8 Bridge Railing – Enclosed Fencing

At the direction of the District, use Standard Plans, Index 550-012 when a Traffic Railing, sidewalk and parapet exists on a bridge and when Pedestrian Traffic from schools, residential neighborhoods, playgrounds and recreational facilities is encountered. The Engineer should work with the District to determine when the enclosed fencing option is warranted.

Section thru Fence, Parapet and Traffic Railing on Bridge Deck shown, Section thru Fence, Parapet and Traffic Railing on Approach Slab and Permanent Retaining Wall similar.

ENCLOSED BRIDGE FENCING
STANDARD PLANS, INDEX 550-012
222.4.2 Pedestrian Railings on RRR Projects

For RRR projects, existing pedestrian railings and pipe guiderail should be removed that are within:

- Required lateral offset for curbed roadways, or
- Inside clear zone for high speed curbed and flush shoulder roadways

If there was a documented issue of traffic incidents involving pedestrians prior to the installation of the existing pedestrian railing or pipe guiderail that would likely reoccur, implement one of the following treatments, in order of priority:

1. Eliminate the hazard and remove the pedestrian railings and pipe guiderail, or
2. Allow the railing to remain.
223 Bicycle Facilities

223.1 General

This chapter provides the minimum criteria to be used for the design of bicycle facilities on the State Highway System (SHS).

Provide a bicycle facility on all roadways on the SHS, except where its establishment would be contrary to public safety; e.g., limited access facilities as defined by *FDM 211*. The various methods of providing bicycle facilities are discussed in *FDM 223.2*.

Bicycle safety can be enhanced through the following measures:

1. Maintaining a smooth, clean riding surface, free of obstructions. This includes ensuring drainage inlets and utility covers that cannot be moved out of the travel way are flush with grade, well seated, and use bicycle-compatible inlets, grates and covers.

2. Responsive and appropriate traffic control devices, consistent with guidance in the *Manual on Uniform Traffic Control Devices* (*MUTCD*), including providing bicycle oriented directional signage.

3. Providing adequate lighting.

4. Developing and maintaining a district bicycle facility plan to assign proposed bicycle facility types through a consistent and efficient process and ensure the following:
 - Integration of FDOT bicycle facilities with local and regional bicycle transportation systems
 - The direct use of more complex facility types in a cost-effective and efficient manner.

Process a Design Variation when a bicycle facility cannot be provided or when criteria contained within this chapter are not met.

223.2 Bicycle Facilities

A bicycle facility accommodates bicycle travel. Bicycle facilities play an important role in supporting bicycle travel.
Bicycle facilities include the following:

- Bicycle lanes
- Keyhole lanes
- Intersection Bicycle Box and Two-Stage Bicycle Turn Box
- Paved shoulders
- Shared use paths
- Separated bicycle lanes

223.2.1 Bicycle Lanes

Bicycle lanes are a portion of a curbed roadway designated for the exclusive use of bicyclists. Bicycle lanes are designated by a bicycle symbol pavement marking in accordance with *Standard Plans, Index 711-002* and the *MUTCD*, and illustrated in *Exhibits 223-1* through *223-3*. Bicycle lane signs and plaques may be used in accordance with the *MUTCD* when high levels of bicycle traffic exist or are anticipated.

Bicycle lanes can be used on curbed roadways with a design speed ≤ 45 mph. However, it is best practice to consider other types of facilities for design speeds greater than 30 mph.

Bicycle lanes are one-way facilities and carry bicycle traffic in the same direction as adjacent motor vehicle traffic. On one-way streets, bicycle lanes should typically be placed on the right side of the street. A bicycle lane on the left side of the street can be considered if it will substantially reduce the number of potential conflicts, such as those caused by frequent bus traffic, heavy right-turn movements, high-turnover parking lanes, or if there is a significant number of left-turning bicyclists.

223.2.1.1 Bicycle Lane Width

The width of the bicycle lane is measured from the edge of travel lane to the edge of pavement. For new construction projects, a 7-foot buffered bicycle lane is the standard. A buffered bicycle lane has a double-6-inch white edge line separating the bicycle lane and the adjacent travel lane.

Buffered bicycle lanes are depicted in *Exhibit 223-1*. A buffered bicycle lane should not exceed 7 feet in width (including the buffer). Any additional pavement width that results from restricting the buffered bicycle lane to 7 feet should be applied to the outside travel lane.
For projects where a bicycle lane is needed and it is not practical to move the existing curb (e.g., RRR), the width of the bicycle lane depends on the width of the available roadway pavement. For these types of projects, the options in the order of priority are:

1. 7-foot buffered bicycle lane
2. 6-foot buffered bicycle lane
3. 5-foot bicycle lane
4. 4-foot bicycle lane

Do not provide a bicycle lane when available roadway pavement is less than 4 feet.

Do not place a 4-foot bicycle lane adjacent to a 10-foot traffic lane.

When roadway pavement is continuous to the face of guardrail or barrier, the minimum bicycle lane width is 5 feet. See FDM 223.2.1.3 when the bicycle lane is adjacent to a right-turn lane or bus bay.

223.2.1.2 Pavement Markings and Signage

Bicycle lane pavement marking symbols are illustrated in Exhibit 223-1. Use the following guidance in determining the appropriate placement of bicycle lane markings:

1. At an intersection approach, transition the buffer lane striping to a double 6-inch wide stripe using a 2'- 4’ dotted pattern 150 feet in advance of the intersection to provide sufficient distance for an automobile or truck to merge into the bicycle lane before turning right.

2. Provide continuous lane striping past low-volume and residential driveways.

3. Place a Helmeted Bicyclist Symbol and Bicycle Lane Arrow (per Standard Plans, Index 711-002) in the following locations:
 (a) The beginning of a bicycle lane
 (b) The far side of major intersections
 (c) Prior to and within the keyhole lane

4. The maximum spacing of the Helmeted Bicyclist Symbol and Bicycle Lane Arrow is 1,320 feet.

Provide “Bike Lane Ahead” and “Bike Lane End” signage in accordance with the MUTCD.
See **FDM 230.3.1.3** for information on placing markings on concrete surfaces.

223.2.1.3 Keyhole Lanes

A keyhole lane is a bicycle lane that is placed between a through lane and the adjacent right turn lane, bus bay, or parking lane. Provide a keyhole lane on curbed roadways that have a bicycle lane approaching the intersection, bus bay, or parking lane. On curbed roadways that do not have a bicycle lane approaching the intersection, consider providing a 17-foot right-turn lane for development of future bicycle facilities.

Provide a keyhole lane on flush shoulder roadways of any design speed where the approaching or departing paved shoulder is of at least 4 feet in width.

Provide a 7-foot buffered keyhole lane on curbed roadways; however, when 7 feet is not obtainable, provide the greatest keyhole lane width possible, but not less than 5 feet. The keyhole lane should match the width of the shoulder on flush shoulder and high-speed curbed roadways, but not less than 5 feet.

Include Helmeted Bicyclist Symbol and Bicycle Lane Arrow pavement markings in the keyhole lane. Keyhole lanes are illustrated in *Exhibit 223-2*.

For RRR projects, a keyhole lane should be provided except on projects that have inadequate R/W or utility conflicts.

223.2.1.4 Green-Colored Pavement Markings

Green-colored pavement markings may be used when the need to enhance the conspicuity of bicycle-vehicular conflict areas is demonstrated. The Federal Highway Administration (FHWA) has issued an Interim Approval (IA.14) for the use of green-colored pavement in marked bicycle lanes, extensions of bicycle lanes through intersections, and other bicycle-vehicular conflict areas. FDOT has received permission from FHWA for use of green-colored pavement on the SHS. The Interim Approval may be found at the following website:

https://mutcd.fhwa.dot.gov/resources/interim_approval/ia14/index.htm
Bicycle-vehicular conflict areas are illustrated in *Exhibit 223-3*, and include:

1. Bicycle lane crosses a vehicular right turn lane
 - (a) Separate right-turn lane
 - (b) Dropped lane transitioning into a right-turn lane
 - (c) Free-flow channelized right-turn lane, such as at an interchange: lane addition or merge lane

2. Bicycle lane adjacent to a dedicated bus bay

3. Intersection Bicycle Boxes, see *FDM 223.2.1.5*

4. Two-Stage Bicycle Turn Boxes, see *FDM 223.2.1.5*

Green-colored pavement markings supplement the required bicycle lane pavement markings and are not to be used as a substitute for such markings.

The use of green-colored pavement markings requires the approval of the District Design Engineer through Project Suite’s Design Approval Request Process. The approval must be obtained during Phase I of Design. The addition of green-colored pavement markings to bicycle lanes per these criteria do not require a local agency maintenance agreement. For placement on existing pavement, contact the State Materials Office for additional placement requirements.

Use the following guidance in the placement of green-colored pavement markings for bicycle lanes:

1. When it is used in conjunction with white dotted lines, such as when extending a bicycle lane across a right turn lane or access to a bus bay, the transverse colored marking must match the 2’- 4’ white dotted line pattern of the bicycle lane extension.

2. Start the green-colored pavement as a solid pattern 50 feet in advance of the dotted striping, match the 2’- 4’ dotted through the conflict area, and then resume the solid color for 50 feet after the conflict area, unless such an extent is interrupted by a stop bar, an intersection curb radius or bicycle lane marking.

Include quantities in accordance with the *Basis of Estimates Manual*. Load these quantities into the Designer Interface in the Signing and Pavement Marking Category.

Projects using green-colored pavement markings, the EOR must submit either a GIS (a.k.a., shapefile or geodatabase) or CADD (e.g., dsgnsp.dgn, dsgnsp.dwg) file(s).
depicting the location(s) of these markings. Submit the required files via email to CO-CIMGIS@dot.state.fl.us and copy the State Bicycle Pedestrian Coordinator.

Additional details on the file format can be found in the CADD Manual and at the following website: https://www.fdot.gov/gis/bim/green-pavement.

223.2.1.5 Intersection Bicycle Box and Two-Stage Bicycle Turn Box

The Federal Highway Administration (FHWA) has issued Interim Approvals (IA), for the use of intersection bicycle boxes (IA.18) and two-stage bicycle turn boxes (IA.20). FDOT has received permission from FHWA for use of these markings on the SHS.

Intersection bicycle boxes increase the visibility of stopped bicycle traffic at an intersection and help group together bicyclists to clear intersections more quickly. Two-stage bicycle turn boxes provide another option for bicyclists to make a left turn at an intersection.

The use of intersection bicycle boxes or two-stage bicycle turn boxes may be considered only at signalized intersections. Should it be determined there are safety concerns with the IA’s device or application and the IA is terminated, the device must be removed and the site restored to its previous condition.

Intersection bicycle boxes are to meet the requirements in IA.18 and comply with all of the following conditions:

- ‘Right turn on red’ is prohibited and the left turn signal is protective
- All approaches to the intersection have a posted speed no greater than 35 mph
- Bicycle detection is provided if detection is required to actuate the signal or the signals are not timed
- There is a bicycle lane or bicycle keyhole preceding the bicycle box
- There is no more than one through lane on the approach to the bicycle box
- There is a receiving bicycle facility (bicycle lane or paved shoulder) on the opposite side of the intersection

Two-stage bicycle turn boxes are to meet the requirements in IA.20 and comply with all of the following conditions:

- ‘Right turn on red’ is prohibited
- All approaches to the intersection have a posted speed no greater than 45 mph
• Bicycle detection is provided if detection is required to actuate the signal or the signals are not timed.

It is recommended that an educational program be developed to accompany the installation of bicycle boxes or two-stage bicycle turn boxes.

The use of intersection bicycle boxes or two-stage bicycle turn boxes require the approval of the State Roadway Design Engineer.

223.2.2 Paved Shoulders

A paved shoulder is the portion of the roadway contiguous with the traveled way for accommodation of errant vehicles, stopped vehicles, bicycle traffic, and emergency use. A paved shoulder must be a minimum width of 4 feet to serve as a bicycle facility.

See FDM 210.4 for additional information on paved shoulder requirements.

When audible and vibratory treatment is used adjacent to a paved shoulder that serves as a bicycle facility, see FDM 210.4.6.

223.2.2.1 Marked Shoulders

A paved shoulder that has the Helmeted Bicyclist Symbol and Bicycle Lane Arrow pavement markings (see FDM 223.2.1.2) are referred to as “marked shoulders”. Do not use bicycle lane signs on flush shoulder roadways.

Paved shoulders should be marked only when all the following are met:

(1) Design speed \(\leq 45 \) mph,
(2) Shoulder width \(\geq 5 \)-foot,
(3) Within C4, C5, C6 context classification, or within C3 when demand is demonstrated, and
(4) Shared use path is not present along corridor.

223.2.3 Shared Use Paths

A shared use path may be substituted for a bicycle lane when the roadway design speed is 35 mph or greater and all the following conditions are met:
• Context classification C1, C2, or C3,

• Separation can be maintained between bicycle and motorized traffic through intersections, and

• Conflict points are minimal and mitigated.

As shown in Figure 223.2.1, in some cases it may be possible to fit a shared use path into the same space required for a sidewalk and buffered bicycle lane. In other cases, additional width may be required. See FDM 224 for shared use path design criteria. It is preferable to plan for shared use paths and separated bicycle lanes ahead of time by reflecting them in a district bicycle facility plan.
Figure 223.2.1 Bicycle Lane and Shared Use Path Examples

Bicycle Lane and Sidewalk Example

Shared Use Path Example
223.2.4 Separated Bicycle Lanes

Separated bicycle facilities are one-way or two-way bicycle lanes that are adjacent to and physically-separated from the vehicular travel lane. Bicyclists in these facilities are separated from vehicular traffic.

A separated bicycle lane may be used when all the following conditions are met:

- Minimum required combined width of the separator and separated bicycle lane can be obtained,
- Separation can be maintained between bicycle and motorized traffic through intersections, and
- Conflict points are minimal and mitigated. Cyclists should be given priority at the driveway and side street crossings.

Use the criteria contained in FDM 223.2.4 in conjunction with the FHWA Separated Bike Lane Planning and Design Guide to plan and design separated bicycle lanes on the State Highway System.

223.2.4.1 Type of Separation

Tubular markers, islands, on-street parking, and rigid barriers may be used as forms of separation for the appropriate design speeds as follows:

- 35 mph or less: Tubular markers, islands, rigid barriers, or on-street parking. For separated bicycle lanes adjacent to on-street parking, use an island (see Figure 223.2.2).
- 40-45 mph: Medians, islands or rigid barriers

Other forms of separation require approval from the State Roadway Design Engineer.
223.2.4.2 Width of Separation

The widths of separation are as follows:

- 3 feet minimum if adjacent to on-street parking. See Figure 223.2.2 for more information.

- If adjacent to travel lanes:
 - 35 mph or less: 6 feet preferred, 3 feet minimum unless using tubular markers or islands, then 2 feet minimum
 - 40 to 45 mph: 8 feet preferred, 3 feet minimum.

Figure 223.2.2 On-Street Parking Minimal Separation

223.2.4.3 Separated Bicycle Lane Widths

Use wider lanes where higher volumes are expected.

The lane widths for separated bicycle facilities are as follows:

- Two-Way facilities: 12 feet preferred, 10 feet minimum
- One-Way facilities: 7 feet preferred, 6 feet minimum

223-Bicycle Facilities
223.2.4.4 Pavement Markings

Pavement markings used for separated bicycle facilities must conform to the MUTCD, Traffic Engineering Manual (TEM), or FDM 230. Markings that do not conform to any of these manuals require approval by the State Roadway Design Engineer and State Traffic Operations Engineer.

223.2.4.5 Intersections and Driveways

Chapter 5 of the FHWA Separated Bike Lane Planning and Design Guide includes typical designs to address the following:

- Facility connections at intersections,
- Side streets and driveways, and
- Traffic operation tools such as bicycle signal faces and signal phasing.

See the TEM for more information on traffic operation tools.

Maintain separation between bicycle and motorized traffic through intersections (e.g., do not use mixing zones and keyhole lanes).

Minimize turning conflicts through access management. Cyclist should have priority at the driveway and side street crossings that remain.
BIKE LANE TYPICAL PAVEMENT MARKINGS

BIKE LANE INTERSECTION APPROACH DETAILS

BIKE LANE ADJACENT TO ON-STREET PARKING

BIKE LANE ADJACENT TO BUS BAY

Note: See Exhibit 230-3 in FDM 230 for bike lane and midblock crossings pavement markings.

EXHIBIT 223-1
01/01/2021

STANDARD BUFFERED BIKE LANE STRIPING DETAIL

NOT TO SCALE
TYPICAL KEYHOLE LANES

- **Bike Lane**
- **Curbed Roadway Intersection with Separate Right Turn Lane**
- **Curbed Roadway Intersection with Right Turn Drop Lane**
- **Curbed Roadway "Tee" Intersection with Separate Right-Turn Lane**
- **Flush Shoulder Roadway Intersection with Separate Right-Turn Lane**

NOT TO SCALE

EXHIBIT 223-2

01/01/2018
GREEN-COLORED BIKE LANE DETAILS

- **A**: Flush Shoulder Roadway Bike Lane with Separate Right-Turn Lane
- **B**: Curbed Roadway Bike Lane with Right-Turn Drop Lane
- **C**: Curbed Roadway Bike Lane Along Bus Bay
- **D**: Bike Lane with Free-Flow Channelized Right-Turn Lane
- **E**: Curbed Roadway Bike Lane with Channelized Right-Turn Lane

Legend
- Green Colored Pavement

<table>
<thead>
<tr>
<th>Speed (mph)</th>
<th>Lane Width (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-70</td>
<td>12</td>
</tr>
<tr>
<td>40-80</td>
<td>12</td>
</tr>
<tr>
<td>45-85</td>
<td>12</td>
</tr>
<tr>
<td>50-105</td>
<td>12</td>
</tr>
<tr>
<td>55-125</td>
<td>12</td>
</tr>
<tr>
<td>60-145</td>
<td>12</td>
</tr>
</tbody>
</table>

Not to Scale
223.3 Shared Lane Markings (Sharrows)

Shared lane markings, or "Sharrows" are optional pavement markings used to indicate a shared environment for bicycles and motor vehicles. Sharrows are used where it is not practical to provide a bicycle facility, and any of the following conditions exist:

1. With on-street parallel parking in order to reduce the chance of a bicyclist's impacting the open door of a parked vehicle.
2. To fill a gap in an otherwise continuous bicycle facility, generally for a short distance.
3. As part of an approved temporary traffic control plan, see FDM 240.

Streets with low traffic volumes and low traffic speeds are better suited to a travel environment where bicycle and motor vehicle traffic are mixed. Do not use Sharrows in the following conditions:

- Roadways with a posted speed greater than 35 mph
- On shared use paths
- Within a right turn lane

Place Sharrows in the center of the travel lane. This placement provides guidance to bicyclists to "command the lane" which discourages motorists from passing too closely. This placement also informs drivers that cyclists are entitled to ride in the center of the lane for their safety. To effectively convey this message, place Sharrows immediately after intersections and at a maximum spacing of 250 feet.

223.4 On-Street Parking

Roadways with on-street parking must provide room to cyclists to minimize impacts related to close proximity of parked vehicles (e.g., door zone avoidance). The following treatments are required for roadways with on-street parking:

- Parallel Parking:
 - Provide a 4-foot bicycle lane adjacent to the travel lane with a 3-foot buffer between the parallel parking lane and bicycle lane, per Exhibit 223-1.
 - Provide a shared lane marking in place of a bicycle facility when there is less than 7 feet available for the bicycle lane and buffer.
• Angle Parking:
 o Use a shared lane marking in place of a bicycle facility.

223.5 Bicycle Parking Amenities

 Appropriately-placed bicycle parking supports those who choose to use the bicycle as their mode of transportation. Bicycle parking facilities, installed and maintained by local agencies, on FDOT R/W require the approval of the District Design Engineer.

 Consider the following for the placement of bicycle parking facilities:

 • Facilities do not interfere with pedestrian facilities and meet lateral offset requirements
 • Racks support the bicycle from two locations to prevent it from falling over
 • Bicycle shelters are desirable for long-term bicycle parking and for shielding bicycles from inclement weather conditions
 • Bicycle lockers can provide a secure place to store a bicycle by preventing access when closed

 See AASHTO’s 2012 Guide for the Development of Bicycle Facilities, Section 6.3.1 for site-specific guidance for bicycle racks.

223.6 Bicycle Route System

 Bicycle routes include roadways or shared use paths designated through signage, pavement markings or mapping. They provide directional and distance information, and aid bicyclists in wayfinding, especially in complex urban locations or along established long distance bicycle routes.

 Follow the signing guidance in the MUTCD, Part 9 when including information directing bicyclists around temporary interruptions in a route. Do not terminate bicycle routes at a barrier.

 The decision whether to provide a bicycle route system should be based on the suitability of the particular roadway or shared use path for bicycle travel and the need for wayfinding information. Evaluations of suitability should include roadway width, volume, speed, and types of traffic, parking conditions, grade, sight distance, and connectivity to services, significant destinations, and local transit or regional transportation hubs. Other
considerations include location and condition of drainage grates, railroad crossings, pavement surface, signals responsive to bicycles, and maintenance schedules.

223.6.1 U.S. Bicycle Route System

The U.S. Bicycle Route (USBR) System is a network of bicycle routes that span multiple states and are of national or regional significance. These routes are nominated for national designation by State Departments of Transportation (DOTs), and designated and catalogued by the American Association of State Highway and Transportation Officials (AASHTO).

The National Corridor Plan shows existing and proposed U.S. Bicycle Routes within the United States. Florida has three U.S. Bicycle Routes:

- U.S. Bicycle Route 1
- U.S. Bicycle Route 90
- U.S. Bicycle Route 15

Florida has adopted a policy entitled U.S. Numbered Bicycle Routes, Topic No. 000-525-060-a in support of the national route system.

223.6.1.1 Determining a U.S. Bicycle Route

The District Bicycle Pedestrian Coordinator(s), with assistance from the State Bicycle Pedestrian Coordinator, will conduct the following:

- Assess and evaluate possible routes and select the most appropriate alternative.
- Acquire written support from federal, state or local agencies that have jurisdiction over the route or surrounding area, including the following:
 - Road authorities
 - Municipal governments
 - Departments of natural resources
 - Tribes
 - Parks and recreation
 - Federal land agencies; e.g., U.S. Forest Service, Bureau of Land Management, National Park Service
- Secure letter of concurrence from adjacent state (Alabama or Georgia). When these states ask Florida for concurrence of a proposed route, the letter will be signed by the appropriate District Secretary.

- Prepare and submit the AASHTO application. Provide turn-by-turn instructions, map, state letter of concurrence, and written support from road owners. Also include discussion of economic benefits, liability and signage for the route. The application is to be signed by FDOT Secretary.

Table 223.6.1 provides criteria that can be used to evaluate route options. Route options are scored on a scale from 3 (fulfills selection criteria) to 0 (does not contribute to meeting selection criteria). “N/A” may be used when the criteria does not apply.
Table 223.6.1 U.S. Bicycle Route Criteria

<table>
<thead>
<tr>
<th>Macro Criteria</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within USBR corridor, with an emphasis on intrinsic scenic and cultural qualities of the corridor itself.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access to scenic, cultural, historical and recreational destinations. (May not be directly on route but are nearby.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Links major metropolitan areas to connect bicyclists to transportation hubs or major attractions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reasonable direct route in connecting cities or attractions along the corridor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supports natural connections between adjoining states.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Includes or intersects existing or planned bicycle routes that are suitable for travel by touring bicycles.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Micro Criteria</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meets acceptable design criteria for on-road facilities and shared use paths.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilizes already established and successful routes or paths</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Easy to follow with limited turns; is well marked or has easily identified permanent landmarks to enable navigation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connects to at least one neighboring state’s USBR, suitable roadway, bicycle route, or trail system.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access to food, water and overnight accommodations (including camping) at appropriate intervals (40-60 miles).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access to restaurants, libraries, retail shops and bicycle shops (parts and repair).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regularly scheduled ferry service for crossing water bodies. An alternate route should be identified when service may not be available.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topography is relatively easy for bicyclists; i.e., avoids extreme climbs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Total | | | | | |
224 Shared Use Paths

224.1 General

Shared use paths are paved facilities physically separated from motorized vehicular traffic by an open space or barrier and are either within the highway right of way or an independent right of way. The term “shared use paths,” used in this manual is synonymous with trails, multiuse trails, or other similar terms used in other Department manuals.

Shared use paths are used by bicyclists, pedestrians, skaters, runners and others. Since shared use paths serve as pedestrian facilities, they must comply with Americans with Disabilities Act (ADA) standards. In addition to the requirements of this manual for accessible pedestrian facilities, the bicycle’s operating characteristics govern the design of shared use paths.

It is preferable to plan for shared use paths ahead of time by including them in a district bicycle facility plan. There should be a commitment to provide path continuity with other bikeways throughout the corridor. Ensure adequate access to local streets and other facilities along the path.

Shared use paths are appropriate in Context Classifications C1, C2, and C3, as it is anticipated there will be a lower volume of non-motorists than there are in other contexts.

When a separated facility for non-motorists is desirable in Context Classifications C2T, C4, C5 or C6, consider a separated bike lane with a sidewalk per FDM 223 and FDM 222.

Providing a shared use path:

- May substitute for sidewalk in locations where sidewalk is required (See FDM 222.2.1)
- May substitute for bicycle lanes on roads with a design speed of 35 mph or greater (See FDM 223.2.1)

For RRR projects, other than meeting detectable warning and curb ramp requirements, unaltered shared use paths that are not in compliance with FDM criteria or ADA standards are not required to be reconstructed.
224.1.1 Shared Use Path Within Department Limited Access Right of Way

Exposing vulnerable road users to high-speed traffic is undesirable; therefore, shared use paths located parallel to Limited Access (LA) Facility travel lanes are not permitted within LA right of way (R/W). However, a shared use path on causeways or bridges that span navigable waterways may be considered when the path is shielded from the high-speed traffic using barrier.

It is the Department’s intention to facilitate interconnectivity with other existing or planned shared use paths (trails) as identified by the Florida Greenways and Trails Council in accordance with Chapter 260, Florida Statutes “Florida’s Greenways and Trail Act”. To support Florida’s shared use path (trail) network, crossing the Department’s LA R/W at an existing roadway, or on a new separated overpass or underpass, will be considered.

Shared use paths that cross LA R/W must meet the following criteria:

(1) The shared use path is available for public use and includes a fence or wall to prevent access to the LA Facility travel lanes.

(2) Local Agency Agreements must be obtained to assign ownership, maintenance and management responsibilities; including:
 • Lighting
 • Fencing or barriers
 • Security gates
 • Signing
 • Amenities

(3) At-grade crossings are permitted only at interchange ramp terminals and signalized crosswalks.

(4) A proposed overpass crossing (i.e.; bridge structure spanning LA R/W) must not be within two miles of an existing or proposed shared use path crossing of the same LA Facility. A proposed overpass must:
 (a) Accommodate future widening of the LA Facility,
 (b) Span the LA R/W with minimal piers, and
 (c) Provide abutments outside of clear zone.

(5) A proposed underpass crossing (i.e.; shared use path adjacent to roadway or waterway under LA Facility bridge) must meet minimum vertical clearance as defined in FDM 224.8. A proposed underpass must remain free from standing water up to, and including the 10 year storm event.
Design Variations for the above criteria must be approved by the Chief Engineer, following a review by the Chief Planner.

224.1.2 Public Transit Loading Zones

See *FDM 225* for information on Public Transportation Facilities. Provide a minimum 5-foot-wide sidewalk connecting transit stops to shared use paths.

Coordination with the following may be required to determine the optimum location of boarding and alighting areas, transit shelters, and bus bays:

- District Pedestrian/Bicycle Coordinator
- District Modal Development Office Coordinator
- District ADA Coordinator
- District Public Transportation staff
- Local public transit provider(s)

224.1.3 At-grade Railroad Crossings

See *FDM 222.2.4* for information on at-grade railroad crossings.

224.1.4 Conflict Points

Special attention should be paid to minimizing and managing conflict points along shared use paths. See *FDM 223.2.4.5* for more information.

224.1.5 Cyclists Enter and Exit Paths

Cyclists should enter and exit shared use paths in a way that avoids bicycling against traffic, particularly at path beginning and end points. See *FDM 223.2.4.5* for more information.
224.2 Curb Ramps

Provide curb ramps to be the same width as the path. At locations where the path narrows from the typical width, warning signs or pavement markings in conformance with the MUTCD should be used. Refer to FDM 222.2.2 for specific design criteria for curb ramps.

224.3 Detectable Warnings

Provide detectable warnings in accordance with FDM 222.3.

224.4 Widths

The appropriate paved width for a two-directional shared use path is dependent upon context, volume and mix of users. Widths range from a minimum 10 feet to 14 feet, with a standard width of 12-feet. SUN Trail network facilities that are less than 12-feet require approval by the Chief Planner. For shared use paths not in the SUN Trail network:

- 10-feet wide may be used where there is limited R/W.
- Short 8-feet wide sections may be used in constrained conditions.

Consider the accommodation of emergency and maintenance vehicles or management of steep grades when selecting the width of the path.

FHWA’s Shared Use Path Level of Service Calculator may be used as a guide in determining appropriate width.

224.4.1 Tunnel Widths

Clear width for tunnels is the width of the shared use path plus four feet. The geometrics and lighting requirements should be discussed with the Department Project Manager and the District Pedestrian/Bicycle Coordinator.

224.5 Cross Slopes

To meet ADA requirements, the maximum cross slope on shared use paths is 2%.
Use a 75-foot distance to transition from -2% to 2% or from 2% to -2% when it is desired to change the slope direction of the path. Consider the potential for ponding water when proposing a slope transition.

224.6 Longitudinal Grades

To meet ADA requirements, the maximum longitudinal grade is 5%. Grades greater than 5% should be considered ramps and designed accordingly. Maximum ramp slopes are 8.33% and can have a maximum rise of 30 inches, with a level landing at least 60 inches in length.

Grades greater than 5% cause difficulties for many bicyclists. Table 224.6.1 provides maximum grades and distances for areas in which the terrain makes it necessary to use steeper grades on short sections.

<table>
<thead>
<tr>
<th>Longitudinal Grade (%)</th>
<th>Maximum Length (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>800</td>
</tr>
<tr>
<td>7</td>
<td>400</td>
</tr>
<tr>
<td>8</td>
<td>300</td>
</tr>
<tr>
<td>9</td>
<td>200</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>11+</td>
<td>50</td>
</tr>
</tbody>
</table>

Notes:

1. When using a longer grade, consider adding 4 to 6 feet of additional width to the path to allow a bicyclist to dismount and walk their bicycle.

2. Clear distances and sight distances should be adjusted to accommodate longer grades.

Refer to FDM 224.11 for controls on grade changes.
224.7 Horizontal Clearance

Provide a 4-foot clear area adjacent to both sides of the path, including placement of signs. Maintain a 2-foot wide graded area with a maximum 1:6 slope adjacent to both sides of the path. For restricted conditions, bridge abutments, sign columns, fencing and railing may be located within 4 feet of the edge of pavement.

See *FDM 224.15* for information concerning drop-off hazards.

224.8 Vertical Clearance

Provide a 10-foot vertical clearance from the lowest edge of an overhead obstruction to any portion of the path under the obstruction. An 8-foot clearance is allowed for overhead signs and for other overhead obstructions under constrained conditions. A 12-foot vertical clearance is desirable for:

1. Accommodation of equestrians or maintenance and emergency vehicles.
2. Underpasses and tunnels.
3. SUN Trail.

Minimum clearances for bridge structures are given in *FDM 260.6*.

Existing elements that provide a minimum 8-foot vertical clearance are not required to be corrected to the clearances listed above.
224.9 Design Speed

Use a design speed of 18 mph for paths with longitudinal grades ≤ 4%. Use a design speed of 30 mph for paths with downhill longitudinal grades greater than 4%.

224.10 Horizontal Alignment

224.10.1 Minimum Radii

The minimum centerline radius of curvature for a shared use path is provided in Table 224.10.1.

<table>
<thead>
<tr>
<th>Design Speed (mph)</th>
<th>Maximum Cross Slope (%)</th>
<th>Minimum Radius (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>+2</td>
<td>74</td>
</tr>
<tr>
<td>18</td>
<td>-2</td>
<td>86</td>
</tr>
<tr>
<td>30</td>
<td>+2</td>
<td>261</td>
</tr>
<tr>
<td>30</td>
<td>-2</td>
<td>316</td>
</tr>
</tbody>
</table>

Notes:
1. For paths with two-way traffic use minimum radius given for cross slope of -2%
2. Positive (+) cross slopes represent pavement sloped to the inside of horizontal curves. Negative (-) cross slopes slope toward the outside of horizontal curves.

224.10.2 Stopping Sight Distance

The minimum stopping sight distances for a shared use path are provided in Table 224.10.2. Further information on calculating the minimum stopping sight distances may be found in the AASHTO Guide for the Development of Bicycle Facilities, 2012.
Table 224.10.2 Minimum Stopping Sight Distances

<table>
<thead>
<tr>
<th>Design Speed</th>
<th>Grades</th>
<th>Downhill</th>
<th>Uphill</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9%</td>
<td>8%</td>
<td>7%</td>
</tr>
<tr>
<td>18 mph</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use 30 mph Values</td>
<td>156</td>
<td>149</td>
</tr>
<tr>
<td>30 mph</td>
<td></td>
<td>539</td>
<td>485</td>
</tr>
</tbody>
</table>

Notes:

(1) Stopping sight distance based on an object height of 0.0 feet and an eye height of 4.5 feet

224.11 Vertical Alignment

The minimum length of vertical curve necessary to provide minimum stopping sight distance at various speeds on crest vertical curves is selected by using the formula listed below:

When $S > L$: \[L = 2S - \frac{900}{A} \]

$L = \text{Min. Length of Vertical Curve (ft.)}$

$A = \text{Algebraic Grade Difference (\%)}$

When $S < L$: \[L = \frac{AS^2}{900} \]

$S = \text{Stopping Sight Distance (ft.)}$

224.12 Separation from Roadway

Place a shared use path as close to the R/W line as possible or outside the clear zone. At a minimum, provide a separation between the shared use path and the roadway. This demonstrates to both path users and motorists that the shared use path is a separate facility. Minimum separation is as follows:

- On flush shoulder roadways with design speed 45 mph or less, the edge of the path is to be at least 5 feet from the edge of the paved shoulder.
- On curbed roadways with design speed 45 mph or less, the edge of the path is to be at least 4 feet from the back of curb, with consideration of other roadside obstructions (e.g., signs and light poles).
• On all roadways with design speed 50 mph or greater, the edge of the path is to be at least 5 feet from the shoulder break.

224.13 Lighting

Lighting for shared use paths is important and should be considered where riding at night is expected, such as paths serving college students or commuters. Lighting should also be considered through underpasses or tunnels. Lighting standards are provided in Table 231.2.1.

224.14 Signing, Pavement Marking, and Signalization

The Standard Plans and the MUTCD provide guidance and requirements for signage, pavement markings and signals for shared use paths. Signs on shared use paths should follow the dimensions provided in Table 9B-1 Bicycle Sign and Plaque Sizes, MUTCD.

224.15 Drop-off Hazards

Drop-off hazards are steep or abrupt slopes adjacent to the path that can be perilous to pedestrians and cyclists. There are two cases that require shielding as shown in Figure 224.15.1. Depending on the depth of the drop-off and severity of the conditions below, shielding may be necessary for conditions other than cases 1 or 2.

Consider the following when determining the feasibility of shielding other drop-off hazards for protecting pedestrians and cyclists:

(1) The engineer should consult the District Bicycle/Pedestrian Coordinator or Trail Coordinator.

(2) Installing fencing or railings are two ways to shield the drop-offs. Fencing is generally intended for use in rural areas along paths and trails. Railing is generally intended for urbanized areas, locations attaching to bridge rail or along concrete walkways. Pedestrian/Bicycle Railings (Standard Plans, Index 515 Series) are adequate for shielding all drop-offs but are generally intended for use on drop-offs greater than 60 inches. Pipe Guiderail (Standard Plans, Index 515-070 and 515-080) is adequate for shielding drop-offs which are 60 inches or less.

(3) Along continuous sections where the drop-off varies above and below the 60-inch threshold, for uniformity the engineer may consider using only one of the railing types adequate for shielding all drop-offs.

224-Shared Use Paths
(4) Railing or fencing near intersections or driveways could obstruct the driver's line of sight. To reduce the need for railings, as a sidewalk or shared use path approaches an intersection, consider extending cross drains and side drains to minimize drop-offs.

(5) The installation of fencing, railing, or pipe guardrail presents a hazard in and of itself. Evaluate whether or not the installation of these devices present a greater risk than the drop-off or other condition it is intended to shield.
Figure 224.15.1 Drop-Off Hazards for Pedestrians and Bicyclists

CASE 1

= Place railing, fence, or other barrier within these limits

Drop-off greater than 10 inches

A drop-off greater than 10 inches (or a slope resulting in a drop-off greater than 10 inches) that is closer than 2 feet from the edge of path or sidewalk should be considered a hazard and shielded.

CASE 2

= Place railing, fence, or other barrier within these limits

Drop-off greater than 60 inches

Slope steeper than 1:2

A slope steeper than 1:2 that begins closer than 2 feet from the edge of path or sidewalk should be considered a hazard and shielded when the total drop-off is greater than 60 inches.
224.16 Path Railings

Requirements for railings and fences are discussed in *FDM 222.4*.

224.17 Typical Sections

Example typical sections are provided in *FDM 306*.

224.17.1 Pavement Design

See the *FDOT Pavement Management website* for guidance on pavement requirements.

Provide a pavement design equivalent to standard shoulder pavement:

- 12-inch Stabilized Subgrade
- Base Group 1
- 1.5-inch Structural Course.

224.18 Shade Considerations

Shade along shared use paths is desired. Consider shade from landscaping and shade from architectural sources such as buildings, pavilions, and shade sails.

To maximize shade and minimize costs:

- Begin coordination between the designer, project manager, utilities, district landscape architect, and the landscape’s maintaining agency during Phase I of the design.

- Choose an alignment of the path that can capitalize on shade from existing and proposed trees or architectural sources.

For more information on shade from Landscape Design, refer to *FDM 228, FDM 329* and *Work Program Instructions Part 3, Chapter 16*.
225 Public Transit Facilities

225.1 General

Curb-side and street-side transit facilities for bus stops should be considered in the roadway design process when a project includes a public transit route.

The Department’s *Accessing Transit: Version III, 2013 Design Handbook for Florida Bus Passenger Facilities* provides guidance relating to provisions for curb-side and street-side facilities. Refer to *FDM 215* for criteria on the placement of shelters and benches. Coordination with the District Modal Development Office and local public transit provider(s) is necessary in developing the plans.

Additional guidance on the design of transit facilities is available in the 2014 AASHTO publication, *A Guide for Geometric Design of Transit Facilities on Highways and Streets, 1st Edition*. This guide provides a comprehensive reference of current practice in the geometric design of transit facilities on streets and highways, including:

- Local buses, express buses, and bus rapid transit operating in mixed traffic,
- Dedicated bus lanes, and high-occupancy vehicle lanes,
- Bus-only roads within street and freeway environments, and
- Streetcars and Light Rail Transit running in mixed traffic and transit lanes, and within medians along arterial roadways.

The AASHTO guide is intended for use by public agencies, practitioners, and developers in need of basic information about planning, locating, sizing, designing, and implementing transit facilities along roadways.

225.2 Boarding and Alighting Areas

Boarding and alighting areas help to create an accessible bus stop by providing a raised platform that is compatible with a bus that kneels or extends a ramp. A boarding and alighting area must have a firm, stable, and slip-resistant surface with a minimum clear length of 8 feet (measured perpendicular to the curb or roadway edge), and a minimum clear width of 5 feet (measured parallel to the roadway). Firm, stable, and slip resistant boarding and alighting areas are required if amenities such as benches or shelters are added to a bus stop. Boarding and alighting areas are not required at bus stops on flush shoulder roadways where only a bus stop sign is provided. Coordinate with the
appropriate public transit provider(s) to determine compatibility with equipment and transit vehicles.

The slope of the boarding and alighting area parallel to the roadway should be the same as the roadway. For drainage purposes, a maximum slope of 1:50 (2%) (measured perpendicular to the roadway) is allowed.

On flush shoulder roadways, the boarding and alighting area should be constructed at the shoulder break to create an accessible bus stop, as shown in Figures 225.2.1 and 225.2.2. The boarding and alighting area may be placed at the edge of shoulder pavement on roadways with a posted speed of 45 mph or less. The raised area provides a landing that is compatible with a bus that kneels or extends a ramp with a slope of 1:6 or less. Bus stops should be located in close proximity to existing intersections, and with sidewalk access. The boarding and alighting area is to:

1. Use a Type E curb and gutter (5” curb height)
2. Be connected to the sidewalk along the roadway or to the roadway when no sidewalk is present

Provide a sidewalk and/or ramp that is a minimum of 5 feet wide with a maximum slope of 1:12 for the boarding and alighting area. A detectable warning is required where a sidewalk associated with a boarding and alighting area connects to the roadway at grade. Except for the area adjacent to the 5-inch curb, the areas surrounding the boarding and alighting area are to be flush with the adjacent shoulder and side slopes and designed to be traversable by errant vehicles. On the upstream side of the landing, a maximum slope of 1:12 should be provided, and may be grass or a hardened surface. The boarding and alighting area (and ramp and level landing if needed) are to be constructed with 6-inch thick concrete.
Figure 225.2.1 Accessible Boarding and Alighting Area for Flush Shoulder Roadways with Connection to Sidewalk

PLAN VIEW

With Sidewalk

SECTION A-A

LEGEND:

- Grass or Hardened Surface
- Boarding and Alighting Area

225-Public Transit Facilities
Figure 225.2.2 Accessible Boarding and Alighting Area for Flush Shoulder Roadways with Connection to Roadway

LEGEND:
- Grass or Hardened Surface
- Boarding and Alighting Area
- Detectable Warning Surface

225-Public Transit Facilities
225.3 Street-Side Facilities

Bus stop locations can be categorized as far-side, near-side and midblock stops. Bus stops may be designed with a bus bay or pullout to allow buses to pick up and discharge passengers in an area outside of the travel lane. This design feature allows traffic to flow freely without the obstruction of stopped buses. See Figure 225.3.1 for typical details for the bus stop and bus bay categories. Chapter 2 of the Accessing Transit Handbook provides additional information for each facility. The greater distance placed between waiting passengers and the travel lane increases safety at a stop.

Bus bays are encouraged on roadways with posted speeds 45 MPH and greater. A high frequency of crashes involving buses is a good indicator for the need of a bus bay. Bus bays are classified as closed, open or bulbs. Illustrations for various bus bay configurations are provided in the Accessing Transit Handbook.

Coordinate bus bay designs with applicable transit agencies to determine the site specific needs. In locations where the traffic volumes exceed 1,000 vehicles per hour per lane, it is difficult to maneuver the bus into the bay and back into the travel lane. Incorporating an acceleration distance, signal priority, or a far-side (rather than near-side or midblock) placement, are potential solutions when traffic volumes exceed 1,000 vehicles per hour per lane.

The total length of the bus bay should allow room for an entrance taper, a stopping area, and an exit taper as a minimum. However, in some cases it may be appropriate to consider providing acceleration and deceleration lanes depending on the volume and speed of the through traffic. This decision should be based upon site specific conditions. Accessing Transit Handbook provides detailed bus bay dimensions for consideration when right of way is unlimited and access points are limited.
Figure 225.3.1 Bus Stop and Bus Bay Categories

- Near-side NUR/RULR With on-street parking
- Far-side curb side stop after stop
- Far-side open bus bay with on-street parking
- Midblock closed double bus bay
225.4 Exclusive Transit Running Ways

The Department's [Typical Sections for Exclusive Transit Running Ways](#) is a guide which provides a starting point for designing exclusive transit running ways. Case-by-case evaluation of sites and corridors is essential in producing design drawings that are feasible and effective.

This guide presents conceptual typical sections for exclusive transit running ways that may see application in Florida. Typical section elements, general dimensions, analysis considerations, and intersection operations considerations are discussed in the guide for the following scenarios:

- Concurrent flow curb bus lanes
- Concurrent flow median bus lanes
- Contraflow bus lane on a one-way street
- Contraflow bus lane on a two-way street
- At-grade two-way busway on a two-way street
- At-grade reversible one-lane median busway on a two-way street
- At-grade exclusive busway in roadway R/W
- At-grade exclusive busway in separate R/W
- Exclusive bus street
- Shoulder-running bus lanes on an uninterrupted flow highway.
226 Patterned Pavement and Architectural Pavers

226.1 General

Alternative paving treatments, such as patterned pavement and architectural pavers meeting Standard Specifications, may be used for enhancing aesthetics and appearance when requested by a local community, and when the conditions and restrictions provided in this section are met. Patterned pavement treatments are covered under Section 523 of the Standard Specifications and are surface markings applied either as an overlay to the pavement surface or imprinted in the pavement surface. Architectural pavers are covered under Section 526 of the Standard Specifications and consist of brick pavers or concrete pavers placed on specially prepared bedding material.

These alternative pavement treatments are purely aesthetic treatments and are not considered to be traffic control devices. Use of either of these treatments is highly restricted as stated below. Even when all conditions and restrictions are met, any decision to use these treatments should consider that there may be potential adverse impacts to the traveling public as well as potential long term maintenance problems. Architectural pavers have been found to create significant ride-ability problems even on low speed roadways. Therefore, architectural pavers are prohibited within the traveled way on the State Highway System. Properly installed patterned pavement treatments do not significantly affect ride-ability; however, their use is also restricted since they are not likely to sustain their friction and wear characteristics for the full life of typical roadway pavement.

These paving treatments involve additional construction and maintenance costs not associated with typical roadway pavement. Therefore, obtain the appropriate agreements with the local maintaining agency. The additional funding for construction and assumption of responsibility for regular inspection and maintenance of the pavement treatment are to be provided by the local maintaining agency. In cases where existing alternative pavement is being removed as part of a Department project, replacement of such pavement is to adhere to the requirements in this chapter regardless of the circumstances of the original installation and maintenance. Maintenance agreements for installations within the traveled way on the State Highway System are to include the provisions outlined in FDM 226.4.1 for the duration of the installation.

226.2 Design Variations

Design Variations to any of the requirements in this chapter are to be approved by the District Design Engineer.
226.3 Architectural Pavers

When architectural pavers are used, identify the location, type, pattern, shape and color in the plans. In addition, identify the project specific details and requirements for edge restraints, bedding material thickness, and base and sub-base materials and thicknesses, as appropriate in the plans, which are to be signed and sealed by a licensed Florida Professional Engineer. The following restrictions apply to the use of architectural pavers:

1. May not be used on the traveled way of the State Highway System.
2. May be used on local side streets (with a design speed of 35 mph or less), non-traffic medians and islands, curb extensions, sidewalks, borders, and other areas not subject to vehicle traffic.
3. Meet ADA requirements in areas subject to pedestrian traffic. See Public Rights of Way Accessibility Guidelines (PROWAG) R301.5 and R301.7 and Americans with Disabilities Act Accessibility Guidelines (ADAAG) 302 and 303 for surface requirements.

226.4 Patterned Pavement

When patterned pavement treatments are used, identify the location, patterned type (brick, stone, etc.), and surface color in the plans. Product brands, colors and patterns may be specified in the plans as long as the brand is listed on the Approved Products List (APL) at the time of use if requested by the local agency funding and maintain these treatments. The following restrictions apply to the use of pattern pavement:

- Use on the traveled way of the State Highway System is restricted to areas within marked pedestrian crosswalks where the design speed is 45 mph or less; however, patterned pavement cannot be used on pedestrian crosswalks across limited access roadway ramps. Use on pedestrian crosswalks with heavy truck traffic turning movements (≥ 10% trucks) should be avoided.

- The pavement to which the treatment is applied is required to be of the same pavement type as, and continuous with, the adjoining pavement. For example, replacing flexible pavement with rigid patterned pavement within the limits of a crosswalk where the abutting pavement is to remain flexible pavement will likely result in pavement joint problems and adverse impacts to rideability. This type treatment is therefore not permitted. Replacing flexible pavement with rigid pavement for an entire intersection including crosswalks may be permitted with a Technical Special Provision submitted to the State Roadway Design Engineer for approval.
• The initial treatment cannot be applied to any State Highway whose asphalt pavement surface is older than 5 years.

• May be used in areas not subject to vehicle traffic such as median islands, curb extensions, sidewalks, and landscaping borders.

• Meet ADA requirements in areas subject to pedestrian traffic. See PROWAG R301.5 and R301.7 and ADAAG 302 and 303 for surface requirements.

226.4.1 Maintenance Memorandum of Agreement

Prior to the installation of patterned pavement crosswalks in intersections on the State Highway System, a Maintenance Memorandum of Agreement is required to be entered into with the local government agency requesting this aesthetic enhancement to the project. This agreement is filed with the District Maintenance Office. This Agreement requires the local government agency to acknowledge that the installation and maintenance of patterned pavement is the total responsibility of the local agency, including contracting for friction testing with a qualified firm.

“Maintenance” of all patterned pavement crosswalks in these Agreements is to be defined, as a minimum, to include its frictional characteristics and integrity as follows:

• Evaluate all lanes of each patterned crosswalk for surface friction within 60 days of project acceptance by the Department. Conduct the friction test using either a locked wheel tester in accordance with FM 5-592 (Florida Test Method for Friction Measuring Protocol for Patterned Pavements) or a Dynamic Friction Tester in accordance with ASTM E1911. FM 5-592 can be accessed at the following link: http://www.fdot.gov/materials/administration/resources/library/publications/fstm/methods/fm5-592.pdf

The initial friction resistance must be at least 35 obtained at 40 mph with a ribbed tire test (FN40R) or equivalent. Failure to achieve this minimum resistance will require all deficient crosswalk areas to be removed to their full extent (lane-by-lane) and replaced with the same product installed initially. If the Department determines that more than 50% of the lanes in the intersection require replacement, the entire intersection installation may be reconstructed with a different product on the APL or replaced with conventional pavement.

• Approximately one year after project acceptance and every two years thereafter and for the life of the adjacent pavement, only the outside traffic lane areas of each patterned crosswalk must be tested for friction resistance in accordance with
ASTM E274 or ASTM E1911. Friction resistance must, at a minimum, have a FN40R value of 35 (or equivalent).

- Send the results of all friction tests to the District’s Warranty Coordinator with a cover letter either certifying that the crosswalks comply with the minimum friction criteria, or stating what remedial action will be taken to restore the friction.

- Failure to achieve the minimum resistance requires all lanes of the crosswalk to be friction tested to determine the extent of the deficiency. All deficient areas must be removed to their full extent (lane-by-lane) and replaced with the same product installed initially. If the Department determines that more than 50% of the lanes in the intersection require replacement, the entire intersection installation may be reconstructed with a different product on the APL or replaced with conventional pavement.

- When remedial action is required in accordance with the above requirements, the local agency must complete all necessary repairs at its own expense within 90 days of the date when the deficiency was identified. No more than two full depth patterned pavement repairs can be made to an area without first resurfacing the underlying pavement to 1" minimum depth.

- The Department will not be responsible for replacing the treatment following any construction activities in the vicinity of the treatment.

- Should the local agency fail to satisfactorily perform any required remedial work in accordance with this agreement, the Department reserves the right to replace the patterned pavement with conventional pavement (matching the adjacent pavement) and bill the local agency for this cost.
228 Landscape Design

228.1 General

Landscape projects serve ecological, restoration, and conservation functions. They may include:

- New planting,
- Native habitat restoration,
- Conservation,
- Reforestation,
- Selective clearing and grubbing,
- Invasive plant removal,
- Pollinator enhancement,
- Conservation, reforestation, and selective clearing and grubbing,
- Invasive plant removal and pollinator enhancement,
- Conservation and reforestation,
- Selective clearing and grubbing and invasive plant removal,
- Pollinator enhancement and conservation.

Beautification is a consequence of the ecological, restorative, or conservation functions, and should not be the sole intent of the landscape project. Landscapes must be context appropriate and disease resistant. Planting design should reflect Florida's unique identity and ecology.

Planting and irrigation systems should be designed to achieve a balance between aesthetics, safety, maintainability, cost-effectiveness, and resource conservation. Planting projects may include vegetation, mulches, and irrigation. Landscape designs may include hardscape features (e.g., street furniture, specialty paving, tree grates, walls, planters, fountains, fences, landscape lighting). Hardscape-only projects are not landscape projects. Landscape may be constructed as a standalone project or as a component of a roadway project. Plantings should be responsive to local community goals.

Landscape design will mimic the arrangement of and complement the adjacent roadside ecosystem character through the selection of native and regionally appropriate plant material, and through the preservation of naturally occurring desirable vegetation. To the greatest extent possible, integrate a diversity of appropriate species with the existing ecosystem to enhance the roadside aesthetic and functionality of the landscape. Through this approach to natural planting, the frequency, scope and cost of maintenance will be substantially reduced.

Plants included in a landscape project are expected to grow in value for many years after final acceptance. Trees have proven to be the plants most resilient and most likely to grow in value. Landscapes composed of vast areas and quantities of ornamental shrubs
and other plants have proven to be the most difficult to care for and least likely to grow in value.

Plants need adequate amounts of quality space above and below ground to grow in value. To assure that quality space is provided, coordinate the Landscape Plan with other component plans.

For Landscape Plan content refer to *FDM 329*.

228.2 Landscape Design Requirements

Develop landscape designs that are consistent with the following documents:

- **Subsection 334.044(26), Florida Statutes (F.S.)** – Department powers and duties
- **Section 335.167, F.S.** – State highway construction and maintenance; Florida-Friendly landscaping
- **Section 373.185, F.S.** – Local Florida-friendly landscaping ordinances
- **Florida-Friendly Best Management Practices for Protection of Water Resources**
- **Highway Beautification Policy, Topic Number 000-650-011**
- FDOT's Landscape Architecture Program, https://www.fdot.gov/designsupport/highwaybeautification/default.shtm

Landscape designs are to comply with the following requirements:

1. Landscape design is to include large plants with combined value of 50% or more of the estimated value of all plants specified in the plans. Large plants are defined as:
 - Shrubs, trees and cycads, 7 gallons or greater
 - Single-trunk palms
 - Clustering Palms, 6-foot height or greater
(2) Landscape design is to:
 (a) Preserve required sight distance, lateral offset, and clear zone.
 i. Within clear sight triangles, select ground cover plants (i.e., naturally low-growing plants) with maximum mature height ≤ 18 inches.
 ii. Do not select plants that will require routine maintenance to preserve sight distance.
 iii. Select trees with clear trunk(s) or limbed up to 5 feet minimum above the sight line datum (see FDM 212, Figure 212.11.5).
 (b) Reflect Florida’s unique identity and ecology
 (c) Consist of primarily native plant materials that are context appropriate, locally adapted, and disease resistant.
 (d) Enhance air and water quality.
 (e) Prevent roadside erosion.
 (f) Conserve and enhance urban forests.
 (g) Benefit pollinators.
 (h) Preserve visibility of community aesthetic features and highway signing.
 (i) Preserve the view of permitted outdoor advertising signs. See FDM 228.5 for view zone requirements.
 (j) Complement the performance, function, and aesthetic quality of stormwater systems.
 (k) Minimize or eliminate the need for irrigation, especially with potable water, following plant establishment.
 (l) Minimize or eliminate the need to amend or remove and replace existing soil.
 (m) Resist destructive insects and diseases; and minimize or eliminate the need for routine treatment.
 (n) Be compatible with existing and proposed ITS devices, above and below ground utilities.
 (o) Be compatible with a maintaining agency’s preferences, abilities, and resources.
 (p) Select and place plants to prevent harm to pavement from growing roots or from accumulation of falling debris (fruit, nuts, large leaves).
Irrigation system design requirements include:

(a) A reliable water source and means of delivery.

(b) Compatible with the maintaining agency’s preferences, abilities, and resources.

(c) Avoid overspray into the roadway, sidewalks, or any other paved surfaces, buildings, transit stops.

(d) Compliance with state and local requirements; e.g., *Florida Building Code*, *Water Management Districts*, *Florida Administrative Code*.

(e) Conservation of water; e.g., control system technologies including SMART irrigation technologies, reclaimed and reuse sources.

(f) Durable materials that are traffic rated and ultraviolet light resistant.

(g) Compliance with requirements set forth by local governmental entity and water management districts.

228.2.1 Landscape Design Considerations

Consider the following elements during the development of the landscape design:

(1) Change the characteristics of the roadway corridor to encourage lower operating speeds.

(2) Protect, conserve, complement, and enhance natural roadside vegetation, scenic resources, and natural features.

(3) Screen unfavorable views.

(4) Reduce stormwater runoff.

(5) Sequester carbon.

(6) Create high-quality transportation facilities and travel experiences that create value for residents and Florida’s tourism sector.

(7) Provide shade and comfort for pedestrians, bicyclists, and transit riders. Begin coordination with other design disciplines during Phase I to determine if a modified sidewalk, shared use path alignment, or pavement design can improve the following:

 (a) Safety,

 (b) Pavement durability,

 (c) Ability to conserve existing trees, or
(d) Increase benefits of selected trees. For shade along Shared Use Paths, refer to *FDM 224*.

(8) Mitigate heat-island effect.

(9) Support community efforts for economic development, urban revitalizations, and aesthetic enhancements.

(10) Relocate existing vegetation. Refer to Tree and Palm Relocation in *FDM 229.3*

(11) Selectively clear and thin existing vegetation. Refer to Selective Clearing and Grubbing Design and Selective Clearing and Grubbing Plans in *FDM 229 & 323*.

(12) Provide time and space for natural regeneration and succession of native plants.

(13) Reforest with native trees.

(14) Use Florida-native plants with known provenance (original source of plants stock) as close to planting site as possible.

(15) Select and place plants to minimize impacts to natural areas.

(16) Choose and place plants to minimize the need to maintain uniform height and spacing to sustain design intent.

(17) Use recycled and recyclable materials.

(18) Select a diverse mix of plants. A rule of thumb is that the most sustainable landscapes have an uneven aged mix of no more than 10 percent of the same species, 20 percent of the same genus, and 30 percent of the same family.

228.2.2 Department-Maintained Landscapes

Landscape projects that will not be maintained by a local agency are required to meet the following criteria:

- Use drought tolerant plants. Assume that landscape irrigation will not be available after the establishment period.

- Select plants that are not disease susceptible. Assume that landscape material will not be inoculated against disease.

- Design a low maintenance landscape. Assume that mulch rings will transition to mowed grass. Make no assumption that landscapes will be fertilized.

- Arrange trees and palms such that design intent will be maintained in the case of plant mortality. Do not assume that plants that fail will be replaced. Rigid geometric
designs focused on repetition should not be used, as it is very noticeable if one or more of the trees fail.

Arrange trees and palms to allow for efficient mowing paths of tractors. Determine how the landscape will be viewed to determine the appropriate design and level of maintenance. Highway plantings that are viewed by passing motorists at 60 mph must be designed to a lower maintenance standard than rest area landscapes or landscapes adjacent to sidewalks, which will be viewed by pedestrians “up close” and will require a higher standard of care and maintenance.

228.2.3 Soil Enhancements

The selection of trees and other landscape materials is based on their ability to establish, thrive, and grow in value over time. Analyze existing soil conditions early in the design process and select plant species that can thrive in the existing conditions.

Highly disturbed soils (e.g., those located in medians, embankments, roundabouts) are often densely compacted, rocky, and infertile. These soil conditions may negatively impact plant establishment by inhibiting root growth, reducing water infiltration, and increasing run-off. Soil enhancements may be specified when existing soils inhibit plant establishment and growth.

Analyze and document the existing soils during the analysis phase, including a preliminary soil analysis supported by an appropriate number of test pits based on site-specific conditions. Advanced soil analysis may be performed, at the Department’s discretion, when preliminary analysis indicates the existing soils are not suitable for plant establishment and growth. Appropriate soil enhancements should be based on the results of the analysis.

Soil enhancement options include the following:

- Soil scarification (a.k.a., soil structural improvement)
- Soil amendments
- Full soil replacement with Landscape Soil

Soil scarification includes mechanically loosening the existing soils to accommodate plant establishment and growth.

Soil amendments include mixing of organic soils, inorganic soils, or minerals with the existing soils. Soil amendments help support plant growth by providing nutrients,
increasing water retention and transmission, and reducing erosion. Mineral amendments (e.g., nitrogen, phosphorus, potassium) improve soil fertility and pH levels.

Full soil replacement with Landscape Soil is only warranted when both of the following conditions are met:

- All other soil enhancement measures will not improve the quality of the existing soil enough to support establishment and growth of plants; and,

- Affected trees or palms are included in the same project

Landscape Soil material requirements are included in Standard Specification 987-2.4. When urban raised medians, bulb-outs, sidewalk tree pits, and central area roundabouts are being designed specifically to accommodate future trees, the District Design Engineer may authorize the designer to include Landscape Soil.

Soil enhancements are typically limited to areas proposed as planting beds or individual tree or palm planting pits. Ensure individual planting pits are sized appropriately to accommodate the mature size of the root ball. Excavation for amendments or replacement soil cannot occur within two feet from the back of any curb or from any structure.

Provide documentation to the Project Manager or District Landscape Architect justifying the need for soil enhancements. Required information for soil enhancements on landscape plan sheets is included in FDM 329.6.1.

Include the cost of soil scarification or amendment or landscape soil replacement in the lump sum cost.

228.2.4 Landscape Construction Cost Estimate

Estimate the cost for all proposed landscape improvements, including care during the installation and plant establishment period. Incidental costs are included in the cost of the plants, as described in FDM 329.

Submit a PDF of the cost estimate to the Department Project Manager. The cost estimate is typically generated using an excel spread sheet. Do not include the cost estimate in the construction contract documents. It is intended solely for use by the Department.
228.3 Landscape Opportunity Plan

A landscape opportunity plan is typically prepared during the roadway concept plan development to accommodate future projects.

A landscape opportunity plan may be prepared when any of the following occur:

(1) Landscape is not part of a roadway project, and landscape is anticipated to be designed and installed as a subsequent Maintenance-let project.

(2) Landscape is not part of a roadway project, but landscape improvements are part of a simultaneous JPA or LAP project.

(3) Irrigation sleeves are included in a roadway project, but placement and details are not shown in the contract plans.

(4) When there is high probability that landscape will be installed with a subsequent project. Areas within a municipality, county boundaries, urban areas, high-visibility areas, areas adjacent to barriers or sound walls, embankments, median plantings, scenic highways or areas programmed for Highway Beautification Grants, and areas indicated in the District’s Landscape Branding Document.

Modification for Non-Conventional Projects:

Delete Section 228.2.3.

Add the following and see the RFP for requirements:

(5) When proposed landscape or existing vegetation are to be preserved, the Department may create Landscape Opportunity Plans.

Consider the following elements during the development of the landscape opportunity plan:

(1) Through coordination with other disciplines, provide adequate space (both above and below ground) for the existing and proposed landscape. Assure landscape areas will have soil suitable for plants to grow in value.

(2) Specify areas and construction methods to preserve the existing and future landscape planting areas.
(3) Coordinate with other component plans to provide adequate quality space for plant growth for the desired landscape design intent. Coordinate early in the process with Roadway, Utility, Drainage, Signage, ITS, and other disciplines, to analyze competing uses of the R/W. Preserve landscape opportunities to the greatest extent possible.

(4) Identify the location of Outdoor Advertising sign faces and view zones within project limits; see FDM 228.5.

To prevent future costly and difficult retrofits, roadway projects may include provisions for landscape (e.g., irrigation sleeves, suitable soil for landscape, space for planting, preservation of existing vegetation) when a subsequent standalone landscape project is planned.

228.3.1 Required Information

The landscape opportunity plan is typically produced as a roll plot format, 1” = 200’ maximum. An alternate format may be approved by the Department’s project manager. Submit the completed landscape opportunity plan to the Department project manager and District Landscape Architect.

Provide a legend, notes, and details as needed. Delineate areas for future landscape plantings in bubble format and prioritize them into categories such as high, medium and low priority. Explicitly convey design intent, such as:

- Areas with trees and shrubs for buffering differing land uses
- Trees to frame desirable views
- Trees and ground cover areas for stabilization of embankments
- Trees to shade sidewalks
- Shrubs for pedestrian channelization

For context and legibility include the following:

(1) Proposed improvements and existing elements to remain
(2) Existing vegetation or areas to remain undisturbed
(3) Wetland jurisdictional lines
(4) Drainage retention areas

(5) Utilities

228.3.2 Landscape Irrigation Sleeves

Landscape irrigation sleeves are used in locations where a future landscape project with irrigation is planned, as determined by the District Landscape Architect. Irrigation sleeves are intended to be used on new construction projects, where there is an opportunity to install the sleeves in an open trench. This condition does not apply to existing roadways or directional boring operations. They are typically placed under paved surfaces to connect to raised medians, roundabout central islands, and under driveways. See Standard Plans, Index 591-001 for installation requirements.

Landscape irrigation sleeves typically consist of 2 adjacent pipes: one for an irrigation line, and one for an electrical control wire. Show pipe diameters in the plans. The diameter of each pipe is typically two pipe sizes larger than the carrier pipe, with the following minimum diameters:

- Irrigation pipes – 3 inches
- Electrical control wire – 2 inches

228.4 Landscape Maintenance Guide

The maintenance guide is written or graphic and describes the design intent including mature size and form of plant material, offsets required to maintain clear sight, and any functional characteristics the landscape is intended to provide. The guide is related to activities provided by the maintaining authority, after the Contractor’s establishment period has ended.

Coordinate with the maintaining agency to assure compatibility with maintenance resources, abilities, and practices. The maintenance methods for plants, and watering frequency for irrigation system, will be determined by the maintaining agency.

Submit a PDF of the landscape maintenance guide for proposed landscape improvements, including the irrigation system, to the Department Project Manager. Include the landscape maintenance guide in the maintenance agreement when maintained by a local governmental entity, and in the maintenance contract when maintained by the Department.
228.4.1 Landscape Design Intent and Maintenance Performance Requirements

Convey the design intent and performance requirements in the Landscape Maintenance Guide.

(1) For individual plants or groups of plants, describe design intent and performance requirements such as:
 (a) Screen adjoining land use
 (b) Provide shade to sidewalk
 (c) Reduce stormwater velocity
 (d) Maintain full foliage
 (e) Reestablish natural roadside edge
 (f) Maintain naturally appearing forest
 (g) Maintain clear trunk to X feet
 (h) Maintain at height no less than X feet
 (i) Maintain height no greater than X feet
 (j) Maintain plant health, form, and spread
 (k) Maintain condition of hardscape, lighting, benches, and site amenities
 (l) Preserve sight distance
 (m) Preserve lateral offset and vertical clearances as defined in FDM 215
 (n) Preserve access
 (o) Keep mulch replenished
 (p) Keep mulch beds edged
 (q) Keep weeds from view or from affecting plant growth or health
 (r) Remove invasive, exotic vegetation
 (s) Control pests and disease

(2) For irrigation system maintenance, describe design intent and performance requirements such as:
 (a) The frequency of scheduled inspections
 (b) Detailed requirements associated with the system components inspection against the original design parameters
(c) Adjustments necessitated over time as the landscape matures
(d) A written or graphic guide describing the plant water needs across changing weather conditions at the station or zone level
(e) Performance requirements necessary to maintain and manage the following:
 i. Performance of backflow prevention
 ii. Water supply and pressure requirements
 iii. Desired operating pressure for pressure regulators
 iv. Filters and filtration requirements
 v. Operation of controller, including battery backup
 vi. Sensors
 vii. Valve flow and operation
 viii. Flow regulators
 ix. Head adjustment and spray pattern
 x. Testing requirements
 xi. Manufacturer specifications and user manuals
 xii. Winterization requirements (if applicable)
 xiii. Future audit requirements

228.4.2 Landscape Maintenance Cost Estimate

Estimate the cost for all proposed landscape maintenance activities, including irrigation system. The cost estimate is typically generated using an excel spread sheet. Consult with the District Landscape Architect and District Maintenance staff when developing the cost estimate. During design, a preliminary cost estimate allows the maintaining agency to evaluate the landscape plan and determine if revisions are necessary.

Submit a PDF of the cost estimate to the Department Project Manager. Do not include the maintenance cost estimate in the construction contract documents. It is intended solely for use by the Department and maintaining agency.

Include the landscape maintenance cost estimate as an exhibit to the maintenance agreement when landscape and irrigation is to be maintained by a local governmental entity.
Include the landscape maintenance cost estimate as an exhibit to the maintenance contract when landscape and irrigation is to be maintained by the Department.

228.5 Outdoor Advertising Signs

When a legally erected and permitted outdoor advertising sign view zone is within the project limits, the landscape architect will notify the sign owner (permittee) in writing that a highway landscape project is proposed.

Use the Outdoor Advertising Database to verify the permit status of all permitted outdoor advertising signs located within 1,000 feet of the project limits. Some permitted outdoor advertising signs may not be erected or visible at the time of design, but still must meet view zone requirements. A permitted outdoor advertising sign has one of five possible statuses:

- active
- revoked
- expired
- voided
- canceled

For erected outdoor advertising signs with a permit status of “expired”, “cancelled”, or “revoked”, contact the State Outdoor Advertising Administrator to determine if there is a view zone.

In accordance with Chapter 479, F.S., in the absence of an agreement, the view zone will be within an area beginning at a point on the edge of pavement perpendicular to the edge of the sign facing nearest the highway and continuing in the direction of approaching traffic for a distance of:

- 350 feet for posted speed limits of 35 mph or less,
- 500 feet for posted speed limits over 35 mph.
- Through approval of an agreement or an Application to Permit Vegetation Management at Outdoor Advertising Sign, (Form Number 650-050-06) an alternate view zone may exist. Refer to the Outdoor Advertising Database or Contact the State Outdoor Advertising Administrator to verify location of view zones within the project limits.
- At any time, the Department District can request an alternate view zone. An alternate view zone can be established by agreement of both parties; the sign owner and the District Office (most likely the District Maintenance Engineer or designee). Using a letter of agreement, Department Districts may agree to alternate view zones when the alternate is in the best interest of the people of
Florida, and when the alternate will not interfere with or prevent the Department from achieving transportation design, construction or operational objectives.

Information for permitted signs may be obtained by contacting:

State Outdoor Advertising Administrator
Florida Department of Transportation
605 Suwannee Street, MS 22
Tallahassee, Florida 32399-0450
229 Selective Clearing and Grubbing Design

229.1 General

Selective clearing and grubbing includes one or more of the following:

- The removal of undesirable vegetation,
- Areas of plant preservation,
- Tree protection fencing, and
- Branch and root pruning

Selective Clearing and Grubbing is an alternative to Standard Clearing and Grubbing. Selective Clearing and Grubbing may be identified by the absence of Standard Clearing and Grubbing, or by the presence of mechanical, chemical or hand vegetation removal.

Trees and palms along transportation corridors should be properly preserved and should not be unnecessarily removed. Consideration should be given to existing desirable trees and palms that are healthy and structurally sound. Removal or relocation should be considered only if preservation is impractical. Existing vegetation may be larger, established vegetation that serves buffering, ecological, or aesthetic functions. Protection of existing vegetation may result in cost savings by minimizing standard clearing and grubbing areas, and by reducing the quantity of new nursery material.

Preservation of existing trees and palms is intended to:

- Improve aesthetics along Florida’s transportation corridors
- Preserve legacy vegetation or landscape material previously installed with transportation funding
- Minimize adverse ecological impacts

Areas requiring selective clearing and grubbing, tree protection, pruning or thinning, or plant preservation are determined during the design phase, but may also be identified at other project development phases. Review commitments made during the PD&E phase to determine if any of these areas were identified. Areas may also be identified during the Design phase as determined by the District Environmental Office, District Permit Office, District Landscape Architect, through public involvement, or the permitting process.
Modification for Non-Conventional Projects:

Delete the above paragraph and see RFP for requirements.

Determine the level of protection and coordination required to complete the removal operations while sufficiently protecting the desirable vegetation that is to remain.

Refer to Figure 229.1 for illustration of the typical Selective Clearing and Grubbing process, including vegetation removal, preservation, relocation and supplementing with new landscape material.
Figure 229.1 Typical Selective Clearing and Grubbing Process

EXISTING CONDITIONS
A desirable trees
B native palms
C invasive exotic vegetation
D invasive vines
E mature native trees
F exotic accent palms
G invasive exotic understory vegetation
H desirable understory trees and shrubs
I desirable shrubs

REMOVE & RELOCATE
A relocated trees used to complement and supplement existing vegetation to remain
B desirable trees to relocate (appropriate size and good quality)
C exotic accent palms relocated (due to high value and good condition)
D desirable trees to remove (too big to relocate cost effectively)
E desirable shrubs removed (not worth relocating)
F exotic accent palm removed (either poor condition or undesirable species)
G invasive vines removed
H invasive exotic trees and shrubs removed

SUPPLEMENTAL LANDSCAPE
SUPPLEMENTAL - native vegetation (within the same community) to supplement and complement existing
SUPPLEMENTAL - exotic vegetation to supplement, compliment or contrast

RELOCATE - desirable native & exotic vegetation of appropriate size for relocation
REMOVE - desirable vegetation in the way of construction
REMOVE - invasive exotic or otherwise undesirable vegetation
EXISTING - desirable vegetation to preserve

FINAL

229-Selective Clearing and Grubbing Design
229.1.1 Undesirable Vegetation Removal

Selective clearing and grubbing can remove undesirable vegetation while preserving existing desirable vegetation. For instance, a stand of large live oaks may have smaller shrubby undergrowth, and mechanical thinning of the undergrowth is needed to remove the lower growing material while preserving the large trees. Or a landscape area is overrun with an invasive stand of cogon grass and selective chemical weed control is necessary to prevent further spread of the invasive grass through the landscape area. Both of these are examples of undesirable vegetation removal. Considerations for undesirable vegetation removal include:

- Analyze vegetation adjacent to residential properties. Overgrown species may be the only buffer between the R/W and adjacent residents.
- Consider the value of selective clearing and grubbing when immediately adjacent properties are overrun with invasive species, which are likely to spread back into the R/W soon after clearing.
- Determine if follow-up treatments to invasive species are necessary for eradication.
- Specify if tree stumps are to be removed or left in place.

229.1.2 Tree Protection

Areas with tree protection are considered selective clearing and grubbing areas, as the tree being protected is being “selected” to remain. Tree protection fencing is utilized when individual or groups of trees require preservation on individual or groups of trees have been relocated within project limits. Place tree protection barriers at a minimum, at the dripline of trees. Consider specifying root pruning when impacts to portions of the critical root zone are unavoidable. Specify branch pruning when needed for sidewalk or roadway clearance, to improve wind resistance, or to reduce conflicts with roadway or utility features.

229.1.3 Plant Preservation Areas

Plant Preservation Areas are areas in which no standard clearing and grubbing activities, construction, or staging areas are to occur. Vegetation (e.g., grasses, wildflowers, shrubs, trees) and existing soils within these areas are to be protected from construction activities.
229.2 Selective Clearing and Grubbing Field Assessment

The field assessment should include, but is not limited to, the following:

- Desirable Vegetation: species, size, condition, location
- Existing Undesirable Vegetation: species, size, location
- Opportunities for vegetation preservation, or selective removal of vegetation as an alternative to standard clearing and grubbing
- Opportunities for vegetation removal to create vistas or allow views into desirable areas such as ponds, forested areas or other attractive transportation features.
- Construction limits, grade change, and the anticipated impacts on surrounding vegetation
- Adjacent land uses
- Adjacent property vegetation

The result of the field assessment determines the course of action for Selective Clearing and Grubbing and the extent of the Vegetation Survey.

229.2.1 Site Inventory Analysis and Required Coordination

Prepare a site inventory and analysis of existing vegetation, opportunities for preservation and protection of existing vegetation, relocation options, and selective removal of vegetation.

Coordinate with roadway design to maximize areas of preservation of existing desirable vegetation. Coordinate with the surveyor to have trees tagged and surveyed, as necessary. Coordinate with utility companies, drainage engineers, and traffic engineers to ensure that preservation of existing vegetation is coordinated between all disciplines. Coordinate with the District Landscape Architect to verify Selective Clearing and Grubbing is conducted in alignment with the District’s proposed landscape projects.

Give special attention to preservation in the following types of situations or areas:

- previously protected historically significant, or large trees or palms
- completed beautification or landscape projects
- scenic corridors and designated Florida Scenic Highways
• corridors through conservation lands
• vegetation buffers between different types of land use

229.2.2 Maintenance Report

Prepare a written or graphic Maintenance Report for the care and maintenance of the tree preservation areas, and selective clearing and grubbing areas. Convey the intent of the selective removal and preservation of vegetation and arboricultural practices within this report. Coordinate with the District Landscape Architect to verify that the intent of the tree preservation areas is in alignment with future highway landscape plans.

229.3 Tree and Palm Relocation

Relocation of plant material is often used to mitigate negative public perceptions of tree removal. The cost of relocation of material must be considered when determining if relocation is reasonable. Relocation of trees and palms require the approval of the District Landscape Architect. The feasibility and suitability of relocating trees or palms is based on multiple considerations:

- tree or palm condition (i.e., form, health, structure)
- size
- species
- conservation status
- amenity value
- suitability for relocating
- environmental and cultural factors
- functional and engineering considerations
- cost effectiveness

The feasibility and suitability of relocating trees and palms is a major consideration in the design, documentation, implementation, and post-construction stages. Relocation may not be appropriate or justified on all projects. Careful consideration must be given to weigh the cost and benefit of relocation of existing material versus purchasing new nursery material. Consider the length of the establishment period and the material replacement requirement for relocation contracts versus landscape contracts. Most cases will not meet the criteria to justify a relocation project, and in those cases, not all trees and palms on a project will qualify for relocation.

Use the flowchart shown in Figure 229.3.1 as a tool to assist in determining when to retain, relocate, or remove a tree or palm. For construction projects, trees or palms must be relocated to a site that is within the project limits. Relocation on-site may decrease transport costs, increase the survival rate after relocating, and serve to minimize the loss...
of vegetation in the local environment. In some cases, there is not sufficient space on-site to accommodate a receiving site for the relocated plants.

Relocation of trees or palms to a location off-site may be justified in rare conditions. Off-site relocations are more complicated as the materials will be leaving the project site. Maintenance-let or push-button projects may have more flexibility to relocate trees and palms off-site. In all maintenance-let projects, final locations must be within the District in which the contract is let.

Off-site relocations must meet the following requirements:

- the determined final location is shown in the plans
- a written agreement with the maintaining agency has been obtained

Tree and palm relocations are detailed in the Selective Clearing and Grubbing plan sheets. Plan content requirements are included in *FDM 323*.

Large trees take substantial time and resources to relocate. Time periods required between root pruning and relocation must be in accordance with Industry standards and *Supplemental Specification 581*.

Palms, when compared to trees, are relatively easy to relocate. Each palm species responds differently to root pruning. Develop a relocation and root pruning plan tailored to the particular species being relocated. Final approval to relocate trees and palms shall be provided by the District Landscape Architect.
Figure 229.3.1 Tree Relocation and Preservation Determination

- **Tree/Palm Condition**
 - Good
 - To be retained in-situ
 - No
 - Relocateable
 - Disease resistant?
 - Yes
 - Cost effective
 - Yes
 - Plan for relocation can be accommodated
 - Yes
 - Preserve on site
 - Yes
 - Roadway Project
 - Yes
 - Selective Clearing & Grubbing Plan
 - No
 - Landscape Project
 - Yes
 - Landscape Plan
 - No
 - Relocate
 - No
 - Do Not Relocate
230 Signing and Pavement Marking

230.1 General

Traffic control devices are necessary to help ensure highway safety. Traffic control devices provide for an orderly and predictable movement of motorized and non-motorized traffic throughout the highway transportation system. They also provide guidance and warnings to ensure the safe and informed operation of individual elements of the traffic stream. The design and layout of signs and pavement markings should complement the basic highway design.

FHWA’s *Manual on Uniform Traffic Control Devices (MUTCD)* contains detailed information of all standard highway signs and pavement marking messages. Each sign is identified by a unique designation. Signs and pavement markings not included in this manual or in the *Standard Plans* are to be detailed in the plans.

Examples of typical signing and pavement marking configurations are included in *FDM 230.6*.

230.1.1 Structural Supports

AASHTO’s *LRFD Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals* and *FDOT Modifications to LRFDLTS-1* provide structural design criteria.

Refer to *FDM 261* for information regarding structural support requirements. Refer to *FDM 325* for information regarding plan requirements.

230.1.2 School Zones

The Department’s *Manual on Speed Zoning for Highways, Roads and Streets in Florida* (a.k.a., *Speed Zoning Manual*, Chapter 15), provides school zone signing and pavement marking requirements.

Public or private elementary, middle schools (Jr. High), and federally funded facilities providing a full-time educational program are to comply with the pavement markings, signs, and other traffic control devices referenced in the *Speed Zoning Manual*. The use of these devices at high schools must be justified by an engineering study.
Standard Plans, Index 700-120 provides details relating to enhanced highway signing assemblies.

230.1.3 Vertical Clearance

See FDM 210.10.3 for vertical clearance requirements for sign structures.

230.2 Signing

230.2.1 Sign Placement

Refer to the MUTCD, Standard Plans, and FDM 215 for acceptable sign locations. Provide a four-foot clear width, not including the width of curb, when a sign is located within a sidewalk.

230.2.2 Overhead Signs on Limited Access Facilities

Section 2A.17 of the MUTCD lists thirteen optional conditions where overhead signs have value on limited access facilities. Signs are to be ground mounted except at locations required by the MUTCD or noted below:

Use overhead exit direction signs when any of the following conditions exists:

(1) Interchange Spacing ≤ 3 Miles
(2) Left Exit
(3) Three or More Through Lanes

Use overhead advance guide signs when any of the following conditions exists:

(1) Interchange Spacing ≤ 3 Miles
(2) Left Exit
(3) Limited access facility to limited access facility Interchange (1/2 mile and 2 mile, 1 mile required by MUTCD)

This criteria is not intended to restrict the use of overhead signs where there is insufficient space for post mounted signs or where there is restricted sight distance.
Place overhead advance guide signs over the shoulder with the edge of the sign aligned with the edge of the traveled way unless otherwise shown in the MUTCD. Place overhead exit signs over the ramp traffic lane(s). If a barrier is present to shield another hazard, place the upright behind the barrier with proper setback for barrier performance.

230.2.3 Local Street Names on Guide Signs

Standard practice is to use route numbers on guide signs to designate roadways. When the local name for a roadway is more familiar than the route number, the local street name may be used as supplemental information to route numbers. The decision to use a local name should be coordinated with the District Traffic Operations Engineer.

230.2.4 External Lighting of Overhead Signs

Provide external lighting of overhead signs only for the following conditions:

1. Horizontal curves with radii of 880 feet or less in rural context classifications.
2. Horizontal curves with radii of 2,500 feet or less in urban context classifications.
3. In sag vertical curves with a K value of 60 or less for all context classifications.

Show sign lighting requirements on the Guide Sign Worksheet when sign lighting is required. Include sign lighting calculations in the Lighting Design Analysis Report.

See FDM 231.2 for sign lighting criteria.

230.2.5 Signs on Barriers and Traffic Railings

For information regarding attachments to bridge traffic railings, concrete median barrier walls, or concrete shoulder barrier walls, refer to FDM 215.5.

Utilize Standard Plans, Index 700-013 when attaching the following permanent sign supports to a median traffic railing:

- No U-Turns (R3-4) w/ Official Use Only (FTP 65-06)
- Left Lane Ends (W9-1)
- Lane Ends Merge Right (W9-2)
- Merge Symbol (W4-2)
• Warning, Regulatory, or Advisory Speed signs used as a countermeasure or mitigation for safety conditions

No other permanent signs are to be attached to median traffic railings. **Standard Plans, Index 700-013** may be used for temporary or work zone signs when **Standard Plans, Index 102-600** cannot accommodate post mounted signs within existing conditions.

230.2.6 Signing for Temporary Bridges with Steel Decks

Place “Slippery When Wet” signs (W8-5) in advance of temporary bridges with steel decks. Refer to **TEM, Section 2.1**

230.2.7 Object Markers and Delineators

An object marker is used to mark obstructions within or adjacent to the roadway. The **MUTCD** describes four object markers and how they are to be used. A Type 1 (style OM1-3 only) or Type 3 (all styles) object marker is used to mark obstructions within the roadway. A Type 2 (style OM2-2V only) or Type 3 (all styles) object marker is used to mark obstructions adjacent to the roadway. A Type 4 (style OM4-3 only) object marker (end-of-roadway marker) is used to alert users of the end of the road.

A delineator is a guidance device rather than a warning device. The **MUTCD** and **Standard Plans, Index 711-003** illustrate the use of delineators along the edge of limited access traffic lanes and interchange ramps. A delineator may be a flexible or a non-flexible type. District maintenance offices generally have a preference on which should be specified.

Modification for Non-Conventional Projects:

Delete the last sentence of the above paragraph and see RFP for requirements.

230.2.8 Tubular Markers

Tubular markers are the Department’s standard device for the purpose of channelization. The color of tubular markers must be the same color as the pavement marking that they emphasize. They are typically used for channelization at the following locations unless signing (e.g., R4-7 or R4-8) is otherwise required:
230.2.9 Enhanced Highway Signing Assemblies

Flashing beacons, highlighted signs, and electronic speed feedback signs may be used to increase the conspicuity of warning and regulatory signs.

For school signing requirements, see Chapter 15 of the Speed Zoning for Highways, Roads, and Streets in Florida.

Typical applications with these enhancements are shown in Standard Plans, Index 700-120.

230.2.10 Internally Illuminated Street Name Signs

Do not exceed nine feet in width for an internally illuminated street name sign. For span wire systems, the sign is to be mounted to the strain poles. On mast arm supports, the sign may be mounted to the support or to the arm. When mounted to the arm, the distance between the upright and the near side edge of the sign is not to exceed ten feet.

Design the street name sign in accordance with the TEM, Section 2.2. Utilize the following text attributes in order of preference:

(1) 10-inch upper case with 8-inch lower case, Type EM font
(2) 10-inch upper case with 8-inch lower case, Type E font
(3) 8-inch upper case with 6-inch lower case, Type EM font
(4) 8-inch upper case with 6-inch lower case, Type E font
230.2.11 Tourist-Oriented Directional Signs

Tourist-Oriented Directional Signs are guide sign assemblies with individual panels displaying the identity and directional information for a business, service, or activity facilities. These panels are unique in size, content, and have specific criteria for that must comply with **Rule 14-51, Florida Administrative Code** and **MUTCD, Chapter 2K**.

Maximum sign panel dimensions for single and multi-column ground-mounted signs are shown in **Figure 230.2.1**. Place Tourist-Oriented Directional Signs in accordance with **Standard Plans, Index 700-101**.

![Figure 230.2.1 Tourist-Oriented Directional Sign Panel Dimensions](image)

230.3 Pavement Markings

Pavement marking design are to comply with **Standard Specifications, Standard Plans, TEM, MUTS**, and the **MUTCD**.

The **MUTCD** was adopted by the Department as the uniform system of traffic control for use on the streets and highways of the State. This action was in compliance with **Chapter 316.0745** of the **Florida Statutes**. The **MUTCD** is the national standard, and its requirements must be met, as a minimum, on all roads in the State. Where Department manuals indicate criteria which is more stringent than the **MUTCD**, Department criteria is
to be followed. See *FDM 220* for signing and pavement marking requirements for at-grade railroad crossings.

230.3.1 Selection of Pavement Marking Material

Use the flowchart, shown in *Figure 230.3.1*, as a tool to assist in determining the appropriate pavement marking material.

Once the pavement marking material is selected from *Figure 230.3.1*, verify the project meets the criteria discussed in *FDM 230.3.1.1* through *230.3.1.5*.
Figure 230.3.1 Pavement Marking Material Selection

Begin Pavement Marking Material Selection

Are the markings temporary markings?

Yes

See FDM 230.3.4

No

Are existing permanent markings being replaced?

Yes

No

Is pavement concrete or asphalt?

