

Bars 5 K spaced perpendicular
to end of beam @ $31 /{ }^{\prime \prime}$
Skewed Bars 57 @ $31 / 2$
Skewed Bars 5Z, 4M1 or

3". Baspace atong \& Beam with Bars 4M1 or 4M2 place

PARTIAL PLAN VIEW (SHOWING TOP FLANGE) End 1 Shown, End 2 Similar
(Bars 5A, 5 Y \& Strands N not shown for clarity)

Bars 5 K spaced perpendicular
to end of beam @ 31/2." Skewed
Bars $5 Z, 3 D 1$ or $3 D 2,3 C 1$ or
$3 C 2$ placed with Bars $5 \mathrm{~K} *$

Bars 5 K spaced along \& Beam @
3's. $^{\prime \prime}$ Bars 301 or $302,3 C 1$ or $3 C 2$

Rotate and flare Bars 4M1 or 4M2 and additional Bar 4M1 or 4M2 equally as required to maintain a $1^{1}-0^{\prime \prime} \pm$ Max. spacing
along end of bars. Clip to maintain cover.

- Bars 5K (Typ.)

T Beam

1~Additional Bar 301 or 302 for Skews $\leq 10^{\circ}$ or
$2 \sim$ Additional Bars 301 or 302 for Skews 10°
(shown dashed) rotate and space equally between (shown dashed) rotate and space equally between
last Bar $3 D 1$ or $3 D 2$ and first Bar 303 as shown
Bars $3 C 1$ or $3 C 2$
2

 CIN SECTION THRU BEAM WEB AT
 PLAN SECTION THRU BEAM WEB AT INSERT FOR DIAPHRAGM REINFORCING (When Intermediate Diaphragms are Required by Design)

INSERT NOTES

1. Provide 1" \varnothing, zinc-electroplated, ferrule wing nut or coil inserts, UNC threads, $1 / 0$ minimum gage wire, not more than $4^{\prime \prime}$ in depth with a minimum ultimate tensile strength of $11,400 \mathrm{lbs}$. in 4,000 psi concrete.
2. If inserts are needed on both sides (faces) of beam webs, an assembly as long as the thickness of the beam web, consisting of two (2) ferrule or coil struts shall have a minimum ultimate tensile strength of $11,400 \mathrm{lbs}$.
3. Inserts for diaphragm reinforcing are required at each end of each intermediate diaphragm shown on the Beam Framing Plan and may be required at the end of the beams when end diaphragms are shown. Se
Superstructure and Beam Framing Plans for longitudinal location of inserts for each face of beam.

$$
\overline{\bar{Z}} \operatorname{INSERT} \text { DETAIL } \bar{\Longrightarrow}
$$

TYPICAL SECTION
SHOWING CUT STRAND RECESS LIMITS

TYPICAL SECTION AFTER PROTECTING
$=$ STRAND CUTTING AND PROTECTING DETAIL $=$
\qquad

PARTIAL SECTION THRU WEB (SHOWING BOTTOM FLANGE) (END 1 Shown, END 2 Similar)
(Bars 5Y, Strands, and Embedded Bearing Plate "A" not shown for clarity)
SKEWED BEAM END DETAILS FOR WIDENING EXI
(Florida-I 36 Beam shown, others similar) Bars 5K (Typ.)

FDOTY $\begin{array}{r}\text { FY 2017-18 }\end{array}$

These dimensions are
measured perpendicula

VIEW

Spacing Bars $5 \mathrm{~K} \quad 21 / 2^{1{ }^{1 *}}$ Spacing $\frac{\text { Spacing Bas }}{\text { or 4M2 }}$ $\begin{array}{r}\text { or } 4 \mathrm{M} 2 \\ \text { Spaci } \\ \hline\end{array}$

