GENERAL NOTES

1. Concrete shall be Class III or IV unless otherwise called for in the plans.
2. Construct Pier Protection Barrier continuous without transverse contraction or expansion joints,
Transverse construction joints may be used at a spacing greater than or equal to 40 . Provide Transverse construction joints may be used at a spacing greater th
3. When the Pier Protection Barrier is installed adjacent to Roadway or Shoulder pavement, compact the
top $12^{\prime \prime}$ of the subgrade to at least 98% of the maximum density determined by FM 1 1-T 180 , Method D.
4. Isolate Barrier Wall Inlets, Index 218 , from Pier Protection Barriers and
Footings with 1 "expansion material.
5. On roadways designated for reverse laning, mark all downstream barrier ends Include the cost of the object Marker in the cost of the Pier Protection
Inciude
Barrier
6. Payment: Pier Protection Barrier and Crash Wall to be paid for under the Concrete Barrier Wall (Rigid-Should
7. Provide $3 / 8^{\prime \prime}$ deep crack control V-grooves at 15 to 30 spacing. Locate V-grooves above any joint or
discontinuity in the barrier footing. Align V-Grooves perpandicular to the longitudinal axis of the Pier discontinunt Barrier and make continuous across the top surface and both side faces. For slip formed barriers, score $3 / 8^{\prime \prime} V$-Grooves while the concrete is still plastic, ot herwise pre-form the joints when stationary forms are utilized.

PIER PROTECTION bARRIER FOOting layout sChematics

Design Speed mph	X (Length of Advancement) Ft.
≤ 45	$=16(D-d)$
≥ 50	$=13(D-d)$

Length of Advancement determined from the diagrams and equations shown establishes the location of the upstream beginning length of need for a Pier Protection Barrier, however, the Length of Advancement for the combination of Pier Protection Barrier
two-lane two-way traffic

NOTE:
See Index 400 for Clear Zone and Horizontal Clearance PPB $=$ Pier Protection Barrier
length of advancement diagrams - pier protection barrier with guardrail continuation

LAST REVIIION O7/01/09		$\begin{gathered} \text { FDOT } \\ \text { 2017-18 } \\ \text { DESIGN STANDARDS } \end{gathered}$	$\mathbb{P} I E R$ PROTECTION BARRIER	$\begin{aligned} & \text { INDEX } \\ & \text { NO. } \\ & 411 \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { SHEET } \\ \text { NO. } \\ 2 \text { of } 10 \end{array} \end{aligned}$

tWo-LANE tWO-WAY tRAFFIC

> NOTES: See Index 400 for Clear Zone and Horizontal Clearance Length of Avancement Diagrams PPB = Pier Protection Barrier See Notes on Sheet 2.

LENGTH OF ADVANCEMENT DIAGRAMS - PIER PROTECTION BARRIER WITH CONCRETE BARRIER WALL CONTINUATION

NOTES:
 NOTES:

See Index 400 for Clear Zone and Horizontal Clearance
Length of Advancement Diagrams. PPB $=$ Pier Protection Barrier
See Notes on Sheet 2.
length of advancement diagrams - pier protection barrier with crash wall and guardrail continuation

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 07 / 01 / 09 \end{gathered}$			$\mathbb{P I E R} P \mathrm{PROTECTION}$ BARRIER	$\begin{gathered} \hline \text { INDEX } \\ N O . \\ 411 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & \text { NO. } \\ & 4 \text { of } 10 \end{aligned}$

two-LANE TWO-WAY tRAFFIC

$$
\begin{aligned}
& \text { NOTES: } \\
& \text { See Index } 400 \text { for Clear } \\
& \text { Zone and Horizontal Clearance } \\
& \text { Length of Advancement Diagrams } \\
& \text { PPB }=\text { Pier Procection Barrier } \\
& \text { See Notes on Sheet } 2 \text {. }
\end{aligned}
$$

LENGTH OF ADVANCEMENT DIAGRAMS - PIER PROTECTION BARRIER WITH CRASH WALL and Concrete barrier wall continuation

| $\begin{array}{\|c\|} \hline \text { LAST } \\ \text { REVIIION } \\ \text { O7/01/06 } \\ \hline \end{array}$ | \|l|l | DESIGN STANDARDS | $\mathbb{P I E R} \operatorname{PROTECTION~BARRIER}$ | $\begin{gathered} \hline \text { INDEX } \\ \text { NO. } \\ 411 \end{gathered}$ | $\begin{aligned} & \hline \text { SHEET } \\ & \text { NO. } \\ & 5 \text { of } 10 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

