Progress Report 3

(For the Period Covering 03/09/2010 to 06/08/2010)

Time Dependent Load Response of Flexible Pipe Subjected to **Sustained Loading**

FDOT Contract No. BDK75 977-21

UF Contract No. 82153

FDOT Project Manager:

Rick Renna, P.E.

UF Principal Investigator: Dr. David Bloomquist, Ph.D., P.E. Dr. Timothy J. McGrath, Ph.D., P.E. **Co-Principal Investigator:** Kenneth Pasken, E.I.

Graduate Student:

Undergraduate Student:

Zachary Faraone

Date of Submittal: July 1, 2010

1. Work Accomplished This Quarter

This quarter, preparation work continued on the FDOT Soil Box to complete it for the proposed testing program. This involved numerous tasks, ranging from ordering new materials and machining parts for the project, to doing research on a number of different testing techniques. Specifically, the following was accomplished this quarter:

- a. Nuclear density tests were performed to ensure proper compaction of the soil being added to the Soil Box.
- b. Review of existing triaxial test data for the A-2-4 soil being used.
- c. New triaxial tests were performed at lower confining pressures and lower standard proctor densities.
- d. The Soil Box was partially filled and one M294 HDPE pipe installed.
- e. The M294 HDPE pipes for the first test were pre-deflected.
- f. Earth pressure load cells were assigned a naming convention to be able to more easily identify each cell, its location, and its corresponding pressure reading.
- g. The Soil Box was prepared for the first test.
- h. Earth pressure readings were taken on seven separate occasions during this quarter.
- i. Calculations were performed to determine the amount of water needed to fully saturate the soil in the Soil Box.
- j. A watering trial was performed outside of the University of Florida Coastal Lab to determine the duration of watering needed to fully saturate the soil.
- k. Watering was performed to saturate the soil as best as possible.
- I. Load plates were painted.
- m. French drain was installed on the South end of the Soil Box.
- n. Selection of instrumentation equipment to accurately record horizontal movement of laser used to measure pipe deflection.
- o. Work continued on the laser mounting system.
- p. Numerous visits to the Lab to photograph newly delivered materials, newly machined parts, and project progress in general.

q. Literature review.

A discussion of the completed activities follows.

a. Nuclear density tests were performed to ensure proper compaction of the soil being added to the Soil Box.

Nuclear density tests were performed by FDOT Technicians from the State Materials Office (SMO) on the soil being added to the Soil Box. These tests were done on four separate occasions: March 22, April 28, April 29, and May 3, 2010. Each of these dates corresponds to a lift of soil that had been added to the Soil Box. The test done on March 22 assessed the compaction in the first lift of soil which was 1 foot thick. Subsequently, two lifts each with a thickness of two feet were added to the Soil Box. The tests performed on April 28 and April 29 checked the respective compaction levels. Finally, two and a half feet of soil was added. The compaction of this final lift was assessed on May 3.

The location of all the nuclear density tests that were performed can be found on Pages C-17 and C-18 of *Appendix A: Supplemental AutoCAD Drawings*. The results of the nuclear density tests can be seen in *Appendix B: Nuclear Density Test Results*.

From the nuclear density test data, the average moisture content of the soil in the Soil Box was calculated as three percent. This will be discussed further in Section i.

b. Review of existing triaxial test data for the A-2-4 soil being used.

Existing triaxial test results were provided by Mr. Daniel Pitocchi, the Soils and Foundation Lab Manager at the SMO. The results can be found in *Appendix C: Triaxial Test Results for Sample 23421, Appendix D: Triaxial Test Results for Sample 23422,* and *Appendix E: Triaxial Test Results for Sample 23423.* The data shown in these three Appendices corresponds to the soil being tested at 100 percent standard proctor density. Each sample, 23421, 23422, and 23423, was tested at 7, 14, and 21 psi confining pressures.

c. New triaxial tests were performed at lower confining pressures and lower standard proctor densities.

To be able to view the test soil's response under conditions similar to those existing in the Soil Box, new triaxial tests were performed. Specifically, new testing parameters included lowering the confining pressure to a level that could be maintained reliably, and testing at lower standard densities. Some of these results can be found in *Appendix F: Triaxial Test Results for Sample with 90% Standard Density*. This particular sample was compacted at 90 percent standard density and tested at 3 and 5 psi confining pressures. At the time of this progress report's submission, two other samples compacted and 80 and 85 percent standard densities, respectively, were being tested. Those results will be included in Progress Report 4.

d. The Soil Box was partially filled and one M294 HDPE pipe installed.

The Soil Box was partially set up for the purposes of the industry visit which took place on Tuesday, March 16, 2010. This partial set up included the 12 inch thick layer of compacted soil at the bottom of the Soil Box, as well as the installation of an M294 HDPE pipe in the North end of the box. As can be seen in the figures below, the 12 inch thick layer was compacted uniformly and the rubber membrane sealing system was installed over the interface between the pipe end and the Soil Box wall.

Figure 1: 12 inch thick layer of soil at bottom of Soil Box.

Figure 2: M294 HDPE pipe installed in North end of Soil Box.

Figure 3: Sealing system between pipe end and Soil Box wall.

e. The M294 HDPE pipes for the first test were pre-deflected.

Shortly after the industry visit of March 16, it was decided to pre-deflect the flexible pipe materials to approximately five percent deflection along the length of the pipe. This aspect of the testing aims to further simulate field conditions during pipe installation. This pre-deflection of the pipes was made possible with the use of manual turnbuckles, shown below in Figure 4. Four percent pre-deflection, or 1.44 inches, was achieved for the 36 inch diameter M294 HDPE pipes.

Because this decision was made after one of the pipes had already been installed in the Soil Box, the pipe was removed, pre-deflected, and then reinstalled. In order to maintain the deflected shape, the turnbuckles will remain in place until the test is begun. It is expected that the load from the lift bags will exert enough pressure on the pipes so that the turnbuckles are released, allowing for their safe removal through the portholes.

Figure 4: Pre-deflected M294 HDPE pipe with turnbuckles.

f. Earth pressure load cells were assigned a naming convention to be able to more easily identify each cell, its location, and its corresponding pressure reading.

A vital part of the tests being performed is being able to accurately record and analyze all the data that is being output by the various pieces of instrumentation. There are a total of 16 earth

pressure cells being used during one test, and readings are collected about every 30 seconds. It is very important to see which reading corresponds to what location in the Soil Box.

The naming convention shown below in Table 1 was chosen as the most efficient method of being able to see which numbers correspond to what area. Each name is made up of three characters, the first two being letters and the last being a number. The first character refers to whether the pressure cell is in the South half or the North half of the Soil Box. The second character identifies the depth location of the cell relative to the pipe; namely bottom, side, or top. The third and last character identifies each pressure cell based on its position in the East-West directions. The pressure cells are numbered starting at 1, from the East to the West. Both the cells on the top and on the bottom therefore range from 1 to 3, while those cells on the side range from 1 to 2.

SB1	South Bottom 1
SB2	South Bottom 2
SB3	South Bottom 3
SS1	South Side 1
SS2	South Side 2
ST1	South Top 1
ST2	South Top 2
ST3	South Top 3
NB1	North Bottom 1
NB2	North Bottom 2
NB3	North Bottom 3
NS1	North Side 1
NS2	North Side 2
NT1	North Top 1
NT2	North Top 2
NT3	North Top 3

Table 1: Earth pressure cell naming convention.

