3D VIEW OF RAILING WITH TYPE 1-PICKET INFILL PANEL (42" Height shown, 48" Height Similar)

TABLE 1-RAILING MEMBERS			
MEMBER	designation	$\begin{gathered} \hline \text { OUTSIDE } \\ \text { DIMENSION } \end{gathered}$	WALL THICKNESS
Post "A"	HSS $21 / 2 \times 11 / 2 \times 1 / 8$	$2.50^{\prime \prime} \times 1.50^{\prime \prime}$	$0.125^{\prime \prime}$
Post "B"	HSS $21 / 2 \times 11 / 2 \times 3 / 16$	$2.50^{\prime \prime} \times 1.50^{\prime \prime}$	$0.188^{\prime \prime}$
Top Rail	21/2" NPS (Sch. 10)	$2.875^{\prime \prime}$	$0.120^{\prime \prime}$
	HSS 3.000×0.120	$3.000^{\prime \prime}$	$0.120^{\prime \prime}$
End Hoops	21/2" NPS (Sch. 10)	$2.875^{\prime \prime}$	$0.120^{\prime \prime}$
Ena Hoops	HSS 3.000×0.120	$3.000^{\prime \prime}$	$0.120^{\prime \prime}$
Top Rail Joint/Splice Sleeves	HSS 2.500×0.125	$2.500^{\prime \prime}$	$0.125^{\prime \prime}$
Intermediate \& Bottom Rail	HSS $2 \times 2 \times 3 / 16$	$2.00^{\prime \prime} \times 2.00^{\prime \prime}$	$0.188^{\prime \prime}(1)$
Int. \& Bottom Rail Post Connection Sleeve	HSS 1.500×0.125	$1.500^{\prime \prime}$	$0.125^{\prime \prime}$ (1)
Handrail Joint/Splice Sleeves	$1^{\prime \prime}$ NPS (Sch. 40)	1.315"	$0.133^{\prime \prime}$
Handrail Joint/Splice Sleeves	HSS 1.500×0.125	$1.500^{\prime \prime}$	$0.125^{\prime \prime}$
Handrails	$11 / 2{ }^{\prime \prime \prime}$ NPS (Sch. 40)	1.900"	$0.145^{\prime \prime}$
Handrail Support Bar	3/4" \varnothing Round Bar	0.750"	N/A
Pickets (Type 1 Infill Panel)	3/4" \varnothing Round Bar	$0.750^{\prime \prime}$	N/A
Infill Panel Members (Types 2-5)	Varies (See Details)	Varies	Varies

table 1 NOTES:
(1) $0.125^{\prime \prime}$ wall thickness permitted for rails with post spacings less than $5^{\prime \prime}-8^{\prime \prime}$, except that Post Connection Sleeve must be $1 \frac{1}{4}$ NPS (Sch. 40).

Notes:

1. Shop Drawings are required; see Specification Section 515
2. For bridge mounted railings work this Index with Index 851 Bridge Bicycle/Pedestrian Railing
3. Materials:
A. Pipe Rails and Pickets: ASTM A500 Grade B, C or D, or ASTM A53 Grade B for standard weight pipe (Schedule 40) B. Structural Tube: ASTM

Steel Plate: ASTM A36 or ASTMde A, B, C, or D or ASTM A50
D. U-Channels and filler plates: ASTM A36 or ASTM A1011 (Grade 36).
E. Stainless steel (SS) screws: Type 316 or 18 .
E. Stainless steel (SS) screws: Type 316 or $18-8$ Alloy
F. Galvanized Steel Fasteners: coated in accordance with Specification Section 962.
2. $7_{1 / 1 "}$ four bolt option, Grade 55
b. Adhesive Anchors: ASTM F1554 fully threaded rods, Grade 55
c. Hex Nuts: ASTM A563
d. Flat Washers: ASTM F436
e. Plate Washers: ASTM A36 or ASTM A706 Grade 36.
G. Shims: ASTM B209 Alloy 6061

Bearing Pads: $1 / s^{\prime \prime}$ Plain, Fabric Reinforced or Fabric Laminated pads that meet the
4. Fabricate pickets and vertical panel elements 962 for Ancillary Structures
parallel to the longitudinal grade Maintain a parallel to the posts; except Type 2,3 and 5 panel infills may be fabricated " sphere requirement is indicated in the Data Tables clear opening of $5 / /^{\prime \prime}$ for standard installations and $37 / \mathrm{m}^{\prime \prime}$ when a
5. Maximum spacing between expansion joints is $40^{\prime}-0^{\prime \prime}$. Locate an Expansion Joint between the posts on either side of the Deck

