

with overburden - half section
without overburden - half section
\qquad CONSTRUCTION OF CURBED ROADWA

* Remove overlying material and organic material within the limits shown and backfill in accordance with Index 505,
unless approved otherwise by the District Geotechnical Engineer; The limits include full median width when applied
10 divided facilities with median widths up to 64'; When median wiath is greater than 64 and for bifurcated roadways
roadway that will
accommodate one future median lane on each roadway unless specified otherwise by the plans.

GENERAL NOTES:

1. All details shown on this Index for removal of organic and plastic materials apply unless otherwise shown on the plans. 2. Utilize excavated materials in accordance with Index 505.
2. Where organic or plastic material is undercut, backfill with suitable material in accordance with Index 505,
unless otherwise shown on the plans.
3. The term "Plastic Material" used in this Index in conjunction with removal of plastic soil is as defined under soil
classifications for Plastic (P) and High Plastic (H) on Index 505.
4. See Index 506 for miscellaneous earthwork details,
5. The term "Organic Material" as used on this Index is defined as any soil which has an average organic content greater than five (5.0) Index and the plans unless directed otherwise by the District Geotechnical Engineer. Determine the average organic content from the test results from a minimum of three randomly sel
on the portion of a sample passing the No. 4 siev.
6. In areas of curbed roadway, where underdrain is to be constructed beneath the proposed pavement, the grade of the underdrain filter Standard Specifications. The minimum grade of underdrain pipe is 0.02 .

typical cut section on tangent

typical cut section on superelevation
——IVIDED FREEWAYS, ARTERIALS, MAJOR COLLECTORS HAVING FLUSH = MEDIANS, ON UNDIVIDED ARTERIALS AND MAJOR COLLECTORS

typical cut section on superelevation
=INTERSTATE FACILITIES, FREEWAYS, DIVIDED ARTERIALS $=$ AND MAJOR COLLECTORS HAVING DEPRESSED MEDIANS

Underdrain (See Index 286)
(See GENERAL NOTE \#T)

PREFERABLE REMOVAL

minimum removal

NOTES:

1. See Sheet 1 for the GENERAL NOTES
2. When the typical cut details are applied to minor collectors and
3. Where frequency of median breaks indicates that it is impractica to leave plastic material in the median, the designer may elect to
indicate total removal of this material. If during construction it becomes apparent, due to normal required construction procedures that it is impractical to leave the plastic material in the median,
total removal of this material shall be approved by the Engineer
4. Refer to roadway cross sections to determine whether minimum Refer to roadway cross section
or preferable removal is used.
5. Where the Preferable Removal method is shown in the plans and it is impossible to olacace the underdrain at the outer Cut Limit due to conflict with storm drain trunk lines, remove to Inner Cut Limit and place underdrain at location shown for Minimum Removal. (See Special Removal Detail)
6. Cross slopes of 0.02 shown above are minimums. Follow the cross
slope of the pavement to the extent possible.

CONSTRUCTION AND LOCATION OF UNDERDRAIN IN CURBED ROADWAY

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ \text { 11/01/16 } \end{gathered}$	\|r	DESCRIPTION:		REMOVAL OF ORGANIC AND PLASTIC MATERIAL	$\begin{gathered} \text { INDEX } \\ \text { NO. } \\ 500 \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { SHEET } \\ \text { NO. } \\ 2 \text { of } 2 \end{array} \end{gathered}$

SYMBOL	$\underline{\text { SOIL }}$		CLASSIFICATION (AASHTO M 145)
S	Select	A-1, A-3, A-2-4 **	
P	Plastic	A-2-5, A-2-6, A-2-7, A-4, A-5, A-6, A-7 (ALL WITH LL < 50)	
H	High Plastic	A-2-5, A-2-7, A-5 or A-7 (ALL wITH LL > 50)	
M	Muck	A-8	

Classification listed left to right in order of preference.
\triangle See General Notes Nos. $4 \& 5$ for utilization of soils classified as organic material or muck

* Certain types of A-2-4 material are likely to retain excess moisture and may be difficult to dry and compact. They should be used in the embankment above the water level existing
time of construction. They may be used in the subgrade portion of the roadbed when ime of construction. They may be used in the subgrade portion of the roadbed when level must be nonplastic and contain less than 15% passing the No. 200 U.S. Standard sieve.
* For cut sections this dimension may be reduced to 24 "; see Index No. 500. For mino
collectors and local facilities this dimension may be reduced to $18^{\prime \prime}$.

FLEXIBLE PAVEMENT

GENERAL NOTES

1. Roadway dimensions are representative. Subgrade dimensions and control lines are standard. The details shown on this Index do not supersede the details shown in the plans or on Index Nos. 500 or 506 .
2. Plastic (P) soils may be placed above the existing water level (at the time of construction) to within 4 feet of the proposed base. It should be placed uniformly in the lower portion of the embankment for some distance along the project rather than full depth for short distances.
3. High Plastic (H) soils excavated within the project limits may be used in embankment construction as indicated on this index. High Plastic soils are not to be used for embankment construction when obtained rom outside the project limits.
4. Select (S) soils having an average organic content of more than two and one-half (2.5) percent, or having Select (S) soils having an average organic content of more than two and one-half (2.5) percent, or having
an individual test value which exceeds four (4) percent, shall not be used in the subgrade portion of the five (5) percent, or an organic content individual test result which exceeds seven (7) percent, shall not be used in the portion of embankment inside the control line, unless written authorization is provided by the District Geotechnical Engineer; these soils may be used for embankment construction outside the control line, unless restricted by the plans or otherwise specified in the plans, provided they can be compacted sufficiently to sustain a drivable surface for operational vehicles as approved by the Engineer. Average
organic content shall be determined from the test results from a minimum of three randomly selected samples from each stratum or stockpile of a particular material. Tests shall be performed in accordanc with AASHTO T 267 on the portion of a sample passing the No. 4 sieve.
5. Highly organic soils, composed primarily of partially decayed organic matter, often dark brown or black in color with an odor of decay, and sometimes fibrous, shall be designated as muck. Further, any stratum or
stockpile of soil which contains pockets of highly organic material may be designated as Muck (M). Highly organic soils shall not be used within the subgrade or embankment portion of the roadbed, with the exception of muck used as a supplement to construct a finish soil layer as described in Section 162 of the FDOT Standard Specifications.

DESIGN NOTES

1. The designer shall take into consideration she expectancy of roadway widening to the outside and utilization of High Plastic (H) soils and/or soils classified as organic material in the embankment.
2. The designer shall take into consideration the position of the drainage swales in the portion of the embankment where Plastic (P) soils, High Plastic (H) soils, or soils classified as organic material oils classified as organic material to locations that will not inhibit the infiltration of stormwater from the swales.

4 See General Notes Nos. $4 \& 5$ for utilization of soils classified as organic material or muck.
** Certain types of A-2-4 material are likely to retain excess moisture and may be difficult to dry and compact. They should be used in the embankment above the water level existing at time of construction. They may be used in the subgrade portion of the roadbed when approved by the District Materials Engineer. A-2-4 material placed belo the existing water level must be nonplastic and contain less than 15% passing the No. 200 U.S. Standard sieve.
For cut sections this dimension may be reduced to 24"; see Index No. 500. For minor collectors and local facilities this dimension may be reduced to $18^{\prime \prime}$

RIGID PAVEMENT - TREATED PERMEABLE BASE OPTION

LAST REVISION $07 / 01 / 09$	D ${ }_{\text {人 }}^{\substack{0}}$ DESCRIPTION:		$\mathbb{E} M B A \mathbb{N} M E \mathbb{N} T$ UTILIZATION	$\begin{aligned} & \text { INDEX } \\ & \text { NO. } \\ & 505 \end{aligned}$	$\begin{gathered} \text { SHEET } \\ \text { NO. } \\ 2 \text { of } 4 \end{gathered}$

SYMBOL	SOIL	CLASSIFICATION (AASHTO M 145)
5	Select	A-1, A-3, A-2-4 **
S+	Special Select	A-3 *** With Minimum Average Lab Permeability of $5 \times 10^{-5} \mathrm{~cm} / \mathrm{sec}$. (0.14 ft //day) as per AASHTO T 21.5
P	Plastic	A-2-5, A-2-6, A-2-7, A-4, A-5, A-6, A-7 (ALL WITH LL<50)
H	High Plastic	A-2-5, A-2-7, A-5 or A-7 (ALL WITH LL>50)
M	Muck	A-8
Classific	listed left	ht in order of preference.