The location of all the pressure cells and their respective names can be found on Pages C-19 through C-21 of *Appendix A: Supplemental AutoCAD Drawings*.

g. The Soil Box was prepared for the first test.

This particular task was accomplished in a number of stages. The bottom 12 inch thick layer of compacted fill was already in place. The next step was to properly route all the instrumentation wiring through the center porthole, as was discussed in Progress Report 2. See Figures 5 and 6 below for the completed instrumentation wiring.

Figure 5: Completed routing of instrumentation wiring with sealant (view from inside).

Figure 6: Completed routing of instrumentation wiring (view from outside).

The M294 HDPE pipes will be loaded during the first test. Figure 7 below shows how the pipes are lowered into the Soil Box. Both pipes were pre-deflected to four percent along the ten foot length, or about 1.44 inches. After the pipes were lowered, the rubber membrane sealing system was installed over the four open joints. This was done using the same procedure as seen

above in Figure 3. Additional views of the pipe/wall interface prior to and immediately after the installation of the sealing system can be seen in Figures 8 and 9, respectively, below.

Figure 7: M294 HDPE pipe being lowered into Soil Box.

Figure 8: Pipe/wall interface prior to sealing.

Figure 9: Installed rubber membrane sealing system.

Immediately following the installation of both pipes, soil began to be loaded into the box. This was done in three separate lifts, as previously described in Section a. This was accomplished with the use of a front end loader dumping soil into a concrete bucket. The concrete bucket

was then hoisted over the Soil Box, and its contents emptied. This process can be seen in the figures below.

Figure 10: Dumping of soil into concrete bucket.

Figure 11: Full concrete bucket hoisted over Soil Box.

Figure 12: Concrete bucket emptied over Soil Box.

The next step in the process, which took place in conjunction with filling, was to properly place the earth pressure cells. The cells needed to be located according to the specifications outlined in the Appendix of Progress Report 2.

Figure 13: Placement of SS2 pressure cell.

Figure 14: View of SS1 (left) and SS2 (right) pressure cells.

Figure 15: Placement of NT3 pressure cell.

Finally, after the last lift of soil was added to the Soil Box, the soil was leveled uniformly. See Figure 16 below. Once again, careful attention was paid to ensure that the soil was not

compacted anymore than required. This was verified by the nuclear density tests performed on May 3.

Figure 16: Soil profile following addition of final soil lift and completion of leveling.

h. Earth pressure readings were taken on seven separate occasions during this quarter.

There are three separate sets of data that were collected during this quarter. The first set includes data recorded prior to soil saturation. The second set is for data recorded during the soil saturation period. Finally, the third set reflects the data recorded after the soil saturation process had been completed. The average of each of the three sets, for each individual cell, is presented in Table 2 below. Unfortunately, the SS2 cell began to malfunction after installation. The readings recorded for that cell were deemed unreliable.

As can be seen by the table, pressures are greater with increasing depth. Likewise, pressures increase from the first set of data, to the second, to the third. This follows the assumption that the pressures would increase as the soil was saturated. For a quick reference of the specific cell locations, please refer to Pages C-19 through C-21 of *Appendix A: Supplemental AutoCAD Drawings*.

Pressure Cell Identifier	Pressure Cell Name	Average Pressure Prior	Average Pressure	Average Pressure After	Approximate Depth Of
		To Saturation (psi)	During Saturation (psi)	Saturation (psi)	Pressure Cell (feet)
SB1	South Bottom 1	2.31	2.67	3.00	7.5
SB2	South Bottom 2	3.59	3.67	3.04	7.5
SB3	South Bottom 3	1.28	1.56	1.90	7.5
SS1	South Side 1	2.68	3.00	3.83	5.5
SS2 (Bad Cell)	South Side 2	-	-	-	5.5
ST1	South Top 1	1.29	1.38	1.38	2.5
ST2	South Top 2	0.33	0.40	0.41	1.25
ST3	South Top 3	1.67	1.85	1.99	2.5
NB1	North Bottom 1	3.29	3.79	4.41	7.5
NB2	North Bottom 2	3.03	3.50	4.18	7.5
NB3	North Bottom 3	3.02	3.43	3.43	7.5
NS1	North Side 1	1.35	1.69	2.00	5.5
NS2	North Side 2	1.75	2.13	2.20	5.5
NT1	North Top 1	0.37	0.40	0.42	1.25
NT2	North Top 2	1.64	1.95	2.00	2.5
NT3	North Top 3	0.69	0.73	0.72	1.25

Table 2: Initial pressure cell readings before, during, and after saturation.

i. Calculations were performed to determine the amount of water needed to fully saturate the soil in the Soil Box.

One of the important parts of the testing procedure was to fully saturate the soil. As discussed in Section a, the soil added to the Soil Box had a moisture content of around three percent. Using soil phase diagram relationships and an average of the actual dry unit weights obtained from the triaxial test results, it was calculated that approximately 3,200 gallons of water would be needed to fully saturate the soil. This number was based on two assumptions: that the Soil Box was filled completely with soil and that the soil could be fully saturated. As can be seen in the figures above, there are about six inches of freeboard near the top of the box. Also, it would be near impossible to fully saturate the soil, unless all the soil was maintained in an airtight configuration and flooded. That was not a likely consideration. The method of soil saturation is discussed in Sections j and k. The saturation calculations can be seen in *Appendix G: Soil Saturation Calculations*.

j. A watering trial was performed outside of the University of Florida Coastal Lab to determine the duration of watering needed to fully saturate the soil.

To be able to accurately record exactly how much water was being added to the Soil Box, a trial was performed outside of the UF Coastal Lab. The footprint of the Soil Box was measured out and outlined with orange chalk. A lawn sprinkler was then connected to the water supply, and the pressure regulated until the water fell within the chalk boundary. This pressure was then held constant while the sprinkler was held over a bucket of known volume. The time required to fill the bucket to three gallons was one minute and 55 seconds. The above steps can be seen in the figures below.

Figure 17: Footprint of Soil Box outlined with orange chalk.

Figure 18: Water pressure being regulated for water to stay within the footprint.

Figure 19: Filling of bucket at constant pressure.

Figure 20: Stopwatch used to record the amount of time needed to fill the bucket.

It would have taken approximately 34 hours to fill the Soil Box with 3200 gallons, maintaining the low pressure necessary to stay within the footprint. The lawn sprinkler represented the best way to uniformly distribute the water over such a long period of time. The calculations for the time required for saturation are likewise found in *Appendix G: Soil Saturation Calculations*.

k. Watering was performed to saturate the soil as best as possible.

Because full saturation could not be attained and because the Soil Box was not completely filled, water was added to the Soil Box for about half of the 34 hours, or about 18 hours. This was done over the course of three days. Figure 21 below shows the sprinkler setup in the Soil Box towards the end of the watering process. In the middle of the photo, water can be seen beginning to form puddles.

Figure 21: Sprinkler setup inside Soil Box with water beginning to form puddles.

I. Load plates were painted.

This task was more for aesthetics, but nonetheless was part of the work done during the quarter.

Figure 22: Painted load plate.

m. French drain was installed on the South end of the Soil Box.

