Index 22600 Series Square CFRP & SS Prestressed Concrete Piles (Rev. 01/16) Topic No. 625-010-003 FY 2016-17 ## **Design Criteria** AASHTO LRFD Bridge Design Specifications; Structures Design Guidelines (SDG); Structures Detailing Manual (SDM); Fiber Reinforced Polymer Guidelines (FRPG) ### **Design Assumptions and Limitations** Index 22600 is the lead standard for the Square CFRP & SS Prestressed Concrete Pile standard series which includes Indexes 22600 through 22630. Use this standard with Indexes 22601, 20602, 22612, 22614, 22618, 22624 and 22630. Standard piles are designed to have 1000 psi uniform compression after prestress losses without any applied loads to offset tensile stresses that occur during typical driving. The piles are designed to have 0.0 psi tension using a load factor of 1.5 times the pile self weight during pick-up, storage and transportation as shown in the "Table of Maximum Pile Pick-Up and Support Lengths" on the standard. ## **Plan Content Requirements** In the Structures Plans: Show and label the piles on the Foundation Layout, End Bent, Intermediate Bent, Pier, Footing, Typical Section and other sheets as required. Complete the following "Data Table" in accordance with **SDG** 3.5 and **SDM** 11.4 and include it in the contract plans with the "Foundation Layout" sheets. Modify table and notes as required to accommodate the required number of piles, piers and/or bents, use of Test Piles and instrumentation. When not enough space is available on one plan sheet, continuations of the Data Table and/or separate pile cut-off elevation tables are acceptable. See Introduction I.3 for more information regarding use of Data Tables. For projects without Test Piles change data table column heading "TEST PILE LENGTH (ft.)" to "PILE ORDER LENGTH (ft.)". | PÎLE DATA TABLE | | | | | | | | | | Table Date 01/01/16 | | | | | | | | | | | | | | | |------------------------------|-----------------------|--|---|--------------------------------------|---------------------------------|---------------------------------------|---|--------------------------------------|--|------------------------|--|--------------------------------------|---|---------------|----------|-----------------------|--------|--------|--------|--------|--------|--------|--|--| | | | I | NSTALLATI | ON CRITE | RIA | | | | | L | DESIGN CR | ITERIA | | | | PILE CUT-OFF ELEVATIO | | | | | | ONS | | | | PIER
or
BENT
NUMBER | PILE
SIZE
(in.) | NOMINAL
BEARING
RESISTANCE
(tons) | NOMINAL
UPLIFT
RESISTANCE
(tons) | MINIMUM
TIP
ELEVATION
(ft.) | TEST
PILE
LENGTH
(ft.) | REQUIRED
JET
ELEVATION
(ft.) | REQUIRED
PREFORM
ELEVATION
(ft.) | FACTORED
DESIGN
LOAD
(tons) | FACTORED
DESIGN
UPLIFT
LOAD
(tons) | DOWN
DRAG
(tons) | TOTAL
SCOUR
RESISTANCE
(tons) | NET
SCOUR
RESISTANCE
(tons) | 100-YEAR
SCOUR
ELEVATION
(ft.) | Ø COMPRESSION | Ø UPLIFT | PILE 1 | PILE 2 | PILE 3 | PILE 4 | PILE 5 | PILE 6 | PILE 7 | Factored Design Load + Net Scour Resistance + Down Drag \emptyset \le Nominal Bearing Resistance UPLIFT RESISTANCE - The ultimate side friction capacity that must be obtained below the 100 year scour elevation to resist pullout of the pile (Specify only when design requires suplift capacity). TOTAL SCOUR RESISTANCE - An estimate of the ultimate static side friction resistance provided by the scourable soil. NET SCOUR RESISTANCE - An estimate of the ultimate static side friction resistance provided by the soil from the required preformed or jetting elevation to the scour elevation. 