- See General Notes Nos. $4 \& 5$ for utilization of soils classified as organic material or muck.
*** When allowed by the plans, some types of A-2-4 material may be approved in writing by the District Materials Engineer. This material must meet the minimum lab permeability requirement, be nonplastic, and not exceed 12% passing the No. 200 U.S. Standard sieve. writing by the District Materials Engineer and shown in the plans.
* Certain types of A-2-4 material are likely to retain excess moisture and may be difficult to dry and compact They should be used in the embankment above the water level existing at time of construction. A-2-4 material placed

子 $3^{\prime \prime}$ of \#57 or \#89 Coarse Aggregate Mixed Into Top 6".

| $\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 16 \end{gathered}$ | \|c|c | DESCRIPTION: | $\begin{gathered} \text { FDOT } \\ \text { FY 2017-18 } \\ \text { DESIGN STANDARDS } \end{gathered}$ | EMB ANKME | $\begin{gathered} \text { INDEX } \\ \text { NO. } \\ 505 \end{gathered}$ | $\begin{aligned} & \text { SHEET } \\ & \text { NO. } \\ & 4 \text { of } 4 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 07 / 01 / 00 \end{gathered}$		$\begin{gathered} \text { FDOT } \\ \text { DESIGN STANDARDS } \end{gathered}$	MIS CELLANEOUS EARTHWORK DETAILS	$\begin{gathered} \text { INDEX } \\ \text { NO. } \\ 506 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & \text { NO. } \\ & 1 \text { of } 1 \end{aligned}$

SECTION A-A
NORMAL CROWNED SECTION

SECTION D-D
PLANE INCLINED SECTION LT SUPERELEVATION TRANSITION RT.

SECTION B-B SUPERELEVATION SECTION LT. \& RT.

SECTION C-C SUPERELEVATION SECTION LT PLANE INCLINED SECTION RT.

SECTION E-E SUPERELEVATION TRANSITION LT FULL SUPERLEVATION RT.

SECTION F-F
 FULL SUPERELEVATION LT. \& RT.

8-LANE PAVEMENT WITH ONE LANE SLOPED TO MEDIAN

a) 12^{\prime} AND 10' FULL WIDTH
SHOULDERS WITH 5' SHOULDERS WITH 5' OR LESS PAVED WIDTHS,
b) 8' FULL WIDTH SHOULDERS with 4' or less paved wIDTHS

8' FULL WIDTH SHOULDER WITH 5' PAVED WIDTH

6' FULL WIDTH SHOULDER WITH 5' OR LESS PAVED WIDTH
slopes of traveled way and abutting shoulders SHOULDER SLOPES ON SUPERELEVATION SECTIONS

* For shoulders with paved widths 5 FEET OR LESS SEE SPECIAL shoulder break over details

general notes

Maximum rate of superelevation for urban highways and high speed urban streets shall be 0.05 .
2. Superelevation shall be obtained by rotating the plane successively about the break points of the section until the chart. Should the rotation traverse the entire section and further superelevation be required, the remaining rotation of the plane shall be about the low edge of the inside travel lane. Crown is to be removed in the auxiliary lane to the require positive superelevation
3. When positive superelevation is required, the slope of the gutter on the high side shall be a continuation of the slope of the superelevated pavement.
4. In construction, short vertical curves shall be placed at all angular profile breaks within the limits of the superelevation transition.
5. The variable superelevation transtion tength LI Shall have minimum vale oor 75 feet for design speeds of 40 MPH or greate
6. Roadway sections having lane arrangements different from those shown, but composed of a series of planes, shall be superelevated in a similar manter.
7. For superelevation of lower speed urban streets, see the FDOT 'Manual of Uniform Minimum Standards For Design, Construction And Maintenance For Streets And Highways freeways and high speed urban highways, see Index No. 510

$e_{\text {max. }}=0.05$

SUPERELEVATION FOR URBAN HIGHWAYS AND HIGH SPEED URBAN STREETS

| $\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 07 / 01 / 00 \end{array}$ | \|r|cher | DESIGN STANDARDS | SUPERELEVATION URBAN HIGHWAYS AND STREETS | $\begin{gathered} \hline \text { INDEX } \\ \text { NO. } \\ 511 \end{gathered}$ | $\begin{aligned} & \text { SHEET } \\ & \text { NO. } \\ & 1 \text { of } 3 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

TWO TRAVEL LANES EACH DIRECTION

TWO TRAVEL LANES EACH

three travel lanes each direction with median
UNDIVIDED FACILITIES

TWO TRAVEL LANES EACH
DIRECTION WITH MEDIAN

Superelevation rates obtained from the chart or table on Sheet 1 are also applicable to a parabolic crown section. When this section is used, superelevation is established by rotating a tangent about the
arc of the parabolic crown until the desired slope is attained (points arc of the parabolic crown until the desired slope is attained (poi
$A \& B$ on sketch). The normal parabolic crown will be maintained outside the limits of the plane thus formed.

PARABOLIC SECTION

SUPERELEVATION TRANSITION SECTIONS for urban highways and high speed urban streets

SECTION O-A to O-D

TWO LANES EACH DIRECTION

SECTION O-A to O-E

TWO LANES EACH DIRECTION WITH MEDIAN AND AUXILIARY LANE
Note:
Similar schemes should be used for roadways having other sections.
EXAMPLE SUPERELEVATION SECTIONS AND PROFILES FOR URBAN HIGHWAYS AND HIGH SPEED URBAN STREETS

LEGEND

 Return Radius Point Buffer Areas Buffer AreasFrontage
Boundary Li Boundary Line
w Driveway Wiath Driveway Angle Corner Clearance Setback
Outside Radius
Inside Radius
Distance Between Connections
F Flare

For Corner Clearnace (C) Requirements see General Note 3.
For Additional Information Refer To FDOT Rules Chapters 14-96 And 14-97.
SKETCH ILLUSTRATING DEFINITIONS

ELEMENT DESCRIPTION	CURBED ROADWAYS			FLUSH SHOULDER ROADWAYS		
	$\begin{gathered} \text { 1-20 Trips/Day } \\ \text { or } \\ \text { 1-5 Trips/Hour } \end{gathered}$	$\begin{gathered} 21-600 \text { Trips/Day } \\ \text { or } \\ 6-60 \text { Trips/Hour } \end{gathered}$	601-4000 Trips/Day or 61-400 Trips/Hour	1-20 Trips/Day or 1-5 Trips/Hour	21-600 Trips/Day or 6-60 Trips/Hour	601-4000 Trips/Day or 61-400 Trips/Hour
		2-Way \square	2-Way \square		2-Way \square	2-Way \square
CONNECTION WIDTH w	$\begin{aligned} & 12^{\prime} \operatorname{Min} . \\ & 24^{\prime} \mathrm{Max} . \end{aligned}$	$\begin{gathered} 24^{\prime} \text { Min. } \\ 36^{\prime} \mathrm{Max} . \end{gathered}$	$\begin{gathered} 24^{\prime} \text { Min. } \\ 36^{\prime} \operatorname{Max} . \end{gathered}$	$\begin{aligned} & 12^{\prime} \text { Min. } \\ & 24^{\prime} \text { Max. } \end{aligned}$	$\begin{aligned} & 24^{\prime} \text { Min. } \\ & 36^{\prime} \mathrm{Max} . \end{aligned}$	$\begin{gathered} 24^{\prime} \text { Min. } \\ 36^{\prime} \text { Max. } \end{gathered}$
FLARE (Drop Curb) F	$10^{\prime} \mathrm{min}$.	$10^{\prime} \mathrm{min}$.	N/A	N/A	N/A	N/A
RETURNS (Radius) R \& U	N/A	\triangle	$\begin{aligned} & \text { 25' Min. } \\ & 50^{\prime} \text { Std. } \\ & 75^{\prime} \text { Max. } \end{aligned}$	$\begin{aligned} & \text { 15' Min. } \\ & \text { 55' Std. } \\ & 50^{\prime} \text { Max. } \end{aligned}$	$\begin{aligned} & \text { a' Min. } \\ & 55^{\prime} \text { Std. } \\ & \text { 55' Max. } \end{aligned}$	$\begin{aligned} & 25^{\prime} \text { Min. } \\ & 50^{\prime} \text { Std. } \\ & \text { (Or 3-Centered Curves) } \end{aligned}$
angle of drive y		$60^{\circ}-90^{\circ}$	$60^{\circ}-90^{\circ}$		$60^{\circ}-90^{\circ}$	$60^{\circ}-90^{\circ}$
divisional island (Throat Median)		4'-22' Wide	4'-22' Wide		4'-22' Wide	4'-22' Wide
SETBACK G	12' Min., All categories. See General Note No. 5					

Side road intersection design, with possible auxiliary lanes and channelization, may be necessary. Intersection design, with possible auxiliary lanes and channelization, should be considered for connections with more than 4000 trips/days.
\square "2-Way" refers to one "in" movement and one "out" movement ie,
When more than 2 lanes in the turnout connection are required, the 36^{\prime} max widt or right turn lanes on the connection. adversely affects traffic flow. These cases require documented site specific study and design.
\triangle Small radii may be used in lieu of flares as approved by the Department.
DESIGN NOTE: 1 -Way connections will be designed to effectively eliminate
DESIGN NOTE: 1 -Way connections will be designed to effectively eliminate unpermitted movements.
NOT INTENDED FOR FULL INTERSECTION DESIGN
SUMMARY OF GEOMETRIC REQUIREMENTS FOR DRIVEWAY TURNOUTS