BILL OF REINFORCING STEEL

MARK	SIZE	LENGTH
P	5	$7^{\prime}-6^{\prime \prime}$
R	5	$6^{\prime}-7^{\prime \prime}$
S	8	As Req.
$42^{\prime \prime} P P B T 1 \& T 2$	8	$13^{\prime}-0^{\prime \prime}$
$54^{\prime \prime} P P B T 1 \& T 2$	8	$21^{\prime}-0^{\prime \prime}$
V	5	$9^{\prime \prime}-2^{\prime \prime}$

2. Bars 85 may be cont in the bending diagrams are out to out.
joints. Lan splices for Bars 85 shall be a minimum of $4^{\prime}-0^{\prime \prime}$.
3. The Contractor may utilize Welded Wire Reinforcement when approved by the Engineer. Welded Wire Reinforcement must Spectication Section 931
NOTE: PPB $=$ Pier Protection Barrier
CONVENTIONAL REINFORCING STEEL BENDING DIAGRAMS

BARS 8S

TRANSITION BARS 8T1 \& 8T2

STIRRUP BAR

TRANSITION STIRRUP BARS 5P To Be Field Cut (10 of each required per Railing End Transition)

RRUP BAR 5P
STIRRUP BAR $5 R$

Contractor's

END STIRRUP BAR 5V To Be Field Cut Two required per
5 V Barrier End Transition w/ Tapered Toe)

1. See Sheet 9 for Footing Details.

See Sheet 7 for bar spacings and details
within End Transitions.

$\begin{array}{cc}\text { Fill (see Plans) } & \text { SECTION D-D } \\ \text { TYPICAL SECTION THRU }\end{array}$

> 42" PIER PROTECTION BARRIER

$$
\begin{gathered}
\begin{array}{c}
\text { Barrier } \\
\text { Gutter Line } \\
-\frac{81 / 4^{\prime \prime}}{1^{\prime}-66^{\prime \prime}}+\frac{101 / /^{\prime \prime}}{5^{1 /}}
\end{array}-1 ;
\end{gathered}
$$

$$
\begin{aligned}
& \text { TYPICAL SECTION THRU } \\
& \text { 4" PIER PROTECTION BARRIE }
\end{aligned}
$$

$$
\begin{aligned}
& 42^{\prime \prime} \text { PIER PROIECTION BARRIER } \\
& 1^{\prime}-1 \frac{1 / 2 "}{-1}-1
\end{aligned}
$$

FDOT\} $\begin{gathered}\text { FY 2017-18 } \\ \text { DESIGN STANDARDS }\end{gathered}$

PLAN VIEW
（Concrete Barrier Wall Continuation shown，Guardrail Continuation similar）

Pier Protection Barrier

$$
\begin{aligned}
& \text { REINFORCING STEEL NOTES: } \\
& \text { 1. All bar dimensions in the bending }
\end{aligned}
$$

1. All bar dimensions din the eut out to out.

$$
\begin{aligned}
& \text { diagrams are out to out. } \\
& \text { 2. Lap splices for Bars } 5 B \text { shall be a } \\
& \text { minimum of } 2^{\prime}-2^{\prime \prime} \text {. }
\end{aligned}
$$

$$
\text { minimum of } 2^{\prime}-2^{\prime \prime}
$$

ESTIMATED CRASH WALL \＆	FOOTING	QUANTITIES
ITEM	UNIT	QUANTITY
Concrete（Footing）	$C Y / L F$	0.260
Concrete（42＂Crash Wall）	$C Y / L F$	0.389
Concrete（54＂Crash Wall）	$C Y / L F$	0.500
Reinforcing Steel（42＂Crash Wall）	LB／LF	66.06
Reinforcing Steel（54＂Crash Wall）	LB／LF	70.23

NOTES
1．Provide $3^{\prime \prime}$ Iip when optional construction joint is used
1．Provide ${ }^{2}$ See Sheet 8 for Barrier Details and Sheet 9 for Barrier Footing details．

The Contractor may use Welded Wire
Reinforcement when approved by the Engineer．Welded Wire Reinforcement must consist of Deformed wire meeting the requirements of Specifciation Section
931 ．

$$
\begin{aligned}
& \text { 过过过过运 } \\
& \begin{array}{lll}
\\
3^{\prime}-0^{\prime \prime} & 4^{4^{\prime}-0^{\prime \prime}}
\end{array} \\
& \text { 紋 }
\end{aligned}
$$

LAST REVISION 07／01／13		$\begin{gathered} \text { FDOTY } \\ \text { DESIGN } 2017-18 \\ \text { STANDARDS } \end{gathered}$	PIER PROTECTION BARRIER	$\begin{gathered} \hline \text { INDEX } \\ \text { NO. } \\ 411 \end{gathered}$	$\begin{gathered} \text { SHEET } \\ \text { NO. } \\ 10 \text { of } 10 \end{gathered}$