This particular task was needed for drainage purposes once the soil was saturated. The French drain is located along the South end of the Soil Box. A porous membrane allows only water to penetrate into the drain. This prevents soil from clogging the drain. The drainage spout can be seen in Figure 23 below.

Figure 23: French drain release valve.

n. Selection of instrumentation equipment to accurately record horizontal movement of laser used to measure pipe deflection.

This particular subject was discussed in Task p of Progress Report 2. It was ultimately decided that a string potentiometer would be used to measure the horizontal translation of the laser as the laser moves along the track system it will be mounted on. As anticipated, the string potentiometer will output to the same piece of equipment as the other instrumentation, simplifying the data acquisition process.

o. Work continued on the laser mounting system.

This task has become somewhat more difficult than was anticipated at the end of the second quarter. This issue is discussed in Section 2 below.

p. Numerous visits to the Lab to photograph newly delivered materials, newly machined parts, and project progress in general.

Each week, pictures are taken of all the new steps that have progressed. This process will continue throughout the duration of the project.

q. Literature review.

The following articles have been collected and are being reviewed. Literature review will continue throughout the duration of the project.

Abolmaali, Ali. "Experimental Verification of CUES Laser Profiler Deformation Analysis Results." Arlington, TX: University of Texas, 2008. Print.

Moser, A.P. Buried Pipe Design. Second Edition. New York, NY: McGraw-Hill, 2001. Print.

Motahari, Ardavan, and Jorge Forteza. "Accuracy of Laser Profiling of Flexible Pipes Using CUES System." Arlington, TX: University of Texas, 2008. Print.

Palmer, Michael. "Results of Full-Scale Test on 16-inch HDPE Pipe." 2005. Web. 25 Jan 2010.

2. Activities Planned for Next Quarter

The first test has yet to be performed. It is anticipated that a full test will begin during the next quarter. The delay is mainly due to the unexpected setbacks with the laser system and deflection measurement. Paramount to the design of this system is the necessity of accuracy. This includes the same starting point for all tests taking place so that the measurement method does not change from test to test. The system involves fixed supports on either side of the Soil Box, for both pipes. A track will be attached to these supports, and the laser mounted on the track. The four quadrants of the pipe: top, bottom, and sides, can then be measured for deflection. A dial measurement device is also being developed to confirm the results obtained from the laser measurements.

The remaining triaxial test data will be obtained from the FDOT SMO for the A-2-4 soil that will be used for this project. This was previously discussed in Section c.

An instrumentation room will be sealed off on the Northeast corner of the Soil Box. This room will protect all of the data acquisition equipment from any hazards that might be presented during testing. The load plates, lift bags, air control equipment, and top of the Soil Box are all planned to be installed during the next quarter. This is in preparation for the first test.

3. Activities Beyond the Next Quarter

Once a successful test has taken place, the process becomes somewhat repetitious. The idea has been to make sure that everything is standardized prior to the running of any tests. This way, testing methods do not change from one test to another.

4. Summary of Requested Modifications

No changes or modifications are requested.

5. Project Schedule

A table of tasks to be completed with current status is provided on the next page.

				FI	ORI	DA D	EPA	RTM	ENT	OF T	RAN	SPOI	RTAT	ION											
							RI	ESEA	RCH	CEN	TER														
						-	• •		T C				-												
						PR	OJ.	EC	1 8	СН	ED	UL	E												
Project Title	Time	e Dep	enden	it Loa	d Res	ponse	of Fl	exible	Pipe	Subje	cted t	o Sust	tained	l Load	ling										
FDOT Project No.	To b	e Det	ermin	ied																FY	20	009	Mo	onth	Jun
Research Agency	Univ	ersity	of Flo	orida																					
Principal Investigator	Dr. 1	David	Bloor	mquist	t. Dr.	Tim N	AcGra	th																	
. 0				1 T																					
RESEARCH	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	ESTIMATED %
TASK																									COMPLETION
Task 1																									5
Install Visqueen Sheeting/Purchase Lift Bags																									
Task 2a																									7
Install Bedding Material/Earth Pressure Cells																									
Task 3a																									4
Install Two 36" HDPE Pipes/Backfill/Flooding							1																		
Task 4a																									10
Fill Box/Install Pressure Cells/Lift Bags																									
Task 5																									4
Conduct Triaxial/1D Compression Tests												-													
Task 6											-														3
Finalize Design/Construction of LVDT Profiler																									-
Task 7		-	-	-								-		-	-										6
Conduct Staged Load Tests on Dual 36" HDPE Pine				-																					Ť
Task 8A		-	-	-										-	-										10
Repeat Tests on Single Pines w/ Trench Boxes																									
Task SB	_	-	-		-	-				-					-	-						-			8
Report Tast Series on 36" Committed Steel Pine																									, in the second
Task 9C		-	-	-	-	-				-	-	-									-	-			0
Papart Test Series on 26" Compared Aluminum Pine		-		-																					0
Test 9D		-	-	-	-					-	<u> </u>	<u> </u>		-	-					<u> </u>	<u> </u>	<u> </u>			0
Parent Test Series on 26" DVC Dire			-							<u> </u>	<u> </u>	<u> </u>									<u> </u>				•
Test of		-		-	-	-						<u> </u>		-	-							<u> </u>			0
Task SE		-	<u> </u>	-	-	-				<u> </u>	<u> </u>	<u> </u>									<u> </u>				8
Repeat Test Series on 24 HDPE Pipe		-		-	-	-	-				<u> </u>	<u> </u>	-	-	-									-	
Task 8F			<u> </u>	-							<u> </u>	<u> </u>													8
Repeat Test Series on 24" Corrugated Steel Pipe			<u> </u>		-																				
Task 9		-	<u> </u>																						10
Perform FEM modeling																									
Task 10																									1
Preparation of Final Report			<u> </u>								<u> </u>	<u> </u>									<u> </u>				
																									100%
		-	-	-	-	-	-					-		-	-								-		1
Ormenti 9/ Commission			<u> </u>	-	<u> </u>	<u> </u>						<u> </u>	-	-								<u> </u>	<u> </u>		
Overall % Complete	10.1	0.04	1.000	1.00	0.000	0.000	0.001	222	0.00	1000		4004	5000		c00/	C 10/	c00/	700/	7.694	0.000	0.00	0.00/	0.504	1005	
Projected	4%	8%	12%	16%	20%	24%	28%	52%	56%	40%	44%	48%	52%	100%	60%	64%	08%	/2%	/6%	80%	85%	90%	95%	100%	
Overail % Complete																									
Actual	4%	7%	11%	!4%		L	<u> </u>				L	1	L	1			I								I
						FIG.	A O'	VERA	LL PR	OJEC	T SCI	HEDUI	Æ												

Appendix

Appendix A Supplemental AutoCAD Drawings

E:\Users\Ken\Documents\Graduate School\Soil Box Project\AutoCAD\Drawings C-17 - C-21\Soil Box Drawings For PR #3

PLOTTED: 6/16/2010 3:28 PM

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

E:\Users\Ken\Documents\Graduate School\Soil Box Project\AutoCAD\Drawings C-17 - C-21\Soil Box Drawings For PR #3