Yes

Concrete Pavement

Remove existing pavement markings

Asphalt Pavement

Use Refurbishment Thermoplastic or other material as determined with the District Maintenance Engineer

Special Emphasis Crosswalk (24" Longitudinal Bars), Route Shields, Bicycle, Exit Numbers, or Railroad Dynamic Envelopes

Special Emphasis Crosswalk (24" Longitudinal Bars), Route Shields, Bicycle, Exit Numbers, or Railroad Dynamic Envelopes

Use Standard Thermoplastic See FDM 230.3.1.1

Use Preformed Thermoplastic See FDM 230.3.1.3

Use Profiled Thermoplastic, or Standard Thermoplastic with Ground-in Rumble Strips See FDM 230.3.1.2

No

Meets criteria for Audible and Vibratory Treatment?

Yes

No

Bridge Surface?

Yes

Longitudinal Solid

Use Permanent Tape See FDM 230.3.1.4

No

Longitudinal Skip

Transverse Markings / Traffic Channelizing

Use Standard Thermoplastic See FDM 230.3.1.1

Use Profiled Thermoplastic, or Standard Thermoplastic with Ground-in Rumble Strips See FDM 230.3.1.2

Transverse Markings / Traffic Channelizing

Special Emphasis Crosswalk (24" Longitudinal Bars), Route Shields, Bicycle, Exit Numbers, or Railroad Dynamic Envelopes

Use Standard Thermoplastic See FDM 230.3.1.1

Use Profiled Thermoplastic, or Standard Thermoplastic with Ground-in Rumble Strips See FDM 230.3.1.2

Transverse/ Other, Traffic Channelizing, or Longitudinal (Solid/Skip)

Asphalt pavement

Concrete pavement

Is pavement concrete or asphalt?

Yes

No

Transverse/ Other, Traffic Channelizing, or Longitudinal (Solid/Skip)
230.3.1.1 Standard and Refurbishment Thermoplastic

Use Standard Thermoplastic traffic stripes and markings unless Profiled Thermoplastic, Preformed Thermoplastic, or Permanent Tape is required.

Standard Thermoplastic is not used on bridge structures with concrete riding surfaces due to vibration and durability issues. Standard Thermoplastic is required for longitudinal solid lines on concrete surfaces other than bridges due to the lower cost; however, for areas where durability may be an issue (e.g., high truck traffic), Permanent Tape may be used.

Standard Thermoplastic is placed at a thickness of 0.10 to 0.15 inches. Refurbishment Thermoplastic is the placement of new thermoplastic material on existing pavement markings and is placed at a thickness of 0.06 inches. Refurbishment Thermoplastic is not to be used on concrete riding surfaces; e.g., concrete pavement and bridge structures. Remove existing stripes and markings from concrete surfaces before placing new stripes and markings.

Coordinate with the District Maintenance Engineer to determine if Refurbishment Thermoplastic is appropriate. If Refurbishment Thermoplastic cannot be applied without exceeding the maximum thickness of 0.150 inch, remove the existing stripes and markings before placing new stripes and markings. Refer to Standard Specification 711 for additional information on Standard and Refurbishment Thermoplastic.

Coordinate with the District Maintenance Engineer to determine if black paint contrast is required for skip lines, messages, arrows, and Railroad Dynamic Envelopes.

Consider the use of Durable Paint for refurbishment markings on asphalt pavement where the longer service life of Refurbishment Thermoplastic is not required. The performance of Refurbishment Thermoplastic has been evaluated by the Department for a period of 36 months. Contact the District Maintenance Engineer to determine if Durable Paint is acceptable.

230.3.1.2 Profiled Thermoplastic or Standard Thermoplastic with Ground-In Rumble Strips

Audible and vibratory treatments provide a lane departure warning. Striping material selection, and audible and vibratory treatment used are often related. Audible and vibratory treatment can be either Profiled Thermoplastic, or Standard Thermoplastic with ground-in rumble strips.

See FDM 210.4.6 for audible and vibratory treatment on arterials and collectors.
See *FDM 211.4.4* for audible and vibratory treatment on LA Facilities.

Contrast marking is not used with Profiled Thermoplastic markings.

For more information refer to:

230.3.1.3 Preformed Thermoplastic

Use Preformed Thermoplastic on all pavement types for the following markings:

1. Bicycle Markings and Shared Use Path Markings (see *Standard Plans, Index 711-002*, Sheet 1)
2. 24” longitudinal bars of Special Emphasis Crosswalks (see *Standard Plans, Index 711-001*)
3. Route Shields
4. Ramp Exit Numbers
5. Roundabout informational markings
6. Railroad dynamic envelopes. When installed on concrete riding surfaces, a 4-inch wide black contrast border is required on both sides of each 12-inch wide marking.

Use Preformed Thermoplastic on concrete riding surfaces (i.e., concrete pavement and bridge structures) for the following markings:

1. White dotted Lines (2'-4') with trailing black contrast; i.e., two feet white preformed thermoplastic plus two feet black Preformed Thermoplastic. Use only the alternating skip pattern.
2. Arrows, Messages, and Symbols. Black contrast border is required for design speeds 45 mph and less. Black contrast block is required for design speeds greater than 45 mph. Border or block is to provide a minimum 1.5 inches from message to the outside edge. Provide details of black contrast borders and blocks in the plans. For intricate symbols such as the Helmeted Bicyclist Symbol, use black contrast block for all design speeds.
3. 24” longitudinal bars of Special Emphasis Crosswalks. Black contrast border is required on left and right sides of longitudinal bars. Contrast border is to provide a
4-inch width from the outside edge of the longitudinal bars. Provide details of black contrast border in the plans.

(4) Railroad Dynamic Envelopes. A 4-inch wide black contrast border is required on both sides of each 16-inch wide marking.

Refer to Standard Specification 711 for more information on Preformed Thermoplastic.

230.3.1.4 Permanent Tape

Use Permanent Tape on all concrete riding surfaces (i.e., concrete pavement and bridge structures) for the following markings:

(1) White skip lines (10’-30’) with trailing black contrast; i.e., ten feet white tape plus ten feet black tape. Only use the alternating skip pattern.

(2) White dotted lines (6’-10’) with trailing black contrast; i.e., six feet white tape plus six feet black tape. Only use the alternating skip pattern.

(3) White dotted lines (3’-9’) with trailing black contrast; i.e., three feet white tape plus three feet black tape). Only use the alternating skip pattern.

(4) Yellow skip lines (10’-30’). Do not use contrast.

Use Permanent Tape for solid center lines and edge lines on bridges with concrete riding surfaces. Do not use contrast on edge lines.

Remove existing stripes and markings from concrete surfaces before placing new permanent tape.

Refer to Standard Specification 713 for more information on Permanent Tape.

230.3.1.5 Two Reactive Components

Two Reactive Components may be used as an alternative to Standard Thermoplastic markings for edge lines and skip lines on asphalt pavement and only edge lines on concrete pavement.

Two Reactive Components pavement markings may be feasible for large projects. The use of Two Reactive Components pavement markings must be approved by both the District Maintenance Engineer and the District Construction Engineer.
For existing asphalt pavement, contact the District Maintenance Engineer to determine if black paint contrast is required for skip lines, messages and arrows.

230.3.2 Refurbishment Applications

For refurbishment markings, consider the following factors:

(1) Remaining service life of the pavement
(2) Thickness and conditions of existing markings
(3) Traffic volumes
(4) Cost of markings
(5) Other special requirements such as contrast needs or audible and vibratory treatment

230.3.3 No-Passing Zones

Follow the procedures contained in the MUTS for determining the limits of no-passing zones.

Limits of pavement markings for no-passing zones will be established by one of the following methods:

(1) On projects where existing roadway conditions (vertical and horizontal alignments) are to remain unaltered by construction, the no-passing zones study will be accomplished as part of the design phase. The limits of the no-passing zones will be shown on the plans.

(2) On projects with new or altered vertical and horizontal alignments, limits for no-passing zones will be established during construction. The required traffic study and field determination of limits will be performed by the designer during post design. Sufficient time must be included to accomplish the required field operations without delaying or interfering with the construction process.

230.3.4 Work Zone Pavement Markings

Use Standard Paint for work zone markings on asphalt and concrete pavement. The performance of Standard Paint has been evaluated by the Department for a period of 6 months.
Consider using Durable Paint or Refurbishment Thermoplastic when a work zone phase is expected to last for more than a year under heavy traffic volumes. The performance of Durable Paint has been evaluated by the Department for a period of 18 months.

Use Removable Tape for transitions on the final structural course or dense-graded friction course. Removable Tape may be used for other markings to avoid the removal of paint and scarring of final surface. Do not use Removable Tape for application durations of more than 6 months. Do not use Removable Tape on open-graded friction course.

230.3.5 Raised Pavement Markers (RPMs)

Retroreflective RPMs, Class B, are the standard type of RPM.

Internally illuminated RPMs are similar to retroreflective RPMs, but are internally illuminated with LEDs. Internally illuminated RPMs may be used in lieu of retroreflective RPMs to enhance delineation and driver awareness as a mitigation strategy for substandard conditions as defined in the TEM, Section 4.6.

Place all RPMs in accordance with the Standard Plans, Index 706-001 and the MUTCD.

230.4 Exit Ramp Intersections

The standard for signing and pavement marking and advanced countermeasure installation at exit ramp intersections are illustrated in Exhibits 230-1a and 230-1b. The description of the layouts are as follows:

1. Include MUTCD “optional” signs; second DO NOT ENTER, second WRONG WAY sign, and ONE WAY signs.
2. Include NO RIGHT TURN and NO LEFT TURN signs.
3. Use 3.5 feet by 2.5 feet WRONG WAY signs mounted at four-foot height and include a retroreflective strip on sign supports.
4. Include 2-4 dotted guide line striping for left turns between ramps entrances/exits and cross-streets.
5. Include retroreflective yellow paint on ramp median nose where applicable.
6. Include a straight arrow and route interstate shield pavement marking in left-turn lanes extending from the far-side ramp intersection through the near-side ramp
intersection to prevent premature left turns. Refer to TEM, Section 4.2.4 “Route Shields for Wrong Way Treatment” for additional information.

(7) Include a straight arrow and ONLY pavement message in outside lane approaching the ramp exit.

(8) Install a pair of Light-emitting Diode (LED) Highlighted WRONG WAY Signs. For long ramps or for ramps with limited sight distance, two sets of the pairs of Highlighted Signs may be used, as illustrated in Exhibits 230-1a and 230-1b. The Highlighted Sign assembly may be powered by either solar or line power. If line power is used, include the power service assembly and conduit and cable from the Highlighted Sign to the service point. The Highlighted Sign must be integrated back to the District’s Traffic Management Center (TMC). Connectivity between the Highlighted Sign and the TMC may be provided by either fiber optic or wireless communications. If fiber optic communications are used, include the fiber optic cable, conduit, and transmission equipment. If wireless communications are used, include the antenna and transmission equipment.

230.4.1 Diverging Diamond Crossover and Exit Ramp Intersections

Signing of Diverging Diamond Intersections is an evolving practice and not explicitly addressed in the MUTCD, however typical signing and pavement markings at diverging diamond crossovers and exit ramp intersections are illustrated in Exhibit 230-2 and described as follows:

(1) Include DO NOT ENTER, WRONG WAY sign, and ONE-WAY signs.

(2) Include NO RIGHT TURN, NO LEFT TURN, and NO U-TURN signs.

(3) Include KEEP RIGHT, KEEP LEFT, and OBJECT MARKER signs.

(4) Use 3.5 feet by 2.5 feet WRONG WAY signs mounted at four-foot height and include a retroreflective strip on sign supports.

(5) Include 2-4 dotted guide line striping for through movements at the crossover location turns as well as at ramp entrances/exits.

(6) Include retroreflective yellow paint on crossover and ramp median nose where applicable.

(7) Include a straight arrow pavement marking in all through lanes for the crossover maneuver in both directions on each side of the interchange.
(8) Include route interstate shield pavement marking in the outside lane(s) before the crossover extending through the crossover and on the outside left lanes after the crossover. Refer to TEM, Section 4.2.4 “Route Shields for Wrong Way Treatment” for additional information.

(9) Include a left turn arrow and ONLY pavement message in outside lane approaching the ramp entrance.
Installation Details

1. Modify distances between signs and detectors as appropriate for multi-lane ramps.

2. Include vertical retroreflective strips on all WRONG WAY sign posts. (See FDM 230)

* Distance varies, place the LED Highlighted signs in between the other (regular) Wrong Way signs.

** Include if connecting road is undivided or has traversable median.
TYPICAL LAYOUT FOR PARTIAL CLOVERLEAF/TRUMPET EXIT RAMP

Installation Details

1) Modify distances between signs and detectors as appropriate for multi-lane ramps.

2) Include vertical retroreflective strips on all WRONG WAY sign posts. (See FDM 230)

* Distance varies, place the LED Highlighted signs in between the other (regular) Wrong Way signs.

** Include if connecting road is undivided or has traversable median.
230.5 Signing and Pavement Marking Coordination

Coordination with other offices and agencies is a very important aspect of signing and pavement marking design. The offices discussed in this section are those that are typically involved in developing signing and marking plans; however, there may be other offices or agencies involved.

The District Utilities Engineer provides the coordination between the designer and the various utilities. The Utilities Section may assist in identifying or verifying conflicts with overhead and underground utilities. The District Utilities Engineer should be contacted as early in the design phase as possible.

The Structures EOR provides the design of the sign structure and foundation for overhead cantilever and overhead truss sign assemblies. The Structures EOR should be contacted early in the design phase to allow adequate time for coordination with the Geotechnical Engineer in obtaining the necessary soils information.

Contact the State Outdoor Advertising and Logo Manager on any project affecting business logo structures. Refer to FDM 110.5.5 for requirements and additional information.

230.6 Typical Signing and Pavement Marking Configurations

The following Exhibits include standard signing and pavement marking schemes for typical situations.
TYPICAL SIGNING AND PAVEMENT MARKING
FOR MIDBLOCK CROSSWALKS

SCHEME 1
Crosswalk
with Stop Signing

SCHEME 2
Signalized
Crosswalk

<table>
<thead>
<tr>
<th>APPROACH SPEED MPH</th>
<th>SUGGESTED DISTANCE (FT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Or Less</td>
<td>200</td>
</tr>
<tr>
<td>26 To 35</td>
<td>250</td>
</tr>
<tr>
<td>36 To 45</td>
<td>300</td>
</tr>
</tbody>
</table>

Note:
The details shown do not depict the signing and markings for multi-lane roadways with divided medians. For these applications, additional signs shall be installed on the median side. Minimum width of Mid-Block Crosswalks is 10.'
NOT TO SCALE

NOTES:

1. Divided Highway Signs (R6-3) may be on the same structure with the STOP and ONE WAY signs or on a separate structure.
2. See the MUTCD and Standard Plans, Index 711-001 for additional pavement marking details.
TYPICAL SIGNING AND PAVEMENT MARKINGS
FOR ROADWAY TRANSITIONS

TYPICAL TRANSITION MARKING
COLOR MUST MATCH THE RESPECTIVE EDGE LINE

LEFT ROADWAY CENTERED ON EXISTING ROADWAY

RIGHT ROADWAY CENTERED ON EXISTING ROADWAY

SCHEMES FOR TRANSITION - 2 LANE / 4 LANE ROADWAY

NOTE:
W9-1 & W9-2 are supplemental to the W4-2 sign and
may be deleted if space is not available. The W9-1
should be used if only one supplemental sign is installed.

EXHIBIT 230-5
01/01/2020
231 Lighting

231.1 General

Roadway lighting benefits motorists by improving their ability to see roadway geometry and other vehicles at extended distances ahead. Intersection lighting allows for greater visibility of pedestrians that may be in the crosswalk. The design and layout of lighting should complement the basic highway design.

Light poles are permitted in the median only when lighting from the outside cannot meet the criteria shown in *Table 231.2.1* without being supplemented by median lighting. Additionally, the barrier requirements in *FDM 215.2.9* must be met.

This chapter provides the process and criteria to be used in the development of lighting designs on the SHS.

231.1.1 Structural Supports

AASHTO’s LRFD Specifications for Structural Supports for Highway Signs, Luminairea, and Traffic Signals and the *FDOT Modifications to LRFD LTS-1* provide structural design criteria.

Refer to *FDM 261* for information regarding structural support requirements. Refer to *FDM 326* for information regarding Lighting Plan requirements.

231.1.2 Attachments to Barriers

Refer to *FDM 215* for information regarding proposed attachments to bridge traffic railings, concrete median barrier walls, concrete shoulder barrier walls or the evaluation of existing attachments.

231.1.3 Voltage Drop Criteria

When determining conductor sizes for lighting circuits, the maximum allowable voltage drop from the service point on any one circuit is 5%.
231.1.4 Grounding

The grounding requirements for lighting systems, as shown in the Standard Plans are as follows:

(1) Install 20’ of ground rod at each conventional height light pole and at each pull box.
(2) Install 40’ of ground rod at each electrical service point.
(3) At each high mast pole, install an array of 6 ground rods 20’ in length, as shown in the Standard Plans, Index 715-010.

The above lengths of ground rod will be installed at each pole, pull box and service point, and the cost will be incidental to the unit or assembly being installed.

231.1.5 Underdeck Bridge Lighting

The light levels for underdeck lighting should be equal to the adjacent roadway lighting. The only luminaire to be used for underdeck lighting is a wall mount fixture located on the pier or pier cap.

231.2 Design Criteria

Use the illuminance method for all lighting design. The design values for light levels given by the AASHTO Roadway Lighting Design Guide are maintained values. These maintained values have been adjusted for Department assigned light loss and maintenance factors. These values are provided in Table 231.2.1 as required light level criteria.

The AASHTO Roadway Lighting Design Guide permits either the illuminance technique or the luminance technique to be used in the design of highway lighting. The luminance technique requires a complex design process and knowledge of the reflective characteristics of the pavement surface used. These reflective characteristics change as the pavement ages and with variations in weather conditions. It is for these reasons that the luminance technique is not allowed.

Mounting height (M.H.) for conventional lighting is the vertical distance from the roadway surface at the edge of the travel lane to the light source, regardless of lateral placement of the pole. Pole setback is the horizontal distance from the edge of the travel lane to the pole.
Table 231.2.1 Lighting Initial Values

<table>
<thead>
<tr>
<th>Roadway Classification</th>
<th>Illumination Level Average Foot Candle</th>
<th>Illumination Uniformity Ratios</th>
<th>Veiling Luminance Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Horizontal (H.F.C.)</td>
<td>Vertical (V.F.C.)</td>
<td>Avg./Min.</td>
</tr>
<tr>
<td>Or Project Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional Lighting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limited Access Facilities</td>
<td>1.5</td>
<td>N/A</td>
<td>4:1 or Less</td>
</tr>
<tr>
<td>Major Arterials</td>
<td>1.5</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Other Roadways</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Mast Lighting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Roadway Classifications</td>
<td>0.8 to 1.0</td>
<td>N/A</td>
<td>3:1 or Less</td>
</tr>
<tr>
<td>Signalized Intersection Lighting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New or Reconstruction</td>
<td>3.0 Std. 1.5 Min.</td>
<td>1.5 Std. 1.2 Min.</td>
<td>4:1 or Less</td>
</tr>
<tr>
<td>Lighting Retrofit</td>
<td>1.5 Std. 1.0 Min.</td>
<td>1.5 Std. 1.0 Min.</td>
<td></td>
</tr>
<tr>
<td>Midblock Crosswalk Lighting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Ambient Luminance</td>
<td>N/A</td>
<td>2.3</td>
<td>N/A</td>
</tr>
<tr>
<td>Medium & High Ambient Luminance</td>
<td>N/A</td>
<td>3.0</td>
<td>N/A</td>
</tr>
<tr>
<td>Sidewalks and Shared Use Paths</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facilities Separated from the Roadway</td>
<td>2.5</td>
<td>N/A</td>
<td>4:1 or Less</td>
</tr>
<tr>
<td>Sign Lighting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Ambient Luminance</td>
<td>15-20</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Medium & High Ambient Luminance</td>
<td>25-35</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Rest Area Lighting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Roadways and Parking Areas</td>
<td>1.5</td>
<td>N/A</td>
<td>4:1 or Less</td>
</tr>
</tbody>
</table>
Table 231.2.1 Lighting Initial Values cont.

<table>
<thead>
<tr>
<th>Roadway Classification</th>
<th>Illumination Level Average Foot Candle</th>
<th>Illumination Uniformity Ratios</th>
<th>Veiling Luminance Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Or Project Type</td>
<td>Horizontal (H.F.C.) Vertical (V.F.C.)</td>
<td>Avg./Min. Max./Min.</td>
<td>L({V}^{(\text{MAX})}/L{AVG})</td>
</tr>
<tr>
<td>Wildlife-Sensitive Conventional Lighting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limited Access Facilities</td>
<td>0.8-1.0</td>
<td>N/A</td>
<td>4:1 or Less</td>
</tr>
<tr>
<td>Arterials and Collectors</td>
<td>1.0-1.5</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Signalized Intersection - New</td>
<td>1.5-3.0</td>
<td>1.0 Min.</td>
<td>4:1 or Less</td>
</tr>
<tr>
<td>Signalized Intersection - Retrofit</td>
<td>1.0-1.5</td>
<td>1.0 Min.</td>
<td></td>
</tr>
</tbody>
</table>

Note: Illumination Uniformity Ratios do not apply to V.F.C

Do not tilt cobra head type fixtures. Pole top mounted fixtures may be tilted up to 5 degrees for roadway lighting projects. Pole top mounted fixtures may be tilted in excess of 5 degrees when used at weight stations, agricultural stations and rest areas.

Lights installed within the clear zone must be breakaway or shielded by an approved barrier unless they are bridge or barrier wall mounted. Refer to [FDM 215](#) for additional information on roadside safety design.

Specify mounting heights for conventional lighting in accordance with **Table 231.2.2**. Ensure that the maximum candela of the design luminaire does not exceed the maximum candela for the associated minimum mounting height.
Table 231.2.2 Minimum Mounting Heights Based on Maximum Candela

<table>
<thead>
<tr>
<th>Minimum Mounting Height (ft.)</th>
<th>Long Distribution</th>
<th>Medium Distribution</th>
<th>Short Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 or Less</td>
<td>5,000</td>
<td>10,000</td>
<td>15,000</td>
</tr>
<tr>
<td>25</td>
<td>10,000</td>
<td>15,000</td>
<td>20,000</td>
</tr>
<tr>
<td>30</td>
<td>15,000</td>
<td>20,000</td>
<td>25,000</td>
</tr>
<tr>
<td>35</td>
<td>20,000</td>
<td>25,000</td>
<td>30,000</td>
</tr>
<tr>
<td>40</td>
<td>25,000</td>
<td>30,000</td>
<td>35,000</td>
</tr>
<tr>
<td>45</td>
<td>30,000</td>
<td>35,000</td>
<td>40,000</td>
</tr>
<tr>
<td>50</td>
<td>35,000</td>
<td>40,000</td>
<td>45,000</td>
</tr>
</tbody>
</table>

Note:
Distribution refers to the longitudinal distribution of the luminaire.

231.2.1 Wildlife-Sensitive Conventional Lighting

For conventional lighting near a wildlife area of concern (as determined by the Office of Environmental Management), incorporate the following design requirements:

1. Where feasible, orient luminaires away from the wildlife area of concern.
2. Design lighting system using luminaires from the Wildlife-Sensitive Conventional Lighting category of the APL.
3. Use the criteria for Wildlife-Sensitive Conventional Lighting from Table 231.2.1 in accordance with the requirements of FDM 231.3.

231.3 Design Methodology

Use the polygon method for all photometric calculations. Establish illumination points within the polygon at the following intervals:
(1) For Roadway Segments: 15 feet longitudinally and 5 feet transversely along the roadway.

(2) For Signalized Intersections: 5 feet longitudinally and 5 feet transversely along the roadway.

Refer to *RCI Features & Characteristics Handbook*, Urban Classification – Feature 124 for additional information concerning urban designations Urban 1 through Urban 5.

231.3.1 Analysis Zones

Establish independent analysis zones for each signalized intersection and for each roadway segment between signalized intersections. Roadway lighting for roadway segments, signalized intersection segments, and pedestrian lighting are to meet the criteria shown in *Table 231.2.1*.

Analyze signalized intersection segments using one analysis zone bounded by the back of sidewalks and the signalized intersection stop bars on each approach.

The termini for each roadway segment will be either the lighting project limits, or the signalized intersection stop bars. The boundary of each roadway segment is described as follows:

Flush Shoulder Roadways:

(1) Analyze divided roadway segments with grassed medians using two analysis zones; i.e., one for each direction of travel. Each zone will be bounded by the outside and median shoulder breaks.

(2) Analyze multi-lane undivided roadway segments using two analysis zones; i.e., one for each direction of travel. Each zone will be bounded by the outside shoulder break and the centerline of the roadway.

(3) Analyze two and three lane roadway segments as one analysis zone bounded by the outside shoulder breaks.

Curbed Roadways:

(4) Analyze divided roadway segments with grassed medians using two analysis zones; i.e., one for each direction of travel. Each zone will be bounded by the back of sidewalk and the back of the median curb.
(5) Analyze multi-lane undivided roadway segments, including roadways with two-way left turn lane, using two analysis zones; i.e., one for each direction of travel. Each zone will be bounded by the back of sidewalk and the centerline of the roadway.

Limited Access Facilities:

Establish independent analysis zones for the mainline roadway segments, ramp segments and crossroad segments at interchanges.

The termini for each mainline roadway segment will be the lighting project limits. Logical termini for the other segments will be determined by the designer. The boundary of each segment is described as follows:

(1) Analyze divided mainline roadway with grassed median using two analysis zones, one for each direction of travel; i.e., one zone for each direction of travel. Each zone will be bounded by the outside and median shoulder breaks.

(2) Analyze barrier separated mainline roadway as one analysis zone bounded by the outside shoulder breaks of each direction of travel.

(3) Analyze each ramp segment as one analysis zone bounded by the shoulder breaks. For interchange lighting where there is no continuous mainline roadway lighting, the average illuminance criteria must be maintained to the end of the ramp tapers.

(4) Analyze crossroad segments based on the criteria given above for flush shoulder or curbed roadways.
231.3.2 Signalized Intersections

Criteria for lighting at signalized intersections is provided in Table 231.2.1. This criteria applies to signalized intersections located within urbanized areas but may be used in other locations at the District’s discretion.

Vertical illuminance is the primary design value to be used to measure pedestrian visibility. Research has determined that visibility of pedestrians in crosswalks at intersections is a function of the following:

1. Background illuminance
2. Luminaire location in relation to the approach vehicle
3. Luminaire mounting height
4. Distance from the luminaire to the crosswalk
5. Photometrics of the luminaire

The vertical illuminance calculation method to be used at intersections will be the variable light meter aimed toward the driver’s location. This calculation will provide the vertical illumination level of a pedestrian which the driver sees approaching the crosswalk. This type of vertical illumination calculation is outlined in the IESNA Design Guide for Roundabout Lighting (DG-19-08). When performing this calculation, the driver’s location from the crosswalk must be established. Use the stopping sight distance for the nearside approach based on the posted speed of the near approach roadway. Use the stopping sight distance for the turning movement approaches based on the operating speed for each specific turning radius.

The vertical illuminance must be calculated for three movements for each intersection approach. The first is the thru movement and the near side crosswalk; the second is the right turn movement and crosswalk on the adjacent side street; and the third is the left turn movement and the crosswalk on the side street. Figures 231.3.1 through 231.3.3 indicate each of these three movements and the corresponding crosswalk area that must be analyzed. The vertical illuminance grid points are to be on a line centered in the crosswalk with a horizontal point spacing of 1.65 feet at a height of 5 feet above the pavement. The grid points are oriented toward the approaching driver, which is different from the vertical grids for sidewalks where the grids are parallel to the main pedestrian flow.

See FDM 231.3.2.1 for projects where pedestrian lighting improvements are desired, but the existing intersection infrastructure will remain and be supplemented to achieve the desired improvements.
231.3.2.1 Intersection Lighting Retrofit

For existing signalized intersections where a full signal upgrade is not occurring, the existing infrastructure restricts the placement of additional lighting fixtures necessary to meet the New and Reconstructed criteria of Table 231.2.1. Lighting Retrofits should be considered at signalized intersections on corridors that have a history of nighttime pedestrian crashes. Lighting Retrofits may be included with RRR and minor intersection improvement projects that do not include full signal upgrades.

For Lighting Retrofits, supplement with additional lighting fixtures as necessary to meet the Lighting Retrofit criteria shown in Table 231.2.1. The vertical illuminance calculation only applies to the near side movement (see Figure 231.3.1).

When the maintaining agency converts existing light fixtures to LED fixtures, and no other lighting improvements are scheduled, the agency is not required to meet the Lighting Retrofit criteria shown in Table 231.2.1.

231.3.3 Roundabouts

Signalized intersection lighting criteria in Table 231.2.1 applies to roundabouts where pedestrian features are provided. Use conventional roadway lighting criteria for roundabouts where pedestrian traffic is not anticipated. Calculate the vertical illuminance for the crosswalk on each near side approach and for each right turn movement in accordance with the methodology outlined in FDM 231.3.2.

231.3.4 Midblock Crosswalks

Lighting criteria for midblock crosswalks are provided in Table 231.2.1. Calculate the vertical illuminance for the crosswalk on each near side approach in accordance with the methodology outlined in FDM 231.3.2.

231.3.5 Sidewalks and Shared Use Paths

Lighting criteria for sidewalks and shared use paths are provided in Table 231.2.1. These values are intended for facilities separate from the roadway. Use illumination levels of the roadway for facilities within the range of the proposed or existing light poles.
Figure 231.3.1 Vertical Illuminance Calculation for Near Side Movement
Figure 231.3.2 Vertical Illuminance Calculation for Right Turn Approach
Figure 231.3.3 Vertical Illuminance Calculation for Left Turn Approach
Figure 231.3.4 shows the typical lighting layout for a large intersection. The crosswalk and luminaire locations must be coordinated to optimize the vertical illumination level.

Figure 231.3.4 Typical Lighting Layout for Large Intersection
231.4 Lighting Justification

The Department follows the warrants for lighting established by AASHTO. The warrants are based on benefit-cost ratios determined from the Average Daily Traffic (ADT), the ratio of night to day crashes, initial cost, and maintenance. A benefit-cost ratio of 2.0 or greater is currently the threshold for interchange lighting.

All interchanges on the interstate highway system are to be lighted to assure consistency and to meet driver expectations. A warrant analysis will be required but will not be used as the determining factor for the installation of lighting at these interchanges.

The roadway lighting justification procedure is found in Chapter 14 of the MUTS.

231.5 Existing Lighting During Construction

The maintenance of existing lighting will be the responsibility of the contractor only if the lighting is affected by the construction. The contractor is not expected to replace lamps and pole knockdowns or to repair wiring if these problems are not caused by the construction work.

The plans are to specify the scope of the contractor’s responsibility for the maintenance of existing lighting.

231.6 Lighting Coordination

The District Utilities Engineer should be contacted as soon as pole locations are set, and the electrical load has been determined. The designer should coordinate with the utility company providing power on the preferred location for the electrical service.

Coordinate with the Drainage Section to assure that high water tables, stormwater retention areas, or other water bodies will not be a problem with the proposed location of light poles and the light pole pull boxes.

Coordinate locations and attachments of lights and conduits on bridge structures with the bridge structural designer. Include light and conduit locations, and attachment details in the plans. Refer to Structures Design Guidelines, Section 1.9 for details and restrictions related to bridge attachments.

Typically, the District Traffic Operations Engineer in conjunction with the District Utilities Engineer obtains the required maintenance agreements. The designer should coordinate with these offices to ensure that this activity is either underway or scheduled.
Any lighting project, especially high mast, adjacent to or in the vicinity of an airport, may present a potential problem.

Modification for Non-Conventional Projects:

Delete *FDM 231.6* and replace with the following:

231.6 Lighting Project Coordination

The Lighting Engineer of Record is responsible for all necessary coordination.

231.7 Lighting Design Analysis Report

Prepare a Lighting Design Analysis Report (LDAR) that provides a photometric analysis for each signalized intersection lighting design, mainline typical section, ramp typical section, interchange, and structure with underdeck lighting. All analyses, including horizontal and vertical illumination analyses, should be shown on separate photometric plan sheets.

Provide voltage drop calculations, load analysis calculations for each branch circuit, and lighting calculations for each lighted sign.

The LDAR should include an evaluation of three lighting design alternatives (e.g., different pole heights, lamp wattage, arms lengths). Provide each alternative with a cost estimate that includes initial cost and the annual maintenance cost.

For all LDAR components, provide sufficient detail in print format (e.g., PDF) so that reviewers do not require compatible design software to check all inputs and results of calculations.
232 Signalization

232.1 General

Signalization provides an orderly and predictable movement of motorized and non-motorized traffic throughout the highway transportation system. They also provide guidance and warnings to ensure the safe and informed operation of the traffic stream.

The design and layout of signals should complement the basic highway design and comply with:

- **Standard Specifications**,
- **Standard Plans**,
- **Traffic Engineering Manual (TEM)**,
- **Structures Manual** (Volume 3),
- **Manual on Uniform Traffic Studies (MUTS)**, and
- **Manual on Uniform Traffic Control Devices (MUTCD)**.

The criteria presented in the following sections supplement the **MUTCD**.

232.1.1 Structural Supports

AASHTO’s *LRFD Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals* and the **FDOT Modifications to LRFDLTS-1** provide structural design criteria.

Refer to **FDM 261** for information regarding structural support requirements. Refer to **FDM 327** for information regarding plan requirements.

232.1.2 Attachments to Barriers

Refer to **FDM 215** for information regarding proposed attachments to bridge traffic railings, concrete median barrier walls, concrete shoulder barrier walls or the evaluation of existing attachments.
232.1.3 Certification and Specialty Items

Traffic control signals and devices installed in Florida must be certified by the Department. The State Traffic Engineering Research Laboratory (located in Tallahassee) is responsible for certifying all traffic control equipment. If requiring new equipment types or types not typically used, contact the State Traffic Engineering Office to determine the certification status of the equipment. Noncertified equipment cannot be used.

232.1.4 LED Light Sources

The Light Emitting Diode (LED) is the standard light source for all signal indications.

232.1.5 Retroreflective Signal Backplates

Install retroreflective signal backplates on traffic signals for all approaches. See TEM, Section 3.12 for more information.

See TEM, Section 3.9 for use of flexible backplates where needed.

232.1.6 Signal Heads for Through Lanes

Place a three-section head over the center of each lane for approaches of two or more lanes. When a single left turn lane is provided, a five-section cluster can serve as one of the indications required for the inside through lane.

232.1.7 Vertical Clearance

See FDM 210.10.3 for vertical clearance requirements.

232.2 Lane Configuration

The engineer responsible for the traffic signal design may be asked to verify the number and configuration of traffic lanes required for an intersection to function properly when signalized. For this calculation use the Design Hourly Volume (DHV) based on the Department’s Standard K factor and not a peak to daily (P/D) ratio based on a 24-hour count.
The K, D, and T factors convert the two-way AADT volumes to a one-way DHV. This is appropriate for the total approach movements. The AM and PM peak turning movement counts on each approach should be addressed individually. Current turning movement counts should be taken to determine the percentage of turns for each approach. Apply the percentages to the DHV for each approach volume to determine the turning volumes that should be used for the turn lane design calculations. Compare the turning volumes to the movement counts supplied by Planning. Use the greater of the two values for the design of turn lanes. Contact the District Planning Office to determine if recent counts are available and also if any use changes are planned which would require adjustments to the turn percentages found in the current counts.

Storage lanes for left turns can affect the capacity and safety of intersections. The storage length of a left turn lane is a critical design element. The queue of left turn vehicles in a storage lane of inadequate length may extend into the through lanes. The result is loss of capacity for the through lanes. The queue of through vehicles may also extend beyond the entrance of a short-left turn storage lane, blocking access to the storage lane. Either case results in a less efficient operation of the intersection and may cause last minute lane changes, thereby increasing the possibility of conflicts.

Turn lanes should comply with FDM 212. The available queue length provided should be based on a traffic study.

The factors to determine the length of a left turn storage lane are:

1. The design year volume for the peak hour (see discussion above).
2. An estimate for the number of cycles per hour.

 NOTE: If the cycle length increases, the length of the storage for the same traffic also increases.
3. The signal phasing and timing.

There are several techniques used to determine necessary storage length. The following are suggested guidelines for left turn lanes:

1. Where protected left turn phasing is provided, an exclusive turn lane should be provided.
2. Left turn lanes should be provided when turn volumes exceed 100 vehicles per hour (VPH) and may be considered for lesser volumes if space permits.
3. For signalized intersections, the following formula may be used, assuming an average vehicle length of 25 feet.
\[Q = \frac{(2.0)(DHV)(25)}{N} \]

Where:

- \(Q \) = design length for left turn storage in ft.
- \(DHV \) = left turn volume during design peak hour, in VPH.
- \(N \) = number of cycles per hour for peak hour, use \(N = 30 \) as default.

Note: Computer programs, such as \textit{TRANSYT-7F} and \textit{Synchro} are used to develop signal phasing and timing. One of the outputs of these programs is the queue length. For projects where traffic signal timing is included as a part of the project, the output of these programs should be considered in determining storage length.

Where peak hour truck traffic is 10% or more, use vehicle length of one passenger car and one truck.

(4) Where left turn volumes exceed 300 vph, a double left turn should be considered.

(5) When right of way has already been purchased, and the designer has to choose between a long wide grass median or a long left turn lane, the storage length for the left turn should be as long as practical without hindering other access.

Right turn lanes are provided for many of the same reasons as left turn lanes. Right turns are, however, generally made more efficiently than left turns. Right turn storage lanes should be considered when right turn volume exceeds 300 vph and the adjacent through volume also exceeds 300 vehicles per hour per lane (vphpl). The introduction of right turn lanes can impact pedestrian crossing distances at signalized intersections; therefore, additional analysis may be required to weigh the impacts of increased pavement width and signal operations.
232.3 **Left Turn Treatments**

Follow the guidelines given below when determining signal treatments for left turns. For detailed information, see the *TEM, Section 3.2.*

(1) **Single Turn Lane**

(a) Protected/Permissive Phasing

Option #1: A five-section cluster or a separate turn signal head may be used for this location. If a separate turn signal head is used, it should be positioned over the center of the left turn lane. If a five-section cluster is used, it should be installed over the lane line between the left turn lane and through lane. The five-section cluster can serve as one of the two indications required for the through traffic.

Option #2: A flashing yellow arrow signal indication may be used. A study conducted by the National Cooperative Highway Research Program determined that drivers had fewer crashes with flashing yellow left-turn arrows than with traditional yield-on-green signal configurations. A flashing yellow arrow must use a separate four section head positioned over the center of the left turn lane.

(b) Protected Phasing

A separate signal head for the left turn lane with red, yellow and green arrow indications should be positioned over the center of the left turn lane.

(2) **Dual Turn Lanes** – Use only protected phasing; i.e. permissive movements will not be allowed. A single three-section head with red, yellow, and green arrow indications should be centered over each turn lane. These heads are in addition to the dual indications required for the through movement.

(3) **Separated Turn and Through Lanes** – Guidance for signal operation of separated left turn and through lanes is found in the *TEM, Section 3.2.*

(4) **Single Lane Approach on Stem of "T"** – A minimum of two three-section heads are required.

(5) **Two Approach Lanes on Stem of "T"**

Option #1: The approach may display two three-section heads with circular indications on all sections.
Option #2: The approach may display a five-section cluster in conjunction with a three-section head. If the lanes are exclusive left and right turn lanes, then the five-section cluster should be placed over the center of the lane line and the three-section head over the major movement lane. If one of the lanes is a shared left and right lane, then the five-section cluster should be placed over the center of this lane and the three-section head over the center of the other lane.

Option #3: The approach may display two three-section heads for the major movement and a single three-section head for the secondary movement.

(6) Three Approach lanes on Stem of "T"

Option #1: The approach may display two three-section heads for the major movement and one for the secondary movement (Exclusive left and right turn lanes).

Option #2: The approach may display a five-section cluster in conjunction with a three-section head (exclusive left and right turn lanes). The five-section cluster should be placed over the center of the lane line separating the left turn lane(s) from the right turn lane(s). The three-section head should be placed over the other lane line to provide dual indication for the major movement.

Option #3: When the middle lane is a shared left and right turn lane, then a five-section cluster should be placed over the center of this lane and a three-section head placed over each of the other two lanes. Each head must contain green and yellow arrow indications in this situation.

Modification for Non-Conventional Projects:

Add the following sentence:
(7) Coordinate requirements with the local maintaining agency.

NOTE:

(1) For all cases, the approach must display "dual indications". This means that there will be at least two heads with identical indications on the major approach. For example, if a green arrow is displayed on one head of the major movement or approach then a green arrow must be displayed on the second head.

(2) The same signal display option should be used throughout an urban area to provide consistency in display to the motorist.
(3) The use of advance and/or overhead lane use signs should be used as a supplement to pavement arrows on stems of signalized "T" intersections.

232.4 Controller Assemblies

The lateral offset requirements for signal poles and controller cabinets are given in FDM 215. Final location of these devices must be based on the safety of the motorist, visibility of the signal heads, ADA requirements, and access by maintenance.

(1) Controller Timings:

The development of controller timings is a basic part of traffic signal design. Signal controller timing plans must be signed and sealed by a licensed Professional Engineer.

Traffic signal timings and settings are developed and designed for a specific intersection location. The settings must respond to all users at the intersection and meet objectives defined by the policies of the responsible Maintaining Agency.

Coordinate with the responsible Maintaining Agency to verify that traffic signal cabinets, controllers, assemblies, and standards are compatible with the agency's needs and are synchronized accordingly. The signal timings for the Yellow change and all red clearance intervals must be in accordance with the TEM, Section 3.6.

Traffic signal designs on state and local roadways must include initial timings of all controllers in the plans set. If the responsible agency decides to implement different timings than the ones in the plan set, it must insure they were prepared under the supervision of a licensed Professional Engineer.

(2) Future Intersection Expansion:

Any planned intersection improvements should be considered in the signal design. The controller type, cabinet type, and the number of load switches are examples of design features that may be affected by future intersection improvements. The signal design engineer must determine if the current design should include capabilities for future improvements.

(3) Upgrade of Existing Controller Assemblies:

Replace or expand existing controller assemblies when an upgrade is required. Minor expansions include the addition of load switches, new controller timings, or new controller unit provided the cabinet is properly wired. Major expansions
include cabinet rewiring or any work requiring the removal of the cabinet back panel. Contact the District Traffic Operations Engineer before making the decision to expand or replace an existing controller assembly.

232.5 Vehicle Detection

Detection technology types commonly used with signal design include inductive loops installed in pavement and video (camera) or microwave sensors mounted on the pole or mast arm supports. Inductive loop detection is generally used with asphalt pavement, and video detection with concrete pavement or bridge structures.

(1) Inductive Loop Detection:

The traffic signal design is to identify the placement of loops for each intersection. Vehicle detection loops are detailed in the Standard Plans, Index 660-001 and are suitable for most locations. Index 600-001 allows for minor modifications in size and placement of the loops when required by site conditions.

(2) Video Vehicle Detection System (VVDS):

VVDS uses a camera to detect vehicle presence. Allowable cameras are listed on the Department’s Approved Product List (APL). The traffic signal design is to identify the placement of cameras for each intersection.

(3) Microwave Vehicle Detection System (MVDS):

MVDS uses an FCC-certified, low-power microwave radar signal (sensors) to detect vehicle presence within a detection zone. These systems establish wired or cellular communication with the agency responsible for system operation and maintenance. This allows for remote configuration and monitoring.

232.6 Pedestrian Detection and Control Signal

The standard for detecting the presence of a pedestrian is the Pedestrian Pushbutton Detector. Pedestrian detector assemblies and pedestrian control signals are detailed in the Standard Plans, Index 653-001 and Index 665-001. Pedestrian detection systems are listed on the Department’s Approved Product List (APL).

Use the countdown pedestrian signal assembly on projects that include pedestrian-controlled signal installations. Refer to the TEM, Chapter 3, for additional information on pedestrian signal installation and operation.
Orient push button with the face parallel to the crosswalk to be used (i.e., parallel to the crossing direction). See Standard Plans, Index 665-001 for additional orientation guidance.

232.6.1 Accessible Pedestrian Signal Feature

Where pedestrian facilities are provided, include provisions (e.g., conduit, conductors, signal cables) needed for future use of Accessible Pedestrian Signal (APS) devices on all new and reconstructed signalized intersections and signalized crossing locations.

See TEM 3.7 for installation and operation criteria of Accessible Pedestrian Signals on the State Highway System.

232.7 Signal Preemption

Determine if there is a requirement for signal preemption; e.g., close proximity to fire station or railroad crossing. Refer to the FDOT Procedure for Signalization Pre-Emption Design Standards (FDOT Procedure 750-030-002) for additional information on the conditions for which preemption is required, or should be considered. Coordinate all signal preemption requirements with the local maintaining agency.

232.8 Mast Arm Supports

Utilize an underground communication cable infrastructure for those signals operating as part of an advanced traffic management system on these designated corridors.

Orient mast arm signal structures approximately 90° to approach traffic; i.e., mast arms diagonal to traffic are not allowed.

Signs on mast arms will be restricted to required regulatory and street name signs.

232.8.1 Mast Arm Policy

Provide mast arms in accordance with the following criteria for new signals installed on the State Highway System:

1. Intersections within the Mast Arm Boundary Map, as defined by the State Traffic Engineering Office Implementation Guidelines (aka mast arm policy area):

 Signals are to be supported by galvanized mast arms, with the signal head(s) rigidly attached to the mast arm. When it is impractical to use a mast arm or...
overhead rigid structure within the Mast Arm Boundary Map, a two point span wire assembly with adjustable hangers must be used and a Design Variation must be approved in accordance with FDM 122. The Department will install and maintain mast arm installations only with galvanized finish. If the Local Maintaining Agency wants a painted finish, the requesting agency is to provide the funding for the additional construction cost and be responsible for maintenance costs.

Modification for Non-Conventional Projects:

Delete the last three sentences of the above paragraph and see RFP for requirements.

(2) Signalized Intersections outside the Mast Arm Boundary Map:

Signals along all corridors outside the Mast Arm Boundary Map must be supported by two-point span wire assemblies with adjustable hangers. If the Local Maintaining Agency prefers a mast arm, they must provide funding for the increase in construction cost, and if the requested mast arm is to be painted, they must also cover the maintenance costs.

Modification for Non-Conventional Projects:

Delete the last sentence of the above paragraph and see RFP for requirements.

232.9 Span Wire Assemblies

Use either perpendicular spans, box spans or drop box spans for all traffic signal span wire assemblies. Signs on span wires will be restricted to required regulatory signs.

Diagonal span assemblies may be used for flashing beacon installations. A Design Variation is required for any other diagonal installation. The Design Variation must be signed by both the District Design Engineer and the District Traffic Operations Engineer.
232.10 Traffic Signal Project Coordination

Coordination with other offices and agencies is an important aspect of project design. The offices discussed in this section are normally involved in signal projects, however there may be others.

Roadway Design – Typically, the designer of a signal project receives the base sheets for design and any required cross sections from the roadway designer. Base sheets may be created from existing plans when the signal project is not part of an active roadway design project.

Utilities - The District Utilities Engineer provides the coordination between the designer and the various utilities that may be involved in the project. The Utilities Section may assist in identifying or verifying conflicts with overhead and underground utilities. The designer should coordinate with the utility company providing power on the preferred location for the electrical service.

Structures Design - The Structures Engineer of Record provides the design of the traffic signal mast arms and strain poles, including the design of the foundation. The Structures Engineer of Record should be contacted early in the design phase to allow adequate time for coordination with the Geotechnical Engineer in obtaining the necessary soils information.

Coordinate locations and attachments of traffic signals and conduits on bridge structures with the bridge structural designer. Include traffic signal and conduit locations and attachment details in the plans. Refer to Structures Design Guidelines, Section 1.9 for details and restrictions related to bridge attachments.

Pedestrian and Bicycle Coordinator - The District Bicycle and Pedestrian Coordinator should be consulted to assure that all potential pedestrian and bicyclist concerns have been considered.

232.11 Traffic Signal System Power Design

Traffic signal systems typically operate at 120 volts alternating current (AC) from the commercial utility service provider. Refer to Section 233.3 for power source design considerations. The following subsections describe the power calculations at the traffic signal intersection.
232.11.1 Power Load Requirements

The total power requirement for any traffic signal system site is the sum of the power of the power of all components within the cabinet as well as all the components outside of the cabinet.

Assume all equipment is in continuous operation.

232.11.2 Voltage Drop

Perform voltage drop calculations for the following conductors.

1) Conductors from the utility service provider meter to the traffic signal cabinet:
 a. Measure the distance between the meter and the traffic signal cabinet.
 b. Determine the conductor size for a maximum of 5% voltage drop.
 c. Voltage drop mitigation strategies may include use of larger conductors or higher service voltage.
 d. Minimum conductor size is 6 American Wire Gauge (AWG).

2) Conductors from the traffic signal cabinet to the traffic signal head:
 a. Measure the distance between the traffic signal cabinet and the farthest traffic signal head.
 b. Determine the conductor size for a maximum of 5% voltage drop.
 c. Voltage drop mitigation strategies may include use of larger conductors.
 d. Minimum conductor size is 14 AWG.

Perform traffic signal system electrical design in accordance with the National Electric Code for traffic signal system equipment electrical designs, including voltage drop calculations, load requirements, electrical device sizing and grounding.
233 Intelligent Transportation Systems (ITS)

233.1 General

Intelligent Transportation Systems (ITS) criteria provided in this chapter applies to the placement and installation of ITS devices and systems along Florida’s roadways including Limited Access (LA) facilities, arterials, and express lanes.

The design and layout of ITS facilities should complement the basic highway design and comply with current versions of the following:

- Standard Specifications
- Standard Plans
- Turnpike Design Handbook (TDH)
- Traffic Engineering Manual (TEM)
- Structures Manual
- Highway Beautification Policy
- Manual on Uniform Traffic Studies (MUTS)
- AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals
- Manual on Uniform Traffic Control Devices (MUTCD)
- Intelligent Transportation System Integration Guide Book
- National Electric Code (NEC)
- National Fire Protection Association (NFPA)
- Title 23 Code of Federal Regulation (CFR), Part 940
- Title 47 CFR, Part 90
- Title 47 CFR, Part 95L

Additional information related to the design of ITS facilities is found in the following locations of the FDM:

- FDM 215 – lateral offset requirements for poles, sign structures, field cabinets, and communication hubs for deployments. Deployment refers to existing and new ITS facilities and infrastructure.
- FDM 221 – utility coordination

233–Intelligent Transportation Systems (ITS)
• **FDM 261** – structural support requirements
• **FDM 328** – ITS Plans content and requirements

The Statewide Systems Engineering Management Plan and various systems engineering templates (e.g., Concept of Operations) are found on the following web site:

https://www.fdot.gov/traffic/ITS/Projects_Deploy/SEMP.shtm

233.1.1 Railroad-Highway Grade Crossing Near or Within Project Limits

Federal-aid projects with a railroad-highway grade crossing near or within the project limits should refer to **FDM 220.2.4**.

233.1.2 Attachments to Barriers

Refer to **FDM 215** for information regarding proposed attachments to bridge traffic railings, concrete median barrier walls, concrete shoulder barrier walls or the evaluation of existing attachments.

233.1.3 ITS Device Approval and Compatibility

ITS devices are traffic control devices that follow approval requirements discussed in **FDM 232.1.3**.

Incorporate features and functions that allow interoperability with other ITS deployments throughout the region and state including existing Transportation Management Center (TMC) hardware and software. Examples of design characteristics that promote interoperability include:

- Systems and products based on open architectures and standards.
- Systems and products that are scalable and nonproprietary.
- Compatibility with the Department’s SunGuide® Software directly or via support of one or more of its related Interface Control Documents (ICD).
- Compatibility with the local agency central system software, as applicable.
- Systems on the Department’s Approved Products List (**APL**), Innovative Products List (**IPL**), or proprietary products. Refer to **FDM 110.4.1** for more information on proprietary products.
• Compatibility with existing or legacy systems and networks.
• Develop technical special provisions (TSPs) or modified special provisions (MSPs) in accordance with the Department’s *Specification Handbook*.

233.2 ITS Design Criteria

ITS devices and systems gather, analyze, and distribute real-time information to improve the safety, efficiency, mobility, security, and integration of transportation systems. Various ITS technologies have strengths and limitations for collecting, analyzing, and disseminating information. Select ITS devices for the appropriate application.

Many ITS devices require specific placement and configuration requirements for the equipment to perform properly. Consider the following for the design of these devices:

1. Life cycle expectancy for continued operations and maintenance.
2. Value engineering for installation and maintenance of the design.
3. Environmental impacts.
4. Technologies for commercial vehicle operations.
5. Technologies for connected vehicles.
6. Accommodations for future expansion.
7. Utility and landscaping impacts.

233.2.1 Title 23 CFR, Part 940

ITS projects must comply with the requirements specified in the *Guidelines for the Implementation of Part 940 in Florida* (Topic No. 750-040-003). This is to ensure compliance with *Code of Federal Regulations (CFR) Chapter 23 Part 940 Section 940.11* and Department requirements.

233.2.2 Maintenance Considerations

Consider the following for maintenance access:

- Provide a minimum 4-foot clear area around the ITS pole for maintenance of the camera lowering device.
- Avoid ITS equipment near areas susceptible to vegetation overgrowth, swales, or wetlands.
Avoid installing equipment in medians.

Provide a leveling platform and railing system (handrail) to protect from any drop-off hazards and/or slopes steeper than 1:2.

Place ITS equipment behind existing or proposed guardrails, as required in FDM 215.2.4.

Provide space to pull over on the shoulder to access the equipment.

233.3 ITS Power Design

ITS systems typically operate on 120 volts alternating current (AC) from the commercial utility service provider. Some systems operate using a low voltage (60 volts or less) direct current (DC) power source, facilitating battery and solar power options. Consider the following for power designs:

- Existing and future loads.
- Expected power consumption duty cycle.
- The time during which the system must operate.

233.3.1 Power Source Design and Placement

Power service availability is an essential element to ITS design. The power service location is the demarcation point between the Department and the commercial utility service provider. In many cases, the power service is a new power service pole located immediately inside the R/W.

Identify the location of power service and design the power service cable routing from the power service to the field device cabinet. Include the device stations and offsets for proposed power service locations in the plans.

Power service locations are typically located within a half-mile of the ITS devices served. Consult with the commercial utility service provider to select optimal power service locations for power service routing greater than a half-mile.

Identify underground and above-ground obstacles (e.g., buried utilities, structure foundations, retaining walls, guardrail) between proposed ITS devices and the power services. These obstacles may affect the location of proposed ITS devices, the choice of power service points, or the routing for the power service conductors.
233.3.2 Local Backup and Alternative Power Sources

Provide Uninterruptible Power Supply (UPS) to prevent failure of normal operations for mission critical systems. Mission critical systems are systems that are critical to the daily operation of the Transportation Management Center (TMC) (e.g., master hubs, certain local hubs, detectors, cameras, signs, tolling systems, express lanes) as defined by the District ITS/Transportation Systems Management & Operations (TSM&O) Engineer.

Solar or wind power sources may be an option for some ITS applications. Consider the geographical and topographic features that affect sunlight or wind exposure, size of site, and protection from maintenance operations (e.g., mowing).

An electrical distribution system may be necessary in rural areas where commercial electric service is not readily available. Design the electrical distribution system in accordance with NEC requirements. Consider voltage and amperage needs of the equipment along the distribution system. Different combinations of voltage, conductor size, step-up, step-down, and isolation transformers may be used to design a system that is cost effective to construct and maintain. Coordinate with the District ITS/TSM&O Engineer to determine additional electrical capacity needs.

233.3.3 Application for Electric Service

Proposed service points for new power service installations require approval by the commercial utility service provider. This approval should be coordinated with the Department and the commercial utility service provider early in the design process.

The approval of proposed service points for new power service installations include the following steps:

1. Determine the following:
 a. Availability of service at any location.
 b. Commercial utility service provider’s standard type of service for the load to be served.
 c. Designated point of delivery (prior to confirmation with the commercial utility service).

2. Request that the proposed service points be verified and approved by the commercial utility service provider.

3. (Optional) Hold a coordination meeting in the field with the commercial utility service provider representative.
4. (Optional) Designer to obtain a written agreement with the commercial utility service provider for agreed upon service locations.

In most locations, the secondary distribution system provides service(s) at standard voltages.

233.3.4 Power Design Requirements

Key design steps for an ITS device deployment electric power system are:

1. Determine the total power requirement based on anticipated peak equipment loads determined in accordance with FDM 233.3.5.
2. Select a suitable power source based on availability.
3. Determine transformer requirements (step-down, step-up, or isolation), where applicable. The need for transformers may be based on voltage and power loss calculations.
4. Balance the device electrical loads to achieve a uniform and efficient power distribution design.
5. Separate power service meter to be provided for ITS infrastructure

Locate a power disconnect switch within a convenient distance from the device service enclosure. For example, the power to operate a Dynamic Message Sign (DMS) may be fed from a nearby DMS service enclosure, and a power disconnect switch is typically installed outside of the service enclosure.

233.3.5 Power Load Requirements

The total power requirement for any deployed device or deployment site is the sum of the power requirements of the following:

- Heating Ventilation and Air Conditioning (HVAC).
- Cabinet components (lights, fans, UPS).
- Devices not powered through the UPS.
- Convenience outlets.
- Future device loads.

Assume all equipment is in continuous operation.
233.3.6 Voltage Drop

Perform voltage drop calculations for ITS devices with the following considerations:

- Ability of the ITS device to operate above or below the nominal voltage.
- Distance from the power source to the ITS device.

Voltage drop mitigation strategies may include use of larger power conductors or higher service voltage.

Meet NEC code for ITS equipment electrical designs, including voltage drop calculations, load requirements, electrical device sizing (e.g., switches, isolators, bus bars, surge protective devices), and grounding.

233.3.7 Installation of Power Cable

Install power cables in separate conduits and pull boxes from communications cables. Design for the maximum duct fill ratio in accordance with NEC, Chapter 9.

233.3.8 Grounding and Lightning Protection

Include provisions for grounding and lightning protection. Examples of techniques for grounding and lightning protection include the following:

- Proper bonding and installation of grounding rods and grounding conductors.
- Air terminals.
- Surge Protective Devices (SPDs).

Standard Plans, Index 700-090 contains additional information on grounding and lightning protection for DMS signs.

Existing geological and other physical characteristics (e.g., rock formations, underground utilities, gravel deposits, soil types, and resistivity, groundwater) affect the design or layout of grounding systems. Include in the plans relevant subsurface data at the proposed installation locations (e.g., soil resistivity measurements).

Place the grounding arrays such that grounding paths from the down cable to the primary electrode are as straight as possible. Provide details in the plans related to grounding and cable routing for each device.
Determine grounding and SPD placement and overall system design based on project-specific needs and the following:

- Follow NFPA 780 (Standard for the Installation of Lightning Protection Systems), Underwriters Laboratories (UL) UL-1449, and the NEC.
- Place SPD equipment so that grounding connections are as short and straight as possible.
- Avoid bending conductor routes.
- Provide physical separation between low-voltage and high-voltage signal paths.
- Avoid routing unprotected wires or grounding wires parallel or adjacent to the protected wiring.

233.3.9 Emergency Generator Power Systems (Generators)

Generators provide temporary power when commercial AC power is interrupted. Their use is associated with mission critical ITS applications (as described in FDM 233.3.2).

Permanent generators are required for applications that cannot tolerate a short duration outage. Supplement with a UPS or battery system to provide continuous power service during the start-up cycle of the generator.

Include a connection and proper receptacles to accommodate a portable generator for applications that can tolerate a short duration outage of a few hours.

233.3.9.1 Generator Design Requirements

Sizing a generator depends on design load (including future device loading) and power factor. Consider run time requirements and future load expansion in the generator design. Identify and design specific critical load circuits to be powered by the generator when commercial power fails.

Use Liquefied Petroleum Gas (LPG) as the fuel type for permanent generator designs. The preferred storage technique for LPG is in-ground (buried) tank. Meet the minimum requirements in NFPA 58 (Liquefied Petroleum Gas Code) for generator designs.

Install a manual transfer switch for all generator installations.
Include an automatic transfer switch for permanent generator installations. The automatic transfer switch must provide emergency power in less than 15 seconds and permit full manual override control for testing and maintenance.

A remote monitor and control appliance are typically installed and connected to a network management system to monitor the status of a permanent generator and allow remote operations and testing capabilities. Coordinate with the District ITS/TSM&O Engineer to determine if remote monitoring is required.

233.3.10 DC Power Plant (48 Volt)

DC power plants protect ITS devices from potential disruptions, such as high-switching voltages, transients, lightning strikes, harmonic distortion, and interference from other equipment.

Include DC power plants where ITS applications require isolation from the AC power grid utility service provider. Connect the DC power plant to the facility grounding system.

233.3.10.1 Battery Types

Use Valve Regulated Lead-Acid (VRLA) batteries for mission critical ITS applications (as described in FDM 233.3.2).

Consider a large form factor lithium battery (e.g., Lithium Iron Phosphate) if a site has a unique battery size limitation.

Provide proper ventilation for specified battery system.

Do not use flooded type lead-acid batteries.

233.3.10.2 Battery Sizing

Size battery systems to support all the following:

- Present design load plus load expansion safety margin (typically 25%).
- Anticipated future load expansion.
- Minimum run time requirements of the DC power plant load.

Evaluate the present design load for the maximum instantaneous DC current requirements and the average DC current requirements.
Size VRLA battery systems such that the battery cells do not discharge below 50% of their rated capacity.

233.3.10.3 Battery Interconnects

Provide a circuit breaker disconnect and a low voltage disconnect for battery systems.

233.3.10.4 Battery Charging Systems

Match the battery charging system to the battery type and size to avoid unnecessary damage to battery cells. Battery charging systems may include multiple rectifiers for load sharing and redundancy.

233.3.10.5 Battery Monitoring System

Provide a battery monitoring system to monitor the condition of each battery or cell. Specify a monitoring system that identifies a thermal runaway event in the battery system and provides information to the charging system. This allows the charging system to lower the rectifier float voltage to limit the current or shutdown the battery system. Connect the battery monitoring system to the network to permit remote reporting.

233.3.10.6 DC Power Plant Load Distribution

Equip DC power load circuits with circuit breaker panels or fuses. Circuit breakers and fuses may be inherent to the DC power plant or part of a stand-alone fused alarm panel to distribute the DC power to load circuits. The panels may be networked to permit remote monitoring.

233.3.10.7 DC Power Plant Wiring

Specify stranded insulated wire with sufficient gauge to carry the required current in the DC power plant. Specify red insulation for source wiring (e.g., -48 VDC) and black insulation for the return (0 V).
233.3.10.8 Battery Installation

Large DC power plants and battery systems installed on flooring, may require a structural analysis to determine the load bearing capacity. Coordinate with the FDOT Project Manager to determine if structural analysis is required.

Design for the weight of large DC power plants and batteries to be evenly distributed to minimize surface or floor load.

233.4 ITS Support Infrastructure

ITS support infrastructure includes:

- Conduits infrastructure.
- Pull, slice, and junction boxes.
- Utility designation (e.g., power, communications).
- Fiber optic network cables and connections.
- Poles and structures.
- Camera lowering devices.

233.4.1 Conduit Infrastructure

Plans must specify the conduit color, inner duct type, size, and quantity of the conduit system.

Design the conduit system in accordance with the following:

- Conduit runs are to be as straight as possible.
- Joints and bends in the conduit system are to meet minimum bending radius of the fiber optic cable as defined in Standard Specifications, Section 633.
- Place conduit along the edge of R/W as much as possible to avoid future widening conflicts.
- Avoid placing conduits:
 - Within terrain steeper than 1:4 slope.
 - Near endangered species habitats, chronic wet areas, landscaping, drainage features, and existing or proposed roadside features (e.g., guardrail).
 - Near underground utilities and lighting conductors.
• Provide maintenance access to the conduit and pull or splice boxes.

• Minimize the number of directional borings. If there are two directional bore sections, less than 100 feet apart, then consider using a continuous directional bore.

• Minimize road crossings. When road or ramp crossing is necessary, locate and route the conduit in a manner that minimizes the length to cross the road. Place conduit perpendicular (shortest distance) to the roadway or ramp to the greatest extent practicable.

233.4.2 Pull, Splice, and Junction Boxes

Provide access points using pull, splice, or junction boxes. Minimum requirements for placement of access points are as follows:

• Provide at-grade access to fiber optic cables housed within conduit systems.

• Provide assist points to aid in fiber optic cable installation.

• Provide protection for the fiber optic cable.

• Provide space for storing cable slack/coils and splice enclosures.

• Provide space for entry, routing, and slack fiber storage for pull boxes and splice boxes. Typically, 100-foot cable slack is used per splice box and 50-foot cable slack is used per pull box.

Access points are required at the following locations:

• At every 2,500 feet in a continuous straight conduit section, if no fiber optic cable splice is required.

• At every 1,000 to 1,500 feet in urban areas (typically in context classifications C4 through C6).

• Major fiber optic cable and conduit reel junctions.

• Planned or future splice locations.

• On each side of:
 o A tunnel, river, or lake crossing.
 o An above-ground conduit installation (e.g., attachment to bridge or wall).
 o A railroad crossing.
 o A roadway crossing, except for narrow roadways, such as ramps.
Turns in the conduit system.
Near the base of a service pole or communication cabinet.

Splice boxes must be used for access points on fiber optic cable backbone routes or for device drop. Pull boxes can only be used for access points when the conduit system extends from the backbone to the ITS field devices.

Standard Plans, Index 634-002 includes information for aerial interconnect, and *Index 635-001* includes information for pull and splice box details.

233.4.3 Fiber Optic Cable Designating System

The fiber optic cable designating system provides visual indication of the underground fiber optic conduit or cable system. Provide appropriate fiber optic designating system per Standard Specifications 630.

233.5 Fiber Optics and Network Design

Design network facilities based on specific project needs with the following information:

- General network topology.
- Facility diagrams illustrating conduit routes.
- Network diagrams, including communication hub details.
- External network connections and demarcation points.
- Fiber block diagram to show switches, field devices, and physical network connectivity.

Include Special Provision *SP0071101-Tolls* in the contract documents when there are existing power or communication cables that transmit toll system information near areas where work is to be performed. Refer to the General Tolling Requirements (*GTR*) for specific ITS requirements related to toll facility design.

233.5.1 Fiber Optic Cable

Fiber optic cable is utilized in the Department's statewide network infrastructure to provide data and device control communications between ITS field devices, Transportation Management Centers (TMCs) and other identified stakeholder facilities.
Requirements for fiber optic cable are as follows:

- Design for single mode fiber strands.
- Define fiber optic cable backbone trunk, drop buffer tube, and strand color requirements.

233.5.1.1 Splices, Terminations, and Connection Hardware

Plans must provide the following:

- Splice points and splice diagrams.
- Interconnect fiber strands, origination, and destination points.
- Minimum link loss budget; including line, splice, and termination losses.
- Reserve loss budget for future splicing and cable deterioration. Budget for future loss to equal one-half of the total decibels of the circuit or 10 decibels, whichever is greater.
- Splice enclosures to protect all fiber splices within splice trays. Number and size of splice trays and enclosures are based on the number of fibers involved in the splicing diagram at each splice location.
- Existing fiber optic cables and the location of the nearest full splices in the existing cables, including distance in each direction.
- Termination of fiber optic cables using a Fiber Patch Panel (FPP). Terminate single-mode fiber optic cable in the FPP or use pre-terminated FPP connectors.

233.6 ITS Poles and Structures

Consider the following to locate and select ITS poles and structures:

- Existing ITS infrastructure, roadway features, device type (match existing), and environment.
- Road geometry, static signs spacing, lightning protection, underground utilities, and drainage infrastructure.
- Aesthetics, conflict avoidance, and line of sight issues.
- Soil boring information for the foundation design of the structures.
- Co-locating ITS devices to minimize the number of poles and structures.
• Pole type for each ITS device (e.g., pre-stressed concrete, steel) and structure type (e.g., cantilever, full-span, mid-span).

233.6.1 Camera Lowering Device

Provide a lowering device for pole-mounted cameras where height impedes access via maintenance truck.

Design external conduit for housing the cables, mounting box hardware at the top of the structure, and component details required for installation (e.g., air terminal, guide wire) for a lowering device to be attached to an existing pole or similar structure.

The lowering device must be oriented to prevent an operator from standing directly beneath the equipment while it is being lowered.

233.7 ITS Enclosures

ITS enclosures include ITS field cabinets, small equipment cabinets, and equipment shelters. Each of these cabinets require an analysis for design, usage, and placement.

233.7.1 ITS Field Cabinets

Placement of ITS field cabinets is based on the safety of the motorist, visibility of roadside devices, and safety of maintenance staff. Mount the ITS field cabinets on concrete pads, structures, or poles. Do not place cabinets in flood-prone areas or wetlands. Consider including safety features such as service slabs and railings for cabinets placed on slopes steeper than 1:2. Place ground mounted DMS cabinets based on the DMS type. Cabinet mounting details are shown in Standard Plans, Indexes 641-020 and 649-020.

Size the cabinet to accommodate equipment to be installed, ease of access, anticipated future equipment (e.g., connected vehicle roadside unit in-cabinet equipment), and proper ventilation. All cabinets within a project corridor should have a consistent layout for the interior by functionality. Orientate the cabinet such that the maintenance technician is facing oncoming traffic when accessing the cabinet. Show cabinet orientation and door swings in the plans.

Provide one power and one communication entry conduit for each cabinet, at minimum. Include additional conduit entries as required for the equipment to be housed. Include spare conduits in the cabinet for future expansion.
233.7.2 Small Equipment Enclosures

Small equipment enclosures include structure- or pole-mounted cabinets (e.g., National Electrical Manufacturers Association (NEMA) 3R). These may be used in lieu of ITS field cabinets in locations that require minimal equipment to be housed. Small equipment enclosures may be connected to another ITS site, which houses the Ethernet switch and other ITS components. When locating the small equipment enclosure, consider the allowable power and communication loss per IEEE 802.3ab to District network speed requirements.

233.7.3 Equipment Shelter

Co-location of master hub equipment in existing FDOT-owned microwave tower buildings may be used in-lieu of new equipment shelters. Coordinate with the District ITS/TSM&O Engineer and the State Traffic Engineering and Operations Office’s ITS Communications division to determine if co-location is possible.

If co-location is not possible, provide the following information in the equipment shelter details:

1) Site layout
 - Shelter dimensions.
 - Site preparation work, clearing and grubbing, fencing, and landscape.
 - Conduit and pull box installation.
 - Details for grounding.

2) Shelter layout
 - Details for electrical and lighting.
 - HVAC systems.
 - Back-up power systems (e.g., UPS, generator, fuel tanks).
 - Security features (e.g., cameras, security alarms).
 - Remote monitoring alarms.

3) Equipment layout
 - Overhead cable trays.
 - Standard EIA/TIA 19-inch racks.
 - Demarcation punch blocks.
• Patch panels.
• Equipment placement within each rack.

233.8 Communication and Networking Devices

Network devices include a variety of Internet Protocol (IP)-addressable electronic equipment. This equipment is used for the collection and dissemination of video, traffic data, and other information.

Provide communication and networking devices that conform with the following:

• Network requirements and information for communication network design.
• Compatibility with existing network equipment currently in operation.
• Minimal system downtime to facilitate immediate replacement of defective or damaged units.
• Open architecture.
• Survivability and reliability.
• Redundant path and no single point of failure.

233.8.1 Managed Field Ethernet Switch (MFES) Network

Provide MFES network to avoid the following:

• Distance limitations for common Ethernet media types.
• Interference that may be induced on copper-based interconnects.
• Data size transfer limitations based on Gigabit Interface Converter (GBIC).

In the fiber network layout, provide a leap-frog configuration to support availability and optimal data transfer. Ensure no more than one DMS and no more than six CCTV devices are included on any one leap-frog circuit. Ensure that adjacent CCTV devices are on separate circuits.

233.8.2 Device Server

Include device servers when remote field devices with serial communication interfaces require connection to an Ethernet network.
Equipment that may require the use of device servers include:

(1) Vehicle detection systems.

(2) Road Weather Information System (RWIS).

(3) Low-speed data output devices.

233.8.3 Media Converter

Media converters may be used to transition between various types of interfaces.

233.8.4 Wireless Communications System

Determine the proper wireless communications system to fit the ITS application (e.g., point-to-point, point-to-multipoint). Consider reliability, security, capital and operational expenditures, licensed versus unlicensed radio bands, and regulatory requirements for the wireless communications system selection.

Wireless systems enable data communications through radio links.

Typical applications for point-to-point wireless communications system includes:

- Remote ITS field devices or intersections that can use a wireless connection to the nearest fiber drop point.
- Across rugged terrain and bodies of water.
- The use of fiber optics is temporarily unavailable during construction; this use must be approved by the District ITS/TSM&O Engineer.
- ITS device sites where it is difficult or cost prohibitive to install fiber optic cables.

Typical applications for point-to-multipoint wireless communications system includes:

- Land Mobile Radio push-to-talk.
- Highway Advisory Radio.
- Citizens Band (CB) Radio.

The ITS Communications division maintains the Federal Communications Commission (FCC) licenses associated with ITS wireless communications and manages assignment of new licenses. Districts using wireless communications systems to support an ITS application are encouraged to contact State Traffic Engineering and Operations Office’s ITS Communications division.
Specify each component in the wireless communications system including antennas, radios, transmission lines, and connectors. Provide installation details, location, and placement of the system components. Design cable management details. Consider the length between transmit and receive equipment to attain optimum communications signal.

Design line-of-sight, throughput, frequency, availability, power levels, and path calculations for the communications design plans as follows:

- Design the communication path so that two-thirds of the Fresnel Zone is clear of any obstructions (e.g., surrounding terrain, trees, signs, buildings).
- Set throughput capacity for each radio link to transmit two times more data than the maximum data throughput.
- Analyze multipath challenges over large water bodies and within urban street canyons (created by large buildings).
- Analyze spectrum interference in the vicinity.

Wireless communications shall not be used for communication to Express Lane ITS devices.

233.8.5 Layer 3 Switch

Within the ITS network, the Layer 3 switch provides connectivity at transmission rates of 1 or 10 Gigabit per second to and from adjacent Layer 3 switches.

The Layer 3 switch includes Layer 2 capabilities, including Quality of Service (QoS), Internet Group Management Protocol (IGMP), rate limiting, security filtering, and general management. The Layer 3 switch is fully compatible and interoperable with the ITS trunk Ethernet network interface.

The Layer 3 switch is a port based VLAN, supporting VLAN tagging, meeting the requirements of IEEE 802.1Q standard.

The selection of a Layer 3 switch involves variables suited for the proper environment. Items such as dual power supplies, dual supervisor units, Layer 3 protocols, and voltage requirements are considered during the switch selection process. Items such as number and type of ports are design specific. An MSP and custom pay-item are needed for all projects requiring a Layer 3 switch.

See Form 233-A (located in FDM 103) for desired Layer 3 switches.
233.9 Vehicle Detection Systems

Include the location and placement of system components and provide installation details for the cables. Design the cabling installation details.

Consider capabilities and functional limitations at each location to attain the required levels of detection accuracy as specified in *Standard Specifications, Section 660*.

Show detector types and locations on the plans to obtain traffic data such as speed, occupancy, and volume. Detector placement must conform to the following requirements:

- Cover all lanes in both directions (as a group or individually).
- Space one-third to one-half mile in urban areas (context classifications C4, C5 and C6).
- Space one mile in suburban areas (context classifications C3R and C3C).
- Space one to two-mile in rural areas (context classifications C1, C2, and C2T).
- Space one-fourth to one-third mile on express lanes.
- Place at major interchanges exit and entrance ramps.
- Place at intersection to detect vehicle presence at the stop bar, when required.

233.9.1 Loop Detectors

Do not use loop detectors on concrete pavement or on corridors with large traffic volumes of heavy vehicles. Consider using them at locations with low volumes of traffic.

233.9.2 Video Vehicle Detection Systems (VVDS)

Design considerations for VVDS include:

- Upstream versus downstream view orientation.
- Shoulder coverage to detect stalled vehicles.
- Detection zone layout to cover near and far zones.
- Roadway geometry and line of sight.
- Requirement to view VVDS images from the Transportation Management Center (TMC).
- High contrast or low light conditions that might interfere with VVDS data reliability.
• Maintenance requirements and impact of high winds on detector alignment and calibration.

233.9.3 Microwave Vehicle Detection Systems (MVDS)

Design considerations for MVDS include:
• Cover all lanes in both directions of travel.
• Provide offset mounting on structures.
• Avoid aiming toward steel structures.
• Align detector perpendicular to the roadway.
• Provide access for maintenance and calibration.
• Use Power over Ethernet when connecting to an ITS Field Cabinet within 330 feet.

233.9.4 Wireless Magnetometer Detection Systems (WMDS)

Design considerations for WMDS include:
• Determine the number and spacing of sensors based on detection requirements; e.g., three magnetometers may be required for truck parking.
• Align sensors such that they are placed in the direction of traffic flow or parking space.
• Provide access for installation, maintenance, and calibration.

233.9.5 Automatic Vehicle Identification (AVI) Systems

Design considerations for AVI systems include:
(1) Follow manufacturer's requirements for AVI sensor placement, mounting height, offset, and line of sight.
(2) Follow location and spacing based on District objectives for the AVI system. Potential locations include mid-blocks, major intersections, and locations prior to or after interchanges.
233.10 Closed-Circuit Television Systems

Closed-circuit television (CCTV) systems consist of roadside cameras, communication devices, as well as camera control and video display equipment. CCTV is located at one or more remote monitoring locations that allow surveillance of roadway and traffic conditions for traffic and incident management. Cameras are also required for visual confirmation of dynamic message signs and ramp signal operation, as well as security purposes.

Design and placement considerations for CCTV cameras includes:

- Locate cameras on limited-access facilities and arterials to obtain a continuous view of roadway features including lanes, shoulders, ramps, ramp terminals, and designated emergency stopping and crash investigation sites beyond the traveled way.
- Place cameras at interchanges to view arterial traffic.
- Place cameras for DMS verification no further than 1,000 feet from the face of the DMS with a clear line of sight within the horizontal and vertical viewing cone.
- Dedicated express lane cameras for verification must be capable of pan, tilt, and zoom (PTZ) for every DMS.
- Accommodate service and maintenance access with minimal impact to traffic.
- Utilize crash data analysis to place cameras at high-crash locations.
- Place the camera at a location with minimal vegetation obstruction within half-mile on each side.
- Identify locations for vegetation removal in the plans or propose closer spacing upon approval from the District ITS/TSM&O Engineer and District Landscape Architect.
- Locate the camera in accordance with minimum lateral offset requirements in FDM 215, or place behind existing guardrail and barrier walls. Avoid introducing new guardrail and barrier walls.
- Specify camera mounting height in the plans based on specific project needs. Consider the following in determining the mounting height:
 - Required viewing distance.
 - Roadway geometry and lane configuration.
 - Roadway functional classification (e.g., arterial, collector, limited access facility).
 - Environmental factors (e.g., glare from the horizon, headlight glare).
Vertical clearance.
- Co-location with the other ITS devices.
- Existing and anticipated vegetation.

- Consider camera life-cycle cost, including maintenance costs.
- Consider CCTV performance and bandwidth requirements, control type, use of temporary cameras, and camera housing.

Design camera housings, enclosures, lowering devices, and mounts in accordance with the [Standard Specifications](#).

Refer to [Standard Plans, Index 649-020](#) or [Index 641-020](#) for CCTV camera pole and foundation details. Refer to Department's [Standard Specifications](#), (Division II and III) Section 649 for Steel Pole and Section 641 for Concrete CCTV Pole.

233.11 Motorist Information Systems

Motorist Information Systems include DMS, Highway Advisory Radio (HAR), electronic display signs, and Citizens Band (CB) Radio.

233.11.1 Dynamic Message Sign (DMS)

Select the appropriate DMS type based on specific project needs. Position the DMS to be legible from the roadway based on the display characteristics of DMS technology (e.g., the vertical and horizontal viewing angles of LED displays).

Determine DMS placement based on the following requirements:

- Compatible with the message library proposed for use on the project, including text and graphics.
- Utilize DMS capable of displaying minimum character heights and line spacing per the [MUTCD](#), Section 2L.04.
- Place in advance of high crash locations and traffic bottlenecks.
- Place where sufficient space is available between the edge of travel lanes and the R/W limits, while meeting the minimum lateral offset requirements in [FDM 215](#).
- Place where no conflict with underground or overhead utilities exists.
- Accommodate access for service and maintenance.
- Place along key commuter or evacuation corridors.
• Place on Interstate and Freeway facilities in advance of interchanges that offer alternate routes, and meet the requirements of MUTCD, Section 2L and the following:
 o Place in advance of 1-mile exit signing.
 o Provide a minimum 800-foot spacing between existing and planned overhead static and other signs, per the MUTCD. Provide increased spacing when conditions allow.
 o Install walk-in DMS on support structures without static signage.
 o In advance of interchanges where interstates meet to allow for advance messaging of traffic conditions on both roadways. Consider locations that are two exits before major interchanges as well as immediately prior to the interchange.
 o Mount embedded DMS over or under the static sign panel or use a static sign cut-out.
• Place on arterials prior to major intersections and interchanges:
 o Approximately 1/4 to 1/2 mile in advance of major intersections or interchanges.
 o At least 600 feet from adjacent signalized intersections.
 o Where the DMS is continuously visible to motorists for 600 to 800 feet, depending on the design speed of the roadway.
 o Where no existing or planned guide signs exist within the 600-foot minimum visibility distance.
 o With minimum interference from lighting, adjacent driveways, side streets, or commercial signage.
 o Where no historical neighborhoods exist.
233.11.1.1 Express Lanes DMS

Express lanes DMS must be full-color or full-matrix DMS and conform to the following application criteria:

Table 233.11.1 DMS Characters

<table>
<thead>
<tr>
<th>DMS Type</th>
<th>Minimum Character Size (inches)</th>
<th>Minimum Number of Characters Per Line</th>
<th>Maximum Resolution (millimeter pixel pitch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA Facility</td>
<td>18</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>Arterial</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toll Amount</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA Facility</td>
<td>18</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Arterial</td>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

233.11.2 Highway Advisory Radio (HAR)

A highway advisory radio (HAR) system is an advisory tool that informs the public of traffic- and safety-related issues. HAR systems may be installed or upgraded with the approval from the Chief Engineer. See Engineering and Operations Memorandum 16-03.

Include the equipment necessary for the operator to record verbal messages from onsite or remote locations, and to continually broadcast live, prerecorded, or synthesized messages from roadside transmission sites. Also, include highway signs with remotely operated flashing beacons to notify motorists of HAR broadcasts.

Refer to FCC regulations Title 47 CFR, Part 90.242 for additional design requirements on travelers’ information stations. Additional information on licensing issues, frequency allocation, and other specifics may be obtained by contacting the State Traffic Engineering and Operations Office’s ITS Communications division.

Determine placement of a HAR installation based on specific project needs, as well as the following requirements:

- Transmission of message that can be received by motorists traveling through the broadcast zone.
- Placement on Interstate and Freeway facilities prior to interchanges that offer alternate routes.
- Placement in advance of high crash locations and traffic bottlenecks.
• Placement that accommodates access for service and maintenance.
• Placement along key commuter or evacuation corridors.
• Placement of flashing beacon signs within the HAR coverage area prior to exit signs or DMS associated with an interchange.
• Wood poles are often recommended by HAR manufacturers for antenna mounting to reduce interference that may occur with conductive poles. Install the antenna in accordance with the manufacturer’s recommendations and in compliance with FCC requirements.

233.11.3 Electronic Display Signs

Place Variable Speed Limit (VSL) signs and Lane Control Signals (LCS) in accordance with:
• Locations per District requirements.
• Sign spacing per MUTCD requirements.
Specify field cabinet, support structure, power supply, and communications to support VSL and LCS installation.

233.11.4 Citizens Band (CB) Radio

The Department deploys CB radios to advise motorists (particularly commercial freight vehicles) about travel conditions and emergencies. The CB radio service operations and electronic equipment are regulated by the FCC in Title 47 CFR, Part 95, Subpart D.

Operation of a remotely located CB radio station from a facility (e.g., a Transportation Management Center (TMC) where the operator is not co-located with the CB radio) requires a written waiver of the FCC rules. Contact State Traffic Engineering and Operations Office’s ITS Communications division to obtain the required FCC waiver needed to remotely operate a CB radio.

233.12 Additional ITS Devices

This section includes information on other ITS devices that are TSM&O tools.
233.12.1 Road Weather Information System (RWIS)

RWIS consists of Environmental Sensor Station that incorporates multiple or single environmental sensor(s) (e.g., wind speed sensors, visibility sensors, pavement sensors) that are attached to one pole. Location of Environmental Sensor Stations should consider the following:

- Place in locations where weather observations will be the most representative of the roadway segment of interest.
- Select locations to avoid the following:
 - Effects of passing traffic (e.g., heat, wind, splash).
 - Standing water.
 - Locations where billboards, surrounding trees, or other vegetation would affect the weather measurements.

For more information on appropriate location of ESS and additional design requirements, refer to the FHWA’s Road Weather Information System (RWIS) Environmental Sensor Station Siting Guidelines, Publication No. FHWA-HOP-05-026.

Identify the appropriate communication platform for the RWIS application (e.g., copper, fiber, wireless).

Licensing for using satellite-based communications is required, and it must be coordinated by the Department with the National Oceanic and Atmospheric Administration (NOAA). Coordinate the use of satellite-based systems with the State Traffic Engineering and Operations Office’s ITS Communications division.

233.12.2 Ramp Metering Signals

A ramp metering signal controls the number of vehicles entering a limited-access facility to maintain steady traffic flow. Consider the following when designing ramp metering signals:

- MUTCD signalization requirements for ramp signals (e.g., design of the signal system, number of signal heads, placement beside or over the ramp).
- Distance from the stop bar to the acceleration lane to allow vehicles starting from the signal to reach highway speeds and merge safely.
- Distance from signal stop bar to the cross-street intersection to allow adequate vehicle storage at the signal.
• Add two-lane storage upstream of stop bar from cross street to store additional vehicles and not spill over cross street, if ramp meter is proposed on a single lane ramp and traffic analysis warrants the need.
• Placement of stop bar and queue length detection.
• Placement of detectors to support local or central ramp signal control algorithm in use by the District.
• Signing to support signal operation.

233.12.3 Connected Vehicle Infrastructure

Connected Vehicle (CV) is an emerging TSM&O strategy that generally falls into three application categories:
• Vehicle-to-Infrastructure (V2I).
• Vehicle-to-Vehicle (V2V).
• Vehicle-to-Others (V2X).

The V2X components include pedestrians, bicyclists, personal mobile devices, aftermarket safety devices (ASDs), and any other Internet of Things (IoT). The common communications source uses 5.9 GHz Dedicated Short-Range Communication (DSRC) or cellular communications to and from Roadside Units (RSUs) and On-board Units (OBUs).

Use the following national standards when designing CV infrastructure:

• United States Department of Transportation (USDOT) DSRC RSU Specifications.
• Society of Automotive Engineers (SAE) DSRC Message Set Dictionary, including Basic Safety Messages (BSMs) and Traveler Information Messages (TIMs).
• USDOT Mapping Tool or LiDAR for intersection mapping.
• USDOT Architecture Reference for Cooperative and Intelligent Transportation (ARC-IT).
• FCC, Title 47 CFR, Parts 90 and 95L.
• USDOT Security Credential Management System (SCMS).
• Communications requirements for Internet Protocol version 6 (IPv6).

Consider the following for the RSU device placement:
• Co-location of devices with new or existing ITS or signal infrastructure.
• Availability of inside cabinet space for RSU-associated equipment.
• Antenna placement location.
• Wireless coverage.

Provide the RSU locations to the State Traffic Engineering and Operations Office’s ITS Communications division and the District ITS/TSM&O Engineer to file for FCC licenses for all DSRC RSUs. FCC licenses must be granted before a station transmits on any channel.