4 sp. @ $31 / 2^{\prime \prime \prime}$ 12 sp.@ 3" sp.@

S1 sp.@ V1
CONVENTIONAL REINFORCING BAR BENDING DETAILS

BILL OF REINFORCING STEEL				
MARK	NOTE NUMBERS	SIZE	NUMBER REQUIRED	LENGTH (NOTE 2)
A	-	5	8	$16^{\prime \prime}-0^{\prime \prime}$
C1	9, 10 \& 11	3	11 (End 1)	Varies
C2	9, 10 \& 11	3	11 (End 2)	Varies
D1	9, 10, 11\& 14	3	22 (End 1)	Varies
D2	9, 10, $11 \& 14$	3	22 (End 2)	Varies
D3	$9 \& 14$	3	See Table	$4^{\prime}-3^{\prime \prime}$
K	2, 9, $11 \& 13$	5	See Table	$4^{\prime}-2^{\prime \prime}$
M1	$9 \& 10$	4	9 (End 1)	Varies
M2	$9 \& 10$	4	9 (End 2)	Varies
M3	9	4	See Table	$3^{\prime}-8^{\prime \prime}$
N	$3 \& 4$	3/8" \varnothing Strand	4	Dim. L
Y	$9 \& 11$	5	12	$2^{\prime}-6{ }^{\prime \prime}$
z	2, 9, $11 \& 13$	5	10	$3^{\prime}-8^{\prime \prime}$
BENDING DIAGRAMS (See Note 2)				

BENDING DIAGRAMS (See Note 2)

BARS 5A, 4M1, 4M2 BARS 301 \& 3 1

SECTION A-A FOR CONVENTIONAL REINFORCING (Showing Bars 5K, 5Y \& $5 Z$ Only)

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 16 \end{gathered}$	

BARS $5 K \& 5 Z$ BARS $3 D 1,3 D 2 \& 3 D 3$

Notes
. Work this Index with Index 20010 - Typical lorida-I Beam Details and Notes and the Structures Plans.
B. For referenced notes, see Index 20010.
F. For Dimensions A, B, C, D, L, R\&V1 and
number of spaces S1 thru S4, see Floridat number of spaces S1 thru S4, see Florida-I
Beam - Table of Beam Variables in Structures Plans.
Dim. $L=$ Beam Casting Length
Overall Length of Beam along \& Beam including length increase as required for Beam placed
on grade and Dim. R to compensate for elastic and time dependent shortening effects) Direction of Stationing $1 \ldots S 2$ sp. @ $9^{\prime \prime} \ldots S 3$ sp. @ $1^{1}-0^{\prime \prime} \ldots S 4$ sp. @ $1^{1^{-6}}$... Spacing Bars 5K (Symmetrical about \& @ top of Beam)

elevation at end of beam Flanges Not Shown for Clarity) (End 1 Shown, End 2 Similar)
\qquad S2 sp.@ 9"

$$
\dagger \dagger^{\text {S4 sp. @ } 1^{\prime}-6^{\prime \prime}} \underset{1^{\prime}-6^{\prime \prime} \max }{ }
$$

\qquad

$$
\text { l'-6 } \left.^{\prime \prime} \text { max. }\right\rceil
$$

alternate reinforcing steel (wWr) Details

These dimensions are
measured perpendicular oo the end of beam

Spacing Bars $5 \mathrm{~K} \quad 21 / 2^{1{ }^{\prime *}}$ Spacin $\frac{\text { Spacing }}{\text { or 4M2 }}$

 16 sp.@ $3^{1 / 4}$ /n $^{\prime \prime}$ (Nominal) 12\&9)

ELEVATION at END OF BEAM (Flanges Not Shown For Clarity) (End 1 Shown, End 2 Similar)

