

CASE 1
(Standard Orientation for New Construction)

CASE 2
(Special Orientation for Widenings)
 (Special Orientation for Widenings)

CONDITION 3

BEAM NOTES
2. All bar dimensions are out-to-out bar (see "ELEVATION AT END OF BEAM", Index Nos. 20036, 20045, 20054, 20063, 20072, 20078, 20084 and 20096). 3. Strands N shall be ASTM A416, Grade 270 , seven-wire strands $3 / \mathrm{m}^{\prime \prime} \varnothing$ or larger, stressed to $10,000 \mathrm{lbs}$. each. Prestressing Strands at the end of the beam without damaging the surrounding concrete. See STRAND CUTTING AND PROTECTING DETAIL on Sheet 2 .
5. For beams with ends not to be encased in permanent concrete diaphragms, protect end of recessed strands in accordance with Specification Section 450
. Unless otherwise noted, the minimum concrete cover for reinforcing steel shall be $2^{\prime \prime}$.
. At the Contractor's option, welded deformed wire reinforcement may be used in lieu of Bars 3D, 5 K , $4 M$, and $5 Z$ as shown on the Standard Details for each beam size. Welded deformed wire reinforcemen Shall meet requirements of Specification Section 931.
Safety Line Anchorage Devices or sleeves are require
protection systems used during construction. See shop and permitted in the top flange only to accommodate fall
. For beams with skewed end conditions, the end reinforcement for details and spacing of any required embedments.
4M1, 4M2, 5 Y and 5 Z placed within the limits of the spacing for Bars 3 C in "ELEVATION AT END OF BEAM" Shall be placed parallel to the skewed end of the beam. Bars $303,5 \mathrm{~K}$ and $4 \mathrm{M3}$ located beyond the limit
of Bars 3 C shall be placed perpendicular to the longitudinal axis of the beam. Fan Bars as needed to avoid overlapping bars at the transition to Bars $3 D 3$ and 4M3, and field cut to maintain minimum cover Provide additional Bars 4M1, 4M2, 3D1 and $3 D 2$ as required; additional bars are not included in the
Number Required on the "BILL OF REINFORCING STEEL" For placement locations, see "SKEWED Number Required on END DETAILS". Adjust the dimensions of Bars 3C1, 3C2, 3D1, 3D2, 4M1 and 4M2 as shown on the "BENDING DIAGRAM" for skewed end conditions.
10. Placement of Bars $3 C 1,3 D 1$ and $4 M 1$ correspond to END 1, and Bars $3 C 2,3 D 2$ and $4 M 2$ correspond to END 2. END 1 and END 2 are shown on the beam "ELEVATION"
11. For Beams with vertically beveled end conditions, place first row of Bars 3C1,3C2,301,302,5K, 5Y $5 Z$ parallel to the end of the beam. Progressively rotate remaining bars within the limits of Bars $5 Z$ unt vertical by adjusting the spacing at the top of beam up to a maximum of $1^{\prime \prime}$. For welded deformed wire reinforcement, cut top cross wire and rotate bars as required or reduce end cover at top of the beam to minimum 1
12. For beams with skewed end conditions, welded deformed wire reinforcement shall not be used for end 3. Bars 5K and (BZars shall be placed and tid
"STRAND PATTERN" on the Table of Beam Variables in Structures Plans). At the Contractor's option (hee length of the bottom legs of Bars $5 K$ and 57 may be extended to fansilitate the Contractor's option the For welded deformed wire reinforcement, supplemental transverse \#4 bars are permitted to support Alces $K \& S$ under the cross wires on the bottom row of strands.
minimum lactor's option, Bars 3D1, 302 and 303 may be fabricated as a single bar with a $1^{1}-0$ minimum lap splice of the top legs, or the length of the bottom legs may be extended to facilitate tying to the exterior stranas

SCHEMATIC PLAN VIEWS AT BEAM ENDS
SChematic end elevations of beams
(Showing Vertical Bevel of Beam End)

Bars 5 K spaced perpendicular
to end of
Skewed Bars 5Z 31/2
Skewed Bars 5Z, 4M1 or

Bars 5 K spaced along \mathbb{C} Beam oath Bars 4M1 or 4M2 place
 along end of bars. Clip to maintain cover.

For number of Bars, spacing and placement details see Index No. 20036 thru 20096. See Sheet 1 for Conventional Reinforcement, Sheet 2 for Welded Wire
Reinforcement.