233.13 Maintenance of ITS Devices and Communications

Coordinate with District ITS/TSM&O Engineer to determine if maintenance of ITS devices and communications during a construction project is required. Considerations for uninterrupted ITS devices and communications include the following:

• Install new ITS communications network before removing the existing network.
• Use of temporary fiber that is placed outside the limits of construction.
• Use of temporary aerial fiber or wireless communications.
• Use of other public or private communications.
• Make every effort to maintain existing ITS devices and field equipment. If ITS device locations are impacted by planned construction, include temporary ITS devices.

The maintenance of ITS devices and communications plan must be approved by the District ITS/TSM&O Engineer.
240 Transportation Management Plan

240.1 General

A Transportation Management Plan (TMP) is required for minimizing activity-related traffic delay and crashes. The goal of a TMP is to reduce congestion during construction by managing traffic through the project area. For TMPs, significant projects are defined as:

1. A project that, alone or in combination with other concurrent projects nearby, is anticipated to cause sustained work zone impacts.
2. All Interstate system projects within the boundaries of a designated Transportation Management Area (TMA) that occupy a location for more than three days with either intermittent or continuous lane closures.

Significant projects may require a multi-discipline TMP team to plan, coordinate, implement, monitor, and evaluate the details of TMP elements. Depending on the project logistics, the team composition may include FHWA, local government, and business representatives.

Complete the Transportation Management Plan Form, Form 240 (See FDM 103). This form is required for all projects (significant or not) to document compliance with the CFR 23, Part 630, Subpart J.240.1.1, TMP Reference Documents.

Comply with the following documents for the development of TMPs:

1. Manual on Uniform Traffic Control Devices for Streets and Highways, (MUTCD), Part VI
2. Policy on Geometric Design of Highways and Streets, AASHTO
3. Roadside Design Guide, AASHTO, Chapter 9
5. FDOT Standard Specifications for Road and Bridge Construction (Standard Specifications)
7. FDOT Accessing Transit Handbook, Chapter 4.6.

January 1, 2021
240.1.2 TMP Components

A TMP consists of strategies to manage the work zone impacts of a project. The scope, content, and degree of detail will vary based upon the expected work zone impacts of the project. A TMP may include the following three components:

- Temporary Traffic Control Plan
- Transportation Operations Plan
- Public Information Plan

240.2 Temporary Traffic Control Plan

A Temporary Traffic Control Plan (TTCP) is required for all work zones within, or adjacent to highways, roads and streets as specified by Florida Statute and Federal regulations. Typical applications of some commonly encountered situations are shown in the MUTCD. Some of these typical applications have been modified by the Standard Plans, 102 Series. Most work zones will require further development of the typical applications to address project-specific conditions.

240.2.1 TTCP Details

240.2.1.1 Emergency Shoulder Use

The requirements for Emergency Shoulder Use (ESU) outlined in FDM 211.4.6 must be maintained during all phases of construction. A Design Variation to omit ESU evacuation requirements for any phase of construction must be approved by the Chief Engineer.

240.2.1.2 Work Zone Speed

Work zone speed is used with the Standard Plans, 102 Series, and to select geometric elements within the project limits.

Work zone speed should be the existing posted speed. The existing posted speed is defined as the posted speed prior to the start of any work zone activity. A reduction from the existing posted speed should only be made when geometric constraints make it necessary, or in accordance with the requirements of FDM 240.2.2.12. Include the justification for reduction in existing posted speed in the project documentation (see FDM 111.7). The TTCP and the project documentation will suffice as a traffic and engineering investigation.

240- Transportation Management Plan
A work zone speed more than 10 mph below the existing posted speed requires the approval of the District Traffic Operations Engineer, and the District Director of Transportation Operations.

A work zone speed below the minimum statutory speed for the class of facility is prohibited.

For projects with interspaced work activities (such as interstate resurfacing), locate speed reductions in proximity to those activities which merit a reduced speed, and not “blanketed” for the entire project.

240.2.1.3 Tapers

Transitions and tapers should be obvious to drivers. If sight distance is restricted (e.g., a sharp vertical or horizontal curve), the taper should begin well in advance of the view obstruction.

Temporary traffic control devices at intersections must provide sight distances for the road user to perceive potential conflicts and to traverse the intersection safely.

See the [Standard Plans, 102 Series](#) for taper length requirements.

See [FDM 210](#) for required sight distance using the work zone speed.

240.2.1.4 Superelevation

The minimum radii where superelevation is not necessary are provided in [Table 240.2.1](#).

When superelevation is provided, specify the superelevation in accordance with [FDM 210](#).
Table 240.2.1 Minimum Radii for Normal 0.02 Cross Slopes

<table>
<thead>
<tr>
<th>Work Zone Speed (mph)</th>
<th>Minimum Radii for Normal Cross Slopes (Feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>290</td>
</tr>
<tr>
<td>30</td>
<td>430</td>
</tr>
<tr>
<td>35</td>
<td>610</td>
</tr>
<tr>
<td>40</td>
<td>820</td>
</tr>
<tr>
<td>45</td>
<td>1080</td>
</tr>
<tr>
<td>50</td>
<td>1390</td>
</tr>
<tr>
<td>55</td>
<td>1840</td>
</tr>
<tr>
<td>60</td>
<td>2400</td>
</tr>
<tr>
<td>65</td>
<td>3130</td>
</tr>
<tr>
<td>70</td>
<td>4090</td>
</tr>
</tbody>
</table>

240.2.1.5 Lane Widths

See Standard Plans, 102 Series for lane width requirements.

240.2.1.6 Lane Closure Analysis

Lane closure analysis is a process used to calculate the peak hour traffic volume and the restricted capacity for open road and signalized intersections. The analysis will determine if a lane closure should be allowed and the times during which a lane closure can occur without causing excessive travel delay.

Many roadways have directional peak hour traffic volumes, with inbound morning traffic, and outbound afternoon traffic. A composite lane closure analysis would, in many cases, require night work or create very short allowable lane closure periods. If a lane closure analysis is calculated for inbound and outbound separately, night work may be avoided and longer lane closure periods may be allowed.

When a closure of one or more lanes is necessary, provide an allowable lane closure duration of at least one eight-hour period per 24-hour work period. Approval by the State Roadway Design Engineer is required when at least one eight-hour-period per 24-hour work period cannot be provided.

A lane closure duration of more than one calendar day on limited access facilities is prohibited. If a lane closure duration of more than one calendar day on limited access facilities is unavoidable, approval by the District Secretary is required.

See FDM 241 for illustrations of lane closure analysis worksheets.
240.2.1.7 Traffic Pacing

Traffic pacing is a temporary traffic control technique that allows short duration work operations by pacing traffic at a slow speed upstream of the work zone. The Department frequently allows this technique for:

- Installing overhead sign structures
- Replacing sign panels
- Placing bridge beams
- Installing utility crossings

See the Standard Plans for additional traffic pacing information.

Specify traffic pacing restrictions for all multilane roadways with a work zone speed of 50 mph or greater. See FDM 242 for the procedure for calculating the traffic pacing restrictions.

240.2.1.8 Detours, Diversions, and Lane Shifts

Detour: A redirection of motorized and non-motorized traffic onto an alternate route, using state roads or local (county or city) roads, to bypass the work zone.

Diversion: A redirection of motorized and non-motorized traffic onto temporary pavement adjacent to the existing or permanent roadway.

Lane Shift: The redirection of motorized and non-motorized traffic onto a different section of the permanent roadway or shoulder.

Design detours, diversions, and lane shifts in accordance with FDM 240.2.1.9 and the following:

- Maintain existing shoulder width where practicable, but no less than:
 - 2 feet for limited access roadways or roadways with existing pave shoulders less than 4 feet, or
 - 4 feet (i.e., maintain bicycle facility) for all other roadways.

- For offsets to barriers and special considerations (e.g., refuge areas or emergency vehicle access), see FDM 215.

- Provide sufficient detail for diversion geometry and temporary drainage in the TTCP. See the FDOT Drainage Design Guide, Temporary Drainage Chapter, for guidance. Show the radius of curvature and taper lengths. Cross sections which only show
geometric information may be included in the TTCP for complex diversions (e.g., a special detour within a superelevated section).

- Special detours from a divided highway to an undivided condition must separate opposing traffic using either temporary barrier or temporary lane separators in accordance with the Standard Plans. The use of striping, RPMs, and complementary signing, either alone or in combination is not considered acceptable for separation purposes.

- Minimize interruption of local transit operations and coordinate with emergency services.

In addition to the requirements above, design detours in accordance with the following:

- Detour signing must convey clear direction allowing users to safely traverse the entire detour and return to the original path of travel.

- When developing a detour, consider the type of motorized traffic being routed (e.g., vertical clearance for large vehicles). Do not route large vehicles through a U-turn.

- Consider the structural capacity of the detour pavement.

- Obtain concurrence from the local agency when detours are to utilize local roadways.

240.2.1.9 Bicycle, Pedestrian, and Transit Accommodation

Include accommodations for the following road users of all ages and abilities in the TTCP:

- Pedestrians
- Bicyclists
- Transit users

Provide accommodations on Florida National Scenic Trail and SUN Trail.

ADA requirements apply during TTC. Include provisions for the disabled at the same level of accessibility as the existing facility or greater. See Standard Specifications, Section 102 and FDM 222, 225 for more information.

Minimize impacts to existing bicycle, pedestrian and transit facilities by preserving the following to the extent feasible:

- Safety features
- Connectivity of the facilities to and through the project
- Directness of the routes
Incorporate the following requirements into the TTCP:

Design Principles for Temporary Bicycle and Pedestrian Facilities:

1. Provide like-for-like bicycle and pedestrian facilities to the maximum extent possible. When this cannot be accomplished for bicycle facilities, separate motorized traffic from bicycle traffic whenever possible. The higher the volumes of motorized traffic or percentage of truck traffic and the longer the duration of construction, the more substantial the separation should be. Specify temporary bicycle ways that replicate the geometric characteristics of the existing bicycle way. For example, a separated bicycle facility should remain separated during construction. See *FDM 223* for more information on separated bicycle facilities.

2. Phase the construction plans to ensure bicycle and pedestrian facilities are only closed when necessary. See *FDM 321* for more information on phasing.

3. See *Standard Plans, Series 102* for additional information and requirements on pedestrian facilities in work zones.

4. Provide temporary barrier per *FDM 215* where temporary pedestrian ways divert pedestrian traffic to be immediately adjacent to vehicular traffic (e.g., a paved shoulder) or when a separated bike lane has been moved. This does not apply to temporary pedestrian ways behind curb.

5. Ensure work zones adjacent to sidewalks or temporary pedestrian ways provide separation between pedestrians and the work area.

Location of Temporary Routes for Pedestrians and Bicyclists:

1. Do not lead pedestrians or bicyclists into direct conflicts with vehicles, equipment, or operations.

2. Keep detour lengths and diversions as short as practicable.
 - Detours should not create more than a 30% increase in the length of the non-motorized facility, or not longer than 0.5 miles for bicyclists or 0.25 miles for pedestrians.
 - To minimize the detour length, consider providing a temporary mid-block crosswalk instead of detouring pedestrians to the nearest signalized intersection or existing crosswalk.

3. The order of preference for routing:
 - Maintain facility on the same side of the road.
i. Narrow the temporary bicycle way or temporary pedestrian way if needed.

ii. If necessary to direct non-motorists onto the roadway then:
 - Separate motorized traffic from pedestrians.
 a. Provide a temporary barrier per FDM 215 where pedestrians are shifted adjacent to traffic lanes.
 - Consider closing one lane of motorized traffic to accommodate non-motorized traffic of bicycle or pedestrian facilities with high usership.

iii. If the existing bicycle facility is a shared use path or separated bike lane and separation for bicyclists, such as a temporary bike lane, is not possible, then bicyclists may be directed onto a temporary or permanent pedestrian way of a minimum width of 8 feet.

iv. When the existing bike facility is a bicycle lane, marked shoulder or rideable paved shoulder and the work zone speed is 35 mph or less, then bicyclists may be directed onto the travel lane. Provide portable changeable message signs (PCMS) letting motorists know bicyclists will be detoured onto the road, per FDM 243. For example:
 - Bike Facility Closed, Bicycles on Road
 - Bike Detour Ahead, Bicycles on Road

(b) Diversion to the opposite side of the road. Return to original side of road as soon as possible.

i. Phase the construction so bicycle or pedestrian facilities will be open on the other side of the road if facilities cannot be provided on the same side of the road.

ii. Choose crossing points with adequate stopping sight distance.

iii. If using temporary midblock crossings, then consider the use of temporary traffic signals or RRFBs. See FDM 240.2.2.8 and the TEM for more information.

iv. Warn motorized and non-motorized traffic there are extra pedestrian or bicycle crossings through portable changeable message signs (PCMS) per FDM 243. For example:
 - Bike Detour Ahead, Ped Detour Ahead
Ensure provision is made to allow transit users to access transit stops, and to board and depart transit vehicles safely. Temporary transit access must include provisions for the disabled at the same level of accessibility as the existing facility or greater. See FDOT’s [Accessing Transit Handbook](#) for guidance on transit stops.
240.2.1.10 Railroads

Ensure that the TTCP does not cause queuing of traffic across railroad tracks. Evaluate the signal timing, tapers, lane closures and distance to intersections as compared to projected peak traffic volumes. Evaluate the effects of the TTCP on interconnected traffic signals and railroad signals to avoid conflicting or ineffective signal controls.

240.2.1.11 Utilities

If contract utility work is anticipated in conjunction with or during the highway construction, the TTCP must account for and adequately protect all work activities. The phasing of construction activities must be compatible with the utility work. Utilities, whose work affects traffic, are required by FHWA to provide a TTCP. This requires early and effective coordination with utilities.

240.2.1.12 Existing Traffic Signals

Adjust signal heads to maintain proper position when lane shifts are necessary and determine the need for temporary traffic detection. Coordinate required modifications to existing traffic signal operations with the District Traffic Operations Engineer and show signal adjustments in the TTCP.

240.2.1.13 Roadside Hazards

See FDM 215 and Standard Plans, 102 Series for information on the shielding of roadside hazards.

240.2.1.14 Drop-offs in Work Zones

See Standard Plans, 102 Series for requirements related to drop-offs in work zones.

240.2.1.15 Bridge Construction

To facilitate the development of an optimal design minimizing traffic disruption and construction costs, the roadway engineer and structures engineer must collaborate with each other prior to completion of Phase I roadway plans or the Bridge Development Report (BDR), whichever is earlier. For very complex urban projects, this collaboration should begin as early as the PD&E phase of the project.
240.2.15 Bridge Construction

To facilitate the development of an optimal design minimizing traffic disruption and construction costs, collaboration between the roadway engineer and structures engineer is required.

240.2.2 Temporary Traffic Control Devices

The MUTCD contains detailed instructions on the use of traffic control devices. Special design considerations applicable to Florida are discussed in the following sections.

Temporary traffic control devices should not be placed in locations where they will block or interfere with transit stops, pedestrians, or bicycle traffic.

240.2.2.1 Signs

The following types of signs are encountered in temporary traffic control:

- Work Zone Signs
- Existing Signs

Work Zone Signs:

Work zone signs are typically post mounted in accordance with Standard Plans, 102 Series.

Signing for the control of traffic entering and leaving work zones by way of intersecting roadways must be adequate to inform drivers, cyclists and pedestrians of work zone conditions. At a minimum, provide a "Road Work Ahead" sign.

If the work zone interrupts the continuity of an existing bicycle or pedestrian way, then provide signs directing non-motorists alongside or around the work zone and back to the bicycle or pedestrian way.

See the Standard Plans, 102 Series for required work zone signs and placement.
Existing Signs:

Specify covering, removing, or relocating existing regulatory or warning signs that conflict with the TTCP, or to complement the work zone conditions (e.g., if a stop sign on an existing side road is needed, use the existing sign and show the location that it is to be relocated to).

Modify existing guide signs to show changes made necessary by the construction operations. If existing guide signs are to be removed during construction, make provisions for temporary guide signing. The temporary sign should be black on orange with the legend designed in accordance with MUTCD requirements for permanent guide signing.

240.2.2.2 Work Zone Pavement Markings

Specify the use of work zone pavement markings in accordance with FDM 230 and Standard Specifications, Section 102.

240.2.2.3 Temporary Raised Pavement Markers

Temporary Raised Pavement Markers (RPMs) are used to supplement work zone pavement markings in accordance with Standard Plans, 102 Series and Standard Specifications, Section 102.

240.2.2.4 Channelizing Devices

Channelizing devices direct road users through the work zone. Specify the use of channelizing devices in accordance with the Standard Plans, 102 Series and Standard Specifications, Section 102.

240.2.2.5 Pedestrian Longitudinal Channelizing Devices

Specify the use of pedestrian Longitudinal Channelizing Devices (LCDs) for the following situations:

- At each closed pedestrian way location, for the full width of the pedestrian way
- In locations where a drop-off hazard exists (see Standard Plans, 102 Series)
• In locations where the active work zone is within 2 feet of the sidewalk or pedestrian walkway
• Along both sides of a temporary pedestrian way
 o Pedestrian LCDs are not required on sides where an existing or temporary barrier delineates the temporary pedestrian way.

240.2.2.6 Arrow Boards

Specify the use of arrow boards to supplement other devices for lane closures on multilane roadways. Refer to the MUTCD for further information.

240.2.2.7 Portable Changeable Message Signs

Specify the use of Portable Changeable Message Signs (PCMS) as a supplemental device to provide road users with the following information:

(1) Construction schedules
(2) Alternate routes
(3) Expected delays
(4) Detours, diversions, and lane shifts

A PCMS is not to be used to replace any required sign or other device. See FDM 243 for requirements in determining the appropriate uses and messages for the PCMS.

240.2.2.8 Temporary Traffic Signals

Design and detail temporary poles and span wire assemblies for temporary traffic signals using the following criteria:

(a) Design temporary signal supports for an 80 mph wind speed. See Structures Manual, Volume 3 for additional requirements.

(b) See Lateral Offset Criteria in FDM 215 for placement of temporary traffic signal supports.

The TTCP is to provide instruction for specific alterations (physical location, and preliminary phasing and timing) necessary for existing, temporary and portable signals. Include signal installation plans for each phase of construction in the TTCP. Include traffic control signal requirements or responsibilities in the Technical Special Provisions. Signal
displays and location must meet MUTCD requirements. If temporary signals are used where a pedestrian crossing is present, the pedestrian must be accommodated in the signal timing.

240.2.2.9 Type III Barricades

Specify the use of type III barricades to close or partially close a roadway or ramp. Two barricades are typically used for a 12-foot wide lane. One barricade should be used for lanes less than 12 feet in width.

240.2.2.10 Temporary Barrier

See Standard Plans, 102 Series and FDM 215 for temporary barrier requirements.

240.2.2.11 Law Enforcement Officers

Law enforcement officers are used to heighten the awareness of passing vehicular traffic and to improve safety through the work zone. The following types of law enforcement officer are used in temporary traffic control:

- Speed and Law Enforcement Officer
- Traffic Control Officer

Speed and Law Enforcement Officer:

Speed and law enforcement officers are used to control the speed of motorists in the work zone. Speed and law enforcement officers should be considered for the following work zone conditions:

1. Speed reductions
2. Temporary barrier adjacent to through traffic
3. Nighttime work
4. Workers exposed to high-speed traffic

For limited access facilities, coordinate with District Construction when encountering the above criteria. Speed and law enforcement officer use on arterials and collectors requires approval from the District Director of Transportation Operations.
Traffic Control Officer:

Traffic control officers are used to increase the visibility of the work zone or work operation. Uniformed law enforcement officers are respected by motorists, cyclists and pedestrians. Utilize traffic control officers as a supplement to traffic control devices to assist in traffic movements and provide a safer work zone.

Specify the use of traffic control officers in accordance with Standard Specifications, Section 102.

240.2.2.12 Motorist Awareness System

A Motorist Awareness System (MAS) is used to alert motorists to the presence of an active work zone and to emphasize reduced speed limits. A MAS consists of the following devices:

- Portable Regulatory Sign
- Radar Speed Display Unit

Specify the use of a MAS for construction projects on multilane divided roadways with lane closures, and a posted speed of 55 mph or greater. Do not specify the use of a MAS when the work zone is shielded by a barrier.

For a posted speed of 65 mph or greater, reduce the work zone speed by 10 mph. For a posted speed of 60 mph, use a work zone speed of 55 mph.

Portable Regulatory Sign:

A Portable Regulatory Sign (PRS) is used to highlight the work zone speed. A portable regulatory sign consists of a speed limit sign with flashing lights mounted on a portable trailer. The flashing lights are intended to draw attention to the speed limit sign.

Radar Speed Display Unit:

A Radar Speed Display Unit (RSDU) is used to display a motorist’s current speed. A radar mounted on the unit detects the speed and relays it to a LED display panel adjacent to a static speed limit sign.
240.2.2.13 Temporary Raised Rumble Strips

Temporary raised rumble strips are used to warn vehicular traffic of the upcoming work zone. Specify the use of temporary raised rumble strips when both of the following conditions occur:

- Lane closure on a two-lane, two-way roadway
- Existing posted speed prior to construction is 55 mph or greater

240.2.2.14 Temporary Lane Separator

Temporary lane separator should be used to separate opposing traffic on previously divided roadways with a work zone speed of 45 mph or less.

240.2.2.15 Temporary Highway Lighting

When practical, existing highway lighting is to remain in service during all phases of construction or until new lighting is installed and placed in service. Temporary highway lighting is not required where it is necessary to remove existing lighting before new lighting is placed in service. The Department may determine that temporary highway lighting is warranted in the area of an interchange, or other project locations and conditions. When used, temporary highway lighting must comply with the following:

1. Meet minimum lateral offset criteria in Table 215.2.2.
2. Utilize structural supports that are crashworthy or shielded by a crashworthy barrier that was installed for other purposes.
3. Utilize structural supports that are attached to and located behind permanent or temporary concrete barriers (or traffic railings) as follows:
 a. Do not install temporary barrier for the sole purpose of supporting or protecting the temporary lighting system.
 b. Do not locate structural supports for temporary lighting on the back side of permanent or temporary barriers/traffic railings; i.e., which face away from traffic, where the back side of the barriers/traffic railings are within the work zone clear zone (per Standard Plans, 102 Series) of other traffic lanes.
 c. Attach structural supports to the back face of temporary and permanent barriers/traffic railings using brackets that do not protrude above the top of the barrier/traffic railing.
(d) Use undercut anchor systems designed in accordance with *Structures Design Guidelines Section 1.6* to attach brackets to barriers/traffic railings. Position anchors so as to avoid the reinforcing steel within the barrier/traffic railing.

(e) Design the luminaire pole, support brackets, and anchors for an 80 mph wind speed.

(f) Do not design luminaire pole, support brackets and anchors for vehicular impact loads.

(g) For structural supports attached behind permanent concrete barriers/traffic railings, provide a minimum setback distance from the top edge of the traffic face of the barrier/traffic railing to the traffic face of the luminaire pole in accordance with *FDM 215*.

(h) For structural supports attached to and located behind *Standard Plans, 102 Series* (Type K Temporary Concrete Barriers), provide a minimum setback distance of 1'-6" from the top edge of the traffic face of the barrier to the traffic face of the luminaire pole. To minimize the potential for damaging reinforcing steel during the installation of the anchors, attach brackets within the middle portion, where there is large spacing between the vertical steel reinforcing bars, of the Type K Barrier Unit.

(i) Structural supports for temporary lighting may be attached to and located behind Type K Temporary Concrete Barrier that is bolted or staked down utilizing the details shown on the standard.

(j) The supports attached to Type K Temporary Concrete Barrier must not encroach into the required deflection distance when the barrier is protecting an above ground hazard.

(4) For temporary highway lighting near a wildlife area of concern (as determined by the Environmental Management Office), comply with the Wildlife-Sensitive Lighting criteria in *FDM 231*.

240.2.2.16 Overhead Bridge Related Construction Activities

There are several overhead work activities that must be executed without traffic below. *Table 240.2.2* provides typical work durations for common overhead bridge related work activities. The work activity durations given in the table assume a best-case scenario in which the Contractor has optimized resources and work planning in advance to minimize traffic disruption.
Table 240.2.2 Typical Durations for Overhead Bridge Work

<table>
<thead>
<tr>
<th>Work Activity</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge Demolition</td>
<td>2 to 3 days per span</td>
</tr>
<tr>
<td>Beam Placement Simple Span</td>
<td>30 minutes per beam</td>
</tr>
<tr>
<td>Beam Placement Continuous Steel I-Beam</td>
<td>60 minutes per beam</td>
</tr>
<tr>
<td>Beam Placement Continuous Steel Box Girder</td>
<td>90 minutes per girder, depending on the complexity of the connections</td>
</tr>
<tr>
<td>Form Placement</td>
<td>4 hours per lane</td>
</tr>
<tr>
<td>Deck Concrete Placement</td>
<td>3 hours per span</td>
</tr>
<tr>
<td>Span Sign Structure Placement</td>
<td>20 to 25 minutes per structure</td>
</tr>
<tr>
<td>Segment Placement from Land Based Cranes</td>
<td>2.5 hours per segment</td>
</tr>
<tr>
<td>(Balanced Cantilever)</td>
<td></td>
</tr>
</tbody>
</table>

240.2.2.17 Temporary Structures

The use of temporary structures is often required to allow for the installation of the permanent structure. Temporary structures commonly used for the construction of highway structures include temporary stability towers and temporary sheet pile walls.

Temporary stability towers are commonly used for the erection of segmental bridges constructed in balanced cantilever, steel plate girders, and steel box girders. Temporary sheet pile walls are commonly used for the construction of pier footings or to facilitate the installation of MSE wall straps. It is important to show the location of all temporary structures in each phase of the TTCP to assure there are no conflicts. See FDM 215 to determine if temporary structures must be shielded.

240.2.2.18 Temporary ACROW Bridge

When using a temporary ACROW bridge, include “Legal Weight Only” sign in accordance with Standard Plans, Index 700-102 and Index 700-107. Specify “Slippery When Wet” (W8-5) signs in advance of all temporary ACROW bridges when an asphalt overlay is not used. See Standard Plans, 102 Series and the associated Standard Plans Instructions (SPI 102-200 for the 300 Series and 102-201 for the 700 Series) for more information.
For limited access facilities, the ACROW Series 700 bridging must be used. All temporary bridges require a project-specific foundation design.

Coordinate with the State Maintenance Office in a timely fashion because there is a limited quantity of Department-owned temporary ACROW bridges available.

240.2.2.19 Short-Term Raised Rumble Strip Sets

In locations with existing raised rumble strip sets (e.g., intersections, approaches to horizontal curves, toll plazas), maintain or replace the raised rumble strip sets throughout construction. Provide short-term raised rumble strip sets when existing raised rumble strip sets are removed for construction activities, until the permanent raised rumble strip sets are installed. Short-term raised rumble strip sets must be installed prior to opening the road to traffic; therefore, quantities may include multiple applications due to construction phasing. Refer to *Standard Plans, Index 546-001* and *Standard Specifications, Section 546* for additional requirements and information.

240.3 Transportation Operations Plan

The Transportation Operations Plan (TOP) contains strategies to improve mobility, work zone access, and safety. Strategies will include items such as work zone Intelligent Transportation System (ITS) components and incident management. *Table 240.3.1* provides common TOP items.

A TOP should be considered for significant projects, as defined in *FDM 240.1*.
Table 240.3.1 Transportation Operations Strategies

<table>
<thead>
<tr>
<th>Category</th>
<th>Demand Management</th>
<th>Corridor/Network Management</th>
<th>Work Zone Traffic Management</th>
<th>Safety Management and Enforcement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit services improvements</td>
<td>Signal timing/coordination improvements</td>
<td>Speed limits reduction or variable speed limits</td>
<td>ITS for traffic monitoring and management</td>
<td></td>
</tr>
<tr>
<td>Transit incentives</td>
<td>Temp. traffic signals</td>
<td>Temp. traffic signal</td>
<td>Transportation Management Center (TMC)</td>
<td></td>
</tr>
<tr>
<td>Shuttle services</td>
<td>Intersection improvements</td>
<td>Temp. barrier</td>
<td>Aerial surveillance</td>
<td></td>
</tr>
<tr>
<td>Ridesharing/ carpooling incentives</td>
<td>Bus turnouts</td>
<td>Crash Cushions</td>
<td>Milepost markers</td>
<td></td>
</tr>
<tr>
<td>Park-and-Ride promotion</td>
<td>Turn restrictions</td>
<td>Automated flagger assistance devices (AFAD)</td>
<td>Service patrol</td>
<td></td>
</tr>
<tr>
<td>HOV lanes</td>
<td>Truck restrictions</td>
<td>On-site safety training</td>
<td>Local detour routes</td>
<td></td>
</tr>
<tr>
<td>Variable work hours</td>
<td>Dynamic lane close system</td>
<td>TMP inspection team meetings</td>
<td>Contract support for incident management</td>
<td></td>
</tr>
<tr>
<td>Telecommuting</td>
<td>Ramp closures</td>
<td></td>
<td>Incident/emergency response plan</td>
<td></td>
</tr>
<tr>
<td>Railroad crossing controls</td>
<td></td>
<td></td>
<td>Law enforcement</td>
<td></td>
</tr>
</tbody>
</table>

240.4 Public Information Plan

The Public Information Plan (PIP) describes how project information will be communicated to affected parties, traveling public, and project stakeholders prior to and during construction. The PIP will also describe the most efficient method of communicating this information (e.g., local media, business groups, message signs). The PIP should be integrated into the project’s Community Awareness Plan (CAP) when the CAP is to include communication strategies.

A PIP should be considered for significant projects, as defined in FDM 240.1.
See the following for additional information on public involvement and CAP requirements:

(1) *FDM 104*

(2) *Public Involvement Handbook*

(3) *PD&E Manual*

240.5 Temporary Traffic Control Training

The Department has prescribed temporary traffic control training requirements outlined in the *Temporary Traffic Control (Maintenance of Traffic) Training Handbook*.
241 Lane Closure Analysis

241.1 General

See FDM 240.4.2.7 for requirements and criteria concerning lane closures.

Lane closure analysis is a process used to calculate the peak hour traffic volume and the restricted capacity for open road and signalized intersections. The analysis will determine if a lane closure should be allowed and the time period a lane closure could occur without excessive travel delay.

Many roadways have directional peak hour traffic volumes, with inbound morning traffic, and outbound afternoon traffic. Doing a composite lane closure analysis would in many cases require night work or create very short allowable lane closure periods. If a separate lane closure analysis is calculated for inbound and outbound separately, night work may be avoided and longer lane closure periods may be allowed.

241.2 Lane Closure Excel Program

An Excel file is available to assist in the preparation of the Lane Closure Worksheet. The program can be found at the Department’s TTC Resources web page: TTC Resource Download Library. The Excel worksheet is based on the methods presented in this chapter; Districts may require alternate methods.

The Excel worksheet also illustrates two examples: a widening project and a resurfacing project.

241.3 Lane Closure Symbols and Definitions

The following symbols and definitions provide detail and guidance on the variables to be entered into the Input Data Sheets. The number provided in the circle corresponds to the circled number found on the Lane Closure Worksheet in FDM 241.5.

1. ATC Actual Traffic Counts. Use current traffic counts. Traffic counts can be obtained from the Office of Planning, or you may need to get traffic counts done. The designer needs hourly traffic volumes with a total traffic volume for a 24-hour period (see Figure 241.7.1).

2. P/D Peak Traffic to Daily Traffic Ratio. Highest hourly volume divided by the total 24-hour volume. Convert the percentage to a decimal on the Lane Closure Worksheet (see Figure 241.7.1).
Directional Distribution of peak hour traffic on multilane roads. This factor does not apply to a two-lane roadway converted to two-way, one-lane. The directional distribution can be obtained from the Office of Planning.

Peak Season Conversion Factor. Many counties in Florida have a significant variance in seasonal traffic. Use the PSCF for the week in which the actual traffic count was conducted. The Transportation Statistics Office has tables showing Peak Season Conversion Factors for every county in Florida. These tables are found in the Florida Traffic Online mapping application by selecting “Traffic Reports” from the toolbar on the right side of the screen.

Remaining Traffic Factor is the percentage of traffic that will not be diverted onto other facilities during a lane closure. Convert the percentage to a decimal on the Lane Closure Worksheet. This is an estimate that the designer must make on his own, or with help from the Office of Planning. Range: 0% for all traffic diverted to 100% for none diverted.

Ratio of Green to Cycle Time. This factor is to be applied when lane closure is through or within 600 ft. of a signalized intersection. The Office of Traffic Engineering has timing cycles for all traffic signals.

Peak Hour Traffic Volume. The designer calculates the peak hour traffic volume by multiplying the actual traffic count, times peak to daily traffic ratio, times directional factor, times peak seasonal factor, times remaining traffic factor. This calculation will give the designer the expected traffic volume of a roadway at the anticipated time of a lane closure.

Capacity of a 2L, 4L 6L, or 8L roadway with one lane closed, and the remaining lane(s) unrestricted by lateral obstructions. The capacity of a 4L, 6L, or 8L roadway is based on lane closure in only one direction.

Restricting Capacity of the above facilities by site specific limitations detailed in the Temporary Traffic Control plans which apply to travel lane width, lateral clearance and the work zone factor. The work zone factor only applies to two lane roadways (see the tables in FDM 241.6 to obtain the Obstruction Factor and Work Zone Factor).

Obstruction Factor which reduces the capacity of the remaining travel lane(s) by restricting one or both of the following components: Travel lane width less than 12 ft. and lateral clearance less than 6 ft. (see Obstruction Factor Table in FDM 241.6).
Work Zone Factor (WZF) is directly proportional to the work zone length (WZL). The capacity is reduced by restricting traffic movement to a single lane while opposing traffic queues. The WZF and WZL only apply to a two lane roadway converted to two way, one lane (see the Work Zone Factor Table in FDM 241.6).

Travel Lane Width is used to determine the obstruction factor (see the Obstruction Factor Table in FDM 241.6).

Lateral Clearance is the distance from the edge of the travel lane to the obstruction. The lateral clearance is used to determine the obstruction factor (see the Obstruction Factor Table in FDM 241.6).

241.4 Lane Closure Worksheet Instructions

General Instructions are as follows:

1. **Lane Closure Symbols and Definitions** (see FDM 241.3) provide guidance on where to find the necessary information to fill out the lane closure worksheets.

2. Fill out the top part of the lane closure worksheet and complete the formulas to calculate the hourly percentage of traffic at which a lane closure will be permitted.

3. Transfer the calculated percentages to the graph on the Lane Closures 24 Hour Counts (see Figure 241.7.1).

4. Draw a line across the graph representing the percentage for both open road and signalized intersections (see Figure 241.7.1).

5. Plot the hourly percentages (hourly volume divided by total volume) on the graph. Any hourly percentage extending above the restricted capacity percentage lines for open road or signalized intersections indicates the potential for excessive delays.

6. Lane closures should be prohibited during the time periods shown to have a potential for excessive delays.
241.5 Lane Closure Worksheet

DATE: ____________________________________
FINANCIAL PROJECT ID: ____________________ FEDERAL AID PROJECT NO.: ____________
COUNTY: __________________________________ DESIGNER: _______________________
NO. EXISTING LANES: ______________________ LOCATION: ________________________
SCOPE OF WORK: ___

Calculate the peak hour traffic volume (V)

\[V = \text{ATC} \times \text{P/D} \times \text{D} \times \text{PSCF} \times \text{RTF} = \text{7} \]

Capacity (C) of an Existing 2-Lane – Converted to 2-Way, 1-Lane = 1400 VPH
Capacity (C) of an Existing 4-Lane – Converted to 1-Way, 1-Lane = 1800 VPH
Capacity (C) of an Existing 6-Lane – Converted to 1-Way, 2-Lane = 3600 VPH
Capacity (C) of an Existing 8-Lane – Converted to 1-Way, 3-Lane = 5400 VPH

Factors restricting Capacity:
TLW 12 LC 13 WZL 11 G/C 6

Calculate the Restricted Capacity (RC) at the Lane Closure Site by multiplying the appropriate 2L, 4L, 6L, or 8L Capacity (C) from the Table above by the Obstruction Factor (OF) and the Work Zone Factor (WZF). If the Lane Closure is through or within 600 ft. of a signalized intersection, multiply the RC by the G/C Ratio.

\[\text{RC (Open Road)} = C \times \text{OF} \times \text{WZF} = \text{9} \]

\[\text{RC (Signalized)} = \text{RC (Open Road)} \times \text{G/C} = \text{9} \]

If V ≤ RC, there is no restriction on Lane Closure.
If V > RC, calculate the hourly percentage of ADT at which Lane Closure will be permitted

Open Road % = \frac{\text{RC (Open Road)} \times \text{G/C}}{\text{9} \times \text{G/C}} = \text{_____ %}

Signalized % = \text{Open Road %} \times \text{G/C} = \text{_____ %}

Plot 24 hour traffic to determine when Lane Closure permitted. (See Figure 241.7.1)

NOTE: For Existing 2-Lane Roadways, D = 1.00.

Work Zone Factor (WZF) applies only to 2-Lane Roadways.

For RTF < 1.00, briefly describe alternate route __
241.6 Lane Closure Input Data

Table 241.6.1 Obstruction Factors (OF)

<table>
<thead>
<tr>
<th>Lateral Clearance (LC) (feet)</th>
<th>Travel Lane Width (TLW) (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>1.00</td>
</tr>
<tr>
<td>4</td>
<td>0.98</td>
</tr>
<tr>
<td>2</td>
<td>0.94</td>
</tr>
<tr>
<td>0.0</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Table 241.6.2 Work Zone Factors (WZF)

<table>
<thead>
<tr>
<th>WZL (ft.)</th>
<th>WZF</th>
<th>WZL (ft.)</th>
<th>WZF</th>
<th>WZL (ft.)</th>
<th>WZF</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.99</td>
<td>2200</td>
<td>0.87</td>
<td>4200</td>
<td>0.78</td>
</tr>
<tr>
<td>400</td>
<td>0.97</td>
<td>2400</td>
<td>0.86</td>
<td>4400</td>
<td>0.77</td>
</tr>
<tr>
<td>600</td>
<td>0.96</td>
<td>2600</td>
<td>0.85</td>
<td>4600</td>
<td>0.77</td>
</tr>
<tr>
<td>800</td>
<td>0.95</td>
<td>2800</td>
<td>0.84</td>
<td>4800</td>
<td>0.76</td>
</tr>
<tr>
<td>1000</td>
<td>0.93</td>
<td>3000</td>
<td>0.83</td>
<td>5000</td>
<td>0.75</td>
</tr>
<tr>
<td>1200</td>
<td>0.92</td>
<td>3200</td>
<td>0.82</td>
<td>5200</td>
<td>0.75</td>
</tr>
<tr>
<td>1400</td>
<td>0.91</td>
<td>3400</td>
<td>0.81</td>
<td>5400</td>
<td>0.74</td>
</tr>
<tr>
<td>1600</td>
<td>0.90</td>
<td>3600</td>
<td>0.80</td>
<td>5600</td>
<td>0.73</td>
</tr>
<tr>
<td>1800</td>
<td>0.89</td>
<td>3800</td>
<td>0.80</td>
<td>5800</td>
<td>0.73</td>
</tr>
<tr>
<td>2000</td>
<td>0.88</td>
<td>4000</td>
<td>0.79</td>
<td>6000</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Figure 241.6.1 Work Zone Length (WZL)

- Work Zone Length (WZL) for 2-Lane Roadways = Distance between opposing traffic queues
- ADVANCE WARNING AREA tells traffic what to expect ahead
- TRANSITION AREA - moves traffic out of its normal path
- BUFFER SPACE - provides protection for traffic and workers
- WORK AREA
- TERMINATION AREA - lets traffic resume normal driving
241.7 24-Hour Counts

Figure 241.7.1 24-HR Counts – Example

<table>
<thead>
<tr>
<th>TIME</th>
<th>AM HOURLY VOLUME</th>
<th>AM TC %</th>
<th>PM HOURLY VOLUME</th>
<th>PM TC %</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-1</td>
<td>320</td>
<td>1.1</td>
<td>1920</td>
<td>6.4</td>
</tr>
<tr>
<td>1-2</td>
<td>180</td>
<td>0.6</td>
<td>1660</td>
<td>5.5</td>
</tr>
<tr>
<td>2-3</td>
<td>60</td>
<td>0.2</td>
<td>1620</td>
<td>5.4</td>
</tr>
<tr>
<td>3-4</td>
<td>50</td>
<td>0.2</td>
<td>2160</td>
<td>7.2</td>
</tr>
<tr>
<td>4-5</td>
<td>60</td>
<td>0.2</td>
<td>2380</td>
<td>7.9</td>
</tr>
<tr>
<td>5-6</td>
<td>260</td>
<td>0.9</td>
<td>2480</td>
<td>8.3</td>
</tr>
<tr>
<td>6-7</td>
<td>1050</td>
<td>3.5</td>
<td>1060</td>
<td>6.2</td>
</tr>
<tr>
<td>7-8</td>
<td>2270</td>
<td>7.6</td>
<td>1360</td>
<td>4.5</td>
</tr>
<tr>
<td>8-9</td>
<td>1620</td>
<td>6.1</td>
<td>1060</td>
<td>3.5</td>
</tr>
<tr>
<td>9-10</td>
<td>1740</td>
<td>5.6</td>
<td>890</td>
<td>2.6</td>
</tr>
<tr>
<td>10-11</td>
<td>1600</td>
<td>5.6</td>
<td>750</td>
<td>2.4</td>
</tr>
<tr>
<td>11-12</td>
<td>1920</td>
<td>6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>30,000</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DATE: APR 19, 1998
DESIGNER: GIDDENS
FINANCIAL PROJECT ID: 123456-7-89-10
LOCATION: BUCK LAKE RD.

241-Lane Closure Analysis
242 Traffic Pacing Design

242.1 General

See FDM 240.2.1.7 for traffic pacing requirements and criteria.

242.2 Traffic Pacing Excel Program

An Excel file is available to assist in the preparation of the Traffic Pacing Report. The program can be found at the Department’s temporary traffic control resources web page: TTC Resource Download Library. The Excel worksheet is based on the methods presented in this chapter; Districts may require alternate methods.

The Excel file also illustrates an example of a bridge beam replacement.

242.3 Traffic Pacing Symbols and Definitions

The following symbols and definitions provide detail and guidance on the variables to be entered into the Input Data Sheets.

AADT Annual Average Daily Traffic. In lieu of actual traffic counts, use AADT provided by the Office of Planning. Adjust the AADT to peak season hourly traffic by applying the model correction factor and the hourly distribution factors.

ATC Actual Traffic Counts. Traffic counts can be obtained from the Office of Planning or collected on the project site. The designer needs hourly traffic volumes for a 24-hour period.

C Capacity. The capacity of the roadway under free flow conditions in passenger cars per hour per lane

\[C = \begin{align*}
& 2,400 \text{ pc/h/ln for 70 mph regulatory speed} \\
& 2,300 \text{ pc/h/ln for 65 mph regulatory speed} \\
& 2,250 \text{ pc/h/ln for 60 mph regulatory speed} \\
& 2,220 \text{ pc/h/ln for 55 mph regulatory speed} \\
& 2,150 \text{ pc/h/ln for 50 mph regulatory speed}
\end{align*} \]
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FHV</td>
<td>Heavy-vehicle adjustment factor. This factor is used to convert hourly traffic to equivalent passenger cars. Heavy vehicles include trucks, busses and recreational vehicles.</td>
</tr>
<tr>
<td>HDF</td>
<td>Hourly Distribution Factors. Multiply the AADT by the HTD to obtain the traffic volume for a particular hour. The Office of Planning publishes hourly distribution factors for regions of the state.</td>
</tr>
<tr>
<td>HTD</td>
<td>Hourly Traffic Demand in vehicles / hour. Hourly traffic volumes will be required for each hour in the analysis period. Hourly traffic volumes may be obtained from the Project Traffic Report, the Office of Planning or from field data collection. Use the most recent values available.</td>
</tr>
<tr>
<td>MOCF</td>
<td>Model Correction Factor. The MOCF converts AADT to peak season traffic.</td>
</tr>
<tr>
<td>N</td>
<td>Number of Lanes</td>
</tr>
<tr>
<td>Pc/h/ln</td>
<td>Passenger cars per hour per lane. Pc/h/ln represents the traffic volume or capacity of one lane adjusted for heavy vehicles.</td>
</tr>
<tr>
<td>PSCF</td>
<td>Peak Season Conversion Factor. The Office of Planning publishes tables with the PSCF for each county in Florida. Each county table has a PSCF for the week that the traffic counts were collected. The factor converts the ATC to Peak Season Traffic representing the highest daily traffic for the year.</td>
</tr>
<tr>
<td>Pt</td>
<td>Percent Trucks (%)</td>
</tr>
</tbody>
</table>
242.4 Traffic Pacing Calculations Example

STEP 1: Calculate the hourly percentage of peak season traffic for each hour of the day (in pcphpl) and plot the 24-hour traffic percentages.

A. Calculate the Heavy Vehicle Adjustment Factor,

\[
F_{HV} = 1 + \left(\frac{P_T}{100} \right)^{0.5} = 1 + \left(\frac{6.71}{100} \right) 0.5 = 1.034
\]

B. Using actual traffic counts calculate the hourly traffic demand (*Hour 1 shown*)

\[
HTD_i = \frac{(ATC_i)(PSCF)(F_{HV})}{N}
\]

\[
HTD_1 = \frac{(1406)(1.04)(1.034)}{3} = 504 \text{ pcphpl}
\]

C. Calculate the percent capacity, \(\%C = \frac{HTD_1}{C} \times 100\) where:

\(C = 2,300 \text{ pc/h/ln for 65 mph regulatory speed (*Hour 1 shown*)}\)

\[
\%C = \frac{HTD_1}{C} \times 100 = \frac{504}{2300} \times 100 = 21.9\%
\]

<table>
<thead>
<tr>
<th>Hour</th>
<th>AM Hourly Traffic Demand</th>
<th>Percent Capacity</th>
<th>Hour</th>
<th>PM Hourly Traffic Demand</th>
<th>Percent Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-1</td>
<td>504</td>
<td>21.90%</td>
<td>12-13</td>
<td>2193</td>
<td>95.40%</td>
</tr>
<tr>
<td>1-2</td>
<td>277</td>
<td>12.00%</td>
<td>13-14</td>
<td>2290</td>
<td>99.90%</td>
</tr>
<tr>
<td>2-3</td>
<td>215</td>
<td>9.40%</td>
<td>14-15</td>
<td>2427</td>
<td>105.50%</td>
</tr>
<tr>
<td>3-4</td>
<td>212</td>
<td>9.20%</td>
<td>15-16</td>
<td>2393</td>
<td>104.00%</td>
</tr>
<tr>
<td>4-5</td>
<td>338</td>
<td>14.70%</td>
<td>16-17</td>
<td>2368</td>
<td>104.00%</td>
</tr>
<tr>
<td>5-6</td>
<td>758</td>
<td>33.00%</td>
<td>17-18</td>
<td>2147</td>
<td>93.30%</td>
</tr>
<tr>
<td>6-7</td>
<td>2031</td>
<td>88.30%</td>
<td>18-19</td>
<td>2083</td>
<td>90.60%</td>
</tr>
<tr>
<td>7-8</td>
<td>2617</td>
<td>113.80%</td>
<td>19-20</td>
<td>1820</td>
<td>79.10%</td>
</tr>
<tr>
<td>8-9</td>
<td>2571</td>
<td>111.80%</td>
<td>20-21</td>
<td>1484</td>
<td>64.50%</td>
</tr>
<tr>
<td>9-10</td>
<td>2408</td>
<td>104.70%</td>
<td>21-22</td>
<td>1277</td>
<td>55.50%</td>
</tr>
<tr>
<td>10-11</td>
<td>2249</td>
<td>97.80%</td>
<td>22-23</td>
<td>1078</td>
<td>46.90%</td>
</tr>
<tr>
<td>11-12</td>
<td>2174</td>
<td>94.60%</td>
<td>23-24</td>
<td>816</td>
<td>35.50%</td>
</tr>
</tbody>
</table>
STEP 2: Identify the traffic pacing restrictions. Leave a buffer period of one hour between the end of traffic pacing operations and the beginning of 40% capacity.
243 Portable Changeable Message Signs

243.1 General

See FDM 240.9.2.2 for additional information concerning the use of portable changeable message signs (PCMS).

A PCMS is required for nighttime work that takes place within 4 feet of traveled way, and considered for the following conditions:

(1) Road closures
(2) Ramp closures
(3) Delays created by:
 (a) Congestion
 (b) Crashes
 (c) Lane closures
 (d) Two-way traffic on divided highway
 (e) Multiple lane closures
 (f) Unexpected shifts in alignment

243.2 PCMS Placement

The message displayed must be visible and unobstructed to a motorist in accordance with Standard Specification 102. The message displayed must be installed at the following minimum distances:

(1) 900 feet on approach to construction work areas to allow for two message cycles.
(2) 500 to 800 feet in advance of potential traffic problems
(3) 0.5 to 2 miles in advance of complex traffic control schemes that require new or unusual traffic patterns.

243.3 PCMS Messages

Messages must be simple, with a minimum number of words and lines and must include no more than two displays of no more than three lines each with 8 characters per line.
Provide the location and messages to be displayed in the Temporary Traffic Control (TTC) plan.

Programmed messages must provide appropriate information for the conditions likely to be encountered. Place the programmed messages in the TTC plan. Consider the following items in the development of a message:

1. **Message elements**
 - (a) Problem statement (where?)
 - (b) Effect statement (what?)
 - (c) Attention statement (who?)
 - (d) Action statement (do?)

2. **Message format**
 - (a) Will vary depending on content
 - (b) "Where" or "what" will generally lead
 - (c) "Who" and "do" follow in that order
 - (d) "Who" often understood from "where"

3. **Display format**
 - (a) Discrete, with entire message displayed at once is most desirable
 - (b) Sequential is OK, 2 parts maximum
 - (c) Run-on moving displays prohibited
 - (d) One abbreviation per panel display desirable, two abbreviations are the maximum. Route designation is considered as one abbreviation and one word. Guidelines for abbreviations are provided on the following pages. Refer to the [Library of Approved Safety Messages for DMS](#).

243.3.1 PCMS Worksheet

See [Figure 243.3.1](#) for an illustration on the development of a PCMS Worksheet.

See [Form 243-A](#) (located in **FDM 103**) and **FDM 321** for instruction on showing the worksheet information in the plans set.
Figure 243.3.1 PCMS Worksheet

Financial Project No.: 123456-7-89-10

Location of board: Westbound Buck Lake Road – Station 100+00

Used: from _01_ - _01_ - _01_ at _6_ : _00_ am/pm

 to _02_ - _02_ - _02_ at _6_ : _00_ am/pm

Message programmed by: W. Giddens

MESSAGE 1

U S E

C A U T I O N

MESSAGE 2

T R U C K S

E N T E R I N G

R O A D W A Y

Timing:

Message 1 will run _10_ . _00_ seconds.

Message 2 will run _12_ . _50_ seconds.
STANDARD ABBREVIATIONS FOR USE ON PCMS

Standard abbreviations easily understood are:

<table>
<thead>
<tr>
<th>WORD</th>
<th>ABBREV.</th>
<th>WORD</th>
<th>ABBREV.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boulevard</td>
<td>BLVD</td>
<td>Normal</td>
<td>NORM</td>
</tr>
<tr>
<td>Center</td>
<td>CNTR</td>
<td>Parking</td>
<td>PKING</td>
</tr>
<tr>
<td>Crossing</td>
<td>XING</td>
<td>Pedestrian</td>
<td>PED</td>
</tr>
<tr>
<td>Crosswalk</td>
<td>XWALK</td>
<td>Road</td>
<td>RD</td>
</tr>
<tr>
<td>Emergency</td>
<td>EMER</td>
<td>Service</td>
<td>SERV</td>
</tr>
<tr>
<td>Entrance, Enter</td>
<td>ENT</td>
<td>Shoulder</td>
<td>SHLDR</td>
</tr>
<tr>
<td>Expressway</td>
<td>EXPWY</td>
<td>Slippery</td>
<td>SLIP</td>
</tr>
<tr>
<td>Freeway</td>
<td>FRWY, FWY</td>
<td>Speed</td>
<td>SPD</td>
</tr>
<tr>
<td>Highway</td>
<td>HWY</td>
<td>Traffic</td>
<td>TRAF</td>
</tr>
<tr>
<td>Information</td>
<td>INFO</td>
<td>Travelers</td>
<td>TRVLRS</td>
</tr>
<tr>
<td>Left</td>
<td>LFT</td>
<td>Warning</td>
<td>WARN</td>
</tr>
<tr>
<td>Maintenance</td>
<td>MAINT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other abbreviations are easily understood whenever they appear in conjunction with a particular word commonly associated with it. These words and abbreviations are as follows:

<table>
<thead>
<tr>
<th>WORD</th>
<th>ABBREV.</th>
<th>PROMPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access</td>
<td>ACS</td>
<td>Road</td>
</tr>
<tr>
<td>Ahead</td>
<td>AHD</td>
<td>Fog*</td>
</tr>
<tr>
<td>Blocked</td>
<td>BLKD</td>
<td>Lane*</td>
</tr>
<tr>
<td>Bridge</td>
<td>BRDG</td>
<td>[Name]*</td>
</tr>
<tr>
<td>Chemical</td>
<td>CHEM</td>
<td>Spill</td>
</tr>
<tr>
<td>Construction</td>
<td>CONST</td>
<td>Ahead</td>
</tr>
<tr>
<td>Exit</td>
<td>EX, EXT</td>
<td>Next*</td>
</tr>
<tr>
<td>Express</td>
<td>EXP</td>
<td>Lane</td>
</tr>
<tr>
<td>Hazardous</td>
<td>HAZ</td>
<td>Driving</td>
</tr>
<tr>
<td>Interstate</td>
<td>I</td>
<td>[Number]</td>
</tr>
<tr>
<td>Major</td>
<td>MAJ</td>
<td>Accident</td>
</tr>
<tr>
<td>Mile</td>
<td>MI</td>
<td>[Number]*</td>
</tr>
<tr>
<td>Minor</td>
<td>MNR</td>
<td>Accident</td>
</tr>
<tr>
<td>Minute(s)</td>
<td>MIN</td>
<td>[Number]*</td>
</tr>
<tr>
<td>Oversized</td>
<td>OVRSZ</td>
<td>Load</td>
</tr>
<tr>
<td>Prepare</td>
<td>PREP</td>
<td>To Stop</td>
</tr>
<tr>
<td>Pavement</td>
<td>PVMT</td>
<td>Wet*</td>
</tr>
<tr>
<td>Quality</td>
<td>QLTY</td>
<td>Air*</td>
</tr>
<tr>
<td>Route</td>
<td>RT</td>
<td>Best*</td>
</tr>
<tr>
<td>Turnpike</td>
<td>TRNPK</td>
<td>[Name]*</td>
</tr>
<tr>
<td>Vehicle</td>
<td>VEH</td>
<td>Stalled*</td>
</tr>
<tr>
<td>Cardinal Directions</td>
<td>N, E, S, W</td>
<td>[Number]</td>
</tr>
</tbody>
</table>
Upper, Lower UPR, LWR Level

* = Prompt word given first

The following abbreviations are understood with a prompt word by about 75% of the drivers. These abbreviations may require some public education prior to usage.

<table>
<thead>
<tr>
<th>WORD</th>
<th>ABBREV.</th>
<th>PROMPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>COND</td>
<td>Traffic*</td>
</tr>
<tr>
<td>Congested</td>
<td>CONG</td>
<td>Traffic</td>
</tr>
<tr>
<td>Downtown</td>
<td>DWNTN</td>
<td>Traffic</td>
</tr>
<tr>
<td>Frontage</td>
<td>FRNTG</td>
<td>Road</td>
</tr>
<tr>
<td>Local</td>
<td>LOC</td>
<td>Traffic</td>
</tr>
<tr>
<td>Northbound</td>
<td>N-BND</td>
<td>Traffic</td>
</tr>
<tr>
<td>Roadwork</td>
<td>RDWK</td>
<td>Ahead [Distance]</td>
</tr>
<tr>
<td>Temporary</td>
<td>TEMP</td>
<td>Route</td>
</tr>
<tr>
<td>Township</td>
<td>TWNNSHP</td>
<td>Limits</td>
</tr>
</tbody>
</table>

* = Prompt word given first

Certain abbreviations are prone to inviting confusion because another word is abbreviated or could be abbreviated in the same way. Do not use these abbreviations:

<table>
<thead>
<tr>
<th>ABBREV.</th>
<th>INTENDED WORD</th>
<th>WORD ERRONEOUSLY GIVEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRNG</td>
<td>Warning</td>
<td>Wrong</td>
</tr>
<tr>
<td>ACC</td>
<td>Accident</td>
<td>Access (Road)</td>
</tr>
<tr>
<td>DLY</td>
<td>Delay</td>
<td>Daily</td>
</tr>
<tr>
<td>LT</td>
<td>Light (Traffic)</td>
<td>Left</td>
</tr>
<tr>
<td>STAD</td>
<td>Stadium</td>
<td>Standard</td>
</tr>
<tr>
<td>L</td>
<td>Left</td>
<td>Lane (Merge)</td>
</tr>
<tr>
<td>PARK</td>
<td>Parking</td>
<td>Park</td>
</tr>
<tr>
<td>RED</td>
<td>Reduce</td>
<td>Red</td>
</tr>
<tr>
<td>POLL</td>
<td>Pollution (Index)</td>
<td>Poll</td>
</tr>
<tr>
<td>FDR</td>
<td>Feeder</td>
<td>Federal</td>
</tr>
<tr>
<td>LOC</td>
<td>Local</td>
<td>Location</td>
</tr>
<tr>
<td>TEMP</td>
<td>Temporary</td>
<td>Temperature</td>
</tr>
<tr>
<td>CLRS</td>
<td>Clears</td>
<td>Color</td>
</tr>
</tbody>
</table>
250 Hydraulic Data and Agency Permits

250.1 General

A Bridge Hydraulic Report (BHR) includes the following, as applicable:

- Bridge Hydraulics Recommendation Sheet,
- Bridge hydraulic calculations, and
- Scour calculations (prepared as specified in Chapter 4 of the Drainage Manual, Topic No. 625-040-002).

250.1.1 Bridge Hydraulic Recommendation Sheet (BHRS)

Prepare the Bridge Hydraulic Recommendation Sheet (BHRS) for new structures and widenings as specified in Chapter 4 of the Drainage Manual.

250.2 Scour Calculations

Scour calculations are required for new structures and for major widening of an existing bridge structure. See the Structures Design Guidelines for classification of major and minor widening.

Scour calculations for the widening of an existing structure will be considered by the Department on an individual basis.

Develop scour estimates using a multi-disciplinary approach involving the Hydraulics Engineer, the Geotechnical Engineer, and the Structures Design Engineer. Design bridges and bridge culverts to withstand the design flood without damage and to withstand the 500-year flood (super flood) without failure. Refer to the Structures Design Guidelines for specific foundation design steps and the Drainage Manual for policy on scour computations.

The 100-year and 500-year scour elevations are required for the design of all bridges over watercourses. In addition, the Long-Term Scour Elevation must be established for bridge structures required to meet the extreme event vessel collision load. For more information on these scour elevations see the Drainage Manual.
250.2.1 Scour Design Process

Scour problems should be resolved early in the design process. The Bridge Development Report (BDR), or 30% structures plans submittal when a BDR is not required, is a means of addressing and resolving all major design issues early in the design process. The BDR (or 30% structures plans) should also define the need for scour considerations, establish the scour parameters, and arrive at possible solutions. The eight-step process is illustrated in Figure 250.2.1 and described as follows:

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete the above paragraph and replace with the following:</td>
</tr>
<tr>
<td>Submit the scour calculations as part of the 90% foundation component plan submittal.</td>
</tr>
</tbody>
</table>

1. The Drainage Design Engineer evaluates stream stability and scour potential based on all available data, assumed soil conditions, structure positioning, and foundation designs. The Drainage Design Engineer's assumptions (hydraulic, geotechnical, and structural) and design parameters should be discussed with both the Geotechnical and Structures Design Engineers. When evaluating stream stability and scour potential, the recommendations developed from FHWA’s *Hydraulic Engineering Circular (HEC)* should be followed as well as the design requirements provided in Chapter 4 of the *Drainage Manual*. This work should be initiated during the PD&E study where changes in the alignment could affect the severity of general scour.

2. The Geotechnical Engineer will then consider the possible alignments based on the scour potential and subsoil conditions. It may be necessary to conduct exploratory work if variability of subsoil conditions are suspected but not sufficiently defined. The results of exploratory investigations should be discussed with both the Hydraulics and Structures Design Engineer, and any previous scour assumption verified or modified.

3. The Structures Design Engineer should provide approximate span ranges, pier configurations, and pier locations for the different alternates. In addition, possible foundation types and approximate sizes should be developed such that the Drainage Design Engineer can estimate local scour potentials. Conditions to be considered are:

 (a) The extent and severity of scour along the alignment must be developed. For example, for bridges over a wide body of water, general scour could vary in extent and severity. It may be reasonable, therefore, to consider fewer foundations in the most severe areas (i.e., span the problem), or take...
appropriate steps to assure the structural integrity of the foundation in those locations.

(b) The pile driving resistance, which must be overcome at the time of construction, may be greater than the ultimate pile capacity at a later date due to subsequent scour activity.

(c) Likewise, design drilled shaft capacity must account for the possibility that ultimate capacity will be reduced as a result of future scour activity.

(4) The Drainage, Geotechnical, and Structures Design Engineers must develop the scour potential and rate each location and furnish the results to the District Environmental Management Office for consideration in establishing the recommended alignment(s).

(5) The preferred alignment is established by others.

(6) The Structures Design Engineer develops more detailed calculations showing possible span arrangements and types and sizes of foundations.

(7) The Drainage, Geotechnical, and Structures Design Engineers review the proposed configuration to assure that scour has been properly addressed. The Drainage Design Engineer reviews both the general and local scour potential and recommends continuation or changes.

(8) The Structures Design Engineer finalizes the configuration and proceeds with a more detailed analysis of the foundation including the anticipated pile tip elevations. The Drainage, Geotechnical, and Structures Design Engineers must review and concur. The final results are then incorporated into the BDR or 30% structures plans as applicable.

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete the third sentence of item 8, above and replace with the following:</td>
</tr>
<tr>
<td>Submit the final results as part of the 90% foundation component plan submittal.</td>
</tr>
</tbody>
</table>
Figure 250.2.1 Structural Plans Development
Sheet 1 of 2

Location Design Approval

Location Survey

Structural Design Engineer - Provides existing plans, boring logs, structural type, and estimated bridge length

Hydraulics Engineer - Estimates minimum opening, vertical clearance and rough scour number, starts BHR

Geotechnical Engineer - Reviews existing bridge information, site, and starts formulating investigation plan.

Structural Design Engineer - Coordinates information, refines bridge length, identifies bridge types, begins BDR and plans.

Hydraulics Engineer - Continues bridge hydraulics analysis and provides refined information.

Geotechnical Engineer - Begins borings and preliminary Phase I geotechnical report.

Structural Design Engineer - Continues BDR and 30% structures plans, coordinates geotechnical and hydraulics information

Hydraulics Engineer - Submits Bridge Hydraulics Report for review

Geotechnical Engineer - Submits preliminary Phase I geotechnical report for review

Structural Design Engineer - Coordinates information, continues BDR development

Hydraulics Engineer - Revises BHR to address review comments

Geotechnical Engineer - Submits final Phase I geotechnical report for review

1
Figure 250.2.1 Structural Plans Development
Sheet 2 of 2

1. Structural Design Engineer - Completes and resubmits BDR and 30% Structures Plans package

 BDR and 30% Structures Plans reviewed and accepted.

 Geotechnical Engineer - Begins Phase II field exploration (if required) and Phase II Geotechnical Report

 Structural Design Engineer - Continues structures plans development, coordinates information with Hydraulics and Geotechnical Engineers.

 Hydraulics Engineer - Revises scour data, if required

 Geotechnical Engineer - Continues work on Phase II geotechnical report

 Structural Design Engineer - Completes (if required) 60% Structures Plans and coordinates with the Hydraulics and Geotechnical Engineers. Resolves inconsistencies and revises 60% Structures Plans prior to submittal.

 Hydraulics Engineer - Revises scour data, if required.

 Geotechnical Engineer - Completes Phase II Geotechnical Report

 Structural Design Engineer - Completes 90% Structures Plans and coordinates with the hydraulics and geotechnical engineers. Resolves inconsistencies, makes final determinations, and revises 90% Structures Plans prior to submittal. Submits Phase II Geotechnical Report

 Structural Design Engineer - Submits 90% Structures Plans, final geotechnical report, hydraulics addendums

 Structural Design Engineer - Submits 100% Structures Plans
250.2.2 Bridge Foundation Design Process

This is a multi-discipline effort involving Geotechnical, Structures, and Hydraulics/Coastal Engineers. The process described below will often require several iterations. The foundation design must address the various scour conditions, and furnish sufficient information for the Contractor to provide adequate equipment and construction procedures. These three engineering disciplines have specific responsibilities in considering scour as a step in the foundation design process.

(1) The Structures Engineer determines the preliminary design configuration of a bridge structure utilizing geotechnical and hydraulic data. The Structure Engineer also performs lateral stability evaluations for the applicable loadings described in the Structures Design Guidelines, Section 2.12 (Substructure Limit States), (do not impose arbitrary deflection limits except on movable bridges). A preliminary lateral stability analysis generally will occur during the BDR phase of the project, and a final evaluation will occur subsequent to the selection of the final configurations. The Structures Engineer must apply sound engineering judgment in comparing results obtained from scour computations with available hydrological, hydraulic, and geotechnical data to achieve a reasonable and prudent design.

Modification for Non-Conventional Projects:

Delete the third sentence of item 1, above.

(2) The Hydraulics Engineer provides the predicted scour elevation through a 100-year flood event (100-Year Scour), a 500-year flood event (500-Year Scour), and for "Long-Term Scour". "Long Term Scour" is defined and described in Chapter 4 of the Drainage Manual.

(3) The Geotechnical Engineer provides the nominal axial (compression and tension) capacity curves, mechanical properties of the soil, and foundation recommendations based on construction methods, pile availability, similar nearby projects, and site access.

250.2.3 Submittal Requirements

During the 30% and 90% structures plans reviews, the EOR must coordinate the reviews of the design of both the Drainage and Geotechnical Engineers to assure compliance with the results of the scour calculations. The EOR must consult with the District Structures Maintenance Engineer for scour inspection reports on existing bridges.
Modification for Non-Conventional Projects:

Delete the first sentence of the above paragraph and replace with the following:

During the 90% foundation component plans submittal, the EOR must coordinate the reviews of the design of both the Drainage and Geotechnical Engineers to assure compliance with the results of the scour calculations.

250.3 Debris Accumulation

Debris accumulation on the upstream side of substructure units can significantly affect the flow of water and cause significant scour. Evaluate the type of vegetation upstream from the bridge and consider the probability of debris accumulation in establishing types and locations of substructure units. Special consideration must be given to mitigating debris accumulation on substructure units.

Debris clearance criteria are specified in FDM 260.8.1.

250.4 Agency Permits

Most projects will require several permits from Federal, State and local agencies. For examples of the types of permits that may be required, see Part 1, Chapter 12 of the Project Development and Environment Manual (PD&E Manual).

Modification for Non-Conventional Projects:

Delete FDM 250.4 and see RFP for requirements concerning Agency Permits.
251 Stormwater Pollution Prevention Plan (SWPPP) Development

251.1 General

A Stormwater Pollution Prevention Plan (SWPPP) must be developed and implemented for each FDOT construction project that disturbs one or more acres of total land area and discharges to waters of the United States. The State of Florida Department of Environmental Protection Generic Permit for Stormwater Discharges from Large and Small Construction Activities, herein referred to as the DEP Generic Permit, applies to projects where multiple, separate, and distinct construction activities may be taking place at different times and at different schedules under one contract plan. In these situations, if the combined total area of disturbed land is equal to or greater than one acre, the requirements of the DEP Generic Permit will apply.

The site specific SWPPP is a requirement of the DEP Generic Permit. In order to use this permit:

The Engineer of Record must prepare a plan that assures compliance with the terms and conditions of the DEP Generic Permit. This includes obtaining a state stormwater quality permit, if appropriate.

The Contractor must file a Notice of Intent (NOI) and submit payment of permit fee to the DEP.

Distribution of the NOI, SWPPP, and signed certification statements will be in accordance with the requirements of the DEP Generic Permit.

The objectives of the SWPPP are to:

(1) Prevent erosion where construction activities are occurring
(2) Prevent pollutants from mixing with stormwater
(3) Prevent pollutants from being discharged by trapping them on-site, before they can affect the receiving waters

For the purpose of preparing a SWPPP, a pollutant is anything that could cause or contribute to a violation of state water quality standards.
A complete SWPPP includes:

(1) Signed and sealed SWPPP sheets,
(2) Other plan sheets and documents referenced in the SWPPP sheets,
(3) Contractor’s approved Erosion Control Plan in accordance with Standard Specifications, Section 104,
(4) Inspection reports, and
(5) Documentation of field changes that were made to better address the objectives.

Preparing and implementing a SWPPP involves evaluating the site, selecting and describing control measures to address the objectives, and implementing, installing, inspecting, and maintaining the controls.

Evaluating the site and selecting and describing the controls are done during the design phase and are documented in the SWPPP sheets. The SWPPP sheets should be prepared in consultation with Drainage, Construction and Environmental personnel. The SWPPP sheets must be placed in the Roadway Plans, or other lead component. Refer to FDM 320 for guidelines for preparing the SWPPP sheets.

Implementing, installing, inspecting, and maintaining the controls are the responsibility of the Contractor. The Contractor is also responsible for adjusting the SWPPP Plan to match the actual site conditions.
260 Bridge Structures

260.1 General

The design criteria presented in this chapter apply to bridge structures on arterials, collectors, and Limited Access Facilities. Criteria regarding lanes, medians, and shoulders for bridges are illustrated in FDM 260.1.1. Subsequent sections of this chapter contain specific information and criteria regarding these typical section elements, as well as geometric features.

260.1.1 Partial Bridge Sections

Criteria regarding lanes, medians, and shoulders are illustrated in the following partial bridge sections, Figures 260.1.1 – 260.1.4. These figures show sections through the bridge deck. Sections through the approach slab and permanent retaining wall should match the lanes, medians, and shoulder widths in the bridge section.
Figure 260.1.1 Partial Bridge Sections for Limited Access Facilities and Divided Arterials (4 or More Lanes) Design Speed 50 mph and Greater

Notes:
1. Minimum values may change if on horizontal curve.
2. If barrier-separated Express Lane on approach roadway, maintain shoulder width across bridge.
3. For limited access evacuation routes, provide the minimum shoulder widths for Emergency Shoulder Use found in FDM 211.4.6.

Legend:
- Appropriate barrier: Type varies, Single Slope shown. See FDM 215.
Figure 260.1.2 Bridge Section for Undivided Arterials and Collectors

*Shoulder Widths:
High Volume = 10'
Normal Volume = 10'
Low Volume = 8'

Legend: I - Appropriate barrier: Type varies, Single Slope shown. See FDM 215.
Figure 260.1.3 Partial Bridge Sections for Curbed Arterials and Collectors
Design Speed 45 mph and Less

CROWNED SECTION

DIVIDED ROADWAYS

* Includes Shoulders, Travel Lanes, Bicycle Lanes, etc.

Legend:
- Type varies, Vertical Shape shown. See FDM 215.
- Type varies, Single Slope shown. See FDM 215.
Figure 260.1.4 Bridge Section for Divided Arterials and Collectors

1. **Outside Shoulders:**
 - Curbing on approach roadway:
 - Use 2.5' minimum, 8'-4" with bike lane, 8' minimum for bridges 500' or longer or high-level bridges.
 - Flush shoulder on approach roadway:
 - Use 10' minimum.

2. **Median Shoulders:**
 - Raised median on bridge:
 - Use same offset to median as used on the approach roadway.
 - Median barrier on bridge:
 - Raised median on approach roadway:
 - Use 2.5' minimum, and for bridges 500' or longer or high-level bridges use 6' minimum for 2 lanes and 8' minimum for 3 or more lanes.
 - Flush shoulder on approach roadway:
 - Use 6' minimum for 2 lanes and 10' minimum for 3 or more lanes.

3. Use traffic barrier between traveled way and sidewalk and separate pedestrian railing at back of sidewalk if heavy pedestrian traffic is anticipated or facility is near a school, or design speeds on the bridge are 50 mph or greater.

4. Provide pedestrian/bicycle railing as required per FDM 222.4

5. See FDM 260.2.2 for sidewalk width requirements.
260.2 Lanes

Lane widths are to match the approach roadway lane widths.

260.2.1 Bicycle Lanes

Continue bicycle lanes on the approach roadway across the structure.

260.2.2 Sidewalk and Shared Use Paths

Continue width of sidewalk or shared use path on the approach roadway across the structure. Bridge sidewalk width may be less than the approach roadway for long bridges (greater than 100 feet), but not less than 5 feet for C1 and C2 context classification or 6 feet for all other context classifications.

Provide sidewalk on new bridges where sidewalk or shared use path is not present along the roadway, but may be included with a future project.

Modification for Non-Conventional Projects:

| Delete FDM 260.2.2 and see RFP for requirements. |

260.3 Shoulders

Figures 260.1.1 – 260.1.4 provide criteria for shoulder widths on various bridge sections. Where these widths differ from those required for roadways or ramps, decisions about the final values chosen for the project are to be coordinated between the District Roadway Design and Structures Design Offices.

On roadway alignments having 12-foot shoulders with continuous barrier walls and closely spaced bridges, a 12-foot bridge shoulder width may be considered. Bridges are considered to be closely spaced when the required length of shoulder transition (between standard width roadway and bridge shoulders) is greater than the distance between the bridges. The decision to use 12-foot bridge shoulder widths should be coordinated with the District Design Engineer.
260.4 Bridge Cross Slopes

Bridge cross slope is typically 0.02 for non-superelevated bridge deck sections. Bridges with one-way traffic have a uniform cross slope applied over all travel lanes and required shoulders. Bridges with two-way traffic may be designed with a crowned bridge deck section. This cross slope criteria applies to all bridge decks whether of cast-in-place concrete, precast concrete, or open steel decking.

Use transitions to adjust for differences in cross slope between the approach roadway section and the required straight-line slope for bridge decks.

260.5 Bridge Median

For divided highways, the District will determine the desired distance between structures based in the following:

(1) Provide separate structures if the open space between the bridges would be 20 ft. or more.

(2) Provide single structure if the open space between the bridges would be less than 10 feet.

(3) A single structure is recommended when the open space between the bridges would be between 10 and 20 feet.

Consult with the District Structures Maintenance Engineer when the open space between the bridges would be less than 20 feet.

The inspection and maintenance capabilities of each District Office’s personnel and equipment will provide the basis for deciding on a single structure deck or twin bridges. If the total width for a single structure exceeds the capacity of district maintenance equipment, typically a 60-foot reach, twin structures may be specified and the open distance between structures determined by the practical capability of the maintenance and inspection equipment. This is particularly important for girder superstructures because those areas that cannot be reached by topside equipment might require catwalks, ladders, or other access features. Such features are to be accounted for in the initial selection of alternates as they will add to the cost of superstructures.
Design bridge railings and separators in accordance with the Structures Design Guidelines. For more information regarding bridge traffic railings, refer to FDM 215.

260.6 Vertical Clearance

For roadway, pedestrian, or railroad bridge over roadway, the minimum vertical clearance is the least distance measured between the lowest bridge superstructure or substructure element and the traveled way or shoulder directly below the element.

For roadway or pedestrian bridge over railroad, the minimum vertical clearance is the least distance measured between the bottom of the superstructure and the top of the highest rail utilized.

For roadway or pedestrian bridge over High Speed Rail Systems, see the latest version of American Railway Engineering and Maintenance-of-Way Association (AREMA) guidelines, or contact the design office of the high speed rail line of interest.

For roadway or pedestrian bridge over electrified railroad, see FDOT’s South Florida Rail Corridor Clearance Policy for 25 KV service (Topic No. 000-725-003). This provision also applies to tracks identified as candidates for future electrification.

FDOT minimum vertical clearances for new construction and RRR projects are given in Table 260.6.1. New construction criteria are also illustrated in Figures 260.6.1 through 260.6.5.
<table>
<thead>
<tr>
<th>Type of Crossing</th>
<th>Minimum Vertical Clearance (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>New Construction</td>
</tr>
<tr>
<td></td>
<td>New Bridge</td>
</tr>
<tr>
<td>Roadway or Railroad bridge over Limited Access Roadway</td>
<td>16.5</td>
</tr>
<tr>
<td>Roadway or Railroad bridge over Arterial or Collector Roadway</td>
<td>16.0</td>
</tr>
<tr>
<td>Pedestrian bridge over Roadways</td>
<td>17.5</td>
</tr>
<tr>
<td>Roadway or Pedestrian bridge over Railroad</td>
<td>17.5</td>
</tr>
<tr>
<td>Roadway or Pedestrian bridge over Electrified Railroad</td>
<td>17.5</td>
</tr>
</tbody>
</table>

Notes:

1. For construction affecting an existing bridge (e.g., bridge widenings or resurfacing), if the proposed minimum design vertical clearance is between 16 feet and 16 feet 2 inches or if a Design Variation or Design Exception is required, place a note in the plans as shown in *FDM 311*.

2. Contact the District Structures Design Engineer for further guidance if any sway bracing members over the bridge deck have a clearance of less than 14 feet.

3. Contact the District Structures Design Engineer for further guidance when vertical clearance of an existing bridge is less than 14.5 feet. See *Traffic Engineering Manual, Section 2.6* for information on required signing and warning features.
Figure 260.6.1 Flush Shoulder Roadway

* Clear Zone (CZ) - To Pier (Shown), Face of Retaining Wall/Coping or Toe of Slope (Similar)
** See Table 260.6.1 Vertical Clearances for Bridges
† When present, Auxiliary Lane(s) may be located on either or both sides of Travel Lanes.
‡† Condition applies to median or outside shoulder.

Figure 260.6.2 Flush Shoulder Divided Roadway

* Clear Zone (CZ) - To Pier (Shown), Face of Retaining Wall/Coping or Toe of Slope (Similar)
** See Table 260.6.1 Vertical Clearances for Bridges
† When present, Auxiliary Lane(s) may be located on either or both sides of Travel Lanes.
‡‡ Condition applies to median or outside shoulder.
Figure 260.6.3 Curbed Roadway ≤ 45 mph

Figure 260.6.4 Curbed Roadway ≤ 45 mph – Section through Bridge

*Lateral Offset (LO) - To Pier (Shown), Face of Retaining Wall/Coping or Toe of Slope (Similar). See FDM 215, Table 215.2.2 Lateral Offset Criteria

** See Table 260.6.1 Vertical Clearances for Bridges

† When present, Auxiliary Lane(s) may be located on either or both sides of Travel Lanes.
260.7 Typical Paving Under Bridge

A 10-foot paved outside shoulder under overpass bridges is recommended. In addition, miscellaneous asphalt within the median area and from the paved shoulder to the bridge slope pavement should be placed. This pavement will provide additional safety, enhance drainage, reduce maintenance, and improve appearance. Typical paving under bridges is illustrated in **Figure 260.7.1**.
Figure 260.7.1 Typical Paving Under Bridge

SECTION A-A

<table>
<thead>
<tr>
<th>FACILITY</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited Access Facilities</td>
<td>12'</td>
</tr>
<tr>
<td>Flush Shoulder Arterials & Collectors Design Speed 50 mph or greater</td>
<td>8'</td>
</tr>
<tr>
<td>Flush Shoulder Arterials & Collectors Design Speed 45 mph or less</td>
<td>6'</td>
</tr>
</tbody>
</table>
260.8 Bridges Over Waterways

260.8.1 Vertical Clearance

The following criteria applies to the minimum vertical bridge clearance over water:

Environment:

Minimum vertical clearance is 12 feet above Mean High Water (MHW) for concrete superstructures classified as moderately aggressive or extremely aggressive due to chloride content.

Minimum vertical clearance is obtained from the District Bridge Maintenance Engineer for steel superstructures, but is not to be less than those specified above for the concrete superstructures.

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete the above paragraph and replace with the following:</td>
</tr>
<tr>
<td>For steel superstructures, the minimum vertical clearance is not to be less than those specified above for the concrete superstructures or as specified in the RFP.</td>
</tr>
</tbody>
</table>

Drainage:

The minimum vertical clearance between the design flood stage and the low member of a bridge is 2 feet. This clearance is necessary to allow the majority of debris to pass without causing damage to the structure. This requirement does not apply to culverts and bridge-culverts.

Navigation:

Provide the following minimum vertical clearance for navigational purposes:

(1) 6 feet above the Mean High Water for tidewater bays and streams
(2) 6 feet above the Normal High Water for freshwater rivers, streams, non-regulated/controlled canals, and lakes
(3) 6 feet above the control elevation for regulated/controlled lakes and canals

For bridges without a designated navigation channel, minimum vertical clearance for navigation purposes is measured from the low point of the superstructure to the water.
surface anywhere along the length of the bridge over the navigable water. For bridges with a designated navigation channel, minimum vertical clearance for navigation purposes is measured from the low point of the superstructure to the water surface at the edges of the designated navigation channel. Navigation lights are not considered in the vertical clearance.

Coastal Bridges:

A minimum vertical clearance of 1 foot above the 100-year design wave crest elevation including the storm surge elevation and wind setup is required for the superstructure. For bridge designs where this criterion cannot practically be met, refer to the FDOT Drainage Manual, Section 4.9.5.

Information on the Normal High Water, control water elevation, or Mean High Water can be obtained from the appropriate Drainage Design Engineer.

Widening of existing structures which do not meet the minimum vertical clearance criteria stated above (either before or after the widening) may be justified hydraulically or economically. However, encroachment of vertical clearance criteria may be limited and is required to be approved by the agency having jurisdiction over the navigable waterway.

260.8.2 Horizontal Clearance

Provide the following minimum horizontal clearance:

(1) 10 feet for crossings subject to boat traffic.

(2) Consistent with debris conveyance needs and structure economy where no boat traffic is anticipated.

Horizontal clearance is defined as the unobstructed clear distance between piers, fender systems, culvert walls, etc. projected by the bridge normal to the flow.

260.8.3 Regulatory Agency Requirements

Vertical and horizontal clearances will also be subject to the requirements of the Coast Guard, Corps of Engineers, Water Management District, and any other regulatory agency having appropriate statutory jurisdiction or authority. Such regulatory agency requirements may exceed Department requirements.
260.9 Evaluation of Existing Bridge Structures

Each project will require a determination on the most appropriate action regarding existing structures; i.e., should bridge remain as is, be rehabilitated, or be replaced. This determination should be made as early as practical due to the potential impact to the work program. Pavement resurfacing funds can only be used for minor bridge improvements such as rail retrofits and ADA improvements. Bridges that require major improvements or replacement must be programmed with appropriate bridge program funds.

The determination of bridge improvement needs is to be supported by an engineering analysis and report. The determination is to be based on an assessment of the bridge’s structural and functional adequacy. The engineering report is to include the following:

1. Project description
2. Operational impact evaluation
3. Safety impact evaluation that includes a detailed review of crash history, severity, contributing factors, etc.
4. Benefit/cost analysis

If the engineering analysis determines it is not feasible to bring the bridge into full compliance with minimum criteria, a Design Exception or Design Variation addressing the feature(s) not meeting criteria must be processed in accordance with FDM 122. The engineering analysis and report should be used to support the Design Exception or Design Variation.

Review the Department’s work program to see if a structure is scheduled for replacement, before determining short term improvements. Consider short term improvements that enhance safety, but may not bring the bridge into compliance, such as:

- Upgrading of connecting guardrail systems
- Approach roadway or shoulder widening
- "Narrow Bridge Ahead" signing and shoulder warning (see FDM 210.4.5)

If a bridge is functionally obsolete but structurally sound, complete replacement is usually not warranted. For these structures, a full range of possible improvements should be considered to bring the structure into compliance with minimal criteria. Widening of the structure or rail retrofits are primary options. If a roadway is being programmed or considered for improvements or widening (adding lanes), consider the needs of the future structure(s).
When evaluating bridge replacement or widening, the following should be considered:

1. Cost of replacing the existing bridge with a wider bridge designed to new bridge criteria.
2. Cost of widening the existing bridge (if widening is practical), including life cycle costs of maintaining a widened bridge.
3. The number of crashes that would be eliminated by replacement or widening.
4. The hydraulic sufficiency and the risk of failure due to scour and/or ship impact as well as the consequences of failure.

260.9.1 Bridge Width

Required bridge widths for new bridge structures are illustrated in the partial bridge sections, *Figures 260.1.1 – 260.1.4*.

Minimum existing bridge widths for arterials and collectors are provided in *Table 260.9.1*.

See *FDM 210.4.5* for information concerning narrow bridge shoulder warning devices.

Bridge widening is to be in accordance with the *Structures Design Guidelines* and meet the geometric requirements for new construction.

<table>
<thead>
<tr>
<th>Bridge Median Treatment</th>
<th>Traveled Way Width</th>
<th>Minimum Width</th>
<th>Shoulder Width (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Median</td>
<td>Outside</td>
</tr>
<tr>
<td>Undivided (AADT < 750)</td>
<td>Total Width of Approach Lanes</td>
<td>n/a</td>
<td>2.0</td>
</tr>
<tr>
<td>Undivided (AADT ≥ 750)</td>
<td>Total Width of Approach Lanes</td>
<td>n/a</td>
<td>4.0</td>
</tr>
<tr>
<td>Divided (Median Separator)</td>
<td>Total Width of Approach Lanes</td>
<td>1.5</td>
<td>4.0</td>
</tr>
<tr>
<td>Divided (Median Barrier Wall)</td>
<td>Total Width of Approach Lanes</td>
<td>2.5</td>
<td>4.0</td>
</tr>
<tr>
<td>One Way Bridges</td>
<td>Total Width of Approach Lanes</td>
<td>2.5</td>
<td>4.0</td>
</tr>
</tbody>
</table>
260.9.1.1 Interstate, Freeways and Expressways

For resurfacing projects, existing 4-lane (2-lanes in one direction) mainline bridges may remain in place without a Design Exception or Variation when all the following requirements are met:

(1) Minimum 12-foot lane widths, and
(2) Minimum 3-foot left shoulder, and
(3) Minimum 10-foot right shoulder on bridges ≤ 200 feet in length, or minimum 3-foot right shoulder on bridges > 200 feet in length.

260.9.2 Bridge Loading

See *FDM 121.17* for load rating requirements.

260.9.3 Pier Protection, Bridge Railing and Roadside Safety Hardware

See *FDM 215* for requirements.
261 Structural Supports for Signs, Signals, Lighting, and ITS

261.1 General

The criteria for the structural design of sign, signal, lighting, and ITS support structures (aka Ancillary Structures) must be in accordance with AASHTO's *LRFD Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals*, as modified by the *Structures Manual, Volume 3*. Include structural details in the Plans for all sign, signal and lighting structures. Use the *Standard Plans* for sign, signal and lighting support structures, unless site conditions or other considerations require a custom design.

When a custom support structure is required, or otherwise specifically designated in the contract documents, the Engineer of Record (EOR) is responsible for the structural design including foundations and the review of the shop drawings. Details for supports attached to bridge structures must be coordinated with the bridge structural engineer and included in the plans. See *Structures Design Guidelines, Section 1.9* for details and restrictions related to making attachments to bridges.

Sign and signal structure span length are limited to the following:

- **Standard Plans, Index 700-041**, Span Sign Structure: 220 feet
- **Index 700-040**, Cantilever Sign Structure: 50 feet
- **Indexes 700-040 and 700-041**, Cantilever & Span Sign Structure Truss Depth: 9.5 feet
- **Indexes 649-030 and 649-031**, Standard Mast Arm Assemblies: 78 feet
- **Indexes 649-010 or 641-010**, Steel or Concrete Strain Pole with Signal Cable: 250 feet

These limits were chosen based on past practice and practical experience. See the *Standard Plans Instructions (SPI)* to obtain the applicable *Standard Plans* and additional information on sign and signal structures.