GENERAL NOTES

1. For definitions and descriptions of access connection "Categories" and access "Classifications" of highway segments, and for other detailed information on access to
the State Highway System, refer to FDOT Rule Chapter 14-96, "State Highway Connection Permits Administrative Process" and Rule Chapter 14-97, "State Highway System Access Management Classification System And Standards."
2. For this index the term 'turnout' applies to that portion of driveways or side roads adjoining the outer roadway. For this index the term 'connection' encompasses a
driveway or side road and their appurtenant islands. separators, transition tapers, auxiliary lanes, travelway flares, drainage pipes and structures, crossovers, sidewalks, curb cut ramps, signing, pavement marking, required signalization, maintenance of traffic or other means of access to or from controlled access facilities. The turnout requirements set forth in this index do not provide complete intersection design, construction or maintenance requirements.
3. The location, positioning, orientation, spacing and number of connections and median openings shall be in conformance with FDOT Rule Chapter 14-97.
4. On Department construction projects all driveways not shown on the plans shall be reconstructed at their existing location in conformance to these standards, or, in
5. Driveways shall have sufficient length and size for all vehicular queueing, stacking, maneuvering, standing and parking to be carried out completely beyond the right of way line. Except for venicles stopping to enter the highway, the turnout areas and drives within the rigt
leaving the highway.
6. Connections with expected dally traffic over 4000 vpd shall be constructed as intersecting side roads. The design requirement of this index and that of the local government will be used to select appropriate connection widths, radii and arersection design, subject to the approval of the Department. For connections with curb or radius returns are required in accordance with existing or planned connections. Where radius returns apply, the design requirements of this index and that of the local government will be used to select appropriate connection widths, radii and intersection design, subject to the approval of the Department.
connections that are intended to daily accommodate either multi-unit venicles single unit vehicles exceeding 30^{\prime} in length, returns with 50^{\prime} radii shall be used,
Inless otherwise called for in the plans or otherwise stipulated by permit. Wher large numbers of multi-unit vehicles will use the connection, the connection width and radii shall be increased and auxiliary lanes, tapers, lane flares, separators and/or islands constructed, as determined by the Department to be necessary for safe turning movements.
7. Any connection requiring or having a specified median opening with left turn storage and served directly by that opening shall have radial returns.
8. Where a connection is intended to align with a connection across the highway, the through lanes shall align directly with the corresponding through lanes.
9. For new connections and for connections on all new construction and reconstruction projects, pavement materials and thicknesses shall meet the requirements applicable o either that detailed for "Curbed Roadway-Flared Turnouts", or, that described in
"Table 515-1" for connections with radial returns and/or auxiliary lanes.
10. The responsibility for the cost of construction or alteration to an access connection shall be in accordance with FDOT Rule Chapter 14-96.

DESIGN NOTES

1. Prior to the adoption of FDOT Rules Chapters 14-96 and 14-97, connections to the State Highway System were defined and permitted by Classes. Connections have been
redfined by Categories under Rule 14-96; and, the term "Class" has been applied to highway segments of the State Highway System as defined under Rule 14-97.
$\stackrel{\left.\begin{array}{c}\text { Driveway Width (W) } \\ \text { (See Sheet 1) }\end{array}\right)}{ }$
All $1 / 2$ " joints shall be constructed with preformed joint filler.
1/8" Open joints placed at equal (20' max.) intervals for driveways over 20 wide. Joints in curb and gutter to match joints in driveways.
Δ When connecting to side road curb and gutter sections, the no drop curb curb and qutter, no driveway should encroach on the corner radius.

Q Diveways (6 concrete) shall be of a uniform wiath (W) to the right of way line.

- Alpha-numeric identification of a flared driveway type specifically called for in the plans, see sheets 3 and 4.

joint pattern when concrete drive constructed INSET

TURNOUT WITHOUT SIDEWALK Distance Between Connections ' D ' See
'Sketch Illustrating Definitions' and General Note No. 3

PLAN B

PLAN A
TURNOUT WITH SIDEWALK AND UTILITY STRIP (LESS THAN 10')

UTILITY STRIP (10' OR GREATER)

SPECIAL NOTES FOR CURBED ROADWAYS
FLARED TURNOUTS
5. Maintenance of pavement shall extend out to the right of way or 2^{\prime} beyond the back of sidewalk, whichever distance is less.
6. The maintenance and operation of highway lighting, traffic signals, associated equipment, and other necessary devices shall be the responsibility of a public agency.
7. All pavement markings on the State highways, including acceleration and deceleration lane markings, and signing installed for the operation of the Stat highway shall be maintained by the Department.
8. All signing and marking installed for the operation of the connection (such as stop bars and stop signs for the connection) shall be the responsibility of the permittee.
9. All sidewalk surfaces crossing driveways with a cross slope shown in this

All sidewalk surfaces crossing driveways
Index to be 0.02 shall be 0.02 Maximum.

DESIGN NOTES FOR CURBED ROADWAY - FLARED TURNOUTS

1. Drop curb, concrete sidewalks ($6^{\prime \prime}$ thick) and driveways ($6^{\prime \prime}$ thick) shall meet Specification Sections 520 and 522. The driveway foundation shall meet the requirements of Subarticle 522-4.
2. For details of drop curb and sidewalk curb ramps refer to Indexes 300 and 304 respectively.
3. Where turnouts are constructed within existing curb and gutter, the existing curb and gutter shall be removed either to the nearest joint beyond the flare curb constructed in accordance with Notes Nos. 1 and 2 .
4. For turnouts with radial returns see the requirements under the "Summary of Shoulder Readway-Turnout Turnouts", the "General Notes", the details of "Flush Grubbing, Stabilization And Base At Intersections".
. Driveways indicated as 'Adverse Applications' are those with slopes that can cause overhang drag for representative standard passenger vehicles under fully loaded conditions; or, those with slopes that can cause drivers who are leaving the roadway to

Driveways indicated as 'Marginal Applications' are those with slopes that can cause overhang drag for representative standard passenger vehicles under fully loaded contions when the driveway is located on the low side of fully superelevated roadways.
Driveways indicated as 'General Applications' are those with slopes that can readily accommodate representative standard passenger vehicles and those that can accommodate representative standard trucks, vans, buses and recreational vehicles operating under normal crown and superelevation conditions.
. The standard flared driveways on this index may not accommodate vehicles with low bed low undercarriage or low appendage features. Where such vehicles are design vehicles, driveways shall have site specific flare designs or Category III designs.
3. When specific flare type driveways shall be constructed, the type shall be designated in the plans using the assigned alpha-numeric designation.

CURBED ROADWAY - FLARED TURNOUTS
LAST
REVISION
$11 / 01 / 16$

DESCRIPTION:
1/01/16

FDOTT

MODIFICATIONS OF 'ADVERSE' AND 'MARGINAL' APPLICATIONS

G 13

G 12

G 11

$M 2$

M 12

M 1

SIDEWALK ADJACENT TO CURB

M 11
SIDEWALK WITH UTILITY STRIP ON 0.02 SLOPE

SIDEWALK WITH UTILITY STRIP ON 0.04 SLOPE

* See 'design notes for curbed roadway - flared turnouts'
modifications to adverse and marginal sections

drainage section

turnout profile and end view

FLUSH SHOULDER ROADWAY - TURNOUT CONSTRUCTION Specifications.

LIMITS OF CLEARING \& GRUBBING, Stabilizing and base at intersections

INTERSECTIONS NOTES:

- Return Radius Point or Transition Point.

DRIVE ENTRANCES NOTES

Drainage pipe size and length shall be that shown on the plans, or as stipulated by permit, or, as determined by the Engineer during construction. The size shall be at least that established by the FDOT District, but not less than 15 " diameter or equivalent. For minimum cover over drainage pipe see
Specification Section 125. Pipe arch or elliptical pipe may be required to obtain necessary cover. At minimal cover applications a modified pavement apron is permitted. See 'PERMISSIble PaVEment Modification' Index 273. For spacing between adjacent pipe end treatments see Index 273.

- Stable material may be required for graded turnouts to private property as directed by the Engineer in accordance with Section 102-8 of the Standard

区 The 5^{\prime} pavement at graded connections is not required where there is paved shoulder 4^{\prime} or more in width. The 5^{\prime} pavement requirement may be waived for connections serving one or two homes or field entrances with less than 20 trips per day, or 5 trips per hour as approved by permit or by the Engineer, or when not itemized in the plans.
Paved turnouts shall be constructed for all paved connecting facilities. The connecting point will be determined by the Engineer.
Paved turnouts shall be constructed for all business, commercial, industrial or high volume residential graded connecting facilities. The connecting point shall be 30^{\prime} from edge of travel way or at R/W line, whichever is less.

Paved turnouts shall be constructed for all connecting facilities over 4000 vehicles per day. The connecting point shall be at the R/W line.

- See "Summary of Geometric Requirements For Turnouts" chart for return radii lengths and supplemental information.
- Return Radius Point or Flare Point.

