Index 20120 AASHTO Type II Beams (Rev. 11/16)

Design Criteria

AASHTO LRFD Bridge Design Specifications; Structures Detailing Manual (SDM); Structures Design Guidelines (SDG)

Design Assumptions and Limitations

Index 20120 is the standard for the AASHTO Type II Beam. Use this standard with Indexes 20199, 20510, and 20511 or 20512.

This standard must be supplemented with project specific information including a Table of Beam Variables, Strand Pattern Details and a Strand Debonding Legend which must be completed and included in the Structures Plans. This standard and the supplemental project specific information that is included in the plans provides sufficient information to permit beam fabrication without the submittal of shop drawings.

Data tables for associated Indexes 20199, 20510 and 20511 or 20512 must also be completed and included in the plans.

A Framing Plan is required for bridges meeting the criteria stated in the *SDM*.

The use of End Diaphragms is not preferred on simple span, pretensioned, I-Beam structures. In lieu of End Diaphragms, the preferred detail is a Thickened Slab End at all locations of slab discontinuity. Where End Diaphragms are required by design or for widening projects, partial depth diaphragms are preferred. See *SDM* Chapter 15 for suggested details.

Except for widening projects where special details may be required, squared beam ends are preferred on all pretensioned I-Beam structures.

The prestressed beams in these Standard Drawings are generally assumed to act as simple spans under both Dead Load and Live Load even where the deck is detailed to be continuous across the intermediate supports or back-to-back diaphragms are present. For detailing purposes, Prestressed I-Beams are assumed to be erected plumb.

When the total initial tensioning force of the fully bonded strands required by design exceeds the value shown below, shield additional strands at the end of the beam when possible. The end reinforcement may only be redesigned to accommodate an increased vertical splitting force when approved by the State Structures Design Office. If approval is granted, Index 20120 must then be modified for inclusion in the contract documents and signed and sealed by the EOR.

To limit vertical splitting forces in the webs of beams, the maximum prestress force at the beam ends from fully bonded strands must be limited to the following:

<table>
<thead>
<tr>
<th>Index No.</th>
<th>Beam Type</th>
<th>Max. Bonded Prestress Force</th>
<th>Last Revision Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>20120</td>
<td>AASHTO Type II</td>
<td>755 Kips</td>
<td>07/01/05 or later</td>
</tr>
</tbody>
</table>
Do not apply losses when calculating the Bonded Prestress Force.

If the beam grade exceeds 2%, provide Embedded Bearing Plates and Beveled Bearing Plates at each end of the beam as shown on Index 20511 or 20512.

See additional instructions in the **SDG**.

Plan Content Requirements

In the Structures Plans:

Complete the appropriate "TABLE OF BEAM VARIABLES" and include it in the plans. Use additional sheets when the actual number of beams or strand patterns exceeds the capacity of a single plan sheet using the standard table. Supplemental details and modifications are permitted if special conditions require dimensions, details or notes. However, the "TABLE OF BEAM VARIABLES" itself should not be modified. See **Introduction I.3** for more information regarding use of Data Tables.

Report elastic and time dependent shortening effects (DIM R) at the top of the beam @ 120 days. The average of the calculated values for the top and bottom of the beam may be used.

Report DIM P for beams placed on grade if the calculated value is equal or greater than 1" using ⅛" increments.

Show strands in the outermost positions of the lowest row to support Bars D.

Round Angle Φ up to the nearest degree.

Specify shear stirrup spacings V1, V2 and V3 for Bars 4K or 5K to the nearest inch.

Prepare a Framing Plan for bridges meeting the criteria stated in the **SDM**.

When intermediate diaphragms are required by design, show them on the Framing Plan. Tabulate insert locations with respect to the beam ends and beam faces. Include length adjustments for beams placed on grade and for elastic and time dependent shortening effects. Show Type 33 No. 8 reinforcing bars with 3" thread lengths for attachment to the inserts on the intermediate diaphragm details. Include these bars in the Superstructure Reinforcing Bar list.

