Index 20600 Series Concrete Piles (Rev. 11/16)

Design Criteria

AASHTO LRFD Bridge Design Specifications; Structures Design Guidelines (SDG); Structures Detailing Manual (SDM)

Design Assumptions and Limitations

Index 20600 is the lead standard for the Square Prestressed Concrete Pile standard series which includes Indexes 20600 through 20631. Use this standard with Indexes 20601, 20602, 20612, 20614, 20618, 20620, 20624, 20630 and 20631.

Standard piles are designed to have 1000 psi uniform compression after prestress losses without any applied loads to offset tensile stresses that occur during typical driving.

The piles are designed to have 0.0 psi tension using a load factor of 1.5 times the pile self weight during pick-up, storage and transportation as shown in the "Table of Maximum Pile Pick-Up and Support Lengths" on the standard.

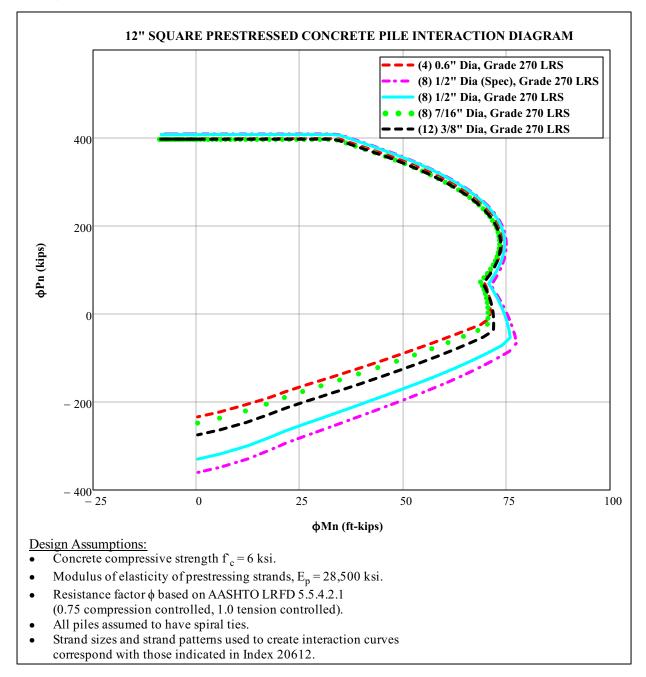
Plan Content Requirements

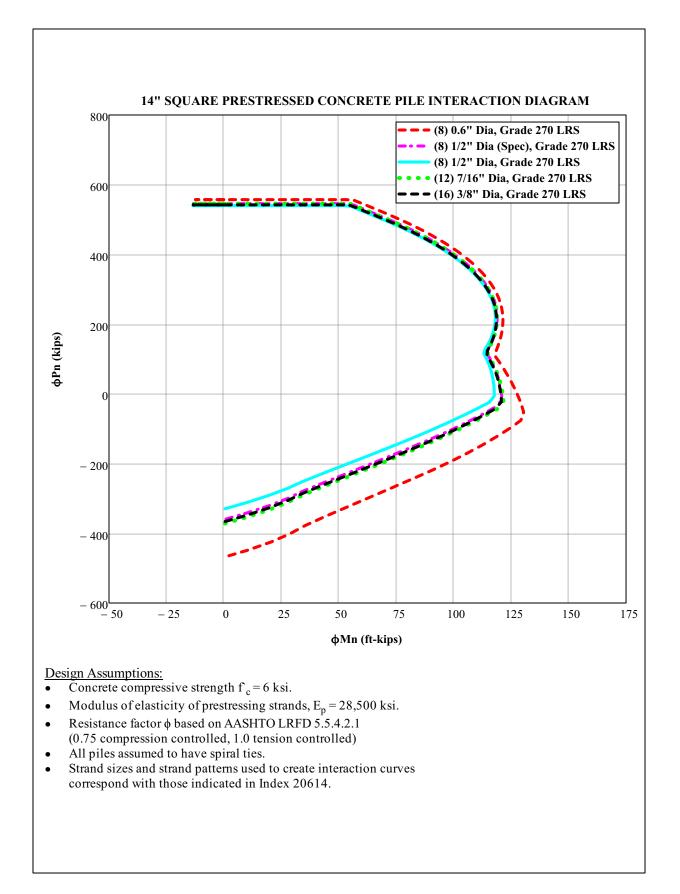
In the Structures Plans:

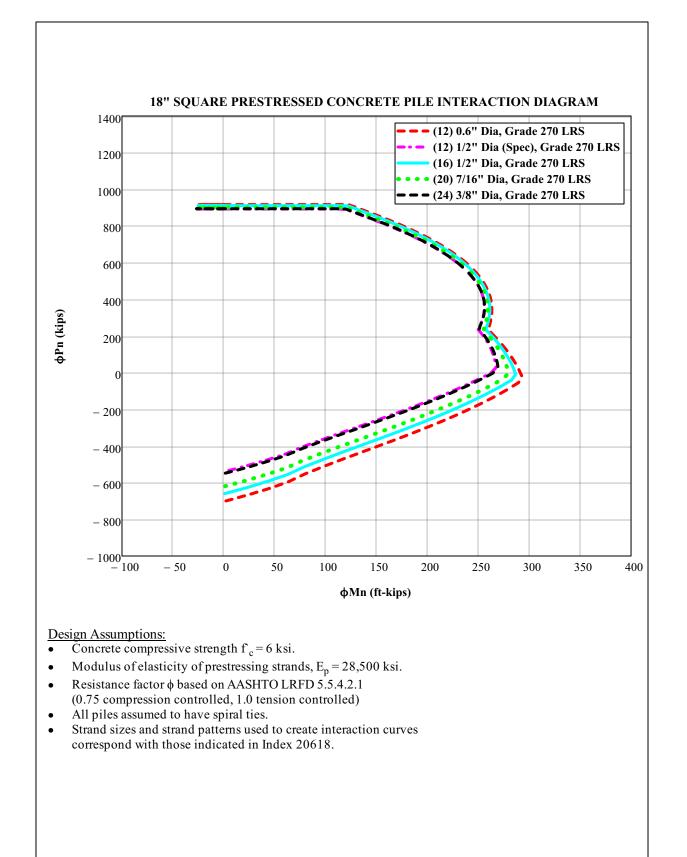
Show and label the piles on the Foundation Layout, End Bent, Intermediate Bent, Pier, Footing, Typical Section and other sheets as required.

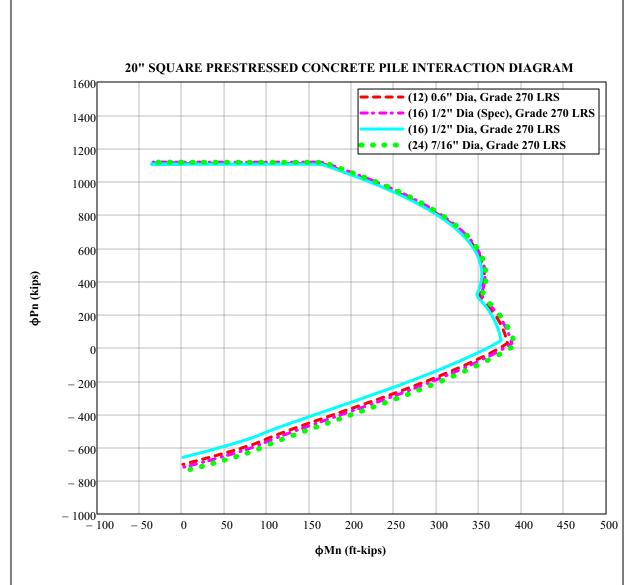
Complete the following "Data Table" in accordance with **SDG** 3.5 and **SDM** 11.4 and include it in the contract plans with the "Foundation Layout" sheets. Modify table and notes as required to accommodate the required number of piles, piers and/or bents, use of Test Piles and instrumentation. When not enough space is available on one plan sheet, continuations of the Data Table and/or separate pile cut-off elevation tables are acceptable. See Introduction I.3 for more information regarding use of Data Tables.

