

SECTION CC

* When used on high side of roadways, the cross slope of the gutter shall match the cross slope of the adjacent pavement. The thickness of the lip shall be $6^{\prime \prime}$, unless otherwise shown on plans.
- Rotate entire section so that gutter cross slope matches slope of adjacent circulating roadway pavement.
For use adjacent to concrete or flexible pavement. For details depicting usage adjacent to flexible pavement, see Sheet 2. Expansion joint, preformed pavement only, see Sheet 2

Truck Apron Surface

traffic bearing section for use in Roundabout central island construction CENTRAL ISLAN
TYPE RA

For details depicting usage adjacent to
flexible pavement, see diagram right.
TYPE A

TYPE B

Note: For use adjacent to concrete or flexible pavement, concrete shown. Expansion joint, preformed joint filler and joint seal are
equired between curbs and concrete pavement only, see Sheet 2 .

CONCRETE CURB

concrete curb and gutter

LAST REVISION $07 / 01 / 00$	DESCRIPTION:	$\begin{gathered} \text { FDOT\} } \\ 2016 \\ \text { DESIGN STANDARDS } \end{gathered}$	$\mathbb{C U R B}$ \& $\mathbb{C U R B}$ AND GUTTTER	$\begin{gathered} \text { INDEX } \\ \text { NO. } \\ 300 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & \text { No. } \\ & 1 \text { of } 2 \end{aligned}$

PLAN

ROFILE
FLARED END

Edge of Pavt. -
PLAN
PLAN

PROFILE
FLARED END

PLAN

PROFILE STRAIGHT END

Sawcuts should be avoided within valley gutter and within curb and gutter endings. CONTRACTION JOINT IN CURB AND GUTTER

\triangle Applies to both high and low sides of pavement, low side show
Applies to shoulder gutter only where ad joining traffic lanes.
CURB AND GUTTER AND TYPE A CURB ADJACENT TO FLEXIBLE PAVEMENT

TURN LANES • CURBED AND UNCURBED MEDIANS								
Design Speed (mph)	Entry Speed (mph)	Clearance Distance L_{1}	URBAN Conditions			rural conditions		
					Distance L_{3}			Clearance Distance L_{3}
35	25	70^{\prime}	75	145'	110^{\prime}	-	-	-
40	30	80^{\prime}	75'	155^{\prime}	120'	-	-	-
45	35	85'	100'	185'	135	-	-	-
50	40/44	105'	135'	240^{\prime}	160^{\prime}	185'	290'	160^{\prime}
55	48	$125{ }^{\prime}$	-	-	-	225	350^{\prime}	195'
60	52	145^{\prime}	-	-	-	260^{\prime}	405^{\prime}	230^{\prime}
65	55	170^{\prime}	-	-	-	290'	460^{\prime}	270^{\prime}

design notes

1. Basis for turn lane configurations::

- Informed Driver. Stop condition (With or without Stop Control).
- Wet Pavement.
- Reaction preceding entry point.
- Minimum braking distance for urban conditions.
- 75^{\prime} min. for L_{2}.
- Comfortable deceleration rates for rural conditions (AASHTO 2001 threshold rate of $11.2 \mathrm{ft} . / \mathrm{s}^{2}$).

GENERAL NOTES

1. The plan views shown are for turn lane taper shapes and dimensional purposes only, they do not prescribe the use of curb, curb and gutter,
shoulders nor separators specifically to either rural or urban conditions.
2. Total deceleration distances must not be reduced except where lesser
values are imposed by unrelocatable control points.

3. Right turn lane tapers and distances identical to left turn lanes under stop control conditions. Right turn lane tapers and/or distances are site specific under free flow or yield conditions.
4. These left turn configurations apply to continuous left turn lanes only where specifically called for in the plans.
5. For pavement markings see Index No. 17346.

Limits of $4^{\prime}, 6^{\prime}$ or
$8^{\prime}-6^{\prime \prime}$ 'raffic
$8^{\prime} 6^{\prime \prime}$ Traffic
Separator Edge of Turn Lane $\begin{gathered}8^{\prime}-6^{\prime \prime} \text { Traffic } \\ \text { Separator }\end{gathered}, ~$ Edge of Turn Lane

MEDIAN CURB AND TRAFFIC SEPARATOR JUNCTURE DETAILS

Entry Speed:
10 mph Below Design Speed For Urban Condition
Condition

DOUBLE LEFT TURNS
Concrete Curb or
Curb And Gutter
Delineator Post (Refer To Index No. 17346)
Entry Speed:
10 mph Below Design Speed For Urban Condition
Average Running Speed For Rural Condition

Entry Speed:
10 mph Below Design Speed For Urban Condition Average Running Speed For Rural Condition SINGLE LEFT TURNS
Δ The length of taper may be increased to L_{1} for single left turns and L_{3} for double left turns when: a. Left turn queue vehicles are adequately provided for within the design queue length. a. Left turn queue vehicles are adequately provided for within the
b. Through vehicle queues will not block access to left turn lane. c. Approved by District Design Engineer.

| $\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 07 / 01 / 05 \end{array}$ | \|c|c | FDOTT DESIGN STANDARDS |
| :---: | :---: | :---: |