CONVENTIONAL REINFORCING BAR BENDING DETAILS

BILL OF REINFORCING STEEL				
MARK	$\begin{gathered} \text { NOTE } \\ \text { NUMBERS } \end{gathered}$	SIZE	NUMBER REQUIRED	LENGTH (NOTE 2)
A	-	5	8	$19^{\prime}-0^{\prime \prime}$
C1	9, 10 \& 11	3	13 (End 1)	Varies
C2	9, 10 \& 11	3	13 (End 2)	Varies
D1	9, 10, $11 \& 14$	3	26 (End 1)	Varies
D2	9, 10, $11 \& 14$	3	26 (End 2)	Varies
D3	$9 \& 14$	3	See Table	$4^{\prime}-3^{\prime \prime}$
K	$2,9,11 \& 13$	5	See Table	$4^{\prime}-11^{\prime \prime}$
M1	$9 \& 10$	4	11 (End 1)	Varies
M2	$9 \& 10$	4	11 (End 2)	Varies
M3	9	4	See Table	$3^{\prime}-8^{\prime \prime}$
N	$3 \& 4$	$38^{\prime \prime} \emptyset$ Strand	4	Dim. L
Y	$9 \& 11$	5	12	3'-3"
z	2, 9, $11 \& 13$	5	10	$4^{\prime \prime-5 \prime \prime}$

BENDING DIAGRAMS (See Note 2)

BARS 5K \& 5Z BARS 3D1, 3D2 \& 3D3
NOTES:
A. Work
A. Work this Index with Index 20010 - Typical Florida-I Beam Details and Notes and the
Florida-I Beam - Table of Beam Variables in Structures Plans.
B. For referenced notes, see Index 20010. For Dimensions A, B, C, D, L, R\&V1 and
number of spaces S1 thru S4, see Florida-I Beam - Table of Beam Variables in Structures Plans.
Dim. $L=$ Beam Casting Length
Overall Length of Beam along \& Beam including length increase as required for Beam placed
on grade and Dim. R to compensate for elastic and time dependent shortening effects) Direction of Stationing
 (Showing Bars $5 K, 5 Y \& 5 Z$ Only)
elevation

$\begin{array}{cc} \hline \text { FDOT } & \text { FY } 2017-18 \\ \text { DESIGN STANDARDS } \end{array}$	FLORIDA-I $45 \mathrm{BEAM}-\mathrm{STANDARD}$ DETAILS	$\begin{gathered} \text { INDEX } \\ \text { NO. } \\ 20045 \end{gathered}$	SHEET NO. 1 of 2

alternate reinforcing steel (wWR) details

These dimensions are
measured perpendicula
o the end of beam

SECTION A-A FOR CONVENTIONAL REINFORCING (Showing Bars 5K, 5Y \& 5Z Only)

ION AT END OF BEAM
 Flanges Not Shown For Clarity) (End 1 Shown, End 2 Similar)

Dim. $L=$ Beam Casting Length

CONVENTIONAL REINFORCING BAR BENDING DETAILS

BILL OF REINFORCING STEEL				
MARK	$\begin{gathered} \text { NOTE } \\ \text { NUMBERS } \end{gathered}$	SIZE	NUMBER REQUIRED	LENGTH (NOTE 2)
A	-	5	8	$22^{\prime \prime}-0^{\prime \prime}$
C1	9, 10 \& 11	3	14 (End 1)	Varies
C2	9, 10 \& 11	3	14 (End 2)	Varies
D1	9, 10, $11 \& 14$	3	28 (End 1)	Varies
D2	9, 10, $11 \& 14$	3	28 (End 2)	Varies
D3	9 \& 14	3	See Table	$4^{\prime}-3{ }^{\prime \prime}$
κ	2, 9, 11\& 13	5	See Table	$5^{\prime}-8{ }^{\prime \prime}$
M1	$9 \& 10$	4	12 (End 1)	Varies
M2	$9 \& 10$	4	12 (End 2)	Varies
M3	9	4	See Table	$3^{\prime}-8^{\prime \prime}$
N	$3 \& 4$	3/8" \varnothing Strand	4	Dim. L
Y	$9 \& 11$	5	12	$4^{\prime}-0^{\prime \prime}$
z	2, 9, $11 \& 13$	5	10	$5^{\prime}-2^{\prime \prime}$

