Coping ** from each gutter line. A bond

** See joint orientation note on Sheet 1.
** Where railings of adjacent bridges are to be built back to back, the outside vertical plane of the railing and deck may coincide along a plane centered 1'-8" from each other line. A bond breaker will be required. See Structures Plans, Superstructure Sheets for Details.
** Rotate Bars 5V as shown to maintain clearance.

Approach Slab **

Begin or End Approach Slab

See joint orientation note on Sheet 1.

Where railings of adjacent bridges are to be built back to back, the outside vertical plane of the railing and deck may coincide along a plane centered 1'-8" from each other line. A bond breaker will be required. See Structures Plans, Superstructure Sheets for Details.

** Rotate Bars 5V as shown to maintain clearance.

Approach Slab **

Begin or End Approach Slab

See joint orientation note on Sheet 1.

Where railings of adjacent bridges are to be built back to back, the outside vertical plane of the railing and deck may coincide along a plane centered 1'-8" from each other line. A bond breaker will be required. See Structures Plans, Superstructure Sheets for Details.

** Rotate Bars 5V as shown to maintain clearance.

Approach Slab **

Begin or End Approach Slab

See joint orientation note on Sheet 1.

Where railings of adjacent bridges are to be built back to back, the outside vertical plane of the railing and deck may coincide along a plane centered 1'-8" from each other line. A bond breaker will be required. See Structures Plans, Superstructure Sheets for Details.

** Rotate Bars 5V as shown to maintain clearance.

Approach Slab **

Begin or End Approach Slab

See joint orientation note on Sheet 1.

Where railings of adjacent bridges are to be built back to back, the outside vertical plane of the railing and deck may coincide along a plane centered 1'-8" from each other line. A bond breaker will be required. See Structures Plans, Superstructure Sheets for Details.

** Rotate Bars 5V as shown to maintain clearance.

Approach Slab **

Begin or End Approach Slab

See joint orientation note on Sheet 1.

Where railings of adjacent bridges are to be built back to back, the outside vertical plane of the railing and deck may coincide along a plane centered 1'-8" from each other line. A bond breaker will be required. See Structures Plans, Superstructure Sheets for Details.

** Rotate Bars 5V as shown to maintain clearance.

** See joint orientation note on Sheet 1.
** Where railings of adjacent bridges are to be built back to back, the outside vertical plane of the railing and deck may coincide along a plane centered 1'-8" from each other line. A bond breaker will be required. See Structures Plans, Superstructure Sheets for Details.

** Rotate Bars 5V as shown to maintain clearance.

Approach Slab **

Begin or End Approach Slab

See joint orientation note on Sheet 1.

Where railings of adjacent bridges are to be built back to back, the outside vertical plane of the railing and deck may coincide along a plane centered 1'-8" from each other line. A bond breaker will be required. See Structures Plans, Superstructure Sheets for Details.

** Rotate Bars 5V as shown to maintain clearance.

Approach Slab **

Begin or End Approach Slab

See joint orientation note on Sheet 1.

Where railings of adjacent bridges are to be built back to back, the outside vertical plane of the railing and deck may coincide along a plane centered 1'-8" from each other line. A bond breaker will be required. See Structures Plans, Superstructure Sheets for Details.

** Rotate Bars 5V as shown to maintain clearance.
CONVENTIONAL REINFORCING STEEL BENDING DIAGRAMS

<table>
<thead>
<tr>
<th>BILL OF REINFORCING STEEL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MARK</td>
<td>SIZE</td>
</tr>
<tr>
<td>P</td>
<td>5</td>
</tr>
<tr>
<td>S1</td>
<td>8</td>
</tr>
<tr>
<td>S2</td>
<td>5</td>
</tr>
<tr>
<td>T1 & T2</td>
<td>8</td>
</tr>
<tr>
<td>V</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BILL OF REINFORCING STEEL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MARK</td>
<td>SIZE</td>
</tr>
<tr>
<td>P</td>
<td>5</td>
</tr>
<tr>
<td>S1</td>
<td>8</td>
</tr>
<tr>
<td>S2</td>
<td>5</td>
</tr>
<tr>
<td>T1 & T2</td>
<td>8</td>
</tr>
<tr>
<td>V</td>
<td>5</td>
</tr>
</tbody>
</table>

ROADWAY CROSS-SLOPE

<table>
<thead>
<tr>
<th>LOW GUTTER</th>
<th>HIGH GUTTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA & BB</td>
<td>BA & BB</td>
</tr>
<tr>
<td>0% to 2%</td>
<td>90°</td>
</tr>
<tr>
<td>2% to 6%</td>
<td>93°</td>
</tr>
<tr>
<td>6% to 10%</td>
<td>96°</td>
</tr>
<tr>
<td>10% to 15%</td>
<td>99°</td>
</tr>
</tbody>
</table>

REINFORCING STEEL NOTES:

1. All bar dimensions in the bending diagrams are out to out.
2. The reinforcement for the railing on a retaining wall shall be the same as detailed above for a 10' deck with BA = BB = 90°.
3. All reinforcing steel at the open joints shall have a 2" minimum cover.
4. Bars S1 may be continuous or spliced at the construction joints. Lap splices for Bars S1 and S2 shall be a minimum of 4'-0" and 2'-0", respectively.
5. The Contractor may utilize Welded Wire Reinforcement (WWR) when approved by the Engineer. WWR must consist of Deformed wire meeting the requirements of Specification Section 931.

ITEM	**UNIT**	**QUANTITY**
Concrete | CY/LF | 0.134
Reinforcing Steel | LB/LF | 44.71

Note:
The estimated railing quantities are based on a 2% deck cross slope railing on low side of deck.