INDEX	SHEET
NO.	NO.
301	1 of 1

NOTES

1. Separators Type I and IV are to be used with flexible pavement. Separators Types II and V are to be used with rigid pavement.
2. Either Option I or Option II may be used for Types I and IV separators except when a specific option is called for in the plans.
3. For all separators provide $1 / 8^{\prime \prime}-1 / /^{\prime \prime}$ contraction joints at 10^{\prime} centers (max.). Contraction joints adjacent to concrete pavement on tangents and flat curves are to match the
pavement joints, with intermediate joints not to exceed 10' centers.
4. Separators having widths of $4^{\prime}, 6^{\prime}$ or $8^{\prime}-6^{\prime \prime}$ shall be paid for under the contract unit price for Concrete Traffic Separator (Type_) (_' Wide) LF. Separators having widths other

5y/4"For 4' Separator

LONGITUDINAL SECTION (NOSE)

TRANSVERSE SECTION

OPTION I
$4^{\prime \prime}-0^{\prime \prime}, 6^{\prime}-0^{\prime \prime}$ or $8^{\prime}-6^{\prime \prime}$
cost of The Asphalt Pavt. and ase Under The Option II Separator Included In The
Cost of The Separator.

 - Separator K'er In Lien of
 Pre Contract Unit

LONGITUDINAL SECTION (NOSE)
 OPTION II
 transverse section

TYPE IV CONCRETE TRAFFIC SEPARATOR

TRANSVERSE SECTION
than $4^{\prime}, 6^{\prime \prime}$ or $8^{\prime}-6^{\prime \prime}$ shall be detailed in the plans as special separators and paid for under the contract unit price for concrete Traffic Separator (Special) Sy

LAST REVIISION

REVISION
$07 / 01 / 14$
FDOT $\begin{gathered}2016 \\ \text { DESIGN STANDARDS }\end{gathered}$
INDEX
No.
302

TYPICAL SECTION THRU TRAFFIC SEPARATOR (Bridge Deck Shown, Approach Slab Similar)

Bridge Deck or

TYPICAL SECTION THRU TRAFFIC SEPARATOR (Bridge Deck Shown, Approach Slab Similar)

\# For $4^{\prime}-0^{\prime \prime}$ width: Bars 4A @ 3 equal spaces (continuous). For $6^{-0 \prime} 0^{\prime \prime}$ width: Bars 4A @ 5 equal spaces (continuous). For $8^{\prime}-6^{\prime \prime}$ width: Bars $4 A$ @ 7 equal spaces (continuous).
\#\# At the Contractor's option a one piece bar may be
substituted for Bars $4 B$ and $4 E$.

* Pitch: $\quad 1 / 4 / 4$ For $4^{\prime}-0^{\prime \prime}$ Separator
$1 / 2^{\prime \prime}$ For $6^{\prime}-0^{\prime \prime}$ Separator
$3^{3 / 4}$ For $8^{8}-6^{\prime \prime}$ Separator

Longitudinal section thru traffic
SEPARATOR AT NOSE
(Bridge Deck Shown, Approach Slab Similar)
REINFORCING STEEL OPTION B (NOT PERMITTED \qquad ON BRIDGE DECKS WITH PRESTRESSING STEEL)

DETAIL AT EXPANSION JOINTS
(Strip Seal Shown,
Other Armored Joint Types Similar)
detail at poured JOINT WITH BACKER ROD EXPANSION JOINTS

PARTIAL PLAN VIEW OF SKEWED BRIDGE DECK AND APPROACH SLAB WITH TRAFFIC SEPARATOR
(Deck Expansion Joint at Begin or End Bridge Shown, Expansion Joint at \& Pier or Intermediate Bents Similar)
Notes:

1. Traffic Separator transverse reinforcement adjacent to deck expansion joints shall be field adjusted to maintain clearance and spacing. Bars shall be field cut as shown, bars may be rotated to maintain clearance.
2. Ferpendic Separator ends at deck expansion joints shall follow the deck joint limits. Drainage joints and $1 / 2 \mathrm{l} V$-Grooves shall be placed perpendicular or radial to the \& of the Traffic Separator. See Structures Plans, Superstructure and Approach Slab Sheets for details. 3. See Structures Plans, Superstructure Sheets for actual dimensions and joint orientation.

(Bridge Deck Shown, Approach Slab Similar)

ongitudinal section thru traffic SEPARATOR AT NOSE
(Bridge Deck Shown, Approach Slab Similar)
\# For $4^{\prime}-0^{\prime \prime}$ width: Bars $4 A$ @ 3 equal spaces (continuous). For $6^{\prime}-0^{\prime \prime}$ width: Bars $4 A$ @ 5 equal spaces (continuous) For $8^{\prime}-6^{\prime \prime}$ width: Bars 4A @ 7 equal spaces (continuous).
\#\# At the Contractor's option a one piece bar may be substituted for Bars $4 B$ and $4 E$.

* Pitch: $1 / 4^{\prime \prime}$ For $4^{\prime}-0^{\prime \prime}$ Separator
$1 / /^{\prime \prime}$ For $6^{\prime}-0^{\prime \prime}$ Separator
$3^{3 \prime \prime}$ For $8^{\prime}-6^{\prime \prime}$ Separator

Traffic
Separator (Typ.)