Bars $5 K$ spaced perpendicular to end of beam @ $31 / 2^{\prime \prime}$. Skewed Bars 5Z, 3D1 or 302, 3C1 or
d

Bars 5 K spaced along \& Beam @
Bars Bars $3 D 1$ or $302,3 C 1$ or $3 C 2$
placed with alternate Bars 5 K
placed with alternate Bars $5 K^{*}$

- Bars 5K (Typ.)

Team

J-
Bars 4M1 or 4M2
Welded Wire Reinforcement not permitted for Bars $4 M 1$
or 4M2 in this area, for skewed beam ends
PARTIAL PLAN VIEW (SHOWING TOP FLANGE) (End 1 Shown, End 2 Similar
Bars 5A, $5 Y \&$ Strands N not shown for clarity)

1~ Additional Bar 4M1 or 4M2
(shown dashed)
(shown dashed)
-Begin Welded Wire Reinforcement Option When applicable, Pieces M-3\& S-1, see
Sheet 2 of Index No. 20036 thru 20096

1 \sim Additional Bar 301 or 302 for Skews $\leq 10^{\circ}$ or
$2 \sim$ Additional Bars 301 or 302 for Skews $>10^{\circ}$ 2 - Additional Bars 301 or 302 for Skews $>10^{\circ}$ (shown dashed) rotate and space equally between
last Bar $3 D 1$ or $3 D 2$ and first Bar 303 as shown
Bars $3 C 1$ or $3 C 2$

$6^{\prime \prime}$ Chamfer

Bars 52 (shown dotted, Typ.) Bars 5K (Typ.)

Welded Wire Reinforcement not permitted for Bars
(Bars $5 Y$, Strands, and Embedded Bearing Plate "A" not shown for clarity)
\qquad Begin Welded Wire Reinforcement Option when applicable, Pieces D-3

$$
2
$$ \& S-1, see Sheet 2 of Index No. 20036 thru 20096

$$
20
$$ 20

INSERT NOTES

1. Provide 1" \varnothing, zinc-electroplated, ferrule wing nut or coil inserts, UNC threads, $1 / 0$ minimum gage wire, not more than $4^{\prime \prime}$ in depth with a minimum Ultimate tensile strength of $11,400 \mathrm{lbs}$. in 4,000 psi concrete. If inserts are needed on long as the thickness of the beam web, consisting of two (2) ferrule or coil inserts attached by two (2) or more struts may be utilized. The connecting struts shall have a minimum ultimate tensile strength of $11,400 \mathrm{lbs}$.
Inserts for diaphragm reinforcing are required at each end of each intermediate diaphragm shown on the Beam Framing Plan and may be required at the end of the beams when end diaphragms are shown. See Superstructure and Beam Fram.
inserts for each face of beam.

$$
\overline{\bar{Z}} \text { INSERT DETAIL }
$$

PLAN SECTION THRU BEAM WEB AT

 NSERT FOR DIAPHRAGM REINFORCING when Intermediate Diaphragms are Required by Design$$
\begin{array}{r}
\text { SKEWED BEAM END DETAILS FOR WIDENING EXIS } \\
\text { (Florida-I } 36 \text { Beam shown, others similar) }
\end{array}
$$

- Face Beam Web

These dimensions are
measured perpendicula

ND VIEW

Spacing Bars $5 \mathrm{~K} \quad 21 / 2^{1{ }^{1 *}}$

1^{4} sp. @ 31/2" 12 sp. @ 3"

S1 sp.@ V1
CONVENTIONAL REINFORCING BAR BENDING DETAILS

BILL OF REINFORCING STEEL				
MARK	NOTE numbers	SIZE	NUMBER REQUIRED	LENGTH (NOTE 1)
A	-	5	8	$16^{\prime}-0^{\prime \prime}$
C1	9, 10 \& 11	3	11 (End 1)	Varies
C2	9, $10 \& 11$	3	11 (End 2)	Varies
D1	9, 10, $11 \& 14$	3	22 (End 1)	Varies
D2	9, 10, 11 \& 14	3	22 (End 2)	Varies
D3	$9 \& 14$	3	See Table	$4^{\prime \prime}-3^{\prime \prime}$
K	2, 9, $11 \& 13$	5	See Table	$4^{\prime \prime}-2^{\prime \prime}$
M1	$9 \& 10$	4	9 (End 1)	Varies
M2	$9 \& 10$	4	9 (End 2)	Varies
M3	9	4	See Table	$3^{\prime}-8^{\prime \prime}$
N	$3 \& 4$	3/8" \varnothing Strand	4	Dim. L
Y	$9 \& 11$	5	12	$2^{\prime}-6^{\prime \prime}$
z	2, 9, $11 \& 13$	5	10	$3^{\prime}-8^{\prime \prime}$
BENDING DIAGRAMS (See Note 1)				