See *FDOT Modifications to LRFD Specifications For Structural Supports For Highway Signs, Luminaires And Traffic Signals (LRFDLTS-1), Structures Manual Volume 3*, Section 2.6 for limitations on the use of bridge mounted signs.
261.2 Sign Support Structures

Use the applicable Standard Plans for the following sign support structures:

- **Index 700-010** Single Column Ground Signs
- **Index 700-011** Single Column Cantilever Ground Mounted Sign
- **Index 700-012** Single Post Bridge Mounted Sign Support
- **Index 700-013** Single Post Median Barrier Mounted Sign Support
- **Index 700-020** Multi-Column Ground Sign
- **Index 700-040** Cantilever Sign Structures (Overhead)
- **Index 700-041** Span Sign Structures (Overhead)

Refer to the corresponding Standard Plans Instruction (SPI) for design information.

For Standard Plans, Index 700-010 Single Column Ground Signs, the contactor selects the appropriate pole size using the sign dimensions given in the plans and the four-step process given the standard.

Where the distance between the curb and the sidewalk restricts the use of Standard Plans, Index 700-020; Index 700-011 may be used.

The EOR is responsible for the design of all multi-column ground signs and overhead sign structures (including bridge mounted signs). This responsibility is for the entire sign structure, including the supports and foundations, as well as all details necessary to fabricate and erect the sign structures. The EOR is also responsible for the shop drawing review in accordance with FDM 267 when sign structure shop drawings are required by the Contract Documents.

FDOT assigns identification numbers to overhead sign structures. See the Structures Detailing Manual, Chapter 2, for instructions. If a custom sign support structure is required, include a brief written justification with the 30% plans submittal.

Modification for Non-Conventional Projects:

Delete the last sentence above.
261.3 Lighting Support Structures

Use the applicable Standard Plans for the following lighting support structures:

- **Index 715-010** High Mast Lighting,
- **Index 715-002** Standard Aluminum Lighting.

Refer to the corresponding SPI for design information.

261.4 Traffic Signal Support Structures

Use the applicable Standard Plans for the following traffic signal support structures:

- **Index 649-010** Steel Strain Poles,
- **Index 641-010** Concrete Poles,
- **Indexes 649-030** and **649-031** Mast Arm Assemblies.

Refer to the corresponding SPI for design information.

See FDM 232 for determining which locations require mast arms.

Design all structures assuming traffic signal assemblies have backplates in accordance with FDM 232.1.5

Span wire systems have two strain pole options, rectangular prestressed concrete and round steel. Round steel poles are typically used on longer spans where prestressed concrete poles have exceeded their capacity.

For attaching Free-Swinging, Internally-Illuminated Street Sign Assemblies, see Standard Plans Index 700-050.

Mast Arm Assemblies may be Standard Mast Arm Signal Structures, Standard Mast Arms for Site-Specific Loadings or Custom Designs. Use the Flowchart in Figure 261.4.1 to determine which type of Mast Arm design is suitable for the particular application. See Standard Plans, Indexes 649-030 and 649-031, and their SPI.
Figure 261.4.1 Flowchart for Designing Mast Arm Assemblies

1. Run FDOT’s “Mast Arm Index 649-030” Program (Requires Excel)
2. Does a Standard Mast Arm Assembly satisfy the design requirements?
 - Yes → Use “Standard Mast Arm Assemblies”
 - No → Run FDOT’s “MastArm LRFD Program” (Requires MathCad)
3. Does a Standard Mast Arm Assembly satisfy the design requirements?
 - Yes → A custom designed mast arm assembly is required. Run “Mast Arm LRFD Program”
 - No → Use “Standard Mast Arm Assemblies”
261.5 ITS Support Structures

Use the applicable **Standard Plans** for the following ITS support structures:

- **Index 649-020** Steel CCTV Poles,
- **Index 641-020** Concrete CCTV Poles,
- **Indexes 700-040** and **700-041** Cantilever and Span Sign Supports to support Dynamic Message Signs (DMS). For additional DMS details, see **Standard Plans**, **Index 700-090** Dynamic Message Sign Walk-In.

Refer to the corresponding **SPI** for design information.

Refer to the **Structures Manual, Volume 3** for Dynamic Message Sign Structure design requirements.

261.6 Foundations

Unique site circumstances may require the foundation variables to be modified from the foundations shown in the **Standard Plans**. If custom designs are required, the Geotechnical Engineer must provide the soil information to be used by the Structures Design Engineer during the design phase of the project.

The foundation design and drawings where special foundations are required are the responsibility of the Structures’ EOR. The Geotechnical Engineer must provide the EOR the following soils information (this information may be derived from the borings of other nearby structures or from roadway borings):

1. Soil Type
2. Effective Unit Weight of the Soil
3. Seasonal High Water Table Elevation
4. Effective Friction Angle of the Soil (if applicable)
5. Cohesion Value (if applicable)
6. Coefficient of Horizontal Subgrade Reaction
7. Factored Bearing Resistance (if applicable)

Include the above soils information in the plans. Additionally, Soil Boring Data Sheets must be included in the plans, except for strain poles. This will provide the Contractor...
with the conditions for which the foundations were designed as compared to actual on-site conditions and establish criteria for any future analysis of the foundations.

261.7 Evaluating Existing Sign, Signal, Lighting and ITS Support Structures

For the purposes of this section, existing sign, signal, lighting and ITS support structures are referred to as Ancillary Structures and are classified into one of the following categories:

Category 1: Existing Ancillary Structures without Proposed Additional Loading –

Existing support structures left in place or existing support structures modified with equivalent (or smaller) components.

Category 2: Existing Ancillary Structures with Proposed Additional Loading or Relocated Ancillary Structures –

Existing support structures modified with additional components, existing support structures modified with larger components, existing support structures whose proposed attachments produce loads on any component greater than the design loading and/or existing support structures relocated to another location.

Additionally, there are two types of evaluations that are conducted on ancillary structures as follows:

Condition Evaluation:

A physical and functional assessment based on inspection data that includes damage, deterioration, or other potential defects that may cause a reduction in service life or design capacity.

Analytical Evaluation:

A structural capacity analysis ranging from the review of structural plans, design calculations and shop drawings (if available) to a detailed structural analysis. Contact the District Structures Design Office for guidance on the extent of analysis required and for guidance on analyzing existing ancillary structures without plans, shop drawings, foundation depths, or design calculations.
Submit an Ancillary Structures Evaluation as required by the District Structures Design Office (DSDO). The report is to contain the following information:

1. Listing of ancillary structures within the project including the proposed disposition (remain in place, relocated, replaced)
2. Condition Evaluation for ancillary structures within the project
3. Analytical Evaluation of ancillary structures within the project that are proposed with additional loading and/or relocated

Recommendations in the Ancillary Structures Evaluation require concurrence from the District Structures Maintenance Engineer.

261.7.1 Category 1 Analytical Evaluation

If a detailed Analytical Evaluation is required, evaluate the as-built capacity (no allowances for future loads) in accordance with the Structures Manual, Volume 3, Section 18.2. Report the Demand/Capacity (D/C) ratios, Combined Stress Ratios (CSRs), and Combined Force Interactions (CFIs). If all D/C ratios, CSRs, and CFIs are \(\leq 1.05\), the structure meets FDOT structural requirements for existing structures. If certain D/C ratios or CSRs are > 1.05, strengthening or replacement is required unless a Design Exception is approved.

261.7.2 Category 2 Analytical Evaluation

Provide a detailed Analytical Evaluation of the existing structure with proposed additional loading in accordance with the Structures Manual Volume 3, Section 18.3. Report the D/C ratios, CSRs, and CFIs. If all D/C ratios, CSRs, and CFIs are \(\leq 1.05\), the structure meets FDOT structural requirements. If certain D/C ratios, CSRs, or CFIs are > 1.05, strengthening or replacement is required unless a Design Exception is approved.
262 Retaining Walls

262.1 General

This chapter describes the procedure to be used in the development of retaining wall plans. This chapter should be used in conjunction with the Structures Design Guidelines (SDG), Structures Detailing Manual (SDM) and the applicable Standard Plans Instructions (SPI).

See FDM 215 for guidance on roadside barrier requirements and SDG, Chapter 6 for retaining wall mounted traffic railing requirements. See FDM 222 for pedestrian and bicycle rail requirements. See SDG, Section 1.4.5 for the policy on retaining wall surface finishes.

Precast walls other than Mechanically Stabilized Earth (MSE) walls should be considered as an alternate when sufficient room for soil reinforcement is not available.

Standard Plans, Index 400 Series, 455 Series, 548 Series, and Indexes 521-600 through 521-640, contain general notes and common details for retaining walls. See the applicable SPI for information on the use of these standards.

Using the site-specific geotechnical information, the structures Engineer of Record (EOR), in cooperation with the Geotechnical Engineer, will determine the appropriate wall type and its requirements. See the SDG, Section 3.12 for the Permanent Retaining Wall Selection Process.

The following sections refer to the structures plans submittal procedure. For projects where there are no bridges, the roadway EOR must adjust the procedure as required for the roadway project.

262.2 Retaining Wall Plans Submittal Procedures

On projects with retaining wall types not listed on the APL (C-I-P wall systems, permanent concrete and steel sheet pile walls, soldier pile walls, non-proprietary precast wall systems, complex wall systems, or project specific designs), the complete wall design and details are included in the plans by the EOR.

On projects with proprietary retaining wall systems listed on the APL, the EOR provides the Wall Control Drawings and the appropriate wall systems Data Tables in the plans. The EOR selects which FDOT Wall Type (see the SDG, Section 3.12) is appropriate for the project and places this information in the notes associated with the Data Tables. The
Contractor then selects the **APL** listed retaining wall system to build based on the allowable wall types shown in the notes associated with the Data Tables and on the **Standard Plans**. Proprietary retaining walls require shop drawings in accordance with **FDM 267**.

Proprietary retaining wall design plans are not required in the contract plans for normal uncomplicated wall projects (see **FDM 262.2**). If the proprietary walls are Two-phased, experimental, exceed 40 ft. in height, are subject to unusual geometric or topographic features, if spatial limitations require project specific details, or, by the geotechnical report, will be subjected to excessive settlement, or environmental conditions, they are required to have fully detailed design plans in the contract set (see **FDM 262.2.3**).

Prior to construction on projects utilizing proprietary wall systems, the contractor will submit, for approval by the EOR, shop drawings that are based on an **APL** listed wall system that is shown in the plans. Site-specific details for the wall construction will be included in these shop drawings.

The success of these methods for producing wall plans is highly dependent on complete, accurate and informative Control Plans. The importance of the Geotechnical Engineer's role in this scheme cannot be emphasized enough and is detailed in the **Soils and Foundation Handbook, Chapters 3, 8, and 9**.

The Geotechnical Engineer's wall type recommendation must be presented in a report together with the results of field and laboratory testing and the reasoning for the recommendation. For Proprietary Walls, also include the following: external stability analyses, minimum soil reinforcement length vs. wall height for external stability, recommended soil reinforcement type limitations if any (e.g., synthetic vs. steel), maximum bearing pressure for each wall height and soil reinforcement length for each different wall height (2-foot increments).

The normal failure modes to be investigated are shown in **SDG, Chapter 3**.

Procedures for developing retaining wall plans follow.

262.2.1 Non-Proprietary Retaining Walls

(1) **Bridge Development Report (BDR) / 30% Plans:**

The BDR must discuss and justify the use/non-use of non-proprietary retaining walls. If the use of these retaining walls is applicable to the site and economically justified, it may be the only design required or it may be an alternate to a proprietary design. Include Wall Control Drawings (as specified in the **SDM, Chapter 19**), cross sections, details and general notes in the 30% Plans submittal. Denote the location
of drainage inlets, utilities, sign structures, lights and barrier joints in the plans. See the *SDM, Chapter 19* for more information.

(2) 30% Plans:
The 30% Plans must be submitted for approval and development of the plans continued towards the 90% Plans submittal.

(3) 90% Plans:
The 90% Plans submittal must be further developed to include, in addition to the information required for the 30% Plans, information listed in the *SDM, Chapter 19*.

Modification for Non-Conventional Projects:

Delete **FDM 262.2.1** and replace with the following:

262.2.1 Non-Proprietary Retaining Walls

See **SDG, Section 3.12** for wall selection requirements. Include Wall Control Drawings (as specified in the *SDM, Chapter 19*), cross sections, complete wall details and general notes in the Component Plans submittal. Denote the location of drainage inlets, utilities, sign structures, lights and barrier joints in the plans. See the *SDM, Chapter 19* for more information.

262.2.2 Proprietary Wall Systems Where Full Design Details Are Not Required In Contract Plans

Preapproved Vendor Drawings for proprietary wall systems are listed on the **APL** and are categorized in accordance with the applicable FDOT Wall Type(s). Utilize these drawings with the applicable standard(s) and Data Tables. Do not include the Vendor Drawings in the plans.

Use the following procedure in preparing plans for wall projects.

(1) **BDR/30% Plans:**
Discuss and justify the use of proprietary retaining walls and FDOT Wall Types (see **SDG, Section 3.12**) in the BDR. Provide documentation of all the site-specific geotechnical information and wall system considerations in the Retaining Wall Justification portion of the BDR. Include the Retaining Wall System Data Tables and Preliminary Wall Control Drawings with the information shown in **SDM, Chapter 19** for the Plan and Elevation Sheets.
(2) 90% Plans:

Include the completed Control Plans and Data Tables in the 90% Plans submittal.

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete FDM 262.2.2 and replace with the following:</td>
</tr>
</tbody>
</table>

262.2.2 Proprietary Wall Systems Where Full Design Details Are Not Required In Contract Plans

Preapproved Vendor Drawings for proprietary wall systems are listed on the **APL** and are categorized in accordance with the applicable FDOT Wall Type(s). Utilize these drawings with the applicable standard(s) and Data Tables. Do not include the Vendor Drawings in the plans.

Using site-specific geotechnical information, the EOR, in cooperation with the geotechnical engineer, will determine all wall system requirements. See **SDG 3.12** to determine appropriate FDOT Wall Type. Include Wall Control Drawings and Data Tables in the Component Plans submittal, as specified in the **SDM, Chapter 19**. Denote the location of drainage inlets, utilities, sign structures, lights and barrier joints in the plans. See the **SDM, Chapter 19** for more information.

262.2.3 Proprietary Wall Systems Where Full Design Details Are Required In Contract Plans

The following procedure for plans preparation should be followed if the walls are required to be fully detailed in the contract plans.

(1) BDR/30% Plans:

The BDR must discuss and justify the use of proprietary retaining walls. Include Wall Control Drawings in the 30% Plans. It will not be necessary for these Plans to contain pay items; however, they must include, but not be limited to, the information listed in the **SDM, Chapter 19**.

(2) Control Plans/Invitation Package:

The Control Plans must be reviewed by the Department and, upon approval, sent to all the appropriate wall companies. Provide a set of control plans, roadway plans and foundation report to the wall companies no later than by the 60% Plans submittal. A copy of the transmittals to the wall companies must be sent to the DSDO or SDO as appropriate. The proprietary companies must acknowledge
receipt of the invitation package. If they choose to participate they must provide
design plans for the retaining walls and submit the plans for review as prescribed
in the invitation letter.

(3) 90% Plans:

Upon receipt of the proprietary design plans, the designer must review the design
and incorporate the wall plans into the contract set. The plans from the wall
companies, control plans and wall company standard drawings must constitute the
90% Plans.

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete FDM 262.2.3 and replace with the following:</td>
</tr>
<tr>
<td>262.2.3 Proprietary Wall Systems Where Full Design Details Are Required In Contract Plans</td>
</tr>
<tr>
<td>Using site-specific geotechnical information, the EOR, in cooperation with the</td>
</tr>
</tbody>
</table>
geotechnical engineer, will determine wall system requirements. See SDG 3.12 to determine appropriate FDOT Wall Type. The Design-Build EOR must
coordinate with one of the Preapproved Vendors to prepare fully detailed project
specific proprietary drawings for inclusion into the Component Plans. Include Wall
Control Drawings and Data Tables (in accordance with SDM, Chapter 19) in the
Component Plans submittal. Denote the location of drainage inlets, utilities, sign
structures, lights and barrier joints in the plans. See the SDM, Chapter 19 for more
information. |

262.4 Critical Temporary Walls

A critical temporary wall is a temporary wall that is necessary to maintain the safety of the
traveling public, or structural integrity of nearby structures or utilities during construction.
Traffic lanes located either above or below a grade separation and within the limits shown
in SDM, Chapter 19, will require the design of a critical temporary wall.

On bridge projects, discuss the use of, and selected type of, critical temporary walls in
the BDR.

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete the above sentence.</td>
</tr>
</tbody>
</table>

262-Retaining Walls
Typically, critical temporary walls are either proprietary MSE walls or steel sheet pile walls. Concrete sheet piles, soldier pile walls and precast or cast-in-place concrete walls may also be used as critical temporary walls.

Critical temporary proprietary MSE walls must comply with Standard Plans, Index 548-030 (and the applicable SPI) and require generic design details in the contract plans. The plans format must be in accordance with FDM 262.2.2 and FDM262.2.3. Include control drawings and the completed Temporary Retaining Wall System Data Tables. Submit the final design details in the shop drawings.

If critical temporary steel sheet pile walls are used, complete the associated Data Table and include it in the plans. See the Structures Detailing Manual for more information including critical temporary wall definitions.

If other types of critical temporary walls are used, prepare the necessary details and include them in the plans.
263 Geosynthetic Design

263.1 General

This chapter provides design guidance for geosynthetic reinforced soil slopes and geosynthetic reinforced foundations over soft soils. “Geosynthetic” is a generic term for all synthetic materials used in Geotechnical engineering applications and includes geotextiles and geogrids.

Reinforced soil slopes should be utilized only when unreinforced slopes are not appropriate and retaining walls are not economical or are undesirable. FDM 215 contains design criteria for the use of roadside slopes.

Reinforced foundations over soft soils should be utilized when the existing soils are too weak to support the anticipated loading without soil failure, and when excavation and replacement (or other ground modification methods) are not economical solutions.

Approved geosynthetic products are included in the Approved Products List (APL).

263.2 Contract Plans Content

Provide the geosynthetic application type and specific requirements to ensure the geosynthetic selected from the APL will be suitable. Refer to Standard Specification 985 to determine which test values will be available for selecting the products for each application from the APL.

Control drawings are required which depict the geometrics (plan and elevation view) of the area being reinforced. These designs are generic and are not based upon any one specific product or supplier; the product brand names are not shown on the plans. Design reinforced slopes using the maximum reinforcement spacing allowed. For soft soils, design the reinforcement and provide the minimum total strength required.

Include the following information in the plans:

- Required reinforcement strength based on the maximum allowed vertical spacing of these materials,
- The extent and the number of layers of geosynthetic reinforcement,
- Vertical spacing of geosynthetic reinforcement,
- Orientation of geosynthetic,
• Facing details,
• Details at special structures or obstructions,
• Typical construction sequence,
• Top and bottom elevations of the geosynthetic reinforcement layers,
• Surface treatments, and
• Any other required design parameters or limitations.

263.3 Shop Drawings and Redesigns

The contractor can choose to construct the reinforced soil structures either by: (1) using geosynthetic materials approved for the intended application in the APL meeting or exceeding the strength required in the plans and placed at or less than the spacing(s) shown in the plans, or (2) submitting an alternate design (redesign) which optimizes the use of a specific material and revises the material spacing within the limits contained in the design methodology in FDM 263.4. Redesigns may be optimized for backfill specific material properties verified prior to the redesign, or based on generic properties which must be verified prior to backfill placement. All designs must meet the design methodology requirements contained in FDM 263.4.

 Modification for Non-Conventional Projects:
Delete the first sentence of the above paragraph and replace with the following:

Construct the reinforced soil structures using geosynthetic materials approved for the intended application in the APL meeting or exceeding the strength required in the plans and placed at or less than the spacing(s) shown on the Plans.

The shop drawing reviewer must be familiar with the requirements, design and detailing of these systems. The review must consist of but not limited to the following items:

(1) Verify horizontal and vertical geometry with the contract plans.
(2) The soil reinforcement must be approved for the intended application in the APL.
(3) The soil reinforcement design values do not exceed the values in the APL.
(4) Verify that the material strengths and number of layers of the product selected meets or exceeds the design shown in the contract plans.
(5) Soil properties for the fill material chosen by the contractor must meet or exceed those used in the design shown in the Contract Plans.

(6) If a redesign is proposed, verify the design meets the requirements of *FDM 263.4* and the Contract Plans, and the soil properties for the fill material chosen by the contractor meets or exceeds those used in the redesign.

See *Standard Specifications Section 145* for requirements associated with Contractor initiated redesigns.

263.4 Geosynthetic Reinforcement Design Considerations

Only those geosynthetic products approved for usage on reinforced soil slopes in the *APL* are eligible for use on FDOT projects. Design the geosynthetic reinforced systems using comprehensive stability analyses methods that address both internal and external stability considerations by a Florida licensed Professional Engineer who specializes in Geotechnical engineering.

263.5 Geosynthetic Reinforcement Design Requirements

Use the following design guidelines and requirements for the analyses and design of geosynthetic reinforcement:

(1) **Performance:** The design resistance factors must cover all uncertainties in the assumptions for the design limit state. The resistance factors must not exceed the following:

 (a) 0.65 against pullout failure.
 (b) 0.65 against sliding of the reinforced mass.
 (c) 0.75 against external, deep-seated failure.
 (d) 0.65 against external, deep-seated failure when supporting a structure.
 (e) 0.75 against compound failure; i.e., failure through the reinforcement.
 (f) 0.75 against internal failure.
 (g) 0.75 against local bearing failure (lateral squeeze).
263-Geosynthetic Design

(2) **Nominal Tension Resistance of Reinforcement:** The maximum long-term reinforcement tensile resistance of the geosynthetic must be:

\[
T_a = \frac{T_{ult}}{RF_c RF_d CRF}
\]

Where:
- \(T_a\) = The nominal long-term reinforcement tensile resistance.
- \(T_{ult}\) = The ultimate strength of a geosynthetic in accordance with ASTM D 6637 for the reinforcement oriented normal to the slope.
- \(RF_c\) = Reduction factor for installation damage during construction for the appropriate fill material (sand or lime rock).
- \(RF_d\) = Reduction factor for durability (due to Chemical or Biological degradation).
- \(CRF\) = Creep reduction factor. \((T_{ult}/T_{creep})\)
- \(T_{creep}\) = Serviceability state reinforcement tensile load based on minimum 10,000 hour creep tests.

These reinforcement specific parameters can be found in the [APL](#).

For applications involving reinforcing slopes with geosynthetic, the minimum design life is 75 years.

(3) **Soil Reinforcement Interaction:** Friction reduction factors are presented as Soil-Geosynthetic Friction values in the [APL](#) for each approved geosynthetic product.

263.6 Geosynthetic Reinforcement Design Guidelines

These design guidelines are excerpted from the FHWA Publications (a) *FHWA GEC 011 (FHWA-NHI-10-024 & FHWA-NHI-10-025)*, "Design and Construction of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes-Volumes 1 & 2", and (b) No. FHWA HI-95-038, "Geosynthetic Design and Construction Guidelines". Designers should refer to these publications for further details.

(1) **Reinforced Slope** - see reference (a) *FHWA GEC 011*.

- Step 1. Establish the geometry and loading - see Figure 263.6.1.
- Step 2. Determine the engineering properties of the in-situ soils.
Step 3. Determine the properties of the reinforced fill and the retained fill.

Use the following default values for fill soil within the reinforced volume when the fill material source is not known:

For sand fill: \(\varphi = 30^\circ, \gamma = 105\) pcf, \(c = 0 \);

For crushed lime rock fill: \(\varphi = 34^\circ, \gamma = 115\) pcf, \(c = 0 \).

Step 4. Evaluate design parameters for the reinforcement.

Step 5. Check unreinforced slope stability.

Step 6. Design reinforcement to provide a stable slope.

Step 7. Check external stability and service limit state deformations.

Step 8. Evaluate requirements for subsurface and surface water runoff control.

(2) **Reinforced Foundation over Soft Soils** - see reference (b) *FHWA HI-95-038*.

Step 1. Define embankment dimensions and loading conditions - see *Figure 263.6.2*.

Step 2. Establish the soil profile and determine the engineering properties of the foundation soil.

Step 3. Obtain engineering properties of embankment fill materials.

Step 4. Establish appropriate resistance factors and operational settlement criteria for the embankment.

The resistance factors must not exceed the following:

(a) 0.65 against bearing failure of subsoil

(b) 0.65 against pullout failure in select soil

(c) 0.50 against pullout failure in plastic soil

(d) 0.65 against lateral spreading (sliding) of the embankment

(e) 0.75 against external, deep-seated failure at the end of construction
(f) 0.65 against external, deep-seated failure at the end of construction, when supporting a structure.

(g) 0.65 against tensile failure of the reinforcement

Settlement criteria: depends upon project requirements

Step 5. Check bearing capacity, global stability (both short and long term), and lateral spreading stability.

Step 6. The geosynthetic reinforcement should be designed for strain compatibility with the weak in-situ soil.

Based on the type of weak in-situ soil, the maximum design strain in the geosynthetic ($\varepsilon_{\text{geosynthetic}}$) is as follows:

- Cohesionless soil: $\varepsilon_{\text{geosynthetic}} = 5\%$
- Cohesive soils: $\varepsilon_{\text{geosynthetic}} = 5\%$
- Peat: $\varepsilon_{\text{geosynthetic}} = 10\%$

* For all cases, limit $\varepsilon_{\text{geosynthetic}}$ to the strain at failure minus 2.5%

Step 7. Establish geosynthetic strength requirements in the geosynthetic's longitudinal direction.

Step 8. Establish geosynthetic properties.

Step 9. Estimate magnitude and rate of embankment settlement.

Step 10. Establish construction sequence and procedures.

Include all stages of construction. Base the analysis of each stage on the estimated strength of the subsoils at the end of the previous construction stage.

Step 11. Establish construction observation requirements.

Use instrumentation such as settlement plates, piezometers, and/or inclinometers to monitor the performance of the construction. Establish the monitoring criteria, such as the maximum rate of piezometric and/or settlement change that must occur before the next stage of construction can proceed.
Figure 263.6.1 Geosynthetic Reinforced Soil Slopes

Notations:

- H = slope height
- θ = slope angle
- L = length of primary reinforcement
- L' = length of secondary reinforcement, 4' minimum
- S_v = vertical spacing between primary reinforcements, 4' maximum
- S_v' = vertical spacing between secondary reinforcements, 1' maximum
- q = surcharge load
- Δq = temporary live load
- d_{wf} = depth to groundwater table in foundation
- γ_r, γ_b, γ = unit weights of soils in reinforced, retained and foundation, respectively
- ϕ_r, ϕ_b, ϕ = friction angles of soils in reinforced, retained and foundation, respectively
- c', c_u = cohesion strength parameters of foundation soil
Figure 263.6.2 Geosynthetic Reinforced Foundations over Soft Soils

(1) The spacing between any two reinforcements must be 6 to 12 inches.
(2) Extend the reinforcement layer(s) below the embankment to 3 feet beyond the toe of slope or the development length required to resist pullout, whichever is longer.
(3) Additional layers of reinforcement may be added below or within the embankment.
264 Noise Walls and Perimeter Walls

264.1 General

Noise abatement measures identified as reasonable and feasible during the PD&E phase are re-evaluated during final design based on detailed design data and the public involvement process. This chapter contains the process for the final noise wall analysis, reasonableness and feasibility determinations, design and public involvement concerning noise abatement during the development of the contract plans.

This chapter also contains the process for the consideration, design and incorporation of perimeter walls in the contract plans.

264.2 Noise Walls

Chapter 23 of the Code of Federal Regulations, Part 772 (23 CFR 772) entitled “Procedures for Abatement of Highway Traffic Noise and Construction Noise” contains the federal regulations for the assessment of traffic noise impacts and abatement on federal aid projects. Section 335.17 of the Florida Statutes (F.S.) requires the use of 23 CFR 772 for traffic noise impact assessment on highway projects, regardless of funding type. The policy for abatement of traffic noise on Department projects and the requirements for assessing the noise impacts and abatement commitments are detailed in FDOT’s Noise Policy (Part 2, Chapter 18 of the Project Development and Environment Manual (PD&E Manual) (Topic No. 650-000-001). The initial evaluation of noise impacts is made during the PD&E phase of a project. A commitment to perform a detailed noise analysis during final design to support the need for reasonable and feasible noise abatement measures on a project are included in the Noise Study Report (NSR) and summarized in the Environmental Document. Review the Environmental Document and any subsequent re-evaluations to identify all preliminary noise abatement commitments.

Noise abatement commitments made during the PD&E phase are subject to design changes made during final design, such as:

1. Roadway profiles and horizontal alignments
2. Typical section elements
3. Land use changes
4. Proposed ground elevation at noise wall locations.
PD&E assumptions are appropriate for preliminary reasonableness and feasibility assessment; however, the final determinations concerning noise abatement are based on the contract plans developed during final design. Coordinate with the District Noise Specialist in the District Environmental Management Office to ensure proper analysis and public involvement occurs. Final top of noise wall elevations should be based on modeled heights and coordinated with the District Noise Specialist.

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete the above two paragraphs and replace with the following:</td>
</tr>
<tr>
<td>See the RFP for noise wall requirements. If an Alternative Technical Concept proposes changes to the horizontal or vertical alignments depicted in the Concept Plans, any associated required changes to the noise wall locations must also be addressed. Any modifications or additions to noise wall location and height requirements depicted in the RFP must be approved by the Department based on the information from a Noise Study Report Addendum (NSR Addendum) provided by the Design-Build Firm. The Design-Build Firm must coordinate with the noise specialist in the District Environmental Management Office to ensure proper public involvement occurs during final design. Changes will trigger a re-evaluation, which must be approved by the Department.</td>
</tr>
</tbody>
</table>

If no feasible and reasonable noise abatement is identified in the Environmental Document or any subsequent environmental re-evaluations, no further effort is required during final design unless design changes are made that may affect noise impacts. However, it is still necessary to evaluate construction noise and vibration impacts and develop any Special Provisions to be included in the plans.

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete the above paragraph and replace with the following:</td>
</tr>
<tr>
<td>If noise walls are not specified in the RFP, no further effort is required during final design. If design changes are proposed, a reevaluation of traffic noise and abatement reasonableness and feasibility shall be performed. Evaluate construction noise and vibration impacts and develop the necessary Special Provisions to be included in the plans.</td>
</tr>
</tbody>
</table>

Consider all noise receptors identified in the Environmental Document and NSR in the final design re-evaluation. Noise receptors resulting from development completed after the approval date of the Environmental Document (Date of Public Knowledge) are not to
be considered, as the Department is not responsible for providing noise abatement at these sites.

During final design:

1. Re-evaluate noise abatement identified as reasonable and feasible during the PD&E phase based on detailed design data or changes made during the development of final plans.

2. Evaluate locations where significant design changes are likely to affect noise impacts and require consideration of additional noise abatement.

Document the final noise abatement measures for the project in a Noise Study Report Addendum (NSR Addendum).

Modification for Non-Conventional Projects:

Delete the above two paragraphs and replace with the following:

If an Alternative Technical Concept is proposed to change the horizontal or vertical alignments depicted in the Concept Plans, any associated required changes to the noise wall locations must also be addressed. Any modifications/additions to noise wall location and height requirements depicted in the RFP must be evaluated for approval by the Department.

See RFP for requirements.

See *Structures Design Guidelines (SDG), Section 1.4.5* for the policy on noise wall surface finishes.

264.2.1 Noise Study Report Addendum

The re-evaluation of preliminary noise abatement commitments during final design is documented in an NSR Addendum. The re-evaluation must be based on the final roadway geometry and the proposed noise abatement design, including noise wall type, location, dimensions and estimated costs. The final design re-evaluation should be conducted using the latest version of the FHWA’s Traffic Noise Model (TNM).

Noise abatement measures are considered when noise levels at a receptor(s) approach or exceed the noise abatement criteria or substantially exceed existing noise levels. The noise abatement criteria are listed in *Table 264.2.1*. Approaching the criteria means within 1 dB(A) of the noise abatement criteria. A predicted increase of 15 dB(A) or more
is considered substantial. Noise abatement is considered only for Activity Categories A, B, C, D and E.

The NSR Addendum should contain a description of the methodology for selecting final noise wall dimensions including any evaluation matrix used.

264.2.2 Noise Abatement Criteria

A noise wall should be both reasonable and feasible to be provided on the project.

264.2.2.1 Feasibility

Factors for noise abatement measures include both acoustic (noise reduction) and engineering considerations. The noise wall must attain a minimum acoustic insertion loss of 5 dB(A) to at least two impacted receptors. The insertion loss is defined as the level of noise reduction because of abatement.

Engineering factors to consider is the constructability of the noise wall; e.g., lane closures, sight distance, terrain changes, utilities, bridges, overpasses, access, maintenance, and drainage. Consideration should also be given to whether a noise wall can be constructed using standard construction methods and techniques.

264.2.2.2 Reasonableness

A noise wall is considered reasonable if it provides an insertion loss design goal of 7 dB(A) to at least one benefited receptor at a reasonable cost of $42,000 per benefited receptor or less. A benefited receptor is a receptor that receives a noise reduction at or above the minimum threshold of 5 dB(A) (whether impacted or not).

The cost reasonableness is calculated by multiplying the statewide average unit cost (per square foot) by the square footage of the noise wall and dividing it by the number of benefited receptors. The statewide average unit cost of noise wall to be used in determining cost reasonableness is established by the Office of Environmental Management. The statewide average unit cost of noise walls to be used in the calculation of the cost/benefited receptor is $30.00/ft². Refer to the PD&E Manual for the latest unit cost update.

Additional costs such as required right of way, special drainage features, special bridge support and special foundations associated with the installation of a noise wall should be added to the unit cost. If these additional costs increase the cost per benefited receptor
above the $42,000 limit, a determination to provide noise abatement must be made in consultation with the District Environmental Management Office, and the Office of Environmental Management (OEM), pursuant to Title 23 United States Code (U.S.C.), Chapter 3, Section 327 and Memorandum of Understanding (MOU) dated December 14, 2016. Any decision to eliminate a noise wall from consideration based on the inclusion of these additional costs will require clear demonstration that the additional costs are associated only with the noise wall and cannot be mitigated by other considerations.

Do not exceed the following heights:

1. For ground mounted noise walls use a maximum height of 22 feet. Shield non-crash tested noise walls within the clear zone.

2. For noise walls on bridge and retaining wall structures use a maximum height of 8 feet. Walls taller than 8 feet require approval by the State Structures Design Engineer.

Modification for Non-Conventional Projects:

Delete condition (2) above and replace with the following:

2. For noise walls on bridge and retaining wall structures use a maximum height of 8 feet unless otherwise specified in the RFP.

3. For ground mounted Traffic Railing/Noise Wall combinations use a maximum height of 14 feet.

Noise wall heights greater than those specified above require a Design Variation and project specific designs. Justification for a variation should include, as a minimum, a description of site conditions requiring the increased height and a comparison to the standard height of both insertion loss and cost per benefited receptor.

Refer to the NSR prepared during the PD&E phase for the analytical results used to evaluate noise wall heights necessary to achieve minimum, desired and optimum insertion loss. The optimum noise wall height is the most cost effective in consideration of noise reduction benefits per unit cost of the noise wall. Perform a comparative analysis to evaluate an appropriate range of noise wall configurations (height, length and roadway offset). Determine the number of benefited receptors and calculate the cost per benefited receptor for each configuration evaluated. Select a noise wall configuration that can provide the insertion loss design goal (7 dB(A)) at a reasonable cost (less than $42,000 per benefited receptor). If this is not achievable, select a noise wall configuration that optimizes insertion loss per impacted receptor and cost per benefited receptor.
The height of the noise wall is measured from the ground elevation to the top of the noise wall. Tall noise walls are seldom necessary at the top of roadway embankments or berms since the elevation of the embankment contributes to the effective height of the noise wall. In addition, changes in the vertical grade of the top of the noise wall should be gradual and abrupt changes in wall heights should be avoided. Natural ground elevations at the base of the noise wall fluctuate, even in flat terrain. Therefore, provide plan details that make clear to the contractor the final top of wall elevations, post spacing and foundation step locations. See the *Standard Plans Instructions, Index 534-200*, and *Indexes 521-510* thru *521-515* for additional design requirements. See *LRFD Section 15* and *SDG, Sections 3.16* and *3.18* for the Noise Wall design criteria.

When an otherwise continuous noise wall is broken resulting in a horizontal separation between the wall sections, it is often necessary to overlap the wall sections to reduce insertion loss degradation. Examples of horizontal separation include:

- When the mainline noise wall is located at the right of way line, but is moved to the shoulder break at a bridge location.
- When transitioning from the mainline to a ramp at interchanges.

The overlap distance of noise walls is generally equal to four times the separation; however, an analysis by the Noise Specialist is necessary to determine the optimum overlap. Review the need or effectiveness of a noise wall in the infield area of an interchange during final design. The attenuation of ramp traffic may provide adequate insertion loss when considering the intersecting roadway’s noise contribution. When selecting wall termini details, consider maintenance access, clear zone and line of sight.
Table 264.2.1 Noise Abatement Criteria

<table>
<thead>
<tr>
<th>Activity Category</th>
<th>Activity Leq(h)</th>
<th>Evaluation location</th>
<th>Description of activity category</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>57 56</td>
<td>Exterior</td>
<td>Lands on which serenity and quiet are of extraordinary significance and serve an important public need and where the preservation of those qualities is essential if the area is to continue to serve its intended purpose.</td>
</tr>
<tr>
<td>B</td>
<td>67 66</td>
<td>Exterior</td>
<td>Residential</td>
</tr>
<tr>
<td>C</td>
<td>67 66</td>
<td>Exterior</td>
<td>Active sports areas, amphitheaters, auditoriums, campgrounds, cemeteries, day care centers, hospitals, libraries, medical facilities, parks, picnic areas, places of worship, playgrounds, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, recreational areas, Section 4(f) sites, schools, television studios, trails, and trail crossings.</td>
</tr>
<tr>
<td>D</td>
<td>52 51</td>
<td>Interior</td>
<td>Auditoriums, day care centers, hospitals, libraries, medical facilities, places of worship, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, schools, and television studios.</td>
</tr>
<tr>
<td>E</td>
<td>72 71</td>
<td>Exterior</td>
<td>Hotels, motels, offices, restaurants/bars, and other developed lands, properties or activities not included in A-D or F.</td>
</tr>
<tr>
<td>F</td>
<td>- -</td>
<td>-</td>
<td>Agriculture, airports, bus yards, emergency services, industrial, logging, maintenance facilities, manufacturing, mining, rail yards, retail facilities, shipyards, utilities (water resources, water treatment, electrical), and warehousing.</td>
</tr>
<tr>
<td>G</td>
<td>- -</td>
<td>-</td>
<td>Undeveloped lands that are not permitted.</td>
</tr>
</tbody>
</table>

Notes:

1. Based on Table 1 of 23 CFR Part 772
2. Activity Leq(h) criteria values are for impact determination only, and are not design standards for noise abatement measures.
3. Activity Category B, C and E include undeveloped lands permitted for these activities.
4. FDOT defines that a substantial noise increase occurs when the existing noise level is predicted to be exceeded by 15 decibels or more as a result of the transportation improvement project. When this occurs, the requirement for abatement consideration will be followed.
264.2.3 Final Noise Abatement Measures

Document the final noise abatement measures in the environmental re-evaluation and the NSR Addendum prior to construction advertisement. Refer to Part 2, Chapter 18 of the PD&E Manual for required documentation in the NSR Addendum.

Modification for Non-Conventional Projects:

Replace the above paragraph with the following:

Any modifications to noise abatement locations, noise wall types, lengths and heights must be documented in the NSR Addendum for approval by the Department prior to beginning noise wall construction.

The District Noise Specialist will verify that the noise walls shown in the contract plans comply with the final noise abatement measures included in the NSR Addendum.

The District Environmental Management Office will ensure that the final noise abatement measures are reflected in the re-evaluation of the Environmental Document and will obtain concurrence from OEM, if appropriate.

264.3 Perimeter Walls

Modification for Non-Conventional Projects:

Delete FDM 264.1.2 and replace with the following:

See the RFP for perimeter wall requirements. If an Alternative Technical Concept is proposed that changes the horizontal or vertical alignments depicted in the Concept Plans, any associated required changes to the perimeter wall locations must also be addressed. Any modifications/additions to perimeter wall location requirements depicted in the RFP must be assessed by the Department based on the information provided by the Design-Build Firm and are subject to Department approval. The Design-Build Firm must coordinate with the District Environmental Management Office to ensure proper public involvement occurs during final design.

Perimeter walls provide a barrier between a highway and adjacent properties; however, they are not intended to provide any measurable noise reduction. Benefits of perimeter walls include:
(1) minimizing visual impacts,
(2) providing a visual screen when existing vegetation is removed,
(3) providing a physical separation,
(4) maintaining access control restrictions.

The initial assessment for the use of a perimeter wall would typically be performed during the PD&E phase and documented in a Perimeter Wall Justification Report (PWJR). The final decision for the use of a perimeter wall is made during final design when the conditions and cost are available for consideration. Add decisions made during final design to the PWJR by addendum. See the Standard Plans Instructions, Index 534-250 design requirements. See LRFD Section 15 and SDG, Sections 3.16 and 3.18 for the design criteria.

264.3.1 Consideration of Perimeter Walls

Perimeter walls may be considered:

(1) On new construction and reconstruction projects when requested by a local municipality or group of directly affected property owners. The distance from the edge of the proposed travel lane to the closest portion of the adjacent structure should be less than 150 feet; and when one or more of the following are met:

- The capacity of an existing highway is expanded by adding lanes to the outside.
- Horizontal and/or vertical alignment of an existing highway is significantly altered as defined in the PD&E Manual (Part 2, Chapter 18, Section 18.1.3.1 Type I Projects).
- The highway project is proposed on a new alignment or location.
- Existing vegetation or other visual barriers are removed.

(2) Around Department facilities (e.g., rest areas, weigh stations), to separate the facility from adjacent land uses.

Consider the following factors when determining if a requested perimeter wall would provide a benefit:

(1) Functional Classification: Perimeter walls will not be recommended on arterial roadways where multiple openings would be required to maintain access.
(2) Context Classification; e.g., dense residential, educational facilities, recreation areas. Land on which the structure is located should be immediately adjacent to the R/W.

(3) Highway traffic is visible from the adjacent properties.

(4) No new Right of Way is required to construct the wall (further consideration will be made if Department is granted an easement from adjacent properties).

(5) Constructability, safety, cost, access, drainage and utility conflicts.

(6) Cost of perimeter wall must not exceed $25,000 for each adjacent property, including the cost of utility relocation.

To assure consistent application of these guidelines, partial or complete funding from third party sources will not be accepted and no custom designs are allowed.

See SDG, Section 3.18 for additional limitations on where perimeter walls may be located.

264.3.2 Restrictions on Consideration of Perimeter Walls

Perimeter walls are not considered on the following conditions unless an exception is granted by the Assistant Secretary of Engineering and Operations:

(1) Retrofitting existing conditions where highway improvements are not proposed,

(2) Mitigation of environmental impacts,

(3) Building(s) that received a building permit after the Date of Public Knowledge.

264.3.3 Local Municipality Concurrence

The Department will approach the local government during the design phase of the project to seek concurrence on the inclusion of proposed perimeter wall; including location and aesthetics. The local government will be responsible for obtaining support from the majority (simple majority) of the adjacent residents/property owners prior to construction of a perimeter wall. The local government or land owner assumes responsibility for maintenance and structural repairs of perimeter walls located on non-FDOT owned lands.

The local government or land owner will provide formal concurrence with the recommendation (resolution or letter) and a Maintenance Agreement for the perimeter wall, if applicable. Include these documents in the PWJR Addendum.
264.4 Public Involvement

Public coordination is often necessary to finalize wall locations, length and heights, color, textures and other aesthetic features. Coordinate required public involvement activities with the District Public Involvement or Community Liaison Coordinator.

264.4.1 Noise Walls

Conduct a written survey to establish that a simple majority of the benefited receptors are in favor of the construction of the noise wall. If the public is not in favor, the Department may elect not to build the wall. The Department will make the final determination on the use of noise walls if consensus cannot be reached by a neighborhood. This survey is typically conducted during final design, but may have occurred during the PD&E phase. Coordinate survey issues with the District Environmental Management Office.

Noise walls located on arterial roadways can potentially impact access. The ability to construct an effective noise wall can depend on an individual property owner’s willingness to sign a right of way indenture allowing access to be cut off or modified. For these conditions, it is a general practice to obtain a written statement from each affected property owner demonstrating support for the noise wall. If an adjacent property owner declines to sign the indenture, evaluate alternative noise wall layouts to determine the effectiveness of noise abatement on the project segment. Document in the NSR Addendum that the noise wall is not feasible if the insertion loss criteria cannot be met.

264.4.2 Perimeter Walls

Coordination with the local government for the identification and design of perimeter walls may require public involvement. Public involvement may be necessary to finalize wall locations and aesthetic features, especially if there are substantial changes to conditions or previously requested needs. Coordinate required public involvement activities with the District Public Involvement or Community Liaison Coordinator.

Perimeter walls located on arterial roadways can potentially impact access. The ability to construct perimeter wall(s) can depend on an individual property owner’s willingness to sign a right of way indenture allowing access to be cut off or modified. For these type projects, it is a general practice to obtain a written statement from each affected property owner demonstrating support for the perimeter wall. If an adjacent property owner(s) declines to sign the indenture the Department may elect not to build the perimeter wall. Document the final determination in the PWJR Addendum if the perimeter wall is not feasible.

264-Noise Walls and Perimeter Walls
264.4.3 Outdoor Advertising Signs

Section 479.25, F.S. “Erection of noise-attenuation barrier blocking view of sign; procedures; application”, provides procedures and requirements for allowing permitted, conforming, lawfully erected outdoor advertising signs to be increased in height if visibility is blocked due to construction of noise walls (or “noise attenuation barriers” as referred to in the statute). The statute also provides procedures that address various coordination requirements (e.g., notification requirements, survey requirements, public hearing requirements, and approval requirements) for the involved parties. The involved parties include the Department, the local government or local jurisdiction, and the benefited receptors (or “impacted property owners” as referred to in the statute). Refer to Part 1, Chapter 11 Public Involvement, of the PD&E Manual for additional details about meeting notification requirements.
265 Reinforced Concrete Box and Three-Sided Culverts

265.1 General

The Department recognizes three types of culverts;

- Round and elliptical reinforced concrete pipe,
- Concrete box culverts (four-sided), and
- Three-sided concrete culverts.

This chapter presents the minimum requirements for concrete box culverts and three-sided concrete culverts, both of which are classified as Category 1 structures in accordance with FDM 121. It is not possible to provide prescriptive requirements for all conditions, so guidance provided in this chapter is for typical designs. Each location will usually have some unique character (e.g., floods, scour, surroundings, salt water, historic character). Unique environments need to be thoroughly evaluated and all environmental requirements satisfied.

The procedure for the hydraulic analysis of culverts differs based on whether the culvert is located at a riverine or tidal crossing. Refer to Chapter 4 of the Drainage Manual for the appropriate hydraulic analysis and documentation requirements.

Definitions of terms used in this chapter include the following:

Culverts are structures under the roadway with an interior width of less than or equal to 20 feet. The interior width is measured along the centerline of the roadway from face-to-face (inside) of the extreme abutments or sidewalls.

The National Bridge Inspection Standards classify the following culverts as bridge-sized (a.k.a., bridge culverts):

- Box and three-sided culverts with a clear opening measured along the center of the roadway > 20 feet, or between the extreme ends of openings for multiple boxes.
- Also includes multiple pipes where the clear distance between openings is less than ½ of the smaller adjacent opening.

Figure 265.1.1 provides an illustration of a single-span and a multi-span bridge culvert.
Figure 265.1.1 Examples of Bridge Culverts

Single-Span Bridge Culvert

Section A-A

Section B-B

Multi-Span Bridge Culverts
Concrete box culverts (four-sided) typically have rectangular cross sections. An arch or arch-topped culvert is considered a box culvert if the “sidewalls” are built monolithic with the bottom (invert) slab. Two-piece (four-sided) box culverts are permitted with a simply supported top slab, which is keyed into a monolithic three-sided bottom section. Concrete box culverts are typically used where the streambed is earth or granular soil and rock is not close enough to the streambed to directly support the structure.

Three-sided concrete culverts may be rectangular in shape or a frame with varying wall and slab thickness or an arched or arch-topped structure. These structures have separate foundations with spread footings supported by earth, rock or piles. The largest culverts are typically not boxes; rather they are frames or arches. Use of three-sided concrete culverts where rock is not at or near the streambed requires pile support for the footings or some other form of positive scour protection. Three-sided concrete culverts on spread footings may be used for railroads, wildlife crossings, bicycle/pedestrian/equestrian/golf cart paths, and other uses that do not convey water or have scour vulnerability.

Clear span is the perpendicular distance between the inside face of the sidewalls. The maximum clear span recommended for a concrete box culvert is 24 feet.

Design span for non-skewed culverts is the perpendicular distance between the centerline of the sidewalls. For culvert units with skewed ends, the design span of end sections is the distance between the centerlines of the sidewalls measured parallel to the skewed end.

265.2 Structure Type Selection

Determine the most appropriate type of short-span structure. The basic choices are a corrugated metal structure, concrete box culvert, concrete frame or arch, and a short-span bridge. While the site conditions are the primary deciding factor for structure selection, aesthetics, constructability and economics are also very important.

Proper selection of the feasible structure alternatives is based on site and project-specific parameters, including but not limited to:

1. Vertical and horizontal clearance requirements
2. Available “beam” (top slab) depth
3. Maintenance and protection of traffic requirements (e.g., phase construction)
4. Construction constraints (e.g., water diversion requirements)
5. Foundation requirements
(6) Environmental concerns (e.g., natural streambed)
(7) Desired aesthetic treatments (e.g., arch appearance)
(8) Geometric limitations (e.g., skew angle, right of way restrictions, utilities)

Concrete culverts are usually more expensive in initial cost than corrugated metal structures. However, concrete culverts are the preferred alternative when considering suitability to the site and life-cycle cost estimates. The advantages of concrete culverts are superior durability for most environmental conditions, greater resistance to corrosion and damage due to debris, greater hydraulic efficiency, and typically longer service life.

Concrete culverts are typically the least expensive option at sites with limited headroom. Smaller corrugated metal structures typically require a minimum height of soil cover of 2 feet and for some structures the soil cover increases to 4 feet or more depending on size and shape. Concrete culverts, frames, and arches can have the least amount of cover by placing a minimum of 3 inches of asphalt pavement directly on the top slab. Corrugated metal structures will also typically require taller structures than concrete box culverts, to provide adequate waterway area below design high water due to their arched shapes. If a corrugated metal structure is a viable option, an engineering evaluation and cost analysis should be performed in consultation with the District Drainage Engineer.

Single-cell and multi-cell concrete box culverts with barrel spans less than 15 feet, are often the most cost-effective structural solution where debris collection and aesthetics are not a major concern. Three-sided culverts may be appropriate for single spans exceeding 20 feet where scour is not a concern.

The use of a short-span bridge should be investigated before a final determination is made to use a large concrete culvert. Possible advantages of a bridge may be minimized work in the stream, speed of erection, minimized interference with the existing structure foundation, and easier phased construction. See FDM 121 for procedural steps on planning short-span bridges.

265.2.1 Precast Concrete Culverts

Precasting permits efficient mass production of concrete units. The advantages often offset the cost of handling and transporting the units to the site. Precast units are often limited to certain sizes and skews due to forms, transportation and handling concerns. Skewed units typically need more reinforcement and thicker slabs and/or sidewalls. The use of skewed units will increase the cost of the culvert due to increased fabrication costs.

Skewed end units are sometimes required to satisfy right of way constraints and/or phased construction requirements for skewed alignments. In the event they are necessary, skewed
Precast culvert units must be designed for the skewed-end design span. Precast manufacturers should be contacted for information on maximum skews available.

Precast culverts may occasionally need to be placed on moderate or steep grades. No maximum slope is recommended for box culverts because of the need to match the slope of the streambed. Three-sided box culverts and the frames and arches should be limited to a maximum slope of 2%. Precast manufacturers should be contacted for the maximum grade that can be fabricated if a grade larger than 2% is proposed. If matching a steeper slope is necessary, the ends of the precast units must be beveled to create vertical joints and the footings may be stepped or the length of the sidewall varied.

Provide a 2 to 4-inch gap between the walls of adjacent cells when two or more single-cell, precast concrete culverts are placed side-by-side. Fill this gap with Class I (non-structural) concrete, non-excavatable, flowable fill or non-shrink grout.

All manufacturers must have approved precast drainage product facilities in accordance with Section 6.3 of the Materials Manual.

265.2.2 Concrete Box Culverts

A cast-in-place culvert must be designed and detailed in the contract plans when a concrete box culvert is selected as the appropriate structure for the site. A precast concrete box culvert alternative is permitted during construction unless specifically excluded in the contract plans. Speed of erection, maintenance of traffic, stream diversion problems, and site constraints can be minimized when utilizing precast culverts.

265.2.3 Three-Sided Concrete Culverts

There are various types of proprietary, precast concrete frames, arch topped units, and arches available. These units are typically used when larger culverts (spans ≥ 20 feet) are required. They can only be considered when scour protection is adequately provided or aesthetics are a consideration. They may be placed on spread footings with an invert slab, footings on rock, or pile-supported footings. The advantages of the precast concrete arches and frames are the same as for the precast concrete box culverts, except that longer spans (up to 48 feet) are possible.

A precast culvert should be the preferred option when a three-sided concrete culvert is selected as the appropriate structure for the site. A cast-in-place reinforced concrete foundation and the channel lining must be designed and detailed in the contract plans. The final design of the precast three-sided culvert structure and any necessary foundation
modifications must be completed by the Contractor’s Engineer of Record (usually the manufacturer).

Sizes of precast units that are common to more than one manufacturer should be selected. Dimensions of the sidewalls and top slab, reinforcement size and spacing should not be shown on the plans, unless necessary. If sidewall or top slab dimensions are dictated by site conditions, only show the affected dimensions and indicate if they are minimums, maximums, or specifically required dimensions. The assumed top slab dimension used to determine fill limits should be shown in the contract plans.

Include a note in the contract plans requiring the Contractor to provide all design details not included in the contract plans. This method should result in the most economical culvert design.

265.2.3.1 Precast Arch and Arch-Topped Units

Consider the following when selecting a precast arch or arch-topped culvert:

(1) Aesthetics concerns may make the use of arch-shaped units desirable. The use of arch-shaped facade panels is not recommended, especially for hydraulic openings due to snagging of debris.

(2) The amount of skew that can be fabricated varies. Some manufacturers prefer to produce only 0° skew units. The maximum skew at which a precast unit should be fabricated is 45°. The culvert orientation to the centerline of the highway may be at a skew greater than 45°.

(3) An arch unit is preferable for a grade separation for highway vehicles or railroads, when a dry conveyance environment is necessary. The arch shape eliminates any ponding problems above the culvert without special fabrication or field adjustments that would be required for flat-topped culverts.

(4) Arch units are preferred in cases where fills above the precast units exceed 20 feet.

(5) Precast arch-topped units are currently available in spans up to 48 feet.

(6) Arched units have been used as liners for old masonry or concrete arches in other States. After the construction of a pedestal wall at the base, the units are slid into place. The void between the existing arch and the liner is filled with grout installed through fittings cast into the liner units.

(7) Large arch units may be shipped in two pieces and assembled on site. Three-piece units are not permitted.
265.2.3.2 Precast Frame Units

Consider the following when selecting a precast frame (rectangular) culvert:

1. Many of precast frame-type units can be fabricated with skew angles up to 45°. This characteristic is useful when phased construction is proposed. When used for phased construction with shallow highway pavements, no temporary shoring is needed at the phase construction joint to support the fill or pavement.

2. Frame units provide a simpler traffic railing/headwall connection than arch-topped units.

3. Frame units provide a hydraulic opening greater than arches of equivalent clear span when flowing full.

4. Precast frame units can be fabricated by some manufacturers with any increment of span length up to 40 feet, although typical span length increments are 2 feet.

5. Maximum rise of the units is normally limited to 10 feet due to shipping and handling considerations. Investigate the need for a pedestal wall when a larger rise is necessary.

265.3 Foundation Design

All structures discussed in this chapter, regardless of span and height of fill, are considered buried structures in regard to foundation design. There is no requirement for seismic analysis; however, this may change in the future as more research is completed.

For culverts with spans greater than or equal to 20 feet, foundation recommendations are provided in the Bridge Geotechnical Report (Phase I) and included in the Bridge Development Report (BDR). Foundation design parameters for culverts with spans less than 20 feet are provided by the District Geotechnical Engineer or the Department’s Geotechnical Engineering consultant. Foundation recommendations and design parameters must include factored bearing resistance, predicted total and differential settlements, and any required excavation and replacement to ensure proper behavior of the foundation.

The District Geotechnical Engineer or the District Structures Design Office should be consulted to determine the proper foundation treatment.
Modification for Non-Conventional Projects:

Delete FDM 265.3 above and replace with the following:

265.3 Foundation Design

All structures discussed in this chapter, regardless of span and height of fill, are considered buried structures in regard to foundation design. There is no requirement for seismic analysis. The EOR will coordinate the foundation recommendations with the geotechnical engineer for the project. Foundation design parameters must be shown in the contract plan set and will include factored bearing resistance, predicted total and differential settlements, and any required excavation and replacement to ensure proper behavior of the foundation.

265.3.1 Rock Foundations

In the unusual case where sound rock is at or near the surface of a streambed, an invert slab is not required and a three-sided culvert would generally be the appropriate structure selected. Concrete footings are either keyed or doweled into rock based on consultation with an Engineering Geologist and the District Geotechnical Engineer.

The wall height should be constant and the footing height varied when the elevation of the rock surface varies by 2 feet or less. If the variation in rock surface elevation exceeds 2 feet, the height of the culvert wall may be varied at a construction joint or at a precast segment joint. In some cases, it may be necessary to use walls of unequal heights in the same segment, but this should generally be avoided.

265.3.2 Earth or Granular Soil Foundations

In most cases a concrete culvert will not be founded on rock, so a box culvert (four-sided) with an integral invert slab should be the preferred foundation treatment. In areas of compact soil and low stream velocities, three-sided concrete culverts may be used if they have positive scour protection such as piles or channel lining with concrete-filled mattresses, gabions or riprap rubble, and spread footings founded below the calculated scour depth. Three-sided concrete culverts located in stream beds, with spans equal to or exceeding 20 feet, must have pile supported footings when the structure is not founded on sound rock.

Concrete box culverts should never be founded partially on rock and partially on earth to avoid differential settlement. If rock is encountered in a limited area, it should be removed to a minimum depth of 12 inches below the bottom of the bottom slab and backfilled with...
either select granular material or crushed stone. Concrete culverts are rigid frames and do not perform well when subjected to significant differential settlement due to a redistribution of moments. All concrete box culverts should have a designed undercut and backfill. Consult the District Geotechnical Engineer to determine the depth of the undercut and type of backfill material required to prevent excessive differential settlement. Any required undercut and backfill must be shown on the plans.

A concrete box culvert can be considered if settlement is expected and the foundation material is fairly uniform. The culvert should be designed to accommodate additional dead load due to subsequent wearing surface(s) which may be needed to accommodate the settlement of the box. Precast culverts require mechanical connections between units when significant differential settlement is anticipated. *Standard Plans, Index 400-291* provides criteria for cast-in-place link slab to satisfy this requirement when joint openings are expected to exceed 1/8 inch. The District Geotechnical Engineer or the Department’s Geotechnical Engineering consultant should provide the anticipated differential settlement, which should be included in the contract plans.

If the foundation material is extremely poor and it is desirable to limit settlement, coordinate with the District Geotechnical Engineer to determine the best course of action. A typical remedy might be removal of unsuitable or unstable material and replacement with suitable material. All required remedies must be shown on the plans.

265.3.3 Three-sided Culvert Foundation Design

Provide a cast-in-place footing design in the contract plans when a three-sided structure is selected for a site. There are several types of culverts that may meet the project specifications. Determine which specific type of unit would best fit that particular application and use those vertical and horizontal reactions for design of the foundations. Consider contacting known fabricators for design reactions. If no specific type of unit is determined as most appropriate, a conservative estimate of the design reactions for all types should be used and the reactions included in the contract plans.

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete FDM 265.3.3 and replace with the following:</td>
</tr>
<tr>
<td>265.3.3 Three-sided Culvert Foundation Design</td>
</tr>
<tr>
<td>When a three-sided structure is selected for a site, the specific culvert details including the cast-in-place footing design must be included in the contract plans.</td>
</tr>
</tbody>
</table>
265.4 Wingwalls

A wingwall is a retaining wall placed adjacent to a culvert to retain fill and to a lesser extent direct water. Wingwalls are preferably cast-in-place, but precast wingwalls may be considered on a project by project basis. Wingwalls are generally designed as cantilevered retaining walls. Precast counterfort and binwalls may also be considered for design of wingwalls. Cast-in-place wingwall designs are provided by the Department’s standard box culvert computer program.

Wingwall alignment is highly dependent on-site conditions and should be evaluated on a case-by-case basis. The angle(s) of the wall(s) on the upstream end should direct the water into the culvert. It is also desirable to have the top of the wall elevation above the design high water elevation to prevent overtopping of the wall.

Consider potential conflicts with R/W limits and utilities when precast wingwalls are permitted. The footprint of the footing and excavation, especially for bin type walls, can be extensive. Notes should be placed on the plans alerting the Contractor to these requirements when they exist. Due to skew or grade differences between the cast-in-place or precast culvert units and precast wingwalls, it is necessary to provide a cast-in-place closure pour between the culvert end unit and precast wingwalls. A closure pour is not required if cast-in-place wingwalls are used.

When precast wingwalls are permitted, the cost is included in the cost of the culvert barrel. No separate item is required but the estimated concrete and reinforcing steel quantities for a cast-in-place design should be included in the contract plans.

| Modification for Non-Conventional Projects: |
| Delete FDM 265.4 above and replace with the following: |
| 265.4 Wingwalls |
| Precast wingwalls will only be permitted when specifically allowed in the RFP. The specific culvert details must be included in the contract plans. |

265.5 Headwalls/Edge Beams

Headwalls are normally used on all culverts. In deep fills a headwall helps retain the embankment. In shallow fills the headwall may retain the roadway and provide the anchorage area for the railing system.
Headwalls should be cast-in-place and attached to precast culvert end segments in accordance with Standard Plans, Index 400-291. Headwalls one foot or less in height with no railing attachment for single barrel precast culverts may be precast. If a curb must be placed on a culvert without a sidewalk, the headwall must be cast-in-place to allow for the tie-in of the curb's anchor bar, unless the curb is also cast at the precast facility.

The typical maximum height of headwalls is 3 feet. Greater heights are attainable but are only used in special cases. Headwall heights greater than 2 feet above the top slab require an independent transverse analysis, which is not provided by the FDOT box culvert program.

Concrete culverts with skewed ends may require additional stiffening of the top and bottom slabs by what is most commonly called an "edge beam". An edge beam is similar to a headwall or cutoff wall. The headwall may be used to anchor metal traffic railing posts and traffic railings or retain earth fill, as well as stiffening the top slab of culverts that lose their rigid frame action as a result of having a skewed end.

When additional strength is required in the concrete edge beam, use the following criteria:

(1) If there is a 1-on-2 slope to the edge beam, it will be more economical to increase the depth of the edge beam in order to meet the required design.

(2) When the edge beam is at shoulder elevation (anchoring guard rail and traffic railing), the edge beam height should be maintained and the width of the edge beam should be increased.

265.6 Cutoff Walls

A cutoff wall is required in all culverts with invert slabs to prevent water from undermining the culvert. The cutoff wall should be a minimum 24 inches below the bottom of the invert slab or to the top of sound rock if the rock is closer. Investigate the need for deeper cutoff walls when culvert is founded on highly permeable soils or with significant hydraulic gradients. The cutoff wall may also act to stiffen the bottom slab for skewed box culverts.

Cutoff walls must always be specified at each end of the barrel. When a concrete apron is provided, show an additional cutoff wall at the end of the apron. For three-sided culverts, where the apron is made continuous with the barrel invert slab, the cutoff wall is only required at the end of the apron. The wingwall footings should have toe walls extending close to the bottom of the cutoff wall to prevent scour around the edges of the cutoff wall.

When a precast culvert is specified, the cutoff wall must be cast-in-place. The cost of the cutoff wall is included in the cost of the culvert barrel. No separate item is required but...
the estimated concrete and reinforcing steel quantities should be included in the contract plans.

265.7 Aprons

Box culverts can significantly increase the stream flow velocity because the concrete has a roughness coefficient significantly lower (i.e., smoother) than the streambed and banks. To dissipate this increase in energy and to prevent scour, a riprap rubble or other type of revetment apron may be required at the ends of some culverts. The District Drainage Engineer should be consulted to determine the appropriate apron requirements.

```
Modification for Non-Conventional Projects:
Delete the last sentence in above paragraph and see RFP for requirements.
```

The apron must be cast-in-place when a precast culvert is specified with a concrete apron. The cost of the apron is included in the cost of the culvert barrel. No separate item is required but the estimated concrete and reinforcing steel quantities should be included in the contract plans.

```
Modification for Non-Conventional Projects:
Delete the above paragraph and replace with the following:
When a precast culvert is specified with a concrete apron, the apron must be cast-in-place.
```

265.8 Subbase Drainage

In some situations where there is low fill (< 12 inches below the base course) Standard Plans, Index 400-289 requires additional friable base or coarse aggregate material above the top and along the sides of the culvert to eliminate maintenance problems.

265.9 Joint Waterproofing

Culverts will occasionally be used to allow the passage of things other than water, including but not limited to pedestrians, bicycles, trains, golf carts, wildlife, or farm animals. In cases where it is desirable to have a dry environment, a waterproof joint wrap
should be used to cover the joints between precast culvert units or to cover the construction joints in cast-in-place culverts.

Even though a joint sealer is always placed between individual precast concrete culvert units and the units are pulled tightly together, water may seep through the joint. The minimum requirement for waterproofing these joints is to provide an external sealing band in accordance with ASTM C 877, centered on the joints, covering the top slab, and then extending down the sidewalls to the footing. The purpose of the waterproofing membrane is to restrict seepage of water or migration of backfill material through the joints in the culverts and it is not intended to protect the concrete.

The external sealing band is mandatory for precast three-sided culverts under Section 407 of the Standard Specifications but will need to be included as a note in the contract plans when required for box culverts.

265.10 Traffic Railings

For information regarding roadside barriers or traffic railings refer to FDM 215.

265.11 Design Requirements for Concrete Culverts

Refer to the Chapter 3 of the Structures Design Guidelines for design and analysis requirements.

265.12 Design Details

Provide a complete cast-in-place design in the contract plans when a box concrete culvert is proposed for a site. Standard details for concrete box culverts are provided in the Standard Plans, Index 400-289. The contractor is usually permitted to substitute precast concrete box culverts for cast-in-place box culverts in accordance with Section 410 of the Standard Specifications. The contractor may select a standard precast box culvert design in accordance with Standard Plans, Index 400-292 or provide a custom design. Design and fabrication details for precast box culverts, including calculations for custom designs, must also comply with the requirements of Standard Plans, Index 400-291 and be submitted to the Engineer of Record for approval.

Provide either a complete cast-in-place design or a conceptual precast barrel design with a complete foundation and wingwall design, in the contract plans when a three-sided concrete culvert is proposed for a site. The contractor is permitted to substitute precast three-sided culverts for cast-in-place three-sided culverts in accordance with Section 407.
of the *Standard Specifications*. Design and fabrication details for precast three-sided culverts, including calculations, must be submitted to the Engineer of Record for approval. Do not place wildlife shelves in hydraulic structures.

The bar designations in *Table 265.12.1* should be used for box culvert reinforcement:
Table 265.12.1 Bar Identification Schedule

<table>
<thead>
<tr>
<th>C.I.P. (LRFD) Index 400-289</th>
<th>Precast (LRFD) Index 400-292</th>
<th>Description / Bar Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>As1</td>
<td>Top Corner Bars</td>
</tr>
<tr>
<td>106</td>
<td>As1</td>
<td>Bottom Corner Bars</td>
</tr>
<tr>
<td>102</td>
<td>As2</td>
<td>Top Slab, inside face transverse bars</td>
</tr>
<tr>
<td>103</td>
<td>As3</td>
<td>Bottom Slab, inside face transverse bars</td>
</tr>
<tr>
<td>101</td>
<td>As1/As7</td>
<td>Top Slab, outside face transverse bars</td>
</tr>
<tr>
<td>104</td>
<td>As1/As8</td>
<td>Bottom Slab, outside face transverse bars</td>
</tr>
<tr>
<td>108</td>
<td>As4</td>
<td>Exterior wall, inside face vertical bars</td>
</tr>
<tr>
<td>105/106</td>
<td>As1</td>
<td>Exterior wall, outside face vertical bars</td>
</tr>
<tr>
<td>107</td>
<td>-</td>
<td>Interior wall, vertical bars both faces</td>
</tr>
<tr>
<td>110/111</td>
<td>As6/As9</td>
<td>Top Slab longitudinal bars (temperature reinf.)</td>
</tr>
<tr>
<td>109/112</td>
<td>As9</td>
<td>Bottom Slab longitudinal bars (temperature reinf.)</td>
</tr>
<tr>
<td>113/114</td>
<td></td>
<td>Exterior wall longitudinal bars (temperature reinf.)</td>
</tr>
<tr>
<td>115/116…</td>
<td></td>
<td>Interior wall longitudinal bars (temperature reinf.)</td>
</tr>
<tr>
<td>111</td>
<td>As5</td>
<td>Top Slab inside face longitudinal bars (design distribution reinforcement)</td>
</tr>
</tbody>
</table>

Additional reinforcing bars and designations must be added as required. No standardized bar designations are provided for three-sided culverts.

Modification for Non-Conventional Projects:

Delete *FDM 265.12* and replace with the following:

265.12 Design Details

Provide complete details for the proposed concrete culvert in the contract plans.
265.13 Computer Design and Analysis Programs

The Department’s LRFD Box Culvert Program (Mathcad) from the Structures Design Office website is available for LRFD designs. This program analyzes monolithic single or multi-barrel box culverts with prismatic members and integral bottom slabs only. The program requires input for all member thicknesses, material properties and reinforcing area utilizing a trial and error design methodology.

Other computer programs are available for design of reinforced concrete culverts such as BOXCAR and CANDE. Generally, these other computer programs should only be used for preliminary designs or independent quality assurance checks. Consult with the State Structures Design Office before using one of these other programs in lieu of the FDOT box culvert program.

265.14 Design and Shop Drawing Approvals

The Engineer of Record for the contract plans has design and shop drawing approval authority for precast concrete box and three-sided culverts. All calculations and shop drawings require a quality assurance review for general compliance of contract requirements and for suitability of the design for the given design conditions.

Standard precast concrete box culvert designs are available in Standard Plans, Index 400-292 for a limited number of box culvert sizes. Modification of FDOT standard box culverts or design of special size box or three-sided culverts is delegated to Contractor’s Engineer of Record in accordance with the Section 407 and Section 410 of the Standard Specifications. The Contractor is responsible for providing all design computations and details for these units.

Modification for Non-Conventional Projects:

Delete **FDM 265.14** and see RFP for Shop Drawing Approval requirements.
266 Bicycle and Pedestrian Bridges

266.1 General

A separate bicycle and pedestrian bridge may be necessary to provide continuity to sidewalks, bicycle lanes and shared use paths. See FDM 222, 223, and 224 for information on bicycle and pedestrian facilities.

See Chapter 10 of the Structures Design Guidelines (SDG) for information on pedestrian bridges.

266.2 Design Criteria

Design bicycle and pedestrian bridges in accordance with the following criteria:

(1) Clear width for bridges is:
 (a) 8-foot minimum on a pedestrian structure; 12-foot desirable
 (b) 12-foot minimum on a shared use path structure; 16-foot desirable
 (c) Minimum clear width is the width of the approach facility when the facility is wider than the minimums above; desirable clear width is the width of the approach facility plus four feet (2-foot wide clear area on each side).

(2) Minimum vertical clearance under pedestrian bridges must be in accordance with FDM 260.6 and FDM 260.8.

(3) Account for future widening of the roadway below when determining required lateral offset (per FDM 215.2.4).

(4) Ramp grades should not exceed 5%, but in no case be more than 8.33% with a maximum 30-inch rise.
 (a) Provide level landings that are 5-feet long at the top and bottom portions of the ramp.
 (b) Provide intermediate level landings that are 5-feet long when the ramp length results in a rise that exceeds 30-inches.

(5) Provide full-length pedestrian ADA handrails on both sides of pedestrian ramps.

(6) Consider providing stairways in addition to ramps.

(7) Provide railing and fencing options in accordance with the SDG, Chapter 10.
(a) See *FDM 222, Figures 222.4.6* through *222.4.8* for vehicular fencing options.

(b) Provide full or partial screening on pedestrian bridges crossing FDOT right of way in order to reduce the likelihood of objects being dropped or thrown onto the roadway below. See *Figure 266.2.1* for example of full screening.

(c) Pedestrian bridges on FDOT right of way but not crossing FDOT right of way are not required to be screened.

(d) Check with local authorities for guidance on screening for FDOT pedestrian bridges crossing local rights of way.

(e) The use of chain link fence on ramps of the pedestrian bridges will be determined on a project-by-project basis.

Modification for Non-Conventional Projects:

Add the following sentence:

(f) When fencing is required, the limits of fencing is from the beginning of the approach slab at Begin Bridge to the end of the approach slab at End Bridge, unless otherwise indicated in the RFP.

An Independent Peer Review meeting the requirements of *FDM 121.12* is required for non-FDOT owned projects in which the pedestrian bridge is constructed within or over State Road right-of-way, regardless of the funding source.
Figure 266.2.1 Pedestrian or Shared Use Path Bridge Typical Section

* Clear width in compliance with FDM 266.2.

1. Pedestrian Handrails may be required. Handrails must be installed per the requirements of the Americans with Disabilities Act (ADA) Standards for Transportation Facilities.

2. Other Superstructure Configurations may be used provided an 8 ft. minimum headroom is maintained.
266.3 Prefabricated Steel Truss Bridges on FDOT Projects

In many situations it makes good engineering and economic sense to utilize prefabricated steel truss bridges for pedestrian crossings. These bridges can be stand-alone structures or a hybrid structure with adjoining spans of other types (FIB, deck slab, steel l-girder, etc.). The provisions of this article apply only to the spans on a bridge that are comprised of prefabricated steel trusses. The term steel truss bridge as applied in this article refers only to stand-alone steel truss structures or to the steel truss spans of a hybrid bridge structure.

The Department may elect to use prefabricated truss bridges on FDOT projects if the following conditions are met:

1. The steel truss span lies within a tangent horizontal alignment.
2. The maximum length of the steel truss span does not exceed 200 feet.
3. The width of the steel truss span is constant.
4. The steel truss span supports have a skew angle not to exceed 20°.

When these criteria are not met provide a complete set of bridge details in the plans.

Modification for Non-Conventional Projects:

Delete *FDM 266.3* and replace with the following:

266.3 Prefabricated Steel Truss Bridges on FDOT Projects

Prefabricated steel truss bridges can be stand-alone structures or a hybrid structure with adjoining spans of other types (FIB, deck slab, steel l-girder, etc.). The provisions of this article apply only to the spans on a bridge that are comprised of prefabricated steel trusses. The term steel truss bridge as applied in this article refers only to stand-alone steel truss structures or to the steel truss spans of a hybrid bridge structure.

See RFP for requirements.
266.3.1 Qualification of Prefabricated Steel Truss Pedestrian Bridge Producers

Use prefabricated steel truss pedestrian bridges from providers included on the Department’s List of Qualified Metal Fabrication Facilities. For information on the facility qualification process see Articles 11.1.5 and 11.1.6 of the FDOT Materials Manual.

266.3.2 Design and Detailing Responsibilities

The project Engineer of Record (EOR) is responsible for the design and detailing of the steel truss bridge substructure and foundation including end bents, piers, and pile foundations or spread footings. The project EOR is also responsible for the design and detailing of approach structures (non-steel truss bridge spans, walls, ramps, steps, approach slabs, etc.).

The Contractor’s EOR is responsible for the design and detailing of the steel truss bridge superstructure including trusses, deck, bridge railing, floor beams, bridge joints, bearing assemblies and anchor bolts.

Modification for Non-Conventional Projects:

Delete FDM 266.3.2 and replace with the following:

266.3.2 Design and Detailing Responsibilities

The Engineer of Record (EOR) is responsible for the design and detailing of the steel truss bridge foundation, substructure and superstructure. The EOR is also responsible for design and detailing of approach structures (non-steel truss bridge spans, walls, ramps, steps, approach slabs, etc.). Include the steel truss bridge superstructure including trusses, deck, bridge railing, floor beams, bridge joints, bearing assemblies and anchor bolts as part of the superstructure component submittal.
266.3.3 Plans Development

To allow equal opportunity for all qualified pedestrian bridge producers to participate, the pedestrian bridge plans should have the flexibility to accommodate multiple alternate superstructure designs. When a prefabricated steel truss pedestrian bridge is warranted, adhere to the following procedure when developing the plans:

(1) Using Figures 266.3.1, 266.3.2, and 266.3.3, coordinate with the District Project Manager to select allowable truss configurations, truss member shapes, and bridge cross sections. A box truss bridge cross-section is required for spans greater than 150 feet.

 If project specific aesthetic requirements warrant the use of truss configurations not included in Figure 266.3.1 the project EOR can specify additional truss configurations. However, a minimum of two steel truss pedestrian bridge producers must be capable of satisfying the aesthetic requirements.

(2) Develop a Plan and Elevation sheet and Bridge Typical Section to be submitted with the BDR/30% plans.

(3) After the BDR/30% plans have been approved, send out a Prefabricated Pedestrian Bridge Invitation to Participate (ITP) to all prefabricated pedestrian steel truss bridge producers on the Department’s List of Qualified Fabrication Facilities. Send the ITP through registered mail with return receipt to confirm delivery. Contact information for all qualified producers can be found at the following web address:

The ITP is intended to solicit qualified producers for information required to design the foundation and substructure of the steel truss pedestrian bridge. The ITP cover letter should contain the following elements with links to websites as appropriate and applicable:

- Introduction with brief project description
- Project Requirements
 - Design Specifications Requirements
 - Construction Specifications Requirements
 - Design Standards Requirements
 - Bridge Typical Section
 - Allowable Truss Options
• Painting Requirements
• Pedestrian Fence/Railing Requirements
• Vehicular Loading Requirements
• Project Specific Aesthetic Requirements
• Project Geometry including Vertical Clearance Requirements for Each Span

• Participation Requirements
• Submittal Requirements

Include the following items in the ITP package:

• Hard copy:
 o Invitation to Participate Cover Letter
 o Project Location Map
 o Plan and Elevation
 o Bridge Typical Section and Pedestrian Fence Concept
 o Pedestrian Bridge Data Sheet

• Electronic files:
 o PDF file with all of the above
 o Pedestrian Bridge Data Sheet in CADD format

For a sample Prefabricated Pedestrian Bridge ITP complete with all hard copy attachments see Example 266.3.1. To aid plan development CADD cells for the Pedestrian Bridge Data Sheet and Plan and Elevation sheet (2 of 2) are available in the FDOT Structures Cell Library. For the current FDOT CADD Software downloads follow the link below:

https://www.fdot.gov/cadd/downloads/software/software.shtm

(4) Upon delivery the pedestrian bridge, producers must acknowledge receipt of the ITP package.

(5) In order to be eligible to participate in the project the pedestrian bridge producers must provide a completed Pedestrian Bridge Data Sheet as outlined in the ITP on or before the specified due date (prior to 60% plans submittal). The completed Data Sheets must be electronically signed and sealed by the pedestrian bridge producer’s EOR for inclusion in the final plan set.
The project EOR assigns a unique sheet number to each data sheet. The sheet numbers will be identified with the prefix BP (e.g., BP-1, BP-2, BP-#) and the data sheets will be placed at the end of the numbered sequence of the bridge plans. This will allow the Pedestrian Bridge Data Sheets to have independent sheet numbers as plan development progresses.

(6) After all ITP responses are received the project EOR must design and detail the foundation and substructure to accommodate the superstructure designs of all eligible pedestrian bridge producers. The design must envelope the most extreme loading conditions and geometry of all alternates.

(7) A Public Interest Finding is required for Federal Aid projects when only one Interest for Participation letter is received.

Include the following notes in the plans:

- **Eligible Steel Truss Pedestrian Bridge Producers**

 Included in this plan set are Pedestrian Bridge Data Sheets submitted by bridge producers eligible to participate in this project. Producers who failed to submit a data sheet are excluded from participation. No Cost Savings Initiative Proposal will be accepted for the truss superstructure portion of the project. Contact information for the eligible producers is included in the data sheet.

- **Shop Drawing Submittal**

 Prior to fabrication the Contractor’s EOR must submit signed and sealed superstructure shop drawings, technical specifications, and design calculations to the Engineer for review and approval.
Figure 266.3.1 Prefabricated Pedestrian Bridge Standard Truss Configurations

TYPE 1

TYPE 2

TYPE 3

TYPE 4

TYPE 5

Figure 266.3.2 Prefabricated Pedestrian Bridge Standard Truss Member Shapes

TYPE 1 (STRUCTURAL TUBE)

TYPE 2 (STRUCTURAL PIPE)
Figure 266.3.3 Prefabricated Pedestrian Standard Bridge Cross-Sections

Modification for Non-Conventional Projects:
Delete *FDM 266.3.3* and see RFP for requirements.
Example 266.3.1 Sample Steel Truss Pedestrian Bridge Plans

Sheet 1 of 8

(prepare on Department letterhead)

FLORIDA DEPARTMENT OF TRANSPORTATION

DISTRICT 3

PREFABRICATED PEDESTRIAN BRIDGE

INVITATION TO PARTICIPATE

Project: CR 250 over Ruby Creek Pedestrian Bridge

Financial Project Number: 217664-1-52-01

Federal Aid Project Number(s): SF2-349-R

Date: March 15, 2011

Introduction:

The Florida Department of Transportation is currently preparing bid documents for the construction of a steel truss pedestrian bridge adjacent to County Road 250 crossing Ruby Creek in Jefferson County. The superstructure of the proposed bridge is to be provided by a steel truss pedestrian bridge producer who is prequalified to work on FDOT projects. This invitation to participate is being sent to all prequalified producers to solicit information needed by the project EOR to design the foundation and substructure of the proposed bridge. Enclosed are the following materials:

- Hard Copy
 - Project location map
 - Bridge Typical Section and Pedestrian Fence Concept
 - Plan and Elevation (P&E) (2 sheets)
 - Pedestrian Bridge Data Sheet

- Electronic
 - PDF file with all of the above
 - Pedestrian Bridge Data Sheet in CADD format
Example 266.3.1 Sample Steel Truss Pedestrian Bridge Plans
Sheet 2 of 8

Project Requirements:

1. **Design Specifications:**
 FDOT Structures Design Guidelines (SDG) Article 10.4.

2. **Construction Specifications:**
 FDOT Standard Specifications for Road and Bridge Construction
 https://www.fdot.gov/programmanagement/specs.shtm

3. **Standard Plans:**
 FDOT Standard Plans
 https://www.fdot.gov/design/standardplans

4. **Allowable Truss Options:** Allowable Truss options shown on P&E sheet 2 of 2 (Attached).

5. **Paint:** Paint structural steel in accordance with *Sections 560 and 975* of the *Standard Specifications*. Paint structural steel with a high performance top coat system. The color of the finish coat to be Federal Standard No. 595, Color No. 36622.

6. **Pedestrian Fence:** Bridge Fence consistent with bridge rail concept and *SDG Article 10.12*.

7. **Vehicular Loading:** Vehicular Loading per *AASHTO LRFD Guide Specifications* for the Design of Pedestrian Bridges is not required.

8. **Geometry:** For project geometry see attached P&E sheets.

Participation:

To be eligible to participate on this project pedestrian bridge producers must:

- Acknowledge receipt of this ITP
- Be on the FDOT List of Qualified Fabrication Facilities.
- Submit a response to this ITP on or before June 10, 2011 to the project EOR.

Submittal:

Provide completed pedestrian bridge data sheet as follows:

- Bearing Plate Dimensions Table – for each span provide bearing dimensions as shown to the nearest 1/8\(^{th}\) inch.
Example 266.3.1 Sample Steel Truss Pedestrian Bridge Plans
Sheet 3 of 8

- Bearing Plate Locations & Bridge Seat Elevations Table – for each substructure unit provide dimensions as shown to the nearest \(\frac{1}{8} \)th inch and bridge seat elevation to the nearest 0.001 feet.

- Bridge Reactions Table – for each span provide loads as indicated to the nearest 0.1 kip.

- Company Contact Information Table – in the contact information block provide company name, address, contact person, phone number, and e-mail address.

- Florida PE Seal and Signature – provide seal and signature of Florida PE responsible for the work.

Submit response to:

John Doe, PE
XYZ Engineers, Inc.
123 East Main Street
Tampa, Florida 33607

By submitting a response to this invitation to participate the pedestrian bridge producer is agreeing to satisfy all project requirements listed above if selected.
Example 266.3.1 Sample Steel Truss Pedestrian Bridge Plans

Sheet 4 of 8

LOCATION MAP
CR 250 OVER RUBY CREEK PEDESTRIAN BRIDGE
JEFFERSON COUNTY FLORIDA
FPN 21764-1-52-01

PROJECT LOCATION
Example 266.3.1 Sample Steel Truss Pedestrian Bridge Plans

Sheet 5 of 8

BRIDGE TYPICAL SECTION
(CR 250 Over Ruby Creek Pedestrian Bridge)

PEDESTRIAN FENCE CONCEPT
Example 266.3.1 Sample Steel Truss Pedestrian Bridge Plans

Sheet 6 of 8
Example 266.3.1 Sample Steel Truss Pedestrian Bridge Plans
Sheet 7 of 8
Example 266.3.1 Sample Steel Truss Pedestrian Bridge Plans

Sheet 8 of 8
267 Shop Drawing Submittals

267.1 Introduction

While the Contract Plans and Specifications (including Supplemental and Special Provisions) define the overall nature of the project, Shop Drawing submittal is the accepted method of approving a specific element of the work while allowing flexibility in the Contractor's means and methods. The Contract Plans and Special Provisions for the project are to identify the requirements for submittal of Shop Drawings.

Shop Drawing submittals must meet or exceed the quality level of previously approved submittals of a similar nature and be complete enough to allow for fabrication of an item without referencing any other document.

A Shop Drawing submittal for structural bridge components (e.g., steel girders, non-standard precast/prestressed beams) typically include plan and elevation views denoting the placement of a component in the structure.

Unless explicitly stated, definitions shown referencing the Standard Specifications are the same for the Design-Build Division I Specifications:

(1) **Shop Drawings**: See Specifications.
(2) **Engineer**: See Specifications.
(3) **Engineer of Record (EOR)**: See Specifications.
Modification for Non-Conventional Projects:

Delete Engineer of Record (EOR) definition and replace with the following:

(3) Engineer of Record (EOR): See Design-Build Specifications.

(4) Contractor’s Engineer of Record: See Specifications.

(5) Specialty Engineer: See Specifications.

(6) Consultant: The Professional Engineer or Engineering Firm, or the Architect or Architectural Firm, licensed in the State of Florida and under contract to the Department to perform professional services. The consultant may be the Engineer or Architect of Record or may provide services through and be subcontracted to the Engineer or Architect of Record.

(7) Architect of Record: The Architect or Architectural Firm registered in the State of Florida that performs services for the Department in connection with the design and construction of buildings.

Modification for Non-Conventional Projects:

Delete Architect of Record definition and replace with the following:

(7) Architect of Record: The Architect or Architectural Firm registered in the State of Florida that performs services for the Design-Build Firm in connection with the design and construction of buildings.

(8) “Ballooning”: The Contractor’s use of minimum 1/16 inch wide lines to "balloon" or "cloud" (encircle) notes or details on drawings, and design calculations, in order to explicitly and prominently call out any deviations from the Contract Plans or Specifications. The EOR may also use "ballooning" to make note of any limitations to their submittal review and disposition of Shop Drawings.