DETAIL AT EXPANSION JOINTS (Strip Seal Shown,
Other Armored Joint Types Similar)

Separator (Typ.) -

DETAIL AT POURED JOINT WITH BACKER ROD EXPANSION JOINTS

TYPICAL SECTION THRU TRAFFIC SEPARATOR (Bridge Deck Shown, Approach Slab Similar)

LONGITUDINAL SECTION THRU TRAFFIC SEPARATOR AT NOSE
(Bridge Deck Shown, Approach Slab Similar) REINFORCING STEEL OPTION B (NOT PERMITTED on bridge decks with prestressing steel)

Note: Treatment of separators on straight bridges shown. For additional notes and treatment of
separators on skewed bridges, see Sheet 2 .
alternate reinforcing steel DETAILS (WELDED WIRE REINFORCEMENT)

OPTION A: Use Welded Wire Reinforcement $3 \times 4-$ w $5.0 \times$ W6.7 as required by plans in place of Bars $4 A, 4 B$ and $4 E$. Bend the
Welded Wire Reinforcement to the dimensions of Bar $4 B$ shown in the Bending Diagram for Reinforcing Steel Option A
OPTION B: Use Welded Wire Reinforcement $3 \times 4-$ W5.0 \times W6. 7 as
required by plans in place of Bars $4 A$ and $4 C$ shown in Reinforcing Steel Option B.
Note: Welded Wire Reinforcement to consist of smooth wire meeting th requirements of Specification Section 931.

- . $4^{\prime \prime}$ (Typ.)

SPLICE DETAIL
(Between WWR $3 \times 4-W 5.0 \times$ W6.7 Sections)

DRAINAGE JOINT DETAIL

OR 5" OPENING OR LESS

See Structures Plans, Superstructure Sheets for location(s) of drainage joints. Locations for drainage joints
limited to the constant width section of separator.

NOTES:

CONCRETE: See General Notes in Structures Plans.
REINFORCING STEEL: Reinforcing Steel shall be ASTM A615 Grade 60
PAYMENT: Separators having widths of $4^{\prime}-0^{\prime \prime} 6^{\prime}-0^{\prime \prime}$ and $8^{\prime}-6^{\prime \prime}$ shall
PAYMENT: Separators having widths of $4^{\prime}-0^{\prime \prime}, 6^{\prime}-0^{\prime \prime}$, and $8^{\prime}-6^{\prime \prime}$ shall
be paid under the contract unit price for Traffic Separator Concrete
(Type II or V) Wide). LF. Separators having widths other
than $4^{\prime}-0^{\prime \prime}, 6^{\prime}-0^{\prime \prime}$, or $8^{\prime}-6^{\prime \prime}$ shall be detailed in the plans as special separators and paid under the contract unit price for Traffic Separator Concrete (Special), S.Y.
TRAFFIC SEPARATOR CONSTRUCTION: The Contractor may construct the separator by the use of stationary removable forms or by the
use of slip forms without altering the separator dimensions shown.
//2" V-GROOVES: For all separators provide $1 / 2^{\prime \prime}$ V-Grooves at $30^{\prime}-0^{\prime \prime}$
centers (max.) equally spaced between expansion joints, and/or
drainage joints.

ESTIMATED TRAFFIC SEPARATOR QUANTITIES CONCRETE:
CONSTANT WIDTH OF SEPARATOR
-0" Width TYPE "E" TYPE "F" 6.- Width $=0.056 \mathrm{CY}$ per Ft. -0.072 CY per Ft.

NOSE:
TYPE "E" TYPE "F"
4-0" Width $=0.080 \mathrm{CY} \quad-0.109 \mathrm{Cr}$
$6^{\prime}-0^{\prime \prime}$ width $=0.193 \mathrm{CY} \quad-0.257 \mathrm{Cr}$
8 .
0.536 Cr
(All quantities are based on an 8 /1/2" slab.)
option
4-0" Width - 6.37 Lbs. per Ft.
$6^{\prime}-0^{\prime \prime}$ Width - 8.60 Lbs. per Ft.
$8^{\prime}-6^{\prime \prime}$ Width - 11.05 Lbs. per Ft.

option B:

$4^{4^{\prime}-0^{\prime \prime}}$ Width - 4.77 Lbs. per Ft
Lbs. per Ft
$8^{\prime}-6^{\prime \prime}$ Width - 9.45 Lbs. per Ft

Bars $4 A \& 4 C$

Length of Bars 4 C is $2^{\prime \prime}-4 /^{\prime \prime \prime}$ for $4^{\prime \prime}-0^{\prime \prime}$ Separator. length of Bars $4 C$ is $4^{\prime \prime}-44^{\prime \prime}$ for $6^{\prime}-0^{\prime \prime}$ Separator.

REINFORCING STEEL OPTION B

REINFORCING STEEL NOTES:
. All amensions are our to out.
The 8 vertical dimension shown for Bars $4 B$ and $4 D$ are based on a slab $81 / 1 /$ thick or greater without a wearing surface. If slab thickness is less than $81 / 2$, difference in thickness. If a wearing surface is to be provided, increase this dimension by an amount equal to the wearing surface thickness.