For projects without Test Piles change data table column heading "TEST PILE LENGTH (ft.)" to "PILE ORDER LENGTH (ft.)".

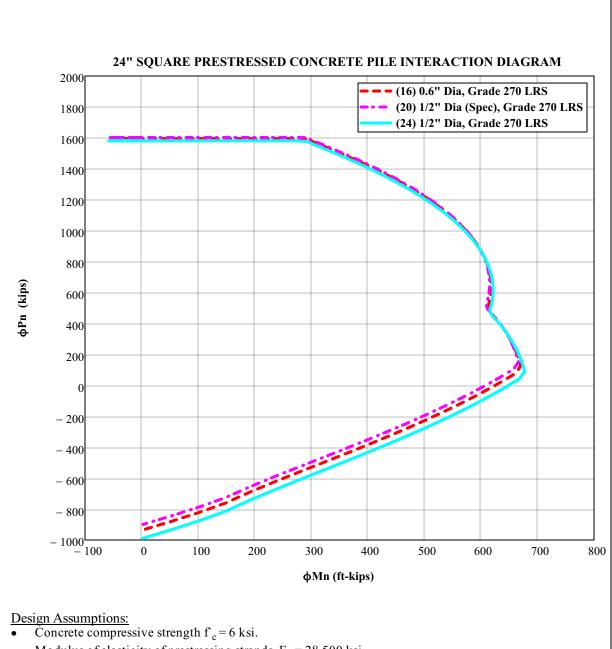

								PILE D	ΑΤΑ ΤΑΒ	LE											Table Date	01/01/16
		Ι	NSTALLATI	ON CRITE	RIA					Ľ	DESIGN CRI	TERIA					PIL	E CUT-	OFF EL	EVATIO	NS	
PIER or BENT NUMBER	PILE SIZE (in.)	NOMINAL BEARING RESISTANCE (tons)	NOMINAL UPLIFT RESISTANCE (tons)	MINIMUM TIP ELEVATION (ft.)	TEST PILE LENGTH (ft.)	REQUIRED JET ELEVATION (ft.)	REQUIRED PREFORM ELEVATION (ft.)	FACTORED DESIGN LOAD (tons)	FACTORED DESIGN UPLIFT LOAD (tons)	DOWN DRAG (tons)	TOTAL SCOUR RESISTANCE (tons)	NET SCOUR RESISTANCE (tons)	100-YEAR SCOUR ELEVATION (ft.)	Ø COMPRESSION	Ø UPLIFT	PILE 1	PILE 2	PILE 3	PILE 4	PILE 5	PILE 6	PILE 7
															+							
															+							
-																						
tored Desi	gn Load		Resistance +	Down Drag	— ≤ Nomi.	nal Bearing R	esistance	PILE IN	IST ALLAT IO	N NOTE	5 [Notes Date	e 7-01-13]:										
	-	Ø - The ultimati the 100 y	e side frictior ear scour ele	capacity tha	at must be st pullout	obtained below of the pile		Contrac		y locati	5 [Notes Date on of all utilit		ny pile	·								
LIFT RESIS TAL SCOUR T SCOUR R	TANCE RESIST	Ø - The ultimat. the 100 y (Specify c resist resista reguire to the	e side friction ear scour ele nly when des timate of the tance provide nate of the u nce provided d preformed scour elevatic	capacity tha vation to resi gn requires ultimate stat d by the scou timate static by the soil fi or jetting ele n.	at must be ist pullout uplift capa ic side fri rable soil. side fricti rom the evation	obtained below of the pile city). ction		Contrac installa Minimun When a lowereo until th differ f	tor to verif tion activiti n Tip Elevat required ja I to the elev e pile drivii from those	y locati es. ion is r etting el ration a. ng is co shown o	on of all utilit equired for la evation is sho nd continue to mpleted. If je n the table, th	ies prior to an teral stability, wn, the jet sh operate at th etting or prefo e Engineer sh	all be is elevation rming elevat	ions isible								
LIFT RESIS TAL SCOUR T SCOUR R	TANCE RESIST	Ø - The ultimati the 100 y (Specify o ANCE - An ess resista resista reguire to the VATION - Est	e side frictior ear scour ele nly when des timate of the tance provide nate of the u nce provided d preformed	capacity tha vation to resi gn requires ultimate stat d by the scou timate static by the soil fi or jetting ele n.	at must be ist pullout uplift capa ic side fri rable soil. side fricti rom the evation	obtained below of the pile city). ction		Contrac installa Minimun When a lowerea until th differ t for det	tor to verif tion activiti n Tip Elevat required je l to the elev e pile drivi from those : ermination c	y locations es. ion is r etting el vation a. ng is co shown o pf the r	on of all utilit equired for la evation is sho nd continue to mpleted. If je	ies prior to an teral stability. wn, the jet sh operate at th etting or prefo te Engineer sh g resistance.	all be is elevation rrming elevat all be respo.	ions isible								