PAVEMENT STRUCTURE FOR TURNOUTS AND AUXILIARY LANES TABLE 515-1

NOTES

1. Auxiliary lane pavements and crossover pavements shall be maintained by the Department.
2. Department maintenance of turnout pavement extends 5^{\prime} from edge of the travel way or to the edge of paved shoulder, whichever is greater. The remainder of any turnout paved area on the right of way shall be maintained by the owner or his authorized agent. As a
function of routinely reworking shoulders, the Department may grade and shape existing material on nonpaved areas beyond the maintained pavement.
3. Control and maintenance of drainage facilities within the right of way shall be solely the responsibility of the Department, unless specified differently by Department permit.
4. The maintenance and operation of highway lighting, traffic signals, associated equipment, and other necessary devices shall be the responsibility of a public agency.
5. All pavement markings on the State highways, including acceleration and deceleration lane markings, and signing installed for the operation of the State highway shall be maintained by the Department.
6. All signing and marking installed for the operation of the connection (such as stop bars and stop signs for the connection) shall be the responsibility of the permittee.

LIMITS OF

CONSTRUCTION AND MAINTENANCE FOR FLUSH SHOULDER ROADWAY CONNECTIONS

LENGTHS (L) (FT.)								
A	CRESTS				SAGS			
	Straight		ROUNDED		Straight		ROUNDED	
	Desirable	Minimum	Desirable	Minimum	Desirable	Minimum	Desirable	Minimum
6-13\%	3	0	5	0	3	0	5	0
14\%	3	0	10	0	3	0	10	0
15\%	3	2.5	10	3	5	3	10	5
16\%	5	3	10	4	6	4	10	6
17\%	6	3.5	10	5	8	5	10	7
18\%	6	4	10	6	9	6	10	8
19\%	7	4.5	10	7	11	7	12	9
20\%	8	5	11	8	12	8	13	10
21\%	9	5.5	12	9	13	8.5	14	11
22\%	10	6	13	10	14	9	16	12
23\%	10	6.5	14	10.5	14	9.5	16	12.5
24\%	11	7	15	11	15	10	17	13
25\%	12	7.5	15	11.5	16	10.5	18	13.5
26\%	12	8	16	12	17	11	18	14
27\%	13	8.5	17	12.5	17	11.5	19	14.5
28\%	14	9	17	13	18	12	20	15
29\%	NA	NA	22	14	NA	NA	21	17
30-31\%	NA	NA	23	15	NA	NA	22	18
32-33\%	NA	NA	24	16	NA	NA	23	20
34-36\%	NA	NA	26	17	NA	NA	25	21
37-38\%	NA	NA	27	18	NA	NA	26	22
39-41\%	NA	NA	29	19	NA	NA	28	24
42-43\%	NA	NA	30	20	NA	NA	29	25
44-46\%	NA	NA	32	21	NA	NA	31	26
47-48\%	NA	NA	33	22	NA	NA	32	27
49-51\%	NA	NA	34	23	NA	NA	34	28
52-54\%	NA	NA	36	24	NA	NA	35	30
55-56\%	NA	NA	37	25	NA	NA	36	31
Rounded: Either circular, parabolic, or spline curvature. The plans or the Engineer may specify a particular type of curvature.								
Desirable: Desirable minimum lengths Minimum: Absolute minimum lengths				\{Greater lengths than minimum and desirable are recommended where practical for flatter and smoother profile.\}				

recommended turnout profile
transition lengths (L) (fT.)

STORMWATER RUNOFF AND PROFILE OPTION NOTES

1. Turnouts shall neither cause water to flow on or across the roadway pavement, nor cause water ponding or erosion within the State right of way. On all Flush Shoulder Roadway turnouts the
transition (L) nearest the roadway shall be sloped or crowned to direct stormwater runoff to the roadside ditch. Inlets, flumes or other appropriate runoff control devices shall be constructed when runoff volumes are sufficient to cause erosion of the shoulder. Similar runoff control devices shall be constructed as necessary to properly direct and control the stormwater runoff on
2. The option 1 profile is intended for locations where roadway, turnout taper and auxiliary lane stormwater runoff volumes are relatively large. The Option 2 profile is intended for locations
where runoff volumes are relatively small and/or where there is no roadside ditch.
where runoff

$\begin{aligned} & \text { LAST } \\ & \text { REVISION } \\ & 11 / 01 / 16 \end{aligned}$		DESCRIPTION:	DESIGN STANDARDS	$T \mathrm{~T}$ NOUTS $A \mathbb{N D}$ DRIVEWAYS	$\begin{gathered} \text { INDEX } \\ \text { NO. } \\ 515 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & \text { NO. } \\ & 7 \text { of } 7 \end{aligned}$

SECTION AA WITH WIDENING

See "Summary of Geometric Requirements For Turnouts" Index No. 515 For Return Radii Lengths.
\qquad
\widehat{A}
Al 1 in

YPE I TURNOUT
Typical Half-Section For Automobile Traffic

TYPE II TURNOUT Typical Half-Section
For Truck-Trailer Traffic

AREAS FOR ONE 5' DEEP TURNOUT (SY)				
Drive Width (Ft.)	Intersection			
	Normal		skewed	
	Type I	Type II	Type I	Type II
12	26	51	31	60
14	27	52	33	61
16	28	53	34	63
18	29	54	35	64
20	31	55	37	65
22	32	56	38	67
24	33	57	39	68
26	34	58	40	69
28	35	59	42	70
30	36	61	43	72
32	37	62	44	73
34	38	63	46	74
36	39	64	47	76
38	41	65	48	77
40	42	66	49	78
42	43	67	51	79
44	44	68	52	81
46	45	69	53	82
48	46	71	55	83
50	47	72	56	85
52	48	73	57	86
54	49	74	58	87
56	51	75	60	88
58	52	76	61	90
60	53	77	62	91

Notes:

1. Turnout structural course to be the same material as roadway leveling or structure course. Structural course not required if asphalt base course and its thickness increased to match edge of roadway pavement.
2. Any Department-approved pavement structure equivalence may be used at the discretion of the Engineer.
3. Additional structural strength may be required if heavy truck loads are anticipated.

GENERAL NOTES

1. Turnouts are to be constructed or resurfaced for low volume (single family, duplex, farm, etc) residential connections as directed by the Engineer
2. Turnout construction is not required for low volume residential connections where roadway shoulders are paved.
3. Connections outside the 5' limit are to be constructed as directed by the Engineer.
4. The contract unit price for Turnout Construction includes the cost for excavation and base.
5. Payment for structural course is to be included in roadway resurfacing pay item.
6. Payment for feathering friction course is to be included in the unit price for Asphaltic concrete Friction Course placed on the roadway. Feathered areas will not be included in measured quantities. Feathering is not required for FC-5 friction course.

* Use multiple applications to achieve desired $1 / 2$ " thickness Note: Intersection thermoplastic rumble strip sets shall be white

THERMOPLASTIC SET

Note: Rumble strips may be required for one or more legs of the intersection lone leg shown for spar on the legs Rumble strips shall be constructed only on the legs
identified in the plans.

SECTION AA FOR THERMOPLASTIC AND ASPHALT RUMBLE STRIP SETS

RAISED RUMBLE STRIPS AT INTERSECTIONS

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVIISION } \\ 07 / 01 / 14 \end{array}$		\qquad FY 2017-18 DESIGN STANDARDS	RAISED RUMBLE STRIPS	$\begin{aligned} & \text { INDEX } \\ & \text { NO. } \\ & 517 \end{aligned}$	NO. 1 of 1

ISOMETRIC - LONGITUDINAL CUT

LOCATION ALONG SHOULDER (FLEXIBLE PAVEMENT)

SHOULDER GROUND-IN RUMBLE STRIPS

GENERAL NOTES FOR SHOULDER GROUND-IN RUMBLE STRIPS

1. Shoulder ground-in rumble strips shall be constructed on limited access facilities.
2. The skip array is the standard array. The continuous array shall be constructed in advance of bridge ends for a distance of 1000^{\prime}, or back to the gore recovery area for mainline interchange bridges; and constructed at other specific locations as called for in the plans.
3. Ground-in rumble strips are to be constructed in accordance with Section 546 of 3. Ground--in rumble stions.
the Specifications.

When friction course extends more than $8^{\prime \prime}$ beyond the edge of the travel lane the extended friction
rumble strip grinding.