DOWEL DETAIL

Dowel Notes
Shift Dowel Holes to clear if existing reinforcement
is encountered.
2. Provide and install an adhesive bonding material system in accordance with Sections 416 and 937 of the Specifications.

| LAST REVISION $07 / 01 / 07$ | \|c|cher | FDOT\} $\begin{gathered}2016 \\ \text { DESIGN STANDARDS }\end{gathered}$ | TRAFFIC SEPARATORS | $\begin{aligned} & \text { INDEX } \\ & \text { NO. } \\ & 302 \end{aligned}$ | $\begin{gathered} \text { SHEET } \\ \text { NO. } \\ 4 \text { of } 4 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

PLAN VIEW

PROFILE VIEW

Note:
Profile
Pote: should be located to avoid conflict with pedestrian movement. Special care must be exercised to prevent conflict wit

SHOWING LOCATION OF INLETS AT RETURNS

TYPICAL RETURN PROFILES

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 01 / 01 / 12 \end{array}$	\|	$\text { FDOT\} } \begin{gathered} 2016 \\ \text { DESIGN STANDARDS } \end{gathered}$	$\mathbb{C U R B}$ RETURN PROFILES	$\begin{gathered} \text { INDEX } \\ \text { NO. } \\ 303 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & \text { NO. } \\ & 1 \text { of } 1 \end{aligned}$

gENERAL NOTES

1. Sidewalk curb ramps shall be constructed at locations that will provide continuous unobstructed pedestrian circulation path to pedestrian areas, elements and facilities within the right of way and to accessible pedestrian routes on adjacent sites. Curbed facinties with sidewalks and those without To accommodate curb ramps, partial curb returns are to extend to the limits prescribed in Index No. 515. Ramps constructed at locations without sidewalks are to have a landing constructed at the top of each ramp, see LANDINGS FOR CURB RAMPS WITHOUT SIDEWALKS
2. When altering existing pedestrian facilities, where existing restricted conditions preclude the accommodation of a ramp slope of 1:12, a ramp slope between 1:12 and 1:10 is permitted for a rise of
$6^{4 \prime}$ maximum. Where compliance with the requirements for cross slope cannot be fully met, the minimum feasible cross slope shall be provided. Ramp slopes are not required to exceed 15' in length.
3. If sidewalk curb ramps are located where pedestrians must walk across the ramp, then provide transition slopes to the ramp; otherwise a sidewalk curb may be required.
4. All sidewalks, ramps, and landings with a cross slope of 0.02 shown in this Index are 0.02 maximum. All ramp slopes shown in this Index as 1:12 are 1:12 maximum. Landings shall have slopes less than or equal to 0.02 in any direction.
5. Grade breaks at the top and bottom of ramps shall be parallel to each other and perpendicular to the direction of the ramp slope
6. Where a sidewalk curb ramp is constructed within existing curb, curb and gutter and/or sidewalk, the existing curb or curb and gutter shall be removed to the nearest joint beyond the curb transition or to the extent that no remaining section of curb or curb and gutter is less than 5' long. Existing sidewalk section of sidewalk is less than 5^{\prime} Iong. For CONCRETE SIDEWALK details refer to Index 310 .
7. Sidewalk curb ramp alpha-identifications are for reference purposes (plans, permits, etc.).
Alpha-identifications $C R-I$ and $C R-J$ were intentionally omitted. Alpha-identifications CR-I and CR-J were intentionally omitted.
8. Detectable warnings shall extend the full width of the ramp and to a depth of 2^{\prime}. Detectable warnings shall be constructed in accordance with Specification Section 527 . For the layout of detectable warnings
refer to the TYPICAL PLACEMENT OF DETECTABLE WARNINGS details. Detectable warnings shall not be provided on transition slopes.
9. When detectable warnings are placed on a slope greater than 5%, domes shall be aligned with the centerline of the ramp; otherwise domes are not required to be aligned.
10. Detectable warnings shall be required on sidewalks and shared use paths at
a. Inter secting roads,
b. Median Crossings greater than or equal to 6^{\prime} in width,
c. Railroad Crossings,

Detectable Warnings - Acceptance Criteria:
a. Color and texture shall be complete and uniform
. 90% of individual truncated domes shall be in accordance with the Americans with Disabilities Act Standards for Transportation Facilities, Section 705.
d. Non-compliant domes shall not be adjacent to other non-compliant domes.
e. Surfaces shall not deviate more than $0.10^{\prime \prime}$ from a true plane.
12. Detectable warnings shall be installed no greater than 5^{\prime} from the back of curb or edge of pavement
13. Detectable warnings shall not be installed over grade breaks.

PLAN VIEW
CR-D

PLAN VIEW
CR-E

PLAN VIEW
CR-F

PLAN VIEW
CR-G

PLAN VIEW
(CR-H

DIMENSIONAL FEATURES OF SIDEWALK CURB RAMPS FOR LINEAR PEDESTRIAN TRAFFIC

SIDEWALK CURB OPTIONS

Construct Sidewalk Curb In Cut Sections.