BENDING DIAGRAMS (See Note 1)

BARS 5A, 4M1, 4M2 BARS 3C1 \& $3 C 2$ (
BARS $5 K \& 5 Z$ BARS 3D1, 3D2 \& $3 D 3$

Work this Index with Index No. 20010 - Typical Florida-I Beam Details and Notes and the Stria-I Beam - Tables
Stans.
B. For referenced notes, see Index No. 20010.
C. For Dimensions A, B, C, D, $L, R \& V 1$ and
number of spaces S1 thru S4, see Florida-I number of spaces S1 thru S4, see Florida-I

Beam - Table of Beam Variables in Structures | Blans. |
| :--- |

Dim. $L=$ Beam Casting Lengt
Overall Length of Beam along \& Beam including lingth increase as required for Beam placed
on grade and Dim. R to compensate for elastic and time dependent shortening effects) Direction of Stationing $1 \ldots S 2$ sp. @ $9^{\prime \prime} \ldots S 3$ sp. @ $1^{\prime}-0^{\prime \prime} \ldots S 4$ sp. @ 11. ... Spacing Bars 5K (Symmetrical about \& @ top of Beam)

SECTION A-A FOR CONVENTIONAL REINFORCING (Showing Bars 5K, 5Y \& 5Z Only)

(Overall Length of Beam along \& Beam including length increase as required for Beam placed | on grade and Dim. R to compensate for elastic and time dependent shortening effects) |
| :---: |

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 07 / 01 / 12 \end{gathered}$	

2016
FDOT
DESIGN STANDARDS
alternate reinforcing steel (WELDED Wire Reinforcement) details

These dimensions are
measured perpendicular oo the end of beam

Spacing Bars $5 \mathrm{~K} \quad 21 / 2^{1 / *}$ Spacing $\frac{\text { Spacing }}{\text { or 4M2 }}$ or 4M2
Spacing 3/2"* 2 sp.@ $7^{\text {n"* }}$ 16 sp.@路

END VIEW

ELEVATION AT END OF BEAM Flanges Not Shown For Clarity (End 1 Shown, End 2 Similar)

CONVENTIONAL REINFORCING BAR BENDING DETAILS

BILL OF REINFORCING STEEL				
MARK	$\begin{aligned} & \text { NOTE } \\ & \text { NUMBERS } \end{aligned}$	SIZE	NUMBER REQUIRED	LENGTH (NOTE 1)
A	-	5	8	19'-0' ${ }^{\prime \prime}$
C1	9, 10 \& 11	3	13 (End 1)	Varies
C2	$9,10 \& 11$	3	13 (End 2)	Varies
D1	9, $10,11 \& 14$	3	26 (End 1)	Varies
D2	9, 10, $11 \& 14$	3	26 (End 2)	Varies
D3	$9 \& 14$	3	See Table	$4^{\prime}-3^{\prime \prime}$
K	2, 9, $11 \& 13$	5	See Table	$4^{\prime}-11^{\prime \prime}$
M1	$9 \& 10$	4	11 (End 1)	Varies
M2	$9 \& 10$	4	11 (End 2)	Varies
M3	9	4	See Table	$3^{\prime}-8^{\prime \prime}$
N	$3 \& 4$	$3 / 88^{\prime \prime}$ ¢ Strand	4	Dim. L
Y	$9 \& 11$	5	12	$3^{\prime \prime}-3^{\prime \prime}$
z	2, 9, $11 \& 13$	5	10	$4^{\prime \prime}-5^{\prime \prime}$

BENDING DIAGRAMS (See Note 1)