NTS
Rigid paVement with flexible pavement shoulder

NTS
RIGID PAVEMENT WITH RIGID PAVEMENT SHOULDER

ISOMETRIC - LONGITUDINAL CUT INSET A

ISOMETRIC - LONGITUDINAL CUT (RIGID PAVEMENT) INSET B

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 07 / 01 / 15 \end{array}$		$\begin{gathered} \text { FDOT } \\ \text { DESIGN STANDARDS } \end{gathered}$	SHOULDER RUMBLE STRIPS	$\begin{gathered} \hline \text { INDEX } \\ \text { NO. } \\ 518 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & \text { NO. } \\ & 2 \text { of } 2 \end{aligned}$

RU LANES - APPROACH AUXILIAR
(Shown Without Shoulder Gutter)

flexible pavement thickness transition
$=$ DETAIL "A" $\bar{\square}$

$$
\overline{\overline{=}} \text { SECTION } C-C=
$$

TWO LANE RAMPS - EXIT TERMINALS

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 16 \end{gathered}$	\|	$\begin{gathered} \text { FDOT } \\ \text { DESIGN STANDARDS } \end{gathered}$	RAMP TERMINALS

 11/01/16

1. For pavement markings refer to Index No. 17346.

4-LaNe undivided flared - symmetrical

INTERSECTION TURNS AND STORAGE

$\begin{gathered} \text { LAST } \\ \text { REVIIIN } \\ 07 / 01 / 00 \\ \hline \end{gathered}$		$\begin{gathered} \text { FDOTY } \end{gathered} \begin{gathered} F Y ~ 2017-18 \\ \text { DESIGN STANDARDS } \end{gathered}$	ROADWAY TRANS ITIONS	$\begin{gathered} \hline I N D E X \\ N O . \\ 526 \end{gathered}$	$\begin{aligned} & \hline \text { SHEET } \\ & \text { NO. } \\ & 1 \text { of } 8 \end{aligned}$

CONNECTING FLARE WITH PAVED SHOULDERS TO EXISTING ROADWAY WITHOUT PAVED SHOULDERS

CONNECTING ROADWAY WITH PAVED SHOULDERS TO EXISTING SYMMETRICAL FLARE WITHOUT PAVED SHOULDERS

CONNECTING ROADWAY WITH PAVED SHOULDERS TO EXISting asymmetrical flare without paved shoulders

connecting similar width pavements

CONNECTING DIFFERENT WIDTH PAVEMENTS

FLARED - PAVED SHOULDERS
$s=$ Design speed (mph).

PAVED SHOULDER TREATMENT AT TRANSITIONS AND CONNECTIONS

22'
MEDIAN

40' MEDIAN

NOTES FOR SHEETS 5 THRU 8

1. The transition details as represented on sheets 5 thru 8 are intended as guidelines
only. The transition lengths, curve data, nose radii and offsets are valid only for
2. Approach lane departures ($\Delta=5^{\circ}$) are suitable for design speeds up to 60 mph. Interior curves ($D=1^{\circ}$) are suitable for normal crown for design speeds up to 50 mph. Merging curves $\left(D \geq 5^{\circ}\right.$) will require superelevation
3. The geometrics of these schemes are associated with the standard subsectional spacing for side roads, but in any case will require modification to accommodate side road location, multilane and/or divided side roads, oblique side roads, crossove
storage and speed change lane requirements, and, other related features. Change lane requirements, and, other related features Z DESCRIPTION:

LEFT ROADWAY CENTERED ON APPROACH ROADWAY

TWO LANE TO FOUR LANE TRANSITION

$\left\{\begin{array}{l}L=W S \text { for speeds }=45 \mathrm{mph} \\ L=\frac{W S^{2}}{60} \text { for speeds } \leq 40 \mathrm{mph} \\ \text { Where: } \\ W=\text { Width of lateral transition in feet. } \\ S=\text { Design speed. }\end{array}\right.$

64' MEDIAN

Where:
$s=$ Design speed.
left roadway centered on thru roadway
four lane to two lane transition

LAST	D	DESCRIPTION:
REVISION	気	
O7/01/00		

FDOT FY 2017-18

64' MEDIAN
$L=w s$ for speeds $=45 \mathrm{mph}$
$L=\frac{W S^{2}}{60}$ for speeds $\leq 40 \mathrm{mph}$
Where:
W = Width of lateral transition in feet.
$5=$ Design speed.
RIGHT ROADWAY CENTERED ON APPROACH ROADWAY
TWO LANE TO FOUR LANE TRANSITION

LAST REVISION $07 / 01 / 00$		\qquad FY 2017-18 DESIGN STANDARDS	ROADWAY TRANS ITIONS

$L=\frac{W S^{2}}{60}$ for speeds $\leq 40 \mathrm{mph}$
${ }^{60}$
W $=$ Width of lateral transition in feet.

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 07 / 01 / 00 \end{array}$	

RIGHT ROADWAY CENTERED ON thRU ROADWAY
four lane to two lane transition

FDDTY | FY 2017-18 |
| :---: |
| DESIGN STANDARDS |

NOTE: Return configurations for each quadrant must be analyzed independently to assure adequate return pavement for semi-trailer inside tracking and for 4' minimum clearance between trucks making opposing movement. The depicted design only applies where roads and streets intersect at 90° to the mainline and have centerlines common with the
亚 RETURNS:

Returns Depicted:
Three Centered Compound Curves For All Returns Depicted:
$120^{\prime}-40^{\prime}-200^{\prime}$ Radii; 2^{\prime} And 8^{\prime} Off sets
Simple Curve with Tars
Simple Curve with Tapers Not Shown:
40' Radius: $1: 15$ and 1.8 Tapers wit
40' Radius; 1:15 And 1:8 Tapers with
2' And $^{\prime}$ ' Offsets Tested (Practical Fit)

SWEPT Path LEGEND
wB 40
su

QUADRANT NOS. $1 \& 2$ VACANT

NOTE: Return configurations for each quadrant must be analyzed independently to assure adequate return pavement for semi-trailer inside tracking. The depicted design only applies where roads and streets intersect at 90° to the mainline. Swept paths are by AutoTURN 4.0 for the AASHTO 2001 SU and WB-40 tractor-semitrailer

40' MEDIAN • 4-LANE DIVIDED • TAPERED TURN BAY • 2001 AASHTO SU \& WB-40

LAST REVISION $07 / 01 / 04$	年\| DESCRIPTION:	DESIGN STANDARDS	DIRECTIONAL MEDIAN OPENINGS	$\begin{gathered} \text { INDEX } \\ \text { NO. } \\ 527 \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { SHEET } \\ \text { NO. } \\ 3 \text { of } 3 \end{array} \end{gathered}$

SPECIFICATIONS

(A SIDE ELEVATION

B END ELEVATION

SECTION

(E) END ELEVATION

eynotes on Sheet 2.
CONCRETE
Concrete: FDOT Class II
Reinforcing Bars: ASTM A615, Grade 60
Welded Wire Fabric: ASTM A-185.
Vapor Barrier: Black 6-Mil Polyethylene.

STEEL
Galvanized Steel Plate: Steel Plate ASTM A36 or A709, in accordance with the requirements of ASTM A123.
Galvanized Fasteners: High-Strength bolts and Wuts in accordance with Specification Section 962 .

Make field repairs to galvanizing in accordance with Specification 562.

WOOD

Comply with American Institute For Timber Construction AITC 108, "Standard For Heavy Timber Construction."

For solid wood decking, comply with AITC 112, "Standard For Tongue And Groove Heavy Timber Standard.

Species: Douglas Fir,
at fabricator's option Preservative Treatment: Pressure treat fabricated nembers with waterborne solution for above $C 3 B$ above ground exposed. UC3B above ground exposed

Wood Decking: Predrill decking at $30^{\prime \prime}$ centers for ateral spiking to adjacent units. Spikes to be 8^{1} spikes galvanized common

FDOT) | FY 2017-18 |
| :---: |
| DESIGN STANDARDS |\quad REST AREA PAVILION

1. The location and construction of mailboxes shall conform to the rules and regulations of the United States Postal Service as modified by this design standard.
2. Mailboxes will not be permitted on Interstate highways, freeways, or other highways where prohibited by law or regulation.
3. The contractor shall give the Postmaster of the delivery route(s) written notice of project construction 7 days prior to the beginning of work, with Saturdays, Sundays and Holidays excluded.

The Contractor shall furnish and install one mailbox in accordance with this design standard at each mail patron delivery location and maintain the box throughout the contract period. The Contractor shall apply box numbers each patron box in accordance with identification specifications of the
Domestics Mail Manual of the U. S. Postal Service; where local street names and house numbers are authorized by the Postmaster as a postal address, the on a different street from the patrons residence, the Contractor shall inscribe the street name and house number on the box
The Contractor shall coordinate removal of the patrons existing mailboxes. Immediately after installing the new mailboxes the Contractor must notify each
"Mail Delivery Patron" by Certified Mail that removal of the existing mailboxes must be accomplished in 21 days after receipt of notices. Patrons shall have the option of removing their existing mailboxes or leaving the mailboxes in place for removal by the Contractor; removal by the Contractor shall be included in the contract unit price for Mailbox, Each. The Contractor shal dispose of mailboxes and supports in areas provided by him.

Reuse of existing mailboxes by the Contractor will not be a requirement under any construction project; however where an existing mailbox meets the design requirements of this standard and is structurally and functionally sound, the Contractor at his option may elect to reuse the existing mailbox in lieu of the Engineer.
4. Mailboxes shall be light sheet metal or plastic construction, in traditional style only, and only in size 1 as prescribed by the Domestic Mail Manual of the U.S. Postal Service (DMM).

