GENERAL NOTES

1. The finished grade and slope of the inlet tops are to conform with the finished cross slope and grade of the proposed sidewalk and/or border.

2. For inlets constructed on a curve, refer to the plans to determine the radius, and modify the inlet details accordingly. Bend steel when necessary.

3. All reinforcing steel to be Grade 60 bars with 1 1/2' minimum cover unless otherwise shown, see Sheet 4 for equivalent area Welded Wire Reinforcement details.

4. Inlet tops shall be either cast-in-place or precast concrete. Precast units shall conform to the dimensions shown or in accordance with approved shop drawings. Request for shop drawing approval shall be directed to the State Drainage Engineer.

5. Concrete meeting the requirements of ASTM C478 (4,000 psi) may be used in lieu of Class III concrete, manufactured in plants which meet the requirements of Section 449 of the Specifications.

6. Corner fillets are required at inlet opening for precast units or C-I-P units used in conjunction with circular inlet bottoms or skewed rectangular inlet boxes. Finish top of fillets flush with drain throat bottom and match slope.

7. For inlet bottoms see Index No. 200. Inlet tops are to be used with Type P bottoms, or Type J bottoms with 3'-6" square (Type B), 3'-6" or 4' round (Type A) risers or top slab openings.

8. These inlet tops are designed for use with standard curb and gutter Type E and Type F. Locate inlet outside of pedestrian crosswalks. For Type E curb, transition the shape of the curb over the gutter transition length to match the face of the inlet (Type F).

9. See Index No. 201 for supplemental details.

10. All steel used for frame and grate shall meet the requirements of ASTM A36/A36M.

11. Either cast iron grates or steel grates may be used.

12. When Alternate "G" grate is specified in the plans either the cast iron grate and galvanized steel frame or the galvanized steel grate and frame must be used. Grates are to be grouted in accordance with the grouting detail shown on Sheet 5, in lieu of tack welding.

13. Inlet to be paid for under the contract unit price for Inlets (Curb) (Type _), Each.

Inlet tops shall be either cast-in-place or precast concrete. Precast units shall conform to the dimensions shown or in accordance with approved shop drawings. Request for shop drawing approval shall be directed to the State Drainage Engineer.

Concrete meeting the requirements of ASTM C478 (4,000 psi) may be used in lieu of Class III concrete, manufactured in plants which meet the requirements of Section 449 of the Specifications.

Corner fillets are required at inlet opening for precast units or C-I-P units used in conjunction with circular inlet bottoms or skewed rectangular inlet boxes. Finish top of fillets flush with drain throat bottom and match slope.

For inlet bottoms see Index No. 200. Inlet tops are to be used with Type P bottoms, or Type J bottoms with 3'-6" square (Type B), 3'-6" or 4' round (Type A) risers or top slab openings.

These inlet tops are designed for use with standard curb and gutter Type E and Type F. Locate inlet outside of pedestrian crosswalks. For Type E curb, transition the shape of the curb over the gutter transition length to match the face of the inlet (Type F).

See Index No. 201 for supplemental details.

All steel used for frame and grate shall meet the requirements of ASTM A36/A36M.

Either cast iron grates or steel grates may be used.

When Alternate "G" grate is specified in the plans either the cast iron grate and galvanized steel frame or the galvanized steel grate and frame must be used. Grates are to be grouted in accordance with the grouting detail shown on Sheet 5, in lieu of tack welding.

Inlet to be paid for under the contract unit price for Inlets (Curb) (Type _), Each.

CURB INLET TOPS TYPES 5 AND 6

INLET TYPE 5 (Curb Inlet Type 6 Symmetrical With Left Half)
CONVENTIONAL REINFORCING STEEL BENDING DIAGRAMS

**BILL OF REINFORCING STEEL**

<table>
<thead>
<tr>
<th>MARK</th>
<th>SIZE</th>
<th>TYPE 5 INLET</th>
<th>TYPE 6 INLET</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO.</td>
<td>LENGTH</td>
<td>NO.</td>
</tr>
</tbody>
</table>
| A    | 4    | 25     | 3'-1" | 38  | 3'-1"
| B    | 6    | 19'-3" | 6   | 19'-9" |
| C    | 25   | 13'    | 25  | 13' |
| D    | 4    | 19'-3" | 4   | 19'-9" |
| E    | 16   | 4'-11  | 30  | 8'-11" |
| F    | 4    | 6'-0"  | 6   | 6'-0"  |
| G    | 4    | 3'-0"  | 4   | 3'-0"  |
| H    | 4    | 3'-0"  | 4   | 3'-0"  |
| K    | 2    | 2'-3"  | 2   | 2'-3"  |
| L    | 1    | 1'-4"  | 0   | ---  |
| M    | 10   | 1'-4"  | 9   | 1'-4"  |
| S    | 4    | 3'-2"  | 7   | 3'-2"  |

**REINFORCING STEEL NOTES:**

1. All bar dimensions in the bending diagrams are out to out.
2. Bars 4A and 4E may be combined into a single bar.
3. Welded Wire Reinforcement consists of Smooth or Deformed wire meeting the requirements of Specification Section 931.

**ALTERNATE REINFORCING STEEL DETAILS FOR WELDED WIRE REINFORCEMENT (WWR)**

WELDED WIRE REINFORCEMENT PIECE NO. 1

**PLACEMENT SCHEMATIC FOR WELDED WIRE REINFORCEMENT PIECE NO. 1**

WELDED WIRE REINFORCEMENT PIECE NO. 2

**PLACEMENT SCHEMATIC FOR WELDED WIRE REINFORCEMENT PIECE NO. 2**

WELDED WIRE REINFORCEMENT PIECE NO. 3

**PLACEMENT SCHEMATIC FOR WELDED WIRE REINFORCEMENT PIECE NO. 3**

**TYPICAL SECTION SHOWING WELDED WIRE REINFORCEMENT**

**CURB INLET TOPS TYPES 5 AND 6**

**INDEX NO.**

211

**SHEET NO.**

4 of 5