BARS $5 K \& 5 Z$ BARS 3D1, $3 D 2 \& 3 D 3$
NOTES:
A. Work this Index with Index No. 20010 - Typical Florida-I Beam Details and Notes and the
Florida-I Beam - Table of Beam Variables in Structures Plans.
B. For referenced notes, see Index No. 20010. For Dimensions A, B, C, D, L, R\&V1 and
number of spaces S1 thru S4, see Florida-I Beam - Table of Beam Variables in Structures Plans.
Dim. $L=$ Beam Casting Lengt
Direction of Stationing
on grade and Dim. R to compensate for elastic and time dependent shortening effects)
 (Showing Bars $5 K, 5 Y \& 5 Z$ Only)

$\text { FDOT\} } \begin{gathered} 2016 \\ \text { DESIGN STANDARDS } \end{gathered}$	$\mathbb{F L O R I D A}-\mathbb{I} 45 \mathbb{B E A M}-\mathrm{STANDARD}$ DETAILS	$\begin{gathered} \text { INDEX } \\ \text { NO. } \\ 20045 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & \text { NO. } \\ & 1 \text { of } 2 \end{aligned}$

alternate reinforcing steel (welded wire reinforcement) details

These dimensions are
measured perpendicula
o the end of beam

SECTION A-A FOR CONVENTIONAL REINFORCING (Showing Bars 5K, 5Y \& 5Z Only)

ELEVATION AT END OF BEAM
 Flanges Not Shown For Clarity) (End 1 Shown, End 2 Similar)

Dim. $L=$ Beam Casting Length

CONVENTIONAL REINFORCING BAR BENDING DETAILS

BILL OF REINFORCING STEEL				
MARK	$\begin{gathered} \text { NOTE } \\ \text { NUMBERS } \end{gathered}$	SIZE	NUMBER REQUIRED	LENGTH (NOTE 1)
A	-	5	8	$22^{\prime}-0^{\prime \prime}$
C1	9, 10 \& 11	3	14 (End 1)	Varies
C2	9, 10 \& 11	3	14 (End 2)	Varies
D1	$9,10,11 \& 14$	3	28 (End 1)	Varies
D2	9, 10, $11 \& 14$	3	28 (End 2)	Varies
D3	$9 \& 14$	3	See Table	$4^{\prime}-3^{\prime \prime}$
K	$2,9,11 \& 13$	5	See Table	$5^{\prime}-8^{\prime \prime}$
M1	$9 \& 10$	4	12 (End 1)	Varies
M2	$9 \& 10$	4	12 (End 2)	Varies
M3	9	4	See Table	$3^{\prime}-8^{\prime \prime}$
N	$3 \& 4$	$3 / 8^{\prime \prime} \varnothing$ Strand	4	Dim. L
Y	$9 \& 11$	5	12	$4^{\prime}-0^{\prime \prime}$
z	2, 9, 11\& 13	5	10	$5^{\prime}-2^{\prime \prime}$

BENDING DIAGRAMS (See Note

BARS 5A, 4M1, 4M2 $4 M 3 \& 5 Y$

ARS $5 K \& 5 Z$ BARS 3D1, 3D2 \& 3D3

NOTES

A. Work this Index with Index No. 20010 - Typical Florida-I Beam Details and Notes and the
Florida-I Beam - Table of Beam Variables Structures Plans.
B. For referenced notes, see Index No. 20010.
C. For Dimensions A, B, C, D, L, R\&V1 and
number of spaces Si thru S4, see Florida-I number of spaces S1 thru S4, see Florida-I
Beam - Table of Beam Variables in Structures Beam
Plans.

alternate reinforcing steel (welded wire reinforcement) details

END VIEW

SECTION A-A FOR CONVENTIONAL REINFORCING (Showing Bars 5K, 5Y \& $5 Z$ Only)

ELEVATION AT END OF BEAM langes Not Shown For Clarity)

Dim. $L=$ Beam Casting Length

alternate reinforcing steel (welded wire reinforcement) details

CASE 2
(Special Orientation for Widenings)

END 1
CASE 3 END 2 (Special Orientation for Widenings)