Mailbox production standards, lists of approved manufacturers and suppliers of mailboxes, design approval and guidance may be obtained by writing to the Headquarters, Washington, DC 20260
5. Mailboxes shall be located on the right-hand side of the roadway in the rection of the delivery route, except on one-way roads and streets where they may be placed on the left-hand side.
Mailboxes on rural highways shall be set with the roadside face of the box offset from the edge of the traveled way a minimum distance of the greater of the following:
a. Shoulder width plus $8^{\prime \prime}$ to 12
b. 10^{\prime} for ADT over $10,000 \mathrm{vpd}$.
8^{\prime} for ADT 100 to 10,000 vD
6^{\prime} for ADT under 100 ved
$2^{\prime}-6^{\prime \prime}$ for low speed and ADT under 100 vpd .
When a mailbox is installed within the limits of guardrail it should be placed behind the guardrail whenever practical.

Mailboxes on curbed highways, roads, and streets shall be set with the face of the box between $6^{\prime \prime}$ and $12^{\prime \prime}$ behind the face of curb. If the sidewalk abuts the curb or if an unusual condition exists which makes it difficult or impractical to install or serve boxes at the curb, the Contractor, with concurrence of the local ostal authority, may be permitted to install all mailboxes at the back edge
the sidewalk, where they can be served by the carrier from the sidewalk.
6. Mailboxes shall be set with the bottom of the box between $42^{\prime \prime}$ and $48^{\prime \prime}$ above the mail stop surface, unless the U.S. Postal Service establishes other height restrictions.
7. No more than two mailboxes may be mounted on a support structure unless the support structure and mailbox arrangements have been shown to be safe by crash testing in accordance with NCHRP Report 350.
Neighborhood Delivery and Collection Box Units (NDCBU) are a specialized multiple mailbox installation that must be located outside the highway and street cear zones. The location of NDCBUs is the sole responsibility of the Postmaster for the delivery route under consideration.
8. Lightweight newspaper receptacles may be mounted below the mailbox on the side of the support post in conformance with the USPS Domestic Mail Manual. maintenance.
9. Wood and steel support posts for both single and double mailbox mountings shall be embedded no more than $24^{\prime \prime}$ into the ground.
Concrete, block, brick, stone or other rigid foundation structure or encasement, either above or below the shoulder groundine, will not be permitted for
mailboxes on rural highways. On urban roads and streets where mailbox support posts are set within rigid pavement back of curb, the support posts shall be separated from the pavement by a minimum of $1^{\prime \prime}$ of expansion material.
Support posts shall not be fitted nor installed with surface mount base plates.
10. At driveway entrances mailboxes shall be placed on the far side of the driveway in the direction of the delivery route.
At intersecting roads mailboxes shall be located 100^{\prime} or more from the Centerline of the intersecting road on the far side in the direction of the exceeds 400 vehicles per day.

1. Wood support posts shall be in conformance with the material and dimensiona requirements of Section 952 and the treatment requirements of Section 955 of the Standard Specifications.

Steel support posts shall have an external finish equal to or better than two coats of weather resistant, air dried or baked, paint or enamel. Surface(s) shall be cleaned of all loose scale prior to finishing. The Postal Service prefers that posts be painted white, but other colors may be used when approved by the Engineer. When galvanized posts are used painting is not Mounting brackets, plates, platforms, shelves and accessory hardware surface finishes are to be suited to support post finish.
12. Mailboxes shall be paid for under the contract unit price for Mailboxes, Each Payment shall be full compensation for boxes, posts and accessory items essential for installation in accordance with this standard; erection; adjustments to suit construction needs; and, for identification letters and numbers.
Payment shall be limited to one mailbox per patron address whether the mailbox is new, reused, salvaged, reset or relocated. Payment shall be per mailbox regardless of the number of mailboxes per support or grouping arrangement.
The above compensation shall include any work and cost incurred by the The above compensation shall incluade any work and cost incurr
contractor for removal and disposal of existing mailboxes.
here shall be no payment participation for NDCBU furnishing, assembly, installation, resetting or relocation.

NOTES inch of trunk diameter at breast height.
2. Staging, storage, dumping, washing and operation of
equipment is not permitted within the limits of the tr
3. Install all tree protection prior to commencement of Maintain protection at all times.
4. For closely spaced groups of trees, place the tree protection barrier around the entire group. Place wasta

Place weather resistant sign every 50 along the barrier, may be used in
on this Index. on this Index.
from trunk of tree to tistance extends in all directions protection barrier, including during barrier installation. construction and remove when directed by the engineer
5. Inspect trunk protection and tree quarterly to prevent giraling. Adjust bands to allow tree growth as needed.
6. See plans for any additional requirements or modifications with $6^{\prime \prime}$ minimum text height and provide text in English and
Spanish. Sign should read" Keep Out Tree Protection Area".
8. Alternate tree protection systems approved by the Engineer

PLAN

TREE PROTECTION BARRIER

PLAN
=PROTECTION BARRIER FOR TREE GROUPINGS=

SECTION A-A

NOTES:

. Install trunk protection when Tree Protection Barrier can not be reasonably erected. 2. See Selective Clearing and Grubbing Plan for location of trunk protection. 3. Adjust bands to allow tree growth (inspect quarterly to prevent girdling). $\overline{\bar{Z}}$ TRUNK PROTECTION $\overline{ }$

1. The information shown on this index is intended solely for the purpose of clear sight development and maintenance at intersecting highways, roads, streets and driveways, and
is not intended to be used to establish roadway and roadside safety except as related to clear sight corridors. An analysis of sight distance shall be documented for all intersections.
2. For the purpose of this Index, Minor Road is defined as all intersecting highways, roads, streets and driveways.
3. Details are based on the AASHTO 'A Policy On Geometric Design of Highways And Streets, 2001', CHAPTER 9, INTERSECTION SIGHT DISTANCE, CASES B and F, and Department practices for channelized median openings (left turns from major road).
4. The minimum driver eye setback of 14.5^{\prime} from the edge of the traveled way may be adjusted on any intersection leg only when justified by a documented, site specific field study of vehicle stopping position and driver eye position.
5. For SIGNALIZED INTERSECTIONS sight distances should be developed based on AASHTO Case D-Intersections with Traffic Signal Control'. 'At signalized intersections, the fir stopped on each of the other approaches. Left turning vehicles should have sufficien sight distance to select gaps in oncoming traffic and complete left turns. Apart from these sight conditions, there are generally no other approach or departure sight triangles needed for signalized inter sections. However, if the traffic signal is to be placed on two-way flashing operation (i.e. flashing yellow on the major road approaches and
flashing red on the minor road approaches) under off peak or nighttime conditions, the the appropriate departure sight triangles for Case B, both to the left and to the right, should be provided for the minor road approaches. In addition, if right turns on a red signal are to be permitted from any approach, then the appropriate departure sight triangle to the left for Case B2 should be provided to accommodate right turns from that approach
6. Where curvature, superelevation, adverse split profiles or other conditions preclude the use of standard tree sizes and spacing, proof of view and shadowing restraints must be documented and the size and location of trees in medians detailed in the plans.
7. Intersection sight distance values are provided for Passenger vehicles, su vehicles and Combination Vehicles. Intersection sight distance based on the Passenger Vehicle is suitable for most intersections. Where substantial volumes of heavy vehicles enter the major road, such as from ramp terminals with stop control or roadways serving truck terminals, the
considered.

TREE SPACING TABLE **

1. Details apply to both rural and urban intersections under stop sign control flashing beacon control. For full signal controlled inter sections see Design
Note No 4. At intersections listed in the Department's High Crash Intersection Report, designers shall give attention to keeping to a minimum, objects that distract or affect sight distance
2. Sight distance 'd' applies to normal and skewed intersections (inter secting angles between 60° and 120°), and where vertical and/or horizontal curves are
not present. Sight distance ' d^{\prime} is measured along the major road from the center of the entrance lane of the minor road to the center of the near approach lane (right or left) of the major road. Distances ' d_{L} ' and ' d_{r} ' are measured from the centerline of the entrance lane of the minor road to a point on the edge of the near side outer traffic lane on the major road. Distance ' d_{m} ' is measured from the centerline of the entrance lane of the
minor road to a point on the median clear zone limit or horizontal clearance limit for the far side road of the major road.
3. A. The limits of clear sight define a corridor throughout which a clear sigh window must be preserved. See WINDOW DETALL, Sheet 2
B. Clear sight must be provided between vehicles at intersection stop locations, and vehicles on the major road within dimension ' d '.
C. Since observations are made in both directions along the line of sight, the reference datum between roadways is $3^{\prime}-6 "$ above respective pavements.
4. Barrier systems within intersection sight corridors, where penetration into the sight window might occur, shall be located to provide the least adverse affet practical.
5. The corridor defined by the limits of clear sight is a restricted planting area Drivers of vehicles on the intersecting road and vehicles on the major road
must be able to see each other clearly throughout the limits of ' d ' and 'da'. If in the Engineers judgement, landscaping interferes with the line of sight corridor prescribed by these standards the Engineer may rearrange, relocate or eliminate plantings. Plants within the restricted areas are limited to
6. (Cont.)

