APPENDIX

C. OPEN CHANNEL FLOW DESIGN AIDS

TABLE OF CONTENTS

C. Open Channel Flow Design Aids	C-1
Example C.1 – Geometric Elements	C-1
Example C.2 – Geometric Elements	C-2
Figure C-1: Trapezoidal Channel Geometry	C-4
Figure C-2: Nomographs for the Solution of Manning's Equation	C-5
Figure C-3: Trapezoidal Channel Capacity Chart	C-6
Figure C-4: Open Channel Geometric Relationships for Various Cross S	Sections C-7

C. OPEN CHANNEL FLOW DESIGN AIDS

The nomographs in Figures C-1 through C-3 can be used as desktop aides for open channel flow calculations. The purpose of each nomograph is:

- Figure C-1 Area, Hydraulic Radius, and Top Width of Trapezoidal Channels
- Figure C-2 Normal Depth Velocity for a General Cross Section
 - Normal Depth Velocity in a Circular Pipe
- Figure C-3 Normal Depth in a Trapezoidal Channel

Figure C-1 can be used to solve Example C.1 below and the Geometry of Examples 3.1-1 through 3.1-4 in Chapter 3 of this document.

EXAMPLE C.1 – GEOMETRIC ELEMENTS

Given: Depth = 1.0 ft Trapezoidal Cross Section shown below

Calculate: Area, Wetted Perimeter, Hydraulic Radius, Top Width, and Hydraulic Depth

Water Area

$$A = a = bd + zd^{2}$$

a = (2.9×1) + 4(1)² = 6.9 ft²

Wetted Perimeter

$$P = b + 2d\sqrt{z^2 + 1}$$

P = 2.9 + (2×1) $\sqrt{4^2 + 1}$ = 11.146 = 11.1 ft

Hydraulic Radius

$$R = r = \frac{bd + zd^2}{b + 2d\sqrt{z^2 + 1}}$$

$$r = \frac{(2.9 \times 1) + 4(1)^2}{2.9 + (2 \times 1)\sqrt{4^2 + 1}} = 0.619 = 0.62 \text{ ft}$$

Top Width

$$T = b + 2zd$$

 $T = 2.9 + (2 \times 4 \times 1) = 10.9$ ft

Hydraulic Depth

$$D = \frac{A}{T} = \frac{6.9}{10.9} = 0.63 \text{ ft}$$

This problem can also be solved using nomographs

This example is solved in the lower right hand corner of Figure C-1

EXAMPLE C.2 – GEOMETRIC ELEMENTS

Determine Normal Depth for Standard Ditch and Narrow Ditch given in Chapter 3, Example 3.1-4 using Figure C-3.

Standard Ditch:

Solve for
$$\frac{Qn}{b^{\frac{8}{3}}S^{\frac{1}{2}}} = \frac{(25)(0.04)}{5^{\frac{8}{3}}(0.005)^{\frac{1}{2}}} = 0.193$$

The average value of z is (6 + 4) / 2 = 5

From Figure C-3,
$$\frac{d}{b} = 0.22$$

$$d = 0.43b = 0.22(5) = 1.1ft.$$

Using a trial and error procedure to solve Manning's Equation, normal depth = 1.12'

Narrow Ditch:

Solve for
$$\frac{Qn}{b^{\frac{8}{3}}S^{\frac{1}{2}}} = \frac{(25)(0.04)}{3.5^{\frac{8}{3}}(0.005)^{\frac{1}{2}}} = 0.501$$

The average value of z is (6 + 4) / 2 = 5

From Figure C-3,
$$\frac{d}{b} = 0.34$$

 $d = 0.34b = 0.34(3.5) = 1.2 ft.$

Using a trial and error procedure to solve Manning's Equation, normal depth = 1.25'

Figure C-1: Trapezoidal Channel Geometry

Figure C-2: Nomographs for the Solution of Manning's Equation

Figure C-3: Trapezoidal Channel Capacity Chart

Section	Area	Wetted Perimeter	Hydraulic Rodius r	Top Width T
rd b ropezoid	bd+zd2	6+20VE2+1	$\frac{bd+zd^2}{b+2d\sqrt{z^2+1}}$	b+22d
Rectangle	ЬФ	b+2d	<u>bd</u> <u>b+2d</u>	Ь
Triongle	z d ²	20 122+1	2V22+1	220
Parabola	$\frac{2}{3} dT$	$T \neq \frac{\mathcal{B}d^2}{3T}$	2072 372+802 L	<u>3 a</u> 2 d
Circle - 2 full 2</td <td>$\frac{D^2}{\delta} \left(\frac{\pi \theta}{180} - \sin \theta \right)$</td> <td><u>TD0</u> 360</td> <td>$\frac{45D}{\pi\Theta}\left(\frac{\pi\Theta}{i80}-\sin\Theta\right)$</td> <td>$D \sin \frac{\theta}{2}$ or $2\sqrt{d(D-d)}$</td>	$\frac{D^2}{\delta} \left(\frac{\pi \theta}{180} - \sin \theta \right)$	<u>TD0</u> 360	$\frac{45D}{\pi\Theta}\left(\frac{\pi\Theta}{i80}-\sin\Theta\right)$	$D \sin \frac{\theta}{2}$ or $2\sqrt{d(D-d)}$
Circle->/2 full 3	$\frac{D^2}{8} \left(2\pi - \frac{\pi \theta}{180} + \sin \theta \right)$	<u> ПD(360-Ө)</u> 360	<u>45D</u> π(360-θ) (2π- <u>πθ</u> tsinθ)	$D \sin \frac{\theta}{2}$ or $2\sqrt{d(D-\theta)}$
Satisfactory op When d/r >0.25, $\theta = 4 \sin^{-1} \sqrt{d/D}$	proximation for the use p=1/2 1/6d2+T2	the interval $0 < \frac{d}{T}$ the sinh $\frac{T^2}{8d} \sinh^{-1} \frac{4d}{T}$ s in above equa	≤ 0.25 tions	

Figure C-4: Open Channel Geometric Relationships for Various Cross Sections