E:\Users\Ken\Documents\Graduate School/Soil Box Project\AutoCAD\Drawings C-17 - C-21\Soil Box Drawings (Supp.) For PR #3

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

РЯОРИСЕР ВҮ АМ АИТОРЕЗК ЕРИСАТІОИАГ РЯОРИСТ

РЯОРИСЕР ВҮ АМ АИТОРЕЗК ЕРИСАТІОИАL РЯОРИСТ

SAVED: 6/16/2010 3:22 PM

E:\Users\Ken\Documents\Graduate School\Soil Box Project\AutoCAD\Drawings C-17 - C-21\Soil Box Drawings For PR #3

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

Appendix B Nuclear Density Test Results

Nuclear Density Tests (Standard Proctor)								
Date Performed	Location #	Wet Density (pcf)	Dry Density (pcf)	% Moisture				
	1	104.7	101.7	2.9				
March 22, 2010	2	103.5	100.8	2.6				
(Pottom 12"	3	104.8	101.8	2.9				
(Bottom 12 Compacted Laver)	4	105.5	102.7	2.7				
	5	106.1	103.4	2.5				
	6	103.8	100.9	2.8				
	1	96.6	93.5	3.2				
	2	97.7	94.8	3.0				
	3	96.7	94.6	2.2				
April 28. 2010	4	100.3	97.0	3.3				
(After Addition of	5	97.1	95.0	2.2				
2' of Soil)	6	100.2	97.2	3.0				
	7	98.0	95.6	2.4				
	8	99.2	96.0	3.2				
	9	99.0	95.7	3.3				
	1	98.2	95.4	2.9				
	2	99.6	96.8	2.8				
	3	96.7	94.6	2.2				
April 29, 2010	4	99.4	96.7	2.7				
(After Addition of	5	100.3	98.4	1.9				
2' of Soil)	6	104.1	100.6	3.4				
	7	95.7	93.2	2.6				
	8	98.8	95.1	3.7				
	9	95.8	93.1	2.8				
	1	100.7	98.6	2.1				
	2	101.6	99.1	2.5				
	3	99.8	97.1	2.7				
May 3, 2010 (After	4	100.6	97.8	2.8				
Addition of 2.5' of	5	101.3	98.8	2.5				
Soil)	6	98.5	95.8	2.7				
	7	99.6	97.2	2.4				
	8	97.1	94.3	2.9				
	9	100.4	97.6	2.8				

Appendix C Triaxial Test Results for Sample 23421

Revised Date: 2/8/06

Page 1 of 1

By: SH

Consolidated Drained Triaxial Compression Test

D2 I-75 Coastal re	esearch		
23421 - 7 psi		Membrane Thickness (in)	0.012
	10/14/2008	Mass of 2 pore stones, 2 papers & mem. (g)	145.06
dp		Mass of 2 ps, 2fp, 1 mem + sample (g)	
A-3 sand		Mass of sample (g)	1248.72
.006 in/m		Mass of sample (lbs)	2.75
Sample + pore stones + papers	Pore Stones & Papers	Diameter (in)	
6.2090	0.5220	Тор	2.912
6.2180	0.5220	Middle	2.912
6.2250	0.5210	Bottom	2.912
6.217	0.522	Average (minus membrane)	2.888
5.6957		Area (in ²)	6.5506
		r	
Initial	Final	Optimum Dry Density, pcf	109.4
77.51	307.40	Optimum Moisture, %	12.8
366.59	1476.10	larget Density, pcf	109.4
<u>333.98</u> <u>1288.31</u>		Actual Dry Density, pcf	113.1
12.7	19.1	Percentage of Optimum	103.4
0.0216		Height before saturation (in)	0 2792
611 4064		Height after saturation (in)	0.2954
605.0894		\wedge Hs (in)	0.016
		Height after consolidation (in)	0.3005
B va	alue	Δ Height after sat. and consol. (in)	0.0213
u1 =	65.5	Average height ΔHc+ΔHs (in)	5.6744
u2 =	74.7	Vo (in ³)	37.3103
∆s =	10	$\Delta Vs (in^3)$	0.3184
В =	0.92	$\Delta Vc (cm^3)$	1.1000
		(in ³)	0.0671
		ΔV_{T} (in ³)	0.3855
		Ac (in ²)	6.5073
		Volume after consolidation, Vc, (cm ³)	605.0894
		Confining Pressure (psi)	7
	$\begin{array}{c} D2 \ 1-75 \ \text{Coastal re} \\ \hline 23421 - 7 \ \text{psi} \\ \hline \\ \hline \\ A-3 \ \text{sand} \\ .006 \ \text{in/m} \\ \hline \\ \hline \\ Sample + \text{pore} \\ \text{stones + papers} \\ \hline \\ \hline \\ 6.2090 \\ \hline \\ 6.2180 \\ \hline \\ 6.2180 \\ \hline \\ 6.2250 \\ \hline \\ 6.217 \\ \hline \\ \hline \\ \hline \\ 6.217 \\ \hline \\ \hline \\ \hline \\ 6.217 \\ \hline \\ $	D2 I-75 Coastal research 23421 - 7 psi 10/14/2008 dp A-3 sand .006 in/m Sample + pore stones & Papers 6.2090 0.5220 6.2180 0.5220 6.2250 0.5210 6.2250 0.5210 6.217 0.522 5.6957 Initial Final 77.51 307.40 366.59 1476.10 333.98 1288.31 12.7 19.1 0.0216 611.4064 605.0894 8 B value u1 = 65.5 u2 = 74.7 $\Delta s = 10$ B = 0.92	D2 1-75 Coastal research 23421 - 7 psi 10/14/2008 dp A-3 sand .006 in/m Sample + pore Pore Stones & Papers Papers 6.2090 0.5220 6.2180 0.5220 6.217 0.522 A-3 sand Middle 6.2250 0.5210 6.217 0.522 Average (minus membrane) 5.6957 Area (in ²) Initial Final Optimum Dry Density, pcf 77.51 307.40 3366.59 1476.10 333.98 1288.31 12.7 19.1 Percentage of Optimum 0.0216 Height before saturation (in) 611.4064 Height after satication (in) 605.0894 A Height after sat and consol. (in) Meight after sat. and consol. (in) A Height after consolidation (in) 0.11 = 65.5 Average height $\Delta He + \Delta H \le (in)$ $\Delta V \in (m^3)$ $\Delta V \in (m^3)$ 0.92 $\Delta V \in (m^3)$