Ground Cover \& Trunked Plants (Separate or Combined):
round Covers - Plant selection of low growing vegetation which at maturity does not attain a height greater than $18^{\prime \prime}$ below the sight line datum. For ground cover in apply:
$24^{\prime \prime}$ for trees and palms $=11^{\prime \prime}$ dia.; and, $18^{\prime \prime}$ for sabal palms $>11^{\prime \prime}$ but $=18^{\prime \prime}$ dia. (dia.-within Sight window). Trunked Plants - Plant selection of a mature trunk diameter $4^{\prime \prime}$ or less measured at $6^{\prime \prime}$
above the ground. Canopy or high borne foliage shall never be lower than 5^{\prime} above the sight line datum. These selections shall be spaced no closer than 20.
rees - Trees can be installed with sod; pavers; gravel, mulch; ground covers or other department-approved material. The clear sight window must be in conformance wit he 'WINDOW DETAIL' modified to attain the height requirements listed in 'Ground overs' above
A. Size and spacing shall conform to the Tree Spacing Table.
B. Requirements for placement within medians at median openings and at unsignalized and signalized intersections:
a. The lateral offset of the mature specimen must be maintained as specified in the PPM, Vol. 1, Chapter 4. Specimens whose mature trunk diameter is greater than $18^{\prime \prime}$ shall not be permitted
b. Where left turns from the major road are permitted, no trees shall be located within the distance ' d_{b} ', Sheet 2 of 6 ; and not less than the distances called for in (c) or (d) as applicable.
c. For safety, these additional setbacks are required:

1. Where no left turn lane is present, size and spacing shall conform to the Tree Spacing Table. No trees shall be permitted within 100^{\prime} of the restricted median nose (measured from the edge of pavement),
2. Where left turn lane(s) are present, the following requirements apply:

For low speed facilities (design speed less than 50 mph), size and spacing shall conform to the Tree Spacing Table. No trees shall be permitted within 100^{\prime} of the restricted median nose (measured from the edge of pavement).

For high speed facilities (design speed 50 mph or greater), no trees shall be permitted within 200' of the restricted median nose. Beyond this imit, size and spacing shall conform to the Tree Spacing Table.

Minimum Spacing (c. to c. Of Trunk)	25	90	30	105	35	120	40	135	50	150	55	165	60	180

** Sizes and spacings are based on the following conditions:
a. A single line of trees in the median parallel to but not necessarily colinear with the centerline.
b. A straight approaching mainline, within skew limits as described in No. 2 above.
c. 1. Trees and palms $\leq 11^{\prime \prime}$ in diameter casting a vertical 6' wide shadow band on a vehicle entering at stop bar location when viewed by mainline
driver beginning at distance 'd'; see SHADOW DIAGRAM, Sheet 2 .
2. Sabal palms with diameters $>11^{\prime \prime} \leq 18^{\prime \prime}$ spaced at intervals providing a 2 second full view of entering vehicle at stop bar location when
viewed by the mainline driver beginning at distance 'd'; See PERCEPTION DIAGRAM, Sheet 2 .
d. Trees with diameters $\leq 11^{\prime \prime}$ intermixed with trees with diameters $>11^{\prime \prime} \leq 18^{\prime \prime}$ are to be spaced based on trees with
diameters $>11^{\prime \prime} \leq 18^{\prime \prime}$.

For any other conditions the tree sizes, spacings and locations shall be detailed in the plans; see Design Note 5 .

\Longrightarrow Lane Identification and
Direction of Traffic
7 Pavement Markings

Special Areas Limited to Ground Cover

LAST
REVISION
11/01/16

Z DESCRIPTION:
1/01/16
FDOT\} $\begin{array}{r}\text { FY 2017-18 }\end{array}$ DESIGN STANDARDS

channelized directional median openings

PICTORIAL
2 LANE UNDIVIDED

SIGHT DISTANCE (d) AND RELATED DISTANCES (d_{L}, d_{r}) (FEET)

2 LANE UNDIVIDED

PICTORIAL
2 LANE 2 WAY • FLARED FOR OPPOSING LEFT TURN CENTERED ON ALIGNMENT

PICTORIAL
2 LANE 2 WAY • flared for Single side left turn Centered on alignment

SIGHT DISTANCE (d) AND RELATED DISTANCES (d_{L}, d_{r}) (FEET) 2 LANE 2 WAY • FLARED FOR LEFT TURNS

LEGEND

\square Areas Free of Sight Obstructions

NOTE: See Sheet 2 for intersecting roadway origin of clear sight and quadrant corner clips.

| $\begin{gathered} \text { LAST } \\ \text { REVISION } \\ \text { O7/01/14 } \end{gathered}$ | \|c|c | DESIGN STANDARDS | SIGHT DISTANCE AT INTERSECTIONS | $\begin{gathered} \text { INDEX } \\ \text { NO. } \\ 546 \end{gathered}$ | $\begin{gathered} \begin{array}{c} \text { SHEET } \\ \text { NO. } \\ 3 \text { of } 6 \end{array} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

SIGHT DISTANCE (d) AND RELATED DISTANCES (d_{L}, d_{r}) (FEET) 4 LANE UNDIVIDED

4 LANE UNDIVIDED FLARED - SYMMETRICAL
PICTORIAL
4 LANE UNDIVIDED FLARED - SYMMETRICAL

4 LANE UNDIVIDED WITH OPTIONAL LANE

LEGEND

\square Areas Free of Sight obstructions
NOTE: See Sheet 2 for intersecting roadway origin
of clear sight and quadrant corner clips,

FDOTT

FY $2017-18$
DESIGN STANDA

LEGEND

Areas Free of Sight obstructions

Where The Median Is Sufficiently Wide For The Design Vehicle To Pause In The Median Vehicle Pause Location, i.e., Not From The Cross Road Stop Position; Distances $d_{r} \& d_{m}$ Do Not Apply.
INSET A

NOTES FOR 4-LANE DIVIDED ROADWAY

See Sheet 2 for origin of clear sight line on the minor road.
2. Values shown in the tables are the governing (controlling) sight distances calculated based on 'AASHTO Case B - Intersection with Stop Control on the Minor Road.'
INTERMEDIATE SEMI-TRAILERS (WB-40 \& WB-50)

Vehicle Type	Vehicle Length (Ft.)
Passenger (P)	19
Single Unit (SU)	30
Large School Bus	40
WB-40	45.5
WB-50	55

SIGHT DISTANCES (d) \& $\left(d_{v}\right)$ AND RELATED DISTANCES $\left(d_{L}, d_{r}, d_{m} \& d_{V L}\right)$ (FEET)
4 LANE DIVIDED ROADWAY

PASSENGER VEHICLE (P)

SINGLE-UNIT TRUCK (SU)

LEGEND \square Areas Free of Sight Obstructions

INSET B

Where The Median Is Sufficiently wide For The Design Vehicle To Pause In The Median (Vehicle Length Plus 6' Min.) The Clear Line of Sight To The Right (d_{v}) Is Measured From The Vehicle Pause Location, i.e., Not From The Cross Road Stop Position; Distances $d_{r} \& d_{m}$ Do Not Apply.

INSET A

NOTES FOR 6-LANE DIVIDED ROADWAY

1. See Sheet 2 for origin of clear sight line on the minor road.
2. Values shown in the tables are the governing (controlling) sight distances calculated based on 'AASHTO Case B-Intersection with Stop Control on the Minor Road:

INTERMEDIATE SEMI-TRAILERS (WB-40 \& WB-50)
$\operatorname{SIGHT} \operatorname{DISTANCES}(d),\left(d_{v}\right) \&\left(d_{x}\right)$ AND RELATED DISTANCES $\left(d_{L}, d_{r}, d_{m} \& d_{v L}\right)(F E E T)$
6 LANE DIVIDED

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 16 \end{gathered}$		$\begin{gathered} \text { FDOT } \\ \text { DESIGN STANDARDS } \end{gathered}$	SIGHT DIS TANCE AT INTERSECTIONS

1. The information shown on this index is intended solely for the purpose of clear sight development and maintenance at intersecting highways, roads, streets and driveways, and
is not intended to be used to establish roadway and roadside safety except as related to clear sight corridors. An analysis of sight distance shall be documented for all intersections.
2. For the purpose of this Index, Minor Road is defined as all intersecting highways, roads, streets and driveways.
3. Details are based on the AASHTO 'A Policy On Geometric Design of Highways And Streets, 2001', CHAPTER 9, INTERSECTION SIGHT DISTANCE, CASES B and F, and Department practices for channelized median openings (left turns from major road).
4. The minimum driver eye setback of 14.5^{\prime} from the edge of the traveled way may be adjusted on any intersection leg only when justified by a documented, site specific field study of vehicle stopping position and driver eye position.
5. For SIGNALIZED INTERSECTIONS sight distances should be developed based on AASHTO Case D-Intersections with Traffic Signal Control'. 'At signalized intersections, the fir stopped on each of the other approaches. Left turning vehicles should have sufficien sight distance to select gaps in oncoming traffic and complete left turns. Apart from these sight conditions, there are generally no other approach or departure sight triangles needed for signalized inter sections. However, if the traffic signal is to be placed on two-way flashing operation (i.e. flashing yellow on the major road approaches and
flashing red on the minor road approaches) under off peak or nighttime conditions, the the appropriate departure sight triangles for Case B, both to the left and to the right, should be provided for the minor road approaches. In addition, if right turns on a red signal are to be permitted from any approach, then the appropriate departure sight triangle to the left for Case B2 should be provided to accommodate right turns from that approach.
6. Where curvature, superelevation, adverse split profiles or other conditions preclude the use of standard tree sizes and spacing, proof of view and shadowing restraints must be documented and the size and location of trees in medians detailed in the plans.
7. Intersection sight distance values are provided for Passenger vehicles, su vehicles and Combination Vehicles. Intersection sight distance based on the Passenger Vehicle is suitable for most intersections. Where substantial volumes of heavy vehicles enter the major road, such as from ramp terminals with stop control or roadways serving truck terminals, t.
considered.