SIDEWALK CURB

| $\begin{gathered} \text { LAST } \\ \text { REVISION } \\ \text { O7/01/13 } \end{gathered}$ | \|c|cher | $\text { FDOT\} } \begin{gathered} 2016 \\ \text { DESIGN STANDARDS } \end{gathered}$ | $\mathbb{D E T E C T A B L E ~ W A R N I N G S ~ A N D ~ S I D E W A L K ~ C U R B ~ R A M P S ~}$ | $\begin{aligned} & \text { INDEX } \\ & \text { NO. } \\ & 304 \end{aligned}$ | $\begin{gathered} \text { SHEET } \\ \text { NO. } \\ 4 \text { of } 7 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

RADIAL SIDEWALK RAMPS

NOTES

Where crosswalk markings are used, ramps shall fall within the 2. Crosswalk widths and configurations vary; must conform to crosswalk limits. A clear space of $48^{\prime \prime}$ minimum is required at the bottom of the ramp within a marked crosswalk. If crosswalk markings are not present, a clear space of $48^{\prime \prime}$ minimum is lanes.

LINEAR SIDEWALK RAMPS

TABLE OF DETECTABLE WARNINGS		
$\begin{gathered} \text { CURB RAMP } \\ \text { TYPE } \end{gathered}$	CURB RADIUS (FT)	TOTAL AREA (SF)
CR-A	N/A	8
CR-B	N/A	8
CR-C	N/A	8
CR-D	25	11
CR-E	N/A	8
CR-F	10	9
	20	11
	25	13
	30	14
CR-6	10	10
	20	11
	25	12
	30	14
CR-H	20	8
	25	8
	30	8
CR-K	N/A	8
CR-L	10	18
	15	13
FLUSH SHOULDER		
OPTION A	10	11
	20	14
	25	15
	30	17
	40	19
	50	21
OPTION B	10	10
	20	10
	25	10

Note:
or wo construction applications, CR-L is the only curb ramio or which a detectab
curb radius of 15 '

For flush shoulder options with 5' sidewalks, the back of sidewalk is measured at 10 from the edge of traveled way.
areas of detectable warnings for sidewalk CURB RAMP AND FLUSH SHOULDER APPLICATIONS

LAST REVIIION $07 / 01 / 13$		$\begin{gathered} \text { FDOT\} } \\ 2016 \\ \text { DESIGN STANDARDS } \end{gathered}$	DETE CTABLE WARNINGS AND SIDEWALK CURB RAMPS	$\begin{aligned} & \text { INDEX } \\ & \text { NO. } \\ & 304 \end{aligned}$	$\begin{gathered} \text { SHEET } \\ \text { NO. } \\ 7 \text { of } 7 \end{gathered}$

Note: Dimension w will be shown in the plans or
established by the Engineer based on field established by the Engineer based on field
conditions. Dimension will be constructed
so that the shape factor wit has a maximum so that the shape factor w/t has a m maximu
value of 2.0 and a minimum value of 1.0 . for rehabilitation projects
TAPE BOND BREAKER

for new and rehabilitation projects BACKER ROD BOND BREAKER

CONCRETE-CONCRETE JOINTS

BACKER ROD BOND BREAKER (CONCRETE-CONCRETE JOINTS)				
Joint dimensions (inches)				
$\begin{array}{\|c\|c\|} \hline \text { JOINT } \\ \text { WIDTH } \end{array}$	$\begin{aligned} & \text { SEALANT } \\ & \text { BEAD } \\ & \text { THICKNESS } \end{aligned}$	BACKER ROD DIA.	$\begin{aligned} & \hline \text { MINIMUM } \\ & \text { JOINT } \\ & \text { DEPTH } \end{aligned}$	$\begin{array}{\|c} \text { BACKER ROD } \\ \text { PLACEMENT } \\ \text { DEPTH } \end{array}$
1/4	1/4	3/8	1	1/2
3/8	$1 / 4$	1/2	11/4	1/2
1/2	1/4	5/8	11/4	1/2
5/8	5/6	3/4	11/2	9/6
3/4	3/8	1	$13 / 4$	5/8
7/8	7/16	11/8	$13 / 4$	11/16
1	1/2	11/4	2	3/4
>1	1/2	${ }^{11 / 4}+$	$2+$	3/4
Unless otherwise indicated on the plans the joint width for new construction will be $11 / 4$ " for construction joints, 3/8" for all other joints. For rehabilitation projects the joint width will be shown on the plans or established by the Engineer based on field conditions.				

FOR NEW AND REHABILITATION PROJECTS;
THER TAPE OR BACKER ROD BOND BREAKER REQUIRED
SHOULDER MUST BE REPAIRED IF PROPER JOINT SHAPE
CAN NOT BE ATTAINED

CONCRETE-ASPHALT SHOULDER JOINTS

JOINT SEAL DIMENSIONS

¿ DESCRIPTION:

JOINT ARRANGEMENT

NOTES

1. Longitudinal joints will not be required for single lane pavement 14^{\prime} or less in width. For entrance and exit ramp joint details, see Sheet 4
2. Arrangement of longitudinal joints are to be as directed by the Engineer.
3. All manholes, meter boxes and other projections into the pavement shall be boxed-in with $1 / 2$ " preformed expansion joint material.

EXPANSION ASSEMBLY

Note: Proprietary contraction and expansion assemblies may be used. Products shall be introduced to the State Construction office in accordance with section (C) of the Product Evaluation Procedure.