100-YEAR SCOUR ELEVATION - Estimated elevation of scour due to the 100 year storm event. PILE INSTALLATION NOTES [Notes Date 7-01-13]: Contractor to verify location of all utilities prior to any pile installation activities. Minimum Tip Elevation is required for lateral stability. When a required jetting elevation is shown, the jet shall be lowered to the elevation and continue to operate at this elevation until the pile driving is completed. If jetting or preforming elevations differ from those shown on the table, the Engineer shall be responsible for determination of the required driving resistance. No jetting will be allowed without the approval of the Engineer. The Contractor should not anticipate being allowed to jet piles below the 100-year scour elevation or required jet elevation, whichever is deeper. At each Bent, pile driving is to commence at the center of the Bent and proceed outward. ## **Payment** | Item number | Item description | Unit Measure | |-------------|--|--------------| | 455-34-AA | Prestressed Concrete Piling (CFRP or SS) | LF | ## **Design Aids** - Concrete compressive strength $f_c = 6$ ksi. - Modulus of elasticity of prestressing strands, E_p = 18,000 ksi (1/2" CFRP), 22,480 ksi (0.6" CFRP) & 23,500 ksi (HSSS). Resistance factors ϕ based on ACI 440.4R for CFRP strands (0.65 compression-controlled), 0.85 tension-controlled); and AASHTO LRFD 5.5.4.2.1 for HSSS strands (0.75 compression-controlled, 1.0 tension-controlled). - All piles assumed to have spiral ties. - Strand sizes and strand patterns used to create interaction curves correspond with those indicated in Index 22612. - Concrete compressive strength $f_c = 6$ ksi. - Modulus of elasticity of prestressing strands, E_p = 18,000 ksi (1/2" CFRP), 22,480 ksi (0.6" CFRP), 23,500 ksi (HSSS) Resistance factors ϕ based on ACI 440.4R for CFRP strands (0.65 compression-controlled), 0.85 tension-controlled); and AASHTO LRFD 5.5.4.2.1 for HSSS strands (0.75 compression-controlled, 1.0 tension-controlled). - All piles assumed to have spiral ties. - Strand sizes and strand patterns used to create interaction curves correspond with those indicated in Index 22614. - Concrete compressive strength $f_c = 6$ ksi. - Modulus of elasticity of prestressing strands, E_p = 18,000 ksi (1/2" CFRP), 22,480 ksi (0.6" CFRP) & 23,500 ksi (HSSS) Resistance factors ϕ based on ACI 440.4R for CFRP strands (0.65 compression-controlled), 0.85 tension-controlled); and AASHTO LRFD 5.5.4.2.1 for HSSS strands (0.75 compression-controlled, 1.0 tension-controlled). - All piles assumed to have spiral ties. - Strand sizes and strand patterns used to create interaction curves correspond with those indicated in Index 22618. - Concrete compressive strength $f_c = 6$ ksi. - Modulus of elasticity of prestressing strands, E_p = 18,000 ksi (1/2" CFRP), 22,480 ksi (0.6" CFRP), 23,500 ksi (HSSS) Resistance factors ϕ based on ACI 440.4R for CFRP strands (0.65 compression-controlled), 0.85 tension-controlled); and AASHTO LRFD 5.5.4.2.1 for HSSS strands (0.75 compression-controlled, 1.0 tension-controlled). - All piles assumed to have spiral ties. - Strand sizes and strand patterns used to create interaction curves correspond with those indicated in Index 20624. - Concrete compressive strength $f_c = 6$ ksi. - Modulus of elasticity of prestressing strands, $E_p = 18,000 \text{ ksi } (1/2 \text{ "CFRP}), 22,480 \text{ ksi } (0.6 \text{ "CFRP}), 23,500 \text{ ksi } (HSSS)$ - Resistance factors \$\phi\$ based on ACI 440.4R for CFRP strands (0.65 compression-controlled, 0.85 tension-controlled); and AASHTO LRFD 5.5.4.2.1 for HSSS strands (0.75 compression-controlled, 1.0 tension-controlled). - All piles assumed to have spiral ties. - Strand sizes and strand patterns used to create interaction curves correspond with those indicated in Index 22630.