LIFT RESIS TAL SCOUR T SCOUR R	TANCE RESIST	Ø - The ultimati the 100 y (Specify o ANCE - An ess resista resista reguire to the VATION - Est	e side frictior ear scour ele nly when des timate of the tance provide mate of the u nce provided d preformed scour elevatic imated elevati	capacity tha vation to resi gn requires ultimate stat d by the scou timate static by the soil fi or jetting ele n.	at must be ist pullout uplift capa ic side fri rable soil. side fricti rom the evation	obtained below of the pile city). ction		Contrac installa Minimun When a lowerea until th differ 1 for det No jett. The Cor below t.	tor to verif tion activiti n Tip Elevat required je l to the elev e pile drivi from those ermination c ing will be ntractor sho	y locations es. ion is r atting el ration an g is co shown o shown o of the r allowed uuld not scour	on of all utilit equired for la evation is sho nd continue to mpleted. If je n the table, th equired driving	ies prior to an teral stability, operate at th titing or prefo te Engineer sh g resistance, pproval of the ng allowed to	all be is elevation rming elevat all be respo Engineer. jet piles	ians Isible								
LIFT RESIS TAL SCOUR T SCOUR R	TANCE RESIST	Ø - The ultimati the 100 y (Specify o ANCE - An ess resista resista reguire to the VATION - Est	e side frictior ear scour ele nly when des timate of the tance provide mate of the u nce provided d preformed scour elevatic imated elevati	capacity tha vation to resi gn requires ultimate stat d by the scou timate static by the soil fi or jetting ele n.	at must be ist pullout uplift capa ic side fri rable soil. side fricti rom the evation	obtained below of the pile city). ction		Contrac installa Minimum When a lowerea until th differ t for det. No jett. The Con below t whichew At each	tor to verif tion activiti n Tip Elevat required je to the elev e pile drivii from those ermination o ing will be ntractor sho he 100-year er is deepe	y locati es. ion is r atting el vation a. ng is co shown o shown o of the r allowed uld not ' scour r. driving	on of all utilit equired for la levation is sho nd continue to mpleted. If je n the table, th equired drivin without the a anticipate beh	ies prior to an teral stability. wn, the jet sh operate at th tting or prefe e Engineer sh g resistance. pproval of the ng allowed to aquired jet ele	all be is elevation rming elevat all be respo Engineer. jet piles evation,	nsible								