	気DESCRIPTION:	$\begin{array}{cc\|c} 2016 \\ \text { FDOT } \end{array}$	CONCRETE PAVEME	$\begin{gathered} \text { INDEX } \\ \text { NO. } \\ 305 \end{gathered}$	$\begin{gathered} \text { SHEET } \\ \text { NO. } \\ 3 \text { of } 4 \end{gathered}$

EXIT TAPER WITH AUXILIARY LANE

3-THRU LANES WITH AUXILIARY LANE AND 2-LANE EXIT RAMP

* 13' with tied Concrete Shoulders or 14' with Asphalt Shoulders.

LAST		
REVISION		
$07 / 01 / 09$	$\sum_{\substack{0}}^{\substack{\hat{u}}}$	DESCRIPTION:

joint layout at entrance and exit ramp terminals

Pavement Joints On Rehabilitation Projects, And Parallel To The Standard
Transverse Pavement Joints Shown In The Plans For New Construction.

* Finish surface smooth. Cure with heavy coating of wax base white pigmented curing compound. Apply second application immediately prior to placing pavement.

SECTION AA

1. For rehabilitation projects, the designer must indicate in the plans the number of slabs to be removed, the number of subslabs to be constructed/reconstructed, and the location of expansion joints.
2. Pay quantity of expansion joint to be calculated across pavement right angles to the cente
pavement joint included.

GENERAL NOTES

1. The centerline of roadway and the centerline of bridge do not necessarily coincide. Prior to the placement of the expansion joint the centerline of the roadway pavement shall be determined.
2. For information on other types of concrete pavement joints see Index No. 305.
3. Pay quantity for expansion joint is the length of joint to be constructed across the roadway and shoulder pavements, measured at right angles to the centerline of the roadway. Payment for expansion joint shall be full compensation for joint construction including reinforced concrete subslab, sheet metal strip and compression seal, but, not including roadway pavement reconstruction associated with joint replacement or reconstruction Exidge Approach Expansion Joint, LF. Bridge Approach Expansion Joint, LF

Subslab

WITH RIGID SHOULDER PAVEMENT

EXPANSION JOINT

The sheet metal strip shall be a minimum 16 gag steel, $12^{\prime \prime}$ wide and shall be galvanized in Designation 690 .

DETAIL SHOWING SHEET METAL STRIP
Note:
Immediately prior to placing the seal, the
joint shall be thoroughly cleaned of all
is placed material. Immediately after the seal
is placed, sheet metal strip shall be bent up
against the pavement edge.

LAST REVISION $07 / 01 / 04$		$\begin{array}{cc} \text { FDOT } \\ 2016 \\ \text { DESIGN STANDARDS } \end{array}$	BRIDGE APPROACH EXPANSION JOINT CONCRETE PAVEMENT

flexible pavement notes

PAVEMENT REMOVAL AND REPLACEMENT
 Pavement shall be mechanically sawed

The replacement asphalt shall match the existing structural and friction courses for type and thickness in accordance with current FDOT asphalt mix specifications.
The new base materials shall be either of the same type and composition a the materials removed or of equal or greater structural adequacy (See Index No. 514)

BACKFILL

COMPACTED AND STABILIZED FILL OPTION
Backfill material shall be placed in accordance with Section 125 of the Standard
Specifications.
In Stage \#1, construct compacted fill beneath the haunches of the pipe, using mechanical tamps suitable for this purpose. This compaction applies to the material placed beneath the haunches of the pipe and above any bedding.
In Stage \#2, construct compacted fill along the sides of the pipe and up to the bottom of the base,with the upper 12" receiving Type B Stabilization. In lieu of Type B Stabilization the Contractor may construct using Optional Base Group 3.

* FLOWABLE FILL OPTION

If compaction can not be achieved through normal mechanical methods then flowable fill may be used.

Flowable fill is to be placed in accordance with Section 121 of the Specifications, as approved by the Engineer.
Do not allow the utility being installed to float. If a method is provided to prevent flotation from occurring, Stages \#1 and \#2 can be combined, if approved by the Engineer

In Stage \#1, place flowable fill midway up on both sides of the utility. Allow to harden before placing Stage \#2.
In Stage \#2, place flowable fill to the bottom of the existing base course.
flexible pavement cut

GENERAL NOTES

1. The details provided in this standard index apply to cases in which jack and bore or directional boring methods are not required by the Engineer.
2. Flowable fill shall not be placed directly over loose, or high plastic, or muck material (see Index 505) which will cause settlement due to fill weight. Where highly compressible material exists, the amount, shape and depth of
flowable fill must be engineered to prevent pavement settlement.
PAVEMENT REMOVAL AND REPLACEMENT High early strength cement concrete (3000 psi) meeting the requirements

Pavement shall be mechanically sawed and restored to conform with existing pavement joints within 12 hours. (See Index No. 305) GRANULAR BACKFILL
Any edgedrain system that is removed shall be replaced with the same type materials. Any edgedrain system that is damaged shall be repaired with methods approved by the Engineer
Fill material shall be placed in accordance with the Standard Specifications. fill material shall be special select soil in accordance with Index No. 505. In Stage \#1, construct compacted fill beneath the haunches of the pipe,
using mechanical tamps suitable for this purpose. This compaction applies to the material placed beneath the haunches of the pipe and above any bedding. In Stage \#2, construct fil

* FLOWABLE FILL OPTION

If mechanical compaction can not be achieved through normal mechanical methods hen flowable fill may be used.