Expansion Joint.
6. Field splices are similar to the Expansion Joint Detail and may be approved by the Engineer to facilitate handling; but the top rail must be continuous across a minimum of two posts.
7. For intermediate and bottom horizontal rails, the screwed joints shown may be substituted with alternate joints shown in detail "K". 8. Make corners and changes in tangential longitudinal alignment with a 9" bend radius or terminate adjoining sections with mitered end sections when handrails are not required.
9. For changes in tangential longitudinal alignment greater than 45°, position posts a maximum of $2^{\prime}-0^{\prime \prime}$ each side of the
corner but not at the corner apex.
10. For curved longitudinal alignnent,
10. For curved longitudinal alignments, shop bend the top and bottom rails and handrails to match the alignment radius,
11. Handrails are required and must be continuous at landings for:
A. Grades Steeper than 5\%,
12. Installation: Cutting of reinforcing steel is permitted for post installed anchors.

TYPE 1 - PICKET INFILL PANEL
PICKET NOTES:
When shown in the Contract Plans a $4 / 2^{\prime \prime}$ picket spacing may be required. See Note 4 (Sheet 1).

TYPE 2-CHAIN-LINK (Continuous Infill Panel)
NOTES.
See Plans for Infill Panel option required

SECTION A-A

- Infill Panel option requir

(Top of Picket Connection)

SECTION A-A
(Bottom of Picket Connection)

Chain-Link Fence Fabric shall be continuous along limits of railing. Splicing of Chain-Link panels using Tension Bars at $20^{\prime}-0^{\prime \prime}$ minimun increments is permitted.

table 2 - ChAIN-LINK PANEL COMPONENT MATERIALS		
COMPONENT	ASTM	COMPONENT INFORMATION
Chain-Link FenceFabric (2" mesh withtwisted bottom andknuckled top selvage)	A 392	Zinc-Coated Steel - No. 9 gage (coated wire diameter), Class 2 Coating
	A 491	Aluminum-Coated Steel - No. 9 gage (coated wire diameter)
	F 668	Polyvinyl Chloride (PVC) Coated Steel - No 9 gage Zinc-Coated Wire (metallic-coated core wire diameter) ~ See Plans for specified color of PVC.
Tie Wires	F 626	Zinc-Coated Steel Wire - No. 9 gage with coating to match Chain-Link Fence Fabric.
Tension Bars	F 626	$3 / 16^{\prime \prime}$ (Min. thickness) x $3 / 4 / 4$ (Min. width) \times 2' $^{\prime} 3^{\prime}$ (Min. height) Steel Bars
Miscellaneous Fence Components	F 626	Zinc-Coated Steel

yse

TYPE 3-SUNSHINE INFILL PANEL
Arc, Rays and Sun Segment may be formed in a single panel from $1 / 2$ steel plate pattern cut with laser or plasma CNC, welded
$1 \times 1 \times 1 / 8$ Angle Border or the $3 / 4 \times 3 / 4 \times 1 / 3$ Channel Border Shown.

DETAIL "3C"
RAY/ARC CONNECTION

NOTES

1. See Plans for Infill Panel Option required Z DESCRIPTION:

SECTION A-A

1/2" Square
Bar (Ravs)

BOTTOM RAIL/RAY CONNECTION
 at post with expansion joint

$$
\begin{aligned}
& \text { fop \& botom } \\
& \text { match grade. }
\end{aligned}
$$

PANEL ADJUSTMENT FOR RAILINGS ON GRADES

PANEL/RAIL CONNECTION
(Top Shown, Bottom Similar)

NOTES:

1. See Plans for Infill Panel Type required.

$\begin{aligned} & \text { LAST } \\ & \text { REVISION } \\ & 11 / 01 / 16 \end{aligned}$	\|r	DESCRIPTION:	DESIGN STANDARDS	STEEL PEDESTRIAN/BICYCLE RAILING	$\begin{aligned} & \text { INDEX } \\ & \text { NO. } \\ & 852 \end{aligned}$	$\begin{gathered} \begin{array}{c} \text { SHEET } \\ \text { NO. } \\ 7 \text { of } 8 \end{array} \end{gathered}$

typical section on concrete sidewalk

TYPICAL SECTION ON RETAINING WALL
(Case II)

DETAIL "D" (OPTIONAL SHIMMING DETAIL
FOR CROSS SLOPE CORRECTION)
(Used in lieu of Beveled Shim Plates)

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 16 \end{gathered}$	

FDOT	FY 2017-18
DESIGN STANDARDS	