(9) Record Shop Drawings: The Department's official record copy of all Shop Drawings, correspondence/ transmittal files and submittal activity record (logbook).

(10) FDOT Shop Drawing Review Office: The office or other Department entity responsible for performing the Department's review, record keeping, disposition and distribution of Shop Drawings to other disciplines within the district for review as well as distribution back to the project personnel. This office is normally the District Structures Design Office.
(11) **Final Review Office:** FDOT Shop Drawing Review Office or the EOR performing the final review and making final distribution of shop drawings which have been reviewed.

(12) **Demolition of Bridges with Continuous Beams or Girders Affecting Public Safety:** See Specifications.

(13) **Construction Works Affecting Public Safety:** See Specifications.

Modification for Non-Conventional Projects:

Expand the list above with the following:

(14) **Design-Build Firm:** See Design-Build Specifications.

267.2 Shop Drawing Submittals Not Required

Material certifications, welding procedures, paint procedures and concrete mix designs are typically submitted by the Contractor to the Engineer (CEI) who forwards the certifications to the State Materials Engineer in Gainesville. These items do not need to be submitted to the FDOT Shop Drawing Review Office for review and approval. For non-standard items, the Engineer (CEI) will typically request approval by the EOR regarding applicability. Material certification for items on the Approved Product List (APL) is typically submitted by the Contractor to the Engineer (CEI).

267.3 Contractor Information Required

A Shop Drawing submittal that omits any of the minimum requirements listed in Standard Specifications, Section 5-1.4.6.1 must be returned for resubmittal.

Modification for Non-Conventional Projects:

Delete **FDM 267.3** and see RFP for Shop Drawing requirements.
267.4 Submittals Requiring a Specialty Engineer or Contractor’s Engineer of Record

When required, the Specialty Engineer or Contractor’s Engineer of Record must provide a signed and sealed Shop Drawing submittal. The signed and sealed Shop Drawings will be retained by the Department as the official, Record Shop Drawing.

Signed and sealed Shop Drawing submittals by a Specialty Engineer or Contractor’s Engineer of Record typically include signed and sealed drawings and calculations.

267.5 Transmittal of Submittals

Submittal of Shop Drawings must be made by the project Contractor to the designated parties, as applicable. Submittals will not be accepted from a subcontractor or fabricator. Subcontractors and fabricators are encouraged to contact the appropriate FDOT Shop Drawing Review Office for guidance.

Figures 267.11.1 thru 267.11.3 shown in FDM 267.11 illustrate the flow of submittals during the review process. Use electronic delivery to transmit submittals between parties.

Modification for Non-Conventional Projects:

<table>
<thead>
<tr>
<th>Delete the above paragraph and replace with the following:</th>
</tr>
</thead>
</table>

Figure 267.11.4 shows the flow of critical temporary works shop drawings affecting public safety including erection manuals and erection plans. Figure 267.11.4 also shows the flow of demolition plans of a bridge with continuous beams or girders where one span within the unit is over traffic. Use electronic delivery to transmit submittals between parties.

Figure 267.11.5 shows the flow of all other shop drawing submittals. Use electronic delivery to transmit submittals between parties.

See RFP for transmittal and submittal review requirements.

The Special Provisions for the project may denote the amount of drawings to be submitted and the procedure to be followed. Furthermore, the office to which the Contractor must transmit his submittal and the procedure to be followed may also be defined during the preconstruction conference for the project.
267.5.1 Requirements for Department EOR

On projects where the EOR is Department in-house staff, transmit submittals to the FDOT Shop Drawing Review Office or as directed at the project's preconstruction conference. The FDOT Shop Drawing Review Office is the principal contact group and "clearing house" for all construction submittals and information desired by the Contractor regarding structural, mechanical or electrical items.

The EOR must perform a thorough review of the shop drawings, implement a QA/QC Plan, provide a QA/QC check print to the Department, and ensure that all components depicted in the shop drawings are being constructed/fabricated in accordance with the RFC Plans and other Contract Documents. The shop drawing stamp (e.g., "APPROVED" or "APPROVED AS NOTED") must include language that states that the shop drawing was reviewed in accordance with FDM 267 and with the Contract.

Modification for Non-Conventional Projects:

Delete FDM 267.5.1 and replace with the following:

267.5.1 Review Requirements for EOR

The EOR must perform a thorough review of the shop drawings, implement a QA/QC Plan, provide a QA/QC check print to the Department, and ensure that all components depicted in the shop drawings are being constructed/fabricated in accordance with the RFC Plans and other Contract Documents. The shop drawing stamp (e.g., "APPROVED" or "APPROVED AS NOTED") must include language that states that the shop drawing was reviewed in accordance with FDM 267 and with the Contract.

267.5.2 Requirements for Consultant EOR (Full Services)

267.5.2.1 Review by Engineer of Record Only

On projects where the EOR is a Consultant to the Department and has been retained by the Department to review construction items without follow-up review by the Department, the Consultant will assume the responsibility of the owner’s agent. The reviewing consultant is encouraged to communicate with fabricators, contractors, specialty engineers and the FDOT Shop Drawing Review Office to clarify concerns before returning the submittal to the Contractor. The reviewing consultant must also contact the Department’s Structures Office if unsure of the Department’s position on certain issues...
during the review. Where possible, mark all necessary requirements on the shop drawing sheet and stamp “APPROVED AS NOTED” instead of requiring a resubmittal. The Contractor will transmit the submittals directly to the Consultant (unless otherwise noted below). Upon receipt of the submittal, the Consultant must perform the review, note any comments on the sheets, indicate his disposition by stamping the sheets as described hereinafter and make distribution as described hereinafter. The original submittal forms the official Record Shop Drawing submittal and must be sent by the EOR to the Department at the end of the project.

267.5.2.2 Review by Engineer of Record and the Department

On projects where the EOR is a Consultant to the Department and has been retained by the Department to review construction items, submittals (unless otherwise noted below) must be transmitted by the Contractor directly to the Consultant. Upon receipt of the submittal, the Consultant must perform the review, note any comments on the sheets, indicate his disposition by stamping the sheets as described hereinafter, and transmit the sheets to the FDOT Shop Drawing Review Office for review and distribution. When submittals require a Specialty Engineer, the original submittal forms the official, Record Shop Drawing submittal and must be retained by the Department. Upon completion of his review, the Consultant must transfer his comments to the sealed sheets, indicate his disposition and transmit them to the Department as described above.
Modification for Non-Conventional Projects:

Delete *FDM 267.5.2* and replace with the following:

267.5.2 Review Requirements for Shop Drawings Affecting Public Safety

The EOR must perform a thorough review of the shop drawings, implement a QA/QC Plan, provide a QA/QC check print to the Department, and ensure that all components depicted in the shop drawing are being constructed, fabricated, or demolished in accordance with the RFC Plans and other Contract Documents.

An Independent Peer Review must be performed for all critical temporary works shop drawings, erection manuals, and erection plans affecting public safety. This includes demolition plans of a bridge with continuous beams or girders where one span within the unit is over traffic. This review is a comprehensive independent verification of the design of the structural elements depicted in the shop drawing. The Independent Peer Review cannot be performed by the originator of the shop drawing, and must be completed by either the EOR or by an Independent Peer Reviewer. The Independent Peer Review must follow one of the processes below (depending on who performs the Review):

- **The EOR performs the Independent Peer Review:** The EOR will apply the shop drawing stamp (e.g., "APPROVED" or "APPROVED AS NOTED") and must include a signed and sealed certification letter stating that an Independent Peer Review was performed in accordance with *FDM 267* and with the Contract. The certification letter must clearly state which components (e.g., temporary works) were reviewed.

- **An Independent Peer Reviewer performs the Independent Peer Review:** The EOR will apply the shop drawing stamp (e.g., "APPROVED" or "APPROVED AS NOTED") and include a statement that the shop drawing was reviewed in accordance with *FDM 267* and with the Contract, but an Independent Peer Review was not performed. Then, an Independent Peer Reviewer qualified under *Florida Administrative Code, Rule 14-75* (in the Work Group for the structure being constructed, fabricated, or demolished) must perform the Independent Peer Review. The Independent Peer Reviewer must sign and seal a certification letter stating that an Independent Peer Review was performed in accordance with *FDM 267* and with the Contract. The certification letter must clearly state which components (e.g., temporary works) were reviewed.
267.5.3 Requirements for Consultant EOR (Design Services Only)

On projects where the EOR is a Consultant to the Department but has not been retained by the Department to review construction items, the contractor will transmit submittals (unless otherwise noted below) directly to the FDOT Shop Drawing Review Office or as directed at the project's preconstruction conference.

Modification for Non-Conventional Projects:

Delete FDM 267.5.3.

267.5.4 Requirements for Architectural or Building Structures

Submittals related to Architectural or Building Structures, such as Rest Areas, Picnic Pavilions, Offices and Warehouses, must be made according to the requirements of the Architectural Services Group, Production Support Office, Florida Department of Transportation, 605 Suwannee Street, MS 40, Tallahassee, FL 32399-0450, Phone (850) 414-4378.

267.5.5 Requirements for Roadway Submittal Items

Distribute all submittals related to roadway plans such as attenuators and non-standard drainage structures (except bridge items such as poles and bracket arms, or as noted below) in accordance with the Construction Project Administration Manual for the component involved or as otherwise directed at the project's preconstruction conference. Submittals related to bridge items must be transmitted to the Department as previously described in this section.

267.5.6 Requirements for Overhead Sign Structures and Nonstandard Miscellaneous Structures

Transmit submittals concerning overhead sign structures and non-standard miscellaneous structures as previously described in this section.

267.5.7 Miscellaneous Requirements and Assistance

Items not specified above or for which questions may arise regarding submittal requirements, the Contractor should be advised to contact the appropriate FDOT Shop...
Drawing Review Office. Regardless of submittal type, a letter of transmittal must always accompany a submittal.

267.6 Disposition of Submittals

The approval or disapproval of submittals by the Reviewer must be indicated by one of the following designations: "APPROVED" (no further action required), "APPROVED AS NOTED" (make corrections noted - no further submittal required), "RESUBMIT" (make corrections noted and resubmit for approval), or "NOT APPROVED" (rejected - do not resubmit the concept or component as submitted).

Modification for Non-Conventional Projects:

Delete the above paragraph and replace with the following:

The approval or disapproval of submittals by the EOR must be indicated by one of the following designations: "APPROVED" (no further action required), "APPROVED AS NOTED" (make corrections noted - no further submittal required), "RESUBMIT" (make corrections noted and resubmit for approval), or "NOT APPROVED" (rejected - do not resubmit the concept or component as submitted). Only shop drawings that have been "APPROVED", or "APPROVED AS NOTED" must be submitted to the Department for review. Submit copies of QA/QC shop drawing check prints to the CEI along with the shop drawing.

The Department must stamp the drawings "RELEASE FOR CONSTRUCTION", "RELEASE FOR CONSTRUCTION AS NOTED", OR "RESUBMIT". Where possible, mark all necessary requirements on the shop drawing sheet and stamp "RELEASE FOR CONSTRUCTION AS NOTED" instead of requiring a resubmittal.

Indicate the disposition designation on each and every drawing sheet, or on the cover sheet of calculations, by the use of an electronic red-colored stamp. The electronic stamp size must not exceed 3” high by 3” wide, but 1 ½” high by 3” wide stamp is preferred. Stamps must identify the approving groups, such as the EOR-Consultant, the Department's Verification Inspection Consultant and Department personnel, and the date. All notations or corrections made on the approval prints must be consistently marked on all drawings.

All Consultants reviewing submittals must red ink stamp and initial each item as noted above with the firm's appropriate stamp. When the EOR is a Consultant, and when a Sub-consultant is retained to assist in the submittal review, the EOR must signify disposition of the submittal as noted above with the EOR's firm's appropriate stamp prior
to distribution or prior to transmitting it to the Department. In this event it is the EOR's prerogative to also require a disposition stamp by the Sub-consultant.

When the EOR receives a submittal that is not in accordance with the requirements of this chapter, the Contractor will be advised to resubmit with the corrections or additions necessary.

Disposition of Shop Drawing submittals by the EOR for construction and erection equipment including beams and winches, launch gantry, erection trusses, forms, falsework, midspan and longitudinal closures, lifting devices, temporary bearing fixity devices, cranes, form travelers, segment carrying equipment and stability devices must be either "NOT APPROVED" if deemed to be unacceptable or, if acceptable, must be "APPROVED AS NOTED" with the following note included on the submittal drawings:

"Drawings are acceptable for coordination with, relationship to, and effects upon the permanent bridge; but have not been reviewed for self-adequacy. Adequacy and intended function remain the sole responsibility of the Contractor."

Unless considered as Construction Affecting Public Safety, the EOR is not responsible for accepting or reviewing calculations or drawings pertaining to construction formwork. These documents should normally be submitted to the Engineer (CEI) or, in the event they are erroneously transmitted to the EOR, should be immediately rerouted to the Engineer (CEI).

On projects when the EOR is a Consultant to the Department and the Department will also be reviewing shop drawings, the Department will perform a second confirmation review of the submittal. Upon receipt of the Consultant's reviewed submittal, the Department will stamp the submittal with the disposition as noted above. The primary purposes of the Department's review include: conformance with FDOT policy and standards; uniformity of disposition with similar submittals; accuracy and completeness of the Consultant's review; and attention to specific details or areas of work that have experienced recurring problems during fabrication or construction.

When the Specialty Engineer or Contractor's Engineer of Record is required by the Contract Plans and specifications to perform a portion of the design of the project, the EOR must confirm that:

(1) The Specialty Engineer or Contractor’s Engineer of Record is prequalified with the Department as such to design and prepare the submittal.

(2) The Shop Drawings are correctly signed and sealed by the Specialty Engineer or Contractor’s Engineer of Record.
(3) The Specialty Engineer or Contractor’s Engineer of Record understands the intent of the design and utilizes the correct specified criteria.

(4) The configuration set forth in the submittal is consistent with that of the Contract Documents.

(5) The Specialty Engineer or Contractor’s Engineer of Record’s methods, assumptions and approach to the design are in keeping with accepted engineering practices.

(6) The Specialty Engineer or Contractor’s Engineer of Record’s design does not contain any gross inadequacies that would jeopardize or threaten public safety.

Figures 267.11.1 through 267.11.3 shown in FDM 267.11 illustrate the submittal and distributional flow of a shop drawing transmittal. When the Department concurs with the Consultant’s review and disposition of the submittal, the Department will stamp and distribute the submittal including a record copy for the Consultant.

Modification for Non-Conventional Projects:

Delete the above paragraph and replace with the following:

Figures 267.11.4 and 267.11.5 show the submittal and distributional flow of a shop drawing transmittal. When the Department concurs with the Design-Build Firm’s EOR review and disposition of the submittal, the Department will stamp and distribute the submittal.

267.6.1 Minor Modifications

The submittal will be processed when notations not involving design decisions are added, modified or deleted and when the disposition of the submittal remains unchanged or changed only in accordance with Table 267.6.1:

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved</td>
<td>Approved as Noted</td>
</tr>
<tr>
<td>Approved as Noted</td>
<td>Approved</td>
</tr>
<tr>
<td>Resubmit</td>
<td>Not Approved</td>
</tr>
<tr>
<td>Not Approved</td>
<td>Resubmit</td>
</tr>
</tbody>
</table>

Table 267.6.1 FDOT Changes to Minor Modifications
In this event, the Department will notify the Consultant of the modifications, document the notification in the project's shop drawing file, process and distribute the submittal and furnish the Consultant with a copy.

Modification for Non-Conventional Projects:

Delete *FDM 267.6.1* and replace with the following:

267.6.1 Minor Modifications

The submittal will be processed when notations not involving design decisions are added, modified or deleted and when the disposition of the submittal remains unchanged or changed only in accordance with the following *Table 267.6.1*:

<table>
<thead>
<tr>
<th>Table 267.6.1</th>
<th>FDOT Changes to Minor Modifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>To</td>
</tr>
<tr>
<td>Approved</td>
<td>Released for Construction as Noted</td>
</tr>
<tr>
<td>Approved as Noted</td>
<td>Released for Construction</td>
</tr>
</tbody>
</table>

In this event, the Department will notify the Design-Build Firm of the modifications, document the notification in the project's shop drawing file, process and furnish the Design-Build Firm with a copy.

267.6.2 Major Modifications

The submittal will be returned to the Consultant for re-review when notations involving significant design decisions must be added, deleted or modified, when the submittal's review is deemed by the Department to be incomplete or require significantly more work. The Department will notify the Consultant and document the notification in accordance with *Table 267.6.2*. The submittal will be returned to the Consultant for re-review and return to the Department.

<table>
<thead>
<tr>
<th>Table 267.6.2</th>
<th>FDOT Changes to Major Modifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>To</td>
</tr>
<tr>
<td>Approved or Approved as Noted</td>
<td>Not Approved or Resubmit</td>
</tr>
<tr>
<td>Not Approved or Resubmit</td>
<td>Approved or Approved as Noted</td>
</tr>
</tbody>
</table>
267-Shop Drawing Submittals

267.6.2 Major Modifications

The submittal will be returned to the Design-Build Firm for re-review when notations involving significant design decisions must be added, deleted or modified, when the submittal's review is deemed by the Department to be incomplete or require significantly more work. The Department will notify the Design-Build Firm and document the notification in accordance with Table 267.6.2. The submittal will be returned to the Design-Build Firm for re-review and return to the Department.

Table 267.6.2 FDOT Changes to Major Modifications

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved or Approved as Noted</td>
<td>Resubmit</td>
</tr>
</tbody>
</table>

267.7 Distribution of Submittals

Figures 267.11.1 thru 267.11.3 shown in *FDM 267.11* illustrate the submittal and distributional flow of shop drawings for reviews performed by Consultant EORs without FDOT review, reviews performed by Consultant EOR with FDOT review, and reviews performed by FDOT only. In the case of reviews performed by Consultant EORs and FDOT, the Consultant must transmit Shop Drawings to the appropriate FDOT Shop Drawing Review Office.

When precast/prestressed concrete components are involved, copies of the Shop Drawings are to be submitted to the Department's District Prestress Engineer and the State Materials Office (Gainesville). When structural steel components are involved, copies of the Shop Drawings are to be submitted to the Department's Verification Inspection Consultant.

When the Department is reviewing shop drawings and a submittal is denied ("RESUBMIT" or "NOT APPROVED"), distribution of the submittal must be made to the FDOT Shop Drawing Review Office’s File and the Contractor only, with a copy of the transmittal letter to the Engineer (CEI).
Modification for Non-Conventional Projects:

Delete *FDM 267.7* and replace with the following.

267.7 Distribution of Submittals

Figure 267.11.4 shows the submittal and shop drawing flow diagram for design-build projects. The Contractor submits Shop Drawings to the Engineer (CEI).

When precast/prestressed concrete components are involved, copies of the Shop Drawings are submitted to the Department's District Prestress Engineer and the State Materials Office (Gainesville). When structural steel components are involved, copies of the Shop Drawings are submitted to the Department's Verification Inspection Consultant.

267.8 Review of Prequalified Joint Welding Procedures

In accordance with *Section 11.2* of the *Materials Manual*, the approval of all joint welding procedures specification (WPS) will be the responsibility of the Department's Verification Inspection Consultant. The State Materials Office maintains the list of the approved WPS which may be used on all future projects by the fabricator who developed them, until their expiration. A list of the approved WPSs will be provided with the submittal of the Shop Drawings. The EOR may elect to review these documents. Shop drawings depicting plate sizes, types of welds, weld designations, weld sizes and grades of materials will continue to be reviewed by the EOR.

267.9 Submittal Activity Record (Logbook)

The Final Review Office is responsible for maintaining a Submittal Activity Record (Logbook) on each project reviewed by the office. Update the logbook each day that any Shop Drawing submittal activity occurs. Enter the following minimum data in the logbook for each submittal:

1. Financial Project ID and State Project Number (if assigned).
2. Submittal Number.
3. Description of Submittal.
4. Number of Sheets in the Submittal.
(5) Number of Pages of Calculations, in Reports, in Manuals.

(6) Date Transmitted by Contractor to the EOR.

(7) Date Transmitted by EOR (when EOR is not the final reviewer) to the Final Review Office.

(8) Date Distributed by the Final Review Office to the Contractor.

(9) Disposition as either "A" (Approved), "AN" (Approved as Noted), "R" (Resubmit) or "NA" (Not Approved).

The Logbook is an historical record of the activity devoted to an individual submittal as well as that for the project as a whole. It can serve as a verification of review time, to respond to inquiries of a particular submittal's status and as a record of manpower effort to aid in estimating and allocating future workload.

267.10 Archiving Record Shop Drawings

Upon completion and acceptance of a construction project by the Department (usually by receipt of a written Notice of Acceptance), the Final Review Office, within thirty (30) days, will transmit the Record Shop Drawings to the appropriate offices, as dictated by practice in the District in which the project is located. The Record Shop Drawings may include some or all of the following documents:

1. **Shop Drawings** (including all relevant data as set forth in the Specifications)
2. **Project Files of Shop Drawing transmittal letters.**
3. **Submittal Activity Record**

The Final Review Office must complete the Record Shop Drawing Transmittal (see **Form 267-A**, located in **FDM 103**), and transmit copies, along with the Record Shop Drawings described above, to the appropriate office. The Record Shop Drawing Transmittal describes all the Record Shop Drawing documents being transmitted.

The Submittal Activity Record (logbook) is intended to serve as the listing of all Shop Drawings transmitted. Other transmitted material such as project files and samples should be listed individually on the Transmittal shown in **Form 267-A**.

Upon receipt of the Record Shop Drawings, the offices receiving the transmittal will verify the documents and material transmitted, sign and date the Record Shop Drawing Transmittal, and return a copy to the Final Review Office.
The Final Review Office will maintain a file of Record Shop Drawing Transmittals (*Form 267-A*) for future reference and use. Once the signed copy of the Record Shop Drawing Transmittal is received, the Final Review Office's initially retained Record Shop Drawing Transmittal may be discarded.

267.11 Shop Drawing Flow Diagrams

Figures 267.11.1 through 267.11.5 show the submittal and distributional flow of shop drawings for reviews.
Figure 267.11.1 Shop Drawing Flow Diagram for Reviews with Consultant EORs without FDOT Review
Figure 267.11.2 Shop Drawing Flow Diagram for Performed by Consultant EOR with FDOT Review
Figure 267.11.3 Shop Drawing Flow Diagram for Reviews Performed by FDOT Only

- Contractor
- Specialty Engineer
- Precasters
- Sub-Contractors
- Suppliers
- Engineer (CEI)
- FDOT Shop Drawing Review Office
- State Materials Office, Steel Inspection Agency and District Prestress Engineer as Appropriate
- Engineer of Record
- Copy of Transmittal

Contractor: Producers → Specialty Engineer → FDOT Shop Drawing Review Office → Engineer (CEI) → Engineer of Record

FPDOT Shop Drawing Flow Diagram for Reviews Performed by FDOT Only
Figure 267.11.4 Shop Drawing Flow Diagram for Design-Build Project- Shop Drawings Affecting Public Safety

- Independent Peer Reviewer
- Specialty Engineer
- Engineer of Record
- Sub-Contractors
- Precasters
- Suppliers
- Producers
- Contractor
- Specialty Engineer
- Engineer of Record (CEI)
- FDOT Shop Drawing Review Office
- State Materials Office, Steel Inspection Agency and District Prestress Engineer as Appropriate
- Producers

OR

IPR

IPR
Figure 267.11.5 Shop Drawing Flow Diagram for Design-Build Projects-Shop Drawings Not Affecting Public Safety

- Suppliers
- Contractors
- Specialty Engineer
- Producer
- Precasters
- Sub-Contractors
- Engineer of Record
- State Materials Office, Steel Inspection Agency and District Prestress Engineer as Appropriate
- FDOT Shop Drawing Review Office
- Specialty Engineer
- Suppliers
- Precasters

267-Shop Drawing Submittals
TOPIC 625-000-002
300 Production of Plans

300.1 General

The requirements provided in the Plans Production section of the FDM (the 300 Series) and the FDOT CADD Manual form the basis for contract plans format and assembly. Many chapters contain “generic” exhibits that provide examples of the plan sheets covered by that chapter. These exhibits were developed using the Department’s criteria and standards in force at the time of their creation. These exhibits are not to be used as a source for criteria unless specified as such within the FDM chapter.

Abbreviations may be used to save space. A list of standard abbreviations is given in the Standard Plans Cover. Additional deviations from these standard abbreviations are allowed, provided that the abbreviation used is clear and easily understood.

Standard symbols for Roadway Design are shown in the Symbol Cell Library, and in other CADD sources.

300.1.1 Converting from Metric to English

When converting metric values related to surveys, R/W, and other geometric alignment use the U.S. Survey Foot taken to a minimum of 8 decimal places:

\[1 \text{ foot} = 0.30480061 \text{ meters}\]

For other direct mathematical conversions use the SI definition to 4 decimal places:

\[1 \text{ foot} = 0.3048 \text{ meters}\]

Display direct mathematical (soft) converted values to 2 decimal places.

On resurfacing projects where the original construction was done in metric, hard convert typical section dimensions (e.g., lane widths, shoulder widths) where existing conditions permit.

Use direct mathematical (soft) conversion for existing pavement widths in curbed sections, existing R/W widths, and existing median widths.
300.2 Displaying Information and Data

Text and plan details should be readable from either the bottom or right edge of the sheet. Orientation of text is as follows:

(1) Horizontal Line: Read left to right
(2) Vertical Line: Read bottom to top
(3) Diagonals: Read left to right

Apply the following rules for displaying information and data:

(1) Dimensioning Requirements:
 (a) Typical Section Elements, including lane widths and shoulder widths - in feet, typically as a whole number.
 (b) Horizontal control points on plans, including survey centerline, baseline, intersections and alignment - in feet to 2 decimal places.
 (c) Vertical alignment control points, (e.g., PVC, PVI, PVT) and profile grade elevations - in feet to 2 decimal places.
 (d) Profile Grade - in percent to 3 decimal places.
 (e) Proposed flow lines - in feet to 2 decimal places.
 (f) Manhole tops and grate elevations - in feet to 2 decimal places.
 (g) Ditch elevations - in feet to 1 decimal place (to nearest 0.05 when controlled by percent of grade).
 (h) Box or Three-sided Culvert Spans and Heights - Show inside dimensions using “span by height” format (10 x 6 means the span is 10 feet and the height is 6 feet). In feet as a whole number for new construction; in feet to 2 decimal places for extensions of existing box culverts.

(2) Display alignment bearings, degree of curve and delta angles for curve data in degrees, minutes and seconds, rounded to the nearest second.

(3) Express slope ratios in vertical to horizontal (V:H) format; e.g., 1:6, 1:4.
300.3 Base Sheet Format

All plan sheet formats are contained in the FDOT CADD Software. Sheet borders include a project information block to place the Financial Project ID as shown below:

Figure 300.1 Project Information Block

The road number box is intended for the state road number; i.e., same state road number that is shown on the Key Sheet. Place the prefix “SR” before the number for clarification. When a county road is shown in the box use the prefix “CR”. The box should remain blank when the facility is neither a state nor county road.

The title block immediately left of the project information block is to contain information for the Professional of Record that Signs and Seals the sheet, as discussed in FDM 130.

PDFs of contract plans must be to scale at size B (11” X 17”). These PDF files are to be generated from CADD design files in accordance with the CADD Manual. Sheets that feature grids (e.g., cross sections, plan-profile) may be created with minor grid lines turned off or on. The minor grids are to be half-toned when shown. The FDOT CADD Software provides plot example configuration files for this task.

Plan sheets may use photography (aerial or other) when appropriate (e.g., for Drainage Maps, SWPPP supplemental site maps, bridge repair plans).
301 Sequence of Plans Preparation

301.1 General

The set of plans depicting in detail all the desired construction work is known as the "Contract Plans Set". This set is assembled as component plans that are associated with a primary work type. See FDM 302.5 for information on contract plans components. The contract plans set should be prepared systematically, undergoing phases of review and updates to ensure technically correct and clear plans. Additional information can be found in FDM 110, 111, 112, and 120. These chapters contain a comprehensive discussion of design processes and activities from initial to final engineering.

Prepare Toll Facility Plans in accordance with the Florida’s Turnpike Enterprise General Tolling Requirements (GTR). Contact the Florida’s Turnpike Enterprise Project Manager to request a copy of the GTR.

301.2 Phase Submittals

Modification for Non-Conventional Projects:

Delete FDM 301.2 and follow FDM 301.3.
Coordinate Specifications and Estimates in accordance with the plans review phases in Table 301.2.1:

<table>
<thead>
<tr>
<th>Phase</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>PS&E “Final Submittal” Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plans</td>
<td>FDM 301.2.1</td>
<td>FDM 301.2.2</td>
<td>FDM 301.2.3</td>
<td>FDM 301.2.4</td>
<td>FDM 301.2.5</td>
</tr>
<tr>
<td>Specifications per Specifications Handbook</td>
<td>Identify Specs; draft TSP, MSP, or DevSpec, as needed</td>
<td>Submit TSP or MSP for Technical and Legal review(s)</td>
<td>Prepare Specification package with latest e-book and workbook</td>
<td>Finalize Specifications package</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complete Sole-Source Approvals, as needed.</td>
<td>Ensure specifications work with APL, IPL, or sole-source items</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimates, per Basis of Estimates</td>
<td>Load pay items per BOE Chapter 9; request pay items per BOE Chapter 6, based on TSP or MSP’s identified.</td>
<td>Load quantities for all pay items, per BOE Chapter 8</td>
<td>Update quantities based on final plans</td>
<td>Final</td>
<td></td>
</tr>
<tr>
<td>Cost Estimates by District Estimator</td>
<td>Completed prior to next phase submittal</td>
<td>Completed prior to next phase submittal</td>
<td>Completed prior to next phase submittal</td>
<td>Authorization Estimate: Completed prior to XXX</td>
<td>Authorization Estimate & Official Estimate</td>
</tr>
</tbody>
</table>

See FDM 120 for design submittal requirements and guidance in preparing submittals for review by the Department. For bridge submittal requirements see FDM 121.

Standard submittal phases are: Phase I, Phase II, Phase III, Phase IV, and PS&E.

General descriptions of the required levels of completion that are noted in Table 301.2.2 are as follows:
(1) Preliminary (P): Basic shapes, geometry, and information are shown to adequately convey the concept.

(2) Complete but Subject to Change (C): The design, drawings and details are complete. Only reviewer-initiated changes should be expected at this level.

(3) Final (F): All drawings and designs are complete. No changes are expected at this level. Plans are ready to be signed and sealed by the EOR.

RRR, operational improvement, and safety projects typically have two phase reviews, which will be defined in the Scope of Services. Table 301.2.2 summarizes the plans sheet status for each submittal. A phase is considered complete when all review comments have been resolved and documented.

A "Notes for Reviewers" sheet may be placed behind the Key Sheet to call attention to conditions, issues and features unique to the project design. Do not use this sheet beyond Phase III submittal.

Provide a PDF of the Summary of Pay Items Report generated from the Department's Webgate for each phase submittal, beginning with Phase II. Report is without quantities for Phase II submittal, and with quantities for all subsequent submittals.
Table 301.2.2 Summary of Phase Submittals

Provide the sheets listed as applicable

<table>
<thead>
<tr>
<th>ITEM</th>
<th>PHASE I</th>
<th>PHASE II*</th>
<th>PHASE III</th>
<th>PHASE IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Sheet</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Signature Sheet</td>
<td>P</td>
<td>C</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Drainage Map</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Interchange Drainage Map</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Typical Section</td>
<td>P</td>
<td>C</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Optional Materials Tabulation</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Project Layout</td>
<td>P</td>
<td>C</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Project Control</td>
<td>P</td>
<td>C</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Roadway Plan and Profile</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Traffic Monitoring Site</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Special Profile</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Back-of-Sidewalk Profile</td>
<td>P</td>
<td>C</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Interchange Layout</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Ramp Terminal Details</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Intersection Layout/Detail</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Drainage Structures</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Outfall/Lateral Ditch Plan-Profile</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Outfall/Lateral Ditch Cross Section</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Retention/Detention Ponds</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Cross Section Pattern</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Roadway Soil Survey</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Cross Sections</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Stormwater Pollution Prevention Plan</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Temporary Traffic Control Plans</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Utility Adjustments</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Selective Clearing and Grubbing</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Mitigation Plans</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous Structures Plans</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Signing and Pavement Marking Plans</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Signalization Plans</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Intelligent Transportation System (ITS) Plans</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Lighting Plans</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Landscape Plans</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Landscape Opportunity Plans</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Vegetation Disposition Plans</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Utility Work by Highway Contractor Agreement Plans</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Developmental Standard Plans</td>
<td>C</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

Status Key:
P - Preliminary
C - Complete but subject to change
F - Final

* Projects with structures plans component must submit the latest set with the 60% roadway submittal."
301.2.1 Phase I Submittal

Unless otherwise directed by the Department, the following elements are required for a Phase I set of plans:

KEY SHEET
- Location Map with location of project on map
- All applicable Financial Project IDs
- (Federal Funds) notation, if applicable
- Exceptions & Equations
- County Name
- State Road Number
- North arrow
- Approval signature lines
- Railroad crossing (if applicable)
- Revision box
- Governing Standards & Specifications dates
- Department’s Project Manager's Name
- Begin & end project station and begin mile post
- Begin & end bridge stations
- Consultant's name, address, contract number, and vendor number (if applicable)

DRAINAGE MAP - PLAN VIEW
- North arrow and scale
- Drainage divides and ground elevations
- Drainage areas and flow direction arrows
- Equations
- High water information as required
- Preliminary horizontal alignment
- Section, township, range lines
- Street names
- Begin & end stations of project, construction, bridge, bridge culverts & exceptions
- Existing structures & pipes with relevant information
- State, Federal, county highway numbers (as appropriate)
DRAINAGE MAP - PROFILE VIEW

- Preliminary profile grade & existing ground line
- Horizontal & vertical scale
- Begin & end stations of project, bridges, bridge culverts & exceptions
- Equations

INTERCHANGE DRAINAGE MAP

- North arrow and scale
- Stationing along baselines
- Ramp baselines with nomenclature
- Begin and end bridge stationing
- Preliminary interchange configuration
- R/W lines
- Preliminary interchange drainage with drainage areas and flow direction arrows

TYPICAL SECTIONS

- Mainline and crossroad typical sections
- Special details (e.g., bifurcated sections, high fills)
- R/W lines
- Traffic data

PROJECT LAYOUT

- Plan-profile sheet sequence (mainline and crossroads)

PROJECT CONTROL

- Benchmarks
- Control points
- Reference points
PLAN AND PROFILE - PLAN VIEW

- North arrow and scale
- Baseline of survey, equations
- Curve data (including superelevation)
- Existing topography including utilities
- Preliminary horizontal geometrics/dimensions
- Existing & proposed R/W lines (if available)
- Centerline of construction (if different from the baseline of survey)
- Begin and end stations for the project, bridges, bridge culverts and exceptions

PLAN AND PROFILE - PROFILE VIEW

- Scale
- Appropriate existing utilities
- Bench mark information
- Preliminary profile grade line
- Equations
- Existing ground line with elevations at each end of sheet
- Begin and End Stations for the Project, bridges, bridge culverts and exceptions.

SPECIAL PROFILE

- Scale
- Ramp profile worksheet including nose sections
- Existing ground line of intersections
- Preliminary grade line of intersections
- Preliminary curb return profiles, if applicable
BACK - OF - SIDEWALK PROFILE (Worksheet)

- Scale
- Begin and end project stations
- Begin and end sidewalk stations
- Cross street locations and elevations
- Drainage flow direction arrows
- Mainline equations
- Existing driveway locations and details
- Superelevation details
- Back of sidewalk profile grades and vertical curve information
- Building floor elevations with offset distance left and right
- Gradeline notation: Specifically the numeric difference relative to roadway profile gradeline

INTERCHANGE DETAIL

- North arrow and scale
- Schematic of traffic flow and volumes
- Proposed bridge limits
- R/W lines
- Preliminary configuration and geometrics
- Quadrant Identification
- Ramp Labels

INTERSECTION LAYOUT

- North arrow and scale
- Existing topography (if applicable)
- Proposed R/W limits
- Length of turn lanes
- Taper lengths
- Existing Utilities
- Geometric dimensions (radii, offsets, widths)
CROSS SECTIONS

(May require accompanying cross section pattern sheet)

- Scale
- Existing ground line
- Existing survey baseline elevations
- Station numbers
- Baseline of survey labeled
- Existing utilities
- Proposed template with profile grade elevations along mainline and cross-streets

TEMPORARY TRAFFIC CONTROL PLANS

- Project specific
- Other worksheets as necessary to convey concept and scope

LANDSCAPE PLANS

- Conceptual landscape plan

LANDSCAPE OPPORTUNITY PLAN

- North Arrow and Scale
- Drainage divides and ground elevations (if available)
- Drainage areas and flow direction arrows
- Street names
- Baseline of Survey
- Begin & end stations of project, construction and exceptions
- Existing to remain or proposed roadway improvements, structures and drainage facilities with relevant information
- Existing off-site features and conditions that affect or are affected by the project
- Edge of pavement and traffic lanes
- Curbs or curb and gutter
- Guardrails
- R/W or limited access fence line and gate locations
- Sidewalks or other planned or existing structures
- Lighting, signs, signal poles and ITS facilities

301-Sequence of Plans Preparation
LANDSCAPE OPPORTUNITY PLAN (cont.)

- Existing and proposed overhead or underground utilities for permitted outdoor advertising signs
- Clear Zone/Lateral offset (plotted and noted frequently on each plan sheet)
- Proposed areas reserved for landscape improvements (shown in bubble diagram format)
- Limits of clear sight
- Proposed Plant Palette
- Transit facilities Outdoor advertising signs and view zones
- Notes

VEGETATION DISPOSITION PLAN

- North Arrow and Scale
- Curbs or curb and gutter
- Drainage divides and ground elevations (if available)
- Guardrails
- Drainage areas and flow direction arrows
- R/W or limited access fence line and gate locations
- Street names
- Sidewalks or other planned or existing structures
- Baseline of Survey or Project Centerline
- Lighting, signs, signal poles, and ITS facilities
- Begin & end stations of project, construction and exceptions
- Existing and proposed overhead or underground utilities
- Existing to remain or proposed roadway improvements, structures and drainage facilities with relevant information
- Transit facilities
- Existing off-site features and conditions that affect or are affected by the project
- Details for vegetation removal and pruning
- Edge of pavement and traffic lanes
- Vegetation Relocation Plan
- Notes
301.2.2 Phase II Submittal

Typically, the work to be done during this phase is the following:

1. Address Phase I comments.

2. Load Pay Item numbers into the Designer Interface for AASHTOWare Project Preconstruction™. Refer to the Basis of Estimates for additional guidance.

3. Identify specifications, including any needed modified or project specific changes. Refer to the Specifications Handbook for additional guidance.

4. Develop Phase II Plans to include the following:

KEY SHEET

- Index of sheets
- Contract plans and component plans list

SIGNATURE SHEET

- Sections for each Professional of Record
- Index of sheets for each Professional of Record
- Image of the seal(s)
- Appearance of the Digital Signature only to be applied in Phase IV
- (Note: Digital Signatures are not to be applied in this Phase)

DRAINAGE MAP - PLAN VIEW

- Proposed structures with structure numbers
- Proposed storm drain pipes
- Flow arrows along proposed ditches
- Retention/Detention ponds, pond number and area size
- Cross drains with pipe sizes and structure numbers
- Bridges/bridge culverts with begin and end stations
- Flood data (if applicable)
DRAINAGE MAP - PROFILE VIEW

- Ditch gradients including DPIs
- Final roadway profile grade line
- Mainline storm drain pipes
- Mainline flow line elevations
- Mainline structures with structure numbers and pipes
- Bridge, Bridge Culvert
- Cross drains with pipe sizes, structure numbers and flow line elevation

OPTIONAL MATERIALS TABULATION

- Material type
- Structure number station and description
- Durability, cover requirements
- Optional culvert material application
- Culvert service life estimator
- Design service life

PROJECT LAYOUT

- Complete

PROJECT CONTROL

- Complete

PLAN AND PROFILE - PLAN VIEW

- Curb return numbers, station ties and elevations
- Proposed drainage structures with structure no.
- Proposed R/W lines
- Existing utilities
- Proposed side drain pipe requirements (including size) for access and intersections
- Final geometrics and dimensions including radii, station pluses, offsets, widths, taper/transition lengths, curve data
- General Notes (if General Notes Sheet not included)
- Flood data if not shown elsewhere
- Limits of wetlands

301-Sequence of Plans Preparation
PLAN AND PROFILE - PROFILE VIEW

- Final profile grades and vertical curve data
- Mainline storm drain pipes
- Proposed special ditches
- Ditch gradients with DPI station and elevation
- Nonstandard superelevation transition details
- High water elevations
- Existing utilities
- Mainline drainage structures with structure numbers
- Cross drains with structure number, size and flow line elevations

TRAFFIC MONITORING SITE

- Project Specific

INTERCHANGE DRAINAGE MAP

- Final geometrics including PC and PT
- Proposed structures with structure numbers
- Proposed storm drain pipes
- Special ditches with DPI and elevation

TYPICAL SECTIONS

- Pavement Design

SPECIAL PROFILE

- Final intersection profile grades
- Final curb return profiles (if applicable)
- Superelevation diagrams as required
- Final ramp profile grades including nose sections
- Preliminary access and frontage road profiles (may contain one or more types of special profiles.)
BACK OF SIDEWALK PROFILE

• Complete

INTERCHANGE LAYOUT

• Curve data including superelevation and design speed
• Coordinate data, stationing and ties
• Access and frontage roads with dimensions and R/W
• Fence location
• Ramp identification

RAMP TERMINAL DETAILS

• Preliminary geometrics
• Radii, transition/taper lengths
• Ramp identification

INTERSECTION LAYOUT

• Limits of proposed construction on side roads
• Applicable notes
• Cross drains with structure numbers and pipe sizes
• Storm drain pipes including sizes
• Final geometrics including dimensions, radii, offsets, station pluses and taper/transition lengths

DRAINAGE STRUCTURES

• Vertical and horizontal scale
• Roadway template with profile grade elevation
• Underground utilities
• Special sections at conflict points
• R/W lines (at critical locations)
• Storm drain construction notes
• Flow arrows
• Applicable notes
• Structure numbers and location station along right side of sheet
• Drainage structures with number, type, size, location and flowline elevations
OUTFALL / LATERAL DITCH - PLAN VIEW

- North arrow and scale
- Roadway centerline
- Existing or survey ditch centerline
- Proposed ditch centerline with stationing
- Begin and end ditch stations
- Equations
- Ditch centerline intersection stations
- R/W lines
- Bearings of ditch and mainline centerlines
- Proposed storm drain pipes
- Ditch PI stations with deflection angle left or right
- Proposed drainage structures with structure numbers
- Existing topography, drainage structures, utilities
- Limits of wetlands

OUTFALL / LATERAL DITCH - PROFILE VIEW

- Bench mark information
- Scale
- Existing ground line
- Proposed ditch profile with grades
- Begin and end ditch stations
- High water elevations
- Proposed storm drain pipes with size
- Existing Utilities
- Overland flow or overtopping elevations
- Proposed drainage structures with structure numbers
- Typical section can be placed in either plan or profile
LATERAL DITCH CROSS SECTIONS

- Horizontal and vertical scale
- Existing ground line
- Station numbers
- Survey centerline and elevation
- R/W
- Begin and end ditch stations
- Begin and end excavation stations
- Existing utilities
- Proposed template with ditch bottom elevation

RETENTION/DETENTION POND DETAILS

- North arrow and scale
- Roadway centerline ties
- Proposed pond centerline with stationing
- Begin and end pond stations
- Side slopes, dimensions, and elevations
- R/W lines
- Berm, fence and gate locations
- Soil boring information
- Proposed pond drainage structures with structure numbers
- Existing topography, drainage structures, utilities
- Pond sections (2 perpendicular to each other)
- Pond Typical Section
- Limits of wetlands

RETENTION/DETENTION POND CROSS SECTIONS

- Horizontal and vertical scale
- Existing ground line
- Station numbers
- Begin and end pond stationing
- Pond centerline and elevations
- R/W
- Soil borings
- Water table
- Extent of unsuitable material
- Existing utilities
- Proposed template with bottom elevation
CROSS SECTION PATTERN

- North arrow and scale
- Interchange layout
- Access and frontage roads
- Mainline and ramp stationing
- Begin and end bridge stations
- Cross section location lines
- Ramp baselines with nomenclature and stationing

ROADWAY SOIL SURVEY

- Soil data
- Project specific

CROSS SECTIONS

- R/W
- Special ditch bottom elevations
- Equivalent stations for ramps and mainline
- Mainline equation stations
- Soil borings
- Water table
- Extent of unsuitable material
- Proposed template with profile grade elevation
- Earthwork Columns
- Begin and end stationing for project, construction and earthwork, bridge and bridge culvert
- Existing utilities affected by the template and where unsuitable materials are present

STORMWATER POLLUTION PREVENTION PLAN (SWPPP)

- Narrative Description (with supplemental topographic maps, when used)
TEMPORARY TRAFFIC CONTROL PLANS

- Preliminary traffic control plan
- Detour plan
- Phasing plan
- R/W - existing and additional if required
- Existing Utilities

UTILITY ADJUSTMENTS

- All existing utilities highlighted

SELECTIVE CLEARING AND GRUBBING

- Existing vegetation to be protected, relocated or removed
- Notes
- Details
- Project Specific

MITIGATION PLANS

- Project Specific

MISCELLANEOUS STRUCTURES PLANS

- Retaining walls (Cast in place, proprietary, temporary) if required

SIGNING AND PAVEMENT MARKING PLANS - KEY SHEET

- Financial Project ID
- (Federal Funds) notation, if applicable
- State Road Number
- County Name
- FDOT Project Manager's Name
- Begin/end stations & exceptions
- Station Equations (if location map is shown)
- Engineer of Record
- Consultants name & address, if applicable
SIGNING AND PAVEMENT MARKING PLANS - PLAN SHEETS

- North arrow and scale
- Basic Roadway Geometrics
- Begin/End Stations and Exceptions
- Station equations
- Conflicting utilities, lighting or drainage
- Pavement markings
- Sign locations
- Applicable pay items

SIGNING AND PAVEMENT MARKING PLANS - SIGN DETAIL SHEETS, GUIDE SIGN WORK SHEETS

- Project Specific

SIGNALIZATION PLANS - KEY SHEET

- Financial Project ID
- (Federal Funds) notation, if applicable
- State Road Number
- County Name
- FDOT Project Manager's Name
- Begin/end stations & exceptions
- Station Equations (if location map is shown)
- Engineer of Record
- Consultants name & address, if applicable
SIGNALIZATION PLANS - PLAN SHEET

- North arrow and scale
- Basic Roadway Geometrics
- Begin/End Stations and Exceptions
- Station Equations
- Conflicting utilities, lighting or drainage
- Signal Pole Location
- Type and location of loops
- Type and location of signal heads
- Pedestrian Signal
- Location of Stop Bars
- Location of Pedestrian Crosswalks
- Sheet Title
- Applicable pay items

SIGNALIZATION PLANS - POLE SCHEDULE

- Pole location, number, type
- Pole dimensions
- Pay item number
- Joint use pole details, if applicable
- Foundation design

SIGNALIZATION PLANS - INTERCONNECT/ COMMUNICATION CABLE PLAN

- Placement of interconnect/communication cable
- Conflicting utilities, lighting or drainage
- Other project specific details
ITS PLANS - KEY SHEET

- Financial Project ID
- (Federal Funds) notation, if applicable
- State Road Number
- County Name
- FDOT Project Manager's Name
- Begin/end stations & exceptions
- Station Equations (if location map is shown)
- Engineer of Record
- Consultants name & address, if applicable

ITS PLANS - PLAN SHEETS

- Project Specific, but must include:
 - North arrow and scale
 - Basic Roadway Geometrics
 - Begin/End Stations and Exceptions
 - Station equations
 - Conflicting utilities, lighting or drainage
 - Applicable pay items

ITS PLANS - DETAIL SHEETS

- Project Specific
LIGHTING PLANS - KEY SHEET

- Financial Project ID
- (Federal Funds) notation, if applicable
- State Road Number
- County Name
- FDOT Project Manager's Name
- Begin/end stations & exceptions
- Station Equations (if location map is shown)
- Engineer of Record
- Consultants name & address, if applicable

LIGHTING PLANS - POLE DATA AND LEGEND SHEET

- Each pole by number with location, arm length, mounting height and luminaire wattage noted.
- Design value for light intensities and uniformity ratios shown.
- Legend and sheet title

LIGHTING PLANS - PLAN SHEETS

- North arrow and scale
- Basic Roadway Geometrics
- Begin/End Stations and Equations
- Station Equations
- Conflicting utilities, drainage, signal poles, etc.
- Sheet title
- Applicable pay items
- Pole symbols shown at correct station location and approximate offset

LIGHTING PLANS - HIGH MAST

- Foundation detail sheets (project specific)
- Boring data sheets (project specific)
- Conflicting utilities, drainage, lighting
LANDSCAPE PLANS - KEY SHEET

- Financial Project ID
- (Federal Funds) notation, if applicable
- Fiscal year and sheet number
- State Road Number
- County Name
- FDOT Project Manager's Name
- Begin/end stations & exceptions
- Station Equations (if location map is shown)
- Landscape Architect of Record name and registration number
- Consultants name, address, and contract number, if applicable
- Index of landscape plans

LANDSCAPE PLANS - PLANT SCHEDULE

- Project Specific

LANDSCAPE PLANS - SCHEDULE FOR IRRIGATION AND SITE AMENITIES

- Project Specific

LANDSCAPE PLANS – PLANTING PLAN SHEETS

- Project centerline
- Edge of pavement (edge of traffic lanes)
- Curbs or curb and gutter
- Drainage systems
- Guardrails
- Right of way and/or limited access fence line
- Sidewalks or other planned or existing structures
- Lighting, signs, and signal poles
- Intersections and driveways which are noted in the plans
- Existing and proposed overhead and underground utility locations
- Clear Zone/Lateral offset (should be plotted or safety setback distances noted frequently on each plan sheet)
- View zones for permitted outdoor advertising signs
- Canopy limits
- Existing vegetation (to remain or be removed)
• Existing off site features and conditions that affect or are affected by the project
• Fence and gate locations
• Setbacks from structural elements or drainage system
• Limits of clear sight
• Transit facilities
• Proposed Planting Plan (Plant symbols)

LANDSCAPE PLANS - IRRIGATION PLAN SHEETS (if applicable)

• Type of system
• Location and size of mainlines and lateral lines
• Type and location of spray heads and rotors
• Type and location of valves, sleeves, controllers, water sources/point of connection, backflow preventers, and isolation valves

LANDSCAPE PLANS – DETAILS SHEET

• Applicable landscape details
• Irrigation symbology with associative descriptions (if applicable)
301.2.3 Phase III Submittal

Typically, the work to be done during this phase is the following:

(1) Address Phase II comments.
(2) Complete all remaining Plan Sheets.
(3) Submit Technical Special Provisions or Modified Special Provisions for technical and legal review(s).
(4) Complete the Estimated Quantities Report in FDM 902 and input quantities into Designer Interface for AASHTOWare Project Preconstruction™. Submit the Estimated Quantities Report with the Phase III Submittal.

Estimate the Work Zone Traffic Control items paid for on a 'per day' basis and include them in the Phase III submittal. The Department’s construction office will perform a biddability review and will establish construction duration as a part of the Phase III review after receiving the plan set. This information should be included in the Phase III review comments transmitted back to the Engineer of Record (EOR).

Utility Work by Highway Contractor (UWHC) Agreement Plans, consisting of a key sheet, and mainline plan-profile showing proposed utility horizontal and vertical locations, are also to be included in the Phase III submittal.

Review comments must be provided to the EOR for incorporation of the comments into the plans. When the review comments have been resolved and documented by the designer, the plans are ready to proceed to completion.

301.2.4 Phase IV Submittal

Typically, the work to be done during this phase is the following:

(1) Address Phase III review comments,
(2) Update Work Zone Traffic Control and Litter Removal & Mowing pay items based on established construction duration and finalize the Estimated Quantities Report,
(3) Place the assigned Construction Contract number on the Key Sheet(s),
(4) Update the Work Program Administration (WPA) system (see FDM 111.2.1) to reflect the project begin and end project milepost,
(6) Finalize the Estimated Quantities Report and update quantities in Designer Interface for AASHTOWare Project Preconstruction™. Submit the Estimated Quantities Report with the Phase IV Submittal.

(7) Provide an Engineer of Record’s construction cost estimate to the Department Project Manager (when requested).

After corrections noted during the Phase IV submittal review are completed and verified, the plans are referred to as Final Plans.

301.2.5 PS&E Phase Submittals

There are two required submittals during the Plans, Specifications, and Estimates (PS&E) phase. Coordinate with the District Final Plans Office for scheduling these required submittals.

The first submittal consists of the Final Plans, draft Specifications Package, and PDF of the Estimated Quantities Report. See the Specifications Handbook for information on preparing Specifications Packages.

A review of the first submittal by the District Final Plans Office often requires changes; e.g., pay item numbers and quantities, notes, design details.

After changes to the Final Plans, Specifications Package and Estimated Quantities Report have been completed and verified, deliver the second submittal consisting of the following:

(1) Signed and Sealed Plans
(2) Signed and Sealed Specifications Package
(3) Signed and Sealed Estimated Quantities Report
(4) CADD Files

At the time of the second submittal, provide to the Department Project Manager the following:

- Total Roadway Length
- Total Bridge Length
- Total Project Length
- Project Documentation
Additional information on District activities during PS&E Phase is described in *FDM 131*.

Information on the delivery of Project Documentation is described in *FDM 111.7*.

301.3 Design-Build Phase Submittals

FDM 301.3 applies exclusively to Design-Build projects. Requirements relating to the design process for various submittals are given in *FDM 120*. Refer to that chapter for additional guidance in preparing submittals for review by the Department. For bridge submittal requirements see *FDM 121*. For Design-Build projects, the standard submittal phases are:

1. **Technical Proposal**
2. **90% Component Plans**
3. **Final Component Plans**

Table 301.3.1 summarizes the plans sheet status required for each submittal.

An additional sheet titled "Notes for Reviewers" may be placed as the second sheet in the submittal package to call attention to conditions, issues and features unique to the project design. The sheet is to be used only in the review process and is not included in the final plans.

301.3.1 Direction to All Discipline Phase Reviewers on Non-Conventional Projects

Discipline phase reviewers should primarily review Design-Build and Public-Private-Partnership project plan submittals for compliance with contract requirements. However, non-contractual comments submitted “for information only” can also provide valuable feedback to the Design-Build Firm or Concessionaire. The purpose of this section is to allow a formal process for submitting both types of comments on Non-Conventional Projects.

Discipline phase reviewers must separate component plan review comments into the following two categories:

- **Response Required Comment**: these refer to direct violations of the Contract
- **FYI Comment**: these do not refer to direct violations of the Contract
The discipline phase reviewer should enter comments in the Electronic Review Comments (ERC) system in the boxes labeled “Response Required Comment” or “FYI Comment” as appropriate. The ERC system will automatically add a statement at the end of each comment indicating “A written response is required.” or “This comment is for information only. A written response is NOT required.”

301.3.1.1 Response Required Comment

Response Required Comments refer to direct violations of the Contract. These comments require a written response by the Design-Build Firm or Concessionaire. Where possible, the reviewer is expected to include the specific contract reference or requirement that is being violated. Examples may include, but are not limited to:

- an AASHTO provision that is being violated;
- a Governing Regulation (e.g., FDM, Structures Design Guidelines) requirement that is being violated;
- a Technical Proposal commitment that is not being met;
- a Request For Proposal (RFP) requirement that is being omitted or violated;
- omission in the plans or calculations;
- inconsistencies between the plans and calculations;
- obvious errors in math or basic engineering principles;
- an environmental commitment or permit commitment that is not being met.

Example Comment: The vertical curve length does not meet the minimum requirements of Table 210.10.4 in the FDM. A written response is required.

In this example, a requirement from the FDM is being violated. The plans must be corrected to address this situation, and a written response from the Design-Build Firm or Concessionaire is required.

Example Comment: Calculations are consistent with two-phased post tensioning of the pier cap, but the plans indicate post-tensioning in a single phase. Update plans to be consistent with the calculations so that the cap will not be overstressed in the unloaded condition. A written response is required.

In this example, the intent of the comment is to alert the Design-Build Firm or Concessionaire of an inconsistency between the calculations and the plans that result in the pier cap being overstressed. The plans must be corrected to address this situation, and a written response from the Design-Build Firm is required.
301.3.1.2 FYI Comment

FYI Comments are those that do not refer to direct violations of the Contract. These comments do not require a written response by the Design-Build Firm or Concessionaire. At the end of each comment state that the comment is for information only and a written response is not required.

Example Comment: The plans as submitted depict a land pier located very close to the shoreline of a major body of water and steel sheet piling are not shown along the water face of the footing. Ensure that the footing can be constructed in the dry per the requirements of the Specifications. This comment is for information only. A written response is NOT required.

In this example, the intent of the comment is to ensure that the footing concrete is placed in the dry per the **Standard Specifications**. Regardless of the action the Design-Build Firm or Concessionaire takes in response to the comment, the **Standard Specifications** requirements must be met; the reviewer is putting the Design-Build Firm or Concessionaire on notice.
Table 301.3.1 Summary of Design-Build Phase Submittals

Provide the sheets listed as applicable

<table>
<thead>
<tr>
<th>ITEM</th>
<th>TECHNICAL PROPOSAL</th>
<th>90% PLANS</th>
<th>FINAL PLANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Sheet</td>
<td></td>
<td>P</td>
<td>F</td>
</tr>
<tr>
<td>Signature Sheet</td>
<td></td>
<td>P</td>
<td>F</td>
</tr>
<tr>
<td>Drainage Map</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Interchange Drainage Map</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Typical Section</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Project Layout</td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Project Control</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Roadway Plan and Profile</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Traffic Monitoring Site</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Special Profile</td>
<td>C</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Back-of-Sidewalk Profile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interchange Layout</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Intersection Layout/Detail</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Drainage Structures</td>
<td>C</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Outfall/Lateral Ditch Plan Profile</td>
<td>C</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Outfall/Lateral Ditch Cross Section</td>
<td>C</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Retention/Detention Pond Details</td>
<td>C</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Roadway Soil Survey</td>
<td>C</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Cross Sections</td>
<td>C</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Temporary Traffic Control Plans</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Utility Adjustments</td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Selective Clearing and Grubbing</td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Developmental Standard Plans</td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Mitigation Plans</td>
<td>C</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Miscellaneous Structures Plans</td>
<td>C</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Signing and Pavement Marking Plans</td>
<td></td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>Signalization Plans</td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Intelligent Transportation System (ITS) Plans</td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Lighting Plans</td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Landscape Plans</td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Vegetation Disposition</td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Utility Work by Highway Contractor Agreement Plans</td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Toll Facility Plans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site/Civil</td>
<td>P</td>
<td>P</td>
<td>F</td>
</tr>
<tr>
<td>Architectural</td>
<td>P</td>
<td>P</td>
<td>F</td>
</tr>
<tr>
<td>Structural</td>
<td>P</td>
<td>P</td>
<td>F</td>
</tr>
<tr>
<td>Electrical</td>
<td></td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Plumbing</td>
<td></td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Communications</td>
<td></td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Systems</td>
<td></td>
<td></td>
<td>F</td>
</tr>
</tbody>
</table>

Status Key:
P – Preliminary C - Complete but subject to change F – Final
301.3.2 Technical Proposal Submittal Requirements

Submit a complete set of 11” X 17” plan sheets for the Technical Proposal Submittal. As a supplement to the plan set, select plan sheets, no larger than 24” X 36” or roll plot(s) no larger than 24” X 96”, may be submitted. Supplemental plan sheets or roll plots are desirable for such roadway features that cannot be presented adequately on 11” X 17” sheets; e.g., complex interchanges, Maintenance of Traffic phases, large complex intersections. Unless otherwise directed by the Department, the following elements are required for a Technical Proposal Submittal:

DRAINAGE MAP - PLAN VIEW

- Drainage divides and flow direction arrows
- High water information as required
- Preliminary horizontal alignment with stationing
- State, Federal, County highway numbers (as appropriate)
- Proposed storm drain trunk line and outfall locations
- Proposed Retention/Detention Pond Location

INTERCHANGE DRAINAGE MAP - PLAN VIEW

- Preliminary interchange drainage with drainage areas and flow direction arrows

TYPICAL SECTIONS

- Mainline and crossroad typical sections
- R/W lines
- Traffic data
- Pavement Design

PROJECT CONTROL

- Benchmarks
- Reference Points
- Control Points
PLAN AND PROFILE - PLAN VIEW

- North arrow and scale
- Baseline of survey, equations
- Curve data (including superelevation)
- Existing topography including utilities
- Preliminary horizontal geometrics/dimensions
- Existing & proposed R/W lines (if available)
- Centerline of construction (if different from the baseline of survey)
- Begin and end stations for the project and stations of equations and exceptions
- Existing utilities
- Guide sign locations
- Limits of wetlands

PLAN AND PROFILE - PROFILE VIEW

- North arrow and scale
- Appropriate existing utilities
- Preliminary profile grade line
- Existing ground line with elevations at each end of sheet
- Begin and end stations for the project and stations of equations and exceptions
- Final profile grades and vertical curve data
- High water elevations

TRAFFIC MONITORING SITE

- Project Specific

INTERCHANGE LAYOUT

- Curve data including superelevation and design speed
- Stationing and ties
- Access or frontage roads with dimensions and R/W
- Ramp identification
INTERSECTION LAYOUT

- North arrow and scale
- Existing topography (if applicable)
- Proposed R/W limits
- Length of turn lanes
- Geometric dimensions (radii, offsets, widths)
- Limits of proposed construction along side roads

TEMPORARY TRAFFIC CONTROL PLANS

- Project specific
- Other worksheets as necessary to convey concept and scope
- Preliminary traffic control plan
- Detour plan
- Phasing plan
- R/W – existing and additional if required

SIGNING AND PAVEMENT MARKING PLANS - SIGN DETAIL SHEETS

- Preliminary layout of multi-column and overhead guide sign worksheets

TOLL FACILITY PLANS

- Site/Civil
- Architectural
- Structural
301.3.3 90% Plans Component Submittal Requirements

The Department may provide review comments and mark-ups to the EOR for incorporation into the plan set. The Department may allow the EOR to include sketches of details or revised plan sheets along with their written responses to some review comments, in lieu of resubmitting a component plan set. The EOR will upload these sketches or revised plan sheets into the ERC system.

Unless otherwise directed by the Department, the following elements are required for a 90% Plans Component Submittal:

KEY SHEET

- Location Map with location of project on map
- All applicable Financial Project IDs
- (Federal Funds) notation, if applicable
- Exceptions & Equations
- County Name
- State Road Number
- North arrow and scale
- Approval signature lines
- Railroad crossing (if applicable)
- Revision box
- Governing Standards & Specifications dates
- Department’s Project Manager's Name
- Begin & end project station and begin mile post
- Begin & end bridge stations
- Consultant's name, address, contract number, and vendor number (if applicable)
- Index of sheets
- Contract plans and component plans list

SIGNATURE SHEET

- Sections for each Professional of Record
- Index of sheets for each Professional of Record
- Image of the seal(s)
- (Note: Digital Signatures are not to be applied in this Phase)
DRAINAGE MAP - PLAN VIEW

- North arrow and scale
- Drainage divides and ground elevations
- Drainage areas and flow direction arrows
- Equations
- High water information as required
- Preliminary horizontal alignment
- Section, township, range lines
- Street names
- Begin & end stations of project, bridge, bridge culverts & exceptions
- Existing structures & pipes with relevant information
- Proposed structures with structure numbers
- Proposed storm drain pipes
- Flow arrows along proposed ditches
- Retention/Detention ponds, pond number and area size
- Cross drains with pipe sizes and structure numbers
- Bridges/bridge culverts with begin and end stations
- Flood data (if applicable)
- State, Federal, county highway numbers (as appropriate)

DRAINAGE MAP - PROFILE VIEW

- Horizontal & vertical scale
- Begin & end stations of project, bridges, bridge culverts & exceptions
- Equations
- Ditch gradients including DPIs
- Final roadway profile grade line
- Mainline storm drain pipes
- Mainline flow line elevations
- Mainline structures with structure numbers and pipes
- Bridge, Bridge Culvert
- Cross drains with pipe sizes, structure numbers and flow line elevation
INTERCHANGE DRAINAGE MAP

- North arrow and scale
- Stationing along baselines
- Ramp baselines with nomenclature
- Begin and end bridge stationing
- Final interchange configuration
- R/W lines
- Final Interchange drainage with drainage areas and flow direction arrows
- Final geometrics including PC and PT
- Proposed structures with structure numbers
- Proposed storm drain pipes
- Special ditches with DPI and elevation

TYPICAL SECTIONS

- Mainline and crossroad typical sections
- Special details (e.g., bifurcated sections, high fills)
- R/W lines
- Traffic data
- Pavement Design

PROJECT LAYOUT

- Plan-profile sheet sequence (mainline and crossroads)

PROJECT CONTROL

- Complete
ROADWAY PLAN PROFILE - PLAN VIEW

- North arrow and scale
- Baseline of survey, equations
- Curve data (including superelevation)
- Existing topography including utilities
- Preliminary horizontal geometrics/dimensions
- Existing & proposed R/W lines (if available)
- Centerline of construction (if different from the baseline of survey)
- Begin and end stations for the project, bridges, bridge culverts and exceptions
- Reference points (if project survey control sheet not included in plans set)

- Curb return numbers, station ties and elevations
- Proposed drainage structures with structure nos.
- Proposed R/W lines
- Existing utilities
- Limits of wetlands
- Flood data if not shown elsewhere
- Proposed side drain pipe requirements (including size) for access and intersections
- Final geometrics and dimensions including radii, station pluses, offsets, widths, taper/transition lengths, curve data
- General notes (if project layout sheet not included)

ROADWAY PLAN PROFILE - PROFILE VIEW

- Begin and end stations for the project and stations of equations and exceptions
- Existing ground line with elevations at each end of sheet
- Final profile grades and vertical curve data
- High water elevations

- Appropriate existing utilities
- Mainline storm drain pipes
- Proposed special ditches
- Ditch gradients with DPI station and elevation
- Non-standard superelevation transition details
• High water elevations
• Mainline drainage structures with structure numbers

TRAFFIC MONITORING SITE
• Project Specific

SPECIAL PROFILE
• Scale
• Existing ground line of intersections
• Final intersection profile grades
• Final curb return profiles (if applicable)
• Superelevation diagrams as required
• Final ramp profile grades including nose sections
• Final access and frontage road profiles (may contain one or more types of special profiles.)

BACK-OF-SIDEWALK PROFILE
• Scale
• Begin and end project stations
• Begin and end sidewalk stations
• Cross-street locations and elevations
• Drainage flow direction arrows
• Mainline equations
• Existing driveway locations and details
• Superelevation details
• Back-of-sidewalk profile grades and vertical curve information
• Building floor elevations with offset distance left and right
• Grade line notation: Specifically the numeric difference relative to roadway profile grade line
INTERCHANGE LAYOUT

- North arrow and scale
- Quadrant Identification
- Ramp Labels
- Schematic of traffic flow and volumes
- Proposed bridge limits
- R/W lines
- Final configuration and geometrics
- Curve data including superelevation and design speed
- Coordinate data, stationing and ties
- Access and frontage roads with dimensions and R/W
- Fence location

RAMP TERMINAL DETAILS

- Ramp identification
- Final geometrics
- Radii, transition/taper lengths

INTERSECTION LAYOUT

- North arrow and scale
- Existing topography (if applicable)
- Proposed R/W limits
- Length of turn lanes
- Taper lengths
- Existing Utilities
- Geometric dimensions (radii, offsets, widths)
- Limits of proposed construction on side roads
- Applicable notes
- Cross drains with structure numbers and pipe sizes
- Storm drain pipes including sizes
- Final geometrics including dimensions, radii, offsets, station pluses and taper/transition lengths
DRAINAGE STRUCTURES

- Vertical and horizontal scale
- Roadway template with profile grade elevation
- Underground utilities
- Special sections at conflict points
- R/W lines (at critical locations)
- Storm drain construction notes
- Flow arrows
- Applicable notes
- Structure numbers and location station along right side of sheet
- Drainage structures with numbers in numerical order, type, size, location and flow line elevations

OUTFALL / LATERAL DITCH - PLAN VIEW

- North arrow and scale
- Roadway centerline
- Existing and survey ditch centerline
- Proposed ditch centerline with stationing
- Begin and end ditch stations
- Equations
- Ditch centerline intersection stations

- R/W lines
- Bearings of ditch and mainline centerlines
- Proposed storm drain pipes
- Ditch PI stations with deflection angle left or right
- Proposed drainage structures with structure numbers
- Existing topography, drainage structures, utilities
- Limits of wetlands
OUTFALL / LATERAL DITCH - PROFILE VIEW

- Bench mark information
- Scale
- Existing ground line
- Proposed ditch profile with grades
- Begin and end ditch stations
- High water elevations
- Proposed storm drain pipes with size
- Existing Utilities
- Overland flow or overtopping elevations
- Proposed drainage structures with structure numbers
- Typical section can be placed in either plan or profile

LATERAL DITCH CROSS SECTIONS

- Horizontal and vertical scale
- Existing ground line
- Station numbers
- Survey centerline and elevation
- R/W
- Begin and end ditch stations
- Begin and end excavation stations
- Existing utilities
- Proposed template with ditch bottom elevation
RETENTION/DETENTION POND DETAILS

- North arrow and scale
- Roadway centerline ties
- Proposed pond centerline with stationing
- Begin and end pond stations
- Side slopes, dimensions, and elevations
- R/W lines
- Berm, fence and gate locations
- Soil boring information
- Proposed pond drainage structures with structure numbers
- Existing topography, drainage structures, utilities
- Pond sections (2 perpendicular to each other)
- Pond Typical Section
- Limits of wetlands

RETENTION/DETENTION POND CROSS SECTIONS

- Horizontal and vertical scale
- Existing ground line
- Station numbers
- Begin and end pond stationing
- Pond centerline and elevations
- R/W
- Soil borings
- Water table
- Extent of unsuitable material
- Existing utilities
- Proposed template with bottom elevation

ROADWAY SOIL SURVEY

- Soil data
- Project specific
CROSS SECTIONS

- Scale
- Existing ground line
- Existing survey baseline elevations
- Station numbers
- Baseline of survey labeled
- Existing utilities
- Proposed template with profile grade elevations along mainline and cross-streets as necessary

TEMPORARY TRAFFIC CONTROL PLANS

- Project specific
- Other worksheets as necessary to convey concept and scope.
- Final traffic control plan
- Detour plan
- Phasing plan
- R/W - existing and additional if required
- Existing Utilities

UTILITY ADJUSTMENTS

- All existing utilities highlighted

SELECTIVE CLEARING AND GRUBBING

- Limits of construction by station and type of selective clearing and grubbing

MITIGATION PLANS

- Project Specific

MISCELLANEOUS STRUCTURES PLANS

- Retaining walls (Cast in place, proprietary, temporary) if required
SIGNING AND PAVEMENT MARKING PLANS - KEY SHEET

- Financial Project ID
- (Federal Funds) notation, if applicable
- State Road Number
- County Name
- Department’s Project Manager’s Name
- Begin/end stations & exceptions
- Station Equations (if location map is shown)
- Engineer of Record
- Consultants name & address, if applicable

SIGNING AND PAVEMENT MARKING PLANS - PLAN SHEETS

- North arrow and scale
- Basic Roadway Geometrics
- Begin/End Stations and Exceptions
- Station equations
- Conflicting utilities, lighting or drainage
- Pavement markings
- Sign locations

GUIDE SIGN WORK SHEETS

- Project Specific

SIGNALIZATION PLANS - KEY SHEET

- Financial Project ID
- (Federal Funds) notation, if applicable
- State Road Number
- County Name
- Department’s Project Manager’s Name
- Begin/end stations & exceptions
- Station Equations (if location map is shown)
- Engineer of Record
- Consultants name & address, if applicable
SIGNALIZATION PLANS - PLAN SHEET

- North arrow and scale
- Basic Roadway Geometrics
- Begin/End Stations and Exceptions
- Station Equations
- Conflicting utilities, lighting or drainage
- Signal Pole Location
- Type and location of loops
- Type and location of signal heads
- Pedestrian Signal
- Location of Stop Bars
- Location of Pedestrian Crosswalks
- Sheet Title

SIGNALIZATION PLANS - POLE SCHEDULE

- Pole location, number, type
- Pole dimensions
- Joint use pole details, if applicable
- Foundation design

SIGNALIZATION PLANS - INTERCONNECT/COMMUNICATION CABLE PLAN

- Placement of interconnect/communication cable
- Conflicting utilities, lighting or drainage
- Other project specific details

ITS PLANS - KEY SHEET

- Financial Project ID
- (Federal Funds) notation, if applicable
- State Road Number
- County Name
- Department’s Project Manager’s Name
- Begin/end stations & exceptions
- Station Equations (if location map is shown)
- Engineer of Record
- Consultants name & address, if applicable
ITS PLANS - PLAN SHEETS

- Project Specific, but must include:
 - North arrow and scale
 - Basic Roadway Geometrics
 - Begin/End Stations and Exceptions
 - Station equations
 - Conflicting utilities, lighting or drainage

ITS PLANS - DETAIL SHEETS

- Project Specific

LIGHTING PLANS - KEY SHEET

- Financial Project ID
- (Federal Funds) notation, if applicable
- State Road Number
- County Name
- Department’s Project Manager’s Name
- Begin/end stations & exceptions
- Station Equations (if location map is shown)
- Engineer of Record
- Consultants name & address, if applicable

LIGHTING PLANS - POLE DATA AND LEGEND SHEET

- Each pole by number with location, arm length, mounting height and luminaire wattage
- Design value for light intensities and uniformity ratios shown
- Legend and sheet title
LIGHTING PLANS - PLAN SHEETS

- North arrow and scale
- Basic Roadway Geometrics
- Begin/End Stations and Equations
- Station Equations
- Conflicting utilities, drainage, signal poles
- Sheet title
- Pole symbols shown at correct station location and approximate offset

LIGHTING PLANS - HIGH MAST

- Foundation detail sheets (project specific)
- Boring data sheets (project specific)
- Conflicting utilities, drainage, lighting

LANDSCAPE PLANS – KEY SHEET

- Financial Project ID
- (Federal Funds) notation, if applicable
- Fiscal year and sheet number
- State Road Number
- County Name
- Department’s Project Manager’s Name
- Begin/end stations & exceptions
- Station Equations (if location map is shown)
- Landscape Architect of Record name and registration number
- Consultants name, address, and contract number, if applicable
- Index of landscape plans
VEGETATION DISPOSITION PLAN

- North Arrow and Scale
- Drainage divides and ground elevations (if available)
- Drainage areas and flow direction arrows
- Street names
- Baseline of Survey or Project Centerline
- Begin & end stations of project, construction and exceptions
- Existing to remain or proposed roadway improvements, structures and drainage facilities with relevant information
- Existing off-site features and conditions that affect or are affected by the project
- Edge of pavement and traffic lanes
- Edge of pavement (edge of traffic lanes)
- Curbs or curb and gutter
- Guardrails
- Right of way and/or limited access fence line and gate locations
- Sidewalks or other planned or existing structures
- Lighting, signs, signal poles and ITS facilities
- Existing and proposed overhead or underground utilities
- Transit facilities
- Details for vegetation removal and pruning
- Vegetation Relocation Plan
- Notes
LANDSCAPE PLANS – PLANTING PLAN SHEETS

- Project centerline
- Edge of pavement (edge of traffic lanes)
- Curbs or curb and gutter
- Drainage systems
- Guardrails
- R/W or limited access fence line
- Sidewalks or other planned or existing structures
- Lighting, signs, and signal poles
- Intersections and driveways which are noted in the plans
- Existing and proposed overhead and underground utility locations
- Clear Zone/Lateral offset (should be plotted or safety setback distances noted frequently on each plan sheet)
- View zones for permitted outdoor advertising signs
- Canopy limits
- Existing vegetation (to remain or be removed)
- Existing off site features and conditions that affect or are affected by the project
- Fence and gate locations
- Setbacks from structural elements or drainage system
- Limits of clear sight
- Transit facilities
- Proposed Planting Plan

LANDSCAPE PLANS - IRRIGATION PLAN SHEETS

(if applicable)

- Type of system
- Location and size of mainlines and lateral lines
- Type and location of spray heads and rotors
- Type and location of valves, sleeves, controllers, water sources/point of connection, backflow preventers, and isolation valves
LANDSCAPE PLANS – DETAILS SHEET

- Applicable landscape details
- Irrigation symbology with associative descriptions (if applicable)

301.3.4 Final Plans Submittal

Ordinarily, the remaining work to be done will be to:

1. Comply with comments received as a result of the 90% review,
2. Update all plan sheets and the Financial Management (FM) system, and
3. Provide Utility Work by Highway Contractor (UWHC) Agreement Plans, consisting of a key sheet, and mainline plan-profile showing proposed utility horizontal and vertical locations.

The Department may provide review comments and mark-ups to the EOR for incorporation into the plan set. The Department may allow the EOR to include sketches of details or revised plan sheets along with their written responses to some review comments, in lieu of resubmitting a component plan set. The EOR will upload these sketches or revised plan sheets into the ERC system. When the review comments have been resolved and documented by the designer, the plans are ready to proceed to completion.

301.3.5 Released For Construction Plans

After corrections noted in the Final Plans submittal have been satisfactorily resolved as determined by the Department, the Department’s Project Manager will initial, date and stamp each submittal as “Released for Construction”. Only signed and sealed plans stamped “Released for Construction” by the Department’s Project Manager are valid.

301.4 Alternative Intersection and Interchange Review

See *FDM 116* for more information on Alternative Intersection and Interchange reviews.
301.4.1 Review Package Requirements: General

The following items are required for an Alternative Intersection and Interchange Review Package:

1. Geometric Layout (PDF and CADD):
 - North Arrow and scale
 - Survey Baseline, equations
 - Significant topographic features including buildings, driveways, bridges, drainage structures, utilities, bicycle and pedestrian facilities, and transit facilities
 - Preliminary horizontal geometry including pavement edges, curb and gutter, traffic separators, islands, sidewalks, and curb ramps
 - Preliminary pavement markings including edge lines, interior lane lines, extension lines, stop bars, cross walks, direction arrows, and gore markings

2. Design Vehicle Turning Movements (PDF and CADD):
 - Design Vehicle swept path diagrams for all through movements, left turn movements, and right turn movements

3. Traffic Forecast (PDF)
 - Opening year and design year AM and PM peak hour volumes for all movements through the intersection
 - Peak hour factor
 - Percentage of heavy vehicles
 - Volume distribution across lanes for multi-lane entries

4. Operational Analysis input and output (PDF)
301.4.2 Review Package Requirements: Roundabouts

The following additional items are required for Roundabout Review Packages:

1. Fastest Path Speed Checks in accordance with NCHRP 672 Section 6.71 (PDF and CADD)
2. Sight Distance Checks in accordance with NCHRP 672 Section 6.7.3 (PDF and CADD)

301.4.3 Review Package Requirements: Diverging Diamond Interchanges

The following additional items are required for Diverging Diamond Interchange Review Packages:

1. Horizontal Alignment Data including baseline locations, curve data, stationing, cardinal points (PC, PT, etc.)
2. Vertical Alignments
3. Cross slopes
302 Key Sheet

302.1 General

The Key Sheet is the first sheet of the contract plans. This sheet describes the project and the contents of the plans. The Key Sheet cell can be found in the FDOT CADD Software.

See Exhibit 302-1 for an example of a lead Key Sheet with no revisions and Exhibit 302-2 for a lead Key Sheet with revisions. See Exhibit 302-3 for an example of a component Key Sheet.

302.2 Financial Project ID, Federal Funds, County Name and State Road Number

The Financial Project ID is the main number identifying each individual project within the Department. Place the number immediately under the heading "CONTRACT PLANS" in the top center of the sheet. When the project involves Federal funds, place the words "(Federal Funds)" under the Financial Project ID. Place the county name and roadway section number associated with the Straight Line Diagrams under the Financial Project ID or "(Federal Funds)". Place the roadway section number within parentheses. Place the state road number under the county name and roadway section number. A description of project limits may be placed under the state road number; e.g., “Crim Boulevard to Washington Street”.

On projects which have one Contract plans set, but multiple Financial Project IDs, place all of the Financial Project IDs immediately under the heading "CONTRACT PLANS" on the key sheet. On all other plan sheets, show only the lead Financial Project ID in the title block.

302.3 Construction Contract Number, Fiscal Year and Sheet Number

Show the Construction Contract Number in the “Construction Contract No.” box (lower right corner) on all component Key Sheets. Show the fiscal year for which the Letting is scheduled in the “Fiscal Year” box; i.e., enter “18” in the box for a project that has a Letting date during the July 2017 to June 2018 fiscal year.

The Key Sheet of each component of the contract plans will be numbered as the first sheet of that component.
302.4 Project Location Map and North Arrow

Place the project location map in the center of the key sheet with a north arrow on the right side of the map. Orient the map so that the north arrow points toward the top of the sheet. If the north arrow cannot be oriented toward the top of the sheet, then orient the map so that the north arrow points to the right.

The map consists of a reproduced portion of one or more county maps showing the project location. County maps in MicroStation (*.dgn) format or in Portable Document Format (PDF) can be downloaded from the County General Highway Maps web page.

A utility to download the county map and clip out the project location area is provided in the FDOT CADD Software.

The intent of the project location map is to provide enough information so that the project location is easily understood. Show Section, Township, and Range lines and numbers to provide clarity and scale to the project location map. Show county, city and urban limits where applicable.

Designate roads by name and State Road number or U.S. Highway number. Show the name of the next incorporated city at the edge of the map to which these roads lead. Use standard symbols as shown in the FDOT CADD Software.

Indicate project location using a heavy solid line of substantial width. It is sometimes advantageous to show station numbers at regular intervals, particularly with city street projects. Flag and station the following:

1. Begin and end project limits. Provide milepost, correct to three decimals, under the project stations.
2. Begin and end limits of bridges and bridge culverts. When an existing structure is being replaced, indicate the proposed structure and not the existing.
3. Station equations
4. Project exception limits (i.e., mileposts excluded from project)
5. Rail crossings within the limits of construction, including name of railroad, DOT/AAR crossing number, and railroad milepost.

Calculate the end milepost by adding the distance in miles between begin and end project to the begin milepost. Plans are to be prepared using stationing in linear feet. A project may be prepared using mileposts when linear foot stationing is unavailable. Station information is to be consistent with the station information entered into the Work Program.
Administration (WPA) system during final design. See *FDM 111.2.1* for information on updating the WPA system.

When several projects are covered by the same set of plans, flag and station begin and end project limits for each Financial Project ID.

The project location map is typically located on the lead component Key Sheet.

Show a small-scale state map at the upper right portion of the lead component Key Sheet and indicate the location of the project thereon. The map may be shown on other component Key Sheets, but is not required.

302.5 Contract Plans Set Components

The Contract Plans Set is typically assembled as component plans that are associated with a primary work type. Roadway plans are typically the lead component of the contract plans. Provide a list of all component plans included in the contract plans in the upper left corner of the lead component Key Sheet in the following order:

1. Roadway
2. Signing and Pavement Marking
3. Signalization
4. Intelligent Transportation Systems (ITS)
5. Lighting
6. Landscape
7. Architectural
8. Structures
9. Toll Facilities

Utility Work by Highway Contractor Agreement Plans have a separate Financial Project ID and are typically treated as a strung project. See *FDM 302.11* for additional information on Strung Projects. When utility work is minimal, the District may decide to include these plans as a component set to the lead plans set.

Another component (e.g., structures, signals, landscaping), may become the lead component when there are no roadway plans. Any sheets incidental to the project typically found within the roadway plans may be included in the lead component plans and numbered consecutively. Sheet number prefixing is not required for the lead
component plan; i.e., “IT-#” is not required for ITS Plans when they are the lead component.

See the Structures Manual, Volume 2 — Structures Detailing Manual when Structures plans become the lead component.

302.6 Index of Roadway Plans

Place an index of roadway sheets on the left side of the Key Sheet. Each component Key Sheet will have an index of sheets contained in that component. Assemble roadway plans in the following order:

1. Key Sheet
2. Signature Sheet
3. Drainage Map
4. Interchange Drainage Map
5. Typical Section
6. Optional Materials Tabulation/Project Layout
7. Project Control
8. General Notes
9. Roadway Plan and Profiles
10. Traffic Monitoring Site
11. Special Profiles
13. Interchange Layout
14. Ramp Terminal Details
15. Intersection Layout/Detail
16. Drainage Structures
17. Outfall/Lateral Ditch Plan and Profiles
18. Outfall/Lateral Ditch Cross Sections
19. Special Details
20. Cross Section Pattern
21. Roadway Soil Survey
(22) Cross Sections
(23) Stormwater Pollution Prevention Plans (SWPPP)
(24) Temporary Traffic Control Plans
(25) Utility Adjustments
(26) Selective Clearing and Grubbing
(27) Tree Disposition Plan
(28) Developmental Standard Plans
(29) Signing and Pavement Marking Plans\(^{(2)}\)
(30) Signalization Plans\(^{(2)}\)
(31) ITS Plans\(^{(2)}\)
(32) Lighting Plans\(^{(2)}\)
(33) Landscape Plans\(^{(2)}\)
(34) Mitigation Plans
(35) Miscellaneous Structures Plans
(36) Toll Facilities\(^{(2)}\)

\(^{(1)}\) Place at the end of the numbered roadway plan sheets.

\(^{(2)}\) When the work for these components is minor, sheets may be included (and numbered sequentially) in the lead component; do not show these as component plans.

Note: Do not place Box Culvert plan sheets in the Roadway component plans. These sheets are to be placed in a Structure component, even when there are no bridge plans.
302.6.1 Early Works

The roadway plans may require insertion of sheets that were prepared early, or prior to the design process. These sheets may be identified and numbered with the following prefixes:

(1) GR-# Soil Survey and Report of Core Borings normally associated with the roadway plans set (including miscellaneous structures but excluding bridges and walls)
(2) TR-# Tree Survey
(3) UTV-# Verified Utility Locate

These sheets appear as the last item in the index of roadway plan sheets. Include an asterisk next to the early works title and a note below the index per Exhibit 302-1.

No plans sheets other than those listed above are to be separated from the component plans.

302.7 Professional Responsibility

An Engineer of Record (EOR) is the lead Florida licensed professional engineer in charge of the preparation of the component plans. Place in the lower right corner the name and license number of the EOR. Also show the name and address of the engineering business or agency where the EOR is employed. Include the consultant contract number and vendor number when plans are prepared by an engineering business.

For non-engineering professionals that are in charge of the preparation of the component plans, change title to “Licensed Professional of Record”. Include similar information that applies to their profession.

Place the name of the Department's Project Manager below the EOR information. Show only the Department’s Project Manager at this location, except for:

(1) When plans are prepared by Department Personnel, the name of the Department’s designer may be placed immediately below the name of the Department’s Project Manager.
(2) When appropriate, the name of the GEC Project Manager may be placed immediately below the Department’s Project Manager.
302.8 Governing Standard Plans and Standard Specifications

Show the governing Standard Plans and Standard Specifications on the lead component Key Sheet as shown on Exhibit 302-1. Do not show this reference on other component Key Sheets. For requirements of the Structures General Notes and inclusion of the relevant bridge related Standard Plans in the structures component plan set, see the Structures Detailing Manual. For additional information on the Standard Plans and Standard Specifications, see FDM 115.

When Standard Plans Interim Revisions (IRs) are released, the engineer must determine if any IRs apply to the project and reference those applicable IRs as shown on Exhibit 302-1.

302.9 Developmental Standard Plans

Insert Developmental Standard Plans at the end of each applicable component plan set as applicable. When included in structure component plans, insert Developmental Standard Plans before existing bridge plans. List Developmental Standard Plans below the “Index of Sheets” for the plans component in which they are included, as shown on Exhibit 302-1.