BEAM NOTES
2. Place one (1) Bar $4 K$, or $5 Z$ at each location as detalled alternating the direction of the ends for each bar (see "ELEVATION AT END OF BEAM", Sheet 3).
3. Strands N shall be ASTM A416, Grade 270, seven-wire strands $3 / 8^{\prime \prime} \varnothing$ or larger, stressed to $10,000 \mathrm{lbs}$. each recess Prestressing Strands at the end of the beam concrete diaphragms, after detensioning cut wedge to recess prestressing Strand at the end of the
CUTTING AND PROTECTING DETAIL" on Sheet 2 .
5. For beams with ends not to be encased in permant colc a 5. For beams with ends not to be encased in permanent concrete diaphragms, protect end of recessed strands in
accordance with Specification Section 450 . 6. Unless otherwise noted, the minimum concrete cover for reinforcing steel shall be $2^{\prime \prime}$.
. At the Contractor's option, welded deformed wire reinforcement may be used in lieu of Bars 3D, 4K, and 5 Z as shown on Sheet 4. Welded deformed wire reinforcement shall meet requirements of Specification Section 931 protection systems used during construction. See shop drawings for details and spacing of any required embedments. 9. For beams with skewed end conditions, the end reinforcement, defined as Bars 3D1, 3D2, 4K, 4Y and 5 Z placed within the limits of Bars $3 D$ in "ELEVATION AT END OF BEAM", shall be placed parallel to the skewed end of the beam. Bars $3 D$ and $4 K$, located beyond the limits of Bars $3 D$ shall be placed perpendicular to the longitudinal axis of the beam. For placement locations, see "SKEWED BEAM END DETAILS". Ad just the dimensions of Bars 3D1 Placement of Bars 3D1 correspond to END 1, and Bars 3C2, correspond to
the beam "ELEVATION" 11. For Beams with vertically beveled end conditions, place first row of Bars $3 D 1,3 D 2,4 K, 4 \mathrm{Y}$ and 5 Z parallel to the end of the beam. Progressively rotate remaining bars within the limits of Bars $5 Z$ until vertical by adjusting the spacing at the top of beam up to a maximum of $1^{1 "}$. For welded deformed wire rein
and rotate bars as required or reduce end cover at top of the beam to minimum
12. For beams with skewed end conditions, welded deformed wire reinforcement shall not be used for end confinement reinforcent (Bars 3D1 and 3D2).
"STRAND PATTERN" on the Table of Beam Variables in Structures Plans). For welded deformed wire reinforcement, supplemental transverse bars are permitted to support Pieces $K \& S$ under the cross wires on the bottom row of strands or Strands N.
14. At the Contractor's option, Bars 3D1,3D2 and 3D3 may be fabricated as a two-piece bar with a $1^{1}-0^{\prime \prime}$ 15. For referenced Dimensions, Angles and Case Numbers, see the Table of Beam Variables in Structures Plans.

CONDITION 2

CONDITION 3

SCHEMATIC PLAN VIEWS AT BEAM ENDS
SCHEMATIC END ELEVATIONS OF BEAMS
(Showing Vertical Bevel of Beam End)

| $\begin{gathered} \text { LAST } \\ \text { REVISION } \\ \text { O7/01/14 } \end{gathered}$ | \|c|cher | $\begin{gathered} \text { FDOT\} } \\ 2016 \\ \text { DESIGN STANDARDS } \end{gathered}$ | AASHTO TYPE II BEAM | $\begin{gathered} \text { INDEX } \\ \text { NO. } \\ 20120 \end{gathered}$ | $\begin{aligned} & \text { SHEET } \\ & \text { NO. } \\ & 1 \text { of } 4 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

partial plan view (Showing top flange)
(End 1 Shown, End 2 Similar)
(Bars 5A, $4 Y \&$ Strands N not shown for clarity)

For number of Bars, spacing and
placement details see Sheet 3. See
Sheet 3 for Conventional Reinforcement,
Sheet 4 for Welded Wire Reinforcement.

PLAN SECTION THRU BEAM WEB AT

 INSERT FOR DIAPHRAGM REINFORCING (When Intermediate Diaphragms are Required by Design)INSERT NOTES

1. Provide 1" \varnothing, zinc-electroplated, ferrule wing nut or coil inserts, UNC threads, $1 / 0$ minimum gage wire, not more than $4^{\prime \prime}$ in depth with a minimum ultimate tensile strength of $11,400 \mathrm{lbs}$. in 4,000 psi concrete.
2. If inserts are needed on both sides (faces) of beam webs, an assembly as inserts attached by two (2) or more struts may be utilized The connecting inserts attached by minimum ultimate tensile strength of $11,400 \mathrm{lbs}$.
3. Inserts for diaphragm reinforcing are required at each end of each intermediate diaphragm shown on the Beam Framing Plan and may be required at the end of the beams when end diaphragms are shown. Se inserts for each face of beam
$\overline{\bar{Z}}$ INSERT DETAIL