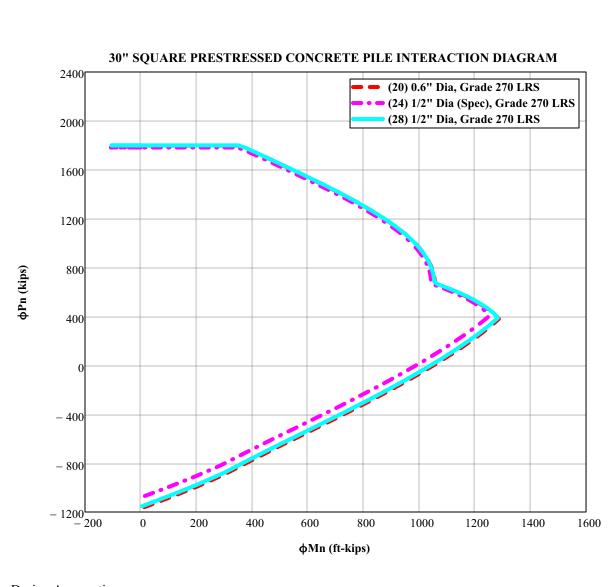

Payment


I


Item number	Item description	Unit Measure
455-34-ABB	Prestressed Concrete Piling	LF

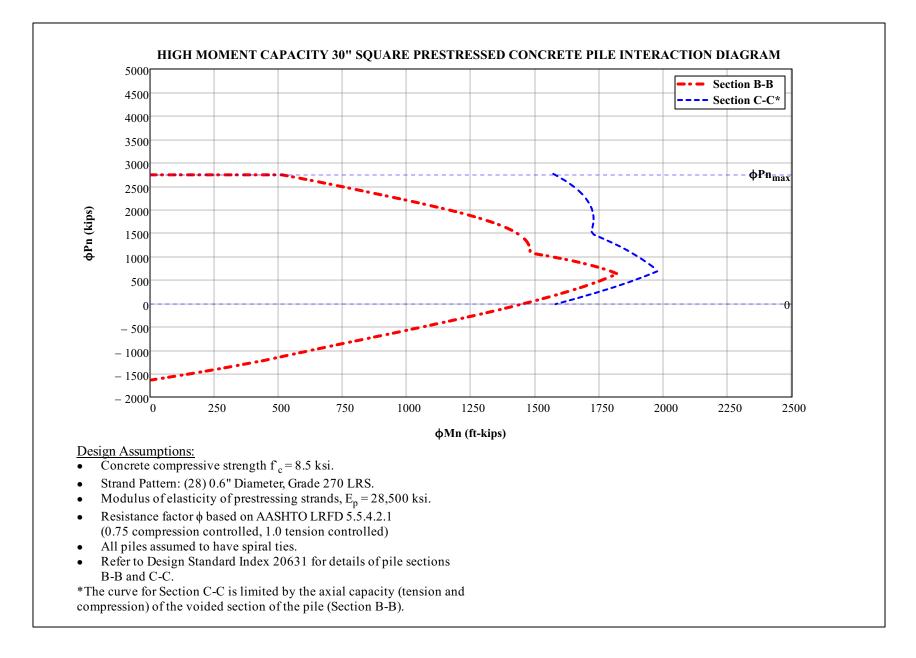
Design Aids





Design Assumptions:

- Concrete compressive strength $f_c = 6$ ksi.
- Modulus of elasticity of prestressing strands, $E_p = 28,500$ ksi.
- Resistance factor φ based on AASHTO LRFD 5.5.4.2.1 (0.75 compression controlled, 1.0 tension controlled)
- All piles assumed to have spiral ties.
- Strand sizes and strand patterns used to create interaction curves correspond with those indicated in Index 20620.



- Modulus of elasticity of prestressing strands, $E_p = 28,500$ ksi.
- Resistance factor φ based on AASHTO LRFD 5.5.4.2.1 (0.75 compression controlled, 1.0 tension controlled)
- All piles assumed to have spiral ties.
- Strand sizes and strand patterns used to create interaction curves correspond with those indicated in Index 20624.

Design Assumptions:

- Concrete compressive strength $f_c = 6$ ksi.
- Modulus of elasticity of prestressing strands, $E_p = 28,500$ ksi.
- Resistance factor φ based on AASHTO LRFD 5.5.4.2.1 (0.75 compression controlled, 1.0 tension controlled)
- All piles assumed to have spiral ties.
- Strand sizes and strand patterns used to create interaction curves correspond with those indicated in Index 20630.