302.10 Revisions

The process and requirements for completing plan revisions are provided in FDM 132.

Show a complete record of all contract plans revisions on the lead component Key Sheet under the “REVISIONS” header located below the project location map. Include the component (such as roadway, structures, signing and pavement marking), the sheet number, and the date for each plan sheet that was revised. Show the unique numbered symbol that corresponds to the Revision Number on the Revision Memo and modified sheets as well.

Show revisions to the Key Sheet in the Key Sheet Revisions block placed below the project location map, and to the right of the “REVISIONS” header. List the revision date and a brief description of the revision. The Key Sheet Revisions block is only used to record changes to the Key Sheet other than recorded revisions under the “REVISIONS” header. A new lead component Key Sheet is required when any sheet within the contract plans is revised.
If a sheet is being deleted, note this under the "REVISIONS" header, and revise the Index of Sheets to show "(DELETED)" next to the deleted sheet. Record the change to the Index of Sheets in the Key Sheet Revisions block.

Revisions made after award (i.e., Post-Let Revisions) are to be "clouded" in a conspicuous manner. If there are no revisions to the plans, neither the "REVISIONS" header nor the Key Sheet Revisions block are required.

302.11 Strung Projects

Contract plans that are independently prepared but are let in the same construction contract are referred to as strung projects. When a federally-funded project is strung with a non-federal eligible (NFE) project, the federally-funded project is typically the lead project. When a federally funded project is strung with a state funded project, the entire contract becomes federalized; i.e., both the state funded project and the federally funded project must comply with all applicable federal laws, rules, and regulations related to the federalized contract. For each set of contract plans that are to be strung, place the strung project note on the lead component Key Sheet as shown in Exhibit 302-1. Show the strung project note only on lead component Key Sheets.

List revisions to any strung project on the lead component Key Sheet of the lead project under the "REVISIONS" header, under the respective Financial Project ID.
STATE OF FLORIDA
DEPARTMENT OF TRANSPORTATION

CONTRACT PLANS

FINANCIAL PROJECT ID 123456-1-52-01
(FEDERAL FUNDS)

BAY COUNTY (46080)
STATE ROAD NO. 22 (WEWA HWY)

INDEX OF ROADWAY PLANS

SHEET NO. SHEET DESCRIPTION
1. KEY SHEET
2. SIGNATURE SHEET
3. DRAINAGE MAP
4 - 8. TYPICAL SECTIONS
9. TYPICAL SECTION DETAILS
10. OPTIONAL MATERIALS TABULATION
11. PROJECT LAYOUT
12. PROJECT CONTROL
13. GENERAL NOTES
14 - 15. ROADWAY PLAN AND PROFILES
16. TRAFFIC MONITORING SITE
17. SPECIAL PROFILES
18. INTERSECTION LAYOUT
19 - 27. LATERAL DITCH PLAN AND PROFILES
28. LATERAL DITCH CROSS SECTIONS
29. SPECIAL DETAILS
30 - 40. CROSS SECTIONS
41. STORMWATER POLLUTION PREVENTION PLAN
42 - 45. TEMPORARY TRAFFIC CONTROL PLANS
46 - 50. UTILITY ADJUSTMENTS
51 - 55. SELECTIVE CLEARING AND GRUBBING

GR-1*. ROADWAY SOIL SURVEY

DEVELOPMENTAL STANDARD PLANS:
DS90.001 LANDSCAPE IRRIGATION SLEEVES

* This sheet is included in the Index of Roadway Plans only to indicate that it is part of the Roadway Plans. This sheet is contained in a separate digitally signed and sealed document.

GOVERNING STANDARD PLANS:

Florida Department of Transportation, P1204-20 Standard Plans for Road and Bridge Construction and applicable Interim Revisions (IRs).

Standard Plans for Road Construction and associated IRs are available at the following website: http://www.fdot.gov/design/standardplans

APPLICABLE IRs: IR536-001-01, IR521-001-01

Standard Plans for Bridge Construction are included in the Structures Plans Component.

GOVERNING STANDARD SPECIFICATIONS:

Florida Department of Transportation, July 2019 Standard Specifications for Road and Bridge Construction at the following website:
http://www.fdot.gov/programmanagement/implemented/SpecBooks

Roadway Plans
Engineer of Record:
LUKE S. WALKER, P.E.
ROADWAY ENGINEERS, INC.
123 MAIN STREET
TALLAHASSEE, FL 32301
(850) 671-1313

Contract No.: C0000
Vendor No.: 99-999999

Construction Fiscal Year
TO0000 20 1

This project to be let to contract with financial project ID(s): 123456-1-52-01, 123457-1-52-01, 123457-1-56-01

Location of Project
https://geo.arcgis.com/arcgisвенюла.влс

Original Key Sheet
Date: 1/1/21

MEXICO BEACH

TO WEWAHITCHKA

TO CALLAWAY (10.88)

TO WEWA HWY

TO MEXICO BEACH

BEGIN PROJECT STA. 335+87.36 MP 1.560
END PROJECT STA. 442+67.16 MP 7.560
STATE OF FLORIDA
DEPARTMENT OF TRANSPORTATION

CONTRACT PLANS COMPONENTS
ROADWAY PLANS
SIGNING AND PAVEMENT MARKING PLANS
SIGNALIZATION PLANS
INTELLIGENT TRANSPORTATION SYSTEMS PLANS
LIGHTING PLANS
LANDSCAPE PLANS
ARCHITECTURAL PLANS
STRUCTURE PLANS
TOLL FACILITIES PLANS

INDEX OF ROADWAY PLANS

SHEET NO. SHEET DESCRIPTION
1 KEY SHEET
2 SIGNATURE SHEET
3 DRAINAGE MAP
4 - 7 TYPICAL SECTIONS
8 TYPICAL SECTION DETAILS
9 OPTIONAL MATERIALS TABLE
10 PROJECT LAYOUT
11 PROJECT CONTROL
12 GENERAL NOTES
13 - 16 ROADWAY PLAN AND PROFILES
17 TRAFFIC MONITORING SITE
18 SPECIAL PROFILES
19 INTERSECTION LAYOUT
20 - 26 DRAINAGE STRUCTURES
27 LATERAL DITCH PLAN AND PROFILES
28 LATERAL DITCH CROSS SECTIONS
29 SPECIAL DETAILS
30 - 40 CROSS SECTIONS
41 STORMWATER POLLUTION PREVENTION PLAN
42 - 45 TEMPORARY TRAFFIC CONTROL PLANS
46 - 47 UTILITY ADJUSTMENTS
48 - 51 SELECTIVE CLEARING AND GRUBBING

GR 1* ROADWAY SOIL SURVEY

DEVELOPMENTAL STANDARD PLANS:
DS90-001 LANDSCAPE IRRIGATION SLEEVES

* This sheet is included in the Index of Roadway Plans only to indicate that it is part of the Roadway Plans. This sheet is contained in a separate digitally signed and sealed document.

GOVERNING STANDARD PLANS:
Florida Department of Transportation, P1209-20 Standard Plans for Road and Bridge Construction and applicable Interim Revisions (IRs).
Standard Plans for Road Construction and associated IRs are available at the following website: http://www.fdot.gov/design/standardplans

APPLICABLE IRs: IR536-001-01, IR521-001-01
Standard Plans for Bridge Construction are included in the Structures Plans Component.

GOVERNING STANDARD SPECIFICATIONS:
Florida Department of Transportation, July 2009 Standard Specifications for Road and Bridge Construction at the following website: http://www.fdot.gov/programmanagement/implemented/SpecBooks

CONTRACT PLANS
FINANCIAL PROJECT ID 123456-1-52-01
(FEDERAL FUNDS)
BAY COUNTY (46080)
STATE ROAD NO. 22 (WEWA HWY)

REVISIONS:
FINANCIAL PROJECT ID 123456-1-52-01
Roadway Sheets 1, 2A, & 28A (Revised 02-14-20)
FINANCIAL PROJECT ID 123457-1-52-01
Structure Sheets C3 & C3 THRA C10 (Revised 02-14-20)
FINANCIAL PROJECT ID 123456-1-52-01
Roadway Sheets 1 & 50-7 (Revised 05-20-20)

KEY SHEET REVISIONS
DATE DESCRIPTION
02-14-20 Added Sheet Numbers 2A & 28A to index
03-20-20 Added Sheet Number SQ-7 to Index

LOCATION OF PROJECT
https://geo.fdot.gov/county/mapview.aspx

ROADWAY PLANS
ENGINEER OF RECORD:
LUKE S. WALKER, P.E.
ROADWAY ENGINEERS, INC.
123 MAIN STREET
TALLAHASSEE, FL 32301
(850) 671-1313

FOOT PROJECT MANAGER:
BEN K. UWAIBI, P.E.

FDOT PROJECT MANAGER:
BEN K. UWAIBI, P.E.

CONSTRUCTION CONTRACT NO. FISCAL YEAR SHEET NO.
T0000 20 1
STATE OF FLORIDA
DEPARTMENT OF TRANSPORTATION

CONTRACT PLANS

FINANCIAL PROJECT ID 123456-1-52-01
(FEDERAL FUNDS)
BAY COUNTY (46080)
STATE ROAD NO. 22 (WEWA HWY)

SIGNING AND PAVEMENT MARKINGS PLANS

SIGNING AND PAVEMENT MARKINGS PLANS

LOCATION OF PROJECT
https://goo.gl/maps/zmmkmmoLDvk

CHUJ. JAMESON
LVICE NO.: 99992

ON THE DATE ADJACENT TO THE SEAL
PRINTED COPIES OF THIS DOCUMENT ARE
NOT CONSIDERED SIGNED AND SEALED
AND THE SIGNATURE MUST BE VERIFIED
ON ANY ELECTRONIC COPIES.

VENDOR NO.: 99-999999
CONTRACT NO.: C0001
(850) 671-1313
TALLAHASSEE, FL 32301
123 MAIN STREET
ROADWAY ENGINEERS, INC.
CHUJ. J. JAMESON, P.E. NO.: 99992

FDOT PROJECT MANAGER:
BEN K. UWAINI, P.E.

Exhibit 302-3
Component Key Sheet
Date: 1/1/21

CONSTRUCTION
CONTRACT NO.: T0000
FISCAL YEAR: 18
SHEET NO.: 1
303 Signature Sheet

303.1 General

The Signature Sheet is the second sheet of the contract plans. This sheet defines a professional’s area of responsibility for those portions of the document being digitally signed. The Signature Sheet shows the Digital Signature Appearance of the Professional(s) of Record.

See Exhibits 303-1 and 303-2 for examples of a Signature Sheet.

Projects are to be delivered as individual Signed and Sealed components of the contract plans; e.g., Roadway Plans, Signing and Pavement Marking Plans, Structure Plans. A Signature Sheet is required for component plans that are to be Signed and Sealed by more than one licensed professional. When component plans are to be Signed and Sealed by a single licensed professional a signature block can be placed on the Key Sheet in lieu of using a Signature Sheet (see Exhibit 302-3).

303.2 Title Block

The Signature Sheet title block is to contain the information for the licensed professional that is responsible for the creation and content of the sheet. Do not place the Official Record note along the right edge of this sheet.

See FDM 130 for digital Signing and Sealing requirements.

303.3 Digital Signature Placement

By placing a digital signature on the Signature Sheet of a multi-sheet plans set, the licensed professional associates their professional signature with the entire plans set. The Signature Sheet provides a Statement of Responsibility delineating the extent of the professional’s responsibility and identifies the specific sheets for which the professional is accepting responsibility.

303.4 Digital Signature Appearance

A Digital Signature Appearance is the visual representation of a Digital Signature applied to a document. The Digital Signature Appearance is composed of combinations of informational fields; e.g., dates or text, and other information. The Digital Signature
Appearance must include the professional's name, and the date and time of signing stamp.

303.5 Seal

The professional will include a representation of their Seal next to the Digital Signature Appearance. Seal representations are provided with the FDOT CADD Software. Each respective Board of Professional Regulation has enacted in their section of the Florida Administrative Code the requirements for the size and representation of a Seal.

303.6 Statement of Responsibility

The Statement of Responsibility is used to define the licensed professional's limits of responsibility and any exculpatory language. Place this statement below the Seal and Digital Signature Appearance and above the sheet index. The Statement of Responsibility must indicate the applicable Rule of the Florida Administrative Code (F.A.C.).

Exculpatory language may be included in cases where professionals share responsibility for content on any given sheet. In those cases additional text must include the limitations of their responsibility.

303.7 Index

The Index is a list of sheets that the licensed professional is responsible for signing and sealing. Place the Index below the Statement of Responsibility for each licensed professional. There may be sheets common to more than one licensed professional, and in such case, exculpatory language should be used to differentiate each area of responsibility.

303.8 Revisions

A revision Signature Sheet is created when more than one licensed professional is required to Sign and Seal a revision package. The revision Signature Sheet is numbered using an alphabetic suffix; e.g., 2A, 2B. Only the licensed professionals required to Sign and Seal the revision are to be included on the revision Signature Sheet.

See Exhibit 303-2 for an example of a revision Signature Sheet.
This item has been digitally signed and sealed by

Luke S. Walker
2018.10.14 16:52:48 - 4'00'

on the date adjacent to the seal.

Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Roadway Engineers, Inc.
123 Main Street
Tallahassee, FL 32301
Luke S. Walker, P.E., No. 99999

The above named professional engineer shall be responsible for the following sheets in accordance with Rule 61G15-23.004, F.A.C.

For the following sheets in accordance with Rule 61G15-23.004, F.A.C.

The above named professional engineer shall be responsible for the following sheets in accordance with Rule 61G15-23.004, F.A.C.

The above named registered landscape architect shall be responsible for the following sheets in accordance with Rule 61G10-11.011, F.A.C.

Date: 1/1/19
THIS ITEM HAS BEEN DIGITALLY SIGNED AND SEALED BY
Luke S. Walker
2018.10.14 16:52:48 - 4'00'
ON THE DATE ADJACENT TO THE SEAL
PRINTED COPIES OF THIS DOCUMENT ARE NOT CONSIDERED SIGNED AND SEALED
AND THE SIGNATURE MUST BE VERIFIED ON ANY ELECTRONIC COPIES.
ROADWAY ENGINEERS, INC.
123 MAIN STREET
TALLAHASSEE, FL 32301
LUKE S. WALKER, P.E. NO. 99991

THE ABOVE NAMED PROFESSIONAL ENGINEER SHALL BE RESPONSIBLE FOR THE FOLLOWING SHEETS IN ACCORDANCE WITH RULE 61G15-23.004, F.A.C.

<table>
<thead>
<tr>
<th>SHEET NO.</th>
<th>SHEET DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KEY SHEET</td>
</tr>
<tr>
<td>2A</td>
<td>SIGNATURE SHEET</td>
</tr>
<tr>
<td>28A</td>
<td>LATERAL DITCH CROSS SECTIONS</td>
</tr>
</tbody>
</table>

Exhibit 303-2: Revision Signature Sheet
Date: 1/1/19

STATE OF FLORIDA
DEPARTMENT OF TRANSPORTATION

LUKE S. WALKER, P.E.
P.E. NO. 99991
ROADWAY ENGINEERS, INC.
123 MAIN STREET
TALLAHASSEE, FL 32301

SIGNATURE SHEET

2A
304 Summary of Pay Items

Modification for Non-Conventional Projects:
Delete FDM 304.

304.1 General

The Summary of Pay Item sheets are no longer produced for contract plans. See FDM 902 for guidance on the Estimated Quantities Report and Summary of Pay Items Report.
305 Drainage Map and Bridge Hydraulic Recommendation Sheet

305.1 Drainage Map

Drainage maps are required for all projects that add mainline capacity or changes to the drainage hydraulics. Maps may be developed using a photographic (aerial or other) base map and included in the construction plans.

Preformatted drainage map sheet cells are located in the FDOT CADD Software. The upper (grid) portion of each sheet is used for plotting the project profile. The standard grid pattern for the profile portion of the sheet is five lines per inch, both in the horizontal and vertical. This will accommodate most scales. An optional grid with four lines per inch is available. This optional grid may be used if appropriate for scale.

Locate the topography of the project area in the remaining portion of the sheet. Utilize a horizontal and vertical scale of the profile so that the stations and elevations can be read directly from the grid without the use of a scale. Use the same horizontal scale for both the plan and profile views. Recommended scales for facility types are as follows:

<table>
<thead>
<tr>
<th>Location</th>
<th>Horizontal Scale</th>
<th>Vertical Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside Urban Boundary</td>
<td>1" = 200'/500'</td>
<td>1" = 5'/1"=10'</td>
</tr>
<tr>
<td>Outside Urban Boundary</td>
<td>1"=1000'/2000'</td>
<td>1" = 10'/1"=20'</td>
</tr>
</tbody>
</table>

305.1.1 Plan View

The plan view must comply with the following requirements:

1. Show stationing every 500 feet for scales of 1" = 100'/200', every 1000 feet for a scale of 1" = 500' and every 5000 feet for scales of 1" = 1000'/2000'. For additional information, see *FDM 311*.

 Show horizontal alignment station equations and exceptions. Also show begin and end stations of project, construction, bridge, and bridge culverts.

2. Clearly label existing physical land features affecting drainage, such as lakes, streams, and swamps, by name and direction of flow. Show past high water elevations with date of occurrence, if available, and present water elevations with date of reading.
Where applicable, show drainage divides and other information (such as pop-off elevations and spot elevations) to indicate the overland flow of water. Show drainage areas on maps in acres.

Use inserts to show areas that are of such magnitude that the boundaries cannot be plotted at the selected scale.

(3) Label existing road numbers and street names, drainage structures with type, size, flow line elevations, flow arrows and any other pertinent data. Refer to the FDOT CADD Software for correct symbols for existing drainage facilities. In a situation of limited space, all data relating to existing drainage structures and pipes may be compiled in a table format and shown in either the plan or profile portion of the sheet. Should the space limitations be such that a table will not fit within the plan or profile view, a supplemental drainage data sheet is acceptable.

(4) Show proposed drainage structures, cross drains, storm drain pipes, outfall structures and retention/detention pond locations. Label cross drains by pipe size and structure number. Label structures by structure number, storm drain pipes by pipe size, and ponds by pond number and area size. Show arrows to indicate direction of flow along proposed ditches.

(5) Label Section, Township, Range, and county lines for rural and urban projects when occurring within the project limits.

(6) Include a north arrow and scale, typically in the upper right corner of the plan view.

(7) If the drainage map is to be included in the contract plans set, include the following note:

\[
DO \ NOT \ USE \ THE \ INFORMATION \ ON \ THIS \ SHEET \ FOR \ CONSTRUCTION \ PURPOSES. \ THIS \ SHEET \ IS \ IN \ THE \ PLANS \ FOR \ DOCUMENTATION \ AND \ TO \ ASSIST \ CONSTRUCTION \ PERSONNEL \ WITH \ DRAINAGE \ CONCERNS.
\]

305.1.2 Profile View

The profile view, if shown, must comply with the following requirements:

(1) The recommended vertical scale for rural and urban projects is 1" = 5' in level terrain and 1" = 10' in rolling terrain. A scale of 1" = 20' may sometimes be used for rural projects through rough terrain to avoid numerous profile breaks. The profile can be broken for rolling terrain in urban areas; however, a scale of 1" = 20' should never be used at locations of proposed storm drain systems.

(2) Station numbers are to be shown along the bottom edge of the profile view.
(3) Show elevation datum at each side of the sheet. In cases where the profile block is insufficient and excess space is available on the plan portion of the sheet, the profile block may be expanded.

(4) Plot and label the profile of the existing natural ground, and note the existing elevation at each end, just above the station numbers.

(5) Plot the proposed profile grade line. Percent of grade need not be shown. Plot the PC, PI, and PT of vertical curves using their respective standard symbols; however, no data (station, elevation, length of curve) needs be noted. Label begin and end project, construction, bridge and bridge culvert stations, station equations, and exceptions. Show profile grade line elevations at begin and end project stations and at the beginning and end of each additional drainage sheet.

(6) Plot proposed cross drains and identify by structure number. Do not show skew or pipe slope in plotting, but plot to elevation and location at point of crossing the construction centerline.

(7) For projects with storm drain systems, show only the mainline structure and pipes. Laterals need not be shown. Label each structure with its appropriate structure number, and flow line elevations noted for the incoming and outgoing pipes.

(8) Show high water elevations affecting base clearance or roadway grades.

305.1.3 Flood Data Summary Box

The Project Drainage Engineer must provide the information required to complete the Flood Data Summary box.

Place the Flood Data Summary box on the drainage map, either in the plan or in the profile portion. Place the Flood Data Summary box on the General Notes sheet when the drainage map is not included in the plans.

Design, base and overtopping or greatest flood discharge and stage values are required for all cross structures (culverts and bridges), regardless of size, under the following conditions:

(1) New cross structures

(2) Existing cross structures that are being modified, where modifications affect the existing hydraulic calculations.

(3) Existing cross structures that have a history of flooding or other hydraulic problems, even if the structure is not to be modified; or
(4) Existing cross structures that are not being modified but are being impacted by a modification to another cross structure within the same drainage basin.

Place the following under the Summary of Flood Data table to avoid misuse and possible responsibility for changes in the flood information values over which the Department has no control:

Note: This hydraulic data is a summary of design calculations and is provided for informational purposes only. The user is cautioned against the assumption of precision for the discharge rates and water surface elevations. The units are in cubic feet per second (cfs) and the design stages are in feet, [insert datum reference here].

Definitions:

Design Flood: Utilized to assure a standard level of hydraulic performance.

Base Flood: Has a 1% chance of being exceeded in any year (100 yr. frequency).

Overtopping Flood: Causes flow over the highway, over a watershed divide or through emergency relief structures.

Greatest Flood: The most severe that can be predicted where overtopping is not practicable.

A preformatted summary box with disclaimer and definitions is located in the FDOT CADD Software.

305.1.4 Interchange Drainage Map

If projects include interchanges or rest areas, include a drainage map on a 1" = 200' or 1" = 500' scale. The purpose of this detail is to show the small areas needed to calculate pipe sizes for the tabulation of drainage structures within these special areas. Should major drains pass through one of these areas, include a cross reference note indicating the proper sheet which reflects the drainage area for that through-structure.
305.2 Bridge Hydraulic Recommendation Sheet

When a Bridge Hydraulic Recommendation Sheet (BHRS) is required (see Drainage Design Guide, Section 5.7.4), it must be prepared on a preformatted sheet. The cell for this sheet is located in the FDOT CADD Software. Place the BHRS in the structures plans.

Parallel (dual) bridges may be shown on one sheet; however, it typically requires a second sheet to clearly convey the fit of the bridge to the stream bank. When two sheets are used, only the plan and profile information is required on the second sheet.

The preformatted BHRS is divided into the four regions listed below. The required information for each region is described in the following sections.

(1) Plan View
(2) Profile View
(3) Location Map and Drainage Area
(4) Existing Structures, Hydraulic Design Data and Hydraulic Recommendations

A completed BHRS is shown as Exhibit 305-1.

305.2.1 Plan View

The plan view is to include the following:

(1) Stationing, scale, and north arrow. Include the channel baseline if one was created.
(2) Existing topography including existing bridge(s)) and contours to show elevations. Show sufficient detail in the vicinity of the proposed bridge to depict how the structure will tie to natural ground.
(3) Label the name of the water body (e.g., St. Johns River).
(4) Arrows showing the direction of the flow.
(5) Proposed bridge begin and end station.
(6) Limits of riprap.
(7) R/W lines
305.2.2 Profile View

The profile view is to include the following:

1. Stationing and scale.
2. One cross section which most represents the section at the proposed crossing.
3. Road profile for the proposed structure (i.e., stationing and elevation).
4. Proposed bridge with begin and end station, low member, and pier locations.
5. Abutment locations (e.g., toe of slope) and abutment protection.
6. Flood elevations. For non-tidal crossings, show the Normal High Water (NHW) and Design Flood elevations. For tidal crossings, show the Mean High Water (MHW) and Design Flood Stage elevations.
7. Present water elevation with month, day and year of survey.
8. Bridge Number (for the proposed structure).

305.2.3 Location Map and Drainage Area

Provide a location map similar to that used on the key sheet. Include an arrow showing the project location, north arrow and Range and Township.

Use an appropriate scale for the map so that the entire drainage area for the proposed structure is shown. (For projects with very large drainage areas, use a scale for the map that clearly shows the project location rather than a scale that shows the entire drainage area).

Show the drainage area boundaries using a very heavy, broken line, with the area (in acres or square miles) shown within the boundary. The proposed structure location should be shown. Existing structures over the same water body and those structures that affect the hydraulics of the proposed structure should be located and numbered and corresponding existing structure information listed in the appropriate columns.
305.2.4 Existing Structures Data, Hydraulic Design Data, and Hydraulic Recommendations

The Drainage Design Guide, Chapter 5 provides additional guidance for this section.

The following information is required for this section:

Existing Structures: Column contains information pertaining to the existing structures. Structure 1 refers to the structure being replaced or modified. Structures 2, 3 & 4 refer to relief structures, immediate upstream and downstream structures and those structures that affect the hydraulics of the proposed structure.

Proposed Structure: Column contains information pertaining to the proposed structure.

Foundation: Provide information describing the type of foundation (e.g., timber piles, concrete piles).

Overall Length (ft): Provide the total length of the structure in feet. The length is measured from the top of the abutments. Use the total length shown in the final plans for the proposed structure.

Span Length (ft): Provide the span length of the structure in feet (i.e, the length of the main span).

Type Construction: Describe the material(s) used for construction of the structure (e.g., steel, concrete, steel and concrete).

Area of Opening (ft²) @ D.F.: Provide the area of opening in square feet below the design flood elevation at the bridge section. Subtract the assumed pile area if pile area is significant.

Bridge Width (ft): Provide the distance from outside rail to outside rail in feet.

Elev. Low Member (ft): Provide the elevation in feet of the lowest point along the low member of the structure.

Water Surface Elevations (ft): Provide elevation in feet of the following water surfaces at the bridge section, when applicable:

- Normal High Water (N.H.W): This applies only to non-tidal areas.
- Control: Water surface elevation controlled by the operation of pump stations, dams or other hydraulic structures. This applies only to non-tidal areas.
- Mean High Water (M.H.W.): This applies only to tidal areas.
• Mean Low Water (M.L.W.): This applies only to tidal areas.

Max. Event of Record: Column contains information related to the maximum event recorded based on historical information, when available.

Design Flood: Column contains information related to the design flood.

Base Flood: Column contains information related to the base flood.

Overtopping Flood/Greatest Flood: Column contains information related to the overtopping or greatest flood event. If the overtopping flood has a lower return period than the greatest flood, then the block indicating overtopping flood is checked and the information related to the overtopping flood is shown. Otherwise, the block indicating greatest flood is checked and the information related to the greatest flood is shown.

Stage Elevation (ft): Provide stage elevation in feet (NAVD 88 or NGVD 29) for the Maximum Event of Record, Design Flood, Base Flood and Overtopping or Greatest Flood. Use data from hydraulic model for freshwater flow. Use maximum elevation during the flood or ebb storm surge tidal flow.

Discharge (cfs): Provide total discharge in cubic feet per second. Use data from hydraulic model for freshwater flow. Use maximum discharge during the flood or ebb storm surge tidal flow.

Average Velocity (fps): Provide average velocity in feet per second. Use data from hydraulic model for freshwater flow. Use maximum velocity during the flood or ebb storm surge tidal flow.

Exceedance Prob. (%): Provide the probability that the conditions will be exceeded. Probability is determined as 100% times unity over the return interval (e.g., 100%*(1/100) = 1%).

Frequency (yr): Provide the return period of the conditions in years of the worst case scour condition up through the design return period flow conditions.

Pier Information: Provide the following pier information for the proposed structure:

• Pier Numbers: Pier number(s) which correspond to the pier size and type and the scour elevations.

• Pier Size and Type: Pier size and type which produces the greatest scour. If necessary for clarity, place a reference to the appropriate details of the bridge plans. If the space provided is not adequate, place the information in the plan or profile view.
Scour Elevations (ft): Provide the following scour information for the proposed structure:

- Long-Term Scour: Applicable only to structures required to meet extreme event vessel collision load. Place “N/A” when not applicable.

- Total Scour Elevation (< 100-year): The predicted total scour elevation in feet for the worst case scour condition up through the scour design flood frequency. This includes aggradation or degradation, channel migration, local scour (pier and abutment) and contraction scour.

- Total Scour Elevation (< 500-year): The predicted total scour elevation in feet for the worst case scour condition up through the scour design check flood frequency. This includes aggradation or degradation, channel migration, local scour (pier and abutment) and contraction scour.

Begin Bridge Station: Provide the station for the beginning of the bridge.

End Bridge Station: Provide the station for the end of the bridge.

Skew Angle (degrees): Provide the angle in degrees at which the centerline of the structure is skewed from the centerline of construction.

Clearance Provided (ft): Provide the following navigational and drift clearance information for the proposed structure:

- Navigation Horizontal: The horizontal distance provided between fenders or piers.

- Navigation Vertical: The vertical distance between low beam member and design flood water elevation.

- Navigation Above Elevation: The Design flood water elevation in feet (NAVD 88 or NGVD 29) used to determine Navigation Vertical clearance. Use normal high water (NHW) elevation or control elevation for freshwater flow. Use mean high water (MHW) for tidal flow.

- Drift Horizontal: The actual minimum horizontal clearance provided.

- Drift Vertical: The actual minimum vertical clearance in feet provided above the design flood water elevation.

- Drift Above Elevation: The Design flood water elevation in feet (NAVD 88 or NGVD 29) used to determine Drift Vertical clearance. Use normal high water (NHW) elevation or control elevation for freshwater flow. In many cases, it is reasonable to use the elevation at the Approach Section, realizing that this will be slightly higher than actual elevation at the bridge. For tidal flow, use the maximum stage associated with an average velocity of 3.3 feet per second through the bridge section during the flood or ebb for the storm surge for the design flood. If the
maximum velocity due to the storm surge is less than 3.3 fps, use the stage associated with the maximum velocity through the bridge section.

If either of these stages causes the profile to be higher than the profile of the bridge approaches, consider other alternatives such as:

- Discuss with personnel in the Structures Design Office, the potential of having less drift clearance and designing the structure for debris loads.
- Do a more rigorous and site specific analysis to set the stage above which to provide the standard drift clearance. Investigate and address these situations on a site specific basis.

Minimum Clearance (ft): Provide the following minimum navigational and drift clearances in feet. Vertical and horizontal clearances will also be subject to the requirements of the Coast Guard, Corps of Engineers, Water Management District, and any other regulatory agency having appropriate statutory jurisdiction or authority. Such regulatory agency requirements may exceed Department requirements.

- **Navigation Horizontal:** Crossings subject to small boat traffic, must provide a minimum 10-foot horizontal navigation clearance. Other agencies may have minimum clearance requirements.
- **Navigation Vertical:** See *FDM 260.8.1* for information on vertical clearances over water.
- **Drift Horizontal and Vertical:** Consistent with debris conveyance needs and structure economy where no boat traffic is anticipated.

Rubble Grade: Provide the type of rubble to be constructed at the begin and end bridge abutments; e.g., Riprap (Bank & Shore). References can be made to details sheets if non-standard riprap is employed.

Slope: Provide the slope of the abutments at the begin and end bridge; e.g., 1H:2V.

Non-buried or Buried Horizontal Toe: Indicate whether the toe of the abutment will be non-buried or buried when extended horizontally from the bridge. The horizontal and vertical extents should be determined using the design guidelines contained in HEC-23.

Toe Horizontal Distance (ft): Provide the horizontal extent in feet of the rubble protection measured from the toe of the abutment. The horizontal and vertical extents should be determined using the design guidelines contained in HEC-23.

Limit of Protection (ft): Provide the limits of protection, measured parallel to the stationing, from the edge of the rubble protection to the bridge begin/end station. If the distance is different on each side, indicate both distances with their corresponding sides.
Deck Drainage: Describe how the rainfall runoff is collected and conveyed from the proposed structure deck; e.g., scuppers, storm drain system.

Remarks: Provide any pertinent remarks.

- Wave Crest Elevation (ft) (when applicable): Provide the 100-year design wave crest elevation including the storm surge elevation and wind setup. The vertical clearance of the superstructure must be a minimum of 1-foot above the wave crest elevation.
306 Typical Sections

306.1 General

Typical Section sheets provide detailed cross section depictions of the principal roadway elements that are standard between certain station or milepost limits. These sections are the basis for construction details and information shown on the plan sheets.

306.2 Typical Section Sheet

Typical sections should only show typical conditions that are found within the limits applicable to that section. Non-standard conditions that prevail for short distances should not be shown. Typical sections are to show existing elements that are to be incorporated into the final roadway section, along with the proposed elements.

Show the station limits or milepost of each section below the typical section title. Typical section stationing must cover the entire project. Include transitions from one typical to another in the stationing of one or the other typical section. Sheets that feature more than one typical section should read from the top down, with the sections in the order in which they occur within the project.

Place Typical Section sheets in the plans in the following order:

(1) Project mainline
(2) Ramps and service roads (for projects which include an interchange)
(3) Crossing side roads
(4) Minor side streets

The FDOT CADD Software contains a number of typical sections that can be used and adjusted to suit the conditions of a particular project. Usually typical sections are not created to scale, but the horizontal dimensions should be proportionate.

For illustrations of various typical sections, see Exhibits 306-1 through 306-11.

306.2.1 Half Sections and Details

Half sections and details supplement or support typical sections. They should be placed on the same sheet as the typical section to which they apply. In the event that this is not
possible, additional sheets for details should be placed behind the typical section sheet(s).

Half sections are necessary when changes occur that affect several typical section elements (e.g., number of lanes, border width, ditch or drainage features, clearing and grubbing, R/W width).

Details and partial sections are necessary for the clarification of construction techniques or sequence and to show alternates (e.g., the placement of shoulder gutter in high fill areas, changes in sidewalk location). Judgment is necessary in making decisions about when and where details should be shown.

306.3 Typical Section Information

Include the following information on the typical sections:

1. **Cross Slopes**
 - (a) Express cross slopes of roadway pavement, shoulder surfaces, sidewalks and bridge decks as a decimal part of a foot vertical per foot horizontal. These cross slopes should be rounded to two decimal places, i.e., 0.02, 0.06. Three decimal places may be used when required.
 - (b) Show median and outer slopes by ratio, vertical to horizontal, i.e., 1:4, 1:2.
 - (c) Include either feathering details or notes (or both) when resurfacing without milling in urban curb and gutter sections is specified or when milling depth is less than the overlay thickness.
 - (d) When cross slope correction is necessary, include special milling and layering details showing the method of correction in the plans.

2. **Location of profile grade point.**

3. **Depict pavement construction in a clear, precise manner by indicating the LBR requirement and the thickness of the subgrade stabilization, subbase or base, as well as thickness for structural course, friction course and shoulder pavement. Use 4 inches for both base extension on rural sections and for stabilization extension on curbed sections.**

4. **Limits of grassing.**

5. **Sidewalk location and width.**

6. **Curb and gutter location and type (show Type E or F, not the dimension).**
On new construction curb and gutter projects which include Asphalt Base, Type B-12.5 only, indicate the asphalt curb pad on the typical section and provide a detail.

(7) Limits of standard clearing and grubbing unless selective clearing and grubbing is present.

(8) R/W line and limits of construction.

(9) Pavement dimensions.

(10) For widening projects, provide a dimension for total pavement width (existing and proposed). Show the pavement widening width with an asterisk. Show Note 3, of FDM 306.5, as near to this noted asterisk as possible.

(11) Shoulder dimensions; paved and total width.

(12) Label shoulder treatment on RRR projects (See FDM 210.4.4)

306.4 Required Data

Include the following data for each typical section:

(1) Traffic data (as identified in FDM 120.2.2) consistent with the data used for pavement design.

- (a) Current Year and AADT
- (b) Estimated Opening Year and AADT
- (c) Estimated Design Year and AADT
- (d) K, D, T (24 hour) and T (Design Hour) factors.
- (e) Design Speed: The estimated opening and design year traffic data is not required for skid hazard projects.

(2) Approved pavement designs described in the order of construction:

- (a) For new construction start with Option Base Group and end with friction course.
- (b) For resurfacing projects start with milling depth, then list the structural courses and end with friction course.

(3) Standard notes. Refer to FDM 306.5 for standard notes for typical sections.

(4) Template dimensions:
For widening projects, show the existing pavement width as a ± dimension, and show the base widening width with an asterisk. Show Note 3, of FDM 306.5, as near to this noted asterisk as possible.

NOTE: For typical sections with varying dimensions, clearly indicate the dimensions on the plan-profile sheets.

(5) Identify shoulder treatment where applicable on RRR projects (See FDM 210.4.4)

306.5 Standard Notes for Typical Section Sheets

Show the following standard notes on typical section sheets as applicable:

(1) For details and limits of selective clearing and grubbing see _______.

(2) (Under paved shoulders):
 This area may be constructed of base material at no additional compensation.

(3) (On widening projects):
 Actual width of base widening may vary due to actual existing pavement width. A uniform width base widening strip may be constructed at no additional compensation.
TYPICAL SECTION
I-10 (SR 8)
STA. 567+25.67 TO STA. 1056+84.35

TRAFFIC DATA
CURRENT YEAR = 2018 AADT = 22300
ESTIMATED OPENING YEAR = 2020 AADT = 23300
ESTIMATED DESIGN YEAR = 2040 AADT = 35000
K = 8 % D = 36 % T = 10 % (24 HOUR)
DESIGN HOUR T = 5 %
DESIGN SPEED = 70 MPH

TRAVEL LANES
OPTIONAL BASE GROUP 9 WITH
TYPE SP STRUCTURAL COURSE (TRAFFIC D) (2 ½") (PG 76-22)
FRICION COURSE FC-5 (½") (PG 76-22)

SHOULDER PAVEMENT
OPTIONAL BASE GROUP 1 WITH
TYPE SP STRUCTURAL COURSE (TRAFFIC D) (1 ½") (PG 76-22)

EXHIBIT 306-1
Limited Access Facility
TRAFFIC DATA

CURRENT YEAR = 2018 AADT = 22300
ESTIMATED OPENING YEAR = 2020 AADT = 22300
ESTIMATED DESIGN YEAR = 2040 AADT = 35000
K = 9 %, D = 16 % T = 10 % (24 HOUR)
DESIGN SPEED = 70 MPH

TYPICAL SECTION
1-75 (SR 93)
STA. 1342+25.00 TO STA. 1950+85.75

WIDENING

OPTIONAL BASE GROUP 9 WITH
TYPE SP STRUCTURAL COURSE (TRAFFIC D) (2 ½")

EXISTING TRAVEL LANES

MILL EXISTING ASPHALT PAVEMENT (2 ½" DEPTH)

EXISTING OUTSIDE SHOULDER PAVEMENT

MILL EXISTING ASPHALT PAVEMENT (1 ½" DEPTH)

NEW INSIDE SHOULDER PAVEMENT

OPTIONAL BASE GROUP 1 WITH
TYPE SP STRUCTURAL COURSE (TRAFFIC D) (1 ½")

INSIDE SHOULDER PAVEMENT DETAIL

Exhibit 306-2
6-Lane Limited Access Facility
Date: 1/1/20
TYPICAL SECTION

RAMP "C"
STA. 623+28.64 TO STA. 629+13.78

TRAFFIC DATA
CURRENT YEAR = 2018 AADT = 8,000
ESTIMATED OPENING YEAR = 2020 AADT = 8,800
ESTIMATED DESIGN YEAR = 2040 AADT = 12,000
K = 10% D = 60% Y = 8% (24 HOUR)
DESIGN SPEED = 30 MPH

TRAFFIC LANES

OPTIONAL BASE GROUP 9 WITH
TYPE SP STRUCTURAL COURSE (TRAFFIC B) (1 ½") AND
FRICTION COURSE FC-12.5 (TRAFFIC B) (1 ½") (PG 76-22)

SHOULDER PAVEMENT

OPTIONAL BASE GROUP 1 WITH
FRICTION COURSE FC-12.5 (TRAFFIC B) (1 ½") (PG 76-22)

SHOULDER PAVEMENT DETAIL

Exhibit 306-3
Ramp
Date: 1/1/20
TYPICAL SECTION

SR 22
STA. 98+40.00 TO STA. 202+33.00

TRAFFIC DATA
CURRENT YEAR = 2018 AADT = 22800
ESTIMATED OPENING YEAR = 2020 AADT = 25800
ESTIMATED DESIGN YEAR = 2040 AADT = 30600
K = 6% D = 55% T = 2% (24 HOUR)
DESIGN HOUR T = 1%
DESIGN SPEED = 30 MPH

TRAVEL AND BIKE LANES
OPTIONAL BASE GROUP 9 (TYPE B-12.5 ONLY) WITH
TYPE SP STRUCTURAL COURSE (TRAFFIC C) (2")
AND FRICTION COURSE FC-12.5 (TRAFFIC C) (1 1/2") (PG 76-22)

DETAIL OF ASPHALT BASE CURB PAD

TYPICAL SECTION

Exhibit 306-4
4-Lane Curbed
Date: 1/1/20
TYPICAL SECTION

SR 22
STA. 202+33.00 TO STA. 560+50.00

TRAVEL AND BIKE LANES

OPTIONAL BASE GROUP 9 WITH
TYPE SP STRUCTURAL COURSE (TRAFFIC B) (1 1/2")
AND FRICTION COURSE FC-12.5 (TRAFFIC B) (1 1/2") (PG 76-22)

LBR 40 TYPE B STABILIZATION

LBR 40 TYPE B STABILIZATION

TRAFFIC DATA

CURRENT YEAR AADT = 22800
ESTIMATED OPENING YEAR AADT = 25800
ESTIMATED DESIGN YEAR AADT = 30600
K = 4%; D = 55%; T = 2% (24 HOUR)
DESIGN HOUR T = 1%
DESIGN SPEED = 40 MPH

STATE OF FLORIDA
DEPARTMENT OF TRANSPORTATION

TYPICAL SECTION

DATE: 1/1/20

Exhibit 306-5
4-Lane Curbed
TYPICAL SECTION

SR 22

STA. 560+50.00 TO STA. 882+25.00

TRAVEL LANES AND SHOULDER PAVEMENT

OPTIONAL BASE GROUP 9 WITH

TYPE SP STRUCTURAL COURSE (TRAFFIC B) (2 1/2"

AND FRICTION COURSE FC-12.5 (TRAFFIC B) (1 1/2") (PG 76-22)

TRAFFIC DATA

CURRENT YEAR = 2018 AADT = 22800
ESTIMATED OPENING YEAR = 2020 AADT = 25800
ESTIMATED DESIGN YEAR = 2040 AADT = 30600
K = 4% Q = 33% T = 2% (24 HOUR)
DESIGN HOUR T = 1%
DESIGN SPEED = 50 MPH

CONCRETE SIDEWALK

TYPE E CURB

LBR 40

TYPE B STABILIZATION

NATURAL GROUND

LEVEL 2'

2' MIN.

CONCRETE SIDEWALK

NATURAL GROUND

LEVEL 2'

2' MIN.
TYPICAL SECTION
SR 22
STA. 10+00.00 TO STA. 98+40.00

TRAFFIC DATA
CURRENT YEAR = 2018 AADT = 6800
ESTIMATED OPENING YEAR = 2020 AADT = 7600
ESTIMATED DESIGN YEAR = 2040 AADT = 12000
K = 6% D = 55% T = 2% (24 HOUR)
DESIGN HOUR T = 1%
DESIGN SPEED = 55 MPH

TRAVERSE LINES
OPTIONAL BASE GROUP B WITH
TYPE SP STRUCTURAL COURSE (TRAFFIC C) (2")
AND FRICITION COURSE FC-12.5 (TRAFFIC C) (1 1/2") (PG 76-22)

SHOULDER PAVEMENT
OPTIONAL BASE GROUP 1 WITH
FRICITION COURSE FC-12.5 (TRAFFIC C) (1 1/2") (PG 76-22)

SHOULDER PAVEMENT DETAIL

Exhibit 306-7
2-Lane Flush Shoulder
Date: 1/1/20
TRAFFIC DATA
CURRENT YEAR = 2018 AADT = 22300
ESTIMATED OPENING YEAR = 2020 AADT = 23300
ESTIMATED DESIGN YEAR = 2040 AADT = 51500
X = 9% D = 56% T = 10% (24 HOUR)
DESIGN HOUR T = 3%
DESIGN SPEED = 55 MPH

TYPICAL SECTION
SR 22
STA. 63+65.42 TO STA. 328+65.14

TRAFFIC LANES
OPTIONAL BASE GROUP 9 WITH
TYPE SP STRUCTURAL COURSE (TRAFFIC D) (2")
TYPE SP STRUCTURAL COURSE (TRAFFIC D) (1 ½") (PG 76-22)
AND FRICTION COURSE FC-5 (½") (PG 76-22)

SHOULDER PAVEMENT
OPTIONAL BASE GROUP 1 WITH
TYPE SP STRUCTURAL COURSE (TRAFFIC D) (1 ½") (PG 76-22)
AND FRICTION COURSE FC-5 (½") (PG 76-22)

SHOULDER PAVEMENT DETAIL
OPTIONAL BASE
STABILIZATION

THIS AREA MAY BE CONSTRUCTED
OF OPTIONAL BASE MATERIAL (GRANULAR ONLY)
AT NO ADDITIONAL COMPENSATION

TYPICAL SECTION
STA. 157+75.40 TO STA. 215+45.22
4-Lane Flush Shoulder
Exhibit 306-8
Date: 1/1/20
TYPICAL SECTION

SR 22

STA. 101+21.00 TO STA. 221+44.00

TRAVEL LANES

MILLING AND RESURFACING

EXISTING CONCRETE SIDEWALK

EXISTING TYPE F CURB

EXISTING TYPE F CURB

EXISTING TYPE F CURB

EXISTING TYPE F CURB

EXISTING CONCRETE SIDEWALK

DATE: 1/1/20

6-Lane Curbed

Exhibit 306-9

Design Speed = 45 MPH

Estimated Design Year = 2040

AADT = 30,600

Estimated Opening Year = 2020

AADT = 25,800

Current Year = 2018

AADT = 22,800

Traffic Data

Current Year = 2028

AADT = 22,800

Estimated Opening Year = 2026

AADT = 25,800

Estimated Design Year = 2040

AADT = 30,600

K = 6% D = 55% T = 2% (24 Hour)

Design Hour T = 1%
TRAFFIC DATA

R/W LINE
R/W VARIES (100' MIN.)
LIMITS OF CONSTRUCTION
STANDARD CLEARING AND GRUBBING

R/W LINE
R/W VARIES (100' MIN.)
LIMITS OF CONSTRUCTION
STANDARD CLEARING AND GRUBBING

TYPICAL SECTION
SR 22

TRAFFIC DATA

CURRENT YEAR = 2020 AADT = 18000
ESTIMATED OPENING YEAR = 2020 AADT = 20000
ESTIMATED DESIGN YEAR = 2036 AADT = 39900
K = 1% D = 38% T = 22% (24 HOUR)
DESIGN SPEED = 60 MPH
POSTED SPEED = 55 MPH

TRAFFIC DATA

CURRENT YEAR = 2020 AADT = 18000
ESTIMATED OPENING YEAR = 2020 AADT = 20000
ESTIMATED DESIGN YEAR = 2036 AADT = 39900
K = 1% D = 38% T = 22% (24 HOUR)
DESIGN SPEED = 60 MPH
POSTED SPEED = 55 MPH

TRAFFIC DATA

CURRENT YEAR = 2020 AADT = 18000
ESTIMATED OPENING YEAR = 2020 AADT = 20000
ESTIMATED DESIGN YEAR = 2036 AADT = 39900
K = 1% D = 38% T = 22% (24 HOUR)
DESIGN SPEED = 60 MPH
POSTED SPEED = 55 MPH

TRAFFIC DATA

CURRENT YEAR = 2020 AADT = 18000
ESTIMATED OPENING YEAR = 2020 AADT = 20000
ESTIMATED DESIGN YEAR = 2036 AADT = 39900
K = 1% D = 38% T = 22% (24 HOUR)
DESIGN SPEED = 60 MPH
POSTED SPEED = 55 MPH

TRAFFIC DATA

CURRENT YEAR = 2020 AADT = 18000
ESTIMATED OPENING YEAR = 2020 AADT = 20000
ESTIMATED DESIGN YEAR = 2036 AADT = 39900
K = 1% D = 38% T = 22% (24 HOUR)
DESIGN SPEED = 60 MPH
POSTED SPEED = 55 MPH

TRAFFIC DATA

CURRENT YEAR = 2020 AADT = 18000
ESTIMATED OPENING YEAR = 2020 AADT = 20000
ESTIMATED DESIGN YEAR = 2036 AADT = 39900
K = 1% D = 38% T = 22% (24 HOUR)
DESIGN SPEED = 60 MPH
POSTED SPEED = 55 MPH

TRAFFIC DATA

CURRENT YEAR = 2020 AADT = 18000
ESTIMATED OPENING YEAR = 2020 AADT = 20000
ESTIMATED DESIGN YEAR = 2036 AADT = 39900
K = 1% D = 38% T = 22% (24 HOUR)
DESIGN SPEED = 60 MPH
POSTED SPEED = 55 MPH

TRAFFIC DATA

CURRENT YEAR = 2020 AADT = 18000
ESTIMATED OPENING YEAR = 2020 AADT = 20000
ESTIMATED DESIGN YEAR = 2036 AADT = 39900
K = 1% D = 38% T = 22% (24 HOUR)
DESIGN SPEED = 60 MPH
POSTED SPEED = 55 MPH

TRAFFIC DATA

CURRENT YEAR = 2020 AADT = 18000
ESTIMATED OPENING YEAR = 2020 AADT = 20000
ESTIMATED DESIGN YEAR = 2036 AADT = 39900
K = 1% D = 38% T = 22% (24 HOUR)
DESIGN SPEED = 60 MPH
POSTED SPEED = 55 MPH

TRAFFIC DATA

CURRENT YEAR = 2020 AADT = 18000
ESTIMATED OPENING YEAR = 2020 AADT = 20000
ESTIMATED DESIGN YEAR = 2036 AADT = 39900
K = 1% D = 38% T = 22% (24 HOUR)
DESIGN SPEED = 60 MPH
POSTED SPEED = 55 MPH
SR 22 SOUTHBOUND LANES

OVERBUILD AND RESURFACING DETAIL

STA. 145+00.00 TO STA. 166+00.00

OVERBUILD DETAILS

<table>
<thead>
<tr>
<th>STATION</th>
<th>LANE</th>
<th>EXIST. SLOPE (%)</th>
<th>PROPOSED SLOPE (%)</th>
<th>MAX. DEPTH OF OVERBUILD (IN.)</th>
<th>WIDTH OVERBUILD (FT.)</th>
<th>AREA OF OVERBUILD (SQ. FT.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>145+00.00</td>
<td>SOUTHBOUND INSBTH</td>
<td>(-) 1.0</td>
<td>(-) 1.0</td>
<td>5.1</td>
<td>12.0</td>
<td>2.8</td>
</tr>
<tr>
<td>146+00.00</td>
<td>SOUTHBOUND INSBTH</td>
<td>(-) 1.0</td>
<td>(-) 1.0</td>
<td>5.9</td>
<td>12.0</td>
<td>3.1</td>
</tr>
<tr>
<td>147+00.00</td>
<td>SOUTHBOUND INSBTH</td>
<td>(-) 1.0</td>
<td>(-) 1.0</td>
<td>6.7</td>
<td>12.0</td>
<td>3.5</td>
</tr>
<tr>
<td>148+00.00</td>
<td>SOUTHBOUND INSBTH</td>
<td>(-) 0.4</td>
<td>(-) 0.4</td>
<td>3.9</td>
<td>12.0</td>
<td>2.2</td>
</tr>
<tr>
<td>149+00.00</td>
<td>SOUTHBOUND INSBTH</td>
<td>(-) 0.9</td>
<td>(-) 0.9</td>
<td>4.3</td>
<td>12.0</td>
<td>2.5</td>
</tr>
<tr>
<td>150+00.00</td>
<td>SOUTHBOUND INSBTH</td>
<td>(-) 0.7</td>
<td>(-) 0.7</td>
<td>3.3</td>
<td>12.0</td>
<td>1.9</td>
</tr>
<tr>
<td>151+00.00</td>
<td>SOUTHBOUND INSBTH</td>
<td>(-) 0.1</td>
<td>(-) 0.1</td>
<td>2.8</td>
<td>12.0</td>
<td>2.1</td>
</tr>
<tr>
<td>152+00.00</td>
<td>SOUTHBOUND INSBTH</td>
<td>(-) 0.0</td>
<td>(-) 0.0</td>
<td>3.4</td>
<td>12.0</td>
<td>1.9</td>
</tr>
<tr>
<td>153+00.00</td>
<td>SOUTHBOUND INSBTH</td>
<td>(-) 0.8</td>
<td>(-) 0.8</td>
<td>4.2</td>
<td>12.0</td>
<td>2.3</td>
</tr>
<tr>
<td>154+00.00</td>
<td>SOUTHBOUND INSBTH</td>
<td>(-) 1.0</td>
<td>(-) 1.0</td>
<td>5.2</td>
<td>12.0</td>
<td>2.8</td>
</tr>
<tr>
<td>155+00.00</td>
<td>SOUTHBOUND INSBTH</td>
<td>(-) 1.0</td>
<td>(-) 1.0</td>
<td>6.6</td>
<td>12.0</td>
<td>3.0</td>
</tr>
<tr>
<td>156+00.00</td>
<td>SOUTHBOUND INSBTH</td>
<td>(-) 1.0</td>
<td>(-) 1.0</td>
<td>6.0</td>
<td>12.0</td>
<td>2.9</td>
</tr>
<tr>
<td>157+00.00</td>
<td>SOUTHBOUND INSBTH</td>
<td>(-) 0.8</td>
<td>(-) 0.8</td>
<td>4.7</td>
<td>12.0</td>
<td>2.9</td>
</tr>
<tr>
<td>158+00.00</td>
<td>SOUTHBOUND INSBTH</td>
<td>(-) 1.1</td>
<td>(-) 1.1</td>
<td>5.6</td>
<td>12.0</td>
<td>3.0</td>
</tr>
<tr>
<td>159+00.00</td>
<td>SOUTHBOUND INSBTH</td>
<td>(-) 1.0</td>
<td>(-) 1.0</td>
<td>4.9</td>
<td>12.0</td>
<td>2.8</td>
</tr>
<tr>
<td>160+00.00</td>
<td>SOUTHBOUND INSBTH</td>
<td>(-) 1.0</td>
<td>(-) 1.0</td>
<td>5.4</td>
<td>12.0</td>
<td>2.9</td>
</tr>
<tr>
<td>161+00.00</td>
<td>SOUTHBOUND INSBTH</td>
<td>(-) 1.0</td>
<td>(-) 1.0</td>
<td>4.7</td>
<td>12.0</td>
<td>2.3</td>
</tr>
<tr>
<td>162+00.00</td>
<td>SOUTHBOUND INSBTH</td>
<td>(-) 1.0</td>
<td>(-) 1.0</td>
<td>4.6</td>
<td>12.0</td>
<td>2.4</td>
</tr>
<tr>
<td>163+00.00</td>
<td>SOUTHBOUND INSBTH</td>
<td>(-) 1.0</td>
<td>(-) 1.0</td>
<td>4.0</td>
<td>12.0</td>
<td>1.8</td>
</tr>
<tr>
<td>164+00.00</td>
<td>SOUTHBOUND INSBTH</td>
<td>(-) 1.0</td>
<td>(-) 1.0</td>
<td>3.6</td>
<td>12.0</td>
<td>1.6</td>
</tr>
</tbody>
</table>

 Include the subtotals in the Summary of Pavement sheet as a line item named "Summary of Overbuild". Do not include contingency quantities associated with overbuild.

Exhibit 306-10B
Overbuild Details
Date: 1/1/20
TYPICAL SECTION
MP 2.251 SR 22 = Q. ALDERAAN RD.

TRAFFIC DATA
CURRENT YEAR AADT = 22800
ESTIMATED OPENING YEAR AADT = 25800
ESTIMATED DESIGN YEAR AADT = 2040
K = 4%, D = 55%, T = 2% (24 HOUR)
DESIGN HOUR T = 1%

CIRCULATORY ROADWAY
OPTIONAL BASE GROUP 9 WITH
TYPE SR STRUCTURAL COURSE (TRAFFIC C/1')
AND FRICTION COURSE FC-9.5 (TRAFFIC C/2')

R/W LINE
MP 2.251 SR 22
R/W LINE

INSCRIBED CIRCLE DIAMETER (ICD) 130'
SOD AND LANDSCAPING 62'

NOT TO SCALE
307 Summary of Quantities

The Summary of Quantities sheets are no longer produced for contract plans. See \textit{FDM 902} for guidance on the Estimated Quantities Report and Summary of Pay Item Reports.
308 Summary of Drainage Structures and Optional Materials Tabulation

308.1 General

The Summary of Drainage Structures sheet will no longer be produced. See FDM 902 for guidance on the Estimated Quantities Report.

The Optional Materials Tabulation sheet is included when providing acceptable options for pipe material and sizes that will satisfy the Design Service Life. The sheet format is available in the FDOT CADD Software.

See Exhibits 308-1 and 308-2 for illustrations of Optional Materials Tabulation sheets.

308.2 Optional Materials Tabulation

Optional culvert materials must be considered for all culverts; however, culvert extensions and end section replacements are to match the existing culvert material. See Chapter 8 of the Drainage Design Guide for more information.

Conduct an Optional Pipe Materials Analysis and prepare an Optional Materials Tabulation sheet to be placed in the plans.

The Optional Material Tabulation sheet is to include:

1. Structure number, or description
2. Design service life (DSL)
3. Size
4. Material and thickness or class, corrugation requirements, protective coating

Modification for Non-Conventional Projects:

Delete FDM 308.2 and see Chapter 6 of the Drainage Manual for Optional Material requirements. Designate installed material on the Optional Materials Sheet or on the as-built plan view.
<table>
<thead>
<tr>
<th>STR. NO.</th>
<th>DIAM (Inches)</th>
<th>MATERIAL & THICKNESS</th>
<th>FL</th>
<th>FL</th>
<th>AS BUILT</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36</td>
<td>RCP CLASS B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>RCP CLASS B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>RCP CLASS B</td>
<td>7.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>26</td>
<td>RCP CLASS B</td>
<td>5.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>26</td>
<td>RCP CLASS B</td>
<td>7.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>26</td>
<td>RCP CLASS B</td>
<td>6.4</td>
<td>5.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>26</td>
<td>RCP CLASS B</td>
<td>6.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>26</td>
<td>RCP CLASS B</td>
<td>7.6</td>
<td>7.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>26</td>
<td>RCP CLASS B</td>
<td>8.6</td>
<td>8.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>26</td>
<td>RCP CLASS B</td>
<td>7.6</td>
<td>7.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>RCP CLASS B</td>
<td>7.2</td>
<td>7.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>RCP CLASS B</td>
<td></td>
<td></td>
<td></td>
<td>ENDWALL</td>
</tr>
<tr>
<td>13</td>
<td>24</td>
<td>RCP CLASS B</td>
<td>10.4</td>
<td>10.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>PVC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>RCP CLASS B</td>
<td>6.0</td>
<td>5.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>20</td>
<td>RCP CLASS B</td>
<td>7.2</td>
<td>7.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>20</td>
<td>RCP CLASS B</td>
<td>5.9</td>
<td>5.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>20</td>
<td>RCP CLASS B</td>
<td>5.9</td>
<td>5.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Limited exceptions are noted. Are the same for the different pipe sizes and when this example should be used when material options are the same for the different pipe sizes and when limited exceptions are noted.
309 Project Layout

309.1 General

The project layout sheet is an optional sheet that the district may choose to include in the plans set. This sheet shows the horizontal alignment and plan or plan-profile sheet sequence and numbering for the project. The project layout sheet provides clarity and detailed information on complex projects involving interchanges with many connecting routes. If included in the plans set, this sheet should also show all survey reference points.

Modification for Non-Conventional Projects:

Delete the above paragraph and replace with the following:

The project layout sheet shows the horizontal alignment and plan or plan-profile sheet sequence and numbering for the project.

See Exhibit 309-1 for an illustration of the Project Layout sheet.

Use the standard plan format sheet provided in the FDOT CADD Software to prepare the project layout sheet. Use a scale that provides clarity and legibility. Place a north arrow and scale in a conspicuous location, typically in the upper right portion of the sheet. For large or complicated projects, more than one sheet may be required to clearly depict all required information. Use match lines when multiple project layout sheets are needed.

309.2 Alignment Sheet Sequence

Show complete project alignment with baseline of survey and/or centerline of construction. Show edge of pavements if scale permits. Superimpose on the alignment the outlines of the plan, or plan-profile sheets to depict the sheet sequence with relation to the alignment stationing. Include the appropriate plan sheet number on each sheet outline. Plan or plan-profile sheet numbering must be in the following order:

(1) Mainline (for widely separated roadways, the right roadway in the direction of stationing takes precedence)
(2) Crossroads
(3) Ramps
(4) Frontage roads
(5) Access roads

Flag and label beginning and ending stations for project, construction and ramps, including equations and/or exceptions.

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete FDM 309.2 above and replace with:</td>
</tr>
<tr>
<td>309.2 Alignment Sheet Sequence</td>
</tr>
<tr>
<td>Show complete project alignment with baseline of survey and/or centerline of</td>
</tr>
<tr>
<td>construction. Flag and label beginning and ending stations for project,</td>
</tr>
<tr>
<td>construction and ramps, including equations.</td>
</tr>
</tbody>
</table>
310 Project Control

310.1 General

The Project Control sheet provides a summary of horizontal and vertical datum (i.e., reference points, benchmarks and control points). The datum shown on this sheet must provide clear and sufficient information to establish horizontal and vertical control during the construction of the project. The data shown can be extracted from the project network control survey and historical control data, or reflect assumed datum. The Engineer of Record will create the Project Control sheet from data extracted from the project survey and sign and seal the Project Control sheet.

These sheets are to be placed in the component plans in accordance with FDM 302.6. See Exhibits 310-1 through 310-3 for examples of a Project Control sheet.

310.2 Sheet Setup

Use the standard plan format sheet provided in the FDOT CADD Software to prepare the sheet. Use standard symbols contained in the CADD Manual.

Provide a note on the Project Control sheet that identifies horizontal and vertical datum that the survey is based on.

310.3 Reference Points

Reference points are prominent, easily located points in the terrain used to define a location of another point that is located on the baseline of survey. The purpose of reference points is provide horizontal location to re-establish primary control points along the baseline of survey. Reference points should not be located on the baseline. Detailed descriptions of each reference point is illustrated with a sketch.

Place survey reference points on the Project Control sheet along the top of the sheet or where other space allows. Clearly indicate the baseline of survey and reference points, including all ties. Complete length of survey baseline between two consecutive reference points need not be shown. Clearly label each reference point, beginning at the first reference point within the limits of the project, and progressing in the direction of stationing. Reference points need not be drawn to any particular scale, but distances and angles shown must be proportionate.
310.4 Benchmarks

Benchmarks provide a known elevation that is used as the basis for measuring the elevation of other topographical points. When benchmarks are not used to provide horizontal control, they may be placed on the Project Control sheet along the bottom of the sheet or where other space allows. At a minimum, benchmarks are to include:

1. Identifying name (e.g., BM No. 9)
2. Description (e.g., nail in tree, concrete monument)
3. Station and offset
4. Elevation (in feet to two decimal places)

310.5 Control Points (Horizontal and Vertical Datum)

Control points provide information for the location and elevation of established monuments. Control points that provide vertical datum are also known as benchmarks.

Place the following information for the control points in a table titled Horizontal and Vertical Control:

1. Point Name – Often identified on the stamped disk placed on the established monument.
2. Northing and Easting – Show to three decimal places. If control point serves only as a Benchmark show Northing and Easting to the nearest foot, more or less.
3. Scale Factor – Show to nine decimal places.
4. Latitude and Longitude – Show seconds to five decimal places. If control point serves only as a Benchmark show Latitude and Longitude to the nearest second.
5. Baseline Station and Offset – Show to two decimal places.
6. Elevation – if control point only serves as horizontal control show elevation as “N/A”.
7. Description – indicate the size, type, if the monument is “found” or “set” and include the monument ID number.

When this table is the sole means to convey horizontal and vertical datum, include a project sketch on the Project Control sheet that provides a visual reference for the location of the control points. The sketch does not need to be any particular scale but must provide clarity and legibility. Include the following information on the sketch:
(1) Show the baseline of survey with stationing.
(2) Flag and label beginning and ending stations for project.
(3) Show bearings for all tangent sections, in the direction of stationing.
(4) Label PC and PT points and show horizontal curve data.
(5) Indicate graphically the location of intersecting roadways and railroads.
(6) Indicate Township, Range and Sections that the survey traverses. Show the location where section lines cross the baseline of survey.
(7) Place a north arrow and scale in a conspicuous location, typically in the upper right portion of the sheet.
REFERENCE POINTS
(NOT TO SCALE)

PROJECT CONTROL NOTES

2. ELEVATIONS ARE BASED ON NORTH AMERICAN VERTICAL DATUM 1988 (NAVD88)

BENCHMARKS

BM 2953
SET 4" X 4" CONC. MON.
W/ STD. FDOT BRASS DISK
STAMPED "BM 2953"
STA. 2953+50.8, 64.9' RT
EL. = 99.09'

BM 2963
SET 4" X 4" CONC. MON.
W/ STD. FDOT BRASS DISK
STAMPED "BM 2963"
STA. 2963+17.9, 82.5' RT
EL. = 99.22'

BM 3
FOUND 4" X 4" CONC. MON.
W/ STD. FDOT BRASS DISK
STAMPED "BM 3"
STA. 2973+01.2, 59.2' RT
EL. = 99.58'

LEGEND

= FOUND CAPPED IRON ROD (FOOT)
= FOUND PARKER-KALON NAIL & DISK
= LAND SURVEYING BUSINESS REGISTRATION NUMBER
= SET CAPPED IRON ROD 5/8" (FOOT)
= SET MAG NAIL AND DISK (FOOT)
= TRAVERSE

STATE OF FLORIDA
DEPARTMENT OF TRANSPORTATION

PROJECT CONTROL

Exhibit 310-1
Date: 1/1/17
Reference Points

(Not to Scale)

Legend
- SET 5/8" IRC STAMPED F.D.O.T. REF.
- SET X CUT IN CONCRETE NO ID
- FOUND 100D NAIL NO ID
- FOUND 1/2" IRON ROD NO ID
- FOUND 5/8" IRON ROD NO ID

Project Control Notes
2. Elevations are based on North American Vertical Datum 1988 (NAVD88)

Horizontal and Vertical Control

<table>
<thead>
<tr>
<th>Control Point</th>
<th>Survey Station</th>
<th>Offset</th>
<th>Elevation</th>
<th>Description</th>
<th>Northing</th>
<th>Easting</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Scale Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-02</td>
<td>08+00.00</td>
<td>44.80° LT.</td>
<td>3.05°</td>
<td>FOUND FDOT BRASS DISK IN CONCRETE STAMPED "842 86 11 C02"</td>
<td>731006.941</td>
<td>1104363.972</td>
<td>26°07'18"</td>
<td>80°09'56"</td>
<td>1.00002712</td>
</tr>
<tr>
<td>B-01</td>
<td>09+00.00</td>
<td>33.25° LT.</td>
<td>7.23°</td>
<td>SET FOOT BRASS DISK IN CONCRETE STAMPED "842 86 14 B01"</td>
<td>730958.261</td>
<td>1104451.323</td>
<td>26°07'18"</td>
<td>80°09'56"</td>
<td>1.00002711</td>
</tr>
<tr>
<td>C-03</td>
<td>25+73.33</td>
<td>36.96° RT.</td>
<td>4.18°</td>
<td>FOUND FDOT BRASS DISK IN CONCRETE STAMPED "842 86 11 C03"</td>
<td>730179.373</td>
<td>1105848.941</td>
<td>26°07'18"</td>
<td>80°09'56"</td>
<td>1.00002711</td>
</tr>
<tr>
<td>B-02</td>
<td>31+18.07</td>
<td>25.60° RT.</td>
<td>4.05°</td>
<td>SET FOOT BRASS DISK IN CONCRETE STAMPED "842 86 14 B02"</td>
<td>729183.610</td>
<td>1107635.714</td>
<td>26°07'18"</td>
<td>80°09'56"</td>
<td>1.00002711</td>
</tr>
<tr>
<td>C-04</td>
<td>46+75.51</td>
<td>83.53° LT.</td>
<td>4.12°</td>
<td>FOUND FDOT BRASS DISK IN CONCRETE STAMPED "842 86 11 C04"</td>
<td>729001.980</td>
<td>1109048.276</td>
<td>26°07'18"</td>
<td>80°09'56"</td>
<td>1.00002711</td>
</tr>
<tr>
<td>B-03</td>
<td>55+98.14</td>
<td>22.04° LT.</td>
<td>4.84°</td>
<td>SET FOOT BRASS DISK IN CONCRETE STAMPED "842 86 14 B03"</td>
<td>727658.821</td>
<td>1110048.276</td>
<td>26°07'18"</td>
<td>80°09'56"</td>
<td>1.00002711</td>
</tr>
<tr>
<td>C-05</td>
<td>63+00.00</td>
<td>40.41° RT.</td>
<td>4.23°</td>
<td>FOUND FDOT BRASS DISK IN CONCRETE STAMPED "842 86 11 C05"</td>
<td>726266.795</td>
<td>1110193.287</td>
<td>26°07'18"</td>
<td>80°09'56"</td>
<td>1.00002711</td>
</tr>
</tbody>
</table>

Exhibit 310-2

Date: 1/1/20
BEGIN SURVEY @ S.R. 22
POT STA. 135+26.41
N 651,015.502 - E 935,147.876
FND. BRASS DISC IN CONCRETE
"ID ILLEGIBLE"
SECTION 3
TOWNSHIP 50 SOUTH, RANGE 42 EAST

POT STA. 215+20.84
NE CORNER, NW 1/4 SECTION 10
N 651,045.950 - E 936,538.743
FND. NAIL & DISC "CARBONITE"
SECTION 30
TOWNSHIP 50 SOUTH, RANGE 42 EAST

HORIZONTAL AND VERTICAL CONTROL

PROJECT CONTROL NOTES:
1. BEARINGS AND COORDINATES ARE RELATIVE TO THE STATE PLANE COORDINATES,
 FLORIDA NORTH ZONE, NORTH AMERICAN DATUM (NAD) OF 1983 (ADJUSTMENT OF 1990)
2. VERTICAL DATUM: NORTH AMERICAN VERTICAL DATUM 1988 (NAVD88)
3. PROJECT UNITS: US FEET
4. FIELD BOOK REFERENCES: MGV 851 SERIES.
5. ELECTRONIC DATABASE: CAICE: "428724.ZIP"
311 General Notes

311.1 General

General notes provide information and direction to the contractor by clarifying design details or construction practices. General notes are project-specific and must not restate, broaden or curtail requirements in the Standard Specifications or Standard Plans.

General notes are not a substitute for specifications; refer to the Specifications Handbook for guidance. Contact the District Specifications Office for assistance with Modified Special Provisions, Technical Special Provisions, or other specification needs.

Place general notes on a standard plan sheet available in the FDOT CADD Software. Place the General Notes sheet before the first roadway plan-profile sheet in the plans set. See Exhibit 311-1 for an example of a General Notes sheet.

311.2 Writing General Notes

It is important to choose words carefully when writing general notes; i.e., be precise and concise. Use terminology and abbreviations commonly used in the Standard Specifications and Standard Plans.

When a general note requires an action by the contractor, the note is written as a command. Do not include “Contractor must”, “by the Contractor”, or similar phrases in general notes. The following are examples of general notes written as a command:

(1) Sawcut existing pavement at a 1” depth at the limits of milling operations.
(2) Erect new overhead signs and sign supports before removing existing sign structures.
(3) Remove memorial markers that are in conflict with construction. Provide an inventory that includes the name on the marker and the location (station and offset) from where it was removed. Deliver the markers and inventory to the FDOT Maintenance Engineer at 888 Poppy Seed Lane, Ft. Lauderdale.
(4) Do not stage equipment or stock pile materials adjacent to Lake Worth Drainage District canals.

311.2.1 Required General Notes

Place the following notes on the General Notes sheet:

311-General Notes
(1) Benchmark elevations shown on the plans are {note the bench mark datum used in the plans; e.g., North American Vertical Datum of 1988 (NAVD 88)}.

(2) All survey information was obtained from a licensed Florida Professional Surveyor and Mapper and utilized as supporting data in the production of design plans and for construction on subject project. The professional surveyor and mapper of record is:

 {Surveyor name, P.S.M.}
 {P.S.M. NO: #}
 {Company Name}
 {Company Address}
 {Certificate of Authorization: #}

(3) The location(s) of the utilities shown in the plans (including those designated Vv, Vh, and Vvh) are based on limited investigation techniques and should be considered approximate only. The verified locations/elevations apply only at the points shown. Interpolations between these points have not been verified.

(4) Utility/Agency Owners Company Contact Telephone Numbers

 {Company Name} {Contact Name} (XXX) XXX-XXXX

(5) Special event days for this project include:

 {List special events}

(6) All roadway work within the railroad right-of-way must be completed in ____ consecutive calendar days (to be determined jointly by the District Construction and Rail Offices). The work to be completed includes all items necessary to relieve the flagman from providing protective services.

311.2.2 Bridge Clearance

For projects affecting an existing bridge (e.g., bridge widenings or resurfacing) that propose a minimum design vertical clearance between 16’-0” and 16’-2” or if a Design Variation or Design Exception is required, place the following general note in the plans:

“When construction is complete, submit a certified survey confirming the as-built minimum vertical clearance is equal to or greater than the minimum design vertical clearance called for in the plans.”
GENERAL NOTES

1. BENCHMARK ELEVATIONS SHOWN ON THE PLANS ARE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88).

2. ALL SURVEY INFORMATION WAS OBTAINED FROM A LICENSED FLORIDA PROFESSIONAL SURVEYOR AND MAPPER AND UTILIZED AS SUPPORTING DATA IN THE PRODUCTION OF DESIGN PLANS AND FOR CONSTRUCTION ON SUBJECT PROJECT. THE PROFESSIONAL SURVEYOR AND MAPPER OF RECORD IS:

 ANNA KING, P.S.M.
 P.S.M. NO.: 9993
 Maps R Us, Inc.
 678 Compass Road
 Miami, FL 33139
 CERTIFICATE OF AUTHORIZATION: 99699

3. THE LOCATION(S) OF THE UTILITIES SHOWN IN THE PLANS (INCLUDING THOSE DESIGNATED Vv, Vh, AND Vvh) ARE BASED ON LIMITED INVESTIGATION TECHNIQUES AND SHOULD BE CONSIDERED APPROXIMATE ONLY. THE VERIFIED LOCATIONS/ELEVATIONS APPLY ONLY AT THE POINTS SHOWN. INTERPOLATIONS BETWEEN THESE POINTS HAVE NOT BEEN VERIFIED.

4. UTILITY/AGENCY OWNERS:

 COMPANY
 CONTACT
 TELEPHONE NUMBERS

 Sprint (Florida, Inc.)
 CHERYL FLORES (904) 555-1234

 Qwest
 JIM WEST (904) 555-2345

 MCI WorldCom
 ANDY WORLEY (904) 555-4566

 Sprint Communications
 ROB SPRINER (904) 555-4963

 City of Tallahassee Utilities
 CHESTER DIGGER (904) 555-5678

5. SPECIAL EVENT DAYS FOR THIS PROJECT INCLUDE:

 - Jacksonville Jazz Festival
 - Jacksonville Jaguars Football Games
 - Florida vs. Georgia Football Game
 - The Gator Bowl Parade
 - The Monster Truck Show
 - The Gate River Run

6. ALL ROADWAY WORK WITHIN THE RAILROAD RIGHT-OF-WAY MUST BE COMPLETED IN _____ CONSECUTIVE CALENDAR DAYS (TO BE DETERMINED JOINTLY BY THE DISTRICT CONSTRUCTION AND RAIL OFFICES). THE WORK TO BE COMPLETED INCLUDES ALL ITEMS NECESSARY TO RELIEVE THE FLAGMAN FROM PROVIDING PROTECTIVE SERVICES.

Revisions

<table>
<thead>
<tr>
<th>DATE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
</table>

Exhibit 311-1

Date: 1/1/21
312 Roadway Plan-Profile

312.1 General

The Roadway Plan-Profile sheet provides the complete horizontal and vertical alignments for the project. Various roadway elements such as pavement width, medians, paved shoulders, curbs, drainage elements, tapers, turn provisions, and intersecting roadways, are shown on this sheet.

Prepare the Roadway Plan-Profile sheet according to the standard formatted sheets that are contained in the FDOT CADD Software. Recommended scales for facility locations are as follows:

<table>
<thead>
<tr>
<th>Location</th>
<th>Horizontal Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside Urban Boundary</td>
<td>1" = 40'/50'</td>
</tr>
<tr>
<td>Outside Urban Boundary</td>
<td>1" = 100'/200'</td>
</tr>
</tbody>
</table>

When appropriate, the plan-profile sheet may be divided into separate plan sheets and profile sheets.

312.2 Roadway Plan Portion

312.2.1 Centerline

Place the baseline of survey or centerline of construction in the center of the plan portion of the sheet, with stationing increasing from left to right. For resurfacing projects, simple projects, or sections of a project without a profile view, “stacking” multiple plans on one sheet is optional if clarity and legibility are maintained. When multiple plan views are shown on a plan sheet, they must be stacked from top to bottom. When the alignment includes horizontal curves, lay the centerline on the sheet in such a manner to avoid breaks or match lines (except at the beginning or end of the sheet).

Place "tick" marks on the upper side of the centerline at every station as shown in Figure 312.2.1. Place intermediate ticks between the station ticks. Intermediate ticks should be approximately half the length of station ticks.

Place station numbers close to station ticks for scales up to and including 1" = 50' and outside the R/W lines for smaller scales.
Show bearings for tangent sections (in the direction of stationing) below the baseline and centerline. Where appropriate, tie intersecting roads or streets by station and angle/bearings to the baseline or centerline. Section lines or city limits must be tied by station and angle/bearings to the baseline or centerline.

In cases where the construction centerline does not coincide with the survey baseline, the construction centerline must be identified with complete alignment data and tied to the survey baseline; however, the construction centerline need not be shown when it is uniformly offset from the survey baseline for the entire length of the project and is shown on the typical section. Show all station equations occurring on the survey baseline and those equating the survey baseline and construction centerline.
Place a north arrow and scale at a point of maximum visibility, typically in the upper right portion of the plan view.

312.2.2 Horizontal Curves

Designate PC and PT points of horizontal curves by small circles with short radial lines from these points. Designate PI points by a small triangle with a short section of tangent on either side.

Properly orient the horizontal curves within the plan view when clipping plan sheets. Repeat the curve data on each sheet when a curve extends over more than one plan sheet. Show horizontal curve data using the following format:

CURVE DATA

- PI (Station)
- Δ (Delta Angle with Direction)
- D (Degree of Curve)
- T (Tangent Length)
- L (Length of Curve)
- R (Radius Length)
- PC (Station)
- PT (Station)
- e (Superelevation Rate)

312.2.3 Existing Topography

Show and label all existing topography, including roads, streets, drives, buildings, underground and overhead utilities, walls, curbs, pavements, fences, railroads, bridges, drainage structures and similar items. Also show streams, ponds, lakes, wooded areas, ditches and other physical features. Existing gasoline storage tanks within limits of topographical survey must be shown.

Show and label all existing utilities. If the type of utility is unknown it should be labeled as such. Indicate the line voltage for all overhead electrical power lines. Use standard symbols contained in the FDOT CADD Software.
312.2.4 Construction and Project Limits

Flag and station the following limits:

(1) Begin project and end project. Project limits should be at the beginning and the end of the full typical sections. Begin construction and end construction where construction limits are other than project limits. Transitions for maintenance of traffic and other construction work such as feathering, friction course, guardrail, drainage work, signing and marking work, and sidewalk may fall outside of the project limits but must be included within the construction limits. If plans include more than one project, identify the limits for each by Financial Project ID. The Engineer of Record is responsible for determining project and construction limits.

Modification for Non-Conventional Projects:

Delete the last sentence of the above paragraph and replace with the following:
The Department will set the project and construction limits.

(2) The limits of project breakdown necessary for separation of length and quantities for federal aid and non-federal aid projects.

(3) The limits of each type of construction classification where more than one type is involved, such as, new construction, resurfacing, bridge work, widening, and milling.

(4) The begin and end limits of project exceptions (excluded areas).

(5) Station equations.

312.2.5 Drainage Structures and Bridges

Show proposed cross drain pipes, box culverts and three-sided culverts by using a symbol and a drainage structure number. Label cross drain pipe sizes and lengths on plan-profile sheet. Show box and three-sided culvert lengths on drainage structure sheet.

Bridge-sized culverts (a.k.a., bridge culverts) are defined in FDM 265.1. Flag and station the begin station and end station for the bridge culvert (outside wall to outside wall). Provide a bridge number and a drainage structure number for all bridge culverts.

Show proposed bridges and approach slabs by simple outline. Flag and station the begin station and end station for the bridge and for the approach slabs. Also provide a bridge
number. Show the existing vertical clearance for any construction affecting existing bridges.

When appropriate, show a short section of lateral ditch/outfall centerline on the Roadway Plan-Profile sheet, and include a note referring to lateral ditch/outfall sheets for details.

Show the proposed drainage system by depicting storm drain pipes with a single line, and the outline of inlets, manholes and junction boxes. The outline of structure bottoms may be shown. Label the pipe size and length between structures. Provide structure numbers for inlets, manholes, junction boxes and special structures.

312.2.6 Plan Layout

Provide the following dimensions or labeling:

(1) Show R/W lines. Dimension the R/W line only if the applicable typical section shows a varying dimension from the baseline or centerline. Dimensions of the R/W line must be from the centerline or baseline, if survey and construction lines are parallel; otherwise dimension the R/W line from the construction centerline.

(2) Avoid showing detailed information regarding median openings or intersections when specific details can be grouped on a separate sheet. When this is the case, identify median openings and intersections by station location.

(3) Label locations along the alignment where traveled way dimensions change, or begin to change, including the station and dimensions of the traveled way.

(4) Show curb, curb and gutter, traffic separators, sidewalks, curb ramps, retaining walls, and driveways.

(5) Show stations of return points in tabular form or include on the plan, unless shown on an intersection detail sheet. Also, show offsets, if not governed by a typical.

(6) Show station of radius points of traffic separator or median curb at median openings on the plan. Elevation of these points must also be shown if not shown in the intersection details sheet.

(7) Indicate control radii for traffic turns when setting median nose locations, unless shown on the intersection detail sheet.

(8) Include the station of end of curb and gutter at side street intersections (when end is not at a return point) with proposed gutter grade elevation.

(9) Indicate the limits of pavement and grading at side street intersections.
(10) When incidental construction extends beyond the R/W lines, construction easements or license agreements may be required and should be shown on the plan sheets.

(11) Show the limits of wetlands based on permit or regulatory requirements.

(12) Show all utilities. Label field verified utilities (see Quality Level "A" locates, FDM 221,) in accordance with the following symbol:

\[V_{vh} = \text{Verified Vertical Elevation and Horizontal Location} \]

Projects with minor utility work or impacts may include these features on the Roadway Plan-Profile sheet.

(13) Identify all traffic monitoring sites in or within one-half mile of the project limits with the following notation:

- Traffic Monitoring Site Number (XXXX)
- Roadway Identifying Number (Roadway Characteristics Inventory (RCI) Section #) Milepost (XX.XXX)
- Site includes vehicle detectors in roadway and pedestal, pole or base mounted cabinet, buried cable, and solar power unit on R/W.

Inquiries about monitoring sites should be addressed to the Traffic Data Section Manager of the Transportation Statistics Section, Office of Planning.

312.3 Roadway Profile Portion

312.3.1 General Data

Preformatted plan-profile sheets are located in the FDOT CADD Software. The grid portion of each sheet is used for plotting the project profile. The standard grid pattern for the profile portion of the sheet is five lines per inch, both in the horizontal and vertical. This will accommodate most scales. An optional grid with four lines per inch is available. This sheet may be used if approved by the district.

The horizontal scale for the profile portion of the sheet must be the same as that used for the plan portion. Station limits of the profile must correspond to those of the plan portion of each sheet. Station numbers must be placed across the bottom of the sheet just above the title block. Intervals for profile stations must be the same as those in the plan view.

Select the vertical elevation datum such that the profile will not crowd either the upper or lower limits of the profile format. As a general guideline the vertical scale should be 10%
of the horizontal grid. Show the elevation datum on both the left and right sides of the sheet in the space provided adjacent to the grid.

Label the existing ground line profile and show the existing ground line elevations vertically, just above the station numbers at each end of the sheet only. Show and label all high water elevations affecting base clearance or roadway grades. Refer to Exhibit 312-1 for correct format.

Show station equations and exceptions. Begin and end stations of project, construction, bridge and bridge culverts must also be shown.

312.3.2 Vertical Alignment

Show and label the proposed profile grade. Vertical curve PCs and PTs must be indicated by small circles and PIs by a small triangle with short sections of tangent shown on each side. Show percent grade to three significant decimal places on the tangent line (trailing zeros need not be shown). Extend vertical lines from the PC and PT points and place a dimension line indicating the length of the vertical curve. The PC and PT stations and elevations must be labeled on the vertical lines.

For vertical curves, show the profile grade elevations on even stations and at appropriate intervals. Place the elevations between the dimension line and the grade line. Also, place the curve length, dimension lines and the profile grade elevations above the grade line for sag vertical curves and below the grade line for crest vertical curves. The dimensions and elevations must be placed reasonably near the grade line whenever possible. The PI station and elevation must be noted, lettered vertically above the PI symbol for crest curves and below for sag curves.

Show the profile grade elevation of the beginning and ending station of each sheet vertically just above the grade line, except when the beginning or ending station is on a vertical curve.

312.3.3 Grades

Label percent grade to three decimal places for each tangent section on every sheet (trailing zeros need not be shown). When two tangent grades intersect and no vertical curve is required, label the PI station and elevation vertically, using the same criteria as for vertical curves.
312.3.4 Superelevation and Special Profiles

For non-standard superelevated sections of the project, the beginning and ending superelevation stations should be indicated on the profile with a note:

"For Superelevation details see Special Profiles Sheet"

Other special profiles that cannot be clearly shown on the plan-profile sheets must be referenced in a similar manner to non-standard superelevated sections. For additional information regarding special profiles see FDM 313.

312.3.5 Other Profile Features

For flush shoulder roadways, show and label special ditches in the profile. Show percent ditch grade and a beginning or ending ditch PI with elevation and station plus. For multi-lane divided projects, three special ditch grades (right and left roadway ditches and median ditch) sometimes occur at the same location. In such cases, it may be advantageous to show the median ditch at a convenient location on the sheet with a separate elevation datum.

Depict uniform ditches of non-standard depth by a dimension line in the lower portion of the grid and label as a special ditch with location and depth, or show them by flagging the DPIs at each end with station elevation and side. Standard depth ditches are not labeled.

Show special gutter grades in profile for cases where the gutter grades are not controlled by the typical section and no "special profiles" are included in the plans set. Prolongations of gutter profile grades across street intersections must be included on plan-profile sheets if an inlet is not provided before the intersection.

Show storm drain pipes, inlets and manholes along the main line. Pipes must be noted by size. Proposed structures may be shown by structure number only. Show flow line elevations for all pipes entering and leaving the structure.

Plot proposed cross drain pipes and culverts at the correct location and elevation of the proposed structure crossing the centerline of construction. Identify cross drains by structure number only.

Where the project overpasses a road or railroad, the cross section template of the road/railroad under the bridge must be shown at the appropriate location in profile. Except for transverse utilities, do not show underground utilities in profile.
313 Special Profile and Back-of-Sidewalk Profile

313.1 General

Special Profile sheets show profiles of pavement edges or gutter flow lines at street intersections, ramp termini, curb returns, railroad crossings and roadway or bridge sections requiring special superelevation details. Vertical transitions between roadways and bridges may also require special profiling.