BENDING DIAGRAMS (See Note 2)

BARS 5A, 4M1, 4M2 $4 M 3 \& 5 Y$

BARS $5 K \& 5 Z$ BARS 3D1, $3 D 2 \& 3 D 3$

NOTES

A. Work this Index with Index 20010 - Typical Florida-I Beam Details and Notes and the
Florida-I Beam - Table of Beam Variables in Structures Plans.
B. For referenced notes, see Index 20010.
C. For Dimensions A, B, C, D, L, R\&V1 and
number of spaces S1 thru S4, see Florida-I number of spaces
Beam - Table of Beam Variables in Structures Beam
Plans.

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 16 \end{gathered}$	

FDOF̄\} | FY 2017-18 |
| :---: |
| DESIGN STANDARDS |

alternate reinforcing steel (WWR) details

END VIEW

SECTION A-A FOR CONVENTIONAL REINFORCING (Showing Bars 5K, 5Y \& $5 Z$ Only)
elevation at end of beam
Flanges Not Shown For Clarity) (End 1 Shown, End 2 Similar)

Dim. $L=$ Beam Casting Length

Overall Length of Beam along
on grade and Dim. R to compensate for elastic and time dependent shortening effects

Work this Index with Index 20010 - Typical
Florida-I Beam Details and Notes and the Florida-I Beam Details and Notes and the in Structures Plans.
B. For referenced notes, see Index 20010.

For Dimensions A, B, C, D, L, R\& V1 and
number of spaces S1 thru S4, see Florida-I number of spaces S1 thru S4, see Florida-I
Beam - Table of Beam Variables in Structures Plans.

alternate reinforcing steel (wWr) Details

PARTIAL PLAN VIEW (SHOWING TOP FLANGE)
(End 1 Shown, End 2 Similar)
(Bars 5A, $4 Y \&$ Strands N not shown for clarity)

For number of Bars, spacing and
placement details see Sheet 3. See
Sheet 3 for Conventional Reinforcement,
Sheet 4 for WWR.

PARTIAL SECTION THRU WEB (SHOWING BOTTOM FLANGE)
(End 1 Shown, End 2 Similar)
(Bars $4 Y \&$ Strands not shown for clarity)

TYPICAL SECTION
SHOWING CUT STRAND RECESS LIMITS

TYPICAL SECTION AFTER PROTECTING
$=$ STRAND CUTTING AND PROTECTING DETAIL $\overline{=}$

				DETAIL	ND NOTES
LAST REVISION 11/01/16	Ond	$\begin{gathered} \text { FDOT } \\ \text { DESIGN } 2017-18 \\ \text { STANDARDS } \end{gathered}$	AASHTO TYPE II BEAM	$\begin{gathered} \text { INDEX } \\ \text { NO. } \\ 20120 \end{gathered}$	$\begin{gathered} \text { SHEET } \\ \text { NO. } \\ 2 \text { of } 4 \end{gathered}$

BUILD-UP DIAGRAM FOR TANGENT SPANS (ALONG \& BEAM) (CASE 1)

BUILD-UP DIAGRAM FOR SAG VERTICAL CURVE \& HORIZONTAL CURVE SPANS (ALONG \& BEAM) (CASE 2)

BUILD-UP DIAGRAM FOR CREST VERTICAL CURVE SPANS - CONTROL AT \& SPAN (ALONG q BEAM) (CASE 3)

Begin Spa

bUild-up diagram for crest vertical curve spans Control at begin or end span (ALONG \& BEAM) (CASE 4)

BEAM CAMBER AND BUILD-UP NOTES:

The build-up values given in the Data Table* are based on theoretical beam cambers The Contractor shall monitor beam cambers for the purpose of predicting
camber values at the time of the deck pour. If the predicted cambers based
on field measurements differ more than $+/-1 / 2$ " from the theoretical "Net Beam
Camber @ 120 Days" shown in the Data Table*, obtain approval from the Engineer to modify the build-up dimensions as required. When the measured beam cambers
create a conflict with the bottom mat of deck steel, notify the Engineer a minimum of 21 days prior to casting.