PARTIAL SECTION THRU WEB (SHOWING BOTTOM FLANGE)
(End 1 Shown, End 2 Similar)
(Bars $4 Y \&$ Strands not shown for clarity)

TYPICAL SECTION
SHOWING CUT STRAND RECESS LIMITS
TYPICAL SECTION AFTER PROTECTING

SECTION A-A

for welded wire reinforcement

PARTIAL SECTION AT CENTER bEAM

PARTIAL BEAM END VIEW (Conventional Reinforcing Bars A, Y and Bottom Strands not Shown for Clarity) NOTES: a. See Sheet 3 for placement details \& Table of Beam V ariables in Structures Plans for variables S1, S2, S3,
b. Place Conventional Reinforcement Bars $5 A$ as shown on Sheet 3. Place additional Bars. 4Y as shown in Section A-A
for Welded Wire Reinforcement. Bars 57 will not be used for welded Wire Reinforcement. Bars $5 Z$ will not be us
c. Pieces may be fabricated in multiple length sections.
d. For beams with skewed end conditions, Pieces D-1\& D-2 Shall not be used; Conventional Reinforcement Bars D1 \&
D2 shall be used. See Sheet 2 Skew Details and Sheet 1 D2 shall be used. See Sheet 2 Skew Details and Sheet 1
Note 9 for placement details. Shift Pieces $K \&$ Bars 4 to accommodate skewed end conditions and align with Bars D.
EF $=$ Each Face
FF $=$ Front Face
EF $=$ Each Face
FF Front Face
END VIEW
PIECE D-1
PIECE D-2
END VIEW
(4 Required ~ 2 Pairs)
(4 Required ~ 2 Pairs)
STANDARD DETAILS

BUILD-UP DIAGRAM FOR TANGENT SPANS (ALONG \& BEAM) (CASE 1)

BUILD-UP DIAGRAM FOR SAG VERTICAL CURVE \& HORIZONTAL CURVE SPANS (ALONG \& BEAM) (CASE 2)

BUILD-UP DIAGRAM FOR CREST VERTICAL CURVE SPANS - CONTROL AT \& SPAN (ALONG q BEAM) (CASE 3)

Begin Span

build-up diagram for crest vertical curve spans Control at begin or end span (ALONG \& BEAM) (CASE 4)

BEAM CAMBER AND BUILD-UP NOTES:

The build-up values given in the Data Table* are based on theoretical beam cambers The Contractor shall monitor beam cambers for the purpose of predicting
camber values at the time of the deck pour. If the predicted cambers based
on field measurements differ more than $+/-1 / 2$ " from the theoretical "Net Beam
Camber @ 120 Days" shown in the Data Table*, obtain approval from the Engineer to modify the build-up dimensions as required. When the measured beam cambers
create a conflict with the bottom mat of deck steel, notify the Engineer a minimum of 21 days prior to casting.

Dim. "A" includes the weight of the Stay-In-Place Formwork.

DEAD LOAD DEFLECTION DIAGRAM

BUILD-UP OVER BEAMS
(Florida-I Beam Shown
AASHTO Type II Similar

$$
\begin{aligned}
& \text { * NOTE: } \\
& \text { Work this Index with the Build-up and Deflection } \\
& \text { Data Table for Florida-I and AASHTO Type II Beams } \\
& \text { in Structures Plans. }
\end{aligned}
$$ in Structures Plans.

MATIC END ELEVATIONS OF BE
(Showing Vertical Bevel of Beam End)

SCHEMATIC PLAN VIEWS AT bEAM ENDS
NOTE:
Work this Index with Florida-U Beam - Table
of Beam Variables in Structures Plans.

$\begin{aligned} & \text { LAST } \\ & \text { REVISION } \\ & 01 / 01 / 12 \end{aligned}$		$\begin{array}{cc} \text { FDOT } \\ 2016 \\ \text { DESIGN STANDARDS } \end{array}$	TYPICAL FLORIDA-U BEAM DETAILS AND \mathbb{N}	$\begin{gathered} \text { INDEX } \\ \text { NO. } \\ 20210 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & \text { NO. } \\ & 1 \text { of } 2 \end{aligned}$

BEAM NOTES

1. All bar dimensions are out-to-out

Strands N(Dormant Strands) shall be ASTM A416, Grade 270, seven-wir Unless otherwise noted in Structures $10,000 \mathrm{lbs}$. each.
for reinforcing steel shall be $2^{\prime \prime}$
At the option of the Contractor and with Enins Apros welded wire reinforcement (WWR) may be used in lieu of Bars 6A1, 4A2,5B, 4C, 3D, 5 welded wire reinforcement (wWR) may be used in ieu of Bars 6 AI, $4 \mathrm{~F}, 4 \mathrm{~A}, 4 \mathrm{H}, 5 \mathrm{~K}, 5 \mathrm{~L}$ and 4 M except as noted below in note 7 , provided the wire sizes and spacing match those shown on the Standard Beam Detail sheets for these bars. WWR must consist of Deformed wire meeting the requirements
of Specification Section 93
flanges only to accommodate fall protection systems used during construction. See shop drawings for details and spacing of any required embedments.
6. For Beams with vertically beveled end conditions when "Dim. P" exceeds 1 " Bars 5 E and the first Bars $4 F$ and 5 K shall be placed parallel to the end of be fanned at equal spaces.
7. Welded deformed wire reinforcement shall not be used for the end reinforcemen (Bars 5B, 4C, 3D, 5E, 4F, 5K, and 5L) for beams with skewed end conditions or vertically beveled end conditions when "Dim. P" exceeds 1 ".
8. Bars 5 K shall be placed and tied to the fully bonded strands in the bottom row (see "STRAND PATTERN" in Structures Plans).
Strand Protection at beam ends shall consist of a $2^{\prime \prime}$ deep recess for around all strands (including dormant) or strand grous. Extend recess to face of web and bottom of flange for bottom row of strands. After detensioning, cut strands $1 / 2 / 1$ from recessed surface and fill the recess with a Type F-2 or Q Epoxy Compound in accordance with Section 926 of the Specifications.
10. Use Size No. 67 maximum sized aggregate
11. Use Stay-in-Place metal deck forms inside the beams.
2. seior to deck placement, based on the deck forming system and deck placement seloence, evaluate and provide, if necessary, temporary bracing between the U Beams of every beam. Ensure the temporary blocking is adequate to resist wovements and rotations that occur during placement of the deck. Leave temporary blocking and bracing in place for a minimum of four days after the deck placement.
13. For referenced Dimensions, Angles and Case Numbers see Table of Beam Variables in Structures Plans.

END VIEW at end diaphragm
SECTION C-C

TOP VIEW OF SKEWED END DIAPHRAGM AND STIRRUP TRANSITION ZONE
(Bars 3D2 Not Shown For Clarity)

| $\begin{array}{\|c\|} \hline \text { LAST } \\ \text { REVISION } \\ \text { O7/01/05 } \end{array}$ | \|r|cer | $\begin{array}{cc\|c} 2016 \\ \text { FDOT } \end{array}$ | $\mathbb{F L O R I D A}-\mathbb{U} 48 \mathbb{B E A M}-\mathrm{STANDARD} \mathbb{D E T A I L S}$ |
| :---: | :---: | :---: | :---: |

CONVENTIONAL REINFORCING STEEL BENDING DIAGRAMS

END VIEW AT END DIAPHRAGM

SECTION C-C
NOTES:

1. Drains shall be placed adjacent to each web at each beam end (four drains per beam). Drain Pipe shall
be $2^{\prime \prime}$ Nominal Pipe Size, Schedule 80 PVC. Provide removable pipe plugs to prevent concrete entrance during beam casting. Plugs to be removed from the inside after casting. Galvanized screen wire shall cover
the end of the pipe and bent down around the sides of the end of the pipe and bent down around the sides of
the pipe, a minimum of $1^{\prime \prime}$ and secured prior to casting. 2. Concrete face may be sloped with a maximum 1:24 draft to facilitate formwork removal.

End of
End of
Beam

2 sp. @ 8" $4^{\prime \prime} 14^{\prime \prime}$ 2 sp. @ 8" Spacing Bars 5B and 5E Vertical Face of the Top
Spacing Bars 5K (Along q of Beam) (Bars $4 F$ and $4 M$ are Paired with
(Bars 4F and 4M ar
Bars 5 K as shown)

Spacing Bars 5K (Along q of Beam) Bars 4F and 4M are Paired with Bars 5 K as shown)

$$
\begin{aligned}
& \text { Flange and We and } \\
& \text { Underside of the Top }
\end{aligned}
$$

Top

$$
\begin{aligned}
& \text { Underside of } \\
& \text { Flange (Typ.) }
\end{aligned}
$$

TOP VIEW OF END DIAPHRAGM
(Bars 3D1 And 3D2 Not Shown For Clarity)

INTERMEDIATE DIAPHRAGM

1. Drains shall be placed adjacent to each web at each intermediate diaphragm (two drains per intermediate diaphragm). Drain Pipe shall be $2^{\prime \prime}$ Nominal Pipe Size
Schedule 80 PVC. Provide removale pipe plugs to Schedule 80 PVC. Provide removable pipe plugs to prevent concrete entrance during beam casting.
Plugs to be removed from the inside after casting.

$$
\begin{aligned}
& \text { Plugs to be removed from the inside after cas } \\
& \text { Concrete face may be sloped with a maximum }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1:24 draft to facilitate formwork removal. } \\
& \text { 3. Intermediate diaphragms must be cast and }
\end{aligned}
$$

3. Intermediate diaphragms must be cast and concrete release strength obtained prior to removing beam from casting bed.

CONVENTIONAL REINFORCING STEEL BENDING DIAGRAMS	
BILL OF REINFORCING STEEL	

Bars 6A1, 4A2 and 3D2

Bars 4G

END VIEW AT END DIAPHRAGM

3/4" Chamfer along the Vertical Face
of the Top Flange and Web and Underside

TOP VIEW OF SKEWED END DIAPHRAGM AND STIRRUP TRANSITION ZONE Bars 3D2 Not Shown For Clarity)

LAST REVISION	
07/01/05	

FDOT	
DESIGN	2016
STANDARDS	

SECTION AT INTERMEDIATE DIAPHRAGM

NOTES:

1. Drains shall be placed adjacent to each web at each intermediate diaphragm (two drains per intermediate diaphragm). Drain Pipe shall be $2^{\prime \prime}$ Nominal Pipe Size
Schedule 80 PVC Provide removalle pipe plugs to prevent concrete entrance during beam casting. Plugs to be removed from the inside after casting. 2. Concrete face may be sloped with a maximum
2. Intermediate diaphragms must be cast and concrete Intermedrate diaphragms must be cast and concrete
release strength obtained prior to removing beam from casting bed.
 Strand N
 Blathge
Flam Beam

CONVENTIONAL REINFORCING STEEL BENDING DIAGRAMS

CONVENTIONAL REINFORCING			
BiLL OF REINFORCING STEEL FOR ONE BEAM ONLY			
MARK	SIZE	NO. REQD.	LENGTH
A1	6	4	Dim. L-4"
A2	4	12	Dim. L-4'
B	5	12	$5^{\prime}-4{ }^{\prime \prime}$
C	4	24	5'-5"
D1	3	204	$1^{\prime}-6{ }^{\prime \prime}$
D2	3	34	$4^{\prime}-6{ }^{\prime \prime}$
E	5	24	$6^{\prime}-6{ }^{\prime \prime}$
F	4	28	$6^{\prime}-6{ }^{\prime \prime}$
G	4	See Table	$5^{\prime}-3{ }^{\prime \prime}$
H	4	See Table	$4^{\prime}-11^{\prime \prime}$
K	5	See Table	$9^{\prime}-2^{1 / 2}{ }^{\prime \prime}$
L	5	28	$17^{\prime}-8^{\prime \prime}$
M	4	See Table	$3^{\prime}-11^{\prime \prime}$
N	3/8/ \varnothing Strand	2	Dim. L-3"

Bars 5B

Bars 5E

Bars 6A1, 4A2 and 3D2

$$
\underbrace{3^{\prime \prime} \varnothing \text { Pin }}
$$

Bars 4F

Bars 5 K

Bars 4G
Bars 4H

INDEX

(ALONG q FLANGE) (CASE 1)

BEAM CAMBER AND BUILD-UP NOTES

The build-up values given in the Data Table are based on theoretical beam cambers he Contractor shall monitor beam cambers for the purpose of predicting
camber values at the time of the deck pour. If the predicted cambers based
Camber @ 120 Days" shown in the Data Table*, obtain approval from the Engineer o modify the build-up dimensions as required. When the measured beam cambers f 21 days prior to casting.

Dim. "A" includes the weight of the Stay-In-Place Formwork

DEAD LOAD DEFLECTION DIAGRAM (ALONG \& BEAM)