Back-of-Sidewalk Profile sheets are used to establish the profile grade of sidewalk that is separated or independent from the roadway. Profiles help ensure the constructability of the project within the R/W without excessive disturbance or rework of adjoining properties. Back-of-sidewalk profiles are also used for checking of stormwater trapped behind the sidewalks and as a major input for establishing centerline grade profiles.

313.2 Special Profile Sheet

Prepare Special Profile sheet as outlined in the following sections.

313.2.1 Intersections

In addition to normal profile grade lines, supplemental profiles and sections at intersections may be necessary to define edge of pavement profiles. Include sections showing pavement surface elevations for nose points and other critical locations. It is important to develop accurate profiles and sections at locations of curbed channelization to ensure proper drainage.

When plan-profile format is used for intersection details, the profile's horizontal scale must be the same as that for the plan portion. A vertical scale of 1” = 2’ for the profile portion is recommended as it enables intermediate elevations to be determined from the profile with reasonable accuracy. The existing ground line and curb line must be as called for in the CADD Manual.

For intersections detailed on a plan only format, show the profile and sections on a separate grid sheet. The standard cross section sheet, available in the FDOT CADD Software, should be used. This sheet features a standard grid of five lines per inch, both in the vertical and horizontal. The vertical scale can be altered to ten lines per inch by utilizing a toggle feature in the FDOT CADD Software.
For street intersections of municipal projects, a scale of 1" = 20' horizontally and 1" = 2' vertically, or 1" = 50' horizontally and 1" = 5' vertically is recommended.

313.2.2 Curb Returns

Curb return profiles show the profiles of the gutter flow line from the PC to the PT point of the return at an intersection.

Show curb return profiles on a grid format. They must be included in the plans set if the required information cannot clearly be shown on the plan-profile sheet or intersection detail sheet, or if extreme grades are involved.

Standard scale used should be 1" = 20' horizontally and 1" = 2' vertically. Other scales may be used provided all construction details are clearly and legibly shown. Identify each return profile and its PC and PT stations shown. Elevations should be shown at appropriate intervals and low and high spots must be identified by location and elevation.

313.2.3 Ramps

Develop ramp profile grades along the baseline of each ramp. A profile of the edge of the pavement opposite the baseline must also be shown. Show these profiles on a grid format. Data required to be shown is similar to that required in FDM 312 for roadway profile.

Recommended scales for ramp profiles are: 1" = 20' horizontally and 1" = 2' vertically, or 1" = 40' or 50' horizontally and 1" = 4' or 5' vertically.

Sections at nose points are required. They may be shown using a scale of 1" = 20' horizontally and 1" = 2' vertically.

313.2.4 Spline Grade

Intersections of ramp pavement with mainline pavement and other sections of pavement within special superelevated zones need special attention, not only during the design phase of the project, but also during construction. Construction details pertaining to these areas should be clearly and accurately shown in the plans.

Spline grades are often used to show the interconnection and interrelation of the edges of pavement with the mainline edge of pavement. This profile proves to be especially helpful if the mainline pavement is superelevated or within the superelevation transition zone.
A spline grade must show the elevations at intervals of 20 to 100 feet, depending on the scale. Show elevations for the outer edge of mainline pavement and inner and outer edges of the ramp pavement at the nose areas.

Show grades of the three pavement edges on a grid format. Recommended scales are: 1"=20' horizontally, 1"=2' vertically, or 1"= 40' or 50' horizontally and 1"= 4' or 5' vertically.

Join the grades of each pavement edge by smooth splines or simple curves. The three grade profiles must be clearly labeled and all equality stations indicated. Flag and label nose stations. Place the scale in close proximity of the profile and ensure that it is clearly visible.

313.2.5 Superelevation

Standard superelevation details shown in *Standard Plans, Indexes 000-510* and *000-511* may be used for projects with simple curves. Show a superelevation diagram in the plans for:

- Reverse curves
- Compound curves
- Other conditions requiring special superelevation not covered in the standards

Special profile details may be used to design superelevation on multiline facilities, when a simple diagram will not be sufficient.

Show complete profile grade line and edges of pavement (right and left) within the superelevation zone on the grid format. A scale of 1"= 20' horizontally and 1"= 2' vertically is recommended for clarity. Label the begin and end superelevation stations with a solid vertical line at the appropriate station. Use a horizontal dimension line to indicate a section in full superelevation.

313.2.6 At-Grade Railroad Crossings

In addition to normal profile grade lines, supplemental profiles for at-grade railroad crossings may be necessary to define lane lines, edges of pavement, and gutter flow lines. Develop profiles that ensure proper drainage.

For at-grade railroad crossings that cannot be adequately detailed on the plan-profile sheets, show the profiles on a separate grid format. A horizontal scale of 1" = 20' and a vertical scale of 1" = 2' are recommended.
313.3 Back-of-Sidewalk Profile Sheet

Sidewalk grades shown on this sheet are at the back of the proposed sidewalk. The location of the profile grade line (PGL) is denoted on the typical section.

Prepare Back-of-Sidewalk Profile sheet using standard cross section format. For simple projects which do not involve many cross streets or driveways, the sheet may be divided horizontally to maximize usage. Stationing must progress from left to right and multiple profile views must be stacked from top to bottom. Match lines must be stationed. Care should be taken to preserve clarity and legibility.

Work sheets may be required with phase reviews. The inclusion of the back-of-sidewalk profiles in the plans set is optional (at the discretion of the district).

313.3.1 Required Information

Show existing ground profile, proposed back-of-sidewalk profile, and the profile grade line in accordance with the CADD Manual.

The standard scales are 1” = 100’ horizontally and 1” = 5’ vertically. This combination works well for projects having few locations where back-of-sidewalk grades would be critical. A vertical scale of 1” = 2’ and a horizontal scale of 1” = 50’ may be used for projects located in business and commercial areas, or where greater clarity is required. Show elevation datum on both sides of the sheet, with station numbers below the profile.

Limits of existing pavement (e.g., parking areas, driveways) must be identified on the back-of-sidewalk profile. Existing pavement and proposed sidewalk should match elevation as closely as possible. Indicate the centerline for each intersecting street and driveway with a vertical line at the proper station and the street name and station noted. Intersecting streets and driveways on the right must be shown below the profile and those on the left above the profile.

At each station, as well as locations of significant drainage, draw arrows to indicate the slope of ground at the outer edges of the sidewalk.

Place drainage arrows below the profile line for the right profile and above the profile line for the left profile. Arrows pointing outwards from the profile indicate drainage away from the project, while arrows pointing inwards indicate drainage to the project.

Indicate floor elevations for buildings with a horizontal line drawn at the floor elevation between the building limits. Show the numeric elevation, as well as the offset (distance and side) from centerline of project to the face of the building. Entrances to buildings,
elevations of top of existing major utilities (see \textit{FDM 221}), and water table elevation may be shown when appropriate.

Once the proposed back-of-sidewalk profile has been developed, show percents of grade, PI stations, and elevations. Vertical curves, if any, must be dimensioned. Elevations along vertical curves are not required. Flag and label stations for begin and end project, exceptions, back-of-sidewalk special profiles, and mainline station equations within the limits of the sidewalk profile.

Note the difference in elevation between the profile grade line and back-of-sidewalk profile grade on the sheet. Superelevation notes, if applicable, must also be included on the sheet.
314 Intersection and Interchange Layout and Details

314.1 General

These sheets provide layouts and details for intersections and interchanges, with consideration for turning and weaving movements of vehicular traffic. For a safe and efficient roadway system (including provisions for bicycles and pedestrians), these areas must be designed with special attention to channelization, turning movements, signalization, drainage and vertical alignment.

Intersection and interchange layout sheets must show details of geometric controls and access management features including:

- Channelization
- Tapers
- Turn lanes
- Special drainage
- Grading

Prepare the sheets on a standard plan format using a scale large enough to show details clearly and legibly.

314.2 Intersections

These sheets are to be titled:

(1) Intersection Layout, or

(2) Intersection Details.

Show intersection details on a separate plan sheet if they cannot be shown clearly on the plan-profile sheet.

In cases of simple, nonsignalized intersections covering relatively small areas, a regular plan-profile sheet may be used. Use an appropriate scale to place the intersection layout in the plan portion and the profile grades in the profile portion.

For larger, more complicated intersections involving channelization, signalization or tapered connections, place the layout on a standard plan sheet. Match lines should be used when more than one sheet is required.
Place the profiles separately on a grid format. Existing topography need not be shown on these details if it is shown elsewhere in the plans. Refer to FDM 313 for additional information on displaying profiles on grid format.

Information in the plan and profile portions of these sheets typically includes:

- Pavement edges
- R/W lines
- Curb and gutter
- Channelizing and median curbs
- Driveways
- Sidewalks
- Drainage structures
- Pavement dimensions
- Radii
- Appropriate notes

Intersection layouts must be dimensioned, stationed, and include pertinent construction notes and alignment data. Provide design speed data when appropriate. Check widths of turning lanes and turning paths for possible encroachments or conflicts.

Include a north arrow and scale at a point of maximum visibility on the plan sheet. Use a scale that is sufficient to cover all necessary details, preferably 1" = 40'. Do not use a scale smaller than 1" = 50'.
314.3 Interchanges

These sheets are to be titled:

1. Interchange Layout,
2. Interchange Drainage Map,
3. Interchange Topographic Map,
4. Interchange Cross Section Pattern,
5. Ramp Terminal Details, or
6. Ramp Cross Sections.

314.3.1 Geometric Layout

Prepare the Interchange Layout sheet on a standard plan sheet. Place the entire interchange on one sheet when possible, using a scale no smaller than 1" = 400'. In cases of large cloverleaf or directional interchanges, more than one sheet may be required. Show appropriate match lines.

Dimension and station layouts and also include alignment data and construction notes. Assign each curve a number and present curve data in a tabular form. The tabular curve and coordinate data should be placed on the same sheet as the interchange layout.

Identify interchange ramps by the use of letters or a combination of letters and numbers. The recommended practice for assigning ramp names is as follows:

1. Ramps in the first left quadrant along mainline stationing should be assigned first. Name assignments progress in a counterclockwise direction around the interchange (see Figure 314.3.1). For projects with two or more interchanges, continue name assignments with the next letter and in same counterclockwise direction noted above.

2. Ramp baselines are typically located on the right edge of the pavement with respect to the direction of traffic, and must be clearly indicated. Stationing of ramps should be in the same direction as the project.
A topographic worksheet for all interchanges is required and will be considered as the preliminary layout of the interchange. Prepare this worksheet on a standard plan sheet using a scale no smaller than 1" = 400'. Include the following information on the worksheet:

1. All topography, such as existing roads, property lines, utilities, buildings, driveways.
2. Preliminary interchange geometrics and proposed R/W limits.
3. Drainage R/W and easements.
4. Proposed reconstruction of the crossroad, and access roads and frontage roads within the interchange.
5. Frontage roads should be assigned a unique alpha or numeric designation to avoid confusion with ramp nomenclature.
6. Contours, unless the terrain is relatively flat.
7. Traffic diagram with AADT, DHV, K, D and T values.
8. The length of speed change lanes.
(9) Design speed for ramps and crossroads.
(10) Proposed bridge limits.
(11) Pavement transitions.
(12) Limits of construction along the crossroad.

314.3.2 Ramp Terminal Details

Show details of ramp terminals with mainline and crossroads on separate plan sheets. Do not use a scale smaller than 1" = 50'. A scale of 1" = 40' is preferred. Show the following details of the terminal:

(1) Curve data.
(2) Station equality and horizontal tie to mainline or crossroad at critical ramp locations.
(3) Turning radii, taper/transition lengths, curb/curb and gutter (if any).
(4) Channelization (if any).
(5) Ramp and crossroad intersection station and angle.
(6) Median nose data (if any).
(7) Limits of construction.
(8) R/W.
(9) Limited Access R/W and fence location.
(10) Drainage structures.
(11) Spot elevations (as needed).
(12) Roadway dimensions.
(13) Station pluses and offsets.
314.3.3 Cross Section Pattern Sheet

The Cross Section Pattern sheet shows the entire interchange layout (including frontage and access roads, if any) with location and extent of proposed cross sections. Include the following information on the Cross Section Pattern sheet:

(1) North arrow and scale.
(2) Interchange layout.
(3) Access and frontage roads (if any).
(4) Centerline construction and baseline survey.
(5) Ramp base lines.
(6) Stationing along mainline, crossroads, ramps, access and frontage roads.
(7) PC and PT points by symbol.
(8) Bridge outline.
(9) Cross section pattern.

Prepare the Cross Section Pattern sheet on a standard plan sheet. Use a scale such that the complete interchange is clearly and legibly shown on one plan sheet. A scale of 1" = 400' is preferred. Place the north arrow and scale at a point of maximum visibility.
315 Drainage Structures

315.1 General

Drainage Structure sheets show the following information:

- Drainage structures and their location
- Cross section
- Flow line elevations
- Top of grates
- Culverts and top of manhole elevations
- Vertical relationships of the entire drainage system

All projects require the plotting of drainage structures. When only cross drains are to be constructed or modified, drainage structures may be plotted on the cross section sheets. Otherwise, drainage structures should be plotted on separate drainage structure sheets, utilizing the cross section sheet cell available in the FDOT CADD Software. See FDM 324 for additional requirements for box and three-sided culverts utilized as drainage structures. Examples of Drainage Structures sheets are included in Exhibits 315-1 through 315-5.

315.2 Required Information

For flush shoulder projects, show the existing ground line at the location of the structure, with the existing elevation placed immediately below the ground line at the survey baseline. Do not show existing structures, except those to be incorporated into the proposed drainage system or otherwise modified. Note the flow line elevations of the drainage structures shown in the plans. Where storm drains run laterally or diagonally across the project, the drawing should show the pipe cover.

Show the roadway template and proposed structures, with the proposed profile grade elevation, placed above the grade point. Locate the structure by station and offset from the centerline of construction. Provide flow line information at each structure and at each culvert end. Plot drainage structure details according to the applicable index of the Standard Plans Index; e.g., show walls, grates, tops, pipes.

Include the size and length of each proposed structure on the cross drain sections. Show box and three-sided culvert lengths on the drainage structure sheet.
Depict sections for skewed cross drains along the centerline of the structure. Clear zone distances are to be measured at right angles to the traffic lane for all structures.

Determine where the construction of a drainage structure may have potential impact on existing R/W.

Note the following information for each drainage structure:

- Size
- End treatment
- Flow line elevations
- Structure number
- Standard Plan
- Station number
- Flow direction arrows

Place the note as close to the structure as possible. Provide elevations for manhole tops, and ditch bottom inlet grates and slots. Show grate elevations for gutter inlets and edge of pavement elevations for curb and gutter inlets.

Include special grate treatment requirements in the inlet note. Include additional details; e.g., special bedding, 36" manhole rings.

Show material options on the Optional Materials Tabulation Sheet (see Exhibits 308-1 and 308-2 in FDM 308).

Modification for Non-Conventional Projects:
Delete sentence above and see Chapter 6 of the Drainage Manual for Optional Material documentation requirements.

If existing structures are to be filled and plugged and are to remain in place, show them in the plans with an appropriate note.

Include the following notes on the first drainage structure sheet as applicable:

1. Special attention is directed to the fact that portions of some drainage structures extend into the stabilized portion of the roadbed and extreme caution will be necessary in stabilization operations at these locations.

2. All drainage pipes have optional materials. The Optional Materials Tabulation Sheet(s) shows all materials allowed and indicates which material is plotted in the plans and used as the basis for pay quantities.
315.3 Utility Conflicts

Identify and resolve drainage structure conflicts with existing or proposed utilities as early in the design process as possible. Plot utilities, as defined in FDM 221, in conjunction with the structures to identify potential conflicts.

Plot a section for each location that a longitudinal pipe crosses a major underground utility line.

Note and plot (to scale) the utilities that have been verified (Quality Level "A" locate) in the appropriate locations on the Drainage Structure Sheets, Cross Section Sheets and bridge foundation plans. These utilities should be labeled with the following symbol:

\[V_{vh1} = \text{Verified Vertical Elevation and Horizontal Location and pipe ID number} \]

315.4 Sheet Setup

Plot drainage structures as sections along the centerline of the structure and show on a standard cross section sheet. Space the sections sufficiently to avoid overlapping of structures or notes. Label the station and offsets from the appropriate baseline or centerline, as indicated in the Standard Plans. Beginning at the bottom of the sheet, show the sections successively by stations and number them sequentially, from the beginning to the end of the project. Show the structure number and location station near the right border of the sheet.

If a structure must be shown out of order, place a note in the correct sequence, referring to the sheet where the structure is shown. Use the same scale that is used for roadway cross sections, with the centerline of construction placed near the center of the sheet.
TALLAHASSEE, FL 32301
123 MAIN STREET
ROADWAY ENGINEERS, INC.
P.E. NO.: 99991
LUKE S. WALKER, P.E.

STATE OF FLORIDA
DEPARTMENT OF TRANSPORTATION
DRAINAGE STRUCTURES

Exhibit 315-3
Date: 1/1/21
316 Stormwater Facilities

316.1 General

This chapter discusses the content and requirements for plan sheets relating to stormwater facilities, including the following systems:

- lateral ditches
- outfalls
- retention areas
- detention areas
- mitigation areas

These systems typically require additional R/W or easements.

Mitigation areas are not usually a component of the highway drainage system. However, they may include drainage components.

Drainage components adjacent to the roadway may be shown on the roadway plan-profile sheets as long as they are clear and legible. Drainage components not adjacent to the roadway may require separate plan view sheets. In either case, profile views and cross sections may also be needed.

Plans for drainage components are typically grouped into three categories:

1. Lateral ditches and outfalls
2. Retention or detention areas
3. Mitigation areas

316.2 Lateral Ditches and Outfalls

Prepare lateral ditch plans and profiles on a standard plan-profile sheet using a horizontal scale of 1" = 100'. However, if storm drain construction is proposed for a portion of the ditch, a scale of 1" = 40' or 1" = 50' may be used.

316.2.1 Plan Portion

Orient data in the plan portion so that the lateral ditch or outfall centerline is parallel to the long side of the sheet. Show information in a manner similar to that described in FDM 312.

Show R/W (or easement) alignment data and topography in the plan portion. Tie the alignment of the lateral ditch or outfall to the centerline of construction. Place the north
arrow and scale at a point of maximum visibility, typically in the upper right portion of the plan view.

316.2.2 Profile Portion

Prepare the profile portion in the same manner as described in *FDM 312*. Show the following information:

- Existing ground line profiles
- High water elevations
- Underground utilities
- Benchmark information
- Elevation datum

Where the lateral ditch and outfall survey baselines do not follow the flow line of the existing ditch or channel, the existing ditch or channel profile must be shown with a broken line and identified.

If storm drain construction is proposed along a lateral ditch or at an outfall, plot the proposed structures on the drainage structures sheets, or in the lateral ditch and outfall profile. Include the following information for the structures shown in the profile:

- Flow line elevations
- Structure numbers
- Pipe or culvert sizes
- Utilities (if applicable)
- Label the normal water elevation of the receiving system.

316.2.3 Typical Section

Include a typical section showing the following:

- Limits of clearing and grubbing
- R/W
- Ditch bottom width
- Side slopes

The typical section does not need to be to scale, but must be dimensionally proportionate. If the width of proposed clearing and grubbing is variable, note the various widths and their respective station limits below the typical section.
316.2.4 Ditch Cross Sections

Lateral ditch cross section sheets are included in the plans. These sheets include the following:

- R/W
- Limits of clearing and grubbing
- Earthwork quantity

Prepare lateral ditch cross sections in the same manner as described in FDM 319. A horizontal scale of 1" = 10’ is preferred. Use a vertical scale of 1" = 10’.

Two or more columns of ditch cross sections may be placed on one sheet. Cross section stationing must progress from the bottom to the top of the sheet and multiple columns must be placed from the left to right.

Soil surveys are typically performed along the lateral ditch only when a large amount of material is expected to be excavated.

316.3 Retention or Detention Areas

316.3.1 Pond Detail Sheet

The retention or detention pond, including the outlet structure, is usually the end point of the drainage system for a particular project. The retention or detention pond detail sheet shows the pond in plan view and includes station and offset ties to the project centerline of construction. The plan view also includes the following:

1. Locations of pond sections
2. Side slopes and base dimensions
3. Bottom and top elevations
4. Location of maintenance berm
5. Fence and gate locations
6. R/W
7. Pond drainage structures with structure numbers
8. Soil boring locations
9. Any other necessary data pertaining to the pond
Include a minimum of two sections, taken in directions perpendicular to each other. These pond sections include the following:

- Bottom width and elevation
- Side slopes
- Normal water depth (if applicable)
- Soil borings

316.3.2 Typical Section

A typical section is required when the pond sections do not represent the *typical* design features of the pond. The following is a list of appropriate information to be shown on the typical section:

- Limits of clearing and grubbing
- Side slopes
- Bottom and top elevations
- Details of maintenance berm
- Fence location
- R/W
- Water level information
- Vegetation requirements

The typical section does not need to be to scale, but must be dimensionally proportionate. It should be shown on the pond detail sheet, if room allows, or on a separate sheet when necessary.

316.3.3 Pond Cross Sections

Prepare pond cross sections in the same manner as described in *FDM 319*. A horizontal scale of 1" = 10' is preferred. Use a vertical scale of 1" = 10'.

If material is to be excavated from the pond, plot the soil borings on the cross sections.

316.4 Mitigation Areas

If construction details for mitigation areas are included in the plans, follow the requirements for retention or detention areas.
317 Special Details

317.1 General

Special Details sheets are included in the plans set when additional details, information or clarification to specific construction elements is necessary. These sheets are typically included when Roadway Plan sheets do not provide the scale necessary to clearly depict the work that is required. Special Details Sheets are also used to show construction details that are not provided in the Standard Plans.

These sheets are to be placed in the component plans in accordance with FDM 302.6.

317.2 Sheet Setup

Use the standard plan format sheet provided in the FDOT CADD Software to prepare the sheet. Use standard symbols contained in the FDOT CADD Manual.

Any convenient scale may be used, provided the information shown is clear and legible. Provide adequate cross-referencing to appropriate sheets in the plans set.
318 Soil Survey

318.1 General

The Soil Survey sheet (essentially a soil test analysis sheet) depicts the various types of soils encountered within the limits of the project. This sheet also shows the classification, mechanical properties and recommended usage of those soils. A preformatted CADD sheet can be found in the FDOT CADD Software.

Assign soils having identical characteristics to the same stratum and group for identification and recommendation purposes. The test analysis sheet must be signed by the responsible Engineer.

318.2 Roadway Soil Survey Compilation and Presentation

Upon completion of the proposed typical section, and after placing alignment, proposed grades and existing utilities on the plan-profile sheets and preliminary sections, prints of these sheets must be utilized for determining the location and depth of borings for the sampling of soils for testing and classifications. These classification and test results, including pH, resistivity, sulfides, and chlorides must be shown on the test analysis sheet. Show date and weather conditions at the time of sampling. Refer to Exhibit 318-1 for an example of Soil Survey sheet.

After completion of soils testing, show the boring data on cross sections by columns approximately 1/4 inch wide below the ground line at test sample locations. Show stratum limits and numbers inside the column. Transmit this information to the appropriate responsible materials engineer for verification. Retain one hard copy of the soils information, including cross sections with soils information, in the Soils Engineer's Record.
318.3 Other Soil Surveys

Soil surveys other than those for roadway plans are required for various plans components. Included in these are soil surveys/borings for retention/detention ponds, overhead sign structures, high mast poles and traffic signal mast arms.

Soil Survey sheets generated for such components are generally located in the plans set with the other details and information for each component. Requirements for the Soil Survey sheets are similar to those prepared for the roadway soil survey, showing such things as the location of test holes, various strata encountered, soil properties, classification and recommended usage.
The material from Stratum Number 1 is Rock Base under Asphaltec Concrete.

The material from Stratum Number 2 appears satisfactory for use in the embankment when utilized in accordance with Standard Plans, Index 120-001.

The material from Stratum Number 3 appears satisfactory for use in the embankment when utilized in accordance with Standard Plans, Index 120-001. However, this material is likely to retain excess moisture and may be difficult to dry and compact. It should be used in the embankment above the water level existing at the time of construction.

The material from Stratum Numbers 4 and 5 are plastic materials and shall be removed in accordance with Standard Plans, Index 120-002. They may be placed above the existing water level at the time of construction, to within 4 feet of the proposed base. They should be placed uniformly in the lower portion of the embankment for some distances along the project rather than full depths for short distances.

The material from Stratum Number 6 is ORGANIC/A-8 material and shall be removed in accordance with Standard Plans, Index 120-002, except where noted in the cross sections.

The material from Stratum Number 7 is highly Plastic material and shall be removed in accordance with Standard Plans, Index 120-002. It may be used within the project limits as indicated in Standard Plans, Index 120-001 only when excavated within the project limits and is not to be used when obtained from outside the project limits.

The material from Stratum Number 9 is the Natural Limestone Formation. Special tools and equipment may be required to excavate and/or dewater this material.
319 Cross Sections

319.1 General

Cross sections depict the existing ground conditions, including all manmade features, as sections perpendicular to the respective stations along a survey baseline or construction centerline. The proposed cross-sectional outline of the new facility with all its functional elements is also shown on cross sections. See FDM 111.3.1 for three-dimensional (3D) models.

Use standard cross section sheets for showing roadway cross sections. The preformatted sheet cell is located in the FDOT CADD Software. The recommended vertical scale is 1” = 10’. The horizontal scale should be such that the entire roadway R/W is shown on the sheet (generally 1” = 10’ or 1” = 20’), but not smaller than 1” = 40’ horizontal. If the entire R/W cannot be shown on one sheet, more sheets may be utilized and appropriate match lines shown with referenced sheet numbers. Show the scale at the bottom right corner of the sheet above the title box.

319.2 Required Information

Show existing ground lines and note the existing elevation at the centerline just below the ground line at the centerline. Indicate the station number of the section below the ground line on the right side of the sheet. Label the baseline of survey along the top and bottom of the sheet. Lines parallel to the baseline of survey should show station equivalencies to the baseline of survey.

Show the surface, as well as the below ground portions of existing features such as pavements, curbs, and sidewalks.

Existing parallel underground utilities which lie within the horizontal limits of the project must be shown along with verification notation for those locations which have been verified. Utilities that have been verified should be labeled as shown in FDM 315. Small distribution or service lines need not be drafted.

Show the soil data and the groundwater table elevation from soil borings on cross sections as described in FDM 318. If it is determined that an organic or plastic material must be removed below the finished grade template, show the lower limits (undercut line) of the removal on the cross section to determine the area and volume of subsoil excavation. Refer to FDM 216 and Standard Plans, Index 120-002 for the requirements of subsoil excavation; i.e., removal of unsuitable organic or plastic soils.
Show the proposed roadway template. The proposed profile grade elevation must be placed vertically or at an angle to the horizontal, just above the profile grade line. Special ditch elevations must also be shown.

Show station equations, even though a cross section may not be plotted at that point. Show equivalent mainline stations for ramp cross sections. The R/W limits must be symbolically shown for each cross section.

The begin and end stations for project, construction, exceptions, bridge/bridge culvert, and the toe of slope under the bridge must be shown on the right edge of the sheets near the earthwork columns. Show the beginning and ending earthwork stations.

Show earthwork summaries in the Summary of Earthwork portion of the Estimated Quantities Report. See *FDM 902* for guidance.

The order of assembling the cross sections in the plans set must be:

1. Mainline
2. Side streets
3. Ramps

319.3 Sheet Set Up

Show cross sections on a standard preformatted cross section sheet (available in the FDOT CADD Software) with stations increasing from the bottom to the top of the sheet. Typically, only one column of sections is placed on a sheet.

The interval selected for showing sections on the cross section sheet will vary according to project specific factors. For new construction and reconstruction, the normal interval for cross sections is 100 feet for flush shoulder roadways and 50 feet for curbed roadways. These intervals may also be appropriate on RRR projects, depending on the variability of earthwork along the project. Other factors that may influence the frequency of cross sections include the presence of intersections, extent of driveway and turnout construction or reconstruction, ADA related work, and drainage improvements.

Center sections on the sheet with the survey baseline or the construction centerline placed vertically in the center. In cases where additional lanes are to be constructed adjacent to existing lanes, centering the sections will depend upon the location of the survey line and the side on which the new construction is to be placed. Orient sections such that the complete ultimate section will be approximately centered on the sheet. When the centerlines of construction and survey are not parallel, the distance between the two at each cross section must be shown.
Place as many sections as possible on a sheet with sections being spaced to avoid overlapping. The soil profile should be checked for possible unsuitable material below existing ground which may cause overlapping of sections.

When R/W is narrow enough and a horizontal scale of 1" = 20' is used, two columns of cross sections may be placed on a sheet. Cross section stationing must progress from the bottom to the top of the sheet and multiple columns must be placed from the left to the right. Set up the sheet to provide earthwork columns for each column of sections.

See *FDM 216* for additional information on showing earthwork data on Cross Sections sheets.
320 Stormwater Pollution Prevention Plan (SWPPP)

Modification for Non-Conventional Projects:

Delete *FDM 320* and see RFP for requirements.

320.1 General

The Stormwater Pollution Prevention Plan (SWPPP) sheets document the designer's site evaluation and selection of control measures and other items to comply with the terms and conditions of the State of Florida Department of Environmental Protection (DEP) Generic Permit for Stormwater Discharges from Large and Small Construction Activities (DEP Generic Permit) discussed in *FDM 251*.

For an example of SWPPP sheets on a major reconstruction project, see *Exhibit 320-1*. Additional guidance for developing a SWPPP may be found in the DEP SWPPP template, found on the DEP web page at:

http://www.dep.state.fl.us/water/stormwater/npdes/swppp.htm

320.2 Narrative Description

The SWPPP sheets include a narrative that refers to other documents such as the *Standard Specifications* or the *Standard Plans* as necessary. Use the following outline to prepare the narrative:

1. Site Description
 1. A Description of the Construction Activity
 2. Sequence of Major Soil Disturbing Activities
 3. Area Estimates (The total project area and the area expected to be disturbed.)
 4. Runoff Data consisting of:
 1. Rational runoff coefficient before, during, and after construction,
 2. The size of the drainage area for each outfall,
 3. The location of each outfall, in terms of latitude and longitude (to the nearest 15 seconds),
iv. Existing data describing the soil or the quality of discharge from the site

(e) Site Map (Include a narrative as described in FDM 320.3)

(f) Receiving Waters (The name of the receiving waters for each outfall and the wetland area on the site.)

(2) Controls

(a) Erosion and Sediment Controls
 i. Stabilization Practices
 ii. Structural Practices

(b) Stormwater Management

(c) Other Controls
 i. Waste Disposal
 ii. Off-Site Vehicle Tracking & Generation of Dust
 iii. State or Local Regulations
 iv. Application of Fertilizers and Pesticides
 v. Toxic Substances

(d) State and Local Plans

(3) Maintenance

(4) Inspection

(5) Non-Stormwater Discharges

The sheets may also include supplemental design details and plan views of the location of the controls. Additional information for preparing the SWPPP sheets can be found in the State of Florida Erosion and Sediment Control Designer and Reviewer Manual.

320.3 Site Map

Show the following information on a site map:

(1) Drainage patterns

(2) Approximate slopes

(3) Areas of soil disturbance

(4) Areas that are not to be disturbed

(5) Locations of controls identified in the plan

(6) Areas that are to be stabilized against erosion

(7) Surface waters (including wetlands)
(8) Locations where stormwater is discharged to a surface water

The above information is typically shown on other sheets within a set of construction plans. Prepare a narrative description of the site map which identifies the construction plan sheets where the site map information required by the DEP Generic Permit can be found.

The locations of the temporary controls may be shown on SWPPP sheets, Erosion Control sheets, Plan-Profile sheets, or Temporary Traffic Control (TTC) Plan sheets. For projects where plan view sheets are not available, summarize the locations of the controls in a tabular format.

If an optional Drainage Map is included in the construction plans, then the drainage patterns will be shown on it. If the Drainage Map is not included, prepare a topographic map (for example, a USGS quadrangle map) showing contour lines. This map will supplement the construction plan sheets that show the other site map requirements. The supplemental site map may use photography (aerial or other). Include this supplemental map in the SWPPP sheets.

320.4 Controls

The SWPPP must include a description of the controls that will be implemented at the construction site. For each of the major activities identified in Part 1.b of the Narrative, describe the timing of the implementation of control measures during the construction process. Also describe the stormwater management measures that will be installed during construction to control pollutants in the stormwater discharges that will occur after construction.

Details should be prepared for all controls that are not detailed in the State of Florida Erosion and Sediment Control Designer and Reviewer Manual. The details should show the work intended, where and how the control is to be placed, and any other special design details. Any Technical Special Provisions required by the erosion control items of work should be prepared for the specification package.

The narrative for some of the other controls will be supplied by the contractor at the preconstruction conference. A plan for off-site vehicle tracking is an exception and must be included in the SWPPP prepared during design.

Any Water Management District or Local Water Management District permits obtained in connection with the project should be noted.
320.5 Maintenance, Inspection and Non-Stormwater Discharges

Include a description of any maintenance requirements that are not stated in the standard specifications. Include the inspection requirements, which will be either requirements of the DEP or the applicable requirements of another regulatory agency, whichever is more stringent. If special procedures have been developed to minimize turbidity associated with normal construction dewatering, include a description of those procedures.

Special monitoring requirements described in the DEP Generic Permit may apply where the project discharges to waters listed in Section 303(d) of the Clean Water Act. Consult with the district environmental permitting staff to determine if the monitoring requirements apply. If applicable, describe the special monitoring requirements in the inspection section of the narrative.
THE FOLLOWING NARRATIVE OF THE STORMWATER POLLUTION PREVENTION PLAN CONTAINS REFERENCES TO THE STANDARD SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION, THE STANDARD PLANS, AND OTHER SHEETS OF THESE CONSTRUCTION PLANS. THE FIRST SHEET OF THE CONSTRUCTION PLANS (CALLED THE KEY SHEET) CONTAINS AN INDEX TO THE OTHER SHEETS. THE COMPLETE STORMWATER POLLUTION PREVENTION PLAN INCLUDES SEVERAL ITEMS THIS NARRATIVE.

DESCRIPTION. THE DOCUMENTS REFERENCED IN THIS NARRATIVE, THE CONTRACTORS APPROVED EROSION CONTROL PLAN REQUIRED BY SPECIFICATION SECTION 104, AND REPORTS OF INSPECTIONS MADE DURING CONSTRUCTION.

1.0 SITE DESCRIPTION:

1.B. SEQUENCE OF MAJOR SOIL DISTURBING ACTIVITIES:

BEFORE BEGINNING OTHER WORK FOR THE CONSTRUCTION PHASE. REMOVE EROSION AND TRAPPING SEDIMENT AND IS APPROVED BY THE ENGINEER. IN THE SEDIMENT AND EROSION CONTROL PLAN, PROVIDE A DETAILED SEQUENCE IS PROPOSED THAT IS EQUAL OR BETTER AT CONTROLLING SYSTEMS, AND STORMWATER MANAGEMENT FACILITIES. THE PROJECT EXTENDS FROM NORTH OF PAUL RUSSELL ROAD TO PERKINS STREET, A DISTANCE OF APPROXIMATELY 1.1 MILES.

4. EARTHWORK ASSOCIATED WITH THE CONSTRUCTION PHASE, INSTALL PERIMETER CONTROLS AFTER ALL UPSTREAM AREAS ARE STABILIZED. CLEARING AND GRUBBING NECESSARY FOR INSTALLATION OF CONTROLS BUT Disturbances are shown to be constructed above or below ground will be disturbed during construction.

5. CONSTRUCT UNDERDRAIN IN POND BOTTOM.

3.0 CONSTRUCTION PLANS ARE BEING USED AS THE SITE MAPS. THE LOCATION CAN BE SEEN IN THE CROSS SECTION SHEETS AND THE PLAN-PROFILE SHEETS. THERE ARE POND CROSS SECTIONS LOCATED WITH THE POND DETAIL SHEETS. THESE CONSTRUCTION PLANS IN GENERAL, THE SOILS ARE CLAYEY SANDS.

OUTFALL INFORMATION:

THERE ARE 4 OUTFALLS.

1. DESCRIPTION: EXISTING POND AT LAURA LEE.

LOCATION: LATITUDE 30° 24' 30", LONGITUDE 84° 46' 45".

EST. DRAINAGE AREA SIZE: 13.6 ACRES.

RECEIVING WATER NAME: EAST DITCH.

2. DESCRIPTION: POND 1. THIS DISCHARGES TO THE STORM DRAIN SYSTEM THAT RUNS UNDER ORANGE AVENUE. THIS SYSTEM IN TURN DISCHARGES TO THE BOX CULVERT AT STA. 531+00.

LOCATION: LATITUDE 30° 24' 45", LONGITUDE 84° 17' 00".

EST. DRAINAGE AREA SIZE: 7.3 ACRES.

RECEIVING WATER NAME: EAST DITCH.

3. DESCRIPTION: BOX CULVERT AT STA. 531+00.

LOCATION: LATITUDE 30° 24' 45", LONGITUDE 84° 17' 00".

EST. DRAINAGE AREA SIZE: 4.2 SQUARE MILES.

RECEIVING WATER NAME: EAST DITCH.

4. DESCRIPTION: POND 2. THIS DISCHARGES TO THE SR 007 STORM DRAIN SYSTEM THAT DRAINS TO THE BOX CULVERT AT STA. 531+00.

LOCATION: LATITUDE 30° 25' 00", LONGITUDE 84° 17' 00".

EST. DRAINAGE AREA SIZE: 13.6 ACRES.

RECEIVING WATER NAME: EAST DITCH.

I. E. SITE MAP.

THE CONSTRUCTION PLANS ARE BEING USED AS THE SITE MAPS. THE LOCATION OF THE REQUIRED INFORMATION IS DESCRIBED BELOW. THE SHEET NUMBERS FOR THE PLAN SHEETS REFERENCED ARE IDENTIFIED ON THE KEY SHEET OF THESE CONSTRUCTION PLANS.

+ AREAS OF SOIL DISTURBANCE: AREAS WHERE PERMANENT FEATURES ARE SHOWN TO BE CONSTRUCTED ABOVE OR BELOW GROUND WILL BE DISTURBED.

+ AREAS NOT TO BE DISTURBED: ESSENTIALLY THE WHOLE PROJECT WILL BE DISTURBED DURING CONSTRUCTION.

+ LOCATIONS OF TEMPORARY CONTROLS: THESE ARE SHOWN ON THE EROSION CONTROL SHEETS EXCEPT FOR THE CONTROLS ASSOCIATED WITH THE BOX CULVERT. THESE ARE SHOWN ON THE BOX CULVERT CONSTRUCTION DETAIL SHEET. TABLES PROVIDING SUMMARIES OF TEMPORARY EROSION CONTROL SHEETS ARE PROVIDED IN THE SUMMARY OF QUANTITY SHEETS.

+ AREAS OF PERMANENT CONTROLS: THE STORMWATER PONDS ARE THE PRIMARY PERMANENT STORMWATER MANAGEMENT CONTROLS. THESE ARE SHOWN ON THE CONSTRUCTION SHEETS.

+ AREAS TO BE STABILIZED: TEMPORARY STABILIZATION PRACTICES ARE SHOWN IN THE SAME LOCATION AS THE TEMPORARY CONTROLS MENTIONED ABOVE. PERMANENT STABILIZATION IS SHOWN ON THE TYPICAL SECTION SHEETS, THE PLAN-PROFILE SHEETS AND THE POND DETAIL SHEETS.

+ SURFACE WATERS: THE ONLY SURFACE WATER WITHIN THE SITE IS THE EAST DITCH, WHICH FLOWS THROUGH THE CULVERT AT STATION 531+00. THIS IS LOCATED ON THE PLAN-PROFILE SHEETS AND THE BOX CULVERT CONSTRUCTION DETAIL SHEET.

+ DISCHARGE POINTS TO SURFACE WATERS: THERE IS ONLY ONE. THIS IS RECEIVING WATER NAME: EAST DITCH.

1. F. RECEIVING WATERS:

SEE ITEM LD FOR THE OUTFALL LOCATIONS AND RECEIVING WATER NAMES. THERE ARE NO WETLAND AREAS ON THE PROJECT SITE.

Exhibit 320-1

Date: 1/1/19
2.0 CONTROLS:

2.1 EROSION AND SEDIMENT CONTROLS:

IN THE SEDIMENT AND EROSION CONTROL PLAN, THE CONTRACTOR SHALL DESCRIBE THE PROPOSED STABILIZATION AND STRUCTURAL PRACTICES BASED ON THE CONTRACTOR’S PROPOSED TEMPORARY TRAFFIC CONTROL (TTC) PLAN. THE FOLLOWING RECOMMENDED GUIDELINES ARE BASED ON THE TEMPORARY TRAFFIC CONTROL PLAN OUTLINED IN THE CONSTRUCTION PLANS. WHERE FOLLOWING THE TEMPORARY TRAFFIC CONTROL PLAN OUTLINED IN THESE CONSTRUCTION PLANS, THE CONTRACTOR MAY CHOOSE TO ACCEPT THE FOLLOWING GUIDELINES OR MODIFY THEM IN THE SEDIMENT AND EROSION CONTROL PLAN. SUBJECT TO APPROVAL BY THE ENGINEER. AS WORK PROGRESSES, MODIFY THE PLAN TO ADAPT TO SEASONAL VARIATIONS, CHANGES IN CONSTRUCTION ACTIVITIES, AND THE NEED FOR BETTER PRACTICES.

FOR EACH CONSTRUCTION PHASE, INSTALL PERIMETER CONTROLS AFTER CLEARING AND GRUBBING NECESSARY FOR INSTALLATION OF CONTROLS BUT BEFORE BEGINNING OTHER WORK FOR THE CONSTRUCTION PHASE. REMOVE PERIMETER CONTROLS ONLY AFTER ALL UPSTREAM AREAS ARE STABILIZED.

PHASE I OF TEMPORARY TRAFFIC CONTROL PLANS:

ROADWAY, STATION 50+40 TO 52+40 RIGHT: IMMEDIATELY AFTER CONSTRUCTING THE TEMPORARY PAVEMENT, STABILIZE THE AREA BETWEEN THE TEMPORARY PAVEMENT AND THE RIGHT OF WAY LINE USING TEMPORARY SOD.

OUTFALL OF POND 1:

CONSTRUCT THE OUTFALL PIPE FROM 5-06 TOWARDS THE POND. THE CONTRACTOR SHALL HAVE INLET PROTECTION AVAILABLE AT ALL TIMES DURING THE PIPE CONSTRUCTION TO SUBSTANTIALLY BLOCK RUNOFF IN THE TRENCH FROM ENTERING THE PIPE. CONSTRUCT PIPE TO THE POND AND CONSTRUCT THE OUTLET STRUCTURE OF THE POND.

POND 1 CONSTRUCTION:

CLEAR AND GRUB THE POND SITE, INITIALLY EXCAVATE THE POND ENOUGH TO CONSTRUCT SEDIMENT BARRIERS AS DETAILLED IN THE TTC PLAN, THEN EXCAVATE THE POND TO APPROXIMATE PROPOSED DIMENSIONS. TURF ALL DISTURBED AREAS OF THE POND SITE ABOVE ELEVATION S.I.D. FINAL GRADING WILL BE DONE AT THE END OF PHASE TWO OF THE TTC PLAN.

ROADWAY, STATION 50+40 TO 52+70 LEFT:

ROADWAY, STATION 50+40 TO 52+70 RIGHT:

DURING THE SUBSOIL EXCAVATION AND CONSTRUCTION OF THE ROADWAY UNDERDRAIN, STORM DRAIN, AND WALL, USE S-20 AS THE PRIMARY INLET FOR CONVEYANCE TO THE LAURA LEE POND. STAGE CONSTRUCTION AND PROTECT THE INLET IN A MANNER SIMILAR TO S-19 IN PHASE I OF THE TTC PLAN.

2.A EROSION AND SEDIMENT CONTROLS:

2.0 CONTROLS:

FOLLOWING THE TEMPORARY TRAFFIC CONTROL PLAN OUTLINED IN THESE CONSTRUCTION PLANS, THE CONTRACTOR SHALL INSTALL PERIMETER CONTROLS AFTER ENTERING THE PIPE. CONSTRUCT PIPE TO THE POND AND CONSTRUCT THE OUTLET STRUCTURE OF THE POND.

THE PARAGRAPHS ABOVE REFER TO A 7 DAY LIMIT BEFORE INITIATING STABILIZATION. THE DEP GENERIC PERMIT SPECIFIES 7 DAYS, BUT STRICTER REQUIREMENTS FROM OTHER PERMITTING AGENCIES WILL OFTEN APPLY AND SHOULD BE NOTED. FOR EXAMPLE, ST. JOHNS RIVER WATER MANAGEMENT DISTRICT HAS A 7 DAY LIMIT IN 40C-42 F.A.C.

THE PERIOD ABOVE REFERS TO A 7 DAY LIMIT BEFORE INITIATING STABILIZATION. THE DEP GENERIC PERMIT SPECIFIES 7 DAYS, BUT STRICTER REQUIREMENTS FROM OTHER PERMITTING AGENCIES WILL OFTEN APPLY AND SHOULD BE NOTED. FOR EXAMPLE, ST. JOHNS RIVER WATER MANAGEMENT DISTRICT HAS A 7 DAY LIMIT IN 40C-42 F.A.C.

PERMANENT:

- TURF AND SOD IN ACCORDANCE WITH SPECIFICATION SECTION 104.
- ARTIFICIAL COVERINGS IN ACCORDANCE WITH SPECIFICATION SECTION 104.
- ASPHALT OR CONCRETE SURFACE.
- SOD IN ACCORDANCE WITH SPECIFICATION SECTION 104.

TEMPORARY:

- SEDIMENT BARRIERS IN ACCORDANCE WITH DESIGN SPECIFICATION SECTION 104, AND FDEP EROSION AND SEDIMENT CONTROL DESIGNER AND REVIEWER MANUAL.
- SEDIMENT CONTAINMENT SYSTEM: THE PERMANENT STORMWATER PONDS WILL BE TEMPORARILY MODIFIED ACCORDING TO THE DETAILS IN THE TTC PLAN.
- SEDIMENT CONTAINMENT SYSTEM: THE PERMANENT STORMWATER PONDS WILL BE TEMPORARILY MODIFIED ACCORDING TO THE DETAILS IN THE TTC PLAN.
- SEDIMENT CONTAINMENT SYSTEM: THE PERMANENT STORMWATER PONDS WILL BE TEMPORARILY MODIFIED ACCORDING TO THE DETAILS IN THE TTC PLAN.
- SEDIMENT CONTAINMENT SYSTEM: THE PERMANENT STORMWATER PONDS WILL BE TEMPORARILY MODIFIED ACCORDING TO THE DETAILS IN THE TTC PLAN.
- SEDIMENT CONTAINMENT SYSTEM: THE PERMANENT STORMWATER PONDS WILL BE TEMPORARILY MODIFIED ACCORDING TO THE DETAILS IN THE TTC PLAN.
- SEDIMENT CONTAINMENT SYSTEM: THE PERMANENT STORMWATER PONDS WILL BE TEMPORARILY MODIFIED ACCORDING TO THE DETAILS IN THE TTC PLAN.
- SEDIMENT CONTAINMENT SYSTEM: THE PERMANENT STORMWATER PONDS WILL BE TEMPORARILY MODIFIED ACCORDING TO THE DETAILS IN THE TTC PLAN.
- SEDIMENT CONTAINMENT SYSTEM: THE PERMANENT STORMWATER PONDS WILL BE TEMPORARILY MODIFIED ACCORDING TO THE DETAILS IN THE TTC PLAN.
- SEDIMENT CONTAINMENT SYSTEM: THE PERMANENT STORMWATER PONDS WILL BE TEMPORARILY MODIFIED ACCORDING TO THE DETAILS IN THE TTC PLAN.
- SEDIMENT CONTAINMENT SYSTEM: THE PERMANENT STORMWATER PONDS WILL BE TEMPORARILY MODIFIED ACCORDING TO THE DETAILS IN THE TTC PLAN.
- SEDIMENT CONTAINMENT SYSTEM: THE PERMANENT STORMWATER PONDS WILL BE TEMPORARILY MODIFIED ACCORDING TO THE DETAILS IN THE TTC PLAN.
- SEDIMENT CONTAINMENT SYSTEM: THE PERMANENT STORMWATER PONDS WILL BE TEMPORARILY MODIFIED ACCORDING TO THE DETAILS IN THE TTC PLAN.
- SEDIMENT CONTAINMENT SYSTEM: THE PERMANENT STORMWATER PONDS WILL BE TEMPORARILY MODIFIED ACCORDING TO THE DETAILS IN THE TTC PLAN.
- SEDIMENT CONTAINMENT SYSTEM: THE PERMANENT STORMWATER PONDS WILL BE TEMPORARILY MODIFIED ACCORDING TO THE DETAILS IN THE TTC PLAN.
- SEDIMENT CONTAINMENT SYSTEM: THE PERMANENT STORMWATER PONDS WILL BE TEMPORARILY MODIFIED ACCORDING TO THE DETAILS IN THE TTC PLAN.
- SEDIMENT CONTAINMENT SYSTEM: THE PERMANENT STORMWATER PONDS WILL BE TEMPORARILY MODIFIED ACCORDING TO THE DETAILS IN THE TTC PLAN.
- SEDIMENT CONTAINMENT SYSTEM: THE PERMANENT STORMWATER PONDS WILL BE TEMPORARILY MODIFIED ACCORDING TO THE DETAILS IN THE TTC PLAN.
- SEDIMENT CONTAINMENT SYSTEM: THE PERMANENT STORMWATER PONDS WILL BE TEMPORARILY MODIFIED ACCORDING TO THE DETAILS IN THE TTC PLAN.
- SEDIMENT CONTAINMENT SYSTEM: THE PERMANENT STORMWATER PONDS WILL BE TEMPORARILY MODIFIED ACCORDING TO THE DETAILS IN THE TTC PLAN.
- SEDIMENT CONTAINMENT SYSTEM: THE PERMANENT STORMWATER PONDS WILL BE TEMPORARILY MODIFIED ACCORDING TO THE DETAILS IN THE TTC PLAN.
- SEDIMENT CONTAINMENT SYSTEM: THE PERMANENT STORMWATER PONDS WILL BE TEMPORARILY MODIFIED ACCORDING TO THE DETAILS IN THE TTC PLAN.
- SEDIMENT CONTAINMENT SYSTEM: THE PERMANENT STORMWATER PONDS WILL BE TEMPORARILY MODIFIED ACCORDING TO THE DETAILS IN THE TTC PLAN.
- SEDIMENT CONTAINMENT SYSTEM: THE PERMANENT STORMWATER PONDS WILL BE TEMPORARILY MODIFIED ACCORDING TO THE DETAILS IN THE TTC PLAN.
- SEDIMENT CONTAINMENT SYSTEM: THE PERMANENT STORMWATER PONDS WILL BE TEMPORARILY MODIFIED ACCORDING TO THE DETAILS IN THE TTC PLAN.
- SEDIMENT CONTAINMENT SYSTEM: THE PERMANENT STORMWATER PONDS WILL BE TEMPORARILY MODIFIED ACCORDING TO THE DETAILS IN THE TTC PLAN.
This exhibit is an example narrative of a stormwater pollution prevention plan (SWPPP) for a major reconstruction project. Actual project conditions often dictate different approaches than shown here. The engineer is responsible for developing a site specific SWPPP that complies with the foot design manual.

2.C. OTHER CONTROLS:

2.C.1 WASTE DISPOSAL:

In the sediment and erosion control plan, describe the proposed methods to prevent the discharge of solid materials including building materials, to waters of the United States. The proposed methods shall include at least the following, unless otherwise approved by the engineer:

* Providing litter control and collection within the project during construction activities.
* Disposing of all fertilizer or other chemical containers according to EPA's standard practices as detailed by the manufacturer.
* Disposing of solid materials including building and construction materials off the project site but not in surface waters, or wetlands.

2.C.2 OFF-SITE VEHICLE TRACKING & DUST CONTROL:

In the sediment and erosion control plan, describe the proposed methods for minimizing offsite vehicle tracking of sediments and generating dust. Include in the proposed methods at least the following, unless otherwise approved by the engineer:

* Covering loaded haul trucks with tarps.
* Stabilizing construction entrances according to the FDEP erosion and sediment control designer and reviewer manual.
* Using roadway sweepers during dust generating activities such as excavation and milling operations.

2.C.3 STATE AND LOCAL REGULATIONS FOR WASTE DISPOSAL, SANITARY SEWER, OR SEPTIC SYSTEMS:

In the specification section 104 erosion control plan, describe the proposed procedures to comply with applicable state and local regulations for waste disposal, and sanitary sewer or septic systems.

2.C.4 FERTILIZERS AND PESTICIDES:

In the sediment and erosion control plan, describe the procedures for applying fertilizers and pesticides. The proposed procedures shall comply with applicable subsections of section 982 of the specifications.

2.C.5 TOXIC SUBSTANCES:

In the sediment and erosion control plan, provide a list of toxic substances that are likely to be used on the job and provide a plan addressing the generation, application, migration, storage, and disposal of these substances.

2.D. APPROVED STATE AND LOCAL PLANS AND PERMITS:

* FDEP RULE CHAPTER 62-25 F.A.C.
* CITY OF NARCOOSSEE ENVIRONMENTAL MANAGEMENT ORDINANCE NUMBER 90-0-0044A.

3.0 MAINTENANCE:

In the sediment and erosion control plan, provide a plan for maintaining all erosion and sediment controls throughout construction. The maintenance plan shall at a minimum, comply with the following:

* Silt fence: Maintain per specification section 104. Anticipate replacing silt fence on 12 month internals.
* Sediment barriers - remove sediment as per manufacturers recommendations or when water ponds in unacceptable amounts or areas.
* Ponds one and two: The ponds are temporary sediment basins until the areas that drain to them are stabilized, so until then, remove sediment from the pond when it becomes 1.5' deep at any point.

4.0 INSPECTIONS:

Qualified personnel shall inspect the following items at least once every seven calendar days and within 24 hours of the end of a storm that is 0.50 inches or greater.

To comply, install and maintain rain gauges and record the daily rainfall. Where sites have been permanently stabilized, conduct inspections at least once every month. Also inspect that controls installed in the field agree with the latest stormwater pollution prevention plan.

* Points of discharge to waters of the United States.
* Points of discharge to municipal separate storm drain systems.
* Disturbed areas of the site that have not been finally stabilized.
* Areas used for storage of materials that are exposed to precipitation.
* Structural controls.

5.0 NON-STORMWATER DISCHARGES:

In the specification section 104 erosion control plan, identify all anticipated non-stormwater discharges (except flows from fire fighting activities). Describe the proposed measures to prevent pollution of these non-stormwater discharges. If the contractor encounters contaminated soil or groundwater, contact Dave Letterman, District Hazardous Materials Coordinator, at (888) 274-3343.
321 Temporary Traffic Control Plan

321.1 General

A project-specific Temporary Traffic Control Plan (TTCP) is required for all projects. The TTCP is used to describe the actions to be taken by the Contractor to minimize traffic impacts while conveying traffic through a work zone. The TTCP may include the following:

- General Notes
- Phasing Notes
- Phasing Typical Sections
- Phasing Plan-Profile Sheets
- Signalization Plans
- Special Details
- Temporary Cross Sections

321.2 TTCP Submittals

TTCP submittals typically include the following:

1. Phase I: a typical section for each phase as well as a description of the phasing sequence and work involved.

2. Phase II: a majority of the TTCP completed (75-90%) and a list of the pay items needed.

3. Phase III: a final TTCP, including all notes, pay items and preliminary quantities. The construction office estimates the duration for each phase of construction during Phase III review.

4. Phase IV: finalize the quantities in the plans and Designer Interface.

Modification for Non-Conventional Projects:
Delete FDM 321.2 and replace with the following:

321.2 TTCP Phase Submittals

TTCP phase submittals include the following:

1. Technical Proposal: a typical section for each phase as well as a description of the phasing sequence and work involved.

2. 90% Component Plans Submittal: a majority of the TTCP completed.

3. Final Plans: a final TTCP, including all notes.
321.3 Required Information

The information provided in the TTCP may be simple or may be elaborate (e.g., detailed individual phase layouts using profile sheets, interchange and intersection layout sheets).

Provide the following information in the TTCP:

- Work zone speed
- Lane widths and shoulder widths
- Lane closure restrictions
- Traffic pacing restrictions
- PCMS message for each phase
- Temporary geometry for all road users (e.g., all necessary special details or phasing plans to provide a pedestrian detour or temporary pedestrian way)
- Locations or notes describing locations of temporary traffic control devices
- Temporary drainage design or permanent drainage design phasing
- Signal timing for each phase, including temporary actuation, to maintain all existing actuated or traffic responsive mode signal operations for main and side street movements for the duration of the Contract (coordinate with District Traffic Operations Engineer)
- Work, by location, to be accomplished during each phase of construction
- Project-specific requirements (e.g., school zones, railroads, waterborne vessels)

321.4 Levels of Complexity

The following guidelines have been developed to assist in determining the level of detail and complexity that may be required for a project.

321.4.1 Level I

Project Type: Simple construction projects

Examples: RRR, Minor Widening
Components of the TTCP

(1) General Notes
(2) Phase Typical Section(s)
(3) Minimal Special Details
(4) Pedestrian Special Details or Phasing Plans

321.4.2 Level II

Project Type: Complex construction projects

Examples: Widening Projects, Projects with Diversions

Components of the TTCP

(1) General Notes
(2) Phase Notes
(3) Phase Typical Section(s)
(4) Detailed Plan Sheets
(5) Cross Sections, as necessary (e.g., diversions, temporary drainage, temporary bridge structure)
(6) Temporary Signalization Plans, as necessary
(7) Special Details, as necessary (e.g., temporary drainage, slope requirements due to diversions, temporary signalization, railroad work)
(8) Pedestrian Special Details or Phasing Plans

321.5 Format

Prepare TTCP on a standard plan sheet. A scaled drawing is not always required; however, clarity and legibility are critical. When scaled drawings are required, the scale must not be less than 1” = 100’ for plan sheets and 1” = 40’ for special details. Use levels, fonts and line weights in accordance with the CADD Manual.

Tools are available in FDOT CADD Software to assist in the development of TTCPs.
322 Utility Adjustments

322.1 General

The Utility Adjustments sheets provide coordination between the contractor and the affected utility companies. These sheets show the approximate locations of existing, proposed and relocated utilities, which helps to identify potential conflicts or damage to utilities. Projects with minor utility work or impacts may include these features on the roadway plan or plan-profile sheets or appropriate component plan sheets.

322.2 Required Information

Show locations of existing and proposed utilities within the project limits.

Clearly show and label all proposed and relocated utilities on the plans using lines and standard utility symbols (see the CADD Manual). Clearly indicate the disposition of existing utilities that are not to remain in place and in service; e.g., "To Be Removed", "To Be Adjusted", "To Be Relocated". The disposition of existing utilities that are to remain in place and in service need not be labeled.

Show the line voltage for all overhead electrical power lines.

Place the following notes on the first Utility Adjustment sheet. Include these notes in the General Notes (see Exhibit 311-1) if there are no utility adjustment sheets in the plans:

1. The location(s) of the utilities shown in the plans (including those designated V_v, V_h and V vh) are based on limited investigation techniques and should be considered approximate only. The verified locations/elevations apply only at the points shown. Interpolations between these points have not been verified.

2. Utility/Agency Owners:

<table>
<thead>
<tr>
<th>Company</th>
<th>Contact</th>
<th>Telephone Number</th>
</tr>
</thead>
</table>

The provided company names and phone numbers are for emergency utility contacts. Also include the contact information for persons responsible for the maintenance of FDOT utility infrastructure such as traffic counters, lighting, signal components, and ITS.

Include the Transportation Statistics Office in Tallahassee in the list of Utility/Agency Owners if there is a traffic-monitoring site on the project or within one-half mile of the project.
construction. The contact person is the Traffic Data Section Manager. Refer to FDM 312.2.6, Item No. 13 for plan requirements involving traffic-monitoring sites.

322.3 Sheet Format

Prepare the utility adjustment sheets from CADD files generated for the plan or plan-profile sheets, and only the plan portion should be shown. Use levels, fonts and line weights in accordance with the CADD Manual.

Information and graphic data that is not necessary for utility adjustment sheets may be removed by turning off the appropriate level(s) on which the data is stored. This will help ensure that information pertinent to utility adjustments is more easily seen. Show the following information on the utility adjustment sheets as a minimum:

1. Baseline and/or centerline of survey.
2. Curb and gutter or edge of pavement.
3. Drainage structures (existing and proposed).
4. Right of way lines.
5. Station numbers.
6. Street names.
7. Location of existing utilities. Label all major utilities that have been field verified (see Quality Level "A" locates, FDM 221) in accordance with the following symbol:

 \[V_{vh} = \text{Verified Vertical Elevation and Horizontal Location} \]

At the District's option, a table of field-verified utilities containing the following information can replace the profile view on each sheet:

<table>
<thead>
<tr>
<th>V_{vh} No.</th>
<th>Utility Description (Owner, Type)</th>
<th>Size</th>
<th>Material</th>
<th>B/L or C/L</th>
<th>Existing Ground Elevation</th>
<th>Top Elevation</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(8) Disposition of existing utilities that are not to remain in place and in service.
(9) Location of new or relocated utilities.
323 Selective Clearing and Grubbing Plans

323.1 General

Selective Clearing and Grubbing Plan sheets are developed when existing vegetation, trees, and palms are to be protected, relocated, pruned, or removed as an alternative to Standard Clearing and Grubbing. FDM 229 contains design criteria to determine the type and the limits of selective clearing and grubbing.

Place Selective Clearing and Grubbing Plan sheets in accordance with FDM 302.

323.2 Selective Clearing and Grubbing Plan Sheet

Selective Clearing and Grubbing Plan sheets include the following information, as applicable:

- Extent and type of clearing operation required within the project R/W limits
- Root pruning and branch pruning
- Plant preservation areas
- Tree protection barriers

For an example of a Selective Clearing and Grubbing Plan sheet, see Exhibit 323-1.

323.2.1 Sheet Set Up

Use the standard plan format sheet provided in the FDOT CADD Software to prepare Selective Clearing and Grubbing Plan sheets. Refer to the CADD Manual for CADD standards associated with selective clearing and grubbing.

Show existing topography and the centerline of construction with stationing, proposed edge of roadway pavement, R/W lines, limits of construction, canopy of existing trees, limits of vegetation to remain, tree protection barrier, and trees to be relocated. Include a legend on each sheet depicting the type of selective clearing and grubbing operation to be performed.

Place a north arrow and scale in a conspicuous location, typically in the upper right portion of the sheet. Use a scale that provides clarity and legibility. Use appropriate match lines when necessary.
When tree canopies overlap, the entire outline of the tree canopies can be shown as one mass. Show tree protection barrier on the plans. Branch and root pruning locations. When existing trees to remain are to be root pruned, the trees are assigned a label which should also be summarized, per tree, in a summary box and shown as pruned on the Tree Disposition Charts. These items may also be labeled on the plans when needed for clarity or called out in the Selective Clearing & Grubbing Work Table, but must be quantified per tree. Each tree does not need to be labeled when a group of trees are to be branch pruned, but the quantity of trees to be pruned must be provided. The disposition of trees to be relocated is shown on Tree Disposition sheets. For an example of a Tree Disposition Sheet and a Tree Disposition Chart, see Exhibit 323-3 and 323-4.

Where clarification is needed, trees to be removed may be noted on the plan.

Generally, the line between where standard clearing and grubbing occurs and where trees to be protected, relocated, or selectively removed demarcates a selective clearing and grubbing area. Selective clearing and grubbing areas are not always demarcated by a means of vegetation treatment or protection (tree protection barrier). Areas of tree protection, plant preservation, or selective clearing and grubbing may be delineated with tree protection barriers. When a tree protection area is adjacent to a R/W fence to remain, a sediment barrier, or similar permanent barrier, the tree protection barrier that is parallel to the permanent barrier may be omitted.

323.3 Selective Clearing and Grubbing Detail Sheet

The notes required for selective clearing and grubbing vary depending on the project. It may be desirable to provide a separate Selective Clearing and Grubbing Detail Sheet to display the notes, symbols, and details that are applicable to the project. For an example of a Selective Clearing and Grubbing Detail Sheet, see Exhibit 323-2.

323.3.1 Work Table

For an illustration of a Selective Clearing and Grubbing Work Table, see Exhibit 323-2.

Selective clearing and grubbing areas are defined and labeled by location. Location numbers can be based on roadway stationing numbers, quadrants or sheet numbers.

Provide a Selective Clearing and Grubbing Work Table when the project includes selective removal of vegetation. As a minimum, the table includes:

1. Abbreviated name of primary species to preserve
2. Abbreviated name of primary species targeted for removal
(3) Work Description

Other information that may be included in the table:

(1) Florida Exotic Pest Plant Council Category I species to be removed
(2) Estimated percent of Category I vegetative cover for each area
(3) Additional species to target for removal or preservation
(4) Root and branch pruning and intent (structural, aesthetic, safety, etc.)
(5) Tree stumps to be removed or to remain
(6) Additional Information

323.3.2 Species Legend and Work Table Notes

Include a species legend with the Selective Clearing and Grubbing Work Table. The legend is to show all plant species noted in the table. Plant species are typically abbreviated by the first letter of the genus and the first letter of the species of the botanical name; e.g., show Live Oak, Quercus virginiana as QV.

Category 1 plants (as listed by the Florida Exotic Pest Plant Council) are undesirable, and in most cases should be listed to be removed. The designer may call out Category 1 plants that are to remain in the Work Table Notes or in the Selective Clearing and Grubbing Work Table, in cases where it may not be practical or feasible to remove them. Undesirable native species to be targeted for removal can also be listed.

Provide the following note on the Selective Clearing and Grubbing Detail sheet:

“Primary” species to target (remove) or preserve are those that were determined to be most prevalent in that area and are not intended to be the only species that occur.

Provide a note describing follow up treatment needed to prevent recurrence of removed plants.

323.4 Tree Disposition Sheets

Tree Disposition Sheets are used when there are trees to be relocated or an inventory of existing trees is necessary. An inventory may be necessary in order to document the species and size, in the case of damage or removal during construction. The inventory will provide a record of what existed, prior to the damage or removal, if mitigation or
replacement is warranted. For an example of a Tree Disposition Sheet, see Exhibit 323-3.

Tree Disposition Sheets may be omitted if required information and tree relocations can be clearly and legibly shown on Selective Clearing and Grubbing or Landscape Plan sheets. If a tree or vegetation survey is available, utilize either Selective Clearing and Grubbing, Landscape or Tree Disposition sheets, showing all information on one sheet type on the Tree Disposition Chart. If there is no tree or vegetation survey, utilize only Selective Clearing and Grubbing or Landscape Sheets to show all information.

Note the following in the plans:

- Proper root pruning methods and time schedule for each species of plant to be relocated. See FDM 323.6 for more information.
- Contractor is responsible for coordination with an arborist for the care of vegetation during construction and during root and branch pruning

Tree bracing that is not covered by Standard Plans, Index 580-001 is to be detailed in the plans. Refer to FDM 329.7 to determine when Standard Plans, Index 580-001 applies. Provide recommended root pruning procedures and time schedule. Provide the above information as plan notes or details to the sheet.

Tree Disposition Sheets show the condition of each tree, and whether each tree is to remain, to be removed, or to be relocated. Tree Disposition Sheets and Tree Disposition Charts (see FDM 323.5) list the trees on a site, and the tree numbers which must correspond to the tag ID numbers. Groups of trees to remain may be shown as a single cluster and assigned one representative tree number. Include the representative tree number on the Tree Disposition Chart and noted as ‘Group of Trees’ in the notes column. Show limits of clear sight and horizontal offset on the Tree Disposition Sheet for the location of relocated material. Only show this information on the Tree Disposition Sheet if it is not shown elsewhere in the plan set, such as on the Landscape Plan.

Tree Disposition Sheets are typically prepared as part of the Selective Clearing and Grubbing Plan Sheets in the Roadway Plans set. When prepared as part of a Landscape plan set, place the sheets prior to the Landscape Plan sheets.

323.5 Tree Disposition Chart

A plan sheet titled “Tree Disposition Chart” should accompany the Tree Disposition Sheets, and include the following in table format:
Sheet number

The identification number of each tree

Botanical and common name of each tree

Diameter at breast height (DBH) of each tree

Condition of the tree including health, structure, and damage. Use the following (simplified) version of the International Society of Arboriculture (ISA) tree rating system. (Excellent, Good, Fair, Poor, Dead)

Label the disposition of each tree as “To Remain,” “To Be Removed,” or “To Be Relocated.” The location for relocation may be added. For CADD symbols refer to Exhibit 323-3.

If a tree or palm is removed following the Vegetation Survey, note ‘Tree/Palm does not exist’

Note: Collecting and providing information on the height and spread of trees may not be cost effective, relevant, or feasible, depending on the scale of the project.

A note must be added to the Tree Disposition Charts when all trees are not shown from the Tree Survey.

Determine if the following is useful information, and provide if required:

Approximate Tree height (feet)

Approximate Canopy spread (feet)

Location of the tree. Location can be based on roadway stationing numbers, quadrants or sheet numbers.

Site-specific requirements may be included under the “Notes” column. Site-specific requirements may include:

Watering schedule

Fertilizer mix

Fertilizer schedule

Backfill or soil amendments.

Root or Branch pruning and intent (structural, aesthetic, safety, etc.)

An example of a Tree Disposition Chart is included as Exhibit 323-4.
323.6 Root and Branch Pruning

Root and/or Branch pruning can be shown in a plant schedule in either the Selective Clearing and Grubbing, Landscape, or Tree Disposition Plans. Do not duplicate information on separate plan sets. Use the sequence of construction to determine where to show root or branch pruning. If root or branch pruning will need to be accomplished early in the construction process, show on the Selective Clearing and Grubbing Plans. If pruning needs to be accomplished late in the construction process, show pruning on the Tree Disposition or Landscape Plans. Always specify the pruning objectives, whether for structural purposes, aesthetics, safety, clearance, etc. Ensure there is enough information provided so this work can be accurately bid by the Contractor and inspected for compliance by the Engineer.
LEGEND

- TREE PROTECTION BARRIER
- ROOT PRUNING LINE
- CANOPY OF EXISTING TREE
 (DASHED LINE DENOTES DRAPELINE OF TREE)
- TREES TO BE REMOVED
- SELECTIVE CLEARING AND GRUBBING AREAS
- PLANT PRESERVATION AREAS

EXISTING FENCE
R/W LINE AND LIMITS OF CONSTRUCTION

EXISTING TREE TO REMAIN

EXISTING TREE TO BE REMOVED

EXISTING TREE TO BE RELOCATED

NOTES
1. TREE DESIGNATION (ID) NUMBERS ARE DETAILED ON THE TREE DISPOSITION SHEETS.
SELECTIVE CLEARING & GRUBBING WORK TABLE

<table>
<thead>
<tr>
<th>AREA ID</th>
<th>WORK DESCRIPTION</th>
<th>EST. % OF PRIMARY SPECIES TO TARGET</th>
<th>PRIMARY SPECIES TO TARGET</th>
<th>SPECIES TO REMAIN</th>
<th>ADDITIONAL INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>424</td>
<td>DESIGNATES AREAS WHERE CATEGORY #1 INVASIVE, EXOTIC VEGETATION AND NATIVE UNDERSTORY WILL BE SELECTIVELY REMOVED. LARGE DESIREABLE TREES TO REMAIN. ALL TREES UNDER 4" DBH TO BE REMOVED.</td>
<td>75%</td>
<td>JP, ST, LY, AA</td>
<td>PE, OV, SP</td>
<td>RAISE CANOPY OF OV by PRUNING. REMOVE LARGE TREE DEBRIS OR GRIND ON SITE AND SPREAD IN UPLAND (NON-GRASSED) AREAS.</td>
</tr>
<tr>
<td>426</td>
<td>DESIGNATES AREAS WHERE ALL NATIVE VEGETATION WILL BE MOWED FLUSH WITH THE GROUND AND ALL CATEGORY #1 INVASIVE, EXOTIC VEGETATION WILL BE TREATED WITH HERBICIDES AND ALLOWED TO DIE IN PLACE.</td>
<td>100%</td>
<td>TS, ST, CW</td>
<td>NONE</td>
<td>INCLUDES REMOVAL OR MOWING OF WILLOWS AND WAX MYRTLE.</td>
</tr>
<tr>
<td>436</td>
<td>DESIGNATES AREAS WHERE CATEGORY #1 INVASIVE, EXOTIC VEGETATION WILL BE SELECTIVELY REMOVED FROM DESIREABLE VEGETATION TO REMAIN.</td>
<td>50%</td>
<td>JP, ST, LY</td>
<td>PE, OV, SP</td>
<td></td>
</tr>
</tbody>
</table>

WORK TABLE NOTES

1. "PRIMARY" SPECIES TO TARGET (REMOVE) OR PRESERVE ARE THOSE THAT WERE DETERMINED TO BE MOST PREVALENT IN THAT AREA, AND ARE NOT INTENDED TO BE THE ONLY SPECIES THAT OCCUR.

The following additional undesirable native species will be targeted for removal in all areas listed in the work table:

- **Myrica Cerifera** (Southern Wax Myrtle)
- **Typha spp.** (Cattails)

2. ESTIMATED PERCENTAGES OF INVASIVE EXOTIC VEGETATION ARE BASED ON FIELD OBSERVATIONS AND ARE SUBJECT TO CHANGE.

3. THE FOLLOWING CATEGORY #1 INVASIVE SPECIES WILL NOT BE TARGETED FOR REMOVAL:

- **Solanum AMPERANCE (Wetland Nightshade)
- **Panicum Repens** (Torpedo Grass)

SPECIES LEGEND

<table>
<thead>
<tr>
<th>(SYM)</th>
<th>BOTANICAL NAME (COMMON NAME)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AA)</td>
<td>Acacia auriculiformis (Earleaf Acacia)</td>
</tr>
<tr>
<td>(ST)</td>
<td>Schinus terebinthifolius (Brazilian Pepper)</td>
</tr>
<tr>
<td>(TS)</td>
<td>Typha spp. (Cattails)</td>
</tr>
<tr>
<td>(JP)</td>
<td>Syzygium cumini (Java Plum)</td>
</tr>
<tr>
<td>(LY)</td>
<td>Lygodium spp. (Japanese/Old World Climbing Fern)</td>
</tr>
<tr>
<td>(MC)</td>
<td>Myrica cerifera (Southern Wax Myrtle)</td>
</tr>
<tr>
<td>(PE)</td>
<td>Pinus elliottii (Slash Pine)</td>
</tr>
<tr>
<td>(SP)</td>
<td>Sabal palmetto (Sabal Palm)</td>
</tr>
<tr>
<td>(OV)</td>
<td>Quercus Virginiana (Live Oak)</td>
</tr>
<tr>
<td>(CW)</td>
<td>Salix Caroliniana (Coastal Plain Willow)</td>
</tr>
<tr>
<td>SHEET</td>
<td>TREE</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>TD-1</td>
<td>1121</td>
</tr>
<tr>
<td>TD-1</td>
<td>1122</td>
</tr>
<tr>
<td>TD-1</td>
<td>1123</td>
</tr>
<tr>
<td>TD-1</td>
<td>1124</td>
</tr>
<tr>
<td>TD-1</td>
<td>1125</td>
</tr>
<tr>
<td>TD-1</td>
<td>1126</td>
</tr>
<tr>
<td>TD-1</td>
<td>1127</td>
</tr>
<tr>
<td>TD-1</td>
<td>1128</td>
</tr>
</tbody>
</table>

Date: 1/1/19

STATE OF FLORIDA
DEPARTMENT OF TRANSPORTATION

ARTURITO T. GOMEZ, L.A.
L.A. NO.: 99999
LAND DESIGN, LLC.
345 IVY LANE
ORLANDO, FL 32801

STATE OF FLORIDA
DEPARTMENT OF TRANSPORTATION

SR 22
COUNTY
123456-1-52-01

THE OFFICIAL RECORD OF THIS SHEET IS THE ELECTRONIC FILE DIGITALLY STORED AND STORED UNDER RULE 11-11.11, F.A.C.
324 Miscellaneous Structures Plans

324.1 General

Miscellaneous structures not included in the bridge plans must be included in the appropriate component plans. This includes high mast lighting supports, traffic mast arm supports, signal strain poles, overhead sign supports, rest area structures or buildings, barrier walls (traffic or sound), retaining walls and toll facilities.

For guidelines on structural detailing, refer to the Structures Detailing Manual.

324.2 Approach Slabs

Custom approach slab sheets for non-standard designs and supplemental approach slab detail sheets called for by Standard Plans, Indexes 400-090 and 400-091 are included in the structures plans. However, some roadway elements may need to be carried onto the approach slab. In these cases, clarify in the plans which elements are to be included as part of the roadway.

Elements that are part of the roadway approaches to the bridge and interface with the approach slabs areas (e.g., stabilization, guardrail, earthwork, sidewalks, approach slab surfacing) are to be included and paid for in the roadway quantities.

Modification for Non-Conventional Projects:
Delete the last paragraph.

324.3 Retaining Walls

Non-proprietary retaining walls require complete design and construction details in the contract plans.

Proprietary walls require a set of control plan details to be included in the contract plans.

See FDM 262 for retaining wall plans submittal procedures. See also the Structures Manual for plan content requirements.
On projects with bridges, include the control plan details in the bridge plans. When there are no bridge plans, include the control plan details in the appropriate component plans. Examples of control plan details are included in the *Structures Detailing Manual*.

Vendor Drawings for proprietary wall systems listed on the *APL* are provided on the Program Management Office website.

324.4 Concrete Box Culverts

Place these sheets in a Structures Component, even when there are no bridge plans. Some of these sheets were previously shown in the Roadway Component Plan, but all of them are now to be shown in the Structures Component Plan regardless if the box culvert is categorized as a bridge or not.

Concrete box culverts require complete design and construction details to be included in the contract plans. Include the following minimum design details:

- **Plan view showing:** Grid north arrow; scale bar; existing highway boundaries including existing R/W monuments; new R/W line(s) including proposed R/W monuments; culvert or bridge identification number; culvert and highway alignment; survey baseline; profile grade line; direction of stationing; stream channel alignment; stream flow direction; skew angle of the culvert relative to the centerline of roadway; stationing along the profile grade line including begin and end station of culvert (outside face of sidewalls); length of culvert; subsurface exploration locations (e.g., boring locations); culvert end treatment (e.g., headwall and wing wall orientation); scour protection; slope protection; limit of stream work; utilities; traffic railing and pedestrian/bicycle railing type.

- **Elevation view showing:** Elevation vertical scale; profile grade line and vertical data; existing stream bottom and ground line (along PGL); utilities.

- **A longitudinal section along the culvert centerline showing:** Culvert or bridge identification number; invert elevations; existing stream bottom or original ground; culvert stationing at centerline; typical highway section (including rail treatment); design earth cover height (measured from the top of the top slab to the top of pavement); limits of scour protection (including any keyways or geotextile fabric lining); channel work; culvert end treatments; utility (either attached to the fascia, or in the embankment, traffic railing or sidewalk); wing walls; headwalls; cutoff walls; reference to the appropriate *Standard Plans*.

- **Data Sheets:** Box Culvert Data Table and Reinforcing Bar List are to be placed in a Structures Component.

- **Miscellaneous details showing:** Construction phasing information (affects lengths of precast segments and potential need for skewed segments) including...
appropriate excavation support and protection systems (e.g., critical temporary walls); traffic railing details including connection details; slope and/or stream bank protection; channel section detail; culvert-end safety grate, guardrail or fencing details when applicable; removal of existing culvert(s); cofferdams or water diversion.

(5) Notes indicating: Live loading requirements (HL-93 or HS-25); hydraulic data (show 100-year design flow or the design flow used and the minimum hydraulic area perpendicular to flow below the Design High Water); environmental classification for durability; minimum concrete class and reinforcing steel grade; assumed soil weight, angle of internal friction and nominal bearing capacity; differential soil settlement height and effective length (when significant); precast culvert limitations; any special joint waterproofing requirements; erosion and sediment control and stormwater pollution prevention plan requirements; restrictions for work in streams; estimated quantities.

(6) A Plan and Elevation sheet and a Load Rating Summary sheet are required for box culverts classified as bridge culverts (per FDM 265.1). These sheets are to be placed in a Structures Component.

In accordance with the Basis of Estimates, load pay items and quantities in the structures category.
324.5 Three-Sided Concrete Culverts

These sheets are to be placed in a structure component, even when there are no bridge plans.

Complete footing, wingwall and channel lining designs and construction details are required for three-sided culverts. However only conceptual culvert barrel and headwall design details need to be provided. Include the following minimum design details in the plans:

1. Plan view showing the orientation of the ends of the structure. The two most typical options for culverts on a skew are ends parallel to the centerline of the roadway (skewed ends) or ends perpendicular to the centerline of the structure (square ends). The end treatment depends upon the skew, whether it is in a fill section or at grade, the location within the R/W, conflicts with utilities, phased construction details, the alignment of the feature crossed, and other site limitations.

2. Elevation view showing the configuration of the most appropriate type unit; e.g., frame or arch. Show any limitations on using a larger span (some manufacturers only fabricate units at fixed increments of span length, therefore showing the limitations will allow the manufacturers to bid using special units or the next larger span length of their standard units). Show other acceptable structure types in separate partial elevation views. Show limiting spans and heights for all alternatives.

3. No precast manufacturer should be eliminated from consideration for a given project. However, specific project requirements that may exclude some manufacturers must be identified (such as fabrication on a skew or a desired arched appearance).

4. Complete details for a cast-in-place footing design, including design loads and assumptions for the spread footings.

5. Complete details for cast-in-place wingwalls, including geometry and reinforcement details.

6. Include the applicable details in FDM 324.4.

7. Place the following notes adjacent to the plan or elevation views, as applicable:
 (a) The assumed foundation vertical reaction is ____ kips/ft. The assumed foundation horizontal reaction is ____ kips/ft. The Contractor must submit a revised foundation design to the Engineer if the actual loads of the supplied structure exceed these assumed values. Any revised foundation design must be included in the shop drawings and submitted for approval at the same time as the design calculations for the three-sided structure.
(b) In cases where squaring of the unit ends would create a geometric conflict with right of way, utilities, phase construction or site geometry, include the following note:

(c) Due to site restrictions, only skewed end units are acceptable.

(d) If site constraints do not eliminate the squaring of the ends, include the following note:

(e) Squared end units may be substituted for skewed end units with no change in the payment limits and no additional cost to the Department.

(f) When traffic railings are attached to skewed headwalls and site constraints do not eliminate the squaring of the ends, include the following note:

If the Contractor proposes to substitute square ends, details of the traffic railing attachment must be provided in the shop drawings and approved by the Engineer.
325 Signing and Pavement Marking Plans

325.1 General

Signing and Pavement Marking (S&PM) Plans are usually a component set of plans. Component plans are assembled as a separate plans set complete with a Key Sheet and all other required signing and pavement marking sheets. Number the component plans with the sheet numbers prefixed by the letter “S”; e.g., S-1, S-2, S-3.

Projects with minimal signing and pavement marking improvements may show these features on signing and pavement marking sheets in the roadway plan set (lead component) or detailed on the Roadway Plan sheets. Do not use the prefix letter “S” when including signing and pavement marking sheets in the roadway plan set.

Comply with the requirements in FDM 230 in the selection of the permanent pavement marking materials to be used.

325.1.1 Signs Mounted on Signal Installations

Show, detail, and tabulate signs mounted on signal span wires or mast arms in the Signalization plans.

325.2 Key Sheet

The Key Sheet is the first sheet in the component plans set. The location map and Contract Plans Components list are not required on this sheet. Show the Index of S&PM Plans on the left side of the sheet. Assemble S&PM plans in the following order:

(1) Key Sheet
(2) Signature Sheet (if required)
(3) General Notes (if required)
(4) S&PM Plan
(5) Guide Sign Worksheet (if required)
(6) Overhead Sign Cross Section (if required)
(7) Overhead Sign Support Design (if required)
(8) Foundation Details (if required)
Boring Data (if required)

Signing and pavement marking plans may require insertion of sheets that were prepared early, or prior to the design process; i.e. early works. See *FDM 302.6.1* for instructions on including early works sheets.

See *FDM 302* for other Key Sheet requirements and *Exhibit 302-3* as an example Component Key Sheet.

325.3 Signature Sheet

See *FDM 303* for Signature Sheet requirements.

325.4 Tabulation of Quantities and Pay Item Notes

The Tabulation of Quantities Sheets and Pay Item Notes are no longer produced. See *FDM 902* for guidance.

325.5 General Notes Sheet

Show general notes on a separate General Notes sheet. See *FDM 311* for instruction in creating a General Notes sheet.

325.6 S&PM Plan Sheets

Prepare S&PM Plan sheets on a standard plan format. The scale should be such that all details are clear and legible. See the requirements of *FDM 312.1* as a guide. For simple projects, or for narrow sections of a project, it may be possible to "stack" two plans on one sheet, one below the other. Stationing is to progress from left to right and be stacked from top to bottom.

Typical drawings may be used on rural projects with long sections of roadway that show only edge and lane delineation lines. Detail sheets should be used to depict markings at intersections. Signs may be tabulated to indicate location and disposition.

See *Exhibit 325-1* for an example Signing and Pavement Marking Plan sheet.
325.6.1 Required Information

The basic information pertaining to roadway geometrics and project limits required on the signing and pavement marking plan sheets is the same as that required on the plan portion of the plan-profile sheets. Topography and construction details need not be shown. Show underground and overhead utilities, lighting structures, signal structures and ITS structures that may cause construction conflicts with sign components. Check utilities, drainage, landscape features, sidewalks, and driveways for conflicts. Identify those that may cause conflicts in the plans.

Provide the following on the S&PM Plan sheet:

1. Flag and station the begin and end of the signing and pavement marking limits.
2. Place a north arrow and scale at a point of maximum visibility on the sheet. If two plans are "stacked" on one sheet, then show a north arrow and scale on each plan portion.
3. Show regulatory, warning, and directional signs at the proper locations. Show each sign face in close proximity to its respective sign with a leader line connecting the sign location and sign face. Orient each sign face on the plan sheet to be read as viewed from the direction of travel along the roadway. Indicate the location of all signs by station or milepost.
4. Provide sign placement (offset) when installation may be in conflict with utilities, drainage, lighting, sidewalks, driveways, and landscape feature.
5. Indicate the pay item number, sign size, standard designation, or assigned number (if nonstandard) for each sign.
6. Show and label permanent pavement markings specifying width, color and spacing. Indicate begin and end pavement marking stations including offsets, or begin pavement marking station including offset and the total length of roadway pavement marking.
7. Identify Audible and Vibratory Treatments by specifying type (ground-in rumble strips or profiled thermoplastic), begin and end limits, and rumble strips configuration (Type A, B, or C). Ground-in rumble strips should be labeled with the permanent pavement marking callout labels. It is not necessary to call out the array type (skip or continuous) for Arterials and Collectors.
8. Indicate location of raised pavement markers and delineators by specifying the type, color, spacing, and limits of application by stations.
9. Indicate location of tubular markers by specifying color. If applicable, specify the spacing and limits of application by stations.
Modification for Non-Conventional Projects:

- Replace number (5) with the following:
 - (5) Indicate size, standard designation, or assigned number if nonstandard for each sign.

325.6.2 Typical Pavement Marking Sheet

For simple projects, or sections of a project, it may be possible to show signing and pavement marking plan details schematically using straight-line format with station limits and typical markings. Show and identify all signs at their graphic location on the straight-line diagram. Show and label pavement markings on a typical marking plan. Include all necessary details for special areas; e.g., median crossovers, turn lanes.

325.7 Guide Sign Worksheet

Show the sign face, with the complete message layout with legend spacing (vertical and horizontal), margins, border widths, and corner radii on the guide sign worksheet.

Cross sections are not required for multi-support roadside signs; however, the support data (size and average length) for each sign must be tabulated on the guide sign worksheet.