STATE MATERIALS OFFICE

Foundations Laboratory

STATE MAT	ERIALS OFFICE		Consolidated Drained	Revised D	ate: 2/8/06
Foundation	ns Laboratory		Triaxial Compression Test	By: SH P	age 1 of 1
roject:	D2 I-75 Coastal re	esearch			
ample No.:	23421 - 14 psi		Membrane	Thickness (in)	0.012
ate:		10/14/2008	Mass of 2 pore stones, 2 pape	rs & mem. (g)	137.71
est By:	dp	_	Mass of 2 ps, 2fp, 1 mem	n + sample (g)	
Description:	A-3 sand		Mass	of sample (g)	1209.51
	.006 in/m		Mass o	f sample (lbs)	2.67
Height	Sample + pore stones + papers	Pore Stones & Papers	Diameter (in)		
1	6.2090	0.5280		Тор	2.916
2	6.2205	0.5250		Middle	2.917
3	6.2125	0.5220		Bottom	2.915
Average	6.214	0.525	Average (minu	is membrane)	2.892
Average Height minus pore stones and filter paper	5.6	890		Area (in ²)	6.5688
	Initial	Final	Optimum Dr	y Density, pcf	109.4
Tare	77.51	307.40	Optimur	n Moisture, %	12.8
Wet	366.59	1476.10	Targe	et Density, pcf	109.4
Dry	333.98	1288.31	Actual Dr	y Density, pcf	109.4
moisture (%)	12.7	19.1	Percentag	e of Optimum	100.0
Actual Volume, ft ³	0.0216		Height before	saturation (in)	0.3998
Volume Start of Test, cm3	612.3836		Height after	saturation (in)	0.4255
Volume After Consol, cm3	600.4843			Δ Hs (in)	0.026
			Height after con	solidation (in)	0.4284
Shear Failure Sketch	B va	alue	Δ Height after sat. ar	nd consol. (in)	0.0286
	u1 =	65.8	Average height	Δ Hc+ Δ Hs (in)	5.6604
	u2 =	74.8		Vo (in ³)	37.3699
	∆s =	10		ΔVs (in ³)	0.5065
	B =	0.9		$\Delta Vc (cm^3)$	3.6000
				(in ³)	0.2197
	1			ΔV_T (in ³)	0.7261
			1	0	6 4727
				Ac (in ²)	0.4737
			Volume after consolidat	Ac (in ²) ion, Vc, (cm ³)	600.4843

prep._ setup_

prep	
setup_	
consol.	
shear_	

STATE MATE	ERIALS OFFICE		Consolidated Drained	d Date: 2/8/06	
Foundation	s Laboratory		Triaxial Compression Test	By: SH	Page 1 of 1
Project:	D2 I-75 Coastal re	esearch			
Sample No.:	23421 - 21 psi		Membrane	Thickness (in) 0.012
Date:		10/14/2008	Mass of 2 pore stones, 2 pape	ers & mem.	(g) 141.56
Test By:	dp		Mass of 2 ps, 2fp, 1 mer	n + sample	(g) 1356.06
Description:	A-3 sand		Mass	s of sample	(g) 1214.50
	.006 in/m		Mass	of sample (It	os) 2.68
Height	Sample + pore stones + papers	Pore Stones & Papers	Diameter (in)		
1	6.2450	0.5295		Т	op 2.914
2	6.2740	0.5250		Mide	dle 2.915
3	6.2535	0.5265		Botto	om 2.914
Average	6.258	0.527	Average (min	us membrar	e) 2.890
Average Height minus pore					2
stones and filter paper	5.7	305		Area (ii	ר"ז (12 6.5612
	Initial	Final	Optimum D	ry Density, p	ocf 109.4
Tare	77.51	431.90	Optimu	m Moisture,	% 12.8
Wet	366.59	1726.30	Targ	et Density, p	ocf 109.4
Dry	333.98	1521.06	Actual D	ry Density, p	ocf 109.2
moisture (%)	12.7	18.8	Percentag	ge of Optimu	ım 99.8
		_			
Actual Volume, ft ³	0.0218		Height before	saturation (in) 0.4058
Volume Start of Test, cm3	616.1400		Height after	saturation (in) 0.4107
Volume After Consol, cm3	613.6595			∆ Hs (in) 0.005
			Height after co	nsolidation (in) 0.4199
Shear Failure Sketch	B va	alue	Δ Height after sat. a	nd consol. (in) 0.014
	u1 =	65.8	Average heigh	t ∆Hc+∆Hs (in) 5.7164
	u2 =	75.1		Vo (ii	າ ³) 37.5992
	∆s =	10		∆Vs (ii	n ³) 0.0965
	B =	0.93		∆Vc (cn	າ ³) 0.9000
				(ii	n ³) 0.0549
				ΔV_{T} (ii	1 ³) 0.1514
				Ac (ii	n ²) 6.5509
			Volume after consolida	tion, Vc, (cn	n ³) 613.6595
			Confining	Pressure (p	si) 21

Appendix D Triaxial Test Results for Sample 23422

Revised Date: 2/8/06

Foundations Laboratory			Triaxial Compression Test	By: SH	Page 1 of 1
Project:	D2 I-75 Coastal re	esearch			
Sample No.:	23422 - 7 psi		Membrane	Thickness	(in) 0.012
Date:		10/14/2008	Mass of 2 pore stones, 2 pape	ers & mem	. (g) 142.72
Test By:	dp		Mass of 2 ps, 2fp, 1 mer	n + sample	e (g) 1357.86
Description:	A-3 sand		Mas	s of sample	e (g) 1248.72
	.006 in/m		Mass	of sample (lbs) 2.75
	-				
Height	Sample + pore stones + papers	Pore Stones & Papers	Diameter (in)		
1	6.2595	0.5255			Top 2.910
2	6.2465	0.5175		Mie	ddle 2.910
3	6.2530	0.5195		Bot	tom 2.911
Average	6.253	0.521	Average (min	us membra	ane) 2.886
Average Height minus pore stones and filter paper	5.7	322		Area	(in ²) 6.5431
	Initial	Final	Optimum D	ry Density,	pcf 110.1
Tare	77.50		Optimu	m Moisture	e, % 12.3
Wet	295.09		Targ	et Density,	pcf 109.4
Dry	271.00		Actual D	ry Density,	pcf 112.8
moisture (%)	12.4	#DIV/0!	Percenta	ge of Optin	102.4
		I			
Actual Volume, ft ³	0.0217		Height before	saturation	(in) 0.3252
Volume Start of Test, cm3	614.6145		Height after	saturation	(in) 0.3772
Volume After Consol, cm3	596.7879			∆ Hs	(in) 0.052
			Height after co	nsolidation	(in) 0.3819
Shear Failure Sketch	B va	alue	Δ Height after sat. a	and consol.	(in) 0.0567
	u1 =	65.5	Average heigh	t ∆Hc+∆Hs	(in) 5.6755
	u2 =	74.7		Vo	(in ³) 37.5061
	<u>∆s</u> =	0		∆Vs	(in ³) 1.0207
	В =	92		ΔVC (C	(m ⁻) 1.1000
				A \ /	(in°) 0.0671
				ΔV_T	(in) 1.0878
				Ac	(in ⁻) 6.4168
			Volume after consolida	ition, Vc, (c	mč) 596.7879
			Confining	Pressure (psi) 7

Consolidated Drained

STATE MATERIALS OFFICE

Test Notes:

	ERIALS OFFICE		Consolidated Drained	Revised D	vised Date: 2/8/06		
Foundation	s Laboratory		Triaxial Compression Test	By: SH P	age 1 of 1		
Project:	D2 I-75 Coastal re	esearch					
Sample No.:	23422 - 14 psi		Membrane	Thickness (in)	0.025		
Date:	•	10/14/2008	Mass of 2 pore stones, 2 pape	rs & mem. (g)	147.93		
est By:	dp		Mass of 2 ps, 2fp, 1 mem	1 + sample (g)	1354.15		
Description:	A-3 sand		Mass	of sample (g)	1209.51		
	.006 in/m		Mass o	f sample (lbs)	2.67		
Height	Sample + pore stones + papers	Pore Stones & Papers	Diameter (in)				
1	6.2250	0.5255		Тор	2.911		
2	6.2320	0.5250		Middle	2.913		
3	6.1915	0.5265		Bottom	2.910		
Average	6.216	0.526	Average (minu	is membrane)	2.861		
Average Height minus pore stones and filter paper	5.6	905		Area (in ²)	6.4302		
	Initial	Final	Optimum Dr	y Density, pcf	110.1		
Tare			Optimur	n Moisture, %	12.3		
Wet			Targe	et Density, pcf	109.4		
Dry			Actual Dr	y Density, pcf	112.1		
moisture (%)	12.3	#DIV/0!	Percentag	e of Optimum	101.8		
Actual Volume, ft ³	0.0212		Height before	saturation (in)	0.1329		
Volume Start of Test, cm3	599.6231		Height after	saturation (in)	0.1454		
Volume After Consol, cm3	593.3716			Δ Hs (in)	0.013		
			Height after cor	solidation (in)	0.1549		
Shear Failure Sketch	B va	alue	Δ Height after sat. a	nd consol. (in)	0.0220		
	u1 =	65.8	Average height	Δ Hc+ Δ Hs (in)	5.6685		
	u2 =	74.8		Vo (in ³)	36.5912		
	∆s =	0		ΔVs (in ³)	0.2411		
	B =	94		$\Delta Vc (cm^3)$	2.3000		
				(in ³)	0.1404		
				ΔV_T (in ³)	0.3815		
				Ac (in ²)	6.3879		
			Volume after consolidat	ion, Vc, (cm ³)	593.3716		
			-				

prep._ setup_

prep.	
setup_	
consol.	
shear	
-	

STATE MATERIALS OFFICE				Consolidated Drained	Revise	ed Date: 2/8/06
Foundation	Foundations Laboratory		Т	riaxial Compression Test	By: SH	Page 1 of 1
Project:	D2 I-75 Coastal re	esearch				
Sample No.:	23422 - 21 psi			Membrane	Thickness	(in) 0.020
Date:		11/6/2008	8	Mass of 2 pore stones, 2 pape	ers & mem.	(g) 150.32
Test By:	dp			Mass of 2 ps, 2fp, 1 men	n + sample	(g) 1316.65
Description:	A-3 sand			Mass	of sample	(g) 1166.33
	.006 in/m			Mass of	of sample (I	os) 2.57
Height	Sample + pore stones + papers	Pore Stones & Papers][Diameter (in)		
1	6.2260	0.5230	T		٦	op 2.910
2	6.1985	0.5275	T		Mid	dle 2.911
3	6.2350	0.5270	T		Bott	om 2.910
Average	6.220	0.526		Average (min	us membra	ne) 2.870
Average Height minus pore						2.
stones and filter paper	5.6	940			Area (n ⁻) 6.4707
	Initial	Final		Optimum D	ry Density,	pcf 110.1
Tare	77.50			Optimu	m Moisture	% 12.3
Wet	295.09			Targ	et Density,	pcf 110.1
Dry	271.09			Actual D	ry Density,	pcf 107.3
moisture (%)	12.4	#DIV/0!		Percentag	ge of Optim	um 97.4
	1	I	г			
Actual Volume, ft ³	0.0213		L	Height before	saturation	(in) 0.3619
Volume Start of Test, cm3	603.7723		L	Height after	saturation	(in) 0.3642
Volume After Consol, cm3	600.4406				Δ Hs	(in) 0.002
	1		┓┝	Height after cor	nsolidation	(in) 0.3680
Shear Failure Sketch	B va	alue	┥┝	∆ Height after sat. a	nd consol.	(in) 0.006
	u1 =	65.8	8	Average height	∆Hc+∆Hs	(in) 5.6879
	u2 =	75.1	1		Vo (i	n ³) 36.8444
	∆s =	10	0		∆Vs (i	n ³) 0.0446
	B =	0.93	3		∆Vc (cr	n ³) 2.6000
			Ļ		(n ³) 0.1587
			Ļ		ΔV_{T} (n ³) 0.2033
			L		Ac (i	n ²) 6.4419
			L	Volume after consolida	tion, Vc, (cr	n ³) 600.4406
				Confining	Pressure (p	osi) 21

Appendix E Triaxial Test Results for Sample 23423

STATE MATERIALS OFFICE			Consolidated Drained	Revised Date: 2/8/06	
Foundations	a Laboratory		Triaxial Compression Test	By: SH	Page 1 of 1
				<u> </u>	
Project:	D2 I-75 Coastal re	esearch	-		
Sample No.:	23423 - 7 psi		Membrane	Thickness (i	n) 0.018
Date:			Mass of 2 pore stones, 2 pape	ers & mem. (<u>g)</u> 137.94
Test By:	dp		Mass of 2 ps, 2fp, 1 men	n + sample (<u>g) 1354.10</u>
Description:	A-3 sand		Mass	s of sample (<u>g) 1216.16</u>
	.006 m/m		Mass	or sample (lb	<u>(S)</u> 2.08
Height	Sample + pore stones + papers	Pore Stones & Papers	Diameter (in)		
1	6.2839	0.5250		Т	op 2.900
2	6.2874	0.5270		Mido	ile 2.905
3	6.2671	0.5285		Botto	m 2.906
Average	6.279	0.527	Average (min	us membran	e) 2.868
Average Height minus pore stones and filter paper	5.7	526		Area (ir	າ ²) 6.4587
r	1				
	Initial	Final	Optimum D	ry Density, p	ocf 111.0
Tare		76.50	Optimu	m Moisture,	% 12.6
Wet		1334.10	Targ	et Density, p	ocf 109.4
Dry		1142.20	Actual D	ry Density, p	ocf 110.7
moisture (%)	12.6	18.0	Percentaç	ge of Optimu	m 99.8
Actual Valuma, ft ³	0.0215	l	Ligight before	acturation (i	0.0070
Actual Volume, It	0.0215		Height before	saturation (i	n) 0.6076
Volume Start of Test, cm3	607 8576				(in) 0.0104
Volume Alter Consol, chis	007.0370		Height after co	nsolidation (i	in) 0.6106
Shear Failure Sketch	Bva	alue	∆ Height after sat	nd consol (i	in) 0.0030
	u1 =	65.5	Average height	ΔHc+ΔHs (i	in) 5.7496
	u2 =	74.7		Vo (ir	1 ³) 37.1547
	∆s =	0		∆Vs (ir	1 ³) 0.0543
	В =	94%		∆Vc (cm	³) 0.1100
				(ir	1 ³) 0.0067
				ΔV_{T} (ir	າ ³) 0.0610
				Ac (ir	1 ²) 6.4515
			Volume after consolida	tion, Vc, (cm	u ³) 607.8576
	J		Confining	Pressure (p	si) 7
Test Notes:					