Dim. "A" includes the weight of the Stay-In-Place Formwork.

DEAD LOAD DEFLECTION DIAGRAM

BUILD-UP OVER BEAMS
(Florida-I Beam Shown
AASHTO Type II Similar

$$
\begin{aligned}
& \text { * NOTE: } \\
& \text { Work this Index with the Build-up and Deflection } \\
& \text { Data Table for Florida-I and AASHTO Type II Beams } \\
& \text { in Structures Plans. }
\end{aligned}
$$ in Structures Plans.

CASE 2

CASE 3

BEAM NOTES

1. Work this Index with the Florida-U Beam Standard Details (Index 20248, 20254 20263 and 20272) and the Table of Beam Variables in Structures Plans.
2. All bar bend dimensions are out-to-out.
3. Concrete cover: 2 inches minimum. Maximum aggregate size is a No 67.
4. Concrete face may be sloped with a maximum $1: 24$ draft to facilitate formwork removal.
5. Strands N: $3 / 8^{\prime \prime} \varnothing$ minimum, stressed to $10,000 \mathrm{lbs}$. each
6. Tie Bars $5 K$ to the fully bonded strands in the bottom row (see "STRAND PATTERN" on the
7. Table of Beam Variables sheet in Structures Plans)

Engineer may approve the use of deformed WWR in lieu of Bars 6A1, 4A2, 5B, 4C, $5 \mathrm{E}, 4 \mathrm{~F}, 4 \mathrm{G}, 4 \mathrm{H}, 5 \mathrm{~K}, 5 \mathrm{~L}$ and 4 M . The spacing and sizes of deformed WWR must match the reinforcing sizes shown on the Florida-U Beam Standard Details sheets.
8. For Beams with vertically beveled end conditions, where "Dim. P" exceeds 1", place Bars 5E, and the first Bars 4 F and 5 K parallel to the end of the beam. Fan the remaining Bars 4F and 5K within the limits of "Dim. B" (End Diaphragm) at equal spaces until vertical
9. Embedment of Safety Line Anchorage Devices are permitted in the top flange to
accommodate fall protection systems. See shop drawings for details and spacing of any
anchorage devices or other required embedded hardware.
10. Intermediate diaphragms must be cast and concrete release strength obtained prior to
removing the beam from casting bed.
11. Place drains pipes adjacent to each w
beb at each beam end (four drains per beam).
Place drains pipes adjacent to each web
A. Drain Pipe: $2^{\prime \prime}$ NPS Schedule 80 PVC.
B. Coxer, wrap and secure wire screen around the end

Provide removable pipe plugs during casting. Remove plugs from the inside of
pipes after casting.
12. Protection of Strands:
A. Provide a 2" deep recess around all strands (including dormant) or strand groups. Extend the recessed blockout to the web face and bottom of the flange for the
B. Aftem row of strands. ${ }^{\text {bions }}$. ${ }^{1 / 2}$ " from recessed surface and fill the blockout to protect strands with Type F-2 or a Epoxy Compound in accordance with
specification Section 926.
13. Use Stay-In-Place metal deck forms inside the beams.
14. Prior to deck placement, provide temporary blocking under each web at both ends of
every beam. Ensure the temporary blocking is adequate to resist movements and every beam. Ensure the temporary blocking is adequate to resist movements and
rotations during deck placement. Leave temporary blocking and bracing in place for minimum of four days after the deck is placed.
15. Based on the deck forming system and deck placement sequence, evaluate and provide
any required temporary bracing between the U Beams. any required temporary bracing between the U Beams.

| $\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 16 \end{gathered}$ | \|l|l | DESIGN STANDARDS | TYPICAL FLORIDA-U BEAM DETAILS AND \mathbb{N} (TES |
| :---: | :---: | :---: | :---: |

(Showing Vertical Bevel of Beam End)

$\overline{\bar{Z}}$ TYPICAL STRAND BLOCKOUT DETAIL $\bar{\square}$ \qquad
Z DESCRIPTION:

END VIEW AT END DIAPHRAGM

SECTION C-C

NOTES:
For ret
For referenced notes see Index 20210

Vertical Face of the Top
Flange and Web and
Underside of the Top
Underside of
Flange (Typ.)