This sheet should be prepared on the standard plan sheet format to any convenient scale that will preserve clarity and legibility. The number of signs that may be shown on a single sheet depends on the sign size and complexity. The format of the sheet is flexible as long as the information listed above is shown. Output from the Transoft GuidSign Program, or a similar format may be used.

325.8 Multi-Post Sign Supports

Standard foundations for multi-post signs are provided in the Standard Plans. These foundations are based on the sign support size; however, the post size and length are not included in the Standard Plans and must be included as a part of the design and shown in the plans.
325.9 Overhead Sign Cross Section and Support Structure

The Sign Cross Section sheet shows the location of overhead sign(s) in cross section. A standard profile format should be utilized. Show and fully dimension the cross section of the roadway at the sign location.

The recommended scale for the cross section is 1" = 10' horizontally and vertically.

The design of the support truss, columns and foundations, along with the boring data information, must be included in the signing and pavement marking plans. The “Cantilever Sign Structures Data Table” and the “Span Sign Structures Data Table” work in conjunction with of the Standard Plans, Indexes 700-040 and 700-041. These tables include the information noted above and should be completed by the Structures Engineer of Record (EOR) and inserted as a sheet in the plans.

A computer program for the design of overhead cantilever sign structures and a program for the design of overhead span sign structures are available. The programs were developed by the Structures Design Office and may be downloaded from the Structures Design web site.

The design of the attachment system for signs mounted on bridge structures is the responsibility of the Structures EOR. Include the design of the attachment system in the structures plans if bridge work is included in the project. If bridge work is not in the project, place the design details in the signing and pavement marking plans.
326 Lighting Plans

326.1 General

Lighting plans include construction details, electrical circuits, pole data, conduits, service points, luminaires, foundations, boring details and other data relevant to lighting projects.

Lighting plans are usually a component set of plans. Component plans are assembled as a separate plans set complete with a Key Sheet and all other required lighting sheets. Number the component plans with the sheet numbers prefixed by the letter “L”; e.g., L-1, L-2, L-3.

Projects with minimal lighting improvements may show these features on lighting sheets included in the roadway plan set (lead component), or detailed on the Roadway Plan sheets. Do not use the prefix letter “L” when including lighting sheets in the roadway plan set.

326.2 Key Sheet

The Key Sheet is the first sheet in the component plans set. The location map and Contract Plans Components list are not required on this sheet. Show the Index of Lighting Plans on the left side of the sheet. Assemble lighting plans in the following order:

(1) Key Sheet
(2) Signature Sheet (if required)
(3) General Notes (if required)
(4) Lighting Data Table and Legend
(5) Lighting Plan
(6) Foundation Details - High Mast (if required)
(7) Boring Data - High Mast (if required)

Lighting plans may require insertion of sheets that were prepared early, or prior to the design process; i.e. early works. See FDM 302.6.1 for instructions on including early works sheets.

See FDM 302 for other Key Sheet requirements and Exhibit 302-3 as an example Component Key Sheet.
326.3 Signature Sheet

See *FDM 303* for Signature Sheet requirements.

326.4 Tabulation of Quantities and Standard Notes

The Tabulation of Quantities Sheets and Pay Item Notes are no longer produced. See *FDM 902* for guidance.

326.5 General Notes Sheet

Show general notes on a separate General Notes sheet. See *FDM 311* for instruction in creating a General Notes sheet.

326.6 Lighting Data Table and Legend Sheet

Prepare the Lighting Data Table and Legend sheet on a standard plan format and include details and notes pertaining to pole placement and construction. Provide a listing of each pole by pole number on this sheet. The following information must also be given for each pole:

(1) Roadway Station and Offset
(2) Number of Luminaires
(3) Mounting Height
(4) Arm Length
(5) Arm Configuration (e.g., Top Mount)
(6) Location (e.g., Mast Arm)
(7) Foundation (e.g., Cylindrical)
(8) Pay Item Number - The pay item number will indicate if the pole is a standard pole or a special design. Two groups of pay item numbers are utilized: one for standard poles and one for non-standard poles.

Modification for Non-Conventional Projects:
Delete Item (8) from the above list.

Show the design values for light intensities and uniformity ratios together with a legend and description of the symbols used on the plan sheets.

326.7 Lighting Plan Sheets

Prepare Lighting Plan sheets on a standard plan format. The scale must be such that all details are clear and legible; however, the scale must not be smaller than 1" = 100'. For simple projects, or for narrow sections of a project, it may be possible to "stack" two plans on one sheet, one below the other. Stationing must progress from left to right and be stacked from top to bottom. Clarity and legibility must be preserved in all cases.

Use symbols in accordance with the requirements of the FDOT CADD Software.

326.7.1 Required Information

The basic information pertaining to roadway geometrics and project limits required on the lighting plan sheets is the same as that required on the plan portion of the roadway plan-profile sheets. Topography and construction details need not be shown. Show underground and overhead utilities, signing structures, signal structures and ITS structures that may cause construction conflicts with lighting components. Check utilities, drainage, signal structures, sign structures, landscape features, sidewalks, and driveways for conflicts. Identify those that may cause conflicts in the plans.

Provide the following on the Lighting Plan sheet:

1. Show existing high mast light poles and label as existing poles. For existing high mast light poles to be removed, include the existing foundation depth when information is provided by Department and label as “for information only.”

2. Show the lighting layout on the plan format using symbols which represent poles, conduits and service points.

3. Flag and station the begin and end of the lighting limits.

4. Place a north arrow and scale at a point of maximum visibility on the sheet. If two plans are "stacked" on one sheet, include a north arrow and scale in each plan portion.

5. Note conduit runs providing conduit size, number and conductor sizes.
(6) Flag poles proving pole number, baseline or centerline station, circuit number, and offset from baseline or centerline (for high mast). Show the symbols for poles at the correct baseline or centerline station and note the approximate offset from the roadway.

(7) Flag and station service point locations as determined through utility negotiations. *Standard Plans, Index 639-001* provides details for the service point. Provide the following service point description on the Lighting Plan sheet:

(a) Voltages and Phases (e.g., 240/480 Volt, 3 phase)
(b) Main or overhead breaker size
(c) Number of branch circuits and breaker size of each

326.8 Foundation Details Sheet

The foundation design for standard conventional poles is shown in the *Standard Plans, Index 715-002*. The foundation design for standard high mast light poles is shown in the *Standard Plans, Index 715-010*. These foundations do not need to be shown in the plans.

Provide design details in the plans for non-standard foundations for any of the following conditions:

- Non-standard high mast poles
- Soil conditions weaker than those shown in the *Standard Plans* (applies to high mast poles and conventional poles)
- Other site restrictions (e.g., limited R/W, utility conflicts)

326.9 Boring Data Sheet

Boring Data sheets provide the boring data for high-mast poles and non-standard foundation details.
327 Signalization Plans

327.1 General

Signalization plans include construction details, electrical circuits, signal phasing, and other data relevant to signalization projects.

Signalization plans are usually a component set of plans. Component plans are assembled as a separate plan set complete with a Key Sheet and all other required signalization sheets. Number the component plans with sheet numbers prefixed by the letter “T”; e.g., T-1, T-2, T-3.

Projects with minimal signalization improvements may show these features on signalization sheets included in the roadway plan set (lead component) or detailed on the Roadway Plan sheets. Do not use the prefix letter “T” when including signal sheets in the roadway plan set.

327.1.1 Signs Mounted on Signal Installations

Show, detail and tabulate the signs mounted on signal span wires or mast arms in the Signalization Plans.

327.1.2 Rectangular Rapid Flashing Beacons (RRFBs)

Show, detail, and tabulate RRFBs mounted overhead or as a standalone assembly in the Signalization Plans.

327.2 Key Sheet

The Key Sheet is the first sheet in the component plans set. The location map and Contract Plans Components list are not required on this sheet. Show the Index of Signalization Plans on the left side of the sheet. Assemble signalization plans in the following order:

(1) Key Sheet
(2) Signature Sheet (if required)
(3) General Notes
(4) Signalization Plan
Signalization plans may require insertion of sheets that were prepared early, or prior to the design process; i.e. early works. See \textit{FDM 302.6.1} for instructions on including early works sheets.

See \textit{FDM 302} for other Key Sheet requirements and \textit{Exhibit 302-3} as an example Component Key Sheet.

\subsection*{327.3 Signature Sheet}

See \textit{FDM 303} for Signature Sheet requirements.

\subsection*{327.4 Tabulation of Quantities and Standard Notes}

The Tabulation of Quantities Sheets and Pay Item Notes are no longer produced. See \textit{FDM 902} for guidance.

\subsection*{327.5 General Notes Sheet}

Show general notes on a separate General Notes sheet. See \textit{FDM 311} for instruction in creating a General Notes sheet.

Include on the General Notes sheet special signal design information such as controller operations, loop installations, signal heads, interconnect cable, and computer interface that is generally not covered in the \textit{Standard Specifications}, or Supplement and Special Provisions.

\subsection*{327.6 Signalization Plan Sheet}

Prepare Signalization Plan sheets on standard plan format at a scale large enough to show all details clearly and legibly. The recommended scale is $1'' = 40'$ or $1'' = 50'$. The complete intersection is typically shown on one plan sheet; however, for large intersections more sheets may be used with appropriate match lines.
Use symbols in accordance with the requirements of the FDOT CADD Software. Prepare a separate Plan Sheet for each signalized intersection included in the construction project.

327.6.1 Required Information

The basic information requirements include roadway geometrics, street names, construction stationing or milepost, curb and gutter, drainage inlets, sidewalks and R/W lines as similarly required on the plan portion of the Roadway Plan-Profile sheets. Show underground and overhead utilities, signing structures, and lighting structures that may cause construction conflicts with signal components. Check utilities, signing and pavement marking features, drainage, landscape features, sidewalks, and driveways for conflicts. Identify those that may cause conflicts in the plans.

Provide the following on the Signalization Plan sheet:

(1) North arrow and scale at a point of maximum visibility on the sheet.
(2) Signal head locations with orientation arrows and movements (movements 2 and 6 must be the major streets).
(3) Details of signal heads in tabular form with pay item numbers.

Modification for Non-Conventional Projects:

Delete Item (3) and replace with the following:

(3) Details of signal heads in tabular form.

(4) Phasing diagram/signal operating plan. If the SOP conforms to the *Standard Plans, Index 671-001*, then a reference to the index is all that is required. For all other operating plans, the plan must be shown.

(5) Signal controller timing chart.
(6) Loop detectors.
(7) Electrical service location.
(8) Location of signal poles and span wires include ground and roadway crown elevations.
(9) Signal wire signs.
(10) Pedestrian signals.
(11) Turning radii.
(12) Median nose locations.
(13) Location of "stop bars" and pedestrian crosswalks.
(14) Coordination unit-timing chart.
(15) Lane lines with orientation arrows.
(16) Location of conduits.

Label all equipment shown with their respective pay item numbers.

Modification for Non-Conventional Projects:

Delete the above sentence and replace with the following:
Label all equipment shown.

327.7 Interconnect/Communication Plan Sheet

The Interconnect/Communication (I/C) Plan sheet is required when signal equipment is being coordinated with other signal installations or with a computerized system. The I/C Plan sheet shows pictorially the placement of I/C cable, either underground or aerial, pull boxes or aerial junction boxes, and tabulates all related interconnect quantities. The I/C Plan sheet must indicate signal poles, service poles, and joint-use poles to which I/C cable will be attached.

Modification for Non-Conventional Projects:

Delete the above sentence and replace with the following:
The Interconnect/Communication Plan sheet shows pictorially the placement of interconnect/communication cable, either underground or aerial, and, pull boxes or aerial junction boxes.

Prepare the I/C Plan sheet on standard plan format. Use a scale 1" = 100' for underground cable, and 1" = 200' for aerial cable. For simple projects, or sections of a project, "stacking" two plans on one sheet is generally permitted if clarity and legibility are maintained. Stationing must progress from left to right and multiple plan views be stacked from top to bottom.

Place a north arrow and scale at a point of maximum visibility on the sheet. If two plans are "stacked" on one sheet, include a north arrow and scale in each plan portion.
The basic plan information requirements include roadway schematic, showing cross streets and driveways, cable information, pole location, pole number, utility pole identification number and pay item number.

327.8 Mast Arm Details Sheet

See [Standard Plans, Index 649-030](#) (Standard Mast Arm Assemblies) or [Index 649-031](#) (Special Mast Arm Assemblies) and the associated [Standard Plans Instructions (SPIs)](#).

327.9 Foundation Details Sheet

Foundations for non-standard mast arm poles and foundations in soil conditions weaker than those shown in the [Standard Plans](#) must be designed by the responsible structures design engineer of record. The construction details for the non-standard design are shown on the Foundation Details sheet.

The foundation design for standard mast arm poles is shown in the [Standard Plans, Indexes 649-030, and 649-031](#). These foundations do not need to be shown in the signalization plans.

327.10 Boring Data Sheet

Boring Data sheets provide the boring data for mast arm poles and non-standard foundation details.
328 Intelligent Transportation Systems Plans

328.1 General

Intelligent transportation systems (ITS) plans include construction details, electrical circuits, and other data relevant to ITS projects. The following are some of the different systems that may be produced:

(1) Freeway Management System,
(2) Incident Management System,
(3) Arterial Management System,
(4) Emergency Management Systems,
(5) Transit Management Systems,
(6) Electronic Toll Collection,
(7) Electronic Fare Payment,
(8) Highway Rail Intersections (under electronic surveillance), and
(9) Regional Multimodal Traveler Information

ITS plans are usually a component set of plans. Component plans are assembled as a separate plans set complete with a Key Sheet and all other required ITS sheets. Number the component plans with sheet numbers prefixed by the letter “IT”; e.g., IT-1, IT-2, IT-3.

Projects with minimal ITS improvements may show these features on ITS sheets included in either the roadway or signalization plan set or detailed on the Roadway or Signalization Plan sheets. Do not use the prefix letter “IT” when including ITS sheets in the roadway plan set. Use the prefix letter “T” when including ITS sheets in the signal plan set.

328.2 Key Sheet

The Key Sheet is the first sheet in the component plans set. The location map and Contract Plans Components list are not required on this sheet. Show the Index of ITS Plans on the left side of the sheet. Assemble ITS plans in the following order:

(1) Key Sheet
(2) Signature Sheet (if required)
328.1 General Notes

328.2 ITS Plan Sheets or “letter type” plan sets

328.3 Detail Sheets (as required)

328.4 ITS plans may require insertion of sheets that were prepared early, or prior to the design process; i.e. early works. See **FDM 302.6.1** for instructions on including early works sheets.

See **FDM 302** for other Key Sheet requirements and **Exhibit 302-3** as an example Component Key Sheet.

328.5 Signature Sheet

See **FDM 302** for Signature Sheet requirements.

328.6 Tabulation of Quantities and Standard Notes

The Tabulation of Quantities Sheets and Pay Item Notes are no longer produced. See **FDM 902** for guidance.

328.7 General Notes

Show general notes on a separate General Notes sheet. The general notes sheet lists special ITS design information that is generally not covered in the **Standard Specifications**, Supplemental or Special Provisions.

See **FDM 311** for instruction in creating a General Notes sheet.

328.8 ITS Plan Sheets

Prepare ITS Plan sheets on standard plan format. The scale must be such that all details are clear and legible. See the requirements of **FDM 312** as a guide. Place a north arrow and scale at a point of maximum visibility on the sheet.

328.9 Required Information

The basic information requirements include roadway geometrics, project limits, street names, construction stationing or milepost, curb and gutter, drainage inlets, sidewalks...
and right of way lines as similarly required on the plan portion of the roadway plan-profile sheets. Show underground and overhead utilities, signing structures, and lighting structures that may cause construction conflicts with ITS components. Check utilities, drainage, landscape features, sidewalks, and driveways for conflicts. Identify those that may cause conflicts in the plans.

Where details normally shown on roadway plans would obscure ITS features, the details may be screened so long as the details remain plainly legible.

Clearly label all equipment shown on the plan with their respective pay item numbers. In addition, the following plan elements should be shown:

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete the above paragraph and replace with the following:</td>
</tr>
<tr>
<td>Clearly label all equipment shown on the plan. In addition, the following plan elements should be shown:</td>
</tr>
</tbody>
</table>

(1) Cabling, fiber optic splicing, and interconnects.
(2) System communication devices.
(3) Electrical power service equipment and interconnects.
(4) Grounding and transient voltage protection details.
(5) Structure-mounted or ground-mounted field cabinets for system electronics, maintenance service points, and interconnect.

328.6.1.1 Dynamic Message Sign

Plans for a Dynamic Message Sign (DMS) installation should illustrate the location, placement, and typical details of the following components:

(1) DMS Housing, including details and notes that identify type of display (monochrome, full-color, or tri-color), size of display matrix (height, width, number of lines, and number of characters per line), and type of mechanical construction (walk-in, front access, or embedded).
(2) DMS controller.
(3) DMS Uninterruptible Power Supply (UPS) system.
(4) DMS support structures, including external walkways, safety railings, and ladders.
(5) DMS mounting brackets and hardware.
(6) A ground-level cabinet for a DMS controller and associated electronic equipment.
(7) Telemetry equipment details for remote sensing and control

328.6.1.2 Highway Advisory Radio

The design for a Highway Advisory Radio (HAR) installation should illustrate the location, placement, and typical details of the following components:

(1) HAR operator workstation and central recording facility.
(2) HAR antennas.
(3) HAR transmitter and electronics.
(4) HAR support structures, signage, and beacons.
(5) HAR mounting brackets and hardware.

328.6.1.3 Video Display Equipment

Provide mounting and installation plan sheets for each color video monitor, flat panel display, and rear projection video unit in the video display system. Depict in the mounting plans detailed structural mounting information, including support structures, wall attachment methods, and the weights of the display units. Provide cable routing plan sheets and diagrams for the devices, along with maintenance/service points and structural certification.

The plans should illustrate the location, placement, and typical details of the following video display system components:

(1) Video display controller.
(2) Operator workstations.
(3) Encoders, decoders, multiplexers, and routing equipment.

Develop sheets that detail cross-sections and elevations for all modifications to existing wall systems in the TMC facility.

For the rear projection video unit mounting and installation plans, include details that illustrate stacking configuration and support design, along with a ventilation and climate
control plan. Provide cable routing plans that include detailed connection diagrams for individual and stacked configurations.

328.6.1.4 Network Devices

Plans including network devices should illustrate the following system attributes:

1. System diagrams illustrating network and device interconnect.
2. General network topology.
3. Notes regarding any special configurations or options for specific devices that are required to achieve a specific system function.

328.6.1.5 Fiber Optic Cable and Interconnect

The plans for fiber optic cable systems should illustrate the location, placement, and typical details of the following components:

1. Fiber optic conduits.
2. Fiber optic cables.
3. Fiber optic splices and terminations.
4. Fiber optic cable designating system.
5. Fiber optic cable access points.

328.6.1.6 Vehicle Detection and Data Collection

The plans for vehicle detection systems should illustrate the location, placement, and typical details of the following components:

1. Diagrams illustrating detection system interconnect.
2. General network topology.
3. Notes regarding any special configurations or options for specific devices that are required to achieve a specific system function.
328.7 **Modified ITS Plans Format**

The modified plans format allow for "letter type" plans and include a table to locate ITS devices by mile post to three decimal places, plus an offset dimension given for each aboveground structure. Global positioning system (GPS) coordinates can be utilized as supplemental information in the table.

The modified plans should include the following:

1. Table (spreadsheet) to locate devices to include device ID, description, milepost three decimal places, offset, and a comment field. Add an extra column to the table if GPS coordinates are provided for the devices.
2. Offset dimensions from the edge of the traveled way to the aboveground ITS device installations.
3. A cross section for devices such as DMS that require overhead structures.
4. Number and sizes for conduit.
5. Number of fibers for fiber optic cable.
6. Size and numbers of pairs for twisted pair copper cables.

Aerial photographs should be furnished with the table above to provide supplementary information. The aerial plan sheets typically do not require R/W lines, baseline, or roadway edges to be shown. The aerial plan sheets are used as a base for the as-built plans.
329 Landscape Plans

329.1 General

Landscape refers to any vegetation, mulches, and irrigation systems. Designs may include hardscape features (e.g., street furniture, specialty paving, tree grates, walls, planters, fountains, fences, landscape lighting). Hardscape-only projects are not landscape projects. Landscape may be constructed as a standalone project or as a component of a roadway project.

The Legislature requires that the Department commit program dollars to purchase plant materials from Florida commercial nursery stock. In order for the Department to capture that information, it is critical that all small and large plant pay items be placed in AASHTOWare Project Preconstruction™ (formerly TRNS*PORT) Category 0600.

Landscape Plans can be prepared as either a component set of plans, or as a standalone Landscape plans set. Landscape Plans are assembled as a separate plan set complete with a Key Sheet and all other required landscape sheets. When prepared as a component set of plans, number the sheets with the prefix “LD”; e.g., LD-1, LD-2, LD-3. When prepared as a Standalone Landscape plan set, the prefix is not needed.

Projects with minor landscaping may show these features on landscape plan sheets in the roadway plans set (lead component), or detailed on Roadway Plans sheets. Do not use the prefix letter “LD” when including landscaping sheets in the roadway plan set.
329.2 Key Sheet

The key sheet is the first sheet in the component plans set, or a Standalone Landscape plan set. When used as a component set of plans, the location map and Contract Plans Components list are not required on this sheet. Show the index of Landscape Plans on the left side of the sheet. Assemble the Landscape Plans in the following order:

1. Key Sheet
2. Signature Sheet (if required)
3. General Notes
4. Plant Schedule
5. Project Layout
6. Landscape Plan
7. Landscape Details
8. Irrigation Plan (if applicable)
9. Irrigation Details (if applicable)

See FDM 302 for other Key Sheet requirements and Exhibit 302-3 as an example Component Key Sheet.

For Standalone Landscape plan sets, refer to Exhibit 302-1 for an example of a lead Key Sheet with no revisions and Exhibit 302-2 for a lead Key Sheet with Revisions. Assemble Standalone Landscape plans in the following order:

1. Key Sheet
2. Signature Sheet
3. General Notes
4. Plant Schedule
5. Project Layout
6. Selective Clearing and Grubbing Plan (if applicable)
7. Tree Disposition Plan (if applicable)
8. Tree Disposition Charts (if applicable)
9. Landscape Plan
10. Landscape Details
11. Irrigation Plan

329-Landscape Plans
(12) Irrigation Details
(13) Temporary Traffic Control Plan (if applicable)
(14) Stormwater Pollution Prevention Plan (if applicable)

329.3 Signature Sheet

See FDM 303 for Signature Sheet requirements.

329.4 Plant Schedule

The Tabulation of Quantities Sheets are no longer produced. See FDM 902 for guidance.

The Plant Schedule sheet tabulates the planting materials, landscape soil work, and other materials required for the installation of plant materials. If irrigation elements are included, a separate Plant Schedule is required. If hardscape elements are included, use a Plant Schedule containing information for each element.

When completing the Estimated Quantities Report per FDM 902, use the following Pay Size categories:

Pay Size categorized as small plants include:

- All ground covers
- Shrubs, trees and cycads less than 7 gallons
- Clustering palms, up to 6-foot height

Pay Size categorized as large plants include:

- Shrubs, trees and cycads, 7 gallons or greater
- Single-trunk palms
- Clustering palms, 6-foot height or greater

Modification for Non-Conventional Projects:

Delete the last paragraph.
329.5 General Notes

Show general notes on a separate General Notes sheet. See FDM 311 for instructions in creating a General Notes sheet. General Notes can be used to describe site-specific requirements, such as:

- Watering schedule
- Fertilizer mix
- Fertilizer schedule
- Backfill or soil amendments
- Utility providers list
- Sight line and/or design speed criteria
- Maintaining authority contact information

329.6 Landscape Plan Sheets

Prepare Landscape Plan sheets on a standard plan format. The scale should be such that all details are clear and legible. See the requirements of FDM 312.1 as a guide. For simple projects, or narrow sections of a project, it may be possible to "stack" two plans on one sheet, one below the other. Stationing must progress from left to right and be stacked from top to bottom. Irrigation plan sheets may be prepared at a larger scale than the planting plan sheets. Clarity and legibility must be preserved in all cases.

Place a north arrow and scale in a conspicuous location, typically in the upper right portion of the sheet. If two plans are "stacked" on one sheet, include a north arrow and scale in each plan portion.

329.6.1 Required Information

The basic information required is as follows:

(1) Project centerline
(2) Edge of pavement (edge of traffic lanes)
(3) Curbs
(4) Drainage systems
(5) Guardrail
(6) R/W or limited access fence line
(7) Sidewalks or other planned or existing structures
(8) Lighting, signs and signal poles
(9) Intersections and driveways which are noted in the plans
(10) Existing and proposed overhead and underground utility locations
(11) Clear Zone/Lateral offset (should be plotted or distances noted frequently on each plan sheet)
(12) View zones for permitted outdoor advertising signs
(13) Canopy limits
(14) Existing vegetation (to remain or be removed)
(15) Existing off-site features and conditions that affect or are affected by the project
(16) Fence and gate locations
(17) Setbacks from structural elements or drainage system
(18) Limits of clear sight (see FDM 212.11)
(19) Transit Facilities
(20) Mowing Limits

Where necessary, required sheet elements may be “screened” to provide legibility for the landscape plans, so long as the required elements remain apparent.

Planting plan sheets must also provide at a minimum the plant symbols, common name, and botanical names of each plant.

Include the following on the planting plan sheets:

- Hardscape and site amenities; e.g., street furniture, specialty paving, tree grates, walls, planters, fountains, fences, and lighting (excluding public utility street and area lighting).
- Location and depth to improve soil structure (a.k.a., soil scarification), amend existing soil, or replace existing soil with Landscape Soil
- Soil scarification and amendment requirements may be described on the General Notes sheet if they are simple. Detailed requirements (e.g., those that vary for specific areas) should be described separately for each amendment type. Each type of soil scarification, amendment, or replacement should be defined (e.g., Type ‘A’), specified, and quantified on the Plant Schedule.

Prepare irrigation plan sheets using the planting plan sheets (devoid of unnecessary text and labeling) and include information pertaining to the irrigation system. Information on the sheet must include the approximate location of spray heads and rotors, valves, mainlines, lateral lines, sleeves (noting the diameter sizes), controllers, water sources and points of connection, backflow preventers, and isolation valves.
The Details Sheet must include a legend clearly depicting the symbiology used in the irrigation plan sheets and an associative description for each entry. Additional information such as the nozzle and component schedule, irrigation zone, or lateral schedule can be included on these sheets.

329.7 Landscape Details Sheet

This sheet may be used to show landscape details, hardscape details, and irrigation details, that are applicable to the project and not addressed in the Standard Plans. Details provided in Standard Plans, Index 580-001, are provided for root establishment purposes only. When trees or palms are above 30 feet in overall height, or within falling distance of a roadway, pedestrian or bicycle route, designer is to provide tree and/or palm bracing details and Standard Plans, Index 580-001 does not apply. Designer is to provide details when bracing is intended to be used for safety considerations. The following are examples of safety considerations:

- Tree or palm is within falling distance of a roadway, pedestrian, or bicycle route
- Tree or palm is over 30 feet in height
- Commonly exposed to higher wind speeds
- Non-standard soil properties exist
- Non-standard plant dimensions exist
- When rootball exceeds 4 feet in diameter and it is located on a 1:3 slope or steeper
- Tree bracing impedes the line of sight or clear sight triangles.
<table>
<thead>
<tr>
<th>LABEL</th>
<th>DESCRIPTION</th>
<th>MAX. SIZE</th>
<th>QUANTITY</th>
<th>SITE NO.</th>
<th>LOCATION</th>
<th>DESCRIPTION</th>
<th>DESIGN NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Plants</td>
<td>Neanthes racemosa - Lady Fern, #3 GAL, 6' OC</td>
<td>13' (NF)</td>
<td>350</td>
<td>LD-46</td>
<td>NW Intersection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large Plants</td>
<td>Neanthes racemosa - Lady Fern, #6 GB, 16' GA Spacing as shown on Plan</td>
<td>8' (NF)</td>
<td>7</td>
<td>LD-15</td>
<td>N Ramp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large Plants</td>
<td>Neanthes racemosa - Lady Fern, #6 GB, 16' GA Spacing as shown on Plan</td>
<td>8' (NF)</td>
<td>7</td>
<td>LD-19</td>
<td>W Pond #1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large Plants</td>
<td>Archontophoenix alexandrae - Alexandra Palm, #16 OA, (12'-18' RANGE), SL, FF</td>
<td>60' (NF)</td>
<td>7</td>
<td>LD-19</td>
<td>W Pond #1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large Plants</td>
<td>Archontophoenix alexandrae - Alexandra Palm, #16 OA, (12'-18' RANGE), SL, FF</td>
<td>60' (NF)</td>
<td>7</td>
<td>LD-15</td>
<td>N Ramp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large Plants</td>
<td>Archontophoenix alexandrae - Alexandra Palm, #16 OA, (12'-18' RANGE), SL, FF</td>
<td>60' (NF)</td>
<td>7</td>
<td>LD-15</td>
<td>N Ramp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large Plants</td>
<td>Archontophoenix alexandrae - Alexandra Palm, #16 OA, (12'-18' RANGE), SL, FF</td>
<td>60' (NF)</td>
<td>7</td>
<td>LD-15</td>
<td>N Ramp</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Landscape Plants Abbreviation Key:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M&B - Ball and Burlap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAL - Caliper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CT - Clear Trunk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DC - Diamond Cut Trunk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FF - Florida Fancy Grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GAL - Gallon Size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GM - Grey Wood</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LC - Leaf Count</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MULTI - Multiple Stems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NF - Natural Form</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAC - No Abrupt Constrictions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GA - Overall Height</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SC - On Center</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>REGEN - Regenerated Roots</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RB - Root Ball</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RF - Root Pruned</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SL - Single Leader/ Stem</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPRD - Spread</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TP - Triple Stems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exhibit 329-1
Date: 1/1/21

The official record of this sheet is the electronic file originally stored and sealed under Rule 61 G 10-11.011, F.A.C.
330 Utility Work by Highway Contractor Agreement Plans

330.1 General

Most utility adjustment work is performed by the utility owners or their contractor. In some cases, it is advantageous to the Department and Utility to include the utility work as part of the roadway contract. In such cases the Department will enter into an agreement with a Utility for this purpose. These agreements are called Utility Work by Highway Contractor (UWHC) Agreements. The highway contractor is required to construct or relocate the specified utilities in accordance with the plans and special provisions developed by the Utility and incorporated as part of the bid package.

Typically, utility projects are included as strung projects. There are times when a utility company may reject the bid amount for their project. As a separate set of plans, the quantities and cost can be readily extracted from the contract.

Occasionally utility work may extend outside the normal construction limits of the project. When this is the case the limits of the utility work must be shown or noted on the plans.

For UWHC Agreements, prepare the utility plans in the same basic format as Department plans and as a separate plans set. Assemble the plans as follows:

(1) Key Sheet
(2) Signature Sheet (if required)
(3) Plan-Profile Sheets
(4) Cross Sections (as required)
(5) Detail Sheets (as required)

Modification for Non-Conventional Projects:

Delete Item (3) from the above list.

Reflect any special technical or relocation agreement provisions in the plans. In some cases, it may not be practical or reasonable to develop separate plans sets for incidental construction under a UWHC Agreement. The EOR should consult with the District Utility Engineer to determine the requirements in these cases. For further financial guidance, contact the Department’s Office of Comptroller, General Accounting Office.
330.2 Key Sheet

The key sheet is the first sheet in the component plan set and must be prepared as described in *FDM 302*. The location map and contract plans set information are not required if shown on the lead key sheet. Show the index of plan on the left side of the sheet. Other data, including name, consultant contract number, and vendor number of the firm (when plans are prepared by a consultant), must be shown as described in *FDM 302*.

Refer to the [Work Program Instructions](#) for guidance on the Financial Project ID phase number identification.

330.3 Signature Sheet

See *FDM 303* for Signature Sheet requirements.

330.4 Tabulation of Quantities

The Tabulation of Quantities Sheets are no longer produced. See *FDM 902* for guidance.

330.5 Plan Sheets

Utility plans must show full construction details for all utilities to be relocated or constructed by the contractor as covered by the UWHC Agreement. A plan-profile sheet format should be utilized where appropriate. Show all underground utilities in the plan portion, and those which equal or exceed 4" must also be shown in the profile portion. Show all above ground Utilities in the plan portion (inclusive of underground connections).

When the construction limits are restricted such as when a power line is above and near a sanitary or water facility, either the facility (overhead lines) must be identified and shown in profile, or the minimum available vertical clearances, along with the type facility, stated on the plans. Show applicable project information similar to that described in *FDM 312*. Show utilities to be relocated or constructed in plan and profile and in accordance with the FDOT CADD Software. The scale used should be the same as that used for the roadway plan-profile sheets.

The disposition and final ownership of any utility infrastructure that is to be removed by the contractor and salvaged must be identified in the plans. Include the address of the

330- Utility Work by Highway Contractor Agreement Plans
Utility/Agency Owner receiving the salvaged utility infrastructure in the UWHC Agreement plans.

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete last sentence from the above paragraph. See RFP.</td>
</tr>
</tbody>
</table>
900 Production of NexGen Plans

900.1 General

The requirements provided in the FDM 900 series and the FDOT CADD Manual form the basis for format and assembly of the Contract Plans Set.

The FDM 900 series is used when Building Information Model (BIM) files are signed and sealed, and the use of automated machine guidance (AMG) construction methods are anticipated. If an FDM 900 series chapter is shown as “under development” for a required sheet, use the corresponding FDM 300 series chapter.

The FDM 900 series is divided into three sections:

1. Plans Production – This section provides general plans production information, and requirements for documents that are not delivered within a Contract Plans Set.
2. Roadway Plans Set – This section provides specific information concerning the content of each required sheet delivered within the Roadway Plans Set.
3. Component Plans Set – This section provides supplemental information concerning the content of a Component Plans Set.

900.1.1 Exhibits

Many chapters contain “generic” exhibits that provide examples of the plan sheets covered by that chapter. These exhibits were developed using criteria and standards in force at the time of their creation. These exhibits are not to be used as a source for criteria unless specified as such within the FDM chapter.

900.1.2 Symbols and Abbreviations

Standard symbols for Roadway Design are shown in the CADD Symbol Cell Library.

Abbreviations may be used to save space. A list of standard abbreviations is contained in the Standard Plans. Minor deviations from these standard abbreviations are allowed, provided that the abbreviation used is clear and easily understood.

900.1.3 Photography

Plan sheets may use photography (aerial or other) when appropriate (e.g., for Drainage Maps, SWPPP supplemental site maps, bridge repair plans).

900.2 Labeling and Dimensioning Requirements

Orient horizontal and diagonal text to read left to right. Orient vertical text to read bottom to top.

Display information and data in accordance with the following:

- Typical Section Elements (e.g., lane widths, shoulder widths) - in feet, typically as a whole number.
- Cross Slopes (e.g., pavement, shoulder surfaces, sidewalks, bridge decks) - as a decimal part of a foot vertical per foot horizontal. These cross slopes are typically
rounded to two decimal places (i.e., 0.02, 0.06) but may be shown to three decimal places when required.

- **Horizontal Control Points** (e.g., survey centerline, baseline, intersections and alignment) - in feet to 2 decimal places.

- **Vertical Control Points** (e.g., PVC, PVI, PVT) - in feet to 2 decimal places.

- **Profile Grade Elevations** - in feet to 2 decimal places.

- **Profile Grade Slope** - in percent to 3 decimal places.

- **Flow Line Elevations** - in feet to 2 decimal places.

- **Drainage Structure Elevations** (e.g., manhole tops, grate elevations) - in feet to 2 decimal places.

- **Ditch Elevations** - in feet to 1 decimal place (to nearest 0.05 when controlled by percent of grade).

- **Box or Three-sided Culvert Spans and Heights** - Show inside dimensions using “span by height” format (10 x 6 means the span is 10 feet and the height is 6 feet). In feet as a whole number for new construction; in feet to 2 decimal places for extensions of existing box culverts.

- **Alignment Bearings, Degree of Curve and Delta Angles** - in degrees, minutes and seconds, rounded to the nearest second.

- **Slope Ratios** - in vertical to horizontal (V:H) format; e.g., 1:6, 1:4.

900.3 Project Information Block

All plan sheet formats are contained in the FDOT CADD Software. Sheet borders include information blocks in the lower right corner. Enter the following information into the information box:

1. **Sheet Number** (far right corner) – Number plan sheets in sequential order as shown in the Index of Plans Sheets that is placed on the Key Sheet.

2. **Sheet Title** (immediately left of the sheet number) – This should be the same title that is shown in the Index of Plans Sheets that is placed on the Key Sheet.

3. **Project Information** (immediately left of the sheet title) - This should be the same information that is shown on the Key Sheet.
 - (a) **State Road Number** – Place the prefix “SR” before the number for clarification. When a county road is shown in the box use the prefix “CR”. The box should remain blank when the facility is neither a state nor county road.
 - (b) **County**
 - (c) **Financial Project ID** - On projects which have multiple Financial Project IDs, show only the lead Financial Project ID

4. **Designer Information** (immediately left of the project information) – provide information for the Professional of Record that Signs and Seals the sheet, as discussed in *FDM 130*.

900.4 Revision Block

11x17 sheet borders include revision blocks along the bottom of the sheet.

The Key Sheet and large format plan sheets require the placement of a revision block cell on the sheet when a revision to that sheet is necessary. Place the revision block at...
the bottom center on the Key Sheet. Place the revision block at the far right on large format plan sheets, as close to the project information block as possible.

See *FDM 132* for required information to be placed in the revision block.
901 Sequence of Plans Preparation

901.1 General

The set of plans depicting the proposed construction work is known as the "Contract Plans Set" and is comprised of component plans that are associated with a primary work type. The contract plans set should be prepared systematically, undergoing phases of review and updates to ensure technically correct and clear plans. Additional information can be found in FDM 110, 111, 112, and 120. These chapters contain a comprehensive discussion of design processes and activities from initial to final engineering.

Component plans are included in the Contract Plans Set in the following order:

(1) Roadway
(2) Signing and Pavement Marking
(3) Signalization
(4) Intelligent Transportation Systems (ITS)
(5) Lighting
(6) Landscape
(7) Architectural
(8) Structures
(9) Toll Facilities

Prepare Toll Facility Plans in accordance with the Florida’s Turnpike Enterprise General Tolling Requirements (GTR). Contact the Florida’s Turnpike Enterprise Project Manager to request a copy of the GTR.

901.2 Phase Submittals

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete FDM 901.2 and follow FDM 301.3.</td>
</tr>
</tbody>
</table>

See FDM 120 for design submittal requirements and guidance in preparing submittals for review by the Department. For bridge submittal requirements see FDM 121.

Standard phase submittals are: Phase I, Phase II, Phase III, Phase IV, and PS&E. RRR, operational improvement, and safety projects often omit some of these phase submittals.

Sheets typically required for each phase submittal and required level of completion are noted in Table 901.2.1. Levels of completion are indicated as follows:
(1) Preliminary (P): Basic shapes, geometry, and information to convey the concept.
(2) Complete but Subject to Change (C): The design, drawings and details are complete. Only reviewer-initiated changes should be expected at this level.
(3) Final (F): All drawings and designs are complete. No changes are expected at this level. Plans are ready to be signed and sealed by the EOR.

Table 901.2.1 Summary of Phase Submittals

<table>
<thead>
<tr>
<th>ITEM</th>
<th>PHASE I</th>
<th>PHASE II</th>
<th>PHASE III</th>
<th>PHASE IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Sheet</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Signature Sheet</td>
<td>P</td>
<td>C</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Typical Section</td>
<td>P</td>
<td>C</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Model Management</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Project Control</td>
<td>P</td>
<td>C</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Roadway Plan-Profile</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Traffic Monitoring Site</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Drainage Structures</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Stormwater Facility Plan</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Drainage Map</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Roadway Soil Survey</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Stormwater Pollution Prevention Plan</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Temporary Traffic Control Plans</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Utility Adjustments</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Selective Clearing and Grubbing</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Developmental Standard Plans</td>
<td>C</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Mitigation Plans</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous Structures Plans</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Signing and Pavement Marking Plans</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Signalization Plans</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Intelligent Transportation System (ITS) Plans</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Lighting Plans</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Landscape Plans</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Utility Work by Highway Contractor Agreement Plans</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Toll Facility Plans</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Site/Civil</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Architectural</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Structural</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Electrical</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Plumbing</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Communications</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Systems</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

Status Key: P - Preliminary C - Complete but subject to change F - Final

* Projects with structures plans component must submit the latest set with the 60% roadway submittal.
901.2.1 Phase I Submittal

Develop Phase I Plans to include the following:

KEY SHEET

All Components
- All applicable Financial Project IDs
- (Federal Funds) notation, if applicable
- County Name and State Road Number
- Fiscal Year and sheet number
- Consultants name, address, and contract number, if applicable
- Department’s Project Manager’s Name

Lead Component (typically Roadway)
- Project Location Map (complete)
- Governing Standards and Specifications dates

TYPICAL SECTIONS
- Proposed typical section(s)
- R/W lines
- Special details and notes
- Traffic data

MODEL MANAGEMENT
- Complete

PROJECT CONTROL
- Benchmarks
- Reference points
- Control points

PLAN AND PROFILE

Plan View
- Existing topography including utilities
- North arrow and scale
- Centerline of construction or baseline of survey
- Equations and exceptions
- Curve data
- Preliminary horizontal geometrics
- Existing R/W lines
- Begin & end stations for the project
- Begin & end bridge stations
Profile View

- Scale
- Appropriate existing utilities
- Preliminary profile grade line
- Equations
- Existing ground line
- Begin & end stations for the project
- Begin & end bridge stations
- Preliminary highwater elevation

DRAINAGE MAP

- Photographic (aerial) base map
- Centerline of construction or baseline of survey and stationing
- North arrow and scale
- Street names and R/W lines
- Begin & end of project stations
- Begin & end of bridges stations
- Drainage areas and flow direction
- Drainage divides and ground elevations
- Highwater information
- Existing structures and pipes with relevant information
- State, Federal, and county highway numbers
- Label existing water bodies (e.g., lakes, rivers)

TEMPORARY TRAFFIC CONTROL PLANS

- Project specific
- Other worksheets as necessary to convey concept and scope

LANDSCAPE PLANS

- Conceptual landscape plan

901.2.2 Phase II Submittal

Typically, the work to be done during this phase is the following:

1. Address Phase I comments.
2. Load pay item numbers into Designer Interface for AASHTOWare Project™ Preconstruction and print a PDF of the Summary of Pay Items Report. Notify the
Department Project Manager when this is completed via email with the PDF report attached.

(3) Develop Phase II Plans to include the following:

KEY SHEET
- Index of sheets including Developmental Standard Plans (if appropriate)
- Contract plans and component plans list (lead component only)

SIGNATURE SHEET
- Sections for each Professional of Record with Index of Sheets
- Image of the seals (if appropriate)

TYPICAL SECTIONS
- Complete

PROJECT CONTROL
- Complete

PLAN AND PROFILE

Plan View
- Begin & end stations for construction
- Curb return numbers, station ties, and elevations
- Proposed drainage structures with pipes
- Proposed R/W lines
- Proposed side drainpipes
- Proposed geometrics
- Limits of wetlands

Profile View
- Final profile grades and vertical curve data
- Mainline storm drainpipes
- Special ditch gradients with DPI station and elevation
- Special gutter grades with DPI station and elevation.
- Nonstandard superelevation transition details
- Highwater elevations
- Existing utilities
TRAFFIC MONITORING SITE

- Complete

DRAINAGE STRUCTURES

- Drainage tabular information
- Vertical and horizontal scale
- Special sections at conflict points

Plan View

- Centerline of construction or baseline of construction with stationing
- All elements of roadway template and R/W lines
- Proposed drainage system with structure and pipe labeling
- Underground utilities

Profile View

- Sectional view along pipe runs with structure and pipe labeling
- Existing and proposed surface
- Underground utilities

STORMWATER FACILITY PLAN

- North arrow and scale
- Proposed baseline with stationing with ties to roadway centerline of construction or baseline of survey
- Existing topography, drainage structures, and utilities
- R/W lines
- Soil boring locations
- Fence and gate locations

- Drainage structures with structure and pipe labeling
- Stormwater facility delineation with side slopes, dimensions, and elevations
- Stormwater facility section views
- Outlet structure details and notes
- 100-year flood plain boundaries and elevations, contamination sites, delineated wetlands, and sink holes and depressions
DRAINAGE MAP
- Proposed drainage structures with structure numbers
- Proposed cross drains with pipe sizes and structure numbers
- Flow arrows along proposed ditches
- Retention and detention ponds, pond number and area size
- Bridges and bridge culverts with begin & end stations
- Flood Data Summary (if applicable)

ROADWAY SOIL SURVEY
- Soil data

STORMWATER POLLUTION PREVENTION PLAN (SWPPP)
- Narrative Description (with supplemental topographic maps, when used)

TEMPORARY TRAFFIC CONTROL PLANS
- Preliminary traffic control plan
- Detour plan
- Phasing plan
- R/W information
- Existing Utilities

UTILITY ADJUSTMENTS
- All existing utilities highlighted

SELECTIVE CLEARING AND GRUBBING
- Existing vegetation to be protected, relocated, or removed
- Project-specific notes and details

MITIGATION PLANS
- Project specific

MISCELLANEOUS STRUCTURES PLANS
- Retaining walls (cast in place, proprietary, or temporary) if required
SIGNING AND PAVEMENT MARKING PLANS - PLAN SHEETS
- North arrow and scale
- Basic roadway geometrics
- Begin & end stations and exceptions
- Station equations
- Conflicting utilities, lighting, and drainage
- Pavement markings
- Sign locations
- Applicable pay items

SIGNING AND PAVEMENT MARKING PLANS - SIGN DETAIL SHEETS, GUIDE SIGN WORK SHEETS
- Project specific

SIGNALIZATION PLAN SHEET
- North arrow and scale
- Basic roadway geometrics
- Begin & end stations and exceptions
- Station equations
- Conflicting utilities, lighting, and drainage
- Signal pole location
- Type and location of loops
- Type and location of signal heads
- Pedestrian signal
- Location of stop bars
- Location of crosswalks
- Sheet title
- Applicable pay items

SIGNALIZATION PLANS - POLE SCHEDULE
- Pole location, number, and type
- Pole dimensions
- Pay item number and quantity
- Joint-use pole details, if applicable
- Foundation design

SIGNALIZATION PLANS - INTERCONNECT/COMMUNICATION CABLE PLAN
- Placement of interconnect/communication cable
- Conflicting utilities, lighting, and drainage
- Other project-specific details
ITS PLANS - PLAN SHEETS
- North arrow and scale
- Basic roadway geometrics
- Begin & end stations and exceptions
- Station equations
- Conflicting utilities, lighting, and drainage
- Applicable pay items

ITS PLANS - DETAIL SHEETS
- Project specific

LIGHTING PLANS - POLE DATA AND LEGEND SHEET
- Each pole listed by number with location, arm length, mounting height, and luminaire wattage
- Design value for light intensities and uniformity ratios shown
- Legend and sheet title

LIGHTING PLANS - PLAN SHEETS
- North arrow and scale
- Baseline of construction
- Begin & end stations and equations
- Basic roadway geometrics
- Conflicting utilities, drainage, signal poles, etc.
- Sheet title
- Applicable pay items
- Pole symbols shown at correct station location and approximate offset

LIGHTING PLANS - HIGH MAST
- Project-specific foundation detail sheets
- Project-specific boring data sheets
- Conflicting utilities, drainage, and lighting

LANDSCAPE PLANS
- Complete
901.2.3 Phase III Submittal

Typically, the remaining work to be done is to:

1. Address Phase II comments
2. Complete all remaining Plan Sheets
3. Complete the development of models to be contained in the BIM.zip file
4. Complete the Estimated Quantities Report (see FDM 902) and input quantities into Designer Interface for AASHTOWare Project™ Preconstruction. Submit the Estimated Quantities Report with the Phase III Submittal.

Estimate the Work Zone Traffic Control items paid for on a 'per day' basis and include them in the Estimated Quantities Report. The Department’s Construction Office will perform a biddability review and will establish construction duration as a part of the Phase III review after receiving the plan set. Include this information in the Phase III review comments transmitted back to the EOR.

Utility Work by Highway Contractor (UWHC) Agreement Plans consisting of a Key Sheet and mainline plan-profile showing proposed utility horizontal and vertical locations are also to be included in the Phase III submittal.

901.2.4 Phase IV Submittal

Typically, the work to be done during this phase is the following:

1. Address Phase III review comments
2. Update the Work Program Administration (WPA) system (see FDM 111.2.1) to reflect the project begin and end project milepost.
3. Finalize all plan sheets, including:
 a. Place the assigned Construction Contract Number on the Key Sheet
 b. Update Work Zone Traffic Control pay items based on established construction duration.
4. Finalize the models to be contained in the BIM.zip file
5. Finalize the Estimate of Quantities Report and update quantities in Designer Interface for AASHTOWare Project™ Preconstruction. Submit the Estimated Quantities Report with the Phase IV Submittal
(6) Provide an EOR’s construction cost estimate to the Department Project Manager (when requested).

After corrections noted during the Phase IV submittal review are completed and verified, the plans are referred to as Final Plans.

901.2.5 PS&E Submittal

There are two required submittals during the Plans, Specifications, and Estimates (PS&E) phase. Coordinate with the District Final Plans Office for scheduling these required submittals.

The first submittal consists of the Final Plans and BIM.zip, draft Specifications Package and Estimated Quantities Report. See the Specifications Handbook for information on preparing Specifications Packages and Supplemental Specifications Packages.

A review of the first submittal by the District Final Plans Office often require changes (e.g., pay item numbers and quantities, notes, design details). After changes to the Final Plans, Specifications Package, and Estimated Quantities Report, have been completed and verified, deliver the second submittal consisting of the following:

1. Signed and Sealed Plans
2. Signed and Sealed BIM.zip file
3. Signed and Sealed Specifications
4. Signed and Sealed Estimated Quantities Report
5. CADD Files

Provide the Total Roadway Length, Total Bridge Length, and Total Project Length to the Department Project Manager (when requested).

Information on District activities during PS&E Phase is described in FDM 131.

Information on the delivery of Project Documentation is described in FDM 111.7.
901.3 Design-Build Phase Submittals

See *FDM 301.3* for requirements relating to Design-Build projects.

901.4 Alternative Intersection and Interchange Submittals

Alternative Intersection and Interchange reviews are generally required for the following configurations:

- Roundabout
- Median U-Turn (MUT)
- Restricted Crossing U-Turn (RCUT)
- Diverging Diamond Interchange (DDI)
- Jug Handle
- Displaced Left Turn
- Continuous Green-T
- Quadrant Roadway

Include Alternative Intersection and Interchange Review Packages with the Phase I Submittal and designate a representative of the State Roadway Design Office as a Lead Reviewer in ERC.

The following items are required for an Alternative Intersection and Interchange Review Package:

1. Geometric Layout (PDF and CADD):
 - North Arrow and scale, Survey Baseline, equations
 - Significant topographic features including buildings, driveways, bridges, drainage structures, utilities, bicycle and pedestrian facilities, and transit facilities
 - Preliminary horizontal geometry including pavement edges, curb and gutter, traffic separators, islands, sidewalks, and curb ramps
 - Preliminary pavement markings including edge lines, interior lane lines, extension lines, stop bars, crosswalks, direction arrows, and gore markings

2. Design Vehicle Turning Movements (PDF and CADD):
 - Design vehicle swept path diagrams for all through movements, left turn movements, and right turn movements

3. Traffic Forecast (PDF)
 - Opening year and design year, a.m. and p.m., peak hour volumes for all movements through the intersection
(b) Peak hour factor
(c) Percentage of heavy vehicles
(d) Volume distribution across lanes for multi-lane entries

(4) Operational Analysis input and output (PDF)

901.4.1 Roundabouts

The following additional items are required for Roundabout Review Packages:
(1) Fastest Path Speed Checks in accordance with NCHRP 672 Section 6.71 (PDF and CADD)
(2) Sight Distance Checks in accordance with NCHRP 672 Section 6.7.3 (PDF and CADD)

901.4.2 Diverging Diamond Interchanges

The following additional items are required for Diverging Diamond Interchange Review Packages:
(1) Horizontal alignment data including baseline locations, curve data, stationing, and cardinal points (PC, PT, etc.)
(2) Vertical alignments
(3) Cross slopes
(4) Conceptual Drainage Plan
902 Estimated Quantities Report

Modification for Non-Conventional Projects:

Delete **FDM 902** and replace with the following:

Provide a Summary of Pavement summary box with planned asphalt quantities on a General Notes sheet within the “Released for Construction” plan set. Develop and report quantities in accordance with the **Basis of Estimates Manual**. Include documentation that supports the asphalt quantities shown in the summary box.

The Estimated Quantities (EQ) Report is required for all projects that begin the design phase starting in January 2021. The EQ Report may be provided for projects being produced in OpenRoads Designer that began design prior to January 2021.

902.1 General

The EQ Report is a single PDF file that contains all pay item and quantity information for the project. The EQ Report consists of a signature page and a series of summary tables, and must be developed and delivered according to the guidelines and formats defined by:

- **Basis of Estimates Manual**
- **CADD Manual, Section 8.4.3**
- **Structures Manual**
- **FDM 902**

The FDOT Automated Quantities Training Guide for FDOTConnect provides additional instructional information.

Beginning with the Phase III submittal include the EQ Report with each required phase submittal. Submittals are to include the electronic shape files and other appropriate documentation (e.g., calculations, sketches, or spreadsheets) that support the quantities shown in the report.

For a strung project with two or more FPID numbers, develop an EQ Report for each FPID number.

For a single project with multiple funding sources (FPID number sequencing), develop a single EQ Report with separate summary tables for each funding source.
902.2 Signature Page

The signature page is typically an 11"x17" sheet (landscape). Place this page at the front of the EQ Report and include the information shown in Figure 902.2.1. Show all FPID numbers on the signature page when a project has multiple funding sources.

The final EQ Report document is digitally signed and sealed only by the Department’s lead designer or lead consultant firm Engineer of Record (EOR). The page must show the Digital Signature Appearance of the EOR along with a representation of their Seal.

See FDM 130 for digital Signing and Sealing requirements.

Figure 902.2.1 Signature Page Information

<table>
<thead>
<tr>
<th>ESTIMATED QUANTITIES REPORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financial Project ID: 123456-1-52-01</td>
</tr>
<tr>
<td>Contract Number: T0000</td>
</tr>
<tr>
<td>Project Description: SR 22 (Wewa Highway), Bay County</td>
</tr>
</tbody>
</table>

This document has been digitally signed and sealed by:
Luke S. Walker
2020.10.14 16:52:48 – 4’00’
on the date adjacent to the seal.

Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Roadway Engineers, Inc.
123 Main Street
Tallahassee, FL 32301
Luke S. Walker, P.E. No. 99991

The estimated quantities contained in this document:
1. Were developed in compliance with Florida Department of Transportation procedures, processes, and requirements.
2. Contain no known errors or omissions.
3. Match the pay item numbers and quantities in Designer Interface for AASHTOWare Project Preconstruction™.
902.3 Summary Tables

The summary tables to be used to create the EQ Report must be generated using the Quantity Takeoff Manager (QTM). The CADD Manual provides a list of summary tables that will be generated by the QTM. Do not modify the filename of the spreadsheets or format of the summary tables. Any modification to file name or format creates errors in the generated EQ Report.

Place quantity and location information into the created summary tables for those items that are not auto populated (extracted quantities from the design files). Once the Excel summary tables are fully populated use the Summary Reports Builder tool to create the EQ Report. The created report is done on 11”x17” pages (landscape) and are generally in ascending order of pay item numbers.

Each page of the report will contain only one summary box type. A continuation of a summary box onto subsequent plan sheets may occur. On contracts with multiple Financial Project ID numbers, make provisions to tabulate and summarize their respective quantities. Refer to Chapter 8 of the Basis of Estimates Manual for further guidance.

902.3.1 Designer Notes and Construction Remarks

Designer notes can be added to the summary tables prior to generating the EQ Report. The Designer Notes column is used to provide clarification on how the quantities were derived. Do not use this column to provide direction to the contractor.

Do not place any data or information in the Construction Remarks column.

902.4 EQ Report Requirements

The Department’s lead designer or lead firm Engineer of Record (EOR) is responsible for generating the EQ Report and for validating that the pay items and quantities contained in the report are the same as those loaded into Designer Interface for AASHTOWare Project™ Preconstruction.

Title the EQ Report PDF file with the FPID number followed by “-ESTIMATES-QUANTITIES.pdf. (e.g., 12345615201-ESTIMATES-QUANTITIES.pdf).
902.5 Loading Pay Item Information into Designer Interface

For the Phase II submittal the designer is typically responsible for loading only pay item numbers into Designer Interface for AASHTOWare Project™ Preconstruction. When only loading pay item numbers, create a PDF file of the Summary of Pay Item Report generated in AASHTOWare Project™ Webgate Reporting. Notify the Department Project Manager when this is completed via email with the report PDF file attached.

When including preliminary quantities at Phase II (at request of the district), create the EQ Report and include with Phase II submittal. Creating the Summary of Pay Item Report and notifying the Department Project Manager is not required.

For the Phase III submittal, and subsequent submittals, the designer is responsible for entering (or updating) pay items and quantities into Designer Interface.

902.5.1 Designer Interface Quantity Tool

When the summary tables are populated with quantities, the Designer Interface Quantity tool can be used to upload pay item number and quantity information into Designer Interface for Phase III submittal and all subsequent submittals.

Only the Department’s lead designer or the lead consultant firm EOR may use the quantity tool to upload pay items and quantities. Each time the export tool is used the existing Designer Interface information is over-written.
905 Cross Sections

905.1 General

Cross sections depict the existing ground and manmade features, and proposed roadway template as sections perpendicular to the respective stations along a centerline or baseline of construction.

Cross section sheets are used to provide supplemental information during the plans phase review process. These sheets may also be used for coordination purposes (e.g., permit or utility, local agency, public meetings). These sheets are not to be placed within the Contract Plans Set. Signing and sealing these sheets is not required.

Enter a PDF of these sheets into the Electronic Review Comments (ERC) system with the Phase II and Phase III plans submittals. Include these sheets with the Phase IV ERC submittal when there are Phase III comments related to the cross sections. Provide a PDF of the cross section sheets for coordination purposed as needed (e.g., permits, utilities, public meetings).

See Exhibit 905-1 for an example of a Cross Section Sheet.

905.2 Sheet Set Up

This sheet may be produced on a standard-format sheet (11"x17") or a large-format sheet (36"x48" or 36"x72"). Use landscape orientation regardless of sheet size selected.

Place as many cross sections on a sheet as possible using multiple columns of sections when appropriate. Create cross sections using a scale of 1" = 20' horizontal and 1" = 10' vertical. The standard cross section interval is 50 feet. Another interval may be used when appropriate based on the type and complexity of the project.

Show cross sections with stations increasing from the bottom to the top of the sheet and multiple columns placed from the left to the right.

Cross sections for mainline, side streets, and ramps are typically shown on separate sheets within a single PDF. The order of cross sections contained in the PDF should be the mainline, side streets, then ramps.

Display the begin and end earthwork stations and include the name of the mainline (e.g., SR 22), side street (e.g., Easy Street), or ramp (e.g., Ramp A). Indicate exception limits (e.g., Bridge No. 770175 STA 105+20 to 109+60).
905.3 Required Information

As illustrated in Exhibit 905-1, each cross section must include a background grid at the appropriate scale. Display the station for each cross section must be shown in the lower right area of the grid. Display (in feet) the horizontal offset from centerline along the bottom of the grid. Display the vertical elevation along both sides of the grid.

Each cross section must provide the following:

(1) Label the centerline or baseline of construction.
(2) Show and label R/W limits.
(3) Show existing ground lines.
(4) Show below ground portions of existing features, e.g., pavement, curb, sidewalk.
(5) Show and label parallel underground utilities.
(6) Show the proposed roadway template and include:
 (a) Profile grade elevation
 (b) Special ditch elevation
 (c) Pavement and sidewalk cross slope
 (d) Median and outer slope ratio
(7) Show, and label, the lower limits (undercut line) of the removal of organic or plastic material. See FDM 216 and Standard Plans, Index 120-002 for the requirements of subsoil excavation; i.e., removal of unsuitable organic or plastic soils.

Showing parallel drainage pipes or structures is not required.
911 Model Management Sheet

911.1 General

The Model Management sheet provides information for the order and naming of the models developed for the project.

The Model Management sheet is produced as a contract document and placed within the Roadway Plans. The sheet may be a standard-format plan sheet (11"x17") or a large-format plan sheet (36"x48" or 36"x72") and may use any scale provided that the required information is clearly depicted.

The required information should be shown on a single plan sheet. Development of this sheet early in the design phase establishes an effective segmentation of the project.

See Exhibit 911-1 for an illustration of the Model Management sheet.

911.2 Creation of Model Management Sheet

Display and label the centerline or baseline of construction on the sheet with station numbers close to station ticks. Include a north arrow, typically in the upper right portion.

Display proposed limits of pavement, curbs, traffic separators, sidewalks, curb ramps, and driveways. Show proposed bridges and approach slabs by simple outline. The labeling of any of these features is not required. If the topographic file is displayed, it should be gray scale. The intent is to show an outline of the proposed roadway to give context to the limits of each model segment.

Indicate the segments (portions of the centerline) that the project is broken into for the purpose of model development. Provide labeling that includes:

1. File name of model(s) associated with a segment.
2. Name of roadway centerline of baseline construction.
3. Station limits contained within the model.
915 Roadway Plan-Profile Sheet

915.1 General

The signed and sealed Building Information Model (BIM) files contain the complete horizontal and vertical geometry definitions for the project. The Roadway Plan-Profile sheet shows a 2D representation of the design contained within the model(s). Various roadway elements such as pavement width, medians, paved shoulders, curbs, drainage elements, tapers, turn provisions, and intersecting roadways, are annotated on this sheet.

This sheet may be produced on a standard-format sheet (11”x17”) or a large-format sheet (36”x48” or 36”x72”). Use landscape orientation regardless of sheet size selected.

Roadway profiles are typically provided for new construction and reconstruction projects and are shown with the plan view on the same sheet. When roadway profiles are not needed, title the sheet as Roadway Plan Sheet.

When appropriate, the plan or plan-profile sheet may utilize multi-stacking (subdividing sheet horizontally); each panel containing a roadway plan view with (when appropriate) the corresponding roadway profile directly below.

Use the following horizontal scales:

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curbed Roadways</td>
<td>1” = 40’</td>
<td>1” = 50’</td>
</tr>
<tr>
<td>Flush-shoulder Roadways</td>
<td>1” = 50’</td>
<td>1” = 100’</td>
</tr>
</tbody>
</table>

See Exhibit 915-1 for an example of a Roadway Plan-Profile sheet.

915.2 Roadway Plan

Display a north arrow and scale within each plan view, typically in the upper right portion.

Display roadway plan view such that the centerline of construction or baseline of construction stationing is increasing from left to right. Display bearings for tangent sections (in the direction of stationing) below the centerline or baseline. Display station numbers close to station ticks.

Display and label existing topography, including roads, streets, drives, buildings, underground and overhead utilities, walls, curbs, pavements, fences, railroads, bridges,
drainage structures and similar items, as well as streams, ponds, lakes, wooded areas, ditches, existing gasoline storage tanks within limits of topographical survey, and other physical features.

915.2.1 Required Labeling and Information

Include labeling and dimensions only to the extent necessary to convey the design intent of the improvements. Provide the following labeling and dimensions:

- Flag and station the begin and end project limits, and construction limits. Project limits should be at the beginning and the end of the full typical sections. Begin construction and end construction where construction limits are other than project limits. Transitions for maintenance of traffic and other construction work such as feathering, friction course, guardrail, drainage work, signing and marking work, and sidewalk may fall outside of the project limits but must be included within the construction limits. If plans include more than one project, identify the limits for each by Financial Project ID.

- Display station equations along centerline or baseline of construction.

- Flag and station the begin and end of project exceptions (e.g., excluded intersections, bridges).

- Indicate each type of construction classification where more than one type is involved (e.g., new construction, resurfacing, bridge work, widening, and milling). Use shading, patterning, or labeling to convey the information. Indicate the limits of pavement and grading at side street intersections. Provide a legend when shading or patterning is used.

- Display proposed curbs, traffic separators, sidewalks, curb ramps, retaining walls, and driveways. Label curbs and curb ramps indicating type. Label and dimension sidewalks, medians, and traffic separators at intervals no greater than 2,500 ft.

- Dimension traveled way along mainline at intervals no greater than 2,500 ft., or where pavement widths change. Dimension traveled way of side streets and driveways.

- Display drainage system by depicting drainage pipes and French drain with a single line, and the outline of inlets, manholes, junction boxes, and outfall features (e.g., MES, end wall). Identify by structure number only. Do not label pipe size or length.

- Display box culverts and three-sided culverts. Identify by structure number only. Do not label culvert size or length.

- Display and label R/W lines at intervals no greater than 2,500 ft. Display and label construction easements or license agreements.
Display and label the limits of wetlands based on permit or regulatory requirements.

Display and label utilities. Indicate the line voltage for all overhead electrical power lines. Label field verified underground utilities with the following symbol:

\[V_{vh} = \text{Verified Vertical Elevation and Horizontal Location} \]

Identify all traffic monitoring sites in or within one-half mile of the project limits with the following notation:

Traffic Monitoring Site Number (XXXX)
Roadway Section Number (XXXX)
Milepost (XX.XXX)

Site includes vehicle detectors in roadway and pedestal, pole or base mounted cabinet, buried cable, and solar power unit on R/W. Inquiries about monitoring sites should be addressed to the Traffic Data Section Manager of the Transportation Statistics Section, Office of Planning.

Projects with minor utility work or impacts may include these features on the Roadway Plan-Profile sheet.

915.2.2 Horizontal Curves

PC and PT points of horizontal curves are designated by small circles with short radial lines from these points, and PI points by a small triangle with a short section of tangent on either side. Display horizontal curve data using the following format:

CURVE DATA

<table>
<thead>
<tr>
<th>PI</th>
<th>(Station)</th>
<th>R</th>
<th>(Radius Length)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta)</td>
<td>(Delta Angle with Direction)</td>
<td>PC</td>
<td>(Station)</td>
</tr>
<tr>
<td>D</td>
<td>(Degree of Curve)</td>
<td>PT</td>
<td>(Station)</td>
</tr>
<tr>
<td>T</td>
<td>(Tangent Length)</td>
<td>e</td>
<td>(Superelevation Rate)</td>
</tr>
<tr>
<td>L</td>
<td>(Length of Curve)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

915.2.3 Bridges and Bridge Culverts

Bridge-sized culverts (a.k.a., bridge culverts) are defined in **FDM 265.1**. Flag and station the begin station and end station for the bridge culvert (outside wall to outside wall). Provide a bridge number and a drainage structure number for all bridge culverts.
Display proposed bridges and approach slabs by simple outline. Flag and station the begin station and end station for the bridge and for the approach slabs. Provide a bridge number for all bridges.

When appropriate, display a short section of lateral ditch/outfall centerline on the Roadway Plan-Profile sheet.

915.2.4 Interchanges

The entire interchange should be shown on one sheet using a 1" = 100' scale. With larger interchanges, consider using match lines and placing extended portions of alignment in available space on the sheet.

Display the ramp baseline of construction, typically located on the right edge of the pavement with respect to the direction of traffic. Ramp stationing should be increasing in the same direction as the project.

Identify ramps using letters or a combination of letters and numbers (e.g., Ramp A, Ramp B-1, Ramp B-2). Ramps in the first left quadrant along mainline stationing should be assigned first. Name assignments progress in a counterclockwise direction around the interchange (see Figure 915.2.1). For projects with two or more interchanges, continue name assignments with the next letter and in same counterclockwise direction noted above.

![Interchange Layout](image-url)
Frontage roads should be assigned a unique alpha or numeric designation to avoid confusion with ramp nomenclature.

915.2.4.1 Ramp Terminal Details

Consider providing ramp terminal details at a scale of 1" = 40'. Ramp terminal details should be shown on the same page as the interchange.

915.3 Roadway Profile

Display roadway profiles directly below the corresponding roadway plan view. As illustrated in *Exhibit 915-1*, each roadway profile must include a background grid at the appropriate scale. The horizontal scale and interval stationing for the roadway profile must be the same as that used for the roadway plan view. The vertical scale is typically 10% of the horizontal scale (e.g., 1" = 100' horizontal scale would typically use a 1" = 10' vertical scale).

Align the begin roadway profile stationing with the begin roadway plan view stationing. Display stationing along the bottom of the grid. Display the vertical elevation along both sides of the grid.

915.3.1 Required Labeling and Information

Include labeling and dimensions only to the extent necessary to convey the design intent of the improvements. Provide the following labeling and dimensions:

- Flag and station the begin and end project, and construction limits matching what is shown in the roadway plan view.

- Label percent grade for each tangent section. When two tangent grades intersect and no vertical curve is required, label the PI station and elevation.

- Flag and station the superelevated sections (see *FDM 915.3.3*).

- Show the cross-section template of the underlying road, railroad, or waterway for bridges and box culverts along the centerline or baseline of construction. Display minimum vertical clearances for bridges.

- Display and label only transverse underground utilities.

Do not display proposed drainage pipes or inlets in the profile view.
915.3.1 Vertical Curves

Indicate vertical curve PCs and PTs by small circles and PIs by a small triangle with short sections of tangent shown on each side. Extend vertical lines from the PC and PT points and place a dimension line indicating the length of the vertical curve. The PC and PT stations and elevations must be labeled on the vertical lines.

For vertical curves, show the profile grade elevations on even stations and at appropriate intervals. Place the elevations between the dimension line and the grade line. Also, place the curve length, dimension lines and the profile grade elevations above the grade line for sag vertical curves and below the grade line for crest vertical curves. Place the dimensions and elevations reasonably near the grade line. The PI station and elevation must be noted, lettered vertically above the PI symbol for crest curves and below for sag curves.

Show the profile grade elevation of the beginning and ending station of each sheet vertically just above the grade line, except when the beginning or ending station is on a vertical curve.

915.3.2 Superelevation

Standard superelevation details shown in Standard Plans, Indexes 000-510 and 000-511 may be used for projects with simple curves.

Show superelevation profiles for:

- Reverse curves
- Compound curves
- Other conditions requiring special superelevation not covered in the standards

Show complete profile grade line and edges of pavement (right and left) within the superelevation zone on the grid format. Label the begin and end superelevation stations and indicate the section in full superelevation.

915.3.4 Special Ditch Profile

For flush-shoulder roadways, display and label special ditches in the profile. Show percent ditch grade and a beginning or ending ditch PI with elevation and station plus. For multi-lane divided projects, three special ditch grades (right and left roadway ditches and median ditch) sometimes occur at the same location. In such cases, it may be advantageous to show the median ditch at a convenient location on the sheet with a separate elevation datum.
Depict uniform ditches of non-standard depth by a dimension line in the lower portion of the grid and label as a special ditch with location and depth or show them by flagging the DPIs at each end with station elevation and side. Standard depth ditches are not labeled.

915.3.5 Special Gutter Grades

Show special gutter grades in profile for cases where the gutter grades are not controlled by the typical section. Include prolongations of gutter profile grades across street intersections on plan-profile sheets if an inlet is not provided before the intersection.

915.3.6 Special Sidewalk Profiles

Display and label special sidewalk profiles when the profile grade of the proposed sidewalk is independent of the roadway profile. Sidewalk profiles are typically located at the back of the proposed sidewalk (closest to the R/W).

When special sidewalk profiles are included on the Roadway Plan-Profile sheet, indicate the location of the sidewalk profile grade line (PGL) on the typical section.

915.4 Ramp Profiles

Develop ramp profile grades along the baseline of each ramp. A profile of the edge of the pavement opposite the baseline is typically shown as well. Show ramp profiles anywhere within available space on the Roadway Plan-Profile sheet.

Use the same scales used for the Roadway Plan-Profile sheet displaying the interchange. Each ramp profile must include a background grid at the appropriate scale.

915.4.4 Spline Grade

Spline grades are used to show the interconnection and interrelation of the ramp edge of pavement with the mainline edge of pavement. Showing this profile in the plans is typically not necessary. However, if the mainline pavement is superelevated or within the superelevation transition zone, the profile can be beneficial to illustrate the design intent.

Display the spline grade elevations at intervals of 20 or 40 feet. Show elevations for the outer edge of mainline pavement and inner and outer edges of the ramp pavement at the nose areas.

Join the grades of each pavement edge by smooth splines or simple curves. Label the three grade profiles and all equality stations. Flag and label nose stations. Place the scale in proximity of the profile.
915.5 **Special Profiles**

Showing special profiles in the plans is typically not necessary. However, if it is determined that providing a special profile in the plans is beneficial to show the design intent, they should be shown anywhere within available space on the Roadway Plan-Profile sheet.

Standard scale used for special profiles should be 1" = 20' horizontally and 1" = 2' vertically. Each profile must include a background grid at the appropriate scale.

915.5.1 **Intersections**

Supplemental profiles at intersections may be necessary to define edge of pavement profiles. Include sections showing pavement surface elevations for nose points and other critical locations. Label the existing ground line and curb line per the [CADD Manual](#).

915.5.2 **Curb Returns**

Curb return profiles may be necessary to define the gutter flow line from the PC to the PT point of the return at an intersection.

Identify each return profile and its PC and PT stations shown. Elevations should be shown at appropriate intervals and low and high spots must be identified by location and elevation.

915.5.3 **At-Grade Railroad Crossings**

Supplemental profiles for at-grade railroad crossings may be necessary to define lane lines, edges of pavement, and gutter flow lines.
916 Drainage Structures Sheet

916.1 General

The signed and sealed Building Information Model (BIM) files contain the complete drainage system information for the project. The Drainage Structures sheet provides supplemental data and information for proposed drainage structures, including:

(1) Drainage Plan View
(2) Drainage Profiles
(3) Drainage Tabular Information
(4) Drainage Special Details and Notes
(5) Optional Materials Tabulation

The Drainage Structures sheet is produced as a contract document and placed within the Roadway Plans. This sheet may be produced on a standard-format sheet (11”x17”) or a large-format sheet (36”x48” or 36”x72”). Use landscape orientation regardless of sheet size selected. Sheet size selection should be based on size and extent of drainage network(s). The Drainage Structures sheet should display the complete extents of individual drainage network(s).

Use the following horizontal scales:

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curbed Roadways</td>
<td>1” = 40’</td>
<td>1” = 50’</td>
</tr>
<tr>
<td>Flush-shoulder Roadways</td>
<td>1” = 50’</td>
<td>1” = 100’</td>
</tr>
</tbody>
</table>

Provide a legend for all abbreviations included in the drainage tabular information. See Exhibit 916-1 for an illustration of the Drainage Structures sheet.

916.2 Drainage Plan View

The drainage plan view is typically shown in the upper half of the sheet. The purpose of this view is to highlight the drainage network(s) that will be shown in the profile views and included in the tabular data. The display limits of the drainage plan view should contain the entire proposed drainage network. If multiple drainage networks are shown or overlap, clearly indicate which network the profile and tabular information is associated with.
916.2.1 Required Information

Provide the following information in the plan view:

- Display the view such that the centerline of construction or baseline of survey stationing is increasing from left to right. Display station numbers close to station ticks. Include a north arrow and scale above and near the drainage plan view.

- Display proposed limits of pavement, curbs, traffic separators, sidewalks, curb ramps, and driveways. Show proposed bridges and approach slabs by simple outline and indicate the bridge structure number. The intent is to show an outline of the proposed roadway to give context to the location of the drainage structures. The elements of the proposed roadway should be gray scaled.

- Display and label existing and proposed underground utilities only where a conflict exists. Identify the underground utility as a conflict node.

- Display the proposed drainage system by depicting drainpipes with a single pipeline style indicating direction of flow, and the outline of inlets, manholes, junction boxes, and outfall features (e.g., MES, endwall).

- Display and label existing structures that are to be filled, plugged, and remain in place.

Do not display existing topography, except to the extent those elements are to be incorporated into, affected by, or accommodated by the proposed drainage system. Existing topography elements may include roads, streets, driveways, buildings, underground and overhead utilities, walls, curbs, pavements, fences, railroads, bridges, drainage structures and similar items, as well as streams, ponds, lakes, wooded areas, ditches, existing gasoline storage tanks within limits of topographical survey, and other physical features. When shown, display existing topography elements as gray scaled.

916.2.2 Structure and Pipe Numbers

Provide drainage structure numbers, and a pipe number between structures. Include the bridge number for proposed bridge culverts. Established the structure and pipe numbers using the convention shown in Exhibit 916-1 and described as follows:

(1) Storm drain networks: Assign structure numbers in ascending order along the centerline of construction or baseline of construction. Assign pipe numbers to correlate with the structure at the hydraulically upper end of pipe.
(2) Cross drains: Assign structure number in ascending order along the direction of flow (hydraulic upper end to lower end). Intermediate structure numbers along the same cross drain typically use the same beginning structure number with suffix letter. Assign pipe numbers to correlate with the structure at the hydraulically upper end of pipe.

916.3 Drainage Profile

Drainage profiles are typically shown in the lower left portion of the sheet as illustrated in Exhibit 916-1. Stack or space the profiles to avoid overlapping of structures or notes. Display drainage profiles from left to right, beginning with the structure at the hydraulically upper end of the system run to the outfall or structure at the hydraulically lower end. All storm drain networks, cross drains and side drains are to be shown in profile view.

Each drainage profile must include a background grid at the appropriate scale. Use the same horizontal scale for the profile portion that is used for the plan portion. The vertical scale is typically 10% of the horizontal scale (e.g., 1” = 50’ horizontal scale would typically use a 1” = 5’ vertical scale).

916.3.1 Required Information

Drainage profiles depict vertical relationships of the drainage network or cross drain along the centerline of the pipes. Provide the following information for each drainage profile:

- Display drainage structures (typically depicted as rectangles) and connecting pipes. Place the outside edge of the first structure at the first vertical grid line as shown in Exhibit 916-1. Assign the value of zero to the first vertical grid line; subsequent vertical grid lines reflect the true distance along the pipe system.
- Label drainage pipes and structure numbers.
- Display and label existing and proposed surfaces along centerline of pipe. Displaying surfaces past the limits of the first and last pipes is not required.
- Provide horizontal grid line elevations along the left side of the background grid.
- Display and label existing and proposed underground utilities. When appropriate, identify underground utility as a conflict node.
916.4 Drainage Tabular Information

The Drainage Tabular Information is typically shown on the lower right portion of the sheet and consists of four tables:

(1) Pipe Data
(2) Structures Data
(3) Endwall and MES Data
(4) Optional Materials

If there is insufficient space on the Drainage Structures sheet, the Drainage Tabular Information may be placed on a separate sheet titled “Drainage Structures Data”.

916.4.1 Pipe Data

The Pipe Data table contains the following information:

- Pipe number, length, and size
- Hydraulic upper end structure number with invert elevation
- Hydraulic lower end structure number with elevation
- Optional materials group number

916.4.2 Structures Data

The Structure Data table contains the following information for each structure:

- Structure number
- Baseline feature
- Structure location (baseline station and offset)
- Structure type and bottom dimensions
- FDOT Standard Plans (Index 400 series) Notes
- Reference point elevation
- Pipe label for each pipe entering or exiting the structure
916.4.3 Endwall and MES Data

The Endwall and MES Data table contains the following information:

- Structure number
- Baseline feature
- Structure location (baseline station and offset)
- Structure type
- Pipe invert elevation
- Structure notes

916.4.4 Optional Materials

Modification for Non-Conventional Projects:

Delete FDM 916.6 and see Chapter 6 of the Drainage Manual for Optional Material requirements.

Consider optional materials for all pipes; however, match pipe extensions and end section replacements to the existing pipe material. See the Department's Drainage Design Guide (Optional Pipe Material Chapter) for more information.

Conduct an Optional Pipe Materials Analysis and place an Optional Materials table with the Drainage Tabular Information. The Optional Materials table shows all materials allowed and indicates which material is plotted in the plans and used as the basis for pay item quantities. The Optional Materials table is to include:

- Optional Pipe Group Number
- Size(s)
- Material, thickness or class, corrugation requirements, and protective coating
- Plotted and as-built notations, and construction remarks
916.5 Drainage Special Details

Showing special horizontal or vertical details in the plans is typically not necessary. However, if it is determined that providing a special drainage detail is beneficial to show the design intent, the detail is typically placed in the upper right portion of the sheet but may be shown anywhere within available space on the sheet. Any scale may be used.

The following are examples of information that may be depicted:

- Clash detection results and utility clearances
- Drainage structure details (non-standard structures, pond outfall structures multiple or off-centered pipe connections to a structure wall)
- Isometric and 3D views with identifying labels
<table>
<thead>
<tr>
<th>No.</th>
<th>Station</th>
<th>Curvature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P-101</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>P-102</td>
<td>104</td>
</tr>
<tr>
<td>3</td>
<td>P-103</td>
<td>702</td>
</tr>
<tr>
<td>4</td>
<td>P-104</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>P-105</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>P-106</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>P-107</td>
<td>30</td>
</tr>
</tbody>
</table>

- **Station Data**
 - CL SR61
 - 700+80

- **Pipe Data**
 - 8" WM
 - Structure Type: Closed Flume

- **Offset Data**
 - 43.76
 - 97.32

- **Size Data**
 - 12''
 - 18 inch
 - 24 inch
 - 30 inch

- **Material Data**
 - SRAP, 14 GA.
 - SRAP, 16 GA.

- **Elevation Data**
 - 26.40
 - 27.10
 - 27.50
 - 29.10

- **Group Data**
 - Group 1
 - Group 2
 - Group 3
 - Group 4

- **Standard Plans**
 - FOOT
 - Volume
 - Length

- **Feature Data**
 - Endwall and MES Data
 - 49.28

- **WEB/DBI Data**
 - 402753.87
 - 57.63

- **Offset Data**
 - 40.00
 - 40.00
 - 40.00
 - 40.00
 - 40.00
 - 40.00
 - 40.00

- **Width Data**
 - 24 inch
 - 24 inch
 - 24 inch
 - 24 inch

- **Depth Data**
 - 28.50
 - 28.50
 - 28.60

- **Additional Notes**
 - SEE 5-105 DETAIL
 - Reference to other sections and details
918 Drainage Map

918.1 General

The Drainage Map sheet is required for new construction and reconstruction projects, and for other project types that propose significant changes to the existing hydrology and hydraulics.

The Drainage Map sheet provides an overview of the overland drainage patterns as well as the storm drain system layout and outfall locations. This sheet is used for establishing the appropriate drainage facilities during design, confirmation of overland flow patterns during construction, and for emergency response and maintenance purposes.

This sheet may be produced on a standard-format sheet (11”x17”) or a large-format sheet (36”x48” or 36”x72”). Use landscape orientation regardless of sheet size selected.

Use the following horizontal scales:

<table>
<thead>
<tr>
<th>Drainage System</th>
<th>Standard</th>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed Drainage System</td>
<td>1” = 200’</td>
<td>1” = 500’</td>
</tr>
<tr>
<td>Open Drainage System</td>
<td>1” = 1000’</td>
<td>1” = 2000’</td>
</tr>
</tbody>
</table>

See Exhibit 918-1 for an example of a Drainage Map.

918.2 Required Information

The Drainage Map sheet must comply with the following:

(1) Use a grey-scaled photographic (aerial) base map as shown in Exhibit 918-1.
(2) Display a north arrow and scale, typically in the upper right portion.
(3) Display the centerline or baseline of construction with station equations. Show stationing at an appropriate interval.
(4) Flag and station the begin and end project limits.
(5) Flag and station the begin and end of bridges and bridge culverts.
(6) Label road names and state numbers, and side street names.
(7) Display and label existing physical land features affecting drainage (e.g., lakes, streams, swamps) by name and direction of flow. Show past highwater elevations with date of occurrence, if available, and present water elevations with date of reading.

918-Drainage Map
(8) Show drainage divides and other information (e.g., pop-off elevations, spot elevations) to indicate the overland flow of water. Show drainage areas in acres. Use inserts to show areas that are of such magnitude that the boundaries cannot be plotted at the selected scale. Display basin or subbasin names.

(9) Display the 100-year flood plain boundaries and elevations. Display delineated wetlands. Identify sink holes and depressions.

(10) Display arrows to indicate direction of flow along proposed ditches. Show flow arrows from offsite areas at the point where stormwater would approach the FDOT R/W to be routed or controlled by FDOT. Show flow arrows from onsite areas where the flow leaves FDOT R/W.

(11) Display and label existing drainage structures with type, size, flow line elevations, flow arrows and any other pertinent data. Refer to the FDOT CADD Manual for correct symbols for existing drainage facilities. Data relating to existing drainage structures and pipes may be compiled in a table format and placed within available space on the sheet.

(12) Display proposed drainage structures, cross drains, storm drainpipes, outfall structures and retention/detention pond locations.
 (a) Label cross drains by pipe size and structure number
 (b) Label structures by structure number
 (c) Label ponds by pond number

918.2.1 Flood Data Summary Box

The Flood Data Summary box provides design discharge, base discharge, and overtopping or greatest flood discharge with corresponding stage values.

Provide the Flood Data Summary box when a new or modified cross drain or box culvert (regardless of size) is proposed, or an existing cross drain or box culvert is impacted by changes to the existing hydrology and hydraulics, and the location of the cross drain or box culvert is within the 100-year floodplain or has a history of flooding or other hydraulic problems.

If there is insufficient space on the Drainage Map sheet, or the Drainage Map is not produced, place the Flood Data Summary box on its own sheet titled “Flood Data Sheet”.

The required preformatted summary box is available within in the FDOT CADD Software. An example of a Flood Data Summary box is shown in Figure 918.2.1.
Figure 918.2.1 Example of a Flood Data Summary Box

<table>
<thead>
<tr>
<th>STRUCT. NO.</th>
<th>STATION</th>
<th>DESIGN FLOOD</th>
<th>BASE FLOOD</th>
<th>OVERTOPPING FLOOD</th>
<th>GREATEST FLOOD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2% Prob. Discharge</td>
<td>50 Yr. Freq. Stage</td>
<td>1% Prob. Discharge</td>
<td>100 Yr. Freq. Stage</td>
</tr>
<tr>
<td>CD-1</td>
<td>1525+40.00</td>
<td>15.6</td>
<td>34.84</td>
<td>17.8</td>
<td>34.86</td>
</tr>
<tr>
<td>CD-2</td>
<td>1561+00.00</td>
<td>39.4</td>
<td>38.35</td>
<td>44.9</td>
<td>38.54</td>
</tr>
<tr>
<td>CD-3</td>
<td>1679+00.00</td>
<td>24.0</td>
<td>34.60</td>
<td>28.0</td>
<td>34.73</td>
</tr>
<tr>
<td>CD-4</td>
<td>2287+22.00</td>
<td>9.0</td>
<td>35.77</td>
<td>11.0</td>
<td>35.77</td>
</tr>
<tr>
<td>CD-5</td>
<td>2283+02.75</td>
<td>24.0</td>
<td>35.70</td>
<td>28.0</td>
<td>35.90</td>
</tr>
</tbody>
</table>

NOTE: The hydraulic data is shown for informational purposes only, to indicate the flood discharges and water surface elevations which may be anticipated in any given year. This data was generated using highly variable factors determined by a study of the watershed. Many judgements and assumptions are required to establish these factors. The resultant hydraulic data is sensitive to changes, particularly of antecedent conditions, urbanization, channelization, and land use. Users of this data are cautioned against the assumption of precision which cannot be attained. Discharges are in cubic feet per second and stages are in feet, NGVD '88.

DEFINITIONS:

- **Design Flood:** The flood selected by foot to be utilized to assure a standard level of hydraulic performance.
- **Base Flood:** The flood having a 1% chance of being exceeded in any year (100 yr. frequency).
- **Overtopping Flood:** The flood where flow occurs (A) over the highway, (B) over a watershed divide, or (C) through emergency relief structures.
- **Greatest Flood:** The most severe flood which can be predicted where overtopping is not practicable, normally one with a 0.2% chance of being exceeded in any year (500 yr. frequency).