STATE MAT	TERIALS OFFICE	l	Consolidated Drained	Revised Da	ate: 2/8/06
Foundatio	ons Laboratory		Triaxial Compression Test	By: SH P	age 1 of 1
Project:	D2 I-75 Coastal r	esearch			
Sample No.:	23423- 14 psi		Membrane	Thickness (in)	0.018
Date:			Mass of 2 pore stones, 2 pape	rs & mem. (g)	145.82
Test By:	dp		Mass of 2 ps, 2fp, 1 men	n + sample (g)	1362.90
Description:	A-3 sand		Mass	of sample (g)	1209.51
	.006 in/m		Mass c	f sample (lbs)	2.67
Height	Sample + pore stones + papers	Pore Stones & Papers	Diameter (in)		
1	6.2930	0.5210		Тор	2.910
2	6.2230	0.5250		Middle	2.903
3	6.2360	0.5250		Bottom	2.907
Average	6.251	0.524	Average (minu	us membrane)	2.871
Average Height minus pore stones and filter paper	5.7	270		Area (in ²)	6.4723
	Initial	Final	Optimum D	ry Density, pcf	111.0
Tare			Optimum Moisture, %		12.6
Wet			Target Density, pcf		109.4
Dry			Actual D	Actual Dry Density, pcf	
moisture (%)	12.6	#DIV/0!	Percentag	e of Optimum	99.5
Actual Volume, ft ³	0.0215]	Height before	saturation (in)	0.5688
Volume Start of Test, cm3	607.4125		Height after saturation (in)		0.6215
Volume After Consol, cm3	586.9443			Δ Hs (in)	0.053
			Height after cor	nsolidation (in)	0.6317
Shear Failure Sketch	B v	alue	Δ Height after sat. a	nd consol. (in)	0.0629
	u1 =		Average height	Δ Hc+ Δ Hs (in)	5.6641
	u2 =			Vo (in ³)	37.0666
	∆s =	0		ΔVs (in ³)	1.0233
	B =	94		$\Delta Vc (cm^3)$	3.7000
				(in ³)	0.2258
				ΔV_T (in ³)	1.2491
				Ac (in ²)	6.3236
	1		Volume after consolidat	tion Vc (cm ³)	586 9443
					000.0440

prep._ setup_

prep.	
setup_	
consol.	
shear	
-	

STATE MATERIALS OFFICE		Consolidated Drained	Revised Date: 2/8/06		
Foundation	s Laboratory		Triaxial Compression Test	By: SH	Page 1 of 1
Project:	D2 I-75 Coastal re	esearch			
Sample No.:	23423- 21 psi		Membrane	Thickness	(in) 0.012
Date:		12/24/2008	Mass of 2 pore stones, 2 pape	ers & mem.	(g) 133.58
Test By:	dp		Mass of 2 ps, 2fp, 1 mer	n + sample	(g) 1376.46
Description:	A-3 sand		Mass	s of sample	(g) 1242.88
	.006 in/m		Mass	of sample (I	os) 2.74
Height	Sample + pore stones + papers	Pore Stones & Papers	Diameter (in)		
1	6.2835	0.5270		Г	op 2.910
2	6.2730	0.5315		Mid	dle 2.911
3	6.2630	0.5310		Bott	om 2.911
Average	6.273	0.530	Average (min	Average (minus membrane)	
Average Height minus pore stones and filter paper	5.7	433		Area (i	n ²) 6.5446
	Initial	Final	Optimum D	ry Density,	pcf 111.0
Tare	77.12		Optimu	m Moisture,	% 12.6
Wet	383.70		Target Density, pcf		pcf 110.1
Dry	349.55		Actual D	Actual Dry Density, pcf	
moisture (%)	12.5	#DIV/0!	Percentage of Optimum		um 100.8
2		I			
Actual Volume, ft ³	0.0218		Height before	saturation	(in) 0.4138
Volume Start of Test, cm3	615.9541		Height after	saturation	(in) 0.4467
Volume After Consol, cm3	602.5688			ΔHs	(in) 0.033
	1		Height after co	nsolidation	(in) 0.4549
Shear Failure Sketch	B va	alue	Δ Height after sat. a	nd consol.	in) 0.041
	u1 =		Average height	∆Hc+∆Hs	in) 5.7022
	u2 =			Vo (i	n ³) 37.5878
	∆s =			∆Vs (i	n ³) 0.6460
	B =	0.95		∆Vc (cr	n ³) 2.8000
				(i	n ³) 0.1709
				ΔV_T (i	n°) 0.8168
				Ac (i	n ²) 6.4485
			Volume after consolida	tion, Vc, (cr	n ³) 602.5688
			Confining	Pressure (p	osi) 21

Appendix F Triaxial Test Results for Sample with 90% Standard Density

ANE OF FLORID	
WY OF TRANS	

STATE MATERIALS OFFICE

Foundations Laboratory

Consolidated Drained	Revis	ed Date: 2/8/06
Triaxial Compression Test	By: SH	Page 1 of 1

Project:	UF Soil Box
Sample No.:	S-1
Date:	5/20/2010
Test By:	Dan Pitocchi
Description:	90% std proctor @ 3 psi confining
Strain Rate:	0.006 in/min

Membrane Thickness (in)	0.012
Mass of 2 pore stones, 2 papers & mem. (g)	145.79
Mass of 2 ps, 2fp, 1 mem + sample (g)	1236.52
Mass of sample (g)	1090.73
Mass of sample (lbs)	2.40

Height	Sample + pore stones + papers	Pore Stones & Papers
1	6.1510	0.5175
2	6.1620	0.5240
3	6.1535	0.5240
Average	6.156	0.522
Average Height minus pore stones and filter paper	5.6	337

	Initial	Final
Tare	68.29	
Wet	205.45	
Dry	190.22	
moisture (%)	12.5	#DIV/0!

Actual Volume, ft ³	0.0213
Volume Start of Test, cm3	602.9375
Volume After Consol, cm3	597.2361

Shear Failure Sketch	B value	
	u1 =	
	u2 =	
	∆s =	10
	В =	0

Diameter (in)	
Тор	2.907
Middle	2.908
Bottom	2.908
Average (minus membrane)	2.884
Area (in ²)	6 5310

Optimum Dry Density, pcf	109.5
Optimum Moisture, %	12.5
Target Density, pcf	98.6
Actual Dry Density, pcf	100.4
Percentage of Optimum	91.7

0.0489	Height before saturation (in)				
0.0651	Height after saturation (in)				
0.016	Δ Hs (in)				
0.0833	Height after consolidation (in)				
0.0344	Δ Height after sat. and consol. (in)				
5.5993	Average height ∆Hc+∆Hs (in)				
36.7935	Vo (in ³)				
0.3174	ΔVs (in ³)				
0.5000	∆Vc (cm³)				
0.0305	(in ³)				
0.3479	ΔV_{T} (in ³)				
6.5090	Ac (in ²)				
597.2361	Volume after consolidation, Vc, (cm ³)				
3	Confining Pressure (psi)				

Test Notes:

TE OF FLOR					shear	
STATE MAT	STATE MATERIALS OFFICE Consolidated Drained Revis		Revised D	ate: 2/8/06		
Foundation	ns Laboratory		Triaxial Compression Test	By: SH F	SH Page 1 of 1	
roject:	UF Soil Box					
Sample No.:	S-2		Membrane Thickness (in)		0.012	
Date:	5/20/2010		Mass of 2 pore stones, 2 pape	ers & mem. (g)	147.79	
est By:	dp		Mass of 2 ps, 2fp, 1 men	n + sample (g)	1238.95	
escription:	90% std proctor (② 5 psi confining	Mass	of sample (g)	1091.16	
	0.006 in/min		Mass of	of sample (lbs)	2.41	
Height	Sample + pore stones + papers	Pore Stones & Papers	Diameter (in)			
1	6.1515	0.5405		Тор	2.908	
2	6.1400	0.5300		Middle	2.909	
3	6.2010	0.5305		Bottom	2.909	
Average	6.164	0.534	Average (mini	us membrane)	2.885	
Average Height minus pore stones and filter paper	e Height minus pore es and filter paper 5.6305			Area (in ²)	6.5355	
	Initial	Final	Optimum D	ry Density, pcf	109.5	
Tare	59.49		Optimu	Optimum Moisture, %		
Wet	219.17		Target Density, pcf		98.6	
Dry	201.45		Actual Dry Density, pcf		100.4	
moisture (%)	12.5	#DIV/0!	Percentag	e of Optimum	91.7	
Actual Volume, ft ³	0.0213		Height before	saturation (in)	0.0481	
Volume Start of Test, cm3	603.0166		Height after	saturation (in)	0.0487	
Volume After Consol, cm3	600.7238			Δ Hs (in)	0.001	
		_	Height after cor	nsolidation (in)	0.0537	
Shear Failure Sketch	B v	alue	Δ Height after sat. a	nd consol. (in)	0.0056	
	u1 =		Average height	∆Hc+∆Hs (in)	5.6249	
	u2 =			Vo (in ³)	36.7983	
	∆s =	10		ΔVs (in ³)	0.0118	
	B =	0		$\Delta Vc (cm^3)$	2.1	
				(in ³)	0.1281	
				ΔV_T (in ³)	0.1399	
				A = (:-2)	6 5172	
				AC (In⁻)	0.0	
			Volume after consolida	AC (In ⁻) tion, Vc, (cm ³)	600.7238	

prep._ setup_ consol._

Appendix G Soil Saturation Calculations

Calculation of Soil Dry Unit Weight and Soil Moisture Content...

Triaxial Test 2342	21	Triaxial Test 23422		Triaxial Test 23423	
Actual Dry Unit	Weights:	Actual Dry Unit Weights:		Actual Dry Unit Weights	
$\gamma_{d1} := 113.1$	(pcf)	$\gamma_{d4} := 112.8$	(pcf)	$\gamma_{d7} := 110.7$	(pcf)
$\gamma_{d2} \coloneqq 109.4$	(pcf)	$\gamma_{d5} := 112.1$	(pcf)	$\gamma_{d8} := 110.4$	(pcf)
$\gamma_{d3} \coloneqq 109.2$	(pcf)	$\gamma_{d6} := 107.3$	(pcf)	γ _{d9} := 111.9	(pcf)

$$\gamma_{davg1} \coloneqq \frac{\gamma_{d1} + \gamma_{d2} + \gamma_{d3}}{3} \qquad \qquad \gamma_{davg1} = 110.6 \qquad \text{(pcf)}$$

$$\gamma_{davg2} \coloneqq \frac{\gamma_{d4} + \gamma_{d5} + \gamma_{d6}}{3} \qquad \qquad \gamma_{davg2} = 110.7 \qquad \text{(pcf)}$$

$$\gamma_{\text{davg3}} \coloneqq \frac{\gamma_{\text{d7}} + \gamma_{\text{d8}} + \gamma_{\text{d9}}}{3} \qquad \qquad \gamma_{\text{davg3}} = 111.0 \qquad \text{(pcf)}$$

$$\gamma_{\text{davg}} \coloneqq \frac{\gamma_{\text{davg1}} + \gamma_{\text{davg2}} + \gamma_{\text{davg3}}}{3} \qquad \gamma_{\text{davg}} = 110.8 \qquad (\text{pcf})$$

$$\gamma_d := \gamma_{davg} = 110.8$$
 (pcf)

Moisture Content, w, obtained from nuclear density test results...

w := 3.0 (%)

Soil Box Dimensions... Pipe Dimensions...

 $L_{SB} := 20 \quad (ft) & D := 3 \qquad (ft) \\ W := 10 \qquad (ft) & L_P := 10 \qquad (ft) \\ H := 8 \qquad (ft) \\$

Soil Box Volume...

Pipe Volume...

$$V_{SB} := L_{SB} \cdot W \cdot H = 1600.0$$
 (ft³) $V_P := 2 \frac{\pi \cdot D^2}{4} \cdot L_P = 141.4$ (ft³)

Calculation of Soil Parameters...

Total Volume of Soil	$V := V_{SB} - V_P = 1$	1458.6 (ft ³)		
Weight of Solids	$\gamma_d \coloneqq \frac{w_S}{v}$	$w_{S} \coloneqq \gamma_{d} \cdot v$	$W_{S} = 161567.4$	(lbs)
Weight of Water	$\mathbf{w} \coloneqq \frac{\mathbf{W}_{\mathbf{W}}}{\mathbf{W}_{\mathbf{S}}} \cdot 100$	$\mathbf{W}_{\mathbf{W}} \coloneqq \frac{\mathbf{w} \cdot \mathbf{W}_{\mathbf{S}}}{100}$	W _W = 4847.0	(lbs)
Volume of Water	$\gamma_{\mathrm{W}} \coloneqq 62.4$	(pcf)		
	$\gamma_W \coloneqq \frac{W_W}{v_W}$	$\mathbf{V}_{\mathbf{W}} \coloneqq \frac{\mathbf{W}_{\mathbf{W}}}{\gamma_{\mathbf{W}}}$	V _W = 77.7	(ft ³)
Total Unit Weight	$\gamma\coloneqq \frac{W}{V}$	$\gamma \coloneqq \frac{w_S + w_W}{v}$	$\gamma = 114.1$	(pcf)
Specific Gravity of Solids	Assume G _S = 2.72	2	G _S := 2.72	
Volume of Solids	$\mathbf{G}_{\mathbf{S}} \coloneqq \frac{\mathbf{W}_{\mathbf{S}}}{\mathbf{V}_{\mathbf{S}} \cdot \boldsymbol{\gamma}_{\mathbf{W}}}$	$V_{\mathbf{S}} \coloneqq \frac{W_{\mathbf{S}}}{G_{\mathbf{S}} \cdot \gamma_{\mathbf{W}}}$	V _S = 951.9	(ft ³)
Void Ratio	$e := \frac{V_V}{V_S}$	$e := \frac{V - V_S}{V_S}$	e = 0.532	
Volume of Voids	$e := \frac{V_V}{V_S}$	$V_V := e \cdot V_S$	V _V = 506.7	(ft ³)
Volume of Air		$V_A := V_V - V_W$	V _A = 429.0	(ft ³)

Amount of water needed to saturate the soil is equal to the volume of air.

Convert volume of air (water needed) to gallons...

 $V_{WN} := V_A \cdot 7.48051948 = 3209.4$ (gallons)

As per field experiment with lawn sprinkler, it took 1 minute and 55 seconds to fill a 3 gallon bucket with water.

$$t := 1 + \frac{55}{60} = 1.92$$
 (min)

Time needed to saturate soil...

$$T := V_{WN} \cdot \frac{t}{3} \qquad T = 2050.4 \qquad (min)$$

$$T := \frac{T}{60} \qquad \qquad T = 34.2 \qquad \text{(hours)}$$