Fowable fill is to be placed in accordance with Section 121 of the Specifications. as approved by the Engineer
Do not allow the utility being installed to float. If a method is provided to prevent flotation from occurring, Stages \#1 and \#2 can be combined, if approved by the Engineer
In Stage \#1, place flowable fill midway up on both sides of the utility. Allow to harden before placing Stage \#2.

In Stage \#2, place flowable fill to the bottom of the stone layer. RIGID PAVEMENT CUT
3. These details do not apply to utility cuts longitudinal to the centerline of the roadway which may require the additional use of geotextiles, special bedding and backfill, or other special requirements.
4. Method of construction must be approved by the Engineer
5. Some pipe may require special granular backfill up to $6^{\prime \prime}$ above top of pipe. Geotextiles may be required to encapsulate the special granular material.
6. Where asphalt concrete overlays exist over full slab concrete pavement, the replacement pavement shall have an overlay constructed over the replacement
slab. The overlay shall match the existing asphalt pavement thickness. The replacement friction course shall match the existing friction course, except structural course may be used in lieu of dense graded friction course.
7. All shoulder pavement, curb, curb and gutter, and their substructure disturbed by utility trench cut construction shall be restored in kind.
8. The use of flowable fill to reduce the time traffic is taken off a facility is acceptable but must have prior approval by the Engineer. Flowable fill use is allowed only when properly engineered for pavement crossings, whether straight or diagonal, and shall not be installed for significant depths or
lengths. The maximum length shall be fifty (50) feet and a maximum depth six (6) feet unless supported by an engineering document prepared by a registered professional engineer that specializes in soils engineering. T engineering document shall address the evaluation of local groundwater flow interruption and settlement potential.
9. Excavatable flowable fill is to be used when the flowable fill option is selected.

TRENCH CUTS AND RESTORATIONS ACROSS ROADWAYS
LAST
REVISION
$07 / 01 / 12$

FDOŤ $\begin{gathered}2016 \\ \text { DESIGN STANDARDS }\end{gathered} \quad$ MIS CELLANEOUS UTILITY DETAILS
 (Nonpressure Or Nonfluid Carrier Installations)
No Joints Allowed Within Structure

UTILITY CONFLICT CONDITION I

NOTES FOR UTILITY CONFLICT PIPE

1. These details are for construction field expediency to resolve utility conflicts that cannot be remedied by relocation. For conflicts determined during design, use the construction shop drawings for structure details.
2. Concrete used in conflict structures shall be as specified in ASTM C478. 4000 psi may be used in lieu of Class I concrete
3. Maximum opening for pipe shall be the pipe OD plus $6^{\prime \prime}$. Mortar used to seal the pipe into the opening will be of such mix that shrinkage will not cause leakage into or out of the structure.
4. If the conflict structure is round or there are multiple inlet or outlet pipes, then the wall section should be reviewed for strength.
5. If during construction or the plans design process it is determined that a potable water supply line must pass though a storm drain structure, it must be in compliance with Chapter 62-555.314 (3) F.A.C. and shown on the design or construction plans and submitted to the Florida Department of Environmental Protection (FDEP) Administrator For Drinking Water in the respective FDEP District for review and comment. This index and rule citation provide accepted methods for addressing conflicts when and where they cannot be
reasonably avoided. To be submitted along with the plans shall be a justification describing inordinate cost reasonably the impracticality of avoidance. If identified properly justified, and accomplished in accordance with this index, approval is granted. Upon request, the Utility Agency Owner (UAO) must provide support data on the cost of relocation or adjustment to the FDOT for submittal to the FDEP. See the following web site for District FDEP Drinking Water Contacts: www.dep.state.fl.us/water/drinkingwater/index.htm and click on "Organization" on the menu to the right.

Carrier Casing: The Casing Shall Be Rated To The Greatest Pressure of Either The Carrier That's Called For By Design Or That's Required By Construction. The
Casing May Be Steel, Cast Iron, Ductile Iron or Plastic.
The Casing Can Be Seamless Or Sealed Half Sleeves.

SECTION LONGITUDINAL TO CARRIER PIPE (Pressure Or Fluid Carrier Installations) UTILITY CONFLICT CONDITION II

SECTION BB

DESIGNER'S NOTE
Sumped" Conflict Manholes Shall Not Be Used Unless The System Is Hydraulically Designed To Account For The Headloss Generated f The Sump Is Completely Blocked

SECTION AA

UTILITY CONFLICT PIPES THRU STORM DRAIN STRUCTURES

LAST REVISION $07 / 01 / 09$	気DESCRIPTION:	$\begin{gathered} \text { FDOT\} } \\ 2016 \\ \text { DESIGN STANDARDS } \end{gathered}$	MIS CELLANE OUS UTILITY DETAILS	$\begin{gathered} \text { INDEX } \\ \text { NO. } \\ 307 \end{gathered}$	$\begin{gathered} \text { SHEET } \\ \text { NO. } \\ 2 \text { of } 3 \end{gathered}$

PARTIAL CUTS FOR RING AND COVER ADJUSTMENTS

NOTES

1. No irregular seams are permitted. All seams must be clean sawed
2. Pavement cut seams for underground utility structures in rigid pavement are the same longitudinally, but the transverse seams shall extend to the nearest existing joint.
3. See Sheet 1 for replacement pavemen

NONTRENCH PAVEMENT CUTS FOR UNDERGROUND UTILITY STRUCTURES IN PAVEMENT

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 07 / 01 / 04 \end{array}$	\|rest	DESIGN STANDARDS	MIS CELLANEOUS UTILITY DETAILS	$\begin{gathered} \hline \text { INDEX } \\ \text { NO. } \\ 307 \end{gathered}$	$\begin{gathered} \text { SHEET } \\ \text { NO. } \\ 3 \text { of } 3 \end{gathered}$

figure 10.2-REPAIR METHOD: NONE OR CLEAN AND SEAL

FIGURE 10.3-FULL SLAB FULL DEPTH REPLACEMENT

Existing Transverse Joint $\quad \therefore \begin{aligned} & \text { Bond Breaker } \\ & \text { (Along All Lon }\end{aligned}$

figure 10.4-PARTIAL SLAB FULL DEPTH REPLACEMENT

FIGURE 10.6 - MULTiPLE SLAB FULL DEPTH REPLACEMENT

GENERAL NOTES

1. For Repair and Replacement Criteria see Sheet 2.
2. Full depth repairs consist of removing and replacing at least a portion of the existing slab to the bottom of the concrete.
3. Repair boundaries shall be sawed full-depth with diamond saw blades. On hot days, it may not be possible to make this cut without first making a wide, pressure relief cut within the repair boundaries. A carbide-tipped wheel saw may be used for this purpose, but the wheel saw must not intrude on the if wheel saw cuts are made, diamond saw cuts must be made 18 in. outside the wheel saw cuts. To prevent damage to the base, the wheel saw must not be allowed to penetrate more than 0.5 in . into the base.
4. No additional base or subgrade material shall be added and all loose base or subgrade material shall be removed prior to placement of the new concrete slab. The concrete slab shall be placed to the full depth of the material removed. No additional compensation will be allowed for additional concrete required to bring proposed concrete slab up to finished grade.
5. Removal of the damaged concrete pavement shall be by lifting. Any good concrete pavement which is damaged during removal of damaged areas shall be removed and replaced by the contractor at his expense.
6. If the roadway contract includes grinding, then the slab replacement shall be performed first.
7. During slab replacement operations, fill any saw cut over runs into ad jacent slabs with epoxy.
8. Install tie bars at longitudinal joints when two full adjacent or multiple replaced slabs.

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVIISION } \\ 07 / 01 / 14 \end{array}$		FDOT\} $\begin{gathered}2016 \\ \text { DESIGN STANDARDS }\end{gathered}$	CONCRETE SLAB REPLACEMENT	$\begin{gathered} \text { INDEX } \\ \text { NO. } \\ 308 \end{gathered}$	SHEET NO. 1 of 2

SLAB REPAIR AND REPLACEMENT CRITERIA

LAST REVISION $07 / 01 / 10$	家匂DESCRIPTION:	FDOT\} $\begin{gathered}2016 \\ \text { DESIGN STANDARDS }\end{gathered}$	CONCRETE SLAB REPLACEMENT

NOTE: "E" Joint(s) Required When Length Exceeds 30' SAWED JOINTS
 OPEN JOINTS

LONGITUDINAL SECTION
(NOT TO SCALE)
Joint LEGEND
A- $1 / 2$ " Expansion Joints (Preformed Joint Filler)
B- $1 /$ /r $^{\prime \prime}$ Dummy Joints, Tooled
C- $1 /{ }^{\prime \prime}$ Formed Open Joints
D-3/16" Saw Cut Joints, $11 / 2^{\prime \prime}$ Deep (within 96 hours) Max. 5' Centers
E-3/16" Saw Cut Joints, 111/2 Deep (within 12 hours) Max. 30' Centers
F- $1 / 2$ " Expansion Joint When Run of Sidewalk Exceeds 120°.
Intermediate locations when called for in the plans or at locations as directed by the Engineer.
G-Cold Joint with Bond Breaker, Tooled

SIDEWALK JOINTS

NOTES FOR CONCRETE SIDEWALK ON CURBED ROADWAYS

1. Construct sidewalks in accordance with Specification Section 522 .
2. Include detectable warnings on sidewalk curb ramps and construct in accordance with Index No. 304.
3. Detectable warnings are not required where sidewalks intersect urban flared turnouts.
4. Bond breaker material can be any impermeable coated or sheet membrane or preformed material having a thickness of not less than 6 mils nor more than $1 / 2$ ".
5. For turnouts see Index No. 515.
6. Construct sidewalks with 1' thick Edge Beam through the limits of any surface mounted Pedestrian/Bicycle Picket Railing or Pipe Guiderail shown in the plans.

CONCRETE SIDEWALK ON CURBED ROADWAYS
LAST
REVISION
$07 / 01 / 15$

2016
FDOT
DESIGN STANDARDS
CONCRETE SIDEWALK