TREE SPACING TABLE **

1. Details apply to both rural and urban intersections under stop sign control flashing beacon control. For full signal controlled inter sections see Design
Note No 4. At intersections listed in the Department's High Crash Intersection Report, designers shall give attention to keeping to a minimum, objects that distract or affect sight distance
2. Sight distance 'd' applies to normal and skewed intersections (inter secting angles between 60° and 120°), and where vertical and/or horizontal curves are
not present. Sight distance' 'd' is measured along the major road from the center of the entrance lane of the minor road to the center of the near approach lane (right or left) of the major road. Distances ' d_{L} ' and ' d_{r} ' are measured from the centerline of the entrance lane of the minor road to a point on the edge of the near side outer traffic lane on the major road. Distance ' d_{m} ' is measured from the centerline of the entrance lane of the
minor road to a point on the median clear zone limit or horizontal clearance limit for the far side road of the major road.
3. A. The limits of clear sight define a corridor throughout which a clear sigh window must be preserved. See WINDOW DETALL, Sheet 2
B. Clear sight must be provided between vehicles at intersection stop locations, and vehicles on the major road within dimension ' d '.
C. Since observations are made in both directions along the line of sight, the reference datum between roadways is $3^{\prime}-6 "$ above respective pavements.
4. Barrier systems within intersection sight corridors, where penetration into the sight window might occur, shall be located to provide the least adverse affet practical.
5. The corridor defined by the limits of clear sight is a restricted planting area Drivers of vehicles on the intersecting road and vehicles on the major road
must be able to see each other clearly throughout the limits of ' d ' and 'da'. If in the Engineers judgement, landscaping interferes with the line of sight corridor prescribed by these standards the Engineer may rearrange, relocate or eliminate plantings. Plants within the restricted areas are limited to
6. (Cont.)

Ground Cover \& Trunked Plants (Separate or Combined):

Ground Covers - Plant selection of low growing vegetation which at maturity does not attain a height greater than $18^{\prime \prime}$ below the sight line datum. For ground cover in apply: apply:
$24^{\prime \prime}$ for trees and palms $\leq 11^{\prime \prime}$ dia.; and, $18^{\prime \prime}$ for sabal palms $>11^{\prime \prime}$ but $\leq 18^{\prime \prime}$ dia (dia.-within Sight Window). Trunked Plants - Plant selection of a mature trunk diameter $4^{\prime \prime}$ or less measured at $6^{\prime \prime}$
above the ground. Canopy or high borne foliage shall never be lower than 5^{\prime} above the ight line datum. These selections shall be spaced no closer than 20.

Trees - Trees can be installed with sod; pavers; gravel, mulch; ground covers or other department-approved material. The clear sight window must be in conformance wit he 'WINDOW DETAIL' modified to attain the height requirements listed in 'Ground overs' above
A. Size and spacing shall conform to the Tree Spacing Table.
B. Requirements for placement within medians at median openings and at unsignalized and signalized intersections:
a. Horizontal clearance for the mature specimen shall be maintained as specified in Index 700. Specimens whose mature trunk diameter is greater than 18" shall not be permitted,
b. Where left turns from the major road are permitted, no trees shall be located within the distance ' $d b$ '. Sheet 2 of 6 ; and not less than the distances called for
in (c) or (d), as applicable.
c. For safety, these additional setbacks are required:

1. Where no left turn lane is present, size and spacing shall conform to the Tree Spacing Table. No trees shall be permitted within 100 of th
2. Where left turn lane(s) are present, the following requirements apply:

For low speed facilities (design speed less than 50 mph), size and spacing shall conform to the Tree Spacing Table. No trees shall be permitted within 100^{\prime} of the restricted median nose (measured from the edge of pavement).

For high speed facilities (design speed 50 mph or greater), no trees shall be permitted within 200' of the restricted median nose. Beyond this imit, size and spacing shall conform to the Tree Spacing Table.

Minimum Spacing (c. to c. Of Trunk)	25	90	30	105	35	120	40	135	50	150	55	165	60	180

** Sizes and spacings are based on the following conditions:
a. A single line of trees in the median parallel to but not necessarily colinear with the centerline.
b. A straight approaching mainline, within skew limits as described in No. 2 above.
c. 1. Trees and palms $\leq 11^{\prime \prime}$ in diameter casting a vertical 6' wide shadow band on a vehicle entering at stop bar location when viewed by mainline
driver beginning at distance 'd'; see SHADOW DIAGRAM, Sheet 2 .
2. Sabal palms with diameters $>11^{\prime \prime} \leq 18^{\prime \prime}$ spaced at intervals providing a 2 second full view of entering vehicle at stop bar location when
viewed by the mainline driver beginning at distance 'd'; see PERCEPTION DIAGRAM, Sheet 2 .
d. Trees with diameters $\leq 11^{\prime \prime}$ intermixed with trees with diameters $>11^{\prime \prime} \leq 18^{\prime \prime}$ are to be spaced based on trees with

For any other conditions the tree sizes, spacings and locations shall be detailed in the plans; see Design Note 5 .

\Longrightarrow Lane Identification and
Direction of Traffic
7 Pavement Markings

Special Areas Limited to Ground Cover
LAST
REVISION
$07 / 01 / 15$

REVISION
07/01/15
DESCRIPTION:
07/01/15

CROSSING SURFACES	
Type	Definition
C	Concrete
R	Rubber
$R A$	Rubber/Asphalt
$T A$	Timber/Asphalt

STOP ZONE FOR RUBBER CROSSING

Design Speed (mph)	Zone Length (Distance From Stop)
45 Or Less	250^{\prime}
$50-55$	350^{\prime}
$60-65$	500^{\prime}
70	600^{\prime}

Notes:

1. Type R Crossings are NOT to be used for multiple track crossings within zones for an existing or scheduled tren. Zone lengths are Charted above,
2. Single track Type R Crossings within the zones on the hart may be used unless encineering or safety considerations dictate otherwise.

GENERAL NOTES

1. The Railroad Company will furnish and install all track bed (ballast), crossties, rails, crossing surface panels and accessory components. All pavement material, including that through the crossing, will be furnished and installed by the Department or its Contractor, unless negotiated otherwise
2. When a railroad grade crossing is located within the limits of a highway construction project, a transition pavement will be maintained at the approaches of the crossing to reduce vehicular impacts to the crossing. The transition pavement will be maintained as appropriate to surface is constructed.
3. The Central Rail office will maintain a list of currently used Railroad Crossing Products and will periodically distribute the current list to District Offices as the list is updated.
4. The Railroad Company shall submit engineering drawings for the proposed crossing surface type to the Construction Project Engineer and/or the District Rail Office for concurrence along with the List of Railroad Crossing Products. The approved engineering drawings of the crossing surface type shall be made a part of the installation agreement.
5. Sidewalks shall be constructed through the crossing between approach sidewalks of the crossing. Sidewalks shall be constructed with Sidewalks shall be constructed through the crossing between approach sidewalks of the crossing. Sidewalks
appropriate material to allow unobstructed travel through the crossing in accordance with ADA requirements.
6. Install pavement in accordance with the Specifications.
7. The Department will participate in crossing work, that requires adjustments to rall outside of the crossing, no more than 50 feet from the edge of the travel way

HALF PLAN

ROADWAYS WITH FLUSH SHOULDERS

HALF PLAN
CURBED ROADWAYS

To prevent low-clearance vehicles from becoming caught on the tracks, the crossing surface should be at the same plane as the top of the rails for a distance of 2 feet outside the rails. The surface of the highway should also not be more than 3 inches higher or lower than the top of the nearest rail at a point 30 feet from the rail unless tract grade to a level plane at the elevation of the rails. Rails that are superelevated, or a roadway approach section that is not level, will necessitate a site specific analysis for rail clearances.
typical CRossing material replacement at rr crossings
VERTICAL ROADWAY ALIGNMENT THROUGH A RAILROAD CROSSING