Spacing Bars 5K (Along \& of Beam)
(Bars 4F and 4M ar
Bars 5K as shown)
Bars $5 K$ as shown)

ND DIAPHRAGM
(Bars 3D2 Not Shown For Clarity)
(Bars 3D1 And 3D2 Not Shown For Clarity)

| $\begin{aligned} & \text { LAST } \\ & \text { REVISION } \\ & 11 / 01 / 16 \end{aligned}$ | \|c|c | DESCRIPTION: | $\begin{gathered} \text { FDOTY } \\ \text { FY } 2017-18 \\ \text { DESIGN STANDARDS } \end{gathered}$ | FLORIDA-U $48 \mathrm{BEAM}-\mathrm{STANDARD}$ DETAILS |
| :---: | :---: | :---: | :---: | :---: |

END VIEW AT END DIAPHRAGM

SECTION C-C

Spacing Bars 5K (Along \& of Beam) (Bars 4F and 4M are Paired with
(Bars 4F and 4M ar
Bars 5K as shown)
TOP VIEW OF END DIAPHRAGM
(Bars 3D1 And 3D2 Not Shown For Clarity)

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 16 \end{gathered}$	\|	DESCRIPTION:	$\begin{array}{cc} F Y & \text { 2017-18 } \\ \text { FDOT } \end{array}$	$\mathbb{F L O R I D A}-\mathbb{U} 54 \mathrm{BEAM}-\mathrm{STANDARD} \mathbb{D E T A I L S}$

CONVENTIONAL REINFORCING STEEL BENDING DIAGRAMS

INTERMEDIATE DIAPHRAGM

\geq DESCRIPTION:

LAST
REVISION
REVISION
11/01/16
FDOT) $\begin{gathered}\text { FY } 2017-18 \\ \text { DESIGN STANDARDS }\end{gathered}$
FLORIDA-U 5A BEAM - STANDARD DETAILS
INDEX
NO.
20254

END VIEW at end diaphragm

SECTION C-C

Bars 5K as shown)
TOP VIEW OF END DIAPHRAGM

NOTES:
For referenced note see Index 20210.
(Bars 3D1 And 3D2 Not Shown For Clarity)

the Top Flange and Web and Underside

TOP VIEW OF SKEWED END DIAPHRAGM AND STIRRUP TRANSITION ZONE Bars 3D2 Not Shown For Clarity)

CONVENTIONAL REINFORCING STEEL BENDING DIAGRAMS

BUILD-UP DIAGRAM FOR SAG VERTICAL CURVE \& HORIZONTAL CURVE SPANS (ALONG \& FLANGE) (CASE 2)

BEAM CAMBER AND BUILD-UP NOTES:

The build-up values given in the Data Table* are based on theoretical beam cambers. he Contractor shall monitor beam cambers for the purpose of predicting
camber values at the time of the deck pour. If the predicted cambers based
Camber @ 120 Days" Shown in the Data Table*, obtain approval from the Engineer o modify the build-up dimensions as required. When the measured beam cambers
create a conflict with the bottom mat of deck steel, notify the Engineer a minimum f 21 days prior to casting.

Dim. "A" includes the weight of the Stay-In-Place Formwork

DEAD LOAD DEFLECTION DIAGRAM (ALONG \& BEAM)

Work this Index with the Build-up and Deflection Data Table for Florida-U Beams in Structures Plans.