For bridge widenings where beam ends are encased in full height diaphragms and the diaphragms are to be extended, modify Index 20120 and include it in the plans as follows:

- Modify the Design Standards in accordance with Method 1, Method 2 or Method 3 as defined in the **Terms Of Use** for the Borderless DGNs provided in the Design Standards eBooklet.

- Remove all notes, call-outs and details regarding cutting the strands and coating the ends of the beams with epoxy.

- Insert all notes, call-outs and details to ensure proper placement of Bars 4L as shown in the 2010 Design Standards. Detail the number of bars, bar locations and bar bending diagrams.
Table 20120 - AASHTO Type II Beam - Table of Beam Variables

<table>
<thead>
<tr>
<th>Location</th>
<th>Concrete Properties</th>
<th>Struc. Properties</th>
<th>Span</th>
<th>Beam Type</th>
<th>28-Day Release</th>
<th>Plan View Case</th>
<th>Brg. Plate Make</th>
<th>End of Beam & Bearing Dimensions</th>
<th>Beam Reinforcing Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>D20</th>
<th>D22</th>
<th>A/B</th>
<th>Spacing Bars</th>
<th>B/B</th>
</tr>
</thead>
</table>

Recommendations:
- Use **STRAND DESCRIPTION**. Diameter, Grade 770 Low-Relaxation Carbon Steel. Strands stressed at **80 ksi**. Area per strand equals **0.000187 sq in.**
- **STRAND PATTERNS**:
 - **TYPE 1**: **2 STRANDS**
 - **TYPE 2**: **3 STRANDS**
 - **TYPE 3**: **4 STRANDS**

STRAND DEBONDING LEGEND
- **-** fully bonded strands,
- **-** strands debonded **""** from end of beam,
- **-** strands debonded **""** from end of beam,
- **-** strands debonded **""** from end of beam,
- **-** strands debonded **""** from end of beam,

DIMENSION NOTES
- All longitudinal beam dimensions shown on this sheet with a single asterisk (*) are measured along the top of beam at the centerline of beam.
- End of beam bearing dimensions **'** and **'** are measured along the bottom of the beam.

BEARING PLATES
- Mark indicates double bearing plate and embedded bearing plates required. See Index No. 2013 or 2012 for details.

NOTE: Work this sheet with Design Standards Index No. 20120.
Payment

<table>
<thead>
<tr>
<th>Item number</th>
<th>Item description</th>
<th>Unit Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>450-1-AAA</td>
<td>Prestressed Beams</td>
<td>LF</td>
</tr>
</tbody>
</table>

Design Aids

AASHTO Type II and Florida-I Beam Estimated Maximum Span Lengths

Extremely Aggressive Environment, FDOT Limits with 8.5 ksi Concrete

Left:

- Florida-I 196 Beam
- Florida-I 184 Beam
- Florida-I 78 Beam
- Florida-I 72 Beam
- Florida-I 163 Beam
- Florida-I 154 Beam
- Florida-I 45 Beam
- Florida-I 36 Beam
- Type II Beam

Chart Design Assumptions:
- Interior beam design
- *extremely aggressive corrosive conditions;*
- Beam concrete strength: 8.5 ksi @ final
- 6.0 ksi @ release
- Deck concrete strength: 4.5 ksi @ final
- 6 beams in bridge section
- 2"x32" F Shape barriers applied and distributed evenly over all beams
- 8 inch composite bridge deck with additional non-structural 1/2" sacrificial surface
- 20 psf S-L-P form weight applied
- 1 inch structural build-up applied (min. required for 2% cross slope)
- 0.1 ksi/Ft applied per FIB or 0.025 ksi/LF for Type II Beam for additional misc. dead loads including build-up
- HL-93 Live Load applied
- FDOT Standard splitting/bursting reinforcement used
- All revised FDOT 2009 SDG criteria regarding splitting, debonding, and stress limits are followed
- Spans shown are bearing to bearing
- 0.06 ksi Low Lax Strands used

Right:

- Florida-I 96 Beam
- Florida-I 84 Beam
- Florida-I 78 Beam
- Florida-I 72 Beam
- Florida-I 163 Beam
- Florida-I 154 Beam
- Florida-I 45 Beam
- Florida-I 36 Beam
- Type II Beam

Beam Spacing (ft.): 4, 6, 8, 10, 12

Max Beam Span (ft.): 81, 71, 62, 55, 50, 40, 30, 26, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1

Span Chart:

- AASHTO Type II
- Florida-I 196 Beam
- Florida-I 184 Beam
- Florida-I 78 Beam
- Florida-I 72 Beam
- Florida-I 163 Beam
- Florida-I 154 Beam
- Florida-I 45 Beam
- Florida-I 36 Beam
- Type II Beam

260
AASHTO Type II and Florida-I Beam Estimated Maximum Span Lengths

Moderately Aggressive Environment, FDOT Limits with 8.5 ksi Concrete

<table>
<thead>
<tr>
<th>Beam Spacing (ft.)</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIB 96"</td>
<td>208</td>
<td>198</td>
<td>188</td>
<td>178</td>
<td>170</td>
</tr>
<tr>
<td>FIB 84"</td>
<td>191</td>
<td>181</td>
<td>172</td>
<td>164</td>
<td>157</td>
</tr>
<tr>
<td>FIB 78"</td>
<td>182</td>
<td>173</td>
<td>164</td>
<td>156</td>
<td>150</td>
</tr>
<tr>
<td>FIB 72"</td>
<td>173</td>
<td>163</td>
<td>155</td>
<td>149</td>
<td>143</td>
</tr>
<tr>
<td>FIB 63"</td>
<td>155</td>
<td>145</td>
<td>137</td>
<td>132</td>
<td>127</td>
</tr>
<tr>
<td>FIB 54"</td>
<td>142</td>
<td>132</td>
<td>124</td>
<td>118</td>
<td>114</td>
</tr>
<tr>
<td>FIB 45"</td>
<td>126</td>
<td>117</td>
<td>110</td>
<td>103</td>
<td>97</td>
</tr>
<tr>
<td>FIB 36"</td>
<td>105</td>
<td>97</td>
<td>91</td>
<td>85</td>
<td>72</td>
</tr>
<tr>
<td>AASHTO Type II</td>
<td>82</td>
<td>72</td>
<td>63</td>
<td>56</td>
<td>50</td>
</tr>
</tbody>
</table>

Chart Design Assumptions:
- Interior beam design;
- *moderately aggressive* corrosive conditions;
- beam concrete strength:
 - 8.5 ksi @ final
 - 6.0 ksi @ release
- deck concrete strength:
 - 4.5 ksi @ final
- 6 beams in bridge section;
- *2"* F Shape barriers applied and distributed evenly over all beams;
- *8"* composite bridge deck with additional non-structural *1/2"* sacrificial surface;
- *20 psf* S I P form weight applied;
- *1"* structural build-up applied (min. required for 2% cross slope);
- *0.1 kip/ft* applied per FIB or *0.025 kip/ft* for Type II beam for additional misc. dead loads including build-up;
- *M-93 Live Load* applied;
- FDOT Standard splitting/bursting reinforcement used;
- All revised FDOT 2009 SDG criteria regarding splitting, debonding, and stress limits are followed;
- Beams shown are bearing to bearing;
- *G-6/270K Low Lee Strands used.*
SECTION PROPERTIES*

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (in.²)</td>
<td>369</td>
</tr>
<tr>
<td>Ixx (in.⁴)</td>
<td>50,979</td>
</tr>
<tr>
<td>Iyy (in.⁴)</td>
<td>5,333</td>
</tr>
<tr>
<td>yt (in.)</td>
<td>20.17</td>
</tr>
<tr>
<td>yb (in.)</td>
<td>15.83</td>
</tr>
</tbody>
</table>

* These section properties are based on gross section properties and neglect the 3/4" chamfers on the